Sample records for aggregate concentration cac

  1. A study of the aggregation of cyclodextrins: Determination of the critical aggregation concentration, size of aggregates and thermodynamics using isodesmic and K2-K models.

    PubMed

    Do, Thao Thi; Van Hooghten, Rob; Van den Mooter, Guy

    2017-04-15

    The aggregation of three different cyclodextrins (CDs): 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD) and sulfobutylether-β-cyclodextrin (SBE-β-CD) was studied. The critical aggregation concentration (cac) of these three CDs is quite similar and is situated at ca. 2% (m/v). There was only a small difference in the cac values determined by DLS and 1 H NMR. DLS measurements revealed that CDs in solution have three size populations wherein one of them is that of a single CD molecule. The size of aggregates determined by TEM appears to be similar to the size of the aggregates in the second size distribution determined by DLS. Isodesmic and K 2 -K self-assembly models were used for studying the aggregation process of HP-β-CD, HP-γ-CD and SBE-β-CD. The results showed that the aggregation process of these CDs is a cooperative one, where the first step of aggregation is less favorable than the next steps. The determined thermodynamic parameters showed that the aggregation process of all three CDs is spontaneous and exothermic and it is driven by an increase of the entropy of the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Critical aggregates concentration of fatty esters present in biodiesel determined by turbidity and fluorescence.

    PubMed

    Froehner, Sandro; Sánez, Juan; Dombroski, Luiz Fernando; Gracioto, Maria Paula

    2017-09-01

    Biodiesel for combustible engine is available as mixture of fossil diesel and fatty esters obtained by transesterification of vegetable oils. The use of biodiesel reduces the amount of SO x , mainly. However, it was already observed that biodiesel has a different behavior in environment in cases of accidental spill and groundwater contamination. It was noticed that the biodegradation of hydrocarbons (cyclic and aliphatic) in the presence of biodiesel are speeded, although the mechanism is still unclear. Considering the chemical structure of fatty esters, it was investigated the formation of aggregates in water solution by fatty esters present in commercial biodiesel. In Brazil, biodiesel is composed by 95% of fossil diesel and 5% of fatty esters mixture. In this work, fatty esters were treated as neutral surfactant, i.e., it was treated as a molecule with polar and non-polar part. Turbidity and fluorescence were used to determine the critical aggregates concentration (CAC). Water solutions containing fatty esters were examined exploiting changes in turbidity and fluorescence intensity of pyrene. Abrupt changes were attributed to aggregates formation, following the same behavior of traditional amphiphilic compounds. It was determined the CAC for ethyl palmitate, ethyl stearate, ethyl oleate, and ethyl linoleate. The values of CAC for fatty esters varied from 1.91 to 4.27 μmol/L, while CAC for the mixture of esters (biodiesel) was 2.01 for methyl esters and 1.19 for ethyl esters, both prepared using soybean oil. The aggregates formation was also determined by fluorescence measurements considering the changes in intensity of peaks I and III of pyrene. Pyrene senses the changes in environment polarity. The values found of CAC by fluorescence for individual ethyl esters varied from 1.85 to 3.21 μmol/L, while mixtures of ethyl esters was 2.23 and 2.07 μmol/L for mixture of methyl esters. The results clearly showed that fatty esters form aggregates and might be

  3. Aggregation behavior and complex structure between triblock copolymer and anionic surfactants

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Bao, Mutai; Wang, Zhining; Zhang, Haixia; Xu, Guiying

    2011-01-01

    The aggregation behavior and complex structure of ABA triblock copolymer EO 76PO 30EO 76 (F68) with sodium dodecyl sulfate (SDS) and sodium bis(2-ethylhexyl)sulfonate (AOT) in aqueous solution were investigated by surface tension, fluorescence techniques and dynamic light-scattering (DLS) measurements. It is revealed that in certain regions of binding, surfactant/F68 complexes are formed. Structural informations and size of complexes are evaluated. When F68 is present in its nonassociated state, F68/micellar SDS complexes are formed at SDS concentrations above its critical aggregation concentration (cac). The cac is well below the critical micellar concentration (cmc) of pure SDS, and a model suggesting how complexes are formed at the cac in the presence of F68 is described. Experimental results show that SDS interacts with F68 mainly through hydrophobic forces, polypropylene oxide (PPO) groups of F68 are solubilized into SDS micellar cores and poly(ethylene oxide) (PEO) groups interact with SDS micelles. This interaction mechanism results in a "pearl-necklace" complex structure. However, a different structure occurs for F68/AOT complex at lower F68 concentrations, as nonassociated F68 interacts with AOT mainly through ion-dipole interactions. Complexes with a "wrapping" structure at lower F68 concentrations are formed.

  4. The cmc-value of a bolalipid with two phosphocholine headgroups and a C24 alkyl chain: Unusual binding properties of fluorescence probes to bolalipid aggregates.

    PubMed

    Kordts, Martin; Kerth, Andreas; Drescher, Simon; Ott, Maria; Blume, Alfred

    2017-09-01

    Bolalipids with a long alkyl chain and two phosphocholine polar groups self-assemble in water into two different types of aggregate structures, namely helical nanofibers at low temperature and two types of micellar aggregates at higher temperature. We tried to determine the critical aggregation concentration (cac) or critical micellar concentration (cmc) of the bolalipid tetracosane-1,24-bis(phosphocholine) (PC-C24-PC) by using different fluorescent probes. The use of pyrene or pyrene derivatives as fluorophores failed, whereas the probes 1,8-ANS and particularly bis-ANS gave consistent results. The structure of the bolalipid aggregates obviously hinders partitioning or binding of pyrene derivatives into the micellar interior, whereas 1,8-ANS and bis-ANS can bind to the surface of the aggregate structures. The observed large increase in fluorescence intensity of bis-ANS indicates that binding to the hydrophobic surface of the aggregates leads to a reduction of the dye mobility. However, binding of bis-ANS is relatively weak, so that the determination of a cac/cmc-value is difficult. Simulations of the intensity curves for PC-C24-PC lead to estimates of the cac/cmc-value of 0.3-1.0×10 -6 M, depending on the structure of the aggregates. Single molecule fluorescence correlation spectroscopy was used to determine the mobility of bis-ANS as a function of concentration of PC-C24-PC. The dye diffusion time and the molecular brightness are lower at low bolalipid concentration, when only free dye is present, and increase at higher concentration when bis-ANS is bound to the aggregates. The experimental cac/cmc-values are higher than those estimated, using an incremental method for the change in Gibbs free energy for micellization with n-alkyl-phosphocholines with only one polar group as a comparison. Apparently, for PC-C24-PC in micellar or fibrous aggregates, more CH 2 groups are exposed to water than in a conventional micelle of an n-alkyl-phosphocholine. Copyright

  5. Thermodynamics of aggregate formation between a non-ionic polymer and ionic surfactants: An isothermal titration calorimetric study.

    PubMed

    Patel, Salin Gupta; Bummer, Paul M

    2017-01-10

    This report examines the energetics of aggregate formation between hydroxypropyl methylcellulose (HPMC) and model ionic surfactants including sodium dodecyl sulfate (SDS) at pharmaceutically relevant concentrations using the isothermal titration calorimetry (ITC) technique and a novel treatment of calorimetric data that accounts for the various species formed. The influence of molecular weight of HPMC, temperature and ionic strength of solution on the aggregate formation process was explored. The interaction between SDS and HPMC was determined to be an endothermic process and initiated at a critical aggregation concentration (CAC). The SDS-HPMC interactions were observed to be cooperative in nature and dependent on temperature and ionic strength of the solution. Molecular weight of HPMC significantly shifted the interaction parameters between HPMC and SDS such that at the highest molecular weight (HPMC K-100M;>240kDa), although the general shape of the titration curve (enthalpogram) was observed to remain similar, the critical concentration parameters (CAC, polymer saturation concentration (C sat ) and critical micelle concentration (CMC)) were significantly altered and shifted to lower concentrations of SDS. Ionic strength was also observed to influence the critical concentration parameters for the SDS-HPMC aggregation and decreased to lower SDS concentrations with increasing ionic strength for both anionic and cationic surfactant-HPMC systems. From these data, other thermodynamic parameters of aggregation such as ΔH agg ° , ΔG agg ° , H agg ° , ΔS agg ° , and ΔC p were calculated and utilized to postulate the hydrophobic nature of SDS-HPMC aggregate formation. The type of ionic surfactant head group (anionic vs. cationic i.e., dodecyltrimethylammonium bromide (DTAB)) was found to influence the strength of HPMC-surfactant interactions wherein a distinct CAC signifying the strength of HPMC-DTAB interactions was not observed. The interpretation of the

  6. Challenges of CAC in Heterogeneous Wireless Cognitive Networks

    NASA Astrophysics Data System (ADS)

    Wang, Jiazheng; Fu, Xiuhua

    Call admission control (CAC) is known as an effective functionality in ensuring the QoS of wireless networks. The vision of next generation wireless networks has led to the development of new call admission control (CAC) algorithms specifically designed for heterogeneous wireless Cognitive networks. However, there will be a number of challenges created by dynamic spectrum access and scheduling techniques associated with the cognitive systems. In this paper for the first time, we recommend that the CAC policies should be distinguished between primary users and secondary users. The classification of different methods of cac policies in cognitive networks contexts is proposed. Although there have been some researches within the umbrella of Joint CAC and cross-layer optimization for wireless networks, the advent of the cognitive networks adds some additional problems. We present the conceptual models for joint CAC and cross-layer optimization respectively. Also, the benefit of Cognition can only be realized fully if application requirements and traffic flow contexts are determined or inferred in order to know what modes of operation and spectrum bands to use at each point in time. The process model of Cognition involved per-flow-based CAC is presented. Because there may be a number of parameters on different levels affecting a CAC decision and the conditions for accepting or rejecting a call must be computed quickly and frequently, simplicity and practicability are particularly important for designing a feasible CAC algorithm. In a word, a more thorough understanding of CAC in heterogeneous wireless cognitive networks may help one to design better CAC algorithms.

  7. The Influence of Concentration and Temperature on the Formation of γ-Oryzanol + β-Sitosterol Tubules in Edible Oil Organogels

    PubMed Central

    Venema, Paul; Bot, Arjen; Flöter, Eckhard; van der Linden, Erik

    2010-01-01

    The gelation process of mixtures of γ-oryzanol and sitosterol structurants in sunflower oil was studied using light scattering, rheology, and micro-scanning calorimetry (Micro-DSC). The relation between temperature and the critical aggregation concentration (CAC) of tubule formation of γ-oryzanol and sitosterol was determined using these techniques. The temperature dependence of the CAC was used to estimate the binding energy and enthalpic and entropic contribution to the tubular formation process. The binding energy calculated at the corresponding temperatures and CACs were relatively low, in order of 2 RT (4.5 kJ mol−1), which is in accord with the reversibility of the tubular formation process. The formation of the tubules was associated with negative (exothermic) enthalpy change (ΔH0) compared with positive entropy term (−T ΔS0 >0), indicating that the aggregation into tubules is an enthalpy-driven process. The oryzanol–sitosterol ratio affected the aggregation process; solutions with ratio of (60 oryzanol–40 sitosterol) started aggregation at higher temperature compared with other ratios. PMID:21423326

  8. The Influence of Concentration and Temperature on the Formation of γ-Oryzanol + β-Sitosterol Tubules in Edible Oil Organogels.

    PubMed

    Sawalha, Hassan; Venema, Paul; Bot, Arjen; Flöter, Eckhard; van der Linden, Erik

    2011-03-01

    The gelation process of mixtures of γ-oryzanol and sitosterol structurants in sunflower oil was studied using light scattering, rheology, and micro-scanning calorimetry (Micro-DSC). The relation between temperature and the critical aggregation concentration (CAC) of tubule formation of γ-oryzanol and sitosterol was determined using these techniques. The temperature dependence of the CAC was used to estimate the binding energy and enthalpic and entropic contribution to the tubular formation process. The binding energy calculated at the corresponding temperatures and CACs were relatively low, in order of 2 RT (4.5 kJ mol(-1)), which is in accord with the reversibility of the tubular formation process. The formation of the tubules was associated with negative (exothermic) enthalpy change (ΔH(0)) compared with positive entropy term (-T ΔS(0) >0), indicating that the aggregation into tubules is an enthalpy-driven process. The oryzanol-sitosterol ratio affected the aggregation process; solutions with ratio of (60 oryzanol-40 sitosterol) started aggregation at higher temperature compared with other ratios.

  9. NMR investigations of self-aggregation characteristics of SDS in a model assembled tri-block copolymer solution.

    PubMed

    Kumar, B V N Phani; Priyadharsini, S Umayal; Prameela, G K S; Mandal, Asit Baran

    2011-08-01

    The present work was undertaken with a view to understand the influence of a model non-ionic tri-block copolymer PEO-PPO-PEO (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)) with molecular weight 5800 i.e., P123 [(EO)(20)-(PO)(70)-(EO)(20)] on the self-aggregation characteristics of the anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution (D(2)O) using NMR chemical shift, self-diffusion and nuclear spin-relaxation as suitable experimental probes. In addition, polymer diffusion has been monitored as a function of SDS concentration. The concentration-dependent chemical shift, diffusion data and relaxation data indicated the significant interaction of polymeric micelles with SDS monomers and micelles at lower and intermediate concentrations of SDS, whereas the weak interaction of the polymer with SDS micelles at higher concentrations of SDS. It has been observed that SDS starts aggregating on the polymer at a lower concentration i.e., critical aggregation concentration (cac=1.94 mM) compared to polymer-free situation, and the onset of secondary micelle concentration (C(2)=27.16 mM) points out the saturation of the 0.2 wt% polymer or free SDS monomers/micelles at higher concentrations of SDS. It has also been observed that the parameter cac is almost independent in the polymer concentrations of study. The TMS (tetramethylsilane) has been used as a solubilizate to measure the bound diffusion coefficient of SDS-polymer mixed system. The self-diffusion data were analyzed using two-site exchange model and the obtained information on aggregation dynamics was commensurate with that inferred from chemical shift and relaxation data. The information on slow motions of polymer-SDS system was also extracted using spin-spin and spin-lattice relaxation rate measurements. The relaxation data points out the disintegration of polymer network at higher concentrations of SDS. The present NMR investigations have been well corroborated by surface tension and

  10. Polylogarithmic equilibrium treatment of molecular aggregation and critical concentrations.

    PubMed

    Michel, Denis; Ruelle, Philippe

    2017-02-15

    A full equilibrium treatment of molecular aggregation is presented for prototypes of 1D and 3D aggregates, with and without nucleation. By skipping complex kinetic parameters like aggregate size-dependent diffusion, the equilibrium treatment allows us to predict directly time-independent quantities such as critical concentrations. The relationships between the macroscopic equilibrium constants for different paths are first established by statistical corrections and so as to comply with the detailed balance constraints imposed by nucleation, and the composition of the mixture resulting from homogeneous aggregation is then analyzed using a polylogarithmic function. Several critical concentrations are distinguished: the residual monomer concentration at equilibrium (RMC) and the critical nucleation concentration (CNC), which is the threshold concentration of total subunits necessary for initiating aggregation. When increasing the concentration of total subunits, the RMC converges more strongly to its asymptotic value, the equilibrium constant of depolymerization, for 3D aggregates and in the case of nucleation. The CNC moderately depends on the number of subunits in the nucleus, but sharply increases with the difference between the equilibrium constants of polymerization and nucleation. As the RMC and CNC can be numerically but not analytically determined, ansatz equations connecting them to thermodynamic parameters are proposed.

  11. Identification of expressed genes in cDNA library of hemocytes from the RLO-challenged oyster, Crassostrea ariakensis Gould with special functional implication of three complement-related fragments (CaC1q1, CaC1q2 and CaC3).

    PubMed

    Xu, Ting; Xie, Jiasong; Li, Jianming; Luo, Ming; Ye, Shigen; Wu, Xinzhong

    2012-06-01

    A SMARTer™ cDNA library of hemocyte from Rickettsia-like organism (RLO) challenged oyster, Crassostrea ariakensis Gould was constructed. Random clones (400) were selected and single-pass sequenced, resulted in 200 unique sequences containing 96 known genes and 104 unknown genes. The 96 known genes were categorized into 11 groups based on their biological process. Furthermore, we identified and characterized three complement-related fragments (CaC1q1, CaC1q2 and CaC3). Tissue distribution analysis revealed that all of three fragments were ubiquitously expressed in all tissues studied including hemocyte, gills, mantle, digestive glands, gonads and adductor muscle, while the highest level was seen in the hemocyte. Temporal expression profile in the hemocyte monolayers reveled that the mRNA expression levels of three fragments presented huge increase after the RLO incubation at 3 h and 6 h in post-challenge, respectively. And the maximal expression levels at 3 h in post-challenge are about 256, 104 and 64 times higher than the values detected in the control of CaC1q1, CaC1q2 and CaC3, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Metal concentrations in aggregate interiors, exteriors, whole aggregates, and bulk of Costa Rican soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcke, W.; Kretzschmar, S.; Bundt, M.

    1999-10-01

    In many temperate soils the preferential weathering and leaching of aggregate surfaces and the nonaggregated material between aggregates depletes geogenic metals. It also shifts metals from strongly to more weakly bound metal forms. Deposited metals are sorbed preferentially on aggregate surfaces and between aggregates. The authors examined whether preferential desilication under tropical climate causes an enrichment in the aggregate exteriors in oxidic forms of metals. They also studied where deposited metals are bound in these soils. Aggregates (2--20 mm) were selected manually from the A horizons of eight Oxisols, six Andisols, two Mollisols, and two Inceptisols in Costa Rica. Allmore » samples were fractionated into interior and exterior portions and treated with a seven-step sequence to extract Al, Cd, Cu, Fe, Mn, Pb, and Zn. Total concentrations of all metals except Zn were higher in the aggregate exteriors than in the interiors. The average Cd and Pb concentrations in easily extractable fractions were significantly higher in the aggregate exteriors. There were no significant differences in metal partitioning between interiors and exteriors except for Pb, which had higher proportions in extractable forms with NH{sub 2}OH {center{underscore}dot} HCl {gt} NH{sub 4} - acetate, pH 6.0 {gt} EDTA in the exteriors. There were few significant differences in metal concentrations and partitioning between bulk soil and whole aggregates. The results may be explained by (i) preferential desilication of the aggregate exteriors and (ii) preferential sorption of deposited heavy metals mainly in easily extractable forms.« less

  13. Dependence of humoral hypercalcemia of malignancy on parathyroid hormone-related protein expression in the canine anal sac apocrine gland adenocarcinoma (CAC-8) nude mouse model.

    PubMed

    Gröne, A; Weckmann, M T; Blomme, E A; Capen, C C; Rosol, T J

    1998-09-01

    Circulating parathyroid hormone-related protein (PTHrP) is the primary humoral factor in dogs with spontaneous humoral hypercalcemia of malignancy (HHM) and adenocarcinomas derived from apocrine glands of the anal sac. A canine apocrine adenocarcinoma model of HHM in nude mice (CAC-8) was developed and characterized. After 32 passages in vivo, a spontaneous variant of the tumor (CAC-8 Lo Ca) that has altered cellular morphology and that fails to induce HHM in tumor-bearing nude mice has been discovered. The hypercalcemic and nonhypercalcemic tumor lines were compared by tumor weight, effect on body weight, serum calcium concentration, plasma PTHrP concentration, histopathology, expression of PTHrP protein by radioimmunoassay and immunohistochemistry, and expression of PTHrP mRNA by in situ hybridization and northern blot analysis. Messenger RNA expression for other factors and cytokines known to alter PTHrP secretion or bone resorption in vivo, including tumor necrosis factor alpha (TNF alpha), interleukin (IL)-1, IL-6, and transforming growth factor beta (TGF beta), were also measured in the adenocarcinomas. There was no significant difference in weight of individual tumors. Nude mice bearing the CAC-8 (Lo Ca) tumor maintained normal body weight as compared with non-tumor-bearing control mice. In contrast, mice with the CAC-8 (Hi Ca) tumor had markedly decreased body weights. The CAC-8 (Hi Ca) tumor-bearing mice had severe hypercalcemia (mean = 13.4 mg/dl) and increased plasma concentrations of PTHrP (30.4 pM), whereas the CAC-8 (Lo Ca) tumor-bearing mice had a mean serum calcium concentration of 10.1 mg/dl and mildly increased PTHrP concentrations (5.7 pM) as compared with control mice (9.0 mg/dl and 1.0 pM, respectively). The original tumor (CAC-8 [Hi Ca]) is a well-differentiated adenocarcinoma, whereas the variant tumor (CAC-8 [Lo Ca]) is a solid carcinoma with both polygonal and spindle-shaped cells. The CAC-8 (Lo Ca) tumor had decreased PTHrP mRNA expression

  14. Effect of surfactant concentration to aggregations of nanogold particles

    NASA Astrophysics Data System (ADS)

    Duangthanu, Methawee; Pattanaporkratana, Apichart

    2017-09-01

    This research presents a study of aggregation of colloidal gold nanoparticles using 400 nm diameter gold nanoparticles mixed with a surfactant (Plantacare 2000) at various concentrations. When observed under a microscope, we found that the nanoparticles aggregated to form nearly spherical clusters at the beginning of the formation, and then sedimented to the bottom of the container. These clusters moved with Brownian’s motion and collided with each other in the horizontal plane, forming branch-like clusters in 2D. The appearance and size of the clusters were different depending on the concentration of surfactant. The clusters’ size and appearance were rarely changed after mixing with surfactant for 90 minutes, and we found that the cluster’s shapes were nearly spherical at low surfactant concentration (c = 0.25%). At surfactant concentration between 0.50% - 5.00%, the aggregates formed branch-like clusters with skinnier branches and smaller sizes at higher surfactant concentration. Moreover, we also found that, at surfactant concentrations between 2.50% - 5.00%, nanoparticles and aggregates stuck to the bottom of the glass container quickly and rarely moved after 10 minutes. At c = 0.25%, the 2D fractal dimension of the aggregates was measured to be D = 1.88 ± 0.04, since the aggregates were nearly spherical. The fractal dimension decreased to the minimum of D = 1.50 ± 0.12 at c = 1.50%, similar to D ∼ 1.45 found in diffusion-limited cluster aggregation (DLCA). At surfactant concentration above 1.50%, the fractal dimension increased until it reached the value of D ∼ 1.66 at c = 5.00%.

  15. Optical compensation for night myopia based on dark focus and CA/C ratio.

    PubMed

    Kotulak, J C; Morse, S E; Rabin, J C

    1995-07-01

    To determine whether individual differences in dark focus and convergence accommodation to convergence (CA/C) ratio can be used to prescribe the best optical correction for night myopia. The best correction for night myopia was obtained by measuring visual acuity and contrast sensitivity across a range of lens powers and luminances. Dark focus was measured with an infrared optometer, and CA/C ratio was measured with an infrared optometer and eyetracker. Only young subjects were used (mean age = 25.4 years). Optimal lens power was significantly correlated with dark focus, regardless of CA/C ratio. However, the slope of the regression line relating lens power to dark focus was steeper for subjects with CA/C ratios less than 0.4 diopters/meter angle (D/MA, n = 7) than for subjects with CA/C ratios greater than 0.4 D/MA (n = 9). The mean CA/C ratio for the entire sample (n = 16) was 0.59 D/MA. The mean optimal lens power and dark focus were -0.79 and 0.74 D, respectively, for the low CA/C group, and -0.60 and 0.91 D, respectively, for the high CA/C group. Visual performance in night myopia can be optimized by taking into account intersubject differences in dark focus and CA/C ratio. Best visual performance was found with a lens roughly equaling the full dark focus for subjects with low CA/C ratios and half the dark focus for subjects with high CA/C ratios.

  16. Subtle Effects of Aliphatic Alcohol Structure on Water Extraction and Solute Aggregation in Biphasic Water/ n -Dodecane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Andrew W.; Qiao, Baofu; Chiarizia, Renato

    Organic phase aggregation behavior of 1-octanol and its structural isomer, 2-ethylhexanol, in a biphasic n-dodecane water system is studied with a combination of physical measurement, small-angle X-ray scattering (SAXS), and atomistic molecular dynamic simulations. Physical properties of the organic phases are probed following their mixing and equilibration with immiscible water phases. Studies reveal that the interfacial tension decreases as a function of increasing alcohol concentration over the solubility range of the alcohol with no evidence for a critical aggregate concentration (cac). An uptake of water into the organic phases is quantified, as a function of alcohol content, by Karl Fischermore » titrations. The extraction of water into dodecane was further assessed as a function of alcohol concentration via the slope-analysis method sometimes employed in chemical separations. This provides a qualitative understanding of solute (water/alcohol) aggregation in the organic phase. The physical results are supported by analyses of SAXS data that reveals an emergence of aggregates in n-dodecane at elevated alcohol concentrations. The observed aggregate structure is dependent on the alcohol tail group geometry, consistent with surfactant packing parameter. The formation of these aggregates is discussed at a molecular level, where alcohol-alcohol and alcohol-water H-bonding interactions likely dominate the occurrence and morphology of the aggregates.« less

  17. Convergence accommodation to convergence (CA/C) ratio in patients with intermittent exotropia and decompensated exophoria.

    PubMed

    Nonaka, Fumitaka; Hasebe, Satoshi; Ohtsuki, Hiroshi

    2004-01-01

    To evaluate the convergence accommodation to convergence (CA/C) ratio in strabismic patients and to clarify its clinical implications. Seventy-eight consecutive patients (mean age: 12.9 +/- 6.0 years) with intermittent exotropia and decompensated exophoria who showed binocular fusion at least at near viewing were recruited. The CA/C ratio was estimated by measuring accommodative responses induced by horizontal prisms with different magnitudes under accommodation feedback open-loop conditions. The CA/C ratios were compared with accommodative convergence to accommodation (AC/A) ratios and other clinical parameters. A linear regression analysis indicated that the mean (+/-SD) CA/C ratio was 0.080 +/- 0.043 D/prism diopter or 0.48 +/- 0.26 D/meter angle. There was no inverse or reciprocal relationship between CA/C and AC/A ratios. The patients with lower CA/C ratios tended to have smaller tonic accommodation under binocular viewing conditions and larger exodeviation at near viewing. The CA/C ratio, like the AC/A ratio, is an independent parameter that characterizes clinical features. A lower CA/C may be beneficial for the vergence control system to compensate for ocular misalignment with minimum degradation of accommodation accuracy.

  18. Stereoscopic Viewing Can Induce Changes in the CA/C Ratio.

    PubMed

    Neveu, Pascaline; Roumes, Corinne; Philippe, Matthieu; Fuchs, Philippe; Priot, Anne-Emmanuelle

    2016-08-01

    Stereoscopic displays challenge the neural cross-coupling between accommodation and vergence by inducing a constant accommodative demand and a varying vergence demand. Stereoscopic viewing calls for a decrease in the gain of vergence accommodation, which is the accommodation caused by vergence, quantified by using the convergence-accommodation to convergence (CA/C) ratio. However, its adaptability is still a subject of debate. Cross-coupling (CA/C and AC/A ratios) and tonic components of vergence and accommodation were assessed in 12 participants (27.5 ± 5 years, stereoacuity better than 60 arc seconds, 6/6 acuity with corrected refractive error) before and after a 20-minute exposure to stereoscopic viewing. During stimulation, vergence demand oscillated from 1 to 3 meter angles along a virtual sagittal line in sinusoidal movements, while accommodative demand was fixed at 1.5 diopters. Results showed a decreased CA/C ratio (-10.36%, df = 10, t = 2.835, P = 0.018), with no change in the AC/A ratio (P = 0.090), tonic vergence (P = 0.708), and tonic accommodation (P = 0.493). These findings demonstrated that the CA/C ratio can exhibit adaptive adjustments. The observed nature and amount of the oculomotor modification failed to compensate for the stereoscopic constraint.

  19. Common Aviation Command and Control System Increment 1 (CAC2S Inc 1)

    DTIC Science & Technology

    2016-03-01

    Command and Control System Increment 1 ( CAC2S Inc 1) DoD Component Navy United States Marine Corps Responsible Office Program Manager References MAIS ...facilities for planning and execution of Marine Aviation missions within the Marine Air Ground Task Force (MAGTF). CAC2S Increment I will eliminate...approved by ASN (RDA), the MDA, in a Program Decision Memorandum (PDM), “ CAC2S Increment I,” May 05, 2009. As the result of the PDM, the independent

  20. A spectroscopic and thermodynamic study of porphyrin/DNA supramolecular assemblies.

    PubMed Central

    Pasternack, R F; Goldsmith, J I; Szép, S; Gibbs, E J

    1998-01-01

    Assemblies of trans-bis(N-methylpyridinium-4-yl)diphenylporphine ions on the surface of calf thymus DNA have been studied using several spectroscopic techniques: absorbance, circular dichroism, and resonance light scattering. The aggregation equilibrium can be treated as a two-state system-monomer and assembly-each bound to the nucleic acid template. The aggregate absorption spectrum in the Soret region is resolved into two bands of Lorentzian line shape, while the DNA-bound monomer spectrum in this region is composed of two Gaussian bands. The Beer-Lambert law is obeyed by both porphyrin forms. The assembly is also characterized by an extremely large, bisignate induced circular dichroism (CD) profile and by enhanced resonance light scattering (RLS). Both the CD and RLS intensities depend linearly on aggregate concentration. The RLS result is consistent with a model for the aggregates as being either of a characteristic size or of a fixed distribution of sizes, independent of total porphyrin concentration or ionic strength. Above threshold values of concentration and ionic strength, the mass action expression for the equilibrium has a particularly simple form: K' = cac-1; where cac is defined as the "critical assembly concentration."offe dependence of the cac upon temperature and ionic strength (NaCl) has been investigated at a fixed DNA concentration. The value of the cac scales as the inverse square of the sodium chloride concentration and, from temperature dependence studies, the aggregation process is shown to be exothermic. PMID:9675203

  1. Roundup Ready soybean gene concentrations in field soil aggregate size classes.

    PubMed

    Levy-Booth, David J; Gulden, Robert H; Campbell, Rachel G; Powell, Jeff R; Klironomos, John N; Pauls, K Peter; Swanton, Clarence J; Trevors, Jack T; Dunfield, Kari E

    2009-02-01

    Roundup Ready (RR) soybeans containing recombinant Agrobacterium spp. CP4 5-enol-pyruvyl-shikimate-3-phosphate synthase (cp4 epsps) genes tolerant to the herbicide glyphosate are extensively grown worldwide. The concentration of recombinant DNA from RR soybeans in soil aggregates was studied due to the possibility of genetic transformation of soil bacteria. This study used real-time PCR to examine the concentration of cp4 epsps in four field soil aggregate size classes (>2000 microm, 2000-500 microm, 500-250 microm and <250 microm). Aggregates over 2000 microm in diameter had significantly greater gene concentrations than those with diameters under 2000 microm. The >2000 mum fraction contained between 66.62% and 99.18% of total gene copies, although it only accounted for about 30.00% of the sampled soil. Aggregate formation may facilitate persistence of recombinant DNA.

  2. Pressure-induced superconductivity in CaC2

    PubMed Central

    Li, Yan-Ling; Luo, Wei; Zeng, Zhi; Lin, Hai-Qing; Mao, Ho-kwang; Ahuja, Rajeev

    2013-01-01

    Carbon can exist as isolated dumbbell, 1D chain, 2D plane, and 3D network in carbon solids or carbon-based compounds, which attributes to its rich chemical binding way, including sp-, sp2-, and sp3-hybridized bonds. sp2-hybridizing carbon always captures special attention due to its unique physical and chemical property. Here, using an evolutionary algorithm in conjunction with ab initio method, we found that, under compression, dumbbell carbon in CaC2 can be polymerized first into 1D chain and then into ribbon and further into 2D graphite sheet at higher pressure. The C2/m structure transforms into an orthorhombic Cmcm phase at 0.5 GPa, followed by another orthorhombic Immm phase, which is stabilized in a wide pressure range of 15.2–105.8 GPa and then forced into MgB2-type phase with wide range stability up to at least 1 TPa. Strong electron–phonon coupling λ in compressed CaC2 is found, in particular for Immm phase, which has the highest λ value (0.562–0.564) among them, leading to its high superconducting critical temperature Tc (7.9∼9.8 K), which is comparable with the 11.5 K value of CaC6. Our results show that calcium not only can stabilize carbon sp2 hybridization at a larger range of pressure but also can contribute in superconducting behavior, which would further ignite experimental and theoretical interest in alkaline–earth metal carbides to uncover their peculiar physical properties under extreme conditions. PMID:23690580

  3. Formation, structure, and evolution of boiling nucleus and interfacial tension between bulk liquid phase and nucleus

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Dong; Peng, Xiao-Feng; Tian, Yong; Wang, Bu-Xuan

    2005-05-01

    In this paper, the concept of the molecular free path is introduced to derive a criterion distinguishing active molecules from inactive molecules in liquid phase. A concept of the critical aggregation concentration (CAC) of active molecules is proposed to describe the physical configuration before the formation of a nucleus during vapor-liquid phase transition. All active molecules exist as monomers when the concentration of active molecules is lower than CAC, while the active molecules will generate aggregation once the concentration of the active molecules reaches CAC. However, these aggregates with aggregation number, N, smaller than five can steadily exist in bulk phase. The other excess active molecules can only produce infinite aggregation and form a critical nucleus of vapor-liquid phase transition. Without any outer perturbation the state point of CAC corresponds to the critical superheated or supercooled state. Meanwhile, a model of two-region structure of a nucleus is proposed to describe nucleus evolution. The interfacial tension between bulk liquid phase and nucleus is dependent of the density gradient in the transition region and varies with the structure change of the transition region. With the interfacial tension calculated using this model, the predicted nucleation rate is very close to the experimental measurement. Furthermore, this model and associated analysis provides solid theoretical evidences to clarify the definition of nucleation rate and understand nucleation phenomenon with the insight into the physical nature.

  4. Convergence accommodation to convergence CA/C ratio: convergence versus divergence.

    PubMed

    Simmons, Joshua M; Firth, Alison Y

    2014-09-01

    To determine whether the convergence accommodation to convergence (CA/C) ratio during divergence with base-in (BI) prisms is of a similar or different magnitude to that measured during convergence with base-out (BO) prisms. Eighteen participants with normal binocular single vision were recruited. The participants viewed a pseudo-Gaussian target, which consisted of a light emitting diode (LED) behind a diffusing screen at 40 cm. After 5 minutes of dark adaptation, the refractive status of the eye was measured without any prism using a Shin-Nippon SRW-5000 autorefractor. The participant held the selected prism (5Δ or 10Δ BO or BI, counterbalanced) in front of their right eye and obtained a single, fused image of the target while refractive measures were taken with each. A 30-second rest period was given between measurements. The mean age of the participants was 20.6±3.22 years. The mean CA/C ratios for the 5Δ BO, 10Δ BO, 5Δ BI, and 10Δ BI were 0.108 (±0.074) D/Δ, 0.110 (±0.056) D/Δ, 0.100 (±0.090) D/Δ, and 0.089 (±0.055) D/Δ, respectively. A 2-factor repeated measures ANOVA found that the CA/C ratio did not significantly change with differing levels of prism-induced convergence and divergence (p=0.649). Change in accommodation induced by manipulating vergence is similar whether convergence or divergence are induced. The CA/C ratio did not show any change with differing levels of prism-induced convergence and divergence.

  5. The Cac2 subunit is essential for productive histone binding and nucleosome assembly in CAF-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattiroli, Francesca; Gu, Yajie; Balsbaugh, Jeremy L.

    Nucleosome assembly following DNA replication controls epigenome maintenance and genome integrity. Chromatin assembly factor 1 (CAF-1) is the histone chaperone responsible for histone (H3-H4)2 deposition following DNA synthesis. Structural and functional details for this chaperone complex and its interaction with histones are slowly emerging. Using hydrogen-deuterium exchange coupled to mass spectrometry, combined with in vitro and in vivo mutagenesis studies, we identified the regions involved in the direct interaction between the yeast CAF-1 subunits, and mapped the CAF-1 domains responsible for H3-H4 binding. The large subunit, Cac1 organizes the assembly of CAF-1. Strikingly, H3-H4 binding is mediated by a compositemore » interface, shaped by Cac1-bound Cac2 and the Cac1 acidic region. Cac2 is indispensable for productive histone binding, while deletion of Cac3 has only moderate effects on H3-H4 binding and nucleosome assembly. These results define direct structural roles for yeast CAF-1 subunits and uncover a previously unknown critical function of the middle subunit in CAF-1.« less

  6. Formation of Nanofoam carbon and re-emergence of Superconductivity in compressed CaC6.

    PubMed

    Li, Yan-Ling; Luo, Wei; Chen, Xiao-Jia; Zeng, Zhi; Lin, Hai-Qing; Ahuja, Rajeev

    2013-11-26

    Pressure can tune material's electronic properties and control its quantum state, making some systems present disconnected superconducting region as observed in iron chalcogenides and heavy fermion CeCu2Si2. For CaC6 superconductor (Tc of 11.5 K), applying pressure first Tc increases and then suppresses and the superconductivity of this compound is eventually disappeared at about 18 GPa. Here, we report a theoretical finding of the re-emergence of superconductivity in heavily compressed CaC6. The predicted phase III (space group Pmmn) with formation of carbon nanofoam is found to be stable at wide pressure range with a Tc up to 14.7 K at 78 GPa. Diamond-like carbon structure is adhered to the phase IV (Cmcm) for compressed CaC6 after 126 GPa, which has bad metallic behavior, indicating again departure from superconductivity. Re-emerged superconductivity in compressed CaC6 paves a new way to design new-type superconductor by inserting metal into nanoporous host lattice.

  7. Effects of arginine on heat-induced aggregation of concentrated protein solutions.

    PubMed

    Shah, Dhawal; Shaikh, Abdul Rajjak; Peng, Xinxia; Rajagopalan, Raj

    2011-01-01

    Arginine is one of the commonly used additives to enhance refolding yield of proteins, to suppress aggregation of proteins, and to increase solubility of proteins, and yet the molecular interactions that contribute to the role of arginine are unclear. Here, we present experiments, using bovine serum albumin (BSA), lysozyme (LYZ), and β-lactoglobulin (BLG) as model proteins, to show that arginine can enhance heat-induced aggregation of concentrated protein solutions, contrary to the conventional belief that arginine is a universal suppressor of aggregation. Results show that the enhancement in aggregation is caused only for BSA and BLG, but not for LYZ, indicating that arginine's preferential interactions with certain residues over others could determine the effect of the additive on aggregation. We use this previously unrecognized behavior of arginine, in combination with density functional theory calculations, to identify the molecular-level interactions of arginine with various residues that determine arginine's role as an enhancer or suppressor of aggregation of proteins. The experimental and computational results suggest that the guanidinium group of arginine promotes aggregation through the hydrogen-bond-based bridging interactions with the acidic residues of a protein, whereas the binding of the guanidinium group to aromatic residues (aggregation-prone) contributes to the stability and solubilization of the proteins. The approach, we describe here, can be used to select suitable additives to stabilize a protein solution at high concentrations based on an analysis of the amino acid content of the protein. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  8. Influence of detergent concentration on aggregation and spectroscopic properties of light-harvesting complex II.

    PubMed

    Voigt, Bernd; Krikunova, Maria; Lokstein, Heiko

    2008-01-01

    Aggregation of photosynthetic light-harvesting complexes strongly influences their spectroscopic properties. Fluorescence yield and excited state lifetimes of the main light-harvesting complex (LHC II) of higher plants strongly depend on its aggregation state. Detergents are commonly used to solubilize membrane proteins and/or to circumvent their aggregation in aqueous environments. Nonlinear polarization spectroscopy in the frequency domain (NLPF) was performed with LHC II over a wide concentration range of the mild detergent n-dodecyl beta-D: -maltoside (beta-DM). Additionally, conventional absorption-, fluorescence- and circular dichroism-spectra were measured.The results indicate that: (i) conventional spectroscopic techniques are not well suited to investigate aggregation effects. NLPF provides a novel approach to overcome this problem: NLPF spectra display dramatic alterations upon even minor beta-DM concentration changes. (ii) Commonly used detergent concentrations (around or slightly above the critical micellar concentration) apparently do not lead to complete trimerization of LHC II. A long-wavelength species in the NLPF spectra (peaking at about 685 nm), indicative of residual aggregation, persists up to DM-concentrations of 0.06%. (iii) High-resolution NLPF spectra indicate the existence of a species with a considerably shortened excited state lifetime. (iv) No indication of denaturation was found even at the highest beta-DM concentrations used. (v) A specific change in interaction between certain chlorophyll(s) b and a xanthophyll molecule, probably neoxanthin, was detected upon aggregation as well as at higher beta-DM concentrations. The results are discussed with respect to the still elusive mechanism of nonradiative dissipation of excess excitation energy in the antenna system.

  9. Raman spectroscopy and x-ray diffraction of sp 3 CaC O 3 at lower mantle pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobanov, Sergey S.; Dong, Xiao; Martirosyan, Naira S.

    The exceptional ability of carbon to form sp 2 and sp 3 bonding states leads to a great structural and chemical diversity of carbon-bearing phases at nonambient conditions. Here we use laser-heated diamond-anvil cells combined with synchrotron x-ray diffraction, Raman spectroscopy, and first-principles calculations to explore phase transitions in CaC O 3 at P > 40 GPa . We find that postaragonite CaC O 3 transforms to the previously predicted P 2 1 / c CaC O 3 with sp 3 -hybridized carbon at 105 GPa ( ~ 30 GPa higher than the theoretically predicted crossovermore » pressure). The lowest-enthalpy transition path to P2 1 / c CaC O 3 includes reoccurring sp 2 and sp 3 CaC O 3 intermediate phases and transition states, as revealed by our variable-cell nudged-elastic-band simulation. Raman spectra of P 2 1 / c CaC O 3 show an intense band at 1025 c m -1 , which we assign to the symmetric C-O stretching vibration based on empirical and first-principles calculations. This Raman band has a frequency that is ~ 20 % low-ymmetric C-O stretching in sp 2 CaC O 3 due to the C-O bond length increase across the sp 2 ~ sp 3 transition and can be used as a fingerprint of tetrahedrally coordinated carbon in other carbonates.« less

  10. Impact of The Protective Renin-Angiotensin System (RAS) on The Vasoreparative Function of CD34+ CACs in Diabetic Retinopathy

    NASA Technical Reports Server (NTRS)

    Duan, Yaqian; Moldovan, Leni; Miller, Rehae C.; Beli, Eleni; Salazar, Tatiana; Hazra, Sugata; Al-Sabah, Jude; Chalam, KV; Raghunandan, Sneha; Vyas, Ruchi; hide

    2016-01-01

    Purpose: In diabetes, the impaired vasoreparative function of Circulating Angiogenic Cells (CACs) is believed to contribute to the progression of diabetic retinopathy (DR). Accumulating evidence suggests that the protective arm of renin-angiotensin system (RAS) ACE2 Angiotensin-(1-7) Mas plays an important role in restoring the function of diabetic CACs. We examined the protective RAS in CACs in diabetic individuals with different stages of retinopathy. Methods: Study subjects (n43) were recruited as controls or diabetics with either no DR, mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR or proliferative DR (PDR). Fundus photography and fluorescein angiograms were analyzed using Vessel Generation Analysis (VESGEN) software in a cohort of subjects. CD34+ CACs were isolated from peripheral blood of diabetics and control subjects. RAS gene expressions in CACs were measured by qPCR. The vasoreparative function of CACs was assessed by migration ability toward CXCL12 using the QCM 5M 96-well chemotaxis cell migration assay. Results: ACE2 gene is a key enzyme converting the deleterious Angiotensin II to the beneficial Angiotensin-(1-7). ACE2 expression in CACs from diabetic subjects without DR was increased compared to controls, suggestive of compensation (p0.0437). The expression of Mas (Angiotensin-(1-7) receptor) in CACs was also increased in diabetics without DR, while was reduced in NPDR compared to controls (p0.0002), indicating a possible loss of compensation of the protective RAS at this stage of DR. The presence of even mild NPDR was associated with CD34+ CAC migratory dysfunction. When pretreating CACs of DR subjects with Angiotensin-(1-7), migratory ability to a chemoattractant CXCL12 was restored (p0.0008). By VESGEN analysis, an increase in small vessel density was observed in NPDR subjects when compared with the controls. Conclusions: These data suggest the protective RAS axis within diabetic CACs may help maintain their vasoreparative potential

  11. CACS: Master Textbook List Helps Solve On-Going Problem.

    ERIC Educational Resources Information Center

    Anderson, Robert

    1979-01-01

    The use of a master textbook list developed by the Southern California Association of College Stores (CACS) is described. The three-part program is explained and the information assimilation process, format for revising lists, procedures for implementation, and general guidelines are among areas covered. (PHR)

  12. Shear-induced reaction-limited aggregation kinetics of Brownian particles at arbitrary concentrations

    NASA Astrophysics Data System (ADS)

    Zaccone, Alessio; Gentili, Daniele; Wu, Hua; Morbidelli, Massimo

    2010-04-01

    The aggregation of interacting Brownian particles in sheared concentrated suspensions is an important issue in colloid and soft matter science per se. Also, it serves as a model to understand biochemical reactions occurring in vivo where both crowding and shear play an important role. We present an effective medium approach within the Smoluchowski equation with shear which allows one to calculate the encounter kinetics through a potential barrier under shear at arbitrary colloid concentrations. Experiments on a model colloidal system in simple shear flow support the validity of the model in the concentration range considered. By generalizing Kramers' rate theory to the presence of shear and collective hydrodynamics, our model explains the significant increase in the shear-induced reaction-limited aggregation kinetics upon increasing the colloid concentration.

  13. Characterization of reaction intermediate aggregates in aniline oxidative polymerization at low proton concentration.

    PubMed

    Ding, Zhongfen; Sanchez, Timothy; Labouriau, Andrea; Iyer, Srinivas; Larson, Toti; Currier, Robert; Zhao, Yusheng; Yang, Dali

    2010-08-19

    Aggregates of reaction intermediates form during the early stages of aniline oxidative polymerization whenever the initial mole ratio of proton concentration to aniline monomer concentration is low ([H(+)](0)/[An](0) aggregates. The intermediate aggregates show a UV-Vis absorption peak at around 410 nm when dispersed in aqueous solution, whereas the peak is centered on 370 nm when dissolved in an organic solvent such as N-methylpyrrolidone. The electronic band gap decreases when the intermediates aggregate to form a solid, and thus, the absorption peak is red-shifted. Gel permeation chromatography (GPC) shows the aggregates contain a major low molecular weight peak with a long tail. The oligoanilines with low molecular weights consistently show a UV-Vis absorption peak at around 370 nm. Mass spectrometry confirms that the intermediate aggregates contain mainly a component with mass number 363 (M + H(+)), likely a tetramer. UV-Vis, GPC, mass spectrometry, NMR, FTIR, and XRD characterization results are presented and chemical structures for the tetramer are proposed. The major components of the intermediate aggregates are likely highly symmetric phenazine- and dihydrophenazine-containing structures. These particular organic compounds have not been identified before as intermediates. The aggregation and precipitation of the tetramers apparently stabilizes these intermediates. The aggregates are highly crystalline, as evidenced by powder X-ray diffraction. A new reaction mechanism for the formation of these intermediates is proposed.

  14. Coronary artery calcification (CAC) classification with deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Liu, Xiuming; Wang, Shice; Deng, Yufeng; Chen, Kuan

    2017-03-01

    Coronary artery calcification (CAC) is a typical marker of the coronary artery disease, which is one of the biggest causes of mortality in the U.S. This study evaluates the feasibility of using a deep convolutional neural network (DCNN) to automatically detect CAC in X-ray images. 1768 posteroanterior (PA) view chest X-Ray images from Sichuan Province Peoples Hospital, China were collected retrospectively. Each image is associated with a corresponding diagnostic report written by a trained radiologist (907 normal, 861 diagnosed with CAC). Onequarter of the images were randomly selected as test samples; the rest were used as training samples. DCNN models consisting of 2,4,6 and 8 convolutional layers were designed using blocks of pre-designed CNN layers. Each block was implemented in Theano with Graphics Processing Units (GPU). Human-in-the-loop learning was also performed on a subset of 165 images with framed arteries by trained physicians. The results from the DCNN models were compared to the diagnostic reports. The average diagnostic accuracies for models with 2,4,6,8 layers were 0.85, 0.87, 0.88, and 0.89 respectively. The areas under the curve (AUC) were 0.92, 0.95, 0.95, and 0.96. As the model grows deeper, the AUC or diagnostic accuracies did not have statistically significant changes. The results of this study indicate that DCNN models have promising potential in the field of intelligent medical image diagnosis practice.

  15. Absence of left ventricular concentric hypertrophy: a prerequisite for zero coronary calcium score.

    PubMed

    Ehara, Shoichi; Shirai, Nobuyuki; Okuyama, Takuhiro; Matsumoto, Kenji; Matsumura, Yoshiki; Yoshiyama, Minoru

    2011-09-01

    The identification and intervention of factors associated with a coronary artery calcification (CAC) score of zero, suggesting the absence of significant coronary artery disease (CAD) with high probability, would be meaningful in the clinical setting. Thus far, the relationship between CAC and left ventricular (LV) hypertrophy has not been documented. We identified factors associated with a CAC score of zero and evaluated the relationship between this score and LV concentric hypertrophy in 309 consecutive patients with suspected CAD who were clinically indicated to undergo multislice computed tomography angiography for coronary artery evaluation. The quantitative CAC score was calculated according to Agatston's method. The total coronary calcium score (TCS) was defined as the sum of the scores for each lesion. Four absolute TCS categories were considered: zero, mild (0-100), moderate (100-400), and severe (>400). LV hypertrophy was classified into concentric (LV mass index >104 g/m(2) in women or >116 g/m(2) in men; LV end-diastolic volume index ≤109.2 mL/m(2)) and eccentric (LV end-diastolic volume index >109.2 mL/m(2)) patterns. In the zero-TCS group, the frequency of LV concentric hypertrophy was extremely low (zero 6%, mild 17%, moderate 26%, severe 19%). Multivariate analysis revealed that age, hypercholesterolemia, diabetes mellitus, LV concentric hypertrophy, and LV mass index, but not hypertension, were the independent factors associated with a CAC score of zero. The present study demonstrated that the absence of LV concentric hypertrophy was a prerequisite for a CAC score of zero. That is, the presence of LV concentric hypertrophy, which indicated more severe underlying hypertension, long duration, or poor control of blood pressure, implicates the presence of CAC.

  16. Pseudocatalytic Antiaggregation Activity of Antibodies: Immunoglobulins can Influence α-Synuclein Aggregation at Substoichiometric Concentrations.

    PubMed

    Breydo, Leonid; Morgan, Dave; Uversky, Vladimir N

    2016-04-01

    Protein aggregation is involved in a variety of diseases. Alteration of the aggregation pathway, either to produce less toxic structures or to increase aggregate clearance, is a promising therapeutic route. Both active and passive immunization has been used for this purpose. However, the mechanism of action of antibodies on protein aggregates is not completely clear especially given poor ability of antibodies to cross blood-brain barrier. Here, we have shown that antibodies can interfere with protein aggregation at substoichiometric concentrations (as low as 1:1000 antibody to protein ratio). This is an indication that antibodies interact with aggregation intermediates in chaperone-like manner altering the aggregation pathways at very low antibody levels. This observation supports earlier suggestions that antibodies can inhibit aggregation by interaction with low abundance aggregation intermediates.

  17. CAC-DRS: Coronary Artery Calcium Data and Reporting System. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT).

    PubMed

    Hecht, Harvey S; Blaha, Michael J; Kazerooni, Ella A; Cury, Ricardo C; Budoff, Matt; Leipsic, Jonathon; Shaw, Leslee

    2018-03-30

    The goal of CAC-DRS: Coronary Artery Calcium Data and Reporting System is to create a standardized method to communicate findings of CAC scanning on all noncontrast CT scans, irrespective of the indication, in order to facilitate clinical decision-making, with recommendations for subsequent patient management. The CAC-DRS classification is applied on a per-patient basis and represents the total calcium score and the number of involved arteries. General recommendations are provided for further management of patients with different degrees of calcified plaque burden based on CAC-DRS classification. In addition, CAC-DRS will provide a framework of standardization that may benefit quality assurance and tracking patient outcomes with the potential to ultimately result in improved quality of care. Copyright © 2018 Society of Cardiovascular Computed Tomography. All rights reserved.

  18. Molecular Dynamics Simulations to Clarify the Concentration Dependency of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Nishikawa, Naohiro; Sakae, Yoshitake; Okamoto, Yuko

    We examined the concentration dependency of amyloid protein aggregation by using several molecular dynamics simulations, which were performed with different concentrations for each system. For these simulations, we used a fragment of amyloid-β, which is believed to be the cause of Alzheimer's disease, as our simulation system. We found that high concentration of amyloid peptides promotes the formation of β-structures which is the origin of amyloid fibrils.

  19. Viscosity scaling in concentrated dispersions and its impact on colloidal aggregation.

    PubMed

    Nicoud, Lucrèce; Lattuada, Marco; Lazzari, Stefano; Morbidelli, Massimo

    2015-10-07

    Gaining fundamental knowledge about diffusion in crowded environments is of great relevance in a variety of research fields, including reaction engineering, biology, pharmacy and colloid science. In this work, we determine the effective viscosity experienced by a spherical tracer particle immersed in a concentrated colloidal dispersion by means of Brownian dynamics simulations. We characterize how the effective viscosity increases from the solvent viscosity for small tracer particles to the macroscopic viscosity of the dispersion when large tracer particles are employed. Our results show that the crossover between these two regimes occurs at a tracer particle size comparable to the host particle size. In addition, it is found that data points obtained in various host dispersions collapse on one master curve when the normalized effective viscosity is plotted as a function of the ratio between the tracer particle size and the mean host particle size. In particular, this master curve was obtained by varying the volume fraction, the average size and the polydispersity of the host particle distribution. Finally, we extend these results to determine the size dependent effective viscosity experienced by a fractal cluster in a concentrated colloidal system undergoing aggregation. We include this scaling of the effective viscosity in classical aggregation kernels, and we quantify its impact on the kinetics of aggregate growth as well as on the shape of the aggregate distribution by means of population balance equation calculations.

  20. Attractive interactions between reverse aggregates and phase separation in concentrated malonamide extractant solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlinger, C.; Belloni, L.; Zemb, T.

    1999-03-30

    Using small angle X-ray scattering, conductivity, and phase behavior determination, the authors show that concentrated solutions of malonamide extractants, dimethyldibutyltetradecylmalonamide (DMDBTDMA), are organized in reverse oligomeric aggregates which have many features in common with reverse micelles. The aggregation numbers of these reverse globular aggregates as well as their interaction potential are determined from absolute scattering curves. An attractive interaction is responsible for the demixing of the oil phase when in equilibrium with excess oil. Prediction of conductivity as well as the formation conditions for the third phase is possible using standard liquid theory applied to the extractant aggregates. The interactions,more » modeled with the sticky sphere model proposed by Baster, are shown to be due to steric interactions resulting from the hydrophobic tails of the extractant molecule and van der Waals forces between the highly polarizable water core of the reverse micelles. The attractive interaction in the oil phase, equilibrated with water, is determined as a function of temperature, extractant molecule concentration, and proton and neodynium(III) cation concentration. It is shown that van der Waals interactions, with an effective Hamaker constant of 3kT, quantitatively explain the behavior of DMDBTDMA in n-dodecane in terms of scattering as well as phase stability limits.« less

  1. Diarmed (adamantyl/alkyl) surfactants from nitrilotriacetic acid.

    PubMed

    Trillo, Juan V; Vázquez Tato, José; Jover, Aida; de Frutos, Santiago; Soto, Victor H; Galantini, Luciano; Meijide, Francisco

    2014-11-01

    The compounds presented here constitute a clear example of molecular biomimetics as their design is inspired on the structure and properties of natural phospholipids. Thus novel double-armed surfactants have been obtained in which nitrilotriacetic acid plays the role of glycerol in phospholipids. The hydrophobic arms are linked to the head group through amide bonds (which is also the case of sphingomyelin): (R1NHCOCH2)(R2NHCOCH2)NCH2CO2H (R1 being CH3(CH2)11, CH3(CH2)17, CH3(CH2)7CHCH(CH2)8, and adamantyl, and R2=adamantyl). The dependence of the surface tension with concentration shows the typical profile of surfactants since a breaking point, which corresponds to the critical aggregation concentration (cac), is observed in all cases. The cac of these diarmed derivatives are about 1-3 orders of magnitude lower than those of classical monoalkyl derivatives used as reference compounds. In contrast to conventional surfactants, reversed trends in cac values and molecular areas at the solution-air interface have been observed. This anomalous behavior is tied to the structure of the surfactants and suggests that long and flexible alkyl chains should self-coil previous to the aggregation or adsorption phenomena. Above cac all compounds form large aggregates, globular in shape, which tend to associate forming giant aggregates. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A connecter-like factor, CacA, links RssB/RpoS and the CpxR/CpxA two-component system in Salmonella

    PubMed Central

    2012-01-01

    Background Bacteria integrate numerous environmental stimuli when generating cellular responses. Increasing numbers of examples describe how one two-component system (TCS) responds to signals detected by the sensor of another TCS. However, the molecular mechanisms underlying this phenomenon remain poorly defined. Results Here, we report a connector-like factor that affects the activity of the CpxR/CpxA two-component system in Salmonella enterica serovar Typhimurium. We isolated a clone that induced the expression of a cpxP-lac gene fusion from a high-copy-number plasmid pool of random Salmonella genomic fragments. A 63-amino acid protein, CacA, was responsible for the CpxA/CpxR-dependent activation of the cpxP gene. The CpxR-activated genes cpxP and spy exhibited approximately 30% and 50% reductions in transcription, respectively, in a clean cacA deletion mutant strain in comparison to wild-type. From 33 response regulator (RR) deletion mutants, we identified that the RssB regulator represses cacA transcription. Substitution mutations in a conserved -10 region harboring the RNA polymerase recognition sequence, which is well conserved with a known RpoS -10 region consensus sequence, rendered the cacA promoter RpoS-independent. The CacA-mediated induction of cpxP transcription was affected in a trxA deletion mutant, which encodes thioredoxin 1, suggesting a role for cysteine thiol-disulfide exchange(s) in CacA-dependent Cpx activation. Conclusions We identified CacA as an activator of the CpxR/CpxA system in the plasmid clone. We propose that CacA may integrate the regulatory status of RssB/RpoS into the CpxR/CpxA system. Future investigations are necessary to thoroughly elucidate how CacA activates the CpxR/CpxA system. PMID:23031642

  3. A connecter-like factor, CacA, links RssB/RpoS and the CpxR/CpxA two-component system in Salmonella.

    PubMed

    Kato, Akinori; Hayashi, Hironori; Nomura, Wataru; Emori, Haruka; Hagihara, Kei; Utsumi, Ryutaro

    2012-10-02

    Bacteria integrate numerous environmental stimuli when generating cellular responses. Increasing numbers of examples describe how one two-component system (TCS) responds to signals detected by the sensor of another TCS. However, the molecular mechanisms underlying this phenomenon remain poorly defined. Here, we report a connector-like factor that affects the activity of the CpxR/CpxA two-component system in Salmonella enterica serovar Typhimurium. We isolated a clone that induced the expression of a cpxP-lac gene fusion from a high-copy-number plasmid pool of random Salmonella genomic fragments. A 63-amino acid protein, CacA, was responsible for the CpxA/CpxR-dependent activation of the cpxP gene. The CpxR-activated genes cpxP and spy exhibited approximately 30% and 50% reductions in transcription, respectively, in a clean cacA deletion mutant strain in comparison to wild-type. From 33 response regulator (RR) deletion mutants, we identified that the RssB regulator represses cacA transcription. Substitution mutations in a conserved -10 region harboring the RNA polymerase recognition sequence, which is well conserved with a known RpoS -10 region consensus sequence, rendered the cacA promoter RpoS-independent. The CacA-mediated induction of cpxP transcription was affected in a trxA deletion mutant, which encodes thioredoxin 1, suggesting a role for cysteine thiol-disulfide exchange(s) in CacA-dependent Cpx activation. We identified CacA as an activator of the CpxR/CpxA system in the plasmid clone. We propose that CacA may integrate the regulatory status of RssB/RpoS into the CpxR/CpxA system. Future investigations are necessary to thoroughly elucidate how CacA activates the CpxR/CpxA system.

  4. Carbon Structural Investigations of Concentric Layers Within Macro-aggregates From Forest and Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Dria, K. J.; Gamblin, D. E.; Smucker, A. J.; Park, E.; Filley, T. R.

    2004-12-01

    Much of the current research on the potential of agricultural and forest soils to act as sinks for greenhouse gases focuses on the capacity of the systems to form long-term stabilized fractions of soil organic matter (SOM). One proposed mechanism is that carbon is sequestered within soil aggregate interiors during the aggregation process. Repeated wetting-drying cycles change internal pore geometries and associated microhabitats and create more stable macro-aggregates. Research by Smucker and coworkers (EGU Abstracts, 2004) suggest that the exterior portions of aggregates contain greater concentrations of C and N than their interiors, establishing gradients of \\ä13C values across these aggregates. We present the results of a study to test if there exists molecular evidence of such gradients. Soil samples from forest, conventional tillage (CT) and no tillage (NT) agriculture ecosystems in Hoytville and Wooster LTER sites were gently sieved into various size fractions. Soil macro-aggregates (6.3-9.5mm) were peeled, by mechanical erosion chambers, into concentric layers and separated into exterior, transitional and interior regions. Alkaline CuO oxidation was used to determine the composition of lignin, suberin, and cutin biopolymers to determine changes in source and degradative states of SOM. Preliminary results indicate that both soils show similar relative yields of lignin and hydroxyl fatty acids with a greater abundance of lignin than cutin and suberin acids. Greater abundances (per 100mg organic carbon) of CuO products were observed in the native forest than in either agricultural system. The lignin in the NT agricultural soil was least oxidized, followed by the forest soils, then the CT agricultural soils. For both soils, slight trends in biopolymer concentrations were observed between the exterior, transitional and interior regions of the aggregates from the forest and CT or NT ecosystems.

  5. 32 CFR 156.6 - Common access card (CAC) investigation and adjudication.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... national background investigations may vary based on standing reciprocity treaties concerning identity... repository when available. (g) Reciprocity of CAC Determinations. (1) The sponsoring activity shall not re... determinations are not eligible to be transferred or reciprocally accepted. Reciprocity shall be based on final...

  6. Thrombin-stimulated platelet aggregation is inhibited by kallikrein in a time- and concentration-dependent manner.

    PubMed

    Veloso, D

    2003-01-01

    Many in vitro studies have shown that activation of prekallikrein (PK) to kallikrein (KAL) in normal plasma triggers rapid activation of the coagulation cascade. In agreement, the coagulation activation is impaired in PK-deficient plasma. Paradoxically, PK-deficient patients show a tendency to thrombosis. To investigate the discrepancy between the in vitro and in vivo findings, we analyzed the effect of KAL on the rate of platelet aggregation. For this research, physiologic concentrations of washed human platelets were incubated for 5 and/or 10 min with approximately 2.2 to 88 nM human plasma KAL (< 1/100 to approximately 1/3 of PK concentrations in plasma) prior to the addition of high concentrations of alpha-thrombin (54 nM) or fibrinogen plus ADP. KAL concentrations were arbitrarily selected on the assumption that concentrations of free KAL (the enzymatically active species) were minute in normal plasma and higher when KAL production was enhanced, and/or inhibitors were depleted. Full platelet aggregation was that seen in the absence of KAL or PK. Inhibition of platelet aggregation stimulated by thrombin was markedly increased with increased KAL concentrations and incubation times. The degree of inhibition by KAL was smaller when ADP was the agonist. The data suggest that KAL may play a role in the modulation of platelet aggregation in vivo under normal conditions as well as when prolonged, high concentrations of KAL occur in blood. The data may also help to explain the intriguing observation that PK-deficient patients show a tendency to thrombotic episodes and myocardial infarction whereas in vitro assays predict bleeding.

  7. Targeted deletion of Kif18a protects from colitis-associated colorectal (CAC) tumors in mice through impairing Akt phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Houbao; Xu, Wangyang; Zhang, Hongxin

    2013-08-16

    Highlights: •Kif18A is up-regulated in CAC of mouse model. •Kif18a{sup −/−} mice are protected from CAC. •Tumor cells from Kif18a{sup −/−} mice undergo more apoptosis. •Kif18A deficiency induces poor Atk phosphorylation. -- Abstract: Kinesins are a superfamily of molecular motors involved in cell division or intracellular transport. They are becoming important targets for chemotherapeutic intervention of cancer due to their crucial role in mitosis. Here, we demonstrate that the kinesin-8 Kif18a is overexpressed in murine CAC and is a crucial promoter during early CAC carcinogenesis. Kif18a-deficient mice are evidently protected from AOM–DSS-induced colon carcinogenesis. Kif18A is responsible for proliferation ofmore » colonic tumor cells, while Kif18a ablation in mice promotes cell apoptosis. Mechanistically, Kif18a is responsible for induction of Akt phosphorylation, which is known to be associated with cell survival regulation. In conclusion, Kif18a is critical for colorectal carcinogenesis in the setting of inflammation by mechanisms of increased PI3K-AKT signaling. Inhibition of Kif18A activity may be useful in the prevention or chemotherapeutic intervention of CAC.« less

  8. Corrosion of aluminium metal in OPC- and CAC-based cement matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Hajime, E-mail: h.kinoshita@sheffield.ac.uk; Swift, Paul; Utton, Claire

    Corrosion of aluminium metal in ordinary Portland cement (OPC) based pastes produces hydrogen gas and expansive reaction products causing problems for the encapsulation of aluminium containing nuclear wastes. Although corrosion of aluminium in cements has been long known, the extent of aluminium corrosion in the cement matrices and effects of such reaction on the cement phases are not well established. The present study investigates the corrosion reaction of aluminium in OPC, OPC-blast furnace slag (BFS) and calcium aluminate cement (CAC) based systems. The total amount of aluminium able to corrode in an OPC and 4:1 BFS:OPC system was determined, andmore » the correlation between the amount of calcium hydroxide in the system and the reaction of aluminium obtained. It was also shown that a CAC-based system could offer a potential matrix to incorporate aluminium metal with a further reduction of pH by introduction of phosphate, producing a calcium phosphate cement.« less

  9. Aggregation in concentrated protein solutions: Insights from rheology, neutron scattering and molecular simulations

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica

    Aggregation of therapeutic proteins is currently one of the major challenges in the bio-pharmaceutical industry, because aggregates could induce immunogenic responses and compromise the quality of the product. Current scientific efforts, both in industry and academia, are focused on developing rational approaches to screen different drug candidates and predict their stability under different conditions. Moreover, aggregation is promoted in highly concentrated protein solutions, which are typically required for subcutaneous injection. In order to gain further understanding about the mechanisms that lead to aggregation, an approach that combined rheology, neutron scattering, and molecular simulations was undertaken. Two model systems were studied in this work: Bovine Serum Albumin in surfactant-free Phosphate Buffered Saline at pH = 7.4 at concentrations from 11 mg/mL up to ˜519 mg/mL, and a monoclonal antibody in 20 mM Histidine/Histidine Hydrochloride at pH = 6.0 with 60 mg/mL trehalose and 0.2 mg/mL polysorbate-80 at concentrations from 53 mg/mL up to ˜220 mg/mL. The antibody used here has three mutations in the CH2 domain, which result in lower stability upon incubation at 40 °C with respect to the wild-type protein, based on size-exclusion chromatography assays. This temperature is below 49 °C, where unfolding of the least stable, CH2 domain occurs, according to differential scanning calorimetry. This dissertation focuses on identifying the role of aggregation on the viscosity of protein solutions. The protein solutions of this work show an increase in the low shear viscosity in the absence of surfactants, because proteins adsorb at the air/water interface forming a viscoelastic film that affects the measured rheology. Stable surfactant-laden protein solutions behave as simple Newtonian fluids. However, the surfactant-laden antibody solution also shows an increase in the low shear viscosity from bulk aggregation, after prolonged incubation at 40 °C. Small

  10. CAC Score Improves Coronary and CV Risk Assessment Above Statin Indication by ESC and AHA/ACC Primary Prevention Guidelines.

    PubMed

    Mahabadi, Amir A; Möhlenkamp, Stefan; Lehmann, Nils; Kälsch, Hagen; Dykun, Iryna; Pundt, Noreen; Moebus, Susanne; Jöckel, Karl-Heinz; Erbel, Raimund

    2017-02-01

    The aim of this study was to assess the difference in indication for statin therapy by European Society of Cardiology (ESC) versus American Heart Association/American College of Cardiology (AHA/ACC) guidelines and to quantify the potential additional role of coronary artery calcification (CAC) score over updated guidelines in a primary prevention cohort. Recently, ESC and AHA/ACC updated the guidelines regarding statin therapy in primary prevention. In 3,745 subjects (59 ± 8 years of age, 47% men) from the population based longitudinal Heinz Nixdorf Recall cohort study without cardiovascular disease or lipid-lowering therapy at baseline CAC score was assessed between 2000 and 2003. Subjects remained unaware of their initial CAC score. Statin indication was determined according to 2012 ESC and 2013 AHA/ACC guidelines based on subjects individual baseline characteristics. The frequency of statin recommendation was lower according to ESC compared to AHA/ACC guidelines (34% vs. 56%; p < 0.0001), whereas low CAC score (<100) was common in subjects with statin indication by both guidelines (59% for ESC, 62% for AHA/ACC). During 10.4 ± 2.0 years of follow-up, 131 myocardial infarctions occurred. For ESC recommendations, CAC score differentiated risk for subjects without (1.0 [95% confidence interval (CI): 0.4 to 1.5] vs. 6.5 [95% CI: 4.1 to 8.9] coronary events per 1,000 person-years for CAC 0 vs. ≥100) and with statin indication (2.6 [95% CI: 0.6 to 4.7] vs. 9.9 [95% CI: 7.3 to 12.5] per 1,000 person-years for CAC 0 vs. ≥100). Likewise, CAC score stratified proportions experiencing events subjects with statin indication according to AHA/ACC (2.7 [95% CI: 1.1 to 4.2] vs. 9.1 [95% CI: 7.0 to 11.0] per 1,000 person-years for CAC 0 vs. ≥100), whereas event rate in subjects without statin indication was low (1.1 [95% CI: 0.65 to 1.68] per 1,000 person-years). Current ESC and AHA/ACC guidelines lead to markedly different recommendation regarding statin therapy in a

  11. Aggregation-induced emission spectral shift as a measure of local concentration of a pH-activatable rhodamine-based smart probe

    NASA Astrophysics Data System (ADS)

    Arsov, Zoran; Urbančič, Iztok; Štrancar, Janez

    2018-02-01

    Generating activatable probes that report about molecular vicinity through contact-based mechanisms such as aggregation can be very convenient. Specifically, such probes change a particular spectral property only at the intended biologically relevant target. Xanthene derivatives, for example rhodamines, are able to form aggregates. It is typical to examine aggregation by absorption spectroscopy but for microscopy applications utilizing fluorescent probes it is very important to perform characterization by measuring fluorescence spectra. First we show that excitation spectra of aqueous solutions of rhodamine 6G can be very informative about the aggregation features. Next we establish the dependence of the fluorescence emission spectral maximum shift on the dimer concentration. The obtained information helped us confirm the possibility of aggregation of a recently designed and synthesized rhodamine 6G-based pH-activatable fluorescent probe and to study its pH and concentration dependence. The size of the aggregation-induced emission spectral shift at specific position on the sample can be measured by fluorescence microspectroscopy, which at particular pH allows estimation of the local concentration of the observed probe at microscopic level. Therefore, we show that besides aggregation-caused quenching and aggregation-induced emission also aggregation-induced emission spectral shift can be a useful photophysical phenomenon.

  12. The effect of nanoparticles aggregation on the thermal conductivity of nanofluids at very low concentrations: Experimental and theoretical evaluations

    NASA Astrophysics Data System (ADS)

    Motevasel, Mohsen; Nazar, Ali Reza Solaimany; Jamialahmadi, Mohammad

    2018-01-01

    Nanoparticles suspended in a base fluid yield increased thermal conductivity, which in turn increases convection heat transfer rate. Prediction of suitable relations for determination of thermal conductivity results in heightened accuracy in the calculation of convection heat transfer coefficient and reduced costs. In the majority of studies performed on the prediction of thermal conductivity, some relations and models were used in which the effect of aggregation of particles, especially at low concentrations was ignored. In this research, the thermal conductivity of the nanofluid is measured experimentally at low volumetric concentrations, within the range of 0.02-0.2% for the nanoparticles of Al2O3, MgO, CuO, and SiC in the base fluid of distilled water. The results obtained from the models are compared by the available models considering and neglecting the effect of aggregation of particles. Within the range of the applied concentrations, the relative absolute average deviation ratio of the thermal conductivity models without considering the aggregation effect in relation with the models considering the aggregate, is observed to be between 2 and 6 times. Therefore, it is recommended that even at low concentrations, the effect of aggregation should be considered in the prediction of thermal conductivity.

  13. A Dust Aggregation and Concentration System (DACS) for the Microgravity Space Environment

    NASA Technical Reports Server (NTRS)

    Giovane, F. J.; Blum, J.

    1999-01-01

    The Dust Aggregation and Concentration System, DACS, Project is an international effort intended to complete the preliminary definition of a system for suspending and concentrating dust particles in a microgravity environment for extended periods of time. The DACS design concept is based on extensive ground, drop tower, and parabolic flight tests. During the present proposed work, the DACS design will be completed, and a Science Requirements Document generated. At the end of the proposed 2 year project, DACS will be positioned to enter the advanced definition phase.

  14. Practical Issues in Estimating Classification Accuracy and Consistency with R Package cacIRT

    ERIC Educational Resources Information Center

    Lathrop, Quinn N.

    2015-01-01

    There are two main lines of research in estimating classification accuracy (CA) and classification consistency (CC) under Item Response Theory (IRT). The R package cacIRT provides computer implementations of both approaches in an accessible and unified framework. Even with available implementations, there remains decisions a researcher faces when…

  15. Effects of supplemental feeding and aggregation on fecal glucocorticoid metabolite concentrations in elk

    USGS Publications Warehouse

    Forristal, Victoria E.; Creel, Scott; Taper, Mark L.; Scurlock, Brandon M.; Cross, Paul C.

    2012-01-01

    Habitat modifications and supplemental feeding artificially aggregate some wildlife populations, with potential impacts upon contact and parasite transmission rates. Less well recognized, however, is how increased aggregation may affect wildlife physiology. Crowding has been shown to induce stress responses, and increased glucocorticoid (GC) concentrations can reduce immune function and increase disease susceptibility. We investigated the effects of supplemental feeding and the aggregation that it induces on behavior and fecal glucocorticoid metabolite concentrations (fGCM) in elk (Cervus elaphus) using observational and experimental approaches. We first compared fGCM levels of elk on supplemental feedgrounds to neighboring elk populations wintering in native habitats using data from 2003 to 2008. We then experimentally manipulated the distribution of supplemental food on feedgrounds to investigate whether more widely distributed food would result in lower rates of aggression and stress hormone levels. Contrary to some expectations that fed elk may be less stressed than unfed elk during the winter, we found that elk on feedgrounds had fecal GC levels at least 31% higher than non-feedground populations. Within feedgrounds, fGCM levels were strongly correlated with local measures of elk density (r2 = 0.81). Dispersing feed more broadly, however, did not have a detectable effect on fGCM levels or aggression rates. Our results suggest that increases in aggregation associated with winter feedgrounds affects elk physiology, and the resulting increases in fGCM levels are not likely to be mitigated by management efforts that distribute the feed more widely. Additional research is needed to assess whether these increases in fGCMs directly alter parasite transmission and disease dynamics.

  16. Growth-incompetent monomers of human calcitonin lead to a noncanonical direct relationship between peptide concentration and aggregation lag time.

    PubMed

    Kamgar-Parsi, Kian; Hong, Liu; Naito, Akira; Brooks, Charles L; Ramamoorthy, Ayyalusamy

    2017-09-08

    The role of the peptide hormone calcitonin in skeletal protection has led to its use as a therapeutic for osteoporosis. However, calcitonin aggregation into amyloid fibrils limits its therapeutic efficacy, necessitating a modification of calcitonin's aggregation kinetics. Here, we report a direct relationship between human calcitonin (hCT) concentration and aggregation lag time. This kinetic trend was contrary to the conventional understanding of amyloid aggregation and persisted over a range of aggregation conditions, as confirmed by thioflavin-T kinetics assays, CD spectroscopy, and transmission EM. Dynamic light scattering, 1 H NMR experiments, and seeded thioflavin-T assay results indicated that differences in initial peptide species contribute to this trend more than variations in the primary nucleus formation rate. On the basis of kinetics modeling results, we propose a mechanism whereby a structural conversion of hCT monomers is needed before incorporation into the fibril. Our kinetic mechanism recapitulates the experimentally observed relationship between peptide concentration and lag time and represents a novel mechanism in amyloid aggregation. Interestingly, hCT at low pH and salmon calcitonin (sCT) exhibited the canonical inverse relationship between concentration and lag time. Comparative studies of hCT and sCT with molecular dynamics simulations and CD indicated an increased α-helical structure in sCT and low-pH hCT monomers compared with neutral-pH hCT, suggesting that α-helical monomers represent a growth-competent species, whereas unstructured random coil monomers represent a growth-incompetent species. Our finding that initial monomer concentration is positively correlated with lag time in hCT aggregation could help inform future efforts for improving therapeutic applications of CT. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Bead-Level Characterization of Early-Stage Amyloid β42 Aggregates: Nuclei and Ionic Concentration Effects.

    PubMed

    Hu, Dingkun; Zhao, Wei; Zhu, Yong; Ai, Hongqi; Kang, Baotao

    2017-11-16

    A growing body of evidence shows that soluble β-amyloid (Aβ) aggregates, oligomers, and even protofibrils, may be more neurotoxic than fibrils. Here, we employ a coarse grain model to investigate the aggregation of 75mer Aβ 42 oligomers and the salt effect, the cornerstone of fibril evolution. We find that the oligomer morphologies generated by seventy-five monomers or mixed by both fifty monomers and five preset pentameric nuclei are different (spherical vs. bar-/disk-shaped) and are characterize by a full of coil content (former) and >70 % β-turn content (latter), indicating a novel role of the nuclei played in the early aggregation stage. The aggregation for the former oligomer adopts a master-nucleus mechanism, whereas for the latter combination of monomers and pentamers a multi-nuclei one is found. The random salt ions will distribute around the aggregates to form several ion shells as the aggregation develops. A unique two-fold gap between the shells is observed in the system containing 100 mm NaCl, endowing the physiological salt concentration with special implications. Meanwhile, an accurate ion-solute cutoff distance (0.66 nm) is predicted, and recommended to apply to many other aggregated biomolecular systems. The present distribution scenario of ions can be generalized to other aggregated systems, although it is strictly dependent on the identity of a specific aggregate, such as its charge and composition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Impact of additives on the formation of protein aggregates and viscosity in concentrated protein solutions.

    PubMed

    Bauer, Katharina Christin; Suhm, Susanna; Wöll, Anna Katharina; Hubbuch, Jürgen

    2017-01-10

    In concentrated protein solutions attractive protein interactions may not only cause the formation of undesired aggregates but also of gel-like networks with elevated viscosity. To guarantee stable biopharmaceutical processes and safe formulations, both phenomenons have to be avoided as these may hinder regular processing steps. This work screens the impact of additives on both phase behavior and viscosity of concentrated protein solutions. For this purpose, additives known for stabilizing proteins in solution or modulating the dynamic viscosity were selected. These additives were PEG 300, PEG 1000, glycerol, glycine, NaCl and ArgHCl. Concentrated lysozyme and glucose oxidase solutions at pH 3 and 9 served as model systems. Fourier-transformed-infrared spectroscopy was chosen to determine the conformational stability of selected protein samples. Influencing protein interactions, the impact of additives was strongly dependent on pH. Of all additives investigated, glycine was the only one that maintained protein conformational and colloidal stability while decreasing the dynamic viscosity. Low concentrations of NaCl showed the same effect, but increasing concentrations resulted in visible protein aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Correlation between the international consensus definition of the Cancer Anorexia-Cachexia Syndrome (CACS) and patient-centered outcomes in advanced non-small cell lung cancer.

    PubMed

    LeBlanc, Thomas W; Nipp, Ryan D; Rushing, Christel N; Samsa, Greg P; Locke, Susan C; Kamal, Arif H; Cella, David F; Abernethy, Amy P

    2015-04-01

    The cancer anorexia-cachexia syndrome (CACS) is common in patients with advanced solid tumors and is associated with adverse outcomes including poor quality of life (QOL), impaired functioning, and shortened survival. To apply the recently posed weight-based international consensus CACS definition to a population of patients with advanced non-small cell lung cancer (NSCLC) and explore its impact on patient-reported outcomes. Ninety-nine patients participated in up to four study visits over a six-month period. Longitudinal assessments included measures of physical function, QOL, and other clinical variables such as weight and survival. Patients meeting the consensus CACS criteria at Visit 1 had a significantly shorter median survival (239.5 vs. 446 days; hazard ratio, 2.06, P < 0.05). Physical function was worse in the CACS group (mean Karnofsky Performance Status score 68 vs. 77, Eastern Cooperative Oncology Group Performance Status score 1.8 vs. 1.3, P < 0.05 for both), as was QOL (Functional Assessment of Cancer Therapy-General [FACT-G] Lung Cancer subscale of 17.2 vs. 19.9, Anorexia/Cachexia subscale of 31.4 vs. 37.9, P < 0.05 for both). Differences in the FACT-G and the Functional Assessment of Chronic Illness Therapy-Fatigue subscale approached but did not reach statistical significance. Longitudinally, all measures of physical function and QOL worsened regardless of CACS status, but the rate of decline was more rapid in the CACS group. The weight-based component of the recently proposed international consensus CACS definition is useful in identifying patients with advanced NSCLC who are likely to have significantly inferior survival and who will develop more precipitous declines in physical function and QOL. This definition may be useful for clinical screening purposes and identify patients with high palliative care needs. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  20. Structural basis underlying CAC RNA recognition by the RRM domain of dimeric RNA-binding protein RBPMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teplova, Marianna; Farazi, Thalia A.; Tuschl, Thomas

    Abstract RNA-binding protein with multiple splicing (designated RBPMS) is a higher vertebrate mRNA-binding protein containing a single RNA recognition motif (RRM). RBPMS has been shown to be involved in mRNA transport, localization and stability, with key roles in axon guidance, smooth muscle plasticity, as well as regulation of cancer cell proliferation and migration. We report on structure-function studies of the RRM domain of RBPMS bound to a CAC-containing single-stranded RNA. These results provide insights into potential topologies of complexes formed by the RBPMS RRM domain and the tandem CAC repeat binding sites as detected by photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation. Thesemore » studies establish that the RRM domain of RBPMS forms a symmetrical dimer in the free state, with each monomer binding sequence-specifically to all three nucleotides of a CAC segment in the RNA bound state. Structure-guided mutations within the dimerization and RNA-binding interfaces of RBPMS RRM on RNA complex formation resulted in both disruption of dimerization and a decrease in RNA-binding affinity as observed by size exclusion chromatography and isothermal titration calorimetry. As anticipated from biochemical binding studies, over-expression of dimerization or RNA-binding mutants of Flag-HA-tagged RBPMS were no longer able to track with stress granules in HEK293 cells, thereby documenting the deleterious effects of such mutationsin vivo.« less

  1. Correlates and family aggregation of vitamin D concentrations in school-aged children and their parents in nine Mesoamerican countries.

    PubMed

    Robinson, Sonia L; Ramirez-Zea, Manuel; Roman, Ana Victoria; Villamor, Eduardo

    2017-10-01

    To determine the associations of sociodemographic characteristics, diet and outdoor activity as an indicator of sun exposure with serum 25-hydroxyvitamin D (25(OH)D) concentrations in children and their parents from Mesoamerica. We also quantified family aggregation of serum 25(OH)D. Cross-sectional study. Serum 25(OH)D concentrations were quantified using immunoassay. We compared the distribution of 25(OH)D concentrations in adults and children by levels of each correlate with the use of linear regression. Family aggregation was estimated using Pearson and intraclass correlation coefficients. Capital cities of Guatemala, El Salvador, the Dominican Republic, Honduras, Nicaragua, Costa Rica, Panama and Belize, and Tuxtla Gutiérrez in Mexico. Children (n 223) aged 7-12 years and 492 parents. Mean (sd) 25(OH)D concentrations in adults and children were 81·3 (21·1) and 79·5 (18·1) nmol/l, respectively. Prevalence of vitamin D deficiency (VDD; 25(OH)D <50 nmol/l) was 3·9 % among adults and 3·6 % among children. In adults, adjusted mean 25(OH)D concentrations were highest in Nicaragua (P<0·0001). Serum 25(OH)D was positively related to time spent gardening (P=0·03). Among children, 25(OH)D concentrations were positively associated with male sex (P=0·005), dairy intake (P=0·03) and mother's serum 25(OH)D concentrations (P<0·0001); and inversely associated with mother's BMI (P=0·02) and number of home assets (P=0·04). Family membership explained 31 % of the variability in 25(OH)D concentrations; aggregation was highest between mothers and children. VDD prevalence was low in this study. Sociodemographic characteristics, diet and outdoor activity predict serum 25(OH)D. Family aggregation of serum 25(OH)D is high between mothers and children.

  2. A comparative study on the aggregating effects of guanidine thiocyanate, guanidine hydrochloride and urea on lysozyme aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emadi, Saeed, E-mail: emadi@iasbs.ac.ir; Behzadi, Maliheh

    Highlights: • Lysozyme aggregated in guanidine thiocyanate (1.0 and 2.0 M). • Lysozyme aggregated in guanidine hydrochloride (4 and 5 M). • Lysozyme did not aggregated at any concentration (0.5–5 M) of urea. • Unfolding pathway is more important than unfolding per se in aggregation. - Abstract: Protein aggregation and its subsequent deposition in different tissues culminate in a diverse range of diseases collectively known as amyloidoses. Aggregation of hen or human lysozyme depends on certain conditions, namely acidic pH or the presence of additives. In the present study, the effects on the aggregation of hen egg-white lysozyme via incubationmore » in concentrated solutions of three different chaotropic agents namely guanidine thiocyanate, guanidine hydrochloride and urea were investigated. Here we used three different methods for the detection of the aggregates, thioflavin T fluorescence, circular dichroism spectroscopy and atomic force microscopy. Our results showed that upon incubation with different concentrations (0.5, 1.0, 2.0, 3.0, 4.0, 5.0 M) of the chemical denaturants, lysozyme was aggregated at low concentrations of guanidine thiocyanate (1.0 and 2.0 M) and at high concentrations of guanidine hydrochloride (4 and 5 M), although no fibril formation was detected. In the case of urea, no aggregation was observed at any concentration.« less

  3. The influence hydrogen atom addition has on charge switching during motion of the metal atom in endohedral Ca@C60H4 isomers

    PubMed Central

    Raggi, G.; Besley, E.; Stace, A. J.

    2016-01-01

    Density functional theory has been applied in a study of charge transfer between an endohedral calcium atom and the fullerene cage in Ca@C60H4 and [Ca@C60H4]+ isomers. Previous calculations on Ca@C60 have shown that the motion of calcium within a fullerene is accompanied by large changes in electron density on the carbon cage. Based on this observation, it has been proposed that a tethered endohedral fullerene might form the bases of a nanoswitch. Through the addition of hydrogen atoms to one hemisphere of the cage it is shown that, when compared with Ca@C60, asymmetric and significantly reduced energy barriers can be generated with respect to motion of the calcium atom. It is proposed that hydrogen atom addition to a fullerene might offer a route for creating a bi-stable nanoswitch that can be fine-tuned through the selection of an appropriate isomer and number of atoms attached to the cage of an endohedral fullerene. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’. PMID:27501967

  4. Sub-Micellar Concentration of Sodium Dodecyl Sulphate Prevents Thermal Denaturation Induced Aggregation of Plant Lectin, Jacalin.

    PubMed

    Lavanya, V; Anil Kumar, B; Jamal, Shazia; Khan, Md Khurshid Alam; Ahmed, Neesar

    2017-02-01

    The irreversible thermal unfolding of jacalin, the lectin purified from jackfruit seeds was accompanied by aggregation, where intermolecular interactions among the subunits are favoured over intramolecular interactions. The extent of aggregation increased as a function of temperature, time and protein concentration. The anionic surfactant, sodium dodecyl sulphate (SDS) significantly suppressed the formation of aggregates as observed by turbidity measurements and Rayleigh scattering assay. Moreover, far UV-CD spectra indicate that the protein β sheet transforms into α helical structure, when denatured in the presence of 3 mM SDS. Further, jacalin when heated in the presence of SDS partially retained the hemagglutination activity when jacalin-SDS mixture was diluted to 1:8 factor since 3 mM SDS was found to lyse the red blood cells. Thus, SDS only altered the aggregation behaviour of jacalin by preventing intermolecular hydrogen bonding among the exposed residues but did not completely stabilize the native conformation.

  5. The effect of pH and concentration upon aggregation transitions in aqueous solutions of poloxamine T701.

    PubMed

    Armstrong, J K; Chowdhry, B Z; Snowden, M J; Dong, J; Leharne, S A

    2001-10-23

    Thermally induced aggregation transitions have been investigated for aqueous solutions of the poloxamine block copolymer T701-(OE(4)OP(13))(2)NCH(2)CH(2)N(OP(13)OE(4))(2)-using differential scanning calorimetry. The calorimetric signals obtained were fitted to a mass action model description of aggregation using a previously reported analytical procedure (Patterson et al., Langmuir 13 (1997) 2219). The presence of a central ethylene diamine moiety in the molecular structure renders the T701 molecule basic; this was confirmed and measured by acid/base titration. Basicity is shown to have an important impact upon aggregation. At low pH (2.5), the poloxamine exists in its protonated form and the bulk solution proton concentration is sufficient to suppress de-protonation, aggregation-as a consequence-is shifted to a higher temperature range. Any increase in pH reduces the temperature range over which aggregation occurs. The derived experimental calorimetric parameters, obtained from model fitting procedures, can be used to compute the fraction of poloxamine existing in an aggregated form, at any particular temperature. The data sets obtained were interpolated to show that at human body temperature (310.6 K) the fraction of poloxamine found in its aggregated form is zero at a pH of 2.5. However at a pH of 6.8, the percentage aggregation increases to about 85%. These aggregation characteristics of T701 have important implications for the design of drug delivery systems, which incorporate poloxamines.

  6. Analysis of antibody aggregate content at extremely high concentrations using sedimentation velocity with a novel interference optics.

    PubMed

    Schilling, Kristian; Krause, Frank

    2015-01-01

    Monoclonal antibodies represent the most important group of protein-based biopharmaceuticals. During formulation, manufacturing, or storage, antibodies may suffer post-translational modifications altering their physical and chemical properties. Such induced conformational changes may lead to the formation of aggregates, which can not only reduce their efficiency but also be immunogenic. Therefore, it is essential to monitor the amount of size variants to ensure consistency and quality of pharmaceutical antibodies. In many cases, antibodies are formulated at very high concentrations > 50 g/L, mostly along with high amounts of sugar-based excipients. As a consequence, all routine aggregation analysis methods, such as size-exclusion chromatography, cannot monitor the size distribution at those original conditions, but only after dilution and usually under completely different solvent conditions. In contrast, sedimentation velocity (SV) allows to analyze samples directly in the product formulation, both with limited sample-matrix interactions and minimal dilution. One prerequisite for the analysis of highly concentrated samples is the detection of steep concentration gradients with sufficient resolution: Commercially available ultracentrifuges are not able to resolve such steep interference profiles. With the development of our Advanced Interference Detection Array (AIDA), it has become possible to register interferograms of solutions as highly concentrated as 150 g/L. The other major difficulty encountered at high protein concentrations is the pronounced non-ideal sedimentation behavior resulting from repulsive intermolecular interactions, for which a comprehensive theoretical modelling has not yet been achieved. Here, we report the first SV analysis of highly concentrated antibodies up to 147 g/L employing the unique AIDA ultracentrifuge. By developing a consistent experimental design and data fit approach, we were able to provide a reliable estimation of the minimum

  7. Physiological serum copper concentrations found in malignancies cause unfolding induced aggregation of human serum albumin in vitro.

    PubMed

    Rizvi, Asim; Furkan, Mohd; Naseem, Imrana

    2017-12-15

    Malignancies are characterized by several drastic metabolic changes, one of which is a progressive rise in the levels of serum copper. This rise in serum copper is documented across all malignancies and across malignancies in several species. This study aims to explore in vitro the effect of increased copper levels on the structure of the blood protein human serum albumin. Exposure of human serum albumin to physiologically relevant copper concentrations for 21 days resulted in structural modifications in the protein which were evident by changes in the intrinsic florescence. A loss of the predominantly alpha helical structure of human serum albumin was recorded along with a tendency to form protein aggregates. This aggregation was characterized by Thioflavin T and Congo Red assays. Rayleigh light scattering and turbidity assays confirmed aggregation. The aggregates were visually confirmed using transmission electron microscopy. This is the first report implicating increased copper levels as a cause of aggregation of blood proteins in malignancies. The physiological and biochemical implications of this phenomenon are discussed. Copyright © 2017. Published by Elsevier Inc.

  8. Defining and systematic analyses of aggregation indices to evaluate degree of calcium oxalate crystal aggregation

    NASA Astrophysics Data System (ADS)

    Chaiyarit, Sakdithep; Thongboonkerd, Visith

    2017-12-01

    Crystal aggregation is one of the most crucial steps in kidney stone pathogenesis. However, previous studies of crystal aggregation were rarely done and quantitative analysis of aggregation degree was handicapped by a lack of the standard measurement. We thus performed an in vitro assay to generate aggregation of calcium oxalate monohydrate (COM) crystals with various concentrations (25-800 µg/ml) in saturated aggregation buffer. The crystal aggregates were analyzed by microscopic examination, UV-visible spectrophotometry, and GraphPad Prism6 software to define a total of 12 aggregation indices (including number of aggregates, aggregated mass index, optical density, aggregation coefficient, span, number of aggregates at plateau time-point, aggregated area index, aggregated diameter index, aggregated symmetry index, time constant, half-life, and rate constant). The data showed linear correlation between crystal concentration and almost all of these indices, except only for rate constant. Among these, number of aggregates provided the greatest regression coefficient (r=0.997; p<0.001), whereas the equally second rank included aggregated mass index and optical density (r=0.993; p<0.001 and r=‑0.993; p<0.001, respectively) and the equally forth were aggregation coefficient and span (r=0.991; p<0.001 for both). These five indices are thus recommended as the most appropriate indices for quantitative analysis of COM crystal aggregation in vitro.

  9. Prediction of Protein Aggregation in High Concentration Protein Solutions Utilizing Protein-Protein Interactions Determined by Low Volume Static Light Scattering.

    PubMed

    Hofmann, Melanie; Winzer, Matthias; Weber, Christian; Gieseler, Henning

    2016-06-01

    The development of highly concentrated protein formulations is more demanding than for conventional concentrations due to an elevated protein aggregation tendency. Predictive protein-protein interaction parameters, such as the second virial coefficient B22 or the interaction parameter kD, have already been used to predict aggregation tendency and optimize protein formulations. However, these parameters can only be determined in diluted solutions, up to 20 mg/mL. And their validity at high concentrations is currently controversially discussed. This work presents a μ-scale screening approach which has been adapted to early industrial project needs. The procedure is based on static light scattering to directly determine protein-protein interactions at concentrations up to 100 mg/mL. Three different therapeutic molecules were formulated, varying in pH, salt content, and addition of excipients (e.g., sugars, amino acids, polysorbates, or other macromolecules). Validity of the predicted aggregation tendency was confirmed by stability data of selected formulations. Based on the results obtained, the new prediction method is a promising screening tool for fast and easy formulation development of highly concentrated protein solutions, consuming only microliter of sample volumes. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Formation and structure of stable aggregates in binary diffusion-limited cluster-cluster aggregation processes

    NASA Astrophysics Data System (ADS)

    López-López, J. M.; Moncho-Jordá, A.; Schmitt, A.; Hidalgo-Álvarez, R.

    2005-09-01

    Binary diffusion-limited cluster-cluster aggregation processes are studied as a function of the relative concentration of the two species. Both, short and long time behaviors are investigated by means of three-dimensional off-lattice Brownian Dynamics simulations. At short aggregation times, the validity of the Hogg-Healy-Fuerstenau approximation is shown. At long times, a single large cluster containing all initial particles is found to be formed when the relative concentration of the minority particles lies above a critical value. Below that value, stable aggregates remain in the system. These stable aggregates are composed by a few minority particles that are highly covered by majority ones. Our off-lattice simulations reveal a value of approximately 0.15 for the critical relative concentration. A qualitative explanation scheme for the formation and growth of the stable aggregates is developed. The simulations also explain the phenomenon of monomer discrimination that was observed recently in single cluster light scattering experiments.

  11. Aggregation-Induced Emission Luminogen-Based Direct Visualization of Concentration Gradient Inside an Evaporating Binary Sessile Droplet.

    PubMed

    Cai, Xin; Xie, Ni; Qiu, Zijie; Yang, Junxian; He, Minghao; Wong, Kam Sing; Tang, Ben Zhong; Qiu, Huihe

    2017-08-30

    In this study, the concentration gradient inside evaporating binary sessile droplets of 30, 50, and 60 vol % tetrahydrofuran (THF)/water mixtures was investigated. The 5 μL THF/water droplets were evaporated on a transparent hydrophobic substrate. This is the first demonstration of local concentration mapping within an evaporating binary droplet utilizing the aggregation-induced emission material. During the first two evaporation stages of the binary droplet, the local concentration can be directly visualized by the change of fluorescence emission intensity. Time-resolved average and local concentrations can be estimated by using the pre-established function of fluorescence intensity versus water volume fraction.

  12. Memantine inhibits β-amyloid aggregation and disassembles preformed β-amyloid aggregates.

    PubMed

    Takahashi-Ito, Kaori; Makino, Mitsuhiro; Okado, Keiko; Tomita, Taisuke

    2017-11-04

    Memantine, an uncompetitive glutamatergic N-methyl-d-aspartate (NMDA) receptor antagonist, is widely used as a medication for the treatment of Alzheimer's disease (AD). We previously reported that chronic treatment of AD with memantine reduces the amount of insoluble β-amyloid (Aβ) and soluble Aβ oligomers in animal models of AD. The mechanisms by which memantine reduces Aβ levels in the brain were evaluated by determining the effect of memantine on Aβ aggregation using thioflavin T and transmission electron microscopy. Memantine inhibited the formation of Aβ(1-42) aggregates in a concentration-dependent manner, whereas amantadine, a structurally similar compound, did not affect Aβ aggregation at the same concentrations. Furthermore, memantine inhibited the formation of different types of Aβ aggregates, including Aβs carrying familial AD mutations, and disaggregated preformed Aβ(1-42) fibrils. These results suggest that the inhibition of Aβ aggregation and induction of Aβ disaggregation may be involved in the mechanisms by which memantine reduces Aβ deposition in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Aggregate-based sub-CMC Solubilization of Hexadecane by Surfactants.

    PubMed

    Zhong, Hua; Yang, Lei; Zeng, Guangming; Brusseau, Mark L; Wang, Yake; Li, Yang; Liu, Zhifeng; Yuan, Xingzhong; Tan, Fei

    Solubilization of hexadecane by two surfactants, SDBS and Triton X-100, at concentrations near the critical micelle concentration (CMC) and the related aggregation behavior was investigated in this study. Solubilization was observed at surfactant concentrations lower than CMC, and the apparent solubility of hexadecane increased linearly with surfactant concentration for both surfactants. The capacity of SDBS to solubilize hexadecane is stronger at concentrations below CMC than above CMC. In contrast, Triton X-100 shows no difference. The results of dynamic light scattering (DLS) and cryogenic TEM analysis show aggregate formation at surfactant concentrations lower than CMC. DLS-based size of the aggregates ( d ) decreases with increasing surfactant concentration. Zeta potential of the SDBS aggregates decreases with increasing SDBS concentration, whereas it increases for Triton X-100. The surface excess (Γ) of SDBS calculated based on hexadecane solubility and aggregate size data increases rapidly with increasing bulk concentration, and then asymptotically approaches the maximum surface excess (Γ max ). Conversely, there is only a minor increase in Γ for Triton X-100. Comparison of Γ and d indicates that excess of surfactant molecules at aggregate surface has great impact on surface curvature. The results of this study demonstrate formation of aggregates at surfactant concentrations below CMC for hexadecane solubilization, and indicate the potential of employing low-concentration strategy for surfactant application such as remediation of HOC contaminated sites.

  14. Topsoil and Deep Soil Organic Carbon Concentration and Stability Vary with Aggregate Size and Vegetation Type in Subtropical China

    PubMed Central

    Fang, Xiang-Min; Chen, Fu-Sheng; Wan, Song-Ze; Yang, Qing-Pei; Shi, Jian-Min

    2015-01-01

    The impact of reforestation on soil organic carbon (OC), especially in deep layer, is poorly understood and deep soil OC stabilization in relation with aggregation and vegetation type in afforested area is unknown. Here, we collected topsoil (0–15 cm) and deep soil (30–45 cm) from six paired coniferous forests (CF) and broad-leaved forests (BF) reforested in the early 1990s in subtropical China. Soil aggregates were separated by size by dry sieving and OC stability was measured by closed-jar alkali-absorption in 71 incubation days. Soil OC concentration and mean weight diameter were higher in BF than CF. The cumulative carbon mineralization (Cmin, mg CO2-C kg-1 soil) varied with aggregate size in BF and CF topsoils, and in deep soil, it was higher in larger aggregates than in smaller aggregates in BF, but not CF. The percentage of soil OC mineralized (SOCmin, % SOC) was in general higher in larger aggregates than in smaller aggregates. Meanwhile, SOCmin was greater in CF than in BF at topsoil and deep soil aggregates. In comparison to topsoil, deep soil aggregates generally exhibited a lower Cmin, and higher SOCmin. Total nitrogen (N) and the ratio of carbon to phosphorus (C/P) were generally higher in BF than in CF in topsoil and deep soil aggregates, while the same trend of N/P was only found in deep soil aggregates. Moreover, the SOCmin negatively correlated with OC, total N, C/P and N/P. This work suggests that reforested vegetation type might play an important role in soil OC storage through internal nutrient cycling. Soil depth and aggregate size influenced OC stability, and deep soil OC stability could be altered by vegetation reforested about 20 years. PMID:26418563

  15. Synthesis, characterisation and physicochemical properties of hydrophobically modified inulin using long-chain fatty acyl chlorides.

    PubMed

    Han, Lingyu; Ratcliffe, I; Williams, P A

    2017-12-15

    A series of inulin derivatives were synthesized in aqueous solution using acyl chlorides with varying alkyl chain length (C10-C16). They were characterised using a number of techniques including MALDI TOF-MS, 1 H NMR and FTIR and their degree of substitution determined. The solution properties of the hydrophobically modified inulins were investigated using dye solubilisation and surface tension and it was confirmed that the molecules aggregated in solution above a critical concentration (critical aggregation concentration, CAC). The value of the CAC was found to be reasonably consistent between the different techniques and was shown to decrease with increasing hydrophobe chain length. It was found that the C10, C12 and C14 derivatives formed stable oil-in-water emulsions and the emulsion droplet size decreased with increasing alkyl chain length. The C16 derivative was not able to produce stable oil-in-water emulsions; however, it was able to form stable water-in-oil emulsions. The fact that the derivatives are able to form micellar-like aggregates and stabilise emulsions makes them suitable candidates for the encapsulation and delivery of active compounds with potential application in food, cosmetic, personal care and pharmaceutical formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Validation and real-world assessment of the Functional Assessment of Anorexia-Cachexia Therapy (FAACT) scale in patients with advanced non-small cell lung cancer and the cancer anorexia-cachexia syndrome (CACS).

    PubMed

    LeBlanc, Thomas W; Samsa, Greg P; Wolf, Steven P; Locke, Susan C; Cella, David F; Abernethy, Amy P

    2015-08-01

    Patients with cancer anorexia-cachexia syndrome (CACS) suffer a significant symptom burden, impaired quality of life (QoL), and shorter survival. Measurement of QoL impairments related to CACS is thereby important both in clinical practice and in research. We aimed to further validate the Functional Assessment of Anorexia-Cachexia Therapy (FAACT) scale in an advanced lung cancer population. We tested the performance of the FAACT and its anorexia-cachexia subscale (ACS) within a dataset of patients with advanced non-small cell lung cancer (aNSCLC), using standard statistical methods. We then compared the performance of commonly used QoL measures stratified by CACS status and by patient self-report of appetite and weight loss. The FAACT and its ACS demonstrate internal validity consistent with acceptable published ranges for other QoL scales (Cronbach alpha = 0.9 and 0.79, respectively). Correlation coefficients demonstrate moderate correlations in the expected directions between FAACT and ACS and scales that measure related constructs. Comparing patients with and without CACS, the ACS is more sensitive to change than other QoL instruments (mean score 33.1 vs. 37.2, p = 0.011, ES = 0.58). In patients with aNSCLC, the FAACT and its ACS performed well compared with other instruments, further supporting their validity and value in clinical research. FAACT and ACS scores covaried with symptoms and other QoL changes that are typical hallmarks of CACS, lending further support to their use as QoL endpoints in clinical trials among patients with CACS.

  17. Colloidal and antibacterial properties of novel triple-headed, double-tailed amphiphiles: exploring structure-activity relationships and synergistic mixtures.

    PubMed

    Marafino, John N; Gallagher, Tara M; Barragan, Jhosdyn; Volkers, Brandi L; LaDow, Jade E; Bonifer, Kyle; Fitzgerald, Gabriel; Floyd, Jason L; McKenna, Kristin; Minahan, Nicholas T; Walsh, Brenna; Seifert, Kyle; Caran, Kevin L

    2015-07-01

    Two novel series of tris-cationic, tripled-headed, double-tailed amphiphiles were synthesized and the effects of tail length and head group composition on the critical aggregation concentration (CAC), thermodynamic parameters, and minimum inhibitory concentration (MIC) against six bacterial strains were investigated. Synergistic antibacterial combinations of these amphiphiles were also identified. Amphiphiles in this study are composed of a benzene core with three benzylic ammonium bromide groups, two of which have alkyl chains, each 8-16 carbons in length. The third head group is a trimethylammonium or pyridinium. Log of critical aggregation concentration (log[CAC]) and heat of aggregation (ΔHagg) were both inversely proportional to the length of the linear hydrocarbon chains. Antibacterial activity increases with tail length until an optimal tail length of 12 carbons per chain, above which, activity decreased. The derivatives with two 12 carbon chains had the best antibacterial activity, killing all tested strains at concentrations of 1-2μM for Gram-positive and 4-16μM for Gram-negative bacteria. The identity of the third head group (trimethylammonium or pyridinium) had minimal effect on colloidal and antibacterial activity. The antibacterial activity of several binary combinations of amphiphiles from this study was higher than activity of individual amphiphiles, indicating that these combinations are synergistic. These amphiphiles show promise as novel antibacterial agents that could be used in a variety of applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Microbial aggregates in anaerobic wastewater treatment.

    PubMed

    Kosaric, N; Blaszczyk, R

    1990-01-01

    The phenomenon aggregation of anaerobic bacteria gives an opportunity to speed up the digestion rate during methanogenesis. The aggregates are mainly composed of methanogenic bacteria which convert acetate and H2/CO2 into methane. Other bacteria are also included in the aggregates but their concentration is rather small. The aggregates may also be formed during acetogenesis or even hydrolysis but such aggregates are not stable and disrupt quickly when not fed. A two stage process seems to be suitable when high concentrated solid waste must be treated. Special conditions are necessary to promote aggregate formation from methanogenic bacteria but aggregates once formed are stable without feeding even for a few years. The structure, texture and activity of bacterial aggregates depend on several parameters: (1)--temperature and pH, (2)--wastewater composition and (3)--hydrodynamic conditions within the reactor. The common influence of all these parameters is still rather unknown but some recommendations may be given. Temperature and pH should be maintained in the range which is optimal for methanogenic bacteria e.g. a temperature between 32 and 50 degrees C and a value pH between 6.5 and 7.5. Wastewaters should contain soluble wastes and the specific loading rate should be around one kgCOD(kgVSS)-1 d-1. The concentration of the elements influences aggregate composition and probably structure and texture. At high calcium concentration a change in the colour of the granules has been observed. Research is necessary to investigate the influence of other elements and organic toxicants on maintenance of the aggregates. Hydrodynamic conditions seem to influence the stability of the granules over long time periods. At low liquid stream rates, aggregates may starve and lysis within the aggregates is possible which results in hollowing of aggregates and their floating. At high liquid stream rates the aggregates may be disrupted and washed out of the reactor as a flocculent

  19. Concurrent aggregation and transport of graphene oxide in saturated porous media: Roles of temperature, cation type, and electrolyte concentration.

    PubMed

    Wang, Mei; Gao, Bin; Tang, Deshan; Yu, Congrong

    2018-04-01

    Simultaneous aggregation and retention of nanoparticles can occur during their transport in porous media. In this work, the concurrent aggregation and transport of GO in saturated porous media were investigated under the conditions of different combinations of temperature, cation type (valence), and electrolyte concentration. Increasing temperature (6-24 °C) at a relatively high electrolyte concentration (i.e., 50 mM for Na + , 1 mM for Ca 2+ , 1.75 mM for Mg 2+ , and 0.03 and 0.05 mM for Al 3+ ) resulted in enhanced GO retention in the porous media. For instance, when the temperature increased from 6 to 24 °C, GO recovery rate decreased from 31.08% to 6.53% for 0.03 mM Al 3+ and from 27.11% to 0 for 0.05 mM Al 3+ . At the same temperature, increasing cation valence and electrolyte concentration also promoted GO retention. Although GO aggregation occurred in the electrolytes during the transport, the deposition mechanisms of GO retention in the media depended on cation type (valence). For 50 mM Na + , surface deposition via secondary minima was the dominant GO retention mechanism. For multivalent cation electrolytes, GO aggregation was rapid and thus other mechanisms such as physical straining and sedimentation also played important roles in controlling GO retention in the media. After passing through the columns, the GO particles in the effluents showed better stability with lower initial aggregation rates. This was probably because less stable GO particles with lower surface charge densities in the porewater were filtered by the porous media, resulting in more stable GO particle with higher surface charge densities in the effluents. An advection-dispersion-reaction model was applied to simulate GO breakthrough curves and the simulations matched all the experimental data well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Formation of protocell-like vesicles in a thermal diffusion column.

    PubMed

    Budin, Itay; Bruckner, Raphael J; Szostak, Jack W

    2009-07-22

    Many of the properties of bilayer membranes composed of simple single-chain amphiphiles seem to be well-suited for a potential role as primitive cell membranes. However, the spontaneous formation of membranes from such amphiphiles is a concentration-dependent process in which a significant critical aggregate concentration (cac) must be reached. Since most scenarios for the prebiotic synthesis of fatty acids and related amphiphiles would result in dilute solutions well below the cac, the identification of mechanisms that would lead to increased local amphiphile concentrations is an important aspect of defining reasonable conditions for the origin of cellular life. Narrow, vertically oriented channels within the mineral precipitates of hydrothermal vent towers have previously been proposed to act as natural Clusius-Dickel thermal diffusion columns, in which a strong transverse thermal gradient concentrates dilute molecules through the coupling of thermophoresis and convection. Here we experimentally demonstrate that a microcapillary acting as a thermal diffusion column can concentrate a solution of oleic acid. Upon concentration, self-assembly of large vesicles occurs in regions where the cac is exceeded. We detected vesicle formation by fluorescence microscopy of encapsulated dye cargoes, which simultaneously concentrated in our channels. Our findings suggest a novel means by which simple physical processes could have led to the spontaneous formation of cell-like structures from a dilute prebiotic reservoir.

  1. Pressure induced polymerization of acetylide anions in CaC2 and 107 fold enhancement of electrical conductivity.

    PubMed

    Zheng, Haiyan; Wang, Lijuan; Li, Kuo; Yang, Youyou; Wang, Yajie; Wu, Jiajia; Dong, Xiao; Wang, Chun-Hai; Tulk, Christopher A; Molaison, Jamie J; Ivanov, Ilia N; Feygenson, Mikhail; Yang, Wenge; Guthrie, Malcolm; Zhao, Yusheng; Mao, Ho-Kwang; Jin, Changqing

    2017-01-01

    Transformation between different types of carbon-carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC 2 ) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC 2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C 6 6- are identified with gas chromatography-mass spectrometry and several other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 10 7 fold enhancement of the electrical conductivity. The polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.

  2. Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein

    PubMed Central

    Viswanathan, Pragasam; Rimer, Jeffrey D.; Kolbach, Ann M.; Kleinman, Jack G.

    2011-01-01

    Tamm-Horsfall protein (THP) is thought to protect against calcium oxalate monohydrate (COM) stone formation by inhibiting COM aggregation. Several studies reported that stone formers produce THP with reduced levels of glycosylation, particularly sialic acid levels, which leads to reduced negative charge. In this study, normal THP was treated with neuraminidase to remove sialic acid residues, confirmed by an isoelectric point shift to higher pH. COM aggregation assays revealed that desialylated THP (ds-THP) promoted COM aggregation, while normal THP inhibited aggregation. The appearance of protein aggregates in solutions at ds-THP concentrations ≥1 µg/mL in 150 mM NaCl correlated with COM aggregation promotion, implying that ds-THP aggregation induced COM aggregation. The aggregation-promoting effect of the ds-THP was independent of pH above its isoelectric point, but was substantially reduced at low ionic strength, where protein aggregation was much reduced. COM aggregation promotion was maximized at a ds-THP to COM mass ratio of ~0.025, which can be explained by a model wherein partial COM surface coverage by ds-THP aggregates promotes crystal aggregation by bridging opposing COM surfaces, whereas higher surface coverage leads to repulsion between adsorbed ds-THP aggregates. Thus, desialylation of THP apparently abrogates a normal defensive action of THP by inducing protein aggregation, and subsequently COM aggregation, a condition that favors kidney stone formation. PMID:21229239

  3. Crystal structures of fission yeast histone chaperone Asf1 complexed with the Hip1 B-domain or the Cac2 C terminus.

    PubMed

    Malay, Ali D; Umehara, Takashi; Matsubara-Malay, Kazuko; Padmanabhan, Balasundaram; Yokoyama, Shigeyuki

    2008-05-16

    The assembly of core histones onto eukaryotic DNA is modulated by several histone chaperone complexes, including Asf1, CAF-1, and HIRA. Asf1 is a unique histone chaperone that participates in both the replication-dependent and replication-independent pathways. Here we report the crystal structures of the apo-form of fission yeast Asf1/Cia1 (SpAsf1N; residues 1-161) as well as its complexes with the B-domain of the fission yeast HIRA orthologue Hip1 (Hip1B) and the C-terminal region of the Cac2 subunit of CAF-1 (Cac2C). The mode of the fission yeast Asf1N-Hip1B recognition is similar to that of the human Asf1-HIRA recognition, suggesting that Asf1N recognition of Hip1B/HIRA is conserved from yeast to mammals. Interestingly, Hip1B and Cac2C show remarkably similar interaction modes with Asf1. The binding between Asf1N and Hip1B was almost completely abolished by the D37A and L60A/V62A mutations in Asf1N, indicating the critical role of salt bridge and van der Waals contacts in the complex formation. Consistently, both of the aforementioned Asf1 mutations also drastically reduced the binding to Cac2C. These results provide a structural basis for a mutually exclusive Asf1-binding model of CAF-1 and HIRA/Hip1, in which Asf1 and CAF-1 assemble histones H3/H4 (H3.1/H4 in vertebrates) in a replication-dependent pathway, whereas Asf1 and HIRA/Hip1 assemble histones H3/H4 (H3.3/H4 in vertebrates) in a replication-independent pathway.

  4. Hexadecyltrimethylammonium bromide (CTA-Br) and 1-butyl-3-methylimidazolium tetrafluoroborate (bmim-BF4) in aqueous solution: An ephemeral binary system.

    PubMed

    Comelles, Francesc; Ribosa, Isabel; Gonzalez, Juan José; Garcia, M Teresa

    2017-03-15

    Mixtures of the cationic surfactant hexadecyltrimethylammonium bromide (CTA-Br) and the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (bmim-BF 4 ) in aqueous solutions are expected to behave as typical binary cationic surfactant system taking into account the surface activity displayed by the ionic liquid, instead of considering the IL as a water cosolvent. Surface tension and conductivity measurements have been conducted as a function of the total concentration of the mixtures at different surfactant mole fraction (α CTA-Br ) to investigate the surface active properties. Turbidity immediately appearing when the compounds are mixed in water suggests the spontaneous formation of the low soluble compound hexadecyltrimethylammonium tetrafluoroborate (CTA-BF 4 ), together with the salt formed by the respective counterions bmim + and Br - in solution. For α CTA-Br ≠0.5, furthermore of the mentioned compounds, the spare bmim-BF 4 (for α CTA-Br <0.5) or CTA-Br (for α CTA-Br >0.5), are also present in the aqueous solution. Systems containing excess of bmim-BF 4 show a low critical aggregate concentration (cac), but an unexpected high surface tension at caccac ≈53-56mN/m), as pure CTA-BF 4 . For systems containing excess of CTA-Br, cac increases but γ cac decreases up to 36mN/m. Mixtures of pure CTA-BF 4 and bmim-BF 4 or CTA-Br behave as typical binary surfactant systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.

    PubMed

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2013-10-15

    The behavior of manufactured TiO2 nanoparticles is studied in a systematic way in presence of alginate and Suwannee River humic acids at variable concentrations. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is discussed by considering three pH-dependent electrostatic scenarios. In the first scenario, when pH is below the TiO2 nanoparticle point of zero charge, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee River humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation. By increasing further alginate and Suwannee River humic acids concentrations charge inversion and stabilization of TiO2 nanoparticles are obtained. In the second electrostatic scenario, at the surface charge neutralization pH, TiO2 nanoparticles are rapidly forming aggregates. Adsorption of alginate and Suwannee River humic acids on aggregates leads to their partial fragmentation. In the third electrostatic scenario, when nanoparticles, alginate and Suwannee River humic acids are negatively charged, only a small amount of Suwannee River humic acids is adsorbed on TiO2 nanoparticles surface. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions, steric and van der Waals interactions, as well as concentration ratio. Results also suggest that environmental aquatic concentration ranges of humic acids and biopolymers largely modify the stability of aggregated or dispersed TiO2 nanoparticles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Humid Heat Autoclaving of Hybrid Nanoparticles Achieved by Decreased Nanoparticle Concentration and Improved Nanoparticle Stability Using Medium Chain Triglycerides as a Modifier.

    PubMed

    Gou, Jingxin; Chao, Yanhui; Liang, Yuheng; Zhang, Ning; He, Haibing; Yin, Tian; Zhang, Yu; Xu, Hui; Tang, Xing

    2016-09-01

    Humid heat autoclaving is a facile technique widely used in the sterilization of injections, but the high temperature employed would destroy nanoparticles composed of biodegradable polymers. The aim of this study was to investigate whether incorporation of medium chain triglycerides (MCT) could stabilize nanoparticles composed of poly (ethylene glycol)-b-polycaprolactone (PEG-b-PCL) during autoclaving (121°C, 10 min). Polymeric nanoparticles with different MCT contents were prepared by dialysis. Block copolymer degradation was studied by GPC. The critical aggregation concentrations of nanoparticles at different temperatures were determined using pyrene fluorescence. The size, morphology and weight averaged molecular weight of pristine/autoclaved nanoparticles were studied using DLS, TEM and SLS, respectively. Drug loading content and release profile were determined using RP-HPLC. The protecting effect of MCT on nanoparticles was dependent on the amount of MCT incorporated. Nanoparticles with high MCT contents, which assumed an emulsion-like morphology, showed reduced block copolymer degradation and particle disassociation after incubation at 100°C for 24 h. Nanoparticles with high MCT content showed the lowest critical aggregation concentration (CAC) under either room temperature or 60°C and the lowest particle concentration among all samples. And the particle size, drug loading content, physical stability and release profile of nanoparticles with high MCT contents remained nearly unchanged after autoclaving. Incorporation of high amount of MCT changed the morphology of PEG-b-PCL based nanoparticles to an emulsion-like structure and the nanoparticles prepared could withstand autoclaving due to improved particle stability and decreased particle concentration caused by MCT incorporation.

  7. Monitoring Insulin Aggregation via Capillary Electrophoresis

    PubMed Central

    Pryor, Elizabeth; Kotarek, Joseph A.; Moss, Melissa A.; Hestekin, Christa N.

    2011-01-01

    Early stages of insulin aggregation, which involve the transient formation of oligomeric aggregates, are an important aspect in the progression of Type II diabetes and in the quality control of pharmaceutical insulin production. This study is the first to utilize capillary electrophoresis (CE) with ultraviolet (UV) detection to monitor insulin oligomer formation at pH 8.0 and physiological ionic strength. The lag time to formation of the first detected species in the aggregation process was evaluated by UV-CE and thioflavin T (ThT) binding for salt concentrations from 100 mM to 250 mM. UV-CE had a significantly shorter (5–8 h) lag time than ThT binding (15–19 h). In addition, the lag time to detection of the first aggregated species via UV-CE was unaffected by salt concentration, while a trend toward an increased lag time with increased salt concentration was observed with ThT binding. This result indicates that solution ionic strength impacts early stages of aggregation and β-sheet aggregate formation differently. To observe whether CE may be applied for the analysis of biological samples containing low insulin concentrations, the limit of detection using UV and laser induced fluorescence (LIF) detection modes was determined. The limit of detection using LIF-CE, 48.4 pM, was lower than the physiological insulin concentration, verifying the utility of this technique for monitoring biological samples. LIF-CE was subsequently used to analyze the time course for fluorescein isothiocyanate (FITC)-labeled insulin oligomer formation. This study is the first to report that the FITC label prevented incorporation of insulin into oligomers, cautioning against the use of this fluorescent label as a tag for following early stages of insulin aggregation. PMID:22272138

  8. An aggregate analysis of personal care products in the environment: Identifying the distribution of environmentally-relevant concentrations.

    PubMed

    Hopkins, Zachary R; Blaney, Lee

    2016-01-01

    Over the past 3-4 decades, per capita consumption of personal care products (PCPs) has steadily risen, resulting in increased discharge of the active and inactive ingredients present in these products into wastewater collection systems. PCPs comprise a long list of compounds employed in toothpaste, sunscreen, lotions, soaps, body washes, and insect repellants, among others. While comprehensive toxicological studies are not yet available, an increasing body of literature has shown that PCPs of all classes can impact aquatic wildlife, bacteria, and/or mammalian cells at low concentrations. Ongoing research efforts have identified PCPs in a variety of environmental compartments, including raw wastewater, wastewater effluent, surface water, wastewater solids, sediment, groundwater, and drinking water. Here, an aggregate analysis of over 5000 reported detections was conducted to better understand the distribution of environmentally-relevant PCP concentrations in, and between, these compartments. The distributions were used to identify whether aggregated environmentally-relevant concentration ranges intersected with available toxicity data. For raw wastewater, wastewater effluent, and surface water, a clear overlap was present between the 25th-75th percentiles and identified toxicity levels. This analysis suggests that improved wastewater treatment of antimicrobials, UV filters, and polycyclic musks is required to prevent negative impacts on aquatic species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Model study of enhanced oil recovery by flooding with aqueous surfactant solution and comparison with theory.

    PubMed

    Fletcher, Paul D I; Savory, Luke D; Woods, Freya; Clarke, Andrew; Howe, Andrew M

    2015-03-17

    With the aim of elucidating the details of enhanced oil recovery by surfactant solution flooding, we have determined the detailed behavior of model systems consisting of a packed column of calcium carbonate particles as the porous rock, n-decane as the trapped oil, and aqueous solutions of the anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT). The AOT concentration was varied from zero to above the critical aggregation concentration (cac). The salt content of the aqueous solutions was varied to give systems of widely different, post-cac oil-water interfacial tensions. The systems were characterized in detail by measuring the permeability behavior of the packed columns, the adsorption isotherms of AOT from the water to the oil-water interface and to the water-calcium carbonate interface, and oil-water-calcium carbonate contact angles. Measurements of the percent oil recovery by pumping surfactant solutions into calcium carbonate-packed columns initially filled with oil were analyzed in terms of the characterization results. We show that the measured contact angles as a function of AOT concentration are in reasonable agreement with those calculated from values of the surface energy of the calcium carbonate-air surface plus the measured adsorption isotherms. Surfactant adsorption onto the calcium carbonate-water interface causes depletion of its aqueous-phase concentration, and we derive equations which enable the concentration of nonadsorbed surfactant within the packed column to be estimated from measured parameters. The percent oil recovery as a function of the surfactant concentration is determined solely by the oil-water-calcium carbonate contact angle for nonadsorbed surfactant concentrations less than the cac. For surfactant concentrations greater than the cac, additional oil removal occurs by a combination of solubilization and emulsification plus oil mobilization due to the low oil-water interfacial tension and a pumping pressure increase.

  10. Do chemical gradients within soil aggregates reflect plant/soil interactions?

    NASA Astrophysics Data System (ADS)

    Krüger, Jaane; Hallas, Till; Kinsch, Lena; Stahr, Simon; Prietzel, Jörg; Lang, Friederike

    2016-04-01

    As roots and hyphae often accumulate at the surface of soil aggregates, their formation and turnover might be related to the bioavailability especially of immobile nutrients like phosphorus. Several methods have been developed to obtain specific samples from aggregate surfaces and aggregate cores and thus to investigate differences between aggregate shell and core. However, these methods are often complex and time-consuming; therefore most common methods of soil analysis neglect the distribution of nutrients within aggregates and yield bulk soil concentrations. We developed a new sequential aggregate peeling method to analyze the distribution of different nutrients within soil aggregates (4-20 mm) from four forest sites (Germany) differing in concentrations of easily available mineral P. Aggregates from three soil depths (Ah, BwAh, Bw) were isolated, air-dried, and peeled with a sieving machine performing four sieving levels with increasing sieving intensity. This procedure was repeated in quadruplicate, and fractions of the same sample and sieving level were pooled. Carbon and N concentration, citric acid-extractable PO4 and P, as well as total element concentrations (P, K, Mg, Ca, Al, Fe) were analyzed. Additionally, synchrotron-based P K-edge XANES spectroscopy was applied on selected samples to detect P speciation changes within the aggregates. The results reveal for most samples a significantly higher C and N concentration at the surface compared to the interior of the aggregates. Carbon and N gradients get more pronounced with increasing soil depth and decreasing P status of study sites. This might be explained by lower aggregate turnover rates of subsoil horizons and intense bioturbation on P-rich sites. This assumption is also confirmed by concentrations of citric acid-extractable PO4 and P: gradients within aggregates are getting more pronounced with increasing soil depth and decreasing P status. However, the direction of these gradients is site

  11. Amyloid-beta aggregation: selective inhibition of aggregation in mixtures of amyloid with different chain lengths.

    PubMed Central

    Snyder, S W; Ladror, U S; Wade, W S; Wang, G T; Barrett, L W; Matayoshi, E D; Huffaker, H J; Krafft, G A; Holzman, T F

    1994-01-01

    One of the clinical manifestations of Alzheimer's disease is the deposition of the 39-43 residue amyloid-beta (A beta) peptide in aggregated fibrils in senile plaques. Characterization of the aggregation behavior of A beta is one of the critical issues in understanding the role of A beta in the disease process. Using solution hydrodynamics, A beta was observed to form three types of species in phosphate-buffered saline: insoluble aggregates with sedimentation coefficients of approximately 50,000 S and molecular masses of approximately 10(9) Da, "soluble aggregates" with sedimentation coefficients of approximately 30 S and masses of approximately 10(6) Da, and monomer. When starting from monomer, the aggregation kinetics of A beta 1-40 (A beta 40) and A beta 1-42 (A beta 42), alone and in combination, reveal large differences in the tendency of these peptides to aggregate as a function of pH and other solution conditions. At pH 4.1 and 7.0-7.4, aggregation is significantly slower than at pH 5 and 6. Under all conditions, aggregation of the longer A beta 42 was more rapid than A beta 40. Oxidation of Met-35 to the sulfoxide in A beta 40 enhances the aggregation rate over that of the nonoxidized peptide. Aggregation was found to be dependent upon temperature and to be strongly dependent on peptide concentration and ionic strength, indicating that aggregation is driven by a hydrophobic effect. When A beta 40 and A beta 42 are mixed together, A beta 40 retards the aggregation of A beta 42 in a concentration-dependent manner. Shorter fragments have a decreasing ability to interfere with A beta 42 aggregation. Conversely, the rate of aggregation of A beta 40 can be significantly enhanced by seeding slow aggregating solutions with preformed aggregates of A beta 42. Taken together, the inhibition of A beta 42 aggregation by A beta 40, the seeding of A beta 40 aggregation by A beta 42 aggregates, and the chemical oxidation of A beta 40 suggest that the relative abundance and

  12. Enhanced DNA Sensing via Catalytic Aggregation of Gold Nanoparticles

    PubMed Central

    Huttanus, Herbert M.; Graugnard, Elton; Yurke, Bernard; Knowlton, William B.; Kuang, Wan; Hughes, William L.; Lee, Jeunghoon

    2014-01-01

    A catalytic colorimetric detection scheme that incorporates a DNA-based hybridization chain reaction into gold nanoparticles was designed and tested. While direct aggregation forms an inter-particle linkage from only ones target DNA strand, the catalytic aggregation forms multiple linkages from a single target DNA strand. Gold nanoparticles were functionalized with thiol-modified DNA strands capable of undergoing hybridization chain reactions. The changes in their absorption spectra were measured at different times and target concentrations and compared against direct aggregation. Catalytic aggregation showed a multifold increase in sensitivity at low target concentrations when compared to direct aggregation. Gel electrophoresis was performed to compare DNA hybridization reactions in catalytic and direct aggregation schemes, and the product formation was confirmed in the catalytic aggregation scheme at low levels of target concentrations. The catalytic aggregation scheme also showed high target specificity. This application of a DNA reaction network to gold nanoparticle-based colorimetric detection enables highly-sensitive, field-deployable, colorimetric readout systems capable of detecting a variety of biomolecules. PMID:23891867

  13. Peptide-surfactant interactions: A combined spectroscopic and molecular dynamics simulation approach

    NASA Astrophysics Data System (ADS)

    Roussel, Guillaume; Caudano, Yves; Matagne, André; Sansom, Mark S.; Perpète, Eric A.; Michaux, Catherine

    2018-02-01

    In the present contribution, we report a combined spectroscopic and computational approach aiming to unravel at atomic resolution the effect of the anionic SDS detergent on the structure of two model peptides, the α-helix TrpCage and the β-stranded TrpZip. A detailed characterization of the specific amino acids involved is performed. Monomeric (single molecules) and micellar SDS species differently interact with the α-helix and β-stranded peptides, emphasizing the different mechanisms occurring below and above the critical aggregation concentration (CAC). Below the CAC, the α-helix peptide is fully unfolded, losing its hydrophobic core and its Asp-Arg salt bridge, while the β-stranded peptide keeps its native structure with its four Trp well oriented. Above the CAC, the SDS micelles have the same effect on both peptides, that is, destabilizing the tertiary structure while keeping their secondary structure. Our studies will be helpful to deepen our understanding of the action of the denaturant SDS on peptides and proteins.

  14. Soil aggregation and aggregate-associated carbon under four typical halophyte communities in an arid area.

    PubMed

    Yang, Haichang; Wang, Jingya; Zhang, Fenghua

    2016-12-01

    The soil microbial biomass carbon (MBC) is considered as a sensitive index of soil carbon ecosystem. The distribution of aggregate-associated MBC determines the capacity of the soil to store soil organic carbon (SOC). We compared soil aggregate-associated SOC and aggregate-associated MBC under four halophyte communities: Karelinia caspia (Pall.) Less. (Abbr. K. caspia), Bassia dasyphylla (Fisch. et C. A. Mey.) Kuntze. (Abbr. B. dasyphylla), Haloxylon ammodendron (C. A. Mey.) Bunge. (Abbr. H. ammodendron), and Tamarix ramosissima Lour (Abbr. T. ramosissima) on an alluvial fan in the Manasi River Basin, Xinjiang, China. The specific objectives of the study were to determine which aggregate size fraction was the most important for MBC and SOC retention in these soils of four halophyte communities. The results showed that the 0.053-0.25 mm fraction contained 47 to 75 % of the total soil mass. The amount of soil in the 0.053-0.25 mm fraction was significantly greater than that in the >0.25 and the <0.053 mm fractions. The >0.25 and the <0.053 mm fractions contained 7.8 to 43.0 % of the soil mass. Aggregate-associated SOC concentrations ranged from 1.70 to 13.68 g kg -1 , and the aggregate-associated SOC were the highest under the H. ammodendron and T. ramosissima communities. The aggregate-associated MBC ranged from 55.26 to 217.11 g kg -1 , and the aggregate-associated MBC were higher under the K. caspia and B. dasyphylla communities. The aggregate-associated SOC concentrations were significantly higher in the >0.25 and the <0.053 mm fractions than in the 0.053-0.25 mm fraction. The aggregate-associated MBC in the 20-40 cm depth was consistent with its law. However, in the 0-20 cm depth, the aggregate-associated MBC concentrations were significantly higher in the >0.25 mm fraction than the other two aggregate fractions, and there were no significant differences in 0.25-0.053 or <0.053 mm fraction. Correlation analyses showed that the aggregate

  15. The single scattering properties of soot aggregates with concentric core-shell spherical monomers

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Cheng, Tianhai; Gu, Xingfa; Zheng, Lijuan; Chen, Hao; Xu, Hui

    2014-03-01

    Anthropogenic soot aerosols are shown as complex, fractal-like aggregated structures with high light absorption efficiency. In atmospheric environment, soot monomers may tend to acquire a weakly absorbing coating, such as an organic coating, which introduces further complexity to the optical properties of the aggregates. The single scattering properties of soot aggregates can be significantly influenced by the coated status of these kinds of aerosols. In this article, the monomers of fractal soot aggregates are modelled as semi-external mixtures (physical contact) with constant radius of soot core and variable sizes of the coating for specific soot volume fractions. The single scattering properties of these coated soot particles, such as phase function, the cross sections of extinction and absorption, single scattering albedo (SSA) and asymmetry parameter (ASY), are calculated using the numerically exact superposition T-matrix method. The random-orientation averaging results have shown that the single scattering properties of these coated soot aggregates are significantly different from the single volume-equivalent core-shell sphere approximation using the Mie theory and the homogeneous aggregates with uncoated monomers using the effective medium theory, such as Maxwell-Garnett and Bruggemann approximations, which overestimate backscattering of coated soot. It is found that the SSA and cross sections of extinction and absorption are increased for soot aggregates with thicker weakly absorbing coating on the monomers. Especially, the SSA values of these simulated aggregates with less soot core volume fractions are remarkably (~50% for core volume fraction of soot aggregates of 0.5, ~100% for a core volume fraction of 0.2, at 0.67 μm) larger than for uncoated soot particles without consideration of coating. Moreover, the cross sections of extinction and absorption are underestimated by the computation of equivalent homogeneous fractal aggregate approximation (within

  16. Superstructure based on β-CD self-assembly induced by a small guest molecule†

    PubMed Central

    De Sousa, Frederico B.; Lima, Ana C.; Denadai, Ângelo M. L.; Anconi, Cleber P. A.; De Almeida, Wagner B.; Novato, Willian T. G.; Dos Santos, Hélio F.; Drum, Chester L.; Langer, Robert

    2014-01-01

    The size, shape and surface chemistry of nanoparticles play an important role in cellular interaction. Thus, the main objective of the present study was the determination of the β-cyclodextrin (β-CD) self-assembly thermodynamic parameters and its structure, aiming to use these assemblies as a possible controlled drug release system. Light scattering measurements led us to obtain the β-CD’s critical aggregation concentration (cac) values, and consequently the thermodynamic parameters of the β-CD spontaneous self-assembly in aqueous solution: ΔaggGo = − 16.31 kJ mol−1, ΔaggHo = − 26.48 kJ mol−1 and TΔaggSo = − 10.53 kJ mol−1 at 298.15 K. Size distribution of the self-assembled nanoparticles below and above cac was 1.5 nm and 60–120 nm, respectively. The number of β-CD molecules per cluster and the second virial coefficient were identified through Debye’s plot and molecular dynamic simulations proposed the three-fold assembly for this system below cac. Ampicillin (AMP) was used as a drug model in order to investigate the key role of the guest molecule in the self-assembly process and the β-CD:AMP supramolecular system was studied in solution, aiming to determine the structure of the supramolecular aggregate. Results obtained in solution indicated that the β-CD’s cac was not affected by adding AMP. Moreover, different complex stoichiometries were identified by nuclear magnetic resonance and isothermal titration calorimetry experiments. PMID:22234498

  17. Aggregation and breakup of colloidal particle aggregates in shear flow, studied with video microscopy.

    PubMed

    Tolpekin, V A; Duits, M H G; van den Ende, D; Mellema, J

    2004-03-30

    We used video microscopy to study the behavior of aggregating suspensions in shear flow. Suspensions consisted of 920 nm diameter silica spheres, dispersed in a methanol/bromoform solvent, to which poly(ethylene glycol) (M = 35.000 g) was added to effect weak particle aggregation. With our solvent mixture, the refractive index of the particles could be closely matched, to allow microscopic observations up to 80 microm deep into the suspension. Also the mass density is nearly equal to that of the particles, thus allowing long observation times without problems due to aggregate sedimentation. Particles were visualized via fluorescent molecules incorporated into their cores. Using a fast confocal scanning laser microscope made it possible to characterize the (flowing) aggregates via their contour-area distributions as observed in the focal plane. The aggregation process was monitored from the initial state (just after adding the polymer), until a steady state was reached. The particle volume fraction was chosen at 0.001, to obtain a characteristic aggregation time of a few hundred seconds. On variation of polymer concentration, cP (2.2-12.0 g/L), and shear rate, gamma (3-6/s), it was observed that the volume-averaged size, Dv, in the steady state became larger with polymer concentration and smaller with shear rate. This demonstrates that the aggregate size is set by a competition between cohesive forces caused by the polymer and rupture forces caused by the flow. Also aggregate size distributions were be measured (semiquantitatively). Together with a description for the internal aggregate structure they allowed a modeling of the complete aggregation curve, from t = 0 up to the steady state. A satisfactory description could be obtained by describing the aggregates as fractal objects, with Df = 2.0, as measured from CSLM images after stopping the flow. In this modeling, the fitted characteristic breakup time was found to increase with cP.

  18. Impact of short range hydrophobic interactions and long range electrostatic forces on the aggregation kinetics of a monoclonal antibody and a dual-variable domain immunoglobulin at low and high concentrations.

    PubMed

    Kumar, Vineet; Dixit, Nitin; Zhou, Liqiang Lisa; Fraunhofer, Wolfgang

    2011-12-12

    The purpose of this work was to determine the nature of long and short-range forces governing protein aggregation kinetics at low and high concentrations for a monoclonal antibody (IgG1) and a dual-variable-domain immunoglobulin (DVD-Ig). Protein-protein interactions (PPI) were studied under dilute conditions by utilizing the methods of static (B(22)) and dynamic light scattering (k(D)). PPI in solutions containing minimal ionic strengths were characterized to get detailed insights into the impact of ionic strength on aggregation. Microcalorimetry and susceptibility to denature at air-liquid interface were used to assess the tertiary structure and quiescent stability studies were conducted to study aggregation characteristics. Results for IgG1 showed that electrostatic interactions governed protein aggregation kinetics both under dilute and concentrated conditions (i.e., 5 mg/mL and 150 mg/mL). For DVD-Ig molecules, on the other hand, although electrostatic interactions governed protein aggregation under dilute conditions, hydrophobic forces clearly determined the kinetics at high concentrations. This manuscript shows for the first time that short-range hydrophobic interactions can outweigh electrostatic forces and play an important role in determining protein aggregation at high concentrations. Additionally, results show that although higher-order virial coefficients become significant under low ionic strength conditions, removal of added charges may be used to enhance the aggregation stability of dilute protein formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Quantification of Anti-Aggregation Activity of Chaperones: A Test-System Based on Dithiothreitol-Induced Aggregation of Bovine Serum Albumin

    PubMed Central

    Borzova, Vera A.; Markossian, Kira A.; Kara, Dmitriy A.; Chebotareva, Natalia A.; Makeeva, Valentina F.; Poliansky, Nikolay B.; Muranov, Konstantin O.; Kurganov, Boris I.

    2013-01-01

    The methodology for quantification of the anti-aggregation activity of protein and chemical chaperones has been elaborated. The applicability of this methodology was demonstrated using a test-system based on dithiothreitol-induced aggregation of bovine serum albumin at 45°C as an example. Methods for calculating the initial rate of bovine serum albumin aggregation (v agg) have been discussed. The comparison of the dependences of v agg on concentrations of intact and cross-linked α-crystallin allowed us to make a conclusion that a non-linear character of the dependence of v agg on concentration of intact α-crystallin was due to the dynamic mobility of the quaternary structure of α-crystallin and polydispersity of the α-crystallin–target protein complexes. To characterize the anti-aggregation activity of the chemical chaperones (arginine, arginine ethyl ester, arginine amide and proline), the semi-saturation concentration [L]0.5 was used. Among the chemical chaperones studied, arginine ethyl ester and arginine amide reveal the highest anti-aggregation activity ([L]0.5 = 53 and 58 mM, respectively). PMID:24058554

  20. Sorbitol crystallization-induced aggregation in frozen mAb formulations.

    PubMed

    Piedmonte, Deirdre Murphy; Hair, Alison; Baker, Priti; Brych, Lejla; Nagapudi, Karthik; Lin, Hong; Cao, Wenjin; Hershenson, Susan; Ratnaswamy, Gayathri

    2015-02-01

    Sorbitol crystallization-induced aggregation of mAbs in the frozen state was evaluated. The effect of protein aggregation resulting from sorbitol crystallization was measured as a function of formulation variables such as protein concentration and pH. Long-term studies were performed on both IgG1 and IgG2 mAbs over the protein concentration range of 0.1-120 mg/mL. Protein aggregation was measured by size-exclusion HPLC (SE-HPLC) and further characterized by capillary-electrophoresis SDS. Sorbitol crystallization was monitored and characterized by subambient differential scanning calorimetry and X-ray diffraction. Aggregation due to sorbitol crystallization is inversely proportional to both protein concentration and formulation pH. At high protein concentrations, sorbitol crystallization was suppressed, and minimal aggregation by SE-HPLC resulted, presumably because of self-stabilization of the mAbs. The glass transition temperature (Tg ') and fragility index measurements were made to assess the influence of molecular mobility on the crystallization of sorbitol. Tg ' increased with increasing protein concentration for both mAbs. The fragility index decreased with increasing protein concentration, suggesting that it is increasingly difficult for sorbitol to crystallize at high protein concentrations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Effect of Phosphoric Acid Concentration on the Characteristics of Sugarcane Bagasse Activated Carbon

    NASA Astrophysics Data System (ADS)

    Adib, M. R. M.; Suraya, W. M. S. W.; Rafidah, H.; Amirza, A. R. M.; Attahirah, M. H. M. N.; Hani, M. S. N. Q.; Adnan, M. S.

    2016-07-01

    Impregnation method is one of the crucial steps involved in producing activated carbon using chemical activation process. Chemicals employed in this step is effective at decomposing the structure of material and forming micropores that helps in adsorption of contaminants. This paper explains thorough procedures that have been involved in producing sugarcane bagasse activated carbon (SBAC) by using 5%, 10%, 20%, 30% phosphoric acid (H3PO4) during the impregnation step. Concentration of H3PO4 used in the process of producing SBAC was optimized through several tests including bulk density, ash content, iodine adsorption and pore size diameter and the charactesristic of optimum SBAC produced has been compared with commercial activated carbon (CAC). Batch study has been carried out by using the SBAC produced from optimum condition to investigate the performance of SBAC in removal of turbidity and chemical oxygen demand (COD) from textile wastewater. From characteristic study, SBAC with 30% H3PO4 has shown the optimum value of bulk density, ash content, iodine adsorption and pore size diameter of 0.3023 g cm-3, 4.35%, 974.96 mg/g and 0.21-0.41 µm, respectively. These values are comparable to the characteristics of CAC. Experimental result from the batch study has been concluded that the SBAC has a promising potential in removing turbidity and COD of 75.5% and 66.3%, respectively which was a slightly lower than CAC which were able to remove 82.8% of turbidity and 70% of COD. As a conclusion, the SBAC is comparable with CAC in terms of their characteristics and the capability of removing contaminants from textile wastewater. Therefore, it has a commercial value to be used as an alternative of low-cost material in producing CAC.

  2. Pressure induced polymerization of acetylide anions in CaC 2 and 10 7 fold enhancement of electrical conductivity

    DOE PAGES

    Zheng, Haiyan; Wang, Lijuan; Li, Kuo; ...

    2016-08-17

    Transformation between different types of carbon–carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC 2) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC 2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C 6 6– are identified with gas chromatography-mass spectrometrymore » and several other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 10 7 fold enhancement of the electrical conductivity. As a result, the polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.« less

  3. Inducing protein aggregation by extensional flow

    PubMed Central

    Dobson, John; Kumar, Amit; Willis, Leon F.; Tuma, Roman; Higazi, Daniel R.; Turner, Richard; Lowe, David C.; Ashcroft, Alison E.; Radford, Sheena E.; Kapur, Nikil

    2017-01-01

    Relative to other extrinsic factors, the effects of hydrodynamic flow fields on protein stability and conformation remain poorly understood. Flow-induced protein remodeling and/or aggregation is observed both in Nature and during the large-scale industrial manufacture of proteins. Despite its ubiquity, the relationships between the type and magnitude of hydrodynamic flow, a protein’s structure and stability, and the resultant aggregation propensity are unclear. Here, we assess the effects of a defined and quantified flow field dominated by extensional flow on the aggregation of BSA, β2-microglobulin (β2m), granulocyte colony stimulating factor (G-CSF), and three monoclonal antibodies (mAbs). We show that the device induces protein aggregation after exposure to an extensional flow field for 0.36–1.8 ms, at concentrations as low as 0.5 mg mL−1. In addition, we reveal that the extent of aggregation depends on the applied strain rate and the concentration, structural scaffold, and sequence of the protein. Finally we demonstrate the in situ labeling of a buried cysteine residue in BSA during extensional stress. Together, these data indicate that an extensional flow readily unfolds thermodynamically and kinetically stable proteins, exposing previously sequestered sequences whose aggregation propensity determines the probability and extent of aggregation. PMID:28416674

  4. Structure-activity relationship of cyanine tau aggregation inhibitors

    PubMed Central

    Chang, Edward; Congdon, Erin E.; Honson, Nicolette S.; Duff, Karen E.; Kuret, Jeff

    2009-01-01

    A structure-activity relationship for symmetrical cyanine inhibitors of human tau aggregation was elaborated using a filter trap assay. Antagonist activity depended on cyanine heterocycle, polymethine bridge length, and the nature of meso- and N-substituents. One potent member of the series, 3,3’-diethyl-9-methylthiacarbocyanine iodide (compound 11), retained submicromolar potency and had calculated physical properties consistent with blood-brain barrier and cell membrane penetration. Exposure of organotypic slices prepared from JNPL3 transgenic mice (which express human tau harboring the aggregation prone P301L tauopathy mutation) to compound 11 for one week revealed a biphasic dose response relationship. Low nanomolar concentrations decreased insoluble tau aggregates to half those observed in slices treated with vehicle alone. In contrast, high concentrations (≥300 nM) augmented tau aggregation and produced abnormalities in tissue tubulin levels. These data suggest that certain symmetrical carbocyanine dyes can modulate tau aggregation in the slice biological model at concentrations well below those associated with toxicity. PMID:19432420

  5. Structure and aggregation in model tetramethylurea solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Rini; Patey, G. N., E-mail: patey@chem.ubc.ca

    The structure of model aqueous tetramethylurea (TMU) solutions is investigated employing large-scale (32 000, 64 000 particles) molecular dynamics simulations. Results are reported for TMU mole fractions, X{sub t}, ranging from infinite dilution up to 0.07, and for two temperatures, 300 and 330 K. Two existing force fields for TMU-water solutions are considered. These are the GROMOS 53A6 united-atom TMU model combined with SPC/E water [TMU(GROMOS-UA)/W(SPC/E)], and the more frequently employed AMBER03 all-atom force field for TMU combined with the TIP3P water model [TMU(AMBER-AA)/W(TIP3P)]. It is shown that TMU has a tendency towards aggregation for both models considered, but the tendency ismore » significantly stronger for the [TMU(AMBER-AA)/W(TIP3P)] force field. For this model signs of aggregation are detected at X{sub t} = 0.005, aggregation is a well established feature of the solution at X{sub t} = 0.02, and the aggregates increase further in size with increasing concentration. This is in agreement with at least some experimental studies, which report signals of aggregation in the low concentration regime. The TMU aggregates exhibit little structure and are simply loosely ordered, TMU-rich regions of solution. The [TMU(GROMOS-UA)/W(SPC/E)] model shows strong signs of aggregation only at higher concentrations (X{sub t} ≳ 0.04), and the aggregates appear more loosely ordered, and less well-defined than those occurring in the [TMU(AMBER-AA)/W(TIP3P)] system. For both models, TMU aggregation increases when the temperature is increased from 300 to 330 K, consistent with an underlying entropy driven, hydrophobic interaction mechanism. At X{sub t} = 0.07, the extra-molecular correlation length expected for microheterogeneous solutions has become comparable with the size of the simulation cell for both models considered, indicating that even the systems simulated here are sufficiently large only at low concentrations.« less

  6. Aggregation of concentrated monoclonal antibody solutions studied by rheology and neutron scattering

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica; Pathak, Jai; Colby, Ralph

    2013-03-01

    Protein solutions are studied using rheology and scattering techniques to investigate aggregation. Here we present a monoclonal antibody (mAb) that aggregates after incubation at 40 °C (below its unfolding temperature), with a decrease in monomer purity of 6% in 10 days. The mAb solution contains surfactant and behaves as a Newtonian fluid when reconstituted into solution from the lyophilized form (before incubation at 40 °C). In contrast, mAb solutions incubated at 40 °C for 1 month exhibit shear yielding in torsional bulk rheometers. Interfacial rheology reveals that interfacial properties are controlled by the surfactant, producing a negligible surface contribution to the bulk yield stress. These results provide evidence that protein aggregates formed in the bulk are responsible for the yield stress. Small-angle neutron scattering (SANS) measurements show an increase in intensity at low wavevectors (q < 4*10-2 nm-1) that we attribute to protein aggregation, and is not observed in solutions stored at 4 °C for 3 days before the measurement. This work suggests a correlation between the aggregated state of the protein (stability) and the yield stress from rheology. Research funded by MedImmune

  7. Marine Synechococcus Aggregation

    NASA Astrophysics Data System (ADS)

    Neuer, S.; Deng, W.; Cruz, B. N.; Monks, L.

    2016-02-01

    Cyanobacteria are considered to play an important role in the oceanic biological carbon pump, especially in oligotrophic regions. But as single cells are too small to sink, their carbon export has to be mediated by aggregate formation and possible consumption by zooplankton producing sinking fecal pellets. Here we report results on the aggregation of the ubiquitous marine pico-cyanobacterium Synechococcus as a model organism. We first investigated the mechanism behind such aggregation by studying the potential role of transparent exopolymeric particles (TEP) and the effects of nutrient (nitrogen or phosphorus) limitation on the TEP production and aggregate formation of these pico-cyanobacteria. We further studied the aggregation and subsequent settling in roller tanks and investigated the effects of the clays kaolinite and bentonite in a series of concentrations. Our results show that despite of the lowered growth rates, Synechococcus in nutrient limited cultures had larger cell-normalized TEP production, formed a greater volume of aggregates, and resulted in higher settling velocities compared to results from replete cultures. In addition, we found that despite their small size and lack of natural ballasting minerals, Synechococcus cells could still form aggregates and sink at measureable velocities in seawater. Clay minerals increased the number and reduced the size of aggregates, and their ballasting effects increased the sinking velocity and carbon export potential of aggregates. In comparison with the Synechococcus, we will also present results of the aggregation of the pico-cyanobacterium Prochlorococcus in roller tanks. These results contribute to our understanding in the physiology of marine Synechococcus as well as their role in the ecology and biogeochemistry in oligotrophic oceans.

  8. Thermal aggregation of glycated bovine serum albumin.

    PubMed

    Rondeau, Philippe; Navarra, Giovanna; Cacciabaudo, Francesco; Leone, Maurizio; Bourdon, Emmanuel; Militello, Valeria

    2010-04-01

    Aggregation and glycation processes in proteins have a particular interest in medicine fields and in food technology. Serum albumins are model proteins which are able to self-assembly in aggregates and also sensitive to a non-enzymatic glycation in cases of diabetes. In this work, we firstly reported a study on the glycation and oxidation effects on the structure of bovine serum albumin (BSA). The experimental approach is based on the study of conformational changes of BSA at secondary and tertiary structures by FTIR absorption and fluorescence spectroscopy, respectively. Secondly, we analysed the thermal aggregation process on BSA glycated with different glucose concentrations. Additional information on the aggregation kinetics are obtained by light scattering measurements. The results show that glycation process affects the native structure of BSA. Then, the partial unfolding of the tertiary structure which accompanies the aggregation process is similar both in native and glycated BSA. In particular, the formation of aggregates is progressively inhibited with growing concentration of glucose incubated with BSA. These results bring new insights on how aggregation process is affected by modification of BSA induced by glycation. Copyright 2009 Elsevier B.V. All rights reserved.

  9. Fluorinated ionic liquids for protein drug delivery systems: Investigating their impact on the structure and function of lysozyme.

    PubMed

    Alves, Márcia; Vieira, Nicole S M; Rebelo, Luís Paulo N; Araújo, João M M; Pereiro, Ana B; Archer, Margarida

    2017-06-30

    Since the approval of recombinant human insulin by FDA in 1982, more than 200 proteins are currently available for pharmaceutical use to treat a wide range of diseases. However, innovation is still required to develop effective approaches for drug delivery. Our aim is to investigate the potential use of fluorinated ionic liquids (FILs) as drug delivery systems (DDS) for therapeutic proteins. Some initial parameters need to be assessed before further studies can proceed. This work evaluates the impact of FILs on the stability, function, structure and aggregation state of lysozyme. Different techniques were used for this purpose, which included differential scanning fluorimetry (DSF), spectrophotometric assays, circular dichroism (CD), dynamic light scattering (DLS), and scanning and transmission electron microscopy (SEM/TEM). Ionic liquids composed of cholinium-, imidazolium- or pyridinium- derivatives were combined with different anions and analysed at different concentrations in aqueous solutions (below and above the critical aggregation concentration, CAC). The results herein presented show that the addition of ionic liquids had no significant effect on the stability and hydrolytic activity of lysozyme. Moreover, a distinct behaviour was observed in DLS experiments for non-surfactant and surfactant ionic liquids, with the latter encapsulating the protein at concentrations above the CAC. These results encourage us to further study ionic liquids as promising tools for DDS of protein drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Aggregate-based sub-CMC Solubilization of n-Alkanes by Monorhamnolipid Biosurfactant.

    PubMed

    Zhong, Hua; Yang, Xin; Tan, Fei; Brusseau, Mark L; Yang, Lei; Liu, Zhifeng; Zeng, Guangming; Yuan, Xingzhong

    2016-03-01

    Solubilization of n -decane, dodecane, tetradecane and hexadecane by monorhamnolipid biosurfactant (monoRL) at concentrations near the critical micelle concentration (CMC) was investigated. The apparent solubility of all the four alkanes increases linearly with increasing monoRL concentration either below or above CMC. The capacity of solubilization presented by the molar solubilization ratio (MSR), however, is stronger at monoRL concentrations below CMC than above CMC. The MSR decreases following the order dodecane > decane > tetradecane > hexadecane at monoRL concentration below CMC. Formation of aggregates at sub-CMC monoRL concentrations was demonstrated by dynamic light scattering (DLS) and cryo-transmission electron microscopy examination. DLS-based size ( d ) and zeta potential of the aggregates decrease with increasing monoRL concentration. The surface excess ( Γ ) of monoRL calculated based on alkane solubility and aggregate size data increases rapidly with increasing bulk monoRL concentration, and then asymptotically approaches the maximum surface excess ( Γ max ). Relation between Γ and d indicates that the excess of monoRL molecules at the aggregate surface greatly impacts the surface curvature. The results demonstrate formation of aggregates for alkane solubilization at monoRL concentrations below CMC, indicating the potential of employing low-concentration rhamnolipid for enhanced solubilization of hydrophobic organic compounds.

  11. Moisture-induced aggregation of lyophilized DNA and its prevention.

    PubMed

    Sharma, Vikas K; Klibanov, Alexander M

    2007-01-01

    To investigate the moisture-induced aggregation (i.e., a loss of solubility in water) of DNA in a solid state and to develop rational strategies for its prevention. Lyophilized calf thymus DNA was exposed to relative humidity (RH) levels from 11% to 96% at 55 degrees C. Following a 24-h incubation under these stressed conditions, the solubility of DNA in different aqueous solutions and the water uptake of DNA were determined. The effects of solution pH and NaCl concentration and the presence of excipients (dextran and sucrose) on the subsequent moisture-induced aggregation of DNA were examined. The extent of this aggregation was compared with that of a supercoiled plasmid DNA. Upon a 24-h incubation at 55 degrees C, calf thymus DNA underwent a major moisture-induced aggregation reaching a maximum at a 60% RH; in contrast, the single-stranded DNA exhibited the maximal aggregation at a 96% RH. Moisture uptake and aqueous solubility studies revealed that the aggregation was primarily due to formation of inter-strand hydrogen bonds. Aggregation of DNA also proceeded at 37 degrees C, albeit at a slower rate. Solution pH and NaCl concentration affected DNA aggregation only at higher RH levels. This aggregation was markedly reduced by co-lyophilization with dextran or sucrose (but not with PEG). The aggregation pattern of a supercoiled plasmid DNA was similar to that of its linear calf thymus counterpart. The moisture-induced aggregation of lyophilized DNA is caused mainly by non-covalent cross-links between disordered, single-stranded regions of DNA. At high RH levels, renaturation and aggregation of DNA compete with each other. The aggregation is minimized at low RH levels, at optimal solution pH and salt concentration prior to lyophilization, and by co-lyophilizing with excipients capable of forming multiple hydrogen bonds, e.g., dextran and sucrose.

  12. Aggregate-associated carbon and nitrogen in reclaimed sandy loam soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wick, A.F.; Stahl, P.D.; Ingram, L.J.

    2009-11-15

    Minimal research has been conducted on aggregate, C, and N in coarse-textured soils used to reclaim surface coal mine lands. Furthermore, little is known about the contribution different plant communities make to the recovery of aggregation in these soils. Two chronosequences of semiarid reclaimed sites with sandy loam soils were sampled under shrub- and grass-dominated communities. Aggregation, aggregate fractions, and associated C and N were measured. No definitive trends of increasing macroaggregates between sites were observed undershrubs; however, macro- and microaggregation was greater in the 16-yr-old (0.20 and 0.23 kg aggregate kg{sup -1} soil, respectively) than in the 5-yr-old soilsmore » (0.02 and 0.08 kg aggregate kg{sup -1} soil, respectively) under grasses. Although C and N concentrations were drastically reduced (50-75%) with mining activity between the <1-yr-old and native soils, aggregate C and N concentrations tinder shrubs and grasses were similar to each other and to the native soils in the 5-yr-old site. Sods under grass in the 16-yr-old site had lower available and aggregate-occluded C and N concentrations than the 5-yr-old site, while C and N concentrations did not change between 5- and 16-yr-old soils under shrubs. Conversely, aggregate C and N pool sizes under shrubs and grasses both increased with site age to conditions similar to those observed in the native soil. Reclaimed shrub site soils had consistently higher C concentrations in the older reclaimed sites (10 and 16 yr old) than the soils under grasses, indicating greater accumulation and retention of C and N in organic material under shrub than grass communities in semiarid reclaimed sites.« less

  13. Counter effect of sucrose on ethanol-induced aggregation of protein.

    PubMed

    Yadav, Jay Kant; Chandani, N; Pande Prajakt, P R; Chauhan, Jyoti Bala

    2010-12-01

    The present paper is an attempt to study the mechanism of ethanol induced aggregation of chicken egg albumin and to stabilize the protein against ethanol induced aggregation. The protein aggregation was determined by monitoring the light scattering of protein aggregates spectrophotometrically. The protein undergoes certain structural changes in water-ethanol solution and the degree of aggregation was found to be linearly depending upon the concentration of alcohol used. The intrinsic fluorescence study showed a large blue shift in the λ(max) (16 nm) in the presence of 50% ethanol. The ANS fluorescence intensity was found to be gradually increasing with increasing concentration of ethanol. This indicates an increase in the hydrophobic cluster on the protein surface and as a result the hydrophobic interaction is the major driving force for the aggregate formation. Addition of sucrose significantly reduced the ethanol-induced protein aggregation. In presence of 50% sucrose the ethanol the aggregation was reduced to 5%. The study reveals that addition of sucrose brings out changes in the solvent distribution and prevents the structural changes in protein which lead the aggregation.

  14. Preparation and properties of comb-like surfactants containing poly(ethylene oxide) methyl ether grafts.

    PubMed

    Zhang, Wei; Du, Zhiping; Chang, Chien-Hsiang; Wang, Guoyong

    2009-09-15

    The comb-like surfactants, poly(styrene-co-maleic anhydride)-g-(poly(ethylene glycol) monomethyl ether), poly(St-co-MA)-g-(MPEG), have been prepared using a macromonomer approach to get controlled molecular structures. The macromonomer (MAMPEG) was obtained by esterification of poly(ethylene glycol) monomethyl ether with maleic anhydride. Poly(St-co-MA)-g-(MPEG) with various molar ratios of St to MAMPEG (R) were then constructed by radical copolymerization. The comb-like structures of the surfactants were confirmed by infrared and (1)H nuclear magnetic resonance spectroscopy. It is found from gel permeation chromatography characterization that the molecular weight of the surfactants increases as R increases. The polydispersity index was in the range between 1.4 and 2.0 in all the cases. The surfactants with a higher St percentage are less soluble in water due to aggregation. The value of critical aggregation concentration (CAC) and the surface tension at the CAC (gamma(CAC)) decrease as R increases. The steady-shear measurements show that the surfactant solutions at 50 g/L are dilatant fluids. In addition, it appears that there are two break points in the viscosity-shear rate curve. Both break points increase with increasing R. It can therefore be concluded that the properties of comb-like surfactants poly(St-co-MA)-g-(MPEG) are related to molecular structure. The results demonstrate that the properties of these comb-like surfactants can be tailored through appropriate molecular design.

  15. Aggregation Dynamics Using Phase Wave Signals and Branching Patterns

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Kusagaki, Takuma

    2016-09-01

    The aggregation dynamics of slime mold is studied using coupled equations of phase ϕ and cell concentration n. Phase waves work as tactic signals for aggregation. Branching structures appear during the aggregation. A stationary branching pattern appears like a river network, if cells are uniformly supplied into the system.

  16. Dynamic light-scattering study of gelatin and aggregation of gastric mucin

    NASA Astrophysics Data System (ADS)

    Bansil, Rama; Cao, Xingxiang; Bhaskar, K. Ramakrishnan; LaMont, Jeffrey T.

    1997-05-01

    Dynamic light scattering studies show that concentration and pH play important roles in determining pig gastric mucin's (PGM) ability to aggregate and gel. At low concentrations, PGM macromolecules exist in solution predominantly in the form of monomers. At high concentrations, PGM macromolecules aggregate to form supra-macromolecular clusters. When the pH of the high concentration PGM solution is changed from 7.0 to 2.0, the system undergoes a sol-gel transition: from a solution of polydisperse aggregates to a gel. This pH and concentration dependent sol-gel transition of PGM solution may provide a mechanism for the mammalian stomach to protect itself against being digested by the gastric juice.

  17. Competitive aggregation dynamics using phase wave signals.

    PubMed

    Sakaguchi, Hidetsugu; Maeyama, Satomi

    2014-10-21

    Coupled equations of the phase equation and the equation of cell concentration n are proposed for competitive aggregation dynamics of slime mold in two dimensions. Phase waves are used as tactic signals of aggregation in this model. Several aggregation clusters are formed initially, and target patterns appear around the localized aggregation clusters. Owing to the competition among target patterns, the number of the localized aggregation clusters decreases, and finally one dominant localized pattern survives. If the phase equation is replaced with the complex Ginzburg-Landau equation, several spiral patterns appear, and n is localized near the center of the spiral patterns. After the competition among spiral patterns, one dominant spiral survives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Waves and aggregation patterns in myxobacteria

    NASA Astrophysics Data System (ADS)

    Igoshin, Oleg A.; Welch, Roy; Kaiser, Dale; Oster, George

    2004-03-01

    Under starvation conditions, a population of myxobacteria aggregates to build a fruiting body whose shape is species-specific and within which the cells sporulate. Early in this process, cells often pass through a "ripple phase" characterized by traveling linear, concentric, and spiral waves. These waves are different from the waves observed during slime mold aggregation that depend on diffusible morphogens, because myxobacteria communicate by direct contact. The difference is most dramatic when waves collide: rather than annihilating one another, myxobacterial waves appear to pass through one another unchanged. Under certain conditions, the spacing and location of the nascent fruiting bodies is determined by the wavelength and pattern of the waves. Later in fruiting body development, waves are replaced by streams of cells that circulate around small initial aggregates enlarging and rounding them. Still later, pairs of motile aggregates coalesce to form larger aggregates that develop into fruiting bodies. Here we present a mathematical model that quantitatively explains these wave and aggregation phenomena.

  19. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2013-03-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well-aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se species. The spatial and temporal dynamics of the model were validated with data from experiments, and predictive simulations were performed covering aggregate sizes 1-2.5 cm in diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5 cm aggregates compared to 1 cm aggregates. Under oxic conditions, aggregate size and pyruvate concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on

  20. Modeling the impact of soil aggregate size on selenium immobilization

    NASA Astrophysics Data System (ADS)

    Kausch, M. F.; Pallud, C. E.

    2012-09-01

    Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate-scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se-species. The spatial and temporal dynamics of the model were validated with data from experiments and predictive simulations were performed covering aggregate sizes between 1 and 2.5 cm diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5-cm-aggregates compared to 1-cm-aggregates. Under oxic conditions, aggregate size and pyruvate-concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on

  1. Organic carbon, water repellency and soil stability to slaking at aggregate and intra-aggregate scales

    NASA Astrophysics Data System (ADS)

    Jordán López, Antonio; García-Moreno, Jorge; Gordillo-Rivero, Ángel J.; Zavala, Lorena M.; Cerdà, Artemi; Alanís, Nancy; Jiménez-Compán, Elizabeth

    2015-04-01

    (about 10 mm in size) selected per treatment (mulched or conventional tillage) and crop (apricot, citrus and wheat). In this case, every set of aggregates was randomly divided in three groups (n = 30) for assessing stability to slaking, WR and OC, respectively. OC content in the fine earth fraction of soils under different crops did not show important variations, although it increased significantly from conventionally tilled to mulched soils. The distribution of OC content in aggregates with different size varied among soils under different crops, generally increasing with decreasing size. At the intra-aggregate level, OC concentrated preferably in the exterior layer of differently sized aggregates and of aggregate coatings and interior from conventionally tilled soils, probably because of recent organic inputs or leachates. In the case of mulched soils, higher concentrations were observed, but no significant differences among aggregate regions were found. The intensity of water repellency, determined by the ethanol method, did not show great variations among differently sized aggregates under different crops in the 0-10 cm layer, but increased significantly from conventionally tilled to mulched soils. Coarser aggregates were generally wettable, while finer aggregates showed slight water repellency. Regardless of variations in the distribution of OC in different layers of aggregate from conventionally tilled soils, great or significant differences in the distribution of water repellency at the intra-aggregate level were not found. In case of mulched soils such differences were not significant. Finally, the intensity of water repellency was much more important than the concentration of OC in the stability to slaking of aggregates.

  2. Intraspecific Signals Inducing Aggregation in Periplaneta americana (Insecta: Dictyoptera).

    PubMed

    Imen, Saïd; Christian, Malosse; Virginie, Durier; Colette, Rivault

    2015-06-01

    Chemical communication is necessary to induce aggregation and to maintain the cohesion of aggregates in Periplaneta americana (L.) cockroaches. We aimed to identify the chemical message inducing aggregation in this species. Two types of bioassays were used-binary choice tests in Petri dishes and tests in Y-olfactometer. Papers conditioned by direct contact of conspecifics induce aggregation when proposed in binary choice tests and were attractive in a Y-olfactometer. The identification of the molecules present on these conditioned papers indicated that dichloromethane extracts contained mainly cuticular hydrocarbons whereas methanol extracts contained more volatile molecules. Only a mixture of extracts in both solvents induced aggregation. High concentrations of cuticular hydrocarbons are necessary to induce aggregation when presented alone. When presented with volatile molecules present in methanol extracts, low concentrations of cuticular hydrocarbons are sufficient to induce aggregation if they are presented in contact. Among volatile molecules collected on filter paper, a mixture of three compounds-hexadecanoic acid, pentadecanoic acid, and pentaethylene glycol-induced aggregation. Our results provide evidence that aggregation processes in P. americana relies on a dual mechanism: attraction over long distances by three volatile molecules and maintenance on site by contact with cuticular hydrocarbons. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Protein aggregation studied by forward light scattering and light transmission analysis

    NASA Astrophysics Data System (ADS)

    Penzkofer, A.; Shirdel, J.; Zirak, P.; Breitkreuz, H.; Wolf, E.

    2007-12-01

    The aggregation of the circadian blue-light photo-receptor cryptochrome from Drosophila melanogaster (dCry) is studied by transmission and forward light scattering measurement in the protein transparent wavelength region. The light scattering in forward direction is caused by Rayleigh scattering which is proportional to the degree of aggregation. The light transmission through the samples in the transparent region is reduced by Mie light scattering in all directions. It depends on the degree of aggregation and the monomer volume fill factor of the aggregates (less total scattering with decreasing monomer volume fill factor of protein globule) allowing a distinction between tightly packed protein aggregation (monomer volume fill factor 1) and loosely packed protein aggregation (monomer volume fill factor less than 1). An increase in aggregation with temperature, concentration, and blue-light exposure is observed. At a temperature of 4 °C and a protein concentration of less than 0.135 mM no dCry aggregation was observed, while at 24 °C and 0.327 mM gelation occurred (loosely packed aggregates occupying the whole solution volume).

  4. Particle Formation and Aggregation of a Therapeutic Protein in Nanobubble Suspensions

    PubMed Central

    Snell, Jared R.; Zhou, Chen; Carpenter, John F.; Randolph, Theodore W.

    2016-01-01

    The generation of nanobubbles following reconstitution of lyophilized trehalose formulations has recently been reported.1 Here, we characterize particle formation and aggregation of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) in reconstituted formulations of lyophilized trehalose. Particle characterization methods including resonant mass measurement and nanoparticle tracking analysis were used to count and size particles generated upon reconstitution of lyophilized trehalose formulations. In addition, accelerated degradation studies were conducted to monitor rhIL-1ra aggregation in solutions containing various concentrations of suspended nanobubbles. Reconstitution of lyophilized trehalose formulations with solutions containing rhIL-1ra reduced nanobubble concentrations and generated negatively buoyant particles attributed to aggregated rhIL-1ra. Furthermore, levels of rhIL-1ra aggregation following incubation in aqueous solution correlated with concentrations of suspended nanobubbles. The results of this study suggest nanobubbles may be a contributor to protein aggregation and particle formation in reconstituted, lyophilized therapeutic protein formulations. PMID:27488901

  5. Effects of Land Use on Concentrations and Chemical Forms of Phosphorus in Different-Size Aggregates

    NASA Astrophysics Data System (ADS)

    Ahmad, E. H.; Demisie, W.; Zhang, M.

    2017-12-01

    Land use has been recognized as an important driver of environmental change on all spatial and temporal scales. This study was conducted to determine the effects of land uses on phosphorus concentration in bulk soil and in water-stable aggregates in different soils. The study was conducted on three soil types (Ferrosols, Cambosols, and Primosols), which were collected from three different locations from southeast China and under three land uses (Uncultivated, Vegetable and forest land) the region is characterized as a hill and plain area. Accordingly, a total of 24 soil samples were collected. The results showed that average contents of total P were 0.55-1.55 g/kg, 0.28-1.03 g/kg and 0.14-0.8 g/kg for the soils: Cambosols, Ferrosols and Primosols respectively. Vegetable and forest land led to higher total phosphorus contents in these soils than in the uncultivated land. An aggregate fraction of >2 mm under forest land made up the largest percentage (30 up to 70%), whereas the size fraction <0.106 mm made the least contribution (5 up to 20%) in all soil types. Vegetable land increased the total phosphorus, organic phosphorus and Olsen P and phosphorus forms in the soils. It implies that the conversion of natural ecosystem to vegetable land increased the phosphorus proportion in the soils, which could have negative impact on the environmental quality.

  6. Obtaining electrostatically bound CdS-SiO2 aggregates from electrophoretic concentrates of CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Bulavchenko, A. I.; Sap'yanik, A. A.; Demidova, M. G.; Rakhmanova, M. I.; Popovetskii, P. S.

    2015-05-01

    Nonaqueous electrophoresis reveals that the electrokinetic potential of CdS nanoparticles increases slightly (85-120 mV) along with the concentration (0-5 × 10-3 M) of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in n-decane, while negatively charged SiO2 particles acquire positive charge (switching from -75 up to +135 mV). The energies of interparticle interactions in CdS-CdS and CdS-SiO2 systems are calculated from these parameters and the literature values of the Hamaker constants according to the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory. It is concluded that the presence of a minimum (2.5 k B T) on the potential dependences of the CdS-SiO2 system indicates the formation of CdS-SiO2 aggregates electrostatically bound by heterocoagulation at low concentrations of AOT. The luminescent properties of the obtained ultrafine CdS-SiO2 powders depend on the CdS content.

  7. A critical concentration of N-terminal pyroglutamylated amyloid beta drives the misfolding of Ab1-42 into more toxic aggregates.

    PubMed

    Galante, Denise; Ruggeri, Francesco Simone; Dietler, Giovanni; Pellistri, Francesca; Gatta, Elena; Corsaro, Alessandro; Florio, Tullio; Perico, Angelo; D'Arrigo, Cristina

    2016-10-01

    A wide consensus based on robust experimental evidence indicates pyroglutamylated amyloid-β isoform (AβpE3-42) as one of the most neurotoxic peptides involved in the onset of Alzheimer's disease. Furthermore, AβpE3-42 co-oligomerized with excess of Aβ1-42, produces oligomers and aggregates that are structurally distinct and far more cytotoxic than those made from Aβ1-42 alone. Here, we investigate quantitatively the influence of AβpE3-42 on biophysical properties and biological activity of Aβ1-42. We tested different ratios of AβpE3-42/Aβ1-42 mixtures finding a correlation between the biological activity and the structural conformation and morphology of the analyzed mixtures. We find that a mixture containing 5% AβpE3-42, induces the highest disruption of intracellular calcium homeostasis and the highest neuronal toxicity. These data correlate to an high content of relaxed antiparallel β-sheet structure and the coexistence of a population of big spheroidal aggregates together with short fibrils. Our experiments provide also evidence that AβpE3-42 causes template-induced misfolding of Aβ1-42 at ratios below 33%. This means that there exists a critical concentration required to have seeding on Aβ1-42 aggregation, above this threshold, the seed effect is not possible anymore and AβpE3-42 controls the total aggregation kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Platelet aggregation caused by a partially purified jellyfish toxin from Carybdea rastonii.

    PubMed

    Azuma, H; Sekizaki, S; Satoh, A; Nakajima, T; Ishikawa, M

    1986-01-01

    A partially purified toxin (pCrTX) was obtained from the tentacles of the jellyfish, Carybdea rastonii. When pCrTX (3 X 10(-8) - 3 X 10(-7) g/ml) was added to citrated platelet-rich plasma, aggregation was produced in a concentration-dependent manner. Scanning electron microscopic examination revealed that both pCrTX and collagen produced aggregates of platelets possessing many pseudopods. The concentration which produced 50% aggregation for pCrTX was 1.8 X 10(-7) g/ml, as compared to 2.3 X 10(-6) g/ml for collagen. The pCrTX-induced aggregation was only slightly inhibited by indomethacin and quinacrine in concentrations sufficient to inhibit arachidonic acid- and collagen-induced aggregation. pCrTX was less active in washed platelets suspended in Ca2+ free medium, whereas the pCrTX-induced aggregation was significantly augmented in the presence of Ca2+. The augmentation of aggregation by Ca2+ was only slightly attenuated by pretreatment with 100 microM verapamil. pCrTX significantly increased the concentration of cytoplasmic free Ca2+ ([Ca2+]i) and depolarized the platelet membrane in concentrations that produced aggregation. The increase in [Ca2+]i caused by pCrTX was little affected by verapamil. The depolarization by pCrTX was unchanged in the presence or absence of Ca2+, or by sodium or potassium transport inhibitors. The movement of 22Na+ into platelets was significantly increased by pCrTX. This increase in the movement of 22N+ into platelets was unaffected by tetrodotoxin. On the other hand, pCrTX-induced aggregation, depolarization and the increase in [Ca2+]i were all significantly attenuated in low Na+ medium. These results suggest that pCrTX causes a massive depolarization by increasing cation permeability indiscriminately and this generalized depolarization permits an inward movement of calcium down an electrochemical gradient which, in turn triggers platelet aggregation.

  9. Plasmon enhanced fluorescence with aggregated shell-isolated nanoparticles.

    PubMed

    Osorio-Román, Igor O; Guerrero, Ariel R; Albella, Pablo; Aroca, Ricardo F

    2014-10-21

    Shell-isolated nanoparticles (SHINs) nanostructures provide a versatile substrate where the localized surface plasmon resonances (LSPRs) are well-defined. For SHINEF, the silver (or gold) metal core is protected by the SiO2 coating, which is thicker than the critical distance for minimum quenching by the metal. In the present work, it is shown that an increase in the SHINEF enhancement factor may be achieved by inducing SHIN aggregation with electrolytes in solution. The proof of concept is demonstrated using NaCl as aggregating agent, although other inorganic salts will also aggregate SHIN nanoparticles. As much as a 10-fold enhancement in the SHINEF enhancement factor (EF) may be achieved by tuning the electrolyte concentrations in solution. The SHINEF experiments include the study of the aggregation effect controlling gold SHIN's surface concentration via spraying. Au-SHINs are sprayed onto layer-by-layer (LbL) and Langmuir-Blodgett (LB) films, and samples are fabricated using fluorophores with low and also high quantum yield.

  10. Shear-induced aggregation dynamics in a polymer microrod suspension

    NASA Astrophysics Data System (ADS)

    Kumar, Pramukta S.

    A non-Brownian suspension of micron scale rods is found to exhibit reversible shear-driven formation of disordered aggregates resulting in dramatic viscosity enhancement at low shear rates. Aggregate formation is imaged at low magnification using a combined rheometer and fluorescence microscope system. The size and structure of these aggregates are found to depend on shear rate and concentration, with larger aggregates present at lower shear rates and higher concentrations. Quantitative measurements of the early-stage aggregation process are modeled by a collision driven growth of porous structures which show that the aggregate density increases with a shear rate. A Krieger-Dougherty type constitutive relation and steady-state viscosity measurements are used to estimate the intrinsic viscosity of complex structures developed under shear. Higher magnification images are collected and used to validate the aggregate size versus density relationship, as well as to obtain particle flow fields via PIV. The flow fields provide a tantalizing view of fluctuations involved in the aggregation process. Interaction strength is estimated via contact force measurements and JKR theory and found to be extremely strong in comparison to shear forces present in the system, estimated using hydrodynamic arguments. All of the results are then combined to produce a consistent conceptual model of aggregation in the system that features testable consequences. These results represent a direct, quantitative, experimental study of aggregation and viscosity enhancement in rod suspension, and demonstrate a strategy for inferring inaccessible microscopic geometric properties of a dynamic system through the combination of quantitative imaging and rheology.

  11. An Aß concatemer with altered aggregation propensities.

    PubMed

    Giehm, L; Dal Degan, F; Fraser, P; Klysner, S; Otzen, Daniel E

    2010-10-01

    We present an analysis of the conformational and aggregative properties of an Aß concatemer (Con-Alz) of interest for vaccine development against Alzheimer's disease. Con-Alz consists of 3 copies of the 43 residues of the Aß peptide separated by the P2 and P30 T-cell epitopes from the tetanus toxin. Even in the presence of high concentrations of denaturants or fluorinated alcohols, Con-Alz has a very high propensity to form aggregates which slowly coalesce over time with changes in secondary, tertiary and quaternary structure. Only micellar concentrations of SDS were able to inhibit aggregation. The increase in the ability to bind the fibril-binding dye ThT increases without lag time, which is characteristic of relatively amorphous aggregates. Confirming this, electron microscopy reveals that Con-Alz adopts a morphology resembling truncated protofibrils after prolonged incubation, but it is unable to assemble into classical amyloid fibrils. Despite its high propensity to aggregate, Con-Alz does not show any significant ability to permeabilize vesicles, which for fibrillating proteins is taken to be a key factor in aggregate cytotoxicity and is attributed to oligomers formed at an early stage in the fibrillation process. Physically linking multiple copies of the Aß-peptide may thus sterically restrict Con-Alz against forming cytotoxic oligomers, forcing it instead to adopt a less well-organized assembly of intermeshed polypeptide chains. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Neisseria gonorrhoeae Aggregation Reduces Its Ceftriaxone Susceptibility.

    PubMed

    Wang, Liang-Chun; Litwin, Madeline; Sahiholnasab, Zahraossadat; Song, Wenxia; Stein, Daniel C

    2018-06-15

    Antibiotic resistance in Neisseria gonorrhoeae (GC) has become an emerging threat worldwide and heightens the need for monitoring treatment failures. N. gonorrhoeae , a gram-negative bacterium responsible for gonorrhea, infects humans exclusively and can form aggregates during infection. While minimal inhibitory concentration (MIC) tests are often used for determining antibiotic resistance development and treatment, the knowledge of the true MIC in individual patients and how it relates to this laboratory measure is not known. We examined the effect of aggregation on GC antibiotic susceptibility and the relationship between bacterial aggregate size and their antibiotic susceptibility. Aggregated GC have a higher survival rate when treated with ceftriaxone than non-aggregated GC, with bacteria in the core of the aggregates surviving the treatment. GC lacking opacity-associated protein or pili, or expressing a truncated lipooligosaccharide, three surface molecules that mediate GC-GC interactions, reduce both aggregation and ceftriaxone survival. This study demonstrates that the aggregation of N. gonorrhoeae can reduce the susceptibility to antibiotics, and suggests that antibiotic utilization can select for GC surface molecules that promote aggregation which in turn drive pathogen evolution. Inhibiting aggregation may be a potential way of increasing the efficacy of ceftriaxone treatment, consequently reducing treatment failure.

  13. Cellular Strategies for Regulating Functional and Nonfunctional Protein Aggregation

    PubMed Central

    Gsponer, Jörg; Babu, M. Madan

    2012-01-01

    Summary Growing evidence suggests that aggregation-prone proteins are both harmful and functional for a cell. How do cellular systems balance the detrimental and beneficial effect of protein aggregation? We reveal that aggregation-prone proteins are subject to differential transcriptional, translational, and degradation control compared to nonaggregation-prone proteins, which leads to their decreased synthesis, low abundance, and high turnover. Genetic modulators that enhance the aggregation phenotype are enriched in genes that influence expression homeostasis. Moreover, genes encoding aggregation-prone proteins are more likely to be harmful when overexpressed. The trends are evolutionarily conserved and suggest a strategy whereby cellular mechanisms specifically modulate the availability of aggregation-prone proteins to (1) keep concentrations below the critical ones required for aggregation and (2) shift the equilibrium between the monomeric and oligomeric/aggregate form, as explained by Le Chatelier’s principle. This strategy may prevent formation of undesirable aggregates and keep functional assemblies/aggregates under control. PMID:23168257

  14. Particle Formation and Aggregation of a Therapeutic Protein in Nanobubble Suspensions.

    PubMed

    Snell, Jared R; Zhou, Chen; Carpenter, John F; Randolph, Theodore W

    2016-10-01

    The generation of nanobubbles following reconstitution of lyophilized trehalose formulations has recently been reported. Here, we characterize particle formation and aggregation of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) in reconstituted formulations of lyophilized trehalose. Particle characterization methods including resonant mass measurement and nanoparticle tracking analysis were used to count and size particles generated upon reconstitution of lyophilized trehalose formulations. In addition, accelerated degradation studies were conducted to monitor rhIL-1ra aggregation in solutions containing various concentrations of suspended nanobubbles. Reconstitution of lyophilized trehalose formulations with solutions containing rhIL-1ra reduced nanobubble concentrations and generated negatively buoyant particles attributed to aggregated rhIL-1ra. Furthermore, levels of rhIL-1ra aggregation following incubation in aqueous solution correlated with concentrations of suspended nanobubbles. The results of this study suggest that nanobubbles may be a contributor to protein aggregation and particle formation in reconstituted, lyophilized therapeutic protein formulations. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Capillary electrophoresis investigation on equilibrium between polymer-related and surfactant-related species in aqueous polymer-surfactant solutions.

    PubMed

    Wu, Yefan; Chen, Miaomiao; Fang, Yun; Zhu, Meng

    2017-03-17

    It was inferred from aqueous solution behavior of nonionic polymers and anionic surfactants that the formation of charged polymer-bound surfactant micelle above critical aggregation concentration (cac) and the formation of free surfactant micelle beyond polymer saturation point (psp), but there was still a lack of direct experimental evidence for the considered equilibrium chemical species. Three modes of capillary electrophoresis are applied in this paper to study the complexation between nonionic polymers, polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG), and sodium dodecylbenzenesulfonate (SDBS) by successfully distinguishing the imaginary charged polymer-bound SDBS micelle from nonionic polymer and SDBS molecule. Perhaps even more important, it is the action of SDBS as both a main surfactant and a UV probe that makes the free surfactant micelle emerged in electropherogram beyond psp, and thus makes it possible for the first time to provide the equilibrium relationship of the polymer-related and the surfactant-related species in the concentration regions divided into by cac and psp. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Aggregative stability of fungicidal nanomodifier based on zinc hydrosilicates

    NASA Astrophysics Data System (ADS)

    Grishina, Anna; Korolev, Evgeniy

    2018-03-01

    Currently, there is a strong need of high performance multi functional materials in high-rise construction. Obviously, such materials should be characterized by high strength; but for interior rooms biosafety is important as well. The promising direction to obtain both high strength and maintain biosafety in buildings and structures is to manage the structure of mineral binders by means of fungicidal nanomodifier based on zinc hydrosilicates. In the present work the aggregative stability of colloidal solutions of zinc hydrosilicates after one year of storage was studied. It has been established that the concentration of iron (III) hydroxide used to prepare the precursor of zinc hydrosilicates has a significant effect on the long-term aggregative stability: as the concentration of iron (III) hydroxide increases, the resistance of the fungicidal nanomodifier increases. It was found that, despite the minimal concentration of nano-sized zinc hydrosilicates (0.028%), the colloidal solution possesses a low long-term aggregative stability; while in the initial period (not less than 14 days) the colloidal solution of the nanomodifier is aggregatively stable. It is shown that when the ratio in the colloidal solution of the amount of the substance CH3COOH / SiO2 = 0.43 is reached, an increase in the polymerization rate is observed, which is the main cause of low aggregative stability. Colloidal solutions containing zinc hydrosilicates synthesized at a concentration of iron (III) hydroxide used to produce a precursor equal to 0.7% have a long-term aggregative stability and do not significantly change the reduced particle. Such compositions are to be expediently used for the nanomodifying of building composites in order to control their structure formation and to create conditions that impede the development of various mycelial fungi.

  17. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O-O Bond Formation Pathways by Different Aggregation Patterns.

    PubMed

    Yang, Bing; Jiang, Xin; Guo, Qing; Lei, Tao; Zhang, Li-Ping; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-05-17

    The oxidation of water to molecular oxygen is the key step to realize water splitting from both biological and chemical perspective. In an effort to understand how water oxidation occurs on a molecular level, a large number of molecular catalysts have been synthesized to find an easy access to higher oxidation states as well as their capacity to make O-O bond. However, most of them function in a mixture of organic solvent and water and the O-O bond formation pathway is still a subject of intense debate. Herein, we design the first amphiphilic Ru-bda (H2 bda=2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts (WOCs) of formula [Ru(II) (bda)(4-OTEG-pyridine)2 ] (1, OTEG=OCH2 CH2 OCH2 CH2 OCH3 ) and [Ru(II) (bda)(PySO3 Na)2 ] (2, PySO3 (-) =pyridine-3-sulfonate), which possess good solubility in water. Dynamic light scattering (DLS), scanning electron microscope (SEM), critical aggregation concentration (CAC) experiments and product analysis demonstrate that they enable to self-assemble in water and form the O-O bond through different routes even though they have the same bda(2-) backbone. This work illustrates for the first time that the O-O bond formation pathway can be regulated by the interaction of ancillary ligands at supramolecular level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Noncanonical Gβ Gib2 is a scaffolding protein promoting cAMP signaling through functions of Ras1 and Cac1 proteins in Cryptococcus neoformans.

    PubMed

    Wang, Yanli; Shen, Gui; Gong, Jinjun; Shen, Danyu; Whittington, Amy; Qing, Jiang; Treloar, Joshua; Boisvert, Scott; Zhang, Zhengguang; Yang, Cai; Wang, Ping

    2014-05-02

    Gβ-like/RACK1 functions as a key mediator of various pathways and contributes to numerous cellular functions in eukaryotic organisms. In the pathogenic fungus Cryptococcus neoformans, noncanonical Gβ Gib2 promotes cAMP signaling in cells lacking normal Gpa1 function while displaying versatility in interactions with Gα Gpa1, protein kinase Pkc1, and endocytic intersectin Cin1. To elucidate the Gib2 functional mechanism(s), we demonstrate that Gib2 is required for normal growth and virulence. We show that Gib2 directly binds to Gpa1 and Gγ Gpg1/Gpg2 and that it interacts with phosphodiesterase Pde2 and monomeric GTPase Ras1. Pde2 remains functionally dispensable, but Ras1 is found to associate with adenylyl cyclase Cac1 through the conserved Ras association domain. In addition, the ras1 mutant exhibits normal capsule formation, whereas the ras1 gpa1 mutant displays enhanced capsule formation, and the ras1 gpa1 cac1 mutant is acapsular. Collectively, these findings suggest that Gib2 promotes cAMP levels by relieving an inhibitory function of Ras1 on Cac1 in the absence of Gpa1. In addition, using GST affinity purification combined with mass spectrometry, we identified 47 additional proteins that interact with Gib2. These proteins have putative functions ranging from signal transduction, energy generation, metabolism, and stress response to ribosomal function. After establishing and validating a protein-protein interactive network, we believe Gib2 to be a key adaptor/scaffolding protein that drives the formation of various protein complexes required for growth and virulence. Our study reveals Gib2 as an essential component in deciphering the complexity of regulatory networks that control growth and virulence in C. neoformans.

  19. Effect of protein-surfactant interactions on aggregation of β-lactoglobulin.

    PubMed

    Hansted, Jon G; Wejse, Peter L; Bertelsen, Hans; Otzen, Daniel E

    2011-05-01

    The milk protein β-lactoglobulin (βLG) dominates the properties of whey aggregates in food products. Here we use spectroscopic and calorimetric techniques to elucidate how anionic, cationic and non-ionic surfactants interact with bovine βLG and modulate its heat-induced aggregation. Alkyl trimethyl ammonium chlorides (xTAC) strongly promote aggregation, while sodium alkyl sulfates (SxS) and alkyl maltopyranosides (xM) reduce aggregation. Sodium dodecyl sulfate (SDS) binds to non-aggregated βLG in several steps, but reduction of aggregation was associated with the first binding step, which occurs far below the critical micelle concentration. In contrast, micellar concentrations of xMs are required to reduce aggregation. The ranking order for reduction of aggregation (normalized to their tendency to self-associate) was C10-C12>C8>C14 for SxS and C8>C10>C12>C14>C16 for xM. xTAC promote aggregation in the same ranking order as xM reduce it. We conclude that SxS reduce aggregation by stabilizing the protein's ligand-bound state (the melting temperature t(m) increases by up to 10°C) and altering its charge potential. xM monomers also stabilize the protein's ligand-bound state (increasing t(m) up to 6°C) but in the absence of charged head groups this is not sufficient by itself to prevent aggregation. Although micelles of both anionic and non-ionic surfactants destabilize βLG, they also solubilize unfolded protein monomers, leaving them unavailable for protein-protein association and thus inhibiting aggregation. Cationic surfactants promote aggregation by a combination of destabilization and charge neutralization. The food compatible surfactant sodium dodecanoate also inhibited aggregation well below the cmc, suggesting that surfactants may be a practical way to modulate whey protein properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Curcumin inhibits aggregation of alpha-synuclein.

    PubMed

    Pandey, Neeraj; Strider, Jeffrey; Nolan, William C; Yan, Sherry X; Galvin, James E

    2008-04-01

    Aggregation of amyloid-beta protein (Abeta) is a key pathogenic event in Alzheimer's disease (AD). Curcumin, a constituent of the Indian spice Turmeric is structurally similar to Congo Red and has been demonstrated to bind Abeta amyloid and prevent further oligomerization of Abeta monomers onto growing amyloid beta-sheets. Reasoning that oligomerization kinetics and mechanism of amyloid formation are similar in Parkinson's disease (PD) and AD, we investigated the effect of curcumin on alpha-synuclein (AS) protein aggregation. In vitro model of AS aggregation was developed by treatment of purified AS protein (wild-type) with 1 mM Fe3+ (Fenton reaction). It was observed that the addition of curcumin inhibited aggregation in a dose-dependent manner and increased AS solubility. The aggregation-inhibiting effect of curcumin was next investigated in cell culture utilizing catecholaminergic SH-SY5Y cell line. A model system was developed in which the red fluorescent protein (DsRed2) was fused with A53T mutant of AS and its aggregation examined under different concentrations of curcumin. To estimate aggregation in an unbiased manner, a protocol was developed in which the images were captured automatically through a high-throughput cell-based screening microscope. The obtained images were processed automatically for aggregates within a defined dimension of 1-6 microm. Greater than 32% decrease in mutant alpha-synuclein aggregation was observed within 48 h subsequent to curcumin addition. Our data suggest that curcumin inhibits AS oligomerization into higher molecular weight aggregates and therefore should be further explored as a potential therapeutic compound for PD and related disorders.

  1. Determination of monomer concentrations in crystallizing lysozyme solutions

    NASA Technical Reports Server (NTRS)

    Wilson, L. J.; Pusey, Marc L.

    1992-01-01

    We have developed a non-optical technique for the study of aggregation in lysozyme and other protein solutions. By monitoring the rate at which lysozyme traverses a semipermeable membrane it was possible to quantitate the degree of aggregation in supersaturated solutions. Using this technique, we have measured the concentration of monomers and larger aggregates in under- and oversaturated lysozyme solutions, and in the presence of crystals, at pH 4.0 and 3 percent NaCl (0.1M NaAc). Comparison of these concentration profiles with (110) face growth rate data supports the theory that tetragonal lysozyme crystals grow by addition of preformed aggregates and not by monomer addition. The data suggest that a considerable population of aggregates larger than dimers are present at lysozyme concentrations above 22 mg/ml. Determination of dimer concentrations, and equilibrium constants for subsequent aggregation levels, are currently underway.

  2. Kinetic model for astaxanthin aggregation in water-methanol mixtures

    NASA Astrophysics Data System (ADS)

    Giovannetti, Rita; Alibabaei, Leila; Pucciarelli, Filippo

    2009-07-01

    The aggregation of astaxanthin in hydrated methanol was kinetically studied in the temperature range from 10 °C to 50 °C, at different astaxanthin concentrations and solvent composition. A kinetic model for the formation and transformation of astaxanthin aggregated has been proposed. Spectrophotometric studies showed that monomeric astaxanthin decayed to H-aggregates that after-wards formed J-aggregates when water content was 50% and the temperature lower than 20 °C; at higher temperatures, very stable J-aggregates were formed directly. Monomer formed very stable H-aggregates when the water content was greater than 60%; in these conditions H-aggregates decayed into J-aggregates only when the temperature was at least 50 °C. Through these findings it was possible to establish that the aggregation reactions took place through a two steps consecutive reaction with first order kinetic constants and that the values of these depended on the solvent composition and temperature.

  3. Live Cell Characterization of DNA Aggregation Delivered through Lipofection

    PubMed Central

    Mieruszynski, Stephen; Briggs, Candida; Digman, Michelle A.; Gratton, Enrico; Jones, Mark R

    2015-01-01

    DNA trafficking phenomena, such as information on where and to what extent DNA aggregation occurs, have yet to be fully characterised in the live cell. Here we characterise the aggregation of DNA when delivered through lipofection by applying the Number and Brightness (N&B) approach. The N&B analysis demonstrates extensive aggregation throughout the live cell with DNA clusters in the extremity of the cell and peri-nuclear areas. Once within the nucleus aggregation had decreased 3-fold. In addition, we show that increasing serum concentration of cell media results in greater cytoplasmic aggregation. Further, the effects of the DNA fragment size on aggregation was explored, where larger DNA constructs exhibited less aggregation. This study demonstrates the first quantification of DNA aggregation when delivered through lipofection in live cells. In addition, this study has presents a model for alternative uses of this imaging approach, which was originally developed to study protein oligomerization and aggregation. PMID:26013547

  4. Aggregation work at polydisperse micellization: ideal solution and "dressed micelle" models comparing to molecular dynamics simulations.

    PubMed

    Burov, S V; Shchekin, A K

    2010-12-28

    General thermodynamic relations for the work of polydisperse micelle formation in the model of ideal solution of molecular aggregates in nonionic surfactant solution and the model of "dressed micelles" in ionic solution have been considered. In particular, the dependence of the aggregation work on the total concentration of nonionic surfactant has been analyzed. The analogous dependence for the work of formation of ionic aggregates has been examined with regard to existence of two variables of a state of an ionic aggregate, the aggregation numbers of surface active ions and counterions. To verify the thermodynamic models, the molecular dynamics simulations of micellization in nonionic and ionic surfactant solutions at two total surfactant concentrations have been performed. It was shown that for nonionic surfactants, even at relatively high total surfactant concentrations, the shape and behavior of the work of polydisperse micelle formation found within the model of the ideal solution at different total surfactant concentrations agrees fairly well with the numerical experiment. For ionic surfactant solutions, the numerical results indicate a strong screening of ionic aggregates by the bound counterions. This fact as well as independence of the coefficient in the law of mass action for ionic aggregates on total surfactant concentration and predictable behavior of the "waterfall" lines of surfaces of the aggregation work upholds the model of "dressed" ionic aggregates.

  5. Aggregate R-R-V Analysis

    EPA Pesticide Factsheets

    The excel file contains time series data of flow rates, concentrations of alachlor , atrazine, ammonia, total phosphorus, and total suspended solids observed in two watersheds in Indiana from 2002 to 2007. The aggregate time series data corresponding or representative to all these parameters was obtained using a specialized, data-driven technique. The aggregate data is hypothesized in the published paper to represent the overall health of both watersheds with respect to various potential water quality impairments. The time series data for each of the individual water quality parameters were used to compute corresponding risk measures (Rel, Res, and Vul) that are reported in Table 4 and 5. The aggregation of the risk measures, which is computed from the aggregate time series and water quality standards in Table 1, is also reported in Table 4 and 5 of the published paper. Values under column heading uncertainty reports uncertainties associated with reconstruction of missing records of the water quality parameters. Long-term records of the water quality parameters were reconstructed in order to estimate the (R-R-V) and corresponding aggregate risk measures. This dataset is associated with the following publication:Hoque, Y., S. Tripathi, M. Hantush , and R. Govindaraju. Aggregate Measures of Watershed Health from Reconstructed Water Quality Data with Uncertainty. Ed Gregorich JOURNAL OF ENVIRONMENTAL QUALITY. American Society of Agronomy, MADISON, WI,

  6. Impact of Buffer, Protein Concentration and Sucrose Addition on the Aggregation and Particle Formation during Freezing and Thawing.

    PubMed

    Hauptmann, Astrid; Podgoršek, Katja; Kuzman, Drago; Srčič, Stanko; Hoelzl, Georg; Loerting, Thomas

    2018-03-19

    This study addresses the effect of freezing and thawing on a therapeutic monoclonal antibody (mAb) solution and the corresponding buffer formulation. Particle formation, crystallization behaviour, morphology changes and cryo-concentration effects were studied after varying the freezing and thawing rates, buffer formulation and protein concentration. The impact of undergoing multiple freeze/thaw (FT)-cycles at controlled and uncontrolled temperature rates on mAb solutions was investigated in terms of particle formation. Physicochemical characteristics were analysed by Differential Scanning Calorimetry whereas morphology changes are visualized by cryomicroscopy measurements. Micro Flow Imaging, Archimedes and Dynamic Light Scattering were used to investigate particle formation. Data retrieved in the present study emphasizes the damage caused by multiple FT-cyles and the need for sucrose as a cryoprotectant preventing cold-crystallization specifically at high protein concentrations. Low protein concentrations cause an increase of micron particle formation. Low freezing rates lead to a decreased particle number with increased particle diameter. The overall goal of this research is to gain a better understanding of the freezing and thawing behaviour of mAb solutions with the ultimate aim to optimize this process step by reducing the unwanted particle formation, which also includes protein aggregates.

  7. Non-aggregated axially disubstituted silicon phthalocyanines bearing electropolymerizable ligands and their aggregation, electropolymerizaton and thermal properties.

    PubMed

    Biyiklioglu, Zekeriya; Bas, Huseyin; Alp, Hakan

    2015-08-21

    A novel series of axially disubstituted silicon(iv) phthalocyanines bearing electropolymerizable ligands were designed and synthesized for the first time. The silicon(iv) phthalocyanines were characterized by various spectroscopic techniques as well as elemental analysis. The aggregation behavior of the SiPcs were examined in different solvents and at different concentrations in chloroform. In all the studied solvents and concentrations, the SiPcs were non-aggregated. The thermal behavior of the silicon(iv) phthalocyanines was also studied. The electropolymerization properties of the silicon(iv) phthalocyanines were investigated by cyclic and square wave voltammetry. This study is the first example of the electropolymerization of axially disubstituted silicon phthalocyanines. The type of axial ligand on the phthalocyanine ring did not show any effect on the absorption and thermal properties but influenced the electropolymerization of the phthalocyanines.

  8. Mercury concentrations in salmonids from western U.S. National Parks and relationships with age and macrophage aggregates

    USGS Publications Warehouse

    Schwindt, A.R.; Fournie, J.W.; Landers, D.H.; Schreck, C.B.; Kent, M.L.

    2008-01-01

    Mercury accumulation in aquatic foodwebs and its effects on aquatic biota are of growing concern both for the health of the fish and the piscivores that prey upon them. This is of particular concern for western U.S. National Parks because it is known that mountainous and Arctic areas are sinks for some contaminants. The Western Airborne Contaminants Assessment Project seeks, in part, to ascertain mercury concentrations and evaluate effects of contaminants on biota in 14 lakes from 8 National Parks or Preserves. In this paper we report that mercury has accumulated to concentrations in trout that may negatively impact some piscivorous wildlife, indicating potential terrestrial ecosystem effects. Additionally, we show that mercury concentrations increase with age in 4 species of trout, providing evidence of bioaccumulation. Finally, we demonstrate that mercury is associated with tissue damage in the kidney and spleen, as indicated by increases in macrophage aggregates. This finding suggests that mercury, and possibly other contaminants, are negatively affecting the trout that inhabit these remote and protected ecosystems. Our results indicate that mercury is indeed a concern for the U.S. National Parks, from an organismic and potentially an ecosystem perspective. ?? 2008 American Chemical Society.

  9. Flocculation characteristics of freshly eroded aggregates

    NASA Astrophysics Data System (ADS)

    Manning, Andrew; Wendling, Valentin; Gratiot, Nicolas; Legout, Cedric; Michallet, Herve

    2014-05-01

    In Europe, 260,000 square kms of soils already suffer erosion by water. This worrying level of land degradation is expected to increase in the context of climate change, with situations particularly critical in mountainous environments. This study aims at improving sediment transport parameterisation, by examining the kinetics of fine soil aggregates (size D, settling velocity Ws, density), once immersed in a turbulent flow. Thus observing the changing state, as soil aggregates become suspended sediment floc/aggregates. Particle properties of two Mediterranean materials (black marl and molasse, both sampled in badlands) were tested in grid stirred experiments. Hydrodynamic properties were monitored with ADV and turbidity sensors. For each soil, three suspended sediment concentration (SSC) loads (1.5; 5; 10 g/l) representative of flood conditions were tested. Aggregate properties were obtained at four depths above the grid, using the video LabSFLOC technique and laser techniques. These acquisition heights are associated with the corresponding turbulence dissipation rates G of 1.5, 3, 7 and 19 s^-1. Once particles were injected in the tank, a quasi-equilibrium state was rapidly reached, after one to two minutes. The floc/aggregate properties did not vary with sediment load. The median diameter D_50 was measured to be around 60 microns for the clay loam soil and around 15 microns for the two badlands materials. Examining the molasse samples, we see that the SSC at 1, 5, 10, 20 and 40 minute intervals were all +12 g/l at distances 10 cm and 15 cm above the nominal vertical mid-stroke grid position for the experimental SSC ranges. At the less turbulent zone, a 2 g/l base SSC reduced by 80% and at a nominal 10 g/l the SSC dipped by two orders of magnitude from the base concentration. If we consider the population distribution for molasse at a base SSC of 10 g/l sampled 15cm above the grid after 40 minutes, D ranged from 39 - 273 microns. A small microfloc cluster only

  10. Carboxylation of cytosine (5caC) in the CG dinucleotide in the E-box motif (CGCAG|GTG) increases binding of the Tcf3|Ascl1 helix-loop-helix heterodimer 10-fold.

    PubMed

    Golla, Jaya Prakash; Zhao, Jianfei; Mann, Ishminder K; Sayeed, Syed K; Mandal, Ajeet; Rose, Robert B; Vinson, Charles

    2014-06-27

    Three oxidative products of 5-methylcytosine (5mC) occur in mammalian genomes. We evaluated if these cytosine modifications in a CG dinucleotide altered DNA binding of four B-HLH homodimers and three heterodimers to the E-Box motif CGCAG|GTG. We examined 25 DNA probes containing all combinations of cytosine in a CG dinucleotide and none changed binding except for carboxylation of cytosine (5caC) in the strand CGCAG|GTG. 5caC enhanced binding of all examined B-HLH homodimers and heterodimers, particularly the Tcf3|Ascl1 heterodimer which increased binding ~10-fold. These results highlight a potential function of the oxidative products of 5mC, changing the DNA binding of sequence-specific transcription factors. Published by Elsevier Inc.

  11. Optical Measurement of Cell Colonization Patterns on Individual Suspended Sediment Aggregates

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu Ha; Tang, Fiona H. M.; Maggi, Federico

    2017-10-01

    Microbial processes can make substantial differences to the way in which particles settle in aquatic environments. A novel method (OMCEC, optical measurement of cell colonization) is introduced to systematically map the biological spatial distribution over individual suspended sediment aggregates settling through a water column. OMCEC was used to investigate (1) whether a carbon source concentration has an impact on cell colonization, (2) how cells colonize minerals, and (3) if a correlation between colonization patterns and aggregate geometry exists. Incubations of Saccharomyces cerevisiae and stained montmorillonite at four sucrose concentrations were tested in a settling column equipped with a full-color microparticle image velocimetry system. The acquired high-resolution images were processed to map the cell distribution on aggregates based on emission spectra separation. The likelihood of cells colonizing minerals increased with increasing sucrose concentration. Colonization patterns were classified into (i) scattered, (ii) well touched, and (iii) poorly touched, with the second being predominant. Cell clusters in well-touched patterns were found to have lower capacity dimension than those in other patterns, while the capacity dimension of the corresponding aggregates was relatively high. A strong correlation of colonization patterns with aggregate biomass fraction and properties suggests dynamic colonization mechanisms from cell attachment to minerals, to joining of isolated cell clusters, and finally cell growth over the entire aggregate. This paper introduces a widely applicable method for analyses of microbial-affected sediment dynamics and highlights the microbial control on aggregate geometry, which can improve the prediction of large-scale morphodynamics processes.

  12. Aggregation, adsorption, and surface properties of multiply end-functionalized polystyrenes.

    PubMed

    Ansari, Imtiyaz A; Clarke, Nigel; Hutchings, Lian R; Pillay-Narrainen, Amilcar; Terry, Ann E; Thompson, Richard L; Webster, John R P

    2007-04-10

    The properties of polystyrene blends containing deuteriopolystyrene, multiply end-functionalized with C8F17 fluorocarbon groups, are strikingly analogous to those of surfactants in solution. These materials, denoted FxdPSy, where x is the number of fluorocarbon groups and y is the molecular weight of the dPS chain in kg/mol, were blended with unfunctionalized polystyrene, hPS. Nuclear reaction analysis experiments show that FxdPSy polymers adsorb spontaneously to solution and blend surfaces, resulting in a reduction in surface energy inferred from contact angle analysis. Aggregation of functionalized polymers in the bulk was found to be sensitive to FxdPSy structure and closely related to surface properties. At low concentrations, the functionalized polymers are freely dispersed in the hPS matrix, and in this range, the surface excess concentration grows sharply with increasing bulk concentration. At higher concentrations, surface excess concentrations and contact angles reach a plateau, small-angle neutron scattering data indicate small micellar aggregates of six to seven F2dPS10 polymer chains and much larger aggregates of F4dPS10. Whereas F2dPS10 aggregates are miscible with the hPS matrix, F4dPS10 forms a separate phase of multilamellar vesicles. Using neutron reflectometry (NR), we found that the extent of the adsorbed layer was approximately half the lamellar spacing of the multilamellar vesicles. NR data were fitted using an error function profile to describe the concentration profile of the adsorbed layer, and reasonable agreement was found with concentration profiles predicted by the SCFT model. The thermodynamic sticking energy of the fluorocarbon-functionalized polymer chains to the blend surface increases from 5.3kBT for x = 2 to 6.6kBT for x = 4 but appears to be somewhat dependent upon the blend concentration.

  13. Modification of Lightweight Aggregates' Microstructure by Used Motor Oil Addition.

    PubMed

    Franus, Małgorzata; Jozefaciuk, Grzegorz; Bandura, Lidia; Lamorski, Krzysztof; Hajnos, Mieczysław; Franus, Wojciech

    2016-10-18

    An admixture of lightweight aggregate substrates (beidellitic clay containing 10 wt % of natural clinoptilolite or Na-P1 zeolite) with used motor oil (1 wt %-8 wt %) caused marked changes in the aggregates' microstructure, measured by a combination of mercury porosimetry (MIP), microtomography (MT), and scanning electron microscopy. Maximum porosity was produced at low (1%-2%) oil concentrations and it dropped at higher concentrations, opposite to the aggregates' bulk density. Average pore radii, measured by MIP, decreased with an increasing oil concentration, whereas larger (MT) pore sizes tended to increase. Fractal dimension, derived from MIP data, changed similarly to the MIP pore radius, while that derived from MT remained unaltered. Solid phase density, measured by helium pycnometry, initially dropped slightly and then increased with the amount of oil added, which was most probably connected to changes in the formation of extremely small closed pores that were not available for He atoms.

  14. Entrapment of Aβ1-40 peptide in unstructured aggregates

    NASA Astrophysics Data System (ADS)

    Corsale, C.; Carrotta, R.; Mangione, M. R.; Vilasi, S.; Provenzano, A.; Cavallaro, G.; Bulone, D.; San Biagio, P. L.

    2012-06-01

    Recognizing the complexity of the fibrillogenesis process provides a solid ground for the development of therapeutic strategies aimed at preventing or inhibiting protein-protein aggregation. Under this perspective, it is meaningful to identify the possible aggregation pathways and their relative products. We found that Aβ-peptide dissolved in a pH 7.4 solution at small peptide concentration and low ionic strength forms globular aggregates without typical amyloid β-conformation. ThT binding kinetics was used to monitor aggregate formation. Circular dichroism spectroscopy, AFM imaging, static and dynamic light scattering were used for structural and morphological characterization of the aggregates. They appear stable or at least metastable with respect to fiber growth, therefore appearing as an incidental product in the pathway of fibrillogenesis.

  15. Potency of a tau fibrillization inhibitor is influenced by its aggregation state

    PubMed Central

    Congdon, Erin E.; Necula, Mihaela; Blackstone, Robert D.; Kuret, Jeff

    2007-01-01

    Tau fibrillization is a potential therapeutic target for Alzheimer’s and other neurodegenerative diseases. Several small molecule inhibitors of tau aggregation have been developed for this purpose. One of them, 3,3′-bis(β-hydroxyethyl)-9-ethyl-5,5′-dimethoxythiacarbocyanine iodide (N744), is a cationic thiacarbocyanine dye that inhibits recombinant tau filament formation when present at submicromolar concentrations. To prepare dosing regimens for testing N744 activity in biological models, its full concentration-effect relationship in the range 0.01 – 60 μM was examined in vitro by electron microscopy and laser light scattering methods. Results revealed that N744 concentration dependence was biphasic, with fibrillization inhibitory activity appearing at submicromolar concentration, but with relief of inhibition and increases in fibrillization apparent above 10 μM. Therefore, fibrillization was inhibited ≥50% only over a narrow concentration range, which was further reduced by filament stabilizing modifications such as tau pseudophosphorylation. N744 inhibitory activity also was paralleled by changes in its aggregation state, with dimer predominating at inhibitory concentrations and large dye aggregates appearing at high concentrations. Ligand dimerization was promoted by the presence of tau protein, which lowered the equilibrium dissociation constant for dimerization more than an order of magnitude relative to controls. The results suggest that ligand aggregation may play an important role in both inhibitory and disinhibitory phases of the concentration-effect curve, and may lead to complex dose response relationships in model systems. PMID:17559794

  16. Cellular Models of Aggregation-dependent Template-directed Proteolysis to Characterize Tau Aggregation Inhibitors for Treatment of Alzheimer Disease.

    PubMed

    Harrington, Charles R; Storey, John M D; Clunas, Scott; Harrington, Kathleen A; Horsley, David; Ishaq, Ahtsham; Kemp, Steven J; Larch, Christopher P; Marshall, Colin; Nicoll, Sarah L; Rickard, Janet E; Simpson, Michael; Sinclair, James P; Storey, Lynda J; Wischik, Claude M

    2015-04-24

    Alzheimer disease (AD) is a degenerative tauopathy characterized by aggregation of Tau protein through the repeat domain to form intraneuronal paired helical filaments (PHFs). We report two cell models in which we control the inherent toxicity of the core Tau fragment. These models demonstrate the properties of prion-like recruitment of full-length Tau into an aggregation pathway in which template-directed, endogenous truncation propagates aggregation through the core Tau binding domain. We use these in combination with dissolution of native PHFs to quantify the activity of Tau aggregation inhibitors (TAIs). We report the synthesis of novel stable crystalline leucomethylthioninium salts (LMTX®), which overcome the pharmacokinetic limitations of methylthioninium chloride. LMTX®, as either a dihydromesylate or a dihydrobromide salt, retains TAI activity in vitro and disrupts PHFs isolated from AD brain tissues at 0.16 μM. The Ki value for intracellular TAI activity, which we have been able to determine for the first time, is 0.12 μM. These values are close to the steady state trough brain concentration of methylthioninium ion (0.18 μM) that is required to arrest progression of AD on clinical and imaging end points and the minimum brain concentration (0.13 μM) required to reverse behavioral deficits and pathology in Tau transgenic mice. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Stabilizing two IgG1 monoclonal antibodies by surfactants: Balance between aggregation prevention and structure perturbation.

    PubMed

    Wang, Shujing; Wu, Guoliang; Zhang, Xinyi; Tian, Zhou; Zhang, Ning; Hu, Tao; Dai, Weiguo; Qian, Feng

    2017-05-01

    Surfactants are widely used as stabilizers in the biopharmaceutical formulations to minimize protein aggregation. Under a fixed stress condition, the protecting and destabilizing effects of surfactants are hypothesized to be highly dependent on the species and concentrations of surfactants and mAb. Therefore, we here studied the aggregation-prevention and structure-perturbation effects of eight commonly used surfactants (Tw20, Tw80, Brij35, Chaps, TrX-100, SDS, Pluronic F68 and F127) on two IgG1 solution formulations under agitation, using analytical methodologies including visual inspection, OD 350 measurement, HPLC-SEC, circular dicroism, fluorescence spectroscopy and differential scanning calorimetry. We found that: (1) With concentrations range from 0.02 to 2mg/mL, nonionic surfactants were found to offer efficient aggregation-prevention effect, which is superior than the ionic surfactants; and higher surfactant concentration prevented mAb aggregation better especially under prolonged stability test under stress conditions. (2) The surfactant induced structure-perturbation emerged when even higher surfactant concentration (≥2mg/mL) was used, and such effect was surfactant-property dependent; and (3) the two IgG1 demonstrated different aggregation mechanisms and surfactant dependency, especially at high mAb concentrations. In conclusion, surfactants usage in mAb formulations, including the types and concentrations, should strike an optimal balance between the desirable aggregation-prevention and the detrimental structure-perturbation effects, while the consideration of mAb aggregation mechanism and concentration is also required for surfactant assessment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng

    2018-04-01

    In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute

  19. Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions.

    PubMed

    Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng

    2018-04-20

    In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute

  20. On the source of stochastic volatility: Evidence from CAC40 index options during the subprime crisis

    NASA Astrophysics Data System (ADS)

    Slim, Skander

    2016-12-01

    This paper investigates the performance of time-changed Lévy processes with distinct sources of return volatility variation for modeling cross-sectional option prices on the CAC40 index during the subprime crisis. Specifically, we propose a multi-factor stochastic volatility model: one factor captures the diffusion component dynamics and two factors capture positive and negative jump variations. In-sample and out-of-sample tests show that our full-fledged model significantly outperforms nested lower-dimensional specifications. We find that all three sources of return volatility variation, with different persistence, are needed to properly account for market pricing dynamics across moneyness, maturity and volatility level. Besides, the model estimation reveals negative risk premium for both diffusive volatility and downward jump intensity whereas a positive risk premium is found to be attributed to upward jump intensity.

  1. Inhibition of copper-mediated aggregation of human γD-crystallin by Schiff bases.

    PubMed

    Chauhan, Priyanka; Muralidharan, Sai Brinda; Velappan, Anand Babu; Datta, Dhrubajyoti; Pratihar, Sanjay; Debnath, Joy; Ghosh, Kalyan Sundar

    2017-06-01

    Protein aggregation, due to the imbalance in the concentration of Cu 2+ and Zn 2+ ions is found to be allied with various physiological disorders. Copper is known to promote the oxidative damage of β/γ-crystallins in aged eye lens and causes their aggregation leading to cataract. Therefore, synthesis of a small-molecule 'chelator' for Cu 2+ with complementary antioxidant effect will find potential applications against aggregation of β/γ-crystallins. In this paper, we have reported the synthesis of different Schiff bases and studied their Cu 2+ complexation ability (using UV-Vis, FT-IR and ESI-MS) and antioxidant activity. Further based on their copper complexation efficiency, Schiff bases were used to inhibit Cu 2+ -mediated aggregation of recombinant human γD-crystallin (HGD) and β/γ-crystallins (isolated from cataractous human eye lens). Among these synthesized molecules, compound 8 at a concentration of 100 μM had shown ~95% inhibition of copper (100 μM)-induced aggregation. Compound 8 also showed a positive cooperative effect at a concentration of 5-15 μM on the inhibitory activity of human αA-crystallin (HAA) during Cu 2+ -induced aggregation of HGD. It eventually inhibited the aggregation process by additional ~20%. However, ~50% inhibition of copper-mediated aggregation of β/γ-crystallins (isolated from cataractous human eye lens) was recorded by compound 8 (100 μM). Although the reductive aminated products of the imines showed better antioxidant activity due to their lower copper complexing ability, they were found to be non-effective against Cu 2+ -mediated aggregation of HGD.

  2. Inhibition of precipitation and aggregation of metacinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades

    USGS Publications Warehouse

    Ravichandran, M.; Aiken, G.R.; Ryan, J.N.; Reddy, M.M.

    1999-01-01

    Precipitation and aggregation of metacinnabar (black HgS) was inhibited in the presence of low concentrations (???3 mg C/L) of humic fractions of dissolved organic matter (DOM) isolated from the Florida Everglades. At low Hg concentrations (??? x 10-8 M), DOM prevented the precipitation of metacinnabar. At moderate Hg concentrations (5 x 10-5 M), DOM inhibited the aggregation of colloidal metacinnabar (Hg passed through a 0.1 ??m filter but was removed by centrifugation). At Hg concentrations greater than 5 x 10-4 M, mercury formed solid metacinnabar particles that were removed from solution by a 0.1 ??m filter. Organic matter rich in aromatic moleties was preferentially removed with the solid. Hydrophobic organic acids (humic and fulvic acids) inhibited aggregation better than hydrophilic organic acids. The presence of chloride, acetate, salicylate, EDTA, and cysteine did not inhibit the precipitation or aggregation of metacinnabar. Calcium enhanced metacinnabar aggregation even in the presence of DOM, but the magnitude of the effect was dependent on the concentrations of DOM, Hg, and Ca. Inhibition of metacinnabar precipitation appears to be a result of strong DOM-Hg binding. Prevention of aggregation of colloidal particles appears to be caused by adsorption of DOM and electrostatic repulsion.Precipitation and aggregation of metacinnabar (black HgS) was inhibited in the presence of low concentrations (???3 mg C/L) of humic fractions of dissolved organic matter (DOM) isolated from the Florida Everglades. At low Hg concentrations (???5??10-8 M), DOM prevented the precipitation of metacinnabar. At moderate Hg concentrations (5??10-5 M), DOM inhibited the aggregation of colloidal metacinnabar (Hg passed through a 0.1 ??m filter but was removed by centrifugation). At Hg concentrations greater than 5??10-4 M, mercury formed solid metacinnabar particles that were removed from solution by a 0.1 ??m filter. Organic matter rich in aromatic moieties was preferentially

  3. Serial alterations in digital hemodynamics and endothelin-1 immunoreactivity, platelet-neutrophil aggregation, and concentrations of nitric oxide, insulin, and glucose in blood obtained from horses following carbohydrate overload.

    PubMed

    Eades, Susan C; Stokes, Ashley M; Johnson, Philip J; LeBlanc, Casey J; Ganjam, Venkataseshu K; Buff, Preston R; Moore, Rustin M

    2007-01-01

    To quantify changes in endothelium-derived factors and relate those changes to various aspects of digital hemodynamics during the prodromal stages of carbohydrate overload (CHO)-induced laminitis in horses. 20 adult horses without abnormalities of the digit. Digital and jugular venous blood samples were collected at 1-hour intervals (for assessment of endothelin-1 [ET-1] immunoreactivity and measurement of glucose, insulin, and nitric oxide [NO] concentrations) or 4-hour intervals (CBC and platelet-neutrophil aggregate assessment) for 8 hours or 16 hours after induction of CHO-associated laminitis in horses treated with an ET-1 antagonist. Effects of treatment, collection site, and time and the random effects of horse on each variable were analyzed by use of a repeated-measures model. Where treatment and collection site had no significant effect, data were combined. Compared with baseline values, CHO resulted in changes in several variables, including a significant increase from baseline in digital blood ET-like immunoreactivity at 11 hours; digital blood ET-like immunoreactivity was significantly greater than that in jugular venous blood at 8, 9, 11, and 12 hours. Digital and jugular venous blood concentrations of glucose increased from baseline significantly at 3, 4, and 5 hours; insulin concentration increased significantly at 5 hours; and the number of platelet-neutrophil aggregates increased significantly at 12 hours. In horses, concurrent increases in venous blood ET-1 immunoreactivity, insulin and glucose concentrations, and platelet-neutrophil aggregates support a role of endothelial dysfunction in the pathogenesis of CHO-induced laminitis.

  4. Polycation-sodium lauryl ether sulfate-type surfactant complexes: influence of ethylene oxide length.

    PubMed

    Vleugels, Leo F W; Pollet, Jennifer; Tuinier, Remco

    2015-05-21

    Polyelectrolyte-surfactant complexes (PESC) are a class of materials which form spontaneously by self-assembly driven by electrostatic and hydrophobic interactions. PESC containing sodium lauryl ether sulfates (SLES) have found wide application in hair care products like shampoo. Typically, SLES with only one or two ethylene oxide (EO) groups are used for this application. We have studied the influence of the size of the EO block (ranging from 0 to 30 EO groups) on complexation with two model polycations: linear polyDADMAC and branched PEI. PESC size and electrostatic properties were determined during stepwise titration of buffered polycation solutions. The critical aggregation concentration (CAC) of PESC was determined by surface tension measurements and fluorescence spectroscopy. For polyDADMAC, there is no influence of the size of the EO block on the complexation behavior; the stiff polycation governs the structure formation. For PEI, it was seen that the EO block size does affect the structure of the complexes. The CAC value of the investigated complexes turns out to be rather independent of the EO block size; however, the CMC/CAC ratio decreases with increasing size of the EO block. This latter observation explains why the Lochhead-Goddard effect is most effective for small EO blocks.

  5. Effects of self-aggregation on the hydration of an amphiphilic antidepressant drug in different aqueous media

    NASA Astrophysics Data System (ADS)

    Taboada, Pablo; Gutiérrez-Pichel, Manuel; Mosquera, Víctor

    2004-03-01

    Apparent molal volumes and adiabatic compressibilities of aqueous solutions of the amphiphilic antidepressant drug clomipramine hydrochloride have been determined from density and ultrasound velocity measurements in the temperature range 288.15-313.15 K in buffered aqueous solution of pH 3.0 and 5.5. Critical concentrations of aggregation of this drug were obtained from inflections on the plots of the sound velocity against drug concentration. Apparent molal adiabatic compressibilities of the aggregates formed by the drug, calculated by combining the ultrasound velocity and density data, were typical of those for a stacked aggregate. From the temperature dependence of the critical concentration and using the mass action model combined with the Phillips definition of the critical concentration the thermodynamic standard quantities: free Gibbs energy, enthalpy and entropy of aggregate formation were calculated. The critical concentration and energy involved in the aggregation process of this drug have been also evaluated experimentally using isothermal titration calorimetry at 298.15 K. The solvent-drug interactions have been discussed from compressibility and calorimetry data.

  6. Stability of volcanic ash aggregates and break-up processes.

    PubMed

    Mueller, Sebastian B; Kueppers, Ulrich; Ametsbichler, Jonathan; Cimarelli, Corrado; Merrison, Jonathan P; Poret, Matthieu; Wadsworth, Fabian B; Dingwell, Donald B

    2017-08-07

    Numerical modeling of ash plume dispersal is an important tool for forecasting and mitigating potential hazards from volcanic ash erupted during explosive volcanism. Recent tephra dispersal models have been expanded to account for dynamic ash aggregation processes. However, there are very few studies on rates of disaggregation during transport. It follows that current models regard ash aggregation as irrevocable and may therefore overestimate aggregation-enhanced sedimentation. In this experimental study, we use industrial granulation techniques to artificially produce aggregates. We subject these to impact tests and evaluate their resistance to break-up processes. We find a dependence of aggregate stability on primary particle size distribution and solid particle binder concentration. We posit that our findings could be combined with eruption source parameters and implemented in future tephra dispersal models.

  7. Metabolic states following accumulation of intracellular aggregates: implications for neurodegenerative diseases.

    PubMed

    Vazquez, Alexei

    2013-01-01

    The formation of intracellular aggregates is a common etiology of several neurodegenerative diseases. Mitochondrial defects and oxidative stress has been pointed as the major mechanistic links between the accumulation of intracellular aggregates and cell death. In this work we propose a "metabolic cell death by overcrowding" as an alternative hypothesis. Using a model of neuron metabolism, we predict that as the concentration of protein aggregates increases the neurons transit through three different metabolic phases. The first phase (0-6 mM) corresponds with the normal neuron state, where the neuronal activity is sustained by the oxidative phosphorylation of lactate. The second phase (6-8.6 mM) is characterized by a mixed utilization of lactate and glucose as energy substrates and a switch from ammonia uptake to ammonia release by neurons. In the third phase (8.6-9.3 mM) neurons are predicted to support their energy demands from glycolysis and an alternative pathway for energy generation, involving reactions from serine synthesis, one carbon metabolism and the glycine cleavage system. The model also predicts a decrease in the maximum neuronal capacity for energy generation with increasing the concentration of protein aggregates. Ultimately this maximum capacity becomes zero when the protein aggregates reach a concentration of about 9.3 mM, predicting the cessation of neuronal activity.

  8. Contrasting self-aggregation over land and ocean surfaces

    NASA Astrophysics Data System (ADS)

    Inda Diaz, H. A.; O'Brien, T. A.

    2017-12-01

    The spontaneous organization of convection into clusters, or self-aggregation, demonstrably changes the nature and statistics of precipitation. While there has been much recent progress in this area, the processes that control self-aggregation are still poorly understood. Most of the work to date has focused on self-aggregation over ocean-like surfaces, but it is particularly pressing to understand what controls convective aggregation over land, since the associated change in precipitation statistics—between non-aggregated and aggregated convection—could have huge impacts on society and infrastructure. Radiative-convective equilibrium (RCE), has been extensively used as an idealized framework to study the tropical atmosphere. Self-aggregation manifests in numerous numerical models of RCE, nevertheless, there is still a lack of understanding in how it relates to convective organization in the observed world. Numerous studies have examined self-aggregation using idealized Cloud Resolving Models (CRMs) and General Circulation Models over the ocean, however very little work has been done on RCE and self-aggregation over land. Idealized models of RCE over ocean have shown that aggregation is sensitive to sea surface temperature (SST), more intense precipitation occurs in aggregated systems, and a variety of feedbacks—such as surface flux, cloud radiative, and upgradient moisture transport— contribute to the maintenance of aggregation, however it is not clear if these results apply over land. Progress in this area could help relate understanding of self-aggregation in idealized simulations to observations. In order to explore the behavior of self-aggregation over land, we use a CRM to simulate idealized RCE over land. In particular, we examine the aggregation of convection and how it compares with aggregation over ocean. Based on previous studies, where a variety of different CRMs exhibit a SST threshold below which self-aggregation does not occur, we hypothesize

  9. Modulation of the aggregation properties of sodium deoxycholate in presence of hydrophilic imidazolium based ionic liquid: water dynamics study to probe the structural alteration of the aggregates.

    PubMed

    Kundu, Niloy; Banik, Debasis; Roy, Arpita; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2015-10-14

    In this article, we have investigated the effect of a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]-BF4), on the aggregation properties of a biological surfactant, sodium deoxycholate (NaDC), in water. In solution, unlike conventional surfactants it shows stepwise aggregation and the effect of the conventional ionic liquid on the aggregation properties is rather interesting. We have observed concentration dependent dual role of the ionic liquid; at their low concentration, the aggregated structure of NaDC reorganizes itself into an elongated rod like structure. However, the aggregated network is disintegrated into small aggregates upon further addition of ionic liquid. TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy) and FLIM (Fluorescence Lifetime Imaging Microscopy) images also confirmed the structural alteration of NaDC upon varying the concentration of the ionic liquid. The proton NMR data indicate that hydrophobic as well as electrostatic interaction is solely responsible for such structural adaptation of NaDC in the presence of an ionic liquid. The host-guest interaction inside the aggregates is monitored using Coumarin-153 (C-153) and the location of C-153 is probed by varying the excitation wavelength from 375 nm to 440 nm and the two binding sites of the aggregates are affected in a different fashion in the presence of ionic liquid. Excitation in the blue region selects the fluorophores which preferably bind to the buried region of the aggregates, whereas 440 nm excitation corresponds to the guest molecules which are exposed to the solvent molecules. The average solvation time of C-153 is increased in the presence of 1.68 wt% [bmim]-BF4 at λexc = 440 nm i.e. the probe molecules relocate themselves to a more restricted region. However, the average solvation time became 2.6 times faster in the presence of 11.2 wt% [bmim]-BF4, which corresponds to a more polar and exposed region. The time resolved

  10. Viral Aggregation: Impact on Virus Behavior in the Environment.

    PubMed

    Gerba, Charles P; Betancourt, Walter Q

    2017-07-05

    Aggregates of viruses can have a significant impact on quantification and behavior of viruses in the environment. Viral aggregates may be formed in numerous ways. Viruses may form crystal like structures and aggregates in the host cell during replication or may form due to changes in environmental conditions after virus particles are released from the host cells. Aggregates tend to form near the isoelectric point of the virus, under the influence of certain salts and salt concentrations in solution, cationic polymers, and suspended organic matter. The given conditions under which aggregates form in the environment are highly dependent on the type of virus, type of salts in solution (cation, anion. monovalent, divalent) and pH. However, virus type greatly influences the conditions when aggregation/disaggregation will occur, making predictions difficult under any given set of water quality conditions. Most studies have shown that viral aggregates increase the survival of viruses in the environment and resistance to disinfectants, especially with more reactive disinfectants. The presence of viral aggregates may also result in overestimation of removal by filtration processes. Virus aggregation-disaggregation is a complex process and predicting the behavior of any individual virus is difficult under a given set of environmental circumstances without actual experimental data.

  11. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.

    PubMed

    Sarciaux, J M; Mansour, S; Hageman, M J; Nail, S L

    1999-12-01

    The objective of this study was to identify critical formulation and processing variables affecting aggregation of bovine IgG during freeze-drying when no lyoprotective solute is used. Parameters examined were phosphate buffer concentration and counterion (Na versus K phosphate), added salts, cooling rate, IgG concentration, residual moisture level, and presence of a surfactant. No soluble aggregates were detected in any formulation after either freezing/thawing or freeze-drying. No insoluble aggregates were detected in any formulation after freezing, but insoluble aggregate levels were always detectable after freeze-drying. The data are consistent with a mechanism of aggregate formation involving denaturation of IgG at the ice/freeze-concentrate interface which is reversible upon freeze-thawing, but becomes irreversible after freeze-drying and reconstitution. Rapid cooling (by quenching in liquid nitrogen) results in more and larger aggregates than slow cooling on the shelf of the freeze-dryer. This observation is consistent with surface area measurements and environmental electron microscopic data showing a higher surface area of freeze-dried solids after fast cooling. Annealing of rapidly cooled solutions results in significantly less aggregation in reconstituted freeze-dried solids than in nonannealed controls, with a corresponding decrease in specific surface area of the freeze-dried, annealed system. Increasing the concentration of IgG significantly improves the stability of IgG against freeze-drying-induced aggregation, which may be explained by a smaller percentage of the protein residing at the ice/freeze-concentrate interface as IgG concentration is increased. A sodium phosphate buffer system consistently results in more turbid reconstituted solids than a potassium phosphate buffer system at the same concentration, but this effect is not attributable to a pH shift during freezing. Added salts such as NaCl or KCl contribute markedly to insoluble aggregate

  12. Control of binder viscosity and hygroscopicity on particle aggregation efficiency

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Delmelle, Pierre; Dingwell, Donald B.

    2016-04-01

    In the course of explosive volcanic eruptions, large amounts of ash are released into the atmosphere and may subsequently pose a threat to infrastructure, such as aviation industry. Ash plume forecasting is therefore a crucial tool for volcanic hazard mitigation but may be significantly affected by aggregation, altering the aerodynamic properties of particles. Models struggle with the implementation of aggregation since external conditions promoting aggregation have not been completely understood; in a previous study we have shown the rapid generation of ash aggregates through liquid bonding via the use of fluidization bed technology and further defined humidity and temperature ranges necessary to trigger aggregation. Salt (NaCl) was required for the recovery of stable aggregates, acting as a cementation agent and granting aggregate cohesion. A numerical model was used to explain the physics behind particle aggregation mechanisms and further predicted a dependency of aggregation efficiency on liquid binder viscosity. In this study we proof the effect of viscosity on particle aggregation. HCl and H2SO4 solutions were diluted to various concentrations resulting in viscosities between 1 and 2 mPas. Phonolitic and rhyolitic ash samples as well as soda-lime glass beads (serving as analogue material) were fluidized in the ProCell Lab® of Glatt Ingenieurtechnik GmbH and treated with the acids via a bottom-spray technique. Chemically driven interaction between acid liquids and surfaces of the three used materials led to crystal precipitation. Salt crystals (e.g. NaCl) have been confirmed through scanning electron microscopy (SEM) and leachate analysis. Both volcanic ash samples as well as the glass beads showed a clear dependency of aggregation efficiency on viscosity of the sprayed HCl solution. Spraying H2SO4 provoked a collapse of the fluidized bed and no aggregation has been observed. This is accounted by the high hygroscopicity of H2SO4. Dissolving CaCl2 (known to be

  13. Cytotoxicity Assessment of Some Carbon Nanotubes and Related Carbon Nanoparticle Aggregates and the Implications for Anthropogenic Carbon Nanotube Aggregates in the Environment

    PubMed Central

    Murr, L. E.; Garza, K. M.; Soto, K. F.; Carrasco, A.; Powell, T. G.; Ramirez, D. A.; Guerrero, P. A.; Lopez, D. A.; Venzor, J.

    2005-01-01

    Nanotechnology and nanomaterials have become the new frontier world-wide over the past few years and prospects for the production and novel uses of large quantities of carbon nanotubes in particular are becoming an increasing reality. Correspondingly, the potential health risks for these and other nanoparticulate materials have been of considerable concern. Toxicological studies, while sparse, have been concerned with virtually uncharacterized, single wall carbon nanotubes, and the conclusions have been conflicting and uncertain. In this research we performed viability assays on a murine lung macrophage cell line to assess the comparative cytotoxicity of commercial, single wall carbon nanotubes (ropes) and two different multiwall carbon nanotube samples; utilizing chrysotile asbestos nanotubes and black carbon nanoaggregates as toxicity standards. These nanotube materials were completely characterized by transmission electron microscopy and observed to be aggregates ranging from 1 to 2 μm in mean diameter, with closed ends. The cytotoxicity data indicated a strong concentration relationship and toxicity for all the carbon nanotube materials relative to the asbestos nanotubes and black carbon. A commercial multiwall carbon nanotube aggregate exhibiting this significant cell response was observed to be identical in structure to multiwall carbon nanotube aggregates demonstrated to be ubiquitous in the environment, and especially in indoor environments, where natural gas or propane cooking stoves exist. Correspondingly, preliminary epidemiological data, although sparse, indicate a correlation between asthma incidence or classification, and exposure to gas stoves. These results suggest a number of novel epidemiological and etiological avenues for asthma triggers and related respiratory or other environmental health effects, especially since indoor number concentrations for multiwall carbon nanotube aggregates is at least 10 times the outdoor concentration, and

  14. Quantitative characterization of non-classic polarization of cations on clay aggregate stability.

    PubMed

    Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui

    2015-01-01

    Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10-5 to 10-1 mol L-1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation-surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability.

  15. Quantitative Characterization of Non-Classic Polarization of Cations on Clay Aggregate Stability

    PubMed Central

    Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui

    2015-01-01

    Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10−5 to 10−1 mol L−1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation–surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability. PMID:25874864

  16. Relaxation times and modes of disturbed aggregate distribution in micellar solutions with fusion and fission of micelles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakharov, Anatoly I.; Adzhemyan, Loran Ts.; Shchekin, Alexander K., E-mail: akshch@list.ru

    2015-09-28

    We have performed direct numerical calculations of the kinetics of relaxation in the system of surfactant spherical micelles under joint action of the molecular mechanism with capture and emission of individual surfactant molecules by molecular aggregates and the mechanism of fusion and fission of the aggregates. As a basis, we have taken the difference equations of aggregation and fragmentation in the form of the generalized kinetic Smoluchowski equations for aggregate concentrations. The calculations have been made with using the droplet model of molecular surfactant aggregates and two modified Smoluchowski models for the coefficients of aggregate-monomer and aggregate-aggregate fusions which takemore » into account the effects of the aggregate size and presence of hydrophobic spots on the aggregate surface. A full set of relaxation times and corresponding relaxation modes for nonequilibrium aggregate distribution in the aggregation number has been found. The dependencies of these relaxation times and modes on the total concentration of surfactant in the solution and the special parameter controlling the probability of fusion in collisions of micelles with other micelles have been studied.« less

  17. The effects of serum leptin levels on thrombocyte aggregation in peritoneal dialysis patients.

    PubMed

    Bakirdogen, Serkan; Eren, Necmi; Bek, Sibel Gokcay; Mehtap, Ozgur; Cekmen, Mustafa Baki

    2016-01-01

    Serum leptin levels of chronic kidney disease patients have been detected higher than normal population. The aim of this study was to investigate the effects of serum leptin levels on thrombocyte aggregation in peritoneal dialysis patients. Fourty three peritoneal dialysis patients were included in the study. Thrombocyte aggregation was calculated from the whole blood subsequently the effects of different concentrations of human recombinant leptin on thrombocyte aggregations were investigated. Four test cells were used for this process. While leptin was not added into the first test cell, increasing amounts of leptin was added into the second, third and fourth test cells to attain the concentrations of 25, 50 and 100 ng/ml respectively. Thrombocyte aggregation was inhibited by recombinant leptin in peritoneal dialysis patients. Thrombocyte aggregation mean values were found statistically significantly higher in first test cell when compared to leptin groups in peritoneal dialysis patients. For leptin groups we could not find any statistically significant differences for thrombocyte aggregation mean values between any of the groups. Further studies with larger number of peritoneal dialysis patients are required to prove the action of leptin on thrombocyte aggregation.

  18. The effects of serum leptin levels on thrombocyte aggregation in peritoneal dialysis patients

    PubMed Central

    Bakirdogen, Serkan; Eren, Necmi; Bek, Sibel Gokcay; Mehtap, Ozgur; Cekmen, Mustafa Baki

    2016-01-01

    Objective: Serum leptin levels of chronic kidney disease patients have been detected higher than normal population. The aim of this study was to investigate the effects of serum leptin levels on thrombocyte aggregation in peritoneal dialysis patients. Methods: Fourty three peritoneal dialysis patients were included in the study. Thrombocyte aggregation was calculated from the whole blood subsequently the effects of different concentrations of human recombinant leptin on thrombocyte aggregations were investigated. Four test cells were used for this process. While leptin was not added into the first test cell, increasing amounts of leptin was added into the second, third and fourth test cells to attain the concentrations of 25, 50 and 100 ng/ml respectively. Results: Thrombocyte aggregation was inhibited by recombinant leptin in peritoneal dialysis patients. Thrombocyte aggregation mean values were found statistically significantly higher in first test cell when compared to leptin groups in peritoneal dialysis patients. For leptin groups we could not find any statistically significant differences for thrombocyte aggregation mean values between any of the groups. Conclusion: Further studies with larger number of peritoneal dialysis patients are required to prove the action of leptin on thrombocyte aggregation. PMID:28083046

  19. Accelerated aggregation of donor nitrogen in diamond containing NV centers

    NASA Astrophysics Data System (ADS)

    Lobanov, Sergey; Vins, Victor; Yelisseev, Alexander; Afonin, Dmitry; Blinkov, Alexander; Maximov, Yuriy

    2010-05-01

    The aggregation of donor nitrogen (C centers) into nitrogen pairs (A centers) is considered to be a second-order chemical reaction and the kinetics of this reaction can be written as follows: Kt = 1-- -1- Ct C0 where K is the aggregation rate constant that depends exponentially on temperature and activation energy K = Aexp (- Ea-kT ) and C0 and CT are C center concentrations before and after the aggregation. The activation energy Ea in natural diamonds is equal to 5±0.3 eV. However, it was shown by Vins (2004) that Ea varied in synthetic diamonds depending on Ni concentration from 3 to 6 eV; and in synthetic diamonds containing cobalt the activation energy exceeded 4 eV. The aggregation rate of C centers also increased dramatically in diamonds irradiated with high-energy electrons (Collins, 1980). An HPHT diamond single crystal grown in the Fe-Co-C system using the TGG method was studied. The initial C center concentration determined from the intensity of the 1130 cm-1 IR absorption band was equal to 118 ppm. In order to determine the influence of NV centers on the activation energy of aggregation, the crystal was at first irradiated with high-energy electrons (3MeV, 2×1018cm-2) and annealed in a quartz ampoule in vacuum (8000C, 2 hrs). This led to the formation of over 5 ppm of NV centers. After that the sample was annealed at high temperatures in the argon flow (15300C, 30 minutes). The IR absorption spectra revealed an

  20. The distribution of microplastics in soil aggregate fractions in southwestern China.

    PubMed

    Zhang, G S; Liu, Y F

    2018-06-09

    Plastic particle accumulation in arable soils is a growing contaminant of concern with unknown consequences for soil productivity and quality. This study aimed to investigate abundance and distribution of plastic particles among soil aggregate fractions in four cropped areas and an established riparian forest buffer zone at Dian Lake, southwestern China. Plastic particles (10-0.05 mm) from fifty soil samples were extracted and then sorted by size, counted, and categorized. Plastic particles were found in all soil samples. The concentration of plastic particles ranges from 7100 to 42,960 particles kg -1 (mean 18,760 particles kg -1 ). 95% of the sampled plastic particles are in the microplastic size (1-0.05 mm) range. The predominant form is plastic fibers, making up on average 92% of each sample followed by fragments and films that contributed with to 8%. Results of this study also show that 72% of plastic particles are associated with soil aggregates, and 28% of plastic particles are dispersed. The abundance of aggregate-associated plastic fibers is significantly greater in the micro-aggregate than that in the macro-aggregate, whereas the less concentrations of plastic films and fragments are found in the micro-aggregate. Compared to the adjacent vegetable soil, the less concentration of plastic particles in the buffer soil implicates that application of soil amendments and irrigation with wastewater must be controlled to reduce accumulation of microplastics in agricultural soils. While the implications of microplastic on ecological and human health are poorly understood, the staggering number of microplastic in agricultural soils should be continually concerned in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. On the nature of the Cu-rich aggregates in brain astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Brendan; Robison, Gregory; Osborn, Jenna

    Fulfilling a bevy of biological roles, copper is an essential metal for healthy brain function. Cu dyshomeostasis has been demonstrated to be involved in some neurological conditions including Menkes and Alzheimer’s diseases. We have previously reported localized Cu-rich aggregates in astrocytes of the subventricular zone (SVZ) in rodent brains with Cu concentrations in the hundreds of millimolar. Metallothionein, a cysteine-rich protein critical to metal homeostasis and known to participate in a variety of neuroprotective and neuroregenerative processes, was proposed as a binding protein. Here, we present an analysis of metallothionein(1,2) knockout (MTKO) mice and age-matched controls using X-ray fluorescence microscopy.more » In large structures such as the corpus callosum, cortex, and striatum, there is no significant difference in Cu, Fe, or Zn concentrations in MTKO mice compared to age-matched controls. In the astrocyte-rich subventricular zone where Cu-rich aggregates reside, approximately 1/3 as many Cu-rich aggregates persist in MTKO mice resulting in a decrease in periventricular Cu concentration. Aggregates in both wild-type and MTKO mice show XANES spectra characteristic of CuxSy multimetallic clusters and have similar [S]/[Cu] ratios. Consistent with assignment as a CuxSy multimetallic cluster, the astrocyte-rich SVZ of both MTKO and wild-type mice exhibit autofluorescent bodies, though MTKO mice exhibit fewer. Furthermore, XRF imaging of Au-labeled lysosomes and ubiquitin demonstrates a lack of co-localization with Cu-rich aggregates suggesting they are not involved in a degradation pathway. Overall, these data suggest that Cu in aggregates is bound by either metallothionein-3 or a yet unknown protein similar to metallothionein.« less

  2. Aggregate distribution and associated organic carbon influenced by cover crops

    NASA Astrophysics Data System (ADS)

    Barquero, Irene; García-González, Irene; Benito, Marta; Gabriel, Jose Luis; Quemada, Miguel; Hontoria, Chiquinquirá

    2013-04-01

    Replacing fallow with cover crops during the non-cropping period seems to be a good alternative to diminish soil degradation by enhancing soil aggregation and increasing organic carbon. The aim of this study was to analyze the effect of replacing fallow by different winter cover crops (CC) on the aggregate distribution and C associated of an Haplic Calcisol. The study area was located in Central Spain, under semi-arid Mediterranean climate. A 4-year field trial was conducted using Barley (Hordeum vulgare L.) and Vetch (Vicia sativa L.) as CC during the intercropping period of maize (Zea mays L.) under irrigation. All treatments were equally irrigated and fertilized. Maize was directly sown over CC residues previously killed in early spring. Composite samples were collected at 0-5 and 5-20 cm depths in each treatment on autumn of 2010. Soil samples were separated by wet sieving into four aggregate-size classes: large macroaggregates ( >2000 µm); small macroaggregates (250-2000 µm); microaggregates (53-250 µm); and < 53 µm (silt + clay size). Organic carbon associated to each aggregate-size class was measured by Walkley-Black Method. Our preliminary results showed that the aggregate-size distribution was dominated by microaggregates (48-53%) and the <53 µm fraction (40-44%) resulting in a low mean weight diameter (MWD). Both cover crops increased aggregate size resulting in a higher MWD (0.28 mm) in comparison with fallow (0.20 mm) in the 0-5 cm layer. Barley showed a higher MWD than fallow also in 5-20 cm layer. Organic carbon concentrations in aggregate-size classes at top layer followed the order: large macroaggregates > small macroaggregates > microaggregates > silt + clay size. Treatments did not influence C concentration in aggregate-size classes. In conclusion, cover crops improved soil structure increasing the proportion of macroaggregates and MWD being Barley more effective than Vetch at subsurface layer.

  3. Kinetics of insulin aggregation in aqueous solutions upon agitation in the presence of hydrophobic surfaces.

    PubMed Central

    Sluzky, V; Tamada, J A; Klibanov, A M; Langer, R

    1991-01-01

    The stability of protein-based pharmaceuticals (e.g., insulin) is important for their production, storage, and delivery. To gain an understanding of insulin's aggregation mechanism in aqueous solutions, the effects of agitation rate, interfacial interactions, and insulin concentration on the overall aggregation rate were examined. Ultraviolet absorption spectroscopy, high-performance liquid chromatography, and quasielastic light scattering analyses were used to monitor the aggregation reaction and identify intermediate species. The reaction proceeded in two stages; insulin stability was enhanced at higher concentration. Mathematical modeling of proposed kinetic schemes was employed to identify possible reaction pathways and to explain greater stability at higher insulin concentration. Images PMID:1946348

  4. Naringin administration inhibits platelet aggregation and release by reducing blood cholesterol levels and the cytosolic free calcium concentration in hyperlipidemic rabbits

    PubMed Central

    XIAO, YANG; LI, LAI-LAI; WANG, YAN-YAN; GUO, JING-JING; XU, WEN-PING; WANG, YAN-YAN; WANG, YI

    2014-01-01

    This study investigated the effects of naringin on platelet aggregation and release in hyperlipidemic rabbits, and the underlying mechanisms. The safety of naringin was also investigated. The rabbits were orally administered 60, 30 or 15 mg/kg of naringin once a day for 14 days after being fed a high fat/cholesterol diet for four weeks. Following the two weeks of drug administration, the degree of platelet aggregation induced by arachidonic acid, adenosine diphosphate and collagen was significantly reduced by naringin at certain doses compared with those in the rabbits of the model group (P<0.01). The levels of P-selectin and platelet factor 4 (PF4) also decreased following treatment with naringin compared with those of the model group. Certain doses of naringin significantly reduced the total cholesterol (TC) levels and elevated the ratio of high-density lipoprotein cholesterol to TC compared with those in the model group, and significantly decreased the cytosolic free calcium concentration ([Ca2+]i). No significant difference in the coagulation function was observed between the control and drug-treatment groups. These results indicate that naringin improved platelet aggregation and inhibited the excessive release of P-selectin and PF4 in hyperlipidemic rabbits. This study suggests that the antiplatelet effect of naringin may be due to its ability to regulate the levels of blood cholesterol and [Ca2+]i in platelets. Naringin also did not cause bleeding in the hyperlipidemic rabbits. PMID:25120631

  5. Naturally engineered glycolipid biosurfactants leading to distinctive self-assembled structures.

    PubMed

    Imura, Tomohiro; Ohta, Noboru; Inoue, Katsuaki; Yagi, Naoto; Negishi, Hideyuki; Yanagishita, Hiroshi; Kitamoto, Dai

    2006-03-08

    Self-assembling properties of "natural" glycolipid biosurfactants, mannosyl-erythritol lipids A and B (MEL-A, MEL-B), which are abundantly produced from yeast strains, were investigated by using the fluorescence-probe method, dynamic light-scattering (DLS) analysis, freeze-fracture transmission electron microscopy (FF-TEM), and synchrotron small/wide-angle X-ray scattering (SAXS/WAXS) analysis, among other methods. Both MEL-A and MEL-B exhibit excellent self-assembly properties at extremely low concentrations; they self-assemble into large unilamellar vesicles (LUV) just above their critical-aggregation concentration (CAC). The CAC(I) value was found to be 4.0x10(-6) M for MEL-A and 6.0x10(-6) M for MEL-B. Moreover, the self-assembled structure of MEL-A above a CAC(II) value of 2.0x10(-5) M was found to drastically change into sponge structures (L3) composed of a network of randomly connected bilayers that are usually obtained from a complicated multicomponent "synthetic" surfactant system. Interestingly, the average water-channel diameter of the sponge structure was 100 nm. This is relatively large compared with those obtained from "synthetic" surfactant systems. In addition, MEL-B, which has a hydroxyl group at the C-4' position on mannose instead of an acetyl group, gives only one CAC; the self-assembled structure of MEL-B seems to gradually move from LUV to multilamellar vesicles (MLV) with lattice constants of 4.4 nm, depending on the concentration. Furthermore, the lyotropic-liquid-crystal-phase observation at high concentrations demonstrates the formation of an inverted hexagonal phase (H2) for MEL-A, together with a lamella phase (L(alpha)) for MEL-B, indicating a difference between MEL-A and MEL-B molecules in the spontaneous curvature of the assemblies. These results clearly show that the difference in spontaneous curvature caused by the single acetyl group on the head group probably decides the direction of self-assembly of glycolipid biosurfactants. The

  6. Two-Step Amyloid Aggregation: Sequential Lag Phase Intermediates

    NASA Astrophysics Data System (ADS)

    Castello, Fabio; Paredes, Jose M.; Ruedas-Rama, Maria J.; Martin, Miguel; Roldan, Mar; Casares, Salvador; Orte, Angel

    2017-01-01

    The self-assembly of proteins into fibrillar structures called amyloid fibrils underlies the onset and symptoms of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. However, the molecular basis and mechanism of amyloid aggregation are not completely understood. For many amyloidogenic proteins, certain oligomeric intermediates that form in the early aggregation phase appear to be the principal cause of cellular toxicity. Recent computational studies have suggested the importance of nonspecific interactions for the initiation of the oligomerization process prior to the structural conversion steps and template seeding, particularly at low protein concentrations. Here, using advanced single-molecule fluorescence spectroscopy and imaging of a model SH3 domain, we obtained direct evidence that nonspecific aggregates are required in a two-step nucleation mechanism of amyloid aggregation. We identified three different oligomeric types according to their sizes and compactness and performed a full mechanistic study that revealed a mandatory rate-limiting conformational conversion step. We also identified the most cytotoxic species, which may be possible targets for inhibiting and preventing amyloid aggregation.

  7. Kinetic Model for 1D aggregation of yeast ``prions''

    NASA Astrophysics Data System (ADS)

    Kunes, Kay; Cox, Daniel; Singh, Rajiv

    2004-03-01

    Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeast have proteins which can undergo similar reconformation and aggregation processes to PrP; yeast forms are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein(1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics(2). The model assumes reconformation only upon aggregation, and includes aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates. We will compare to a more realistic stochastic kinetics model and present prelimary attempts to describe recent experiments on SUP35 strains. *-Supported by U.S. Army Congressionally Mandated Research Fund. 1) P. Chien and J.S. Weissman, Nature 410, 223 (2001); http://online.kitp.ucsb.edu/online/bionet03/collins/. 2) J. Masel, V.A.> Jansen, M.A. Nowak, Biophys. Chem. 77, 139 (1999).

  8. Abciximab, eptifibatide, and tirofiban exhibit dose-dependent potencies to dissolve platelet aggregates.

    PubMed

    Moser, Martin; Bertram, Ulf; Peter, Karlheinz; Bode, Christoph; Ruef, Johannes

    2003-04-01

    Platelet GPIIb/IIIa antagonists are not only used to prevent platelet aggregation, but also in combination with thrombolytic agents for the treatment of coronary thrombi. Recent data indicate a potential of abciximab alone to dissolve thrombi in vivo. We investigated the potential of abciximab, eptifibatide, and tirofiban to dissolve platelet aggregates in vitro. Adenosine diphosphate (ADP)-induced platelet aggregation could be reversed in a concentration-dependent manner by all three GPIIb/IIIa antagonists when added after the aggregation curve reached half-maximal aggregation. The concentrations chosen are comparable with in vivo plasma concentrations in clinical applications. Disaggregation reached a maximum degree of 72.4% using 0.5 microg/ml tirofiban, 91.5% using 3.75 microg/ml eptifibatide, and 48.4% using 50 microg/ml abciximab (P < 0.05, respectively). A potential fibrinolytic activity of the GPIIb/IIIa antagonists was ruled out by preincubation with aprotinin or by a plasma clot assay. A stable model Chinese hamster ovary (CHO) cell line expressing the activated form of GPIIb/IIIa was used to confirm the disaggregation capacity of GPIIb/IIIa antagonists found in platelets. Not only abciximab, but also eptifibatide and tirofiban have the potential to disaggregate newly formed platelet clusters in vitro. Because enzyme-dependent fibrinolysis does not appear to be involved, competitive removal of fibrinogen by the receptor antagonists is the most likely mechanism.

  9. Determination of external and internal mass transfer limitation in nitrifying microbial aggregates.

    PubMed

    Wilén, Britt-Marie; Gapes, Daniel; Keller, Jürg

    2004-05-20

    In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and microsensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22-80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations (approximately 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be >20 mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate. Copyright 2004 Wiley Periodicals, Inc.

  10. Natural aggregates of the conterminous United States

    USGS Publications Warehouse

    Langer, William H.

    1988-01-01

    Crushed stone and sand and gravel are the two main sources of natural aggregates. These materials are commonly used construction materials and frequently can be interchanged with one another. They are widely used throughout the United States, with every State except two producing crushed stone. Together they amount to about half the mining volume in the United States. Approximately 96 percent of sand and gravel and 77 percent of the crushed stone produced in the United States are used in the construction industry. Natural aggregates are widely distributed throughout the United States in a variety of geologic environments. Sand and gravel deposits commonly are the results of the weathering of bedrock and subsequent transportation and deposition of the material by water or ice (glaciers). As such, they commonly occur as river or stream deposits or in glaciated areas as glaciofluvial and other deposits. Crushed stone aggregates are derived from a wide variety of parent bedrock materials. Limestone and other carbonates account for approximately three quarters of the rocks used for crushed stone, with granite and other igneous rocks making up the bulk of the remainder. Limestone deposits are widespread throughout the Central and Eastern United States and are scattered in the West. Granites are widely distributed in the Eastern and Western United States, with few exposures in the Midwest. Igneous rocks (excluding granites) are largely concentrated in the Western United States and in a few isolated localities in the East. Even though natural aggregates are widely distributed throughout the United States, they are not universally available for consumptive use. Some areas are devoid of sand and gravel, and potential sources of crushed stone may be covered with sufficient unconsolidated material to make surface mining impractical. In some areas many aggregates do not meet the physical property requirements for certain uses, or they may contain mineral constituents that react

  11. Platelet aggregation caused by Carybdea rastonii toxins (CrTX-I, II and III) obtained from a jellyfish, Carybdea rastonii.

    PubMed

    Azuma, H; Sekizaki, S; Satoh, A; Nakajima, T

    1986-05-01

    The pharmacological mechanisms of platelet aggregation induced by highly toxic proteins (CrTX-I, CrTX-II, and CrTX-III) obtained from tentacles of a jellyfish, Carybdea rastonii, were investigated. When the partially purified toxin (pCrTX) and CrTXs were added to the citrated platelet-rich plasma (PRP), aggregation was produced in a concentration-dependent manner. The activity of CrTXs was approximately 100 times more potent than pCrTX. The CrTXs-induced aggregation was little affected by indomethacin and quinacrine at concentrations sufficient to inhibit arachidonic acid- and collagen-induced aggregation. The CrTXs-induced aggregation in washed platelets was significantly augmented in the presence of Ca2+. The pretreatment with verapamil failed to modify this augmentation of aggregation. The concentration of cytoplasmic-free calcium ([Ca2+]i) of platelets was increased by CrTXs at the same concentrations that produced aggregation. This effect of CrTXs was again little affected by verapamil. CrTXs at the same concentrations as those that produced aggregation and increased [Ca2+]i caused depolarization of platelets, which was unchanged after pretreatment with sodium or potassium transport inhibitors. CrTX-I significantly increased the 22Na flux into platelets and this effect of CrTX-I was unaffected by tetrodotoxin. The CrTX-I-induced aggregation, depolarization, and increase in [Ca2+]i were all significantly attenuated in the low Na+ medium. These results suggest that CrTXs cause a massive depolarization by increasing cation permeability and this generalized depolarization permits an inward movement of Ca2+ down its electrochemical gradient which, in turn, triggers platelet aggregation.

  12. Environmentally-relevant concentrations of Al(III) and Fe(III) cations induce aggregation of free DNA by complexation with phosphate group.

    PubMed

    Qin, Chao; Kang, Fuxing; Zhang, Wei; Shou, Weijun; Hu, Xiaojie; Gao, Yanzheng

    2017-10-15

    Environmental persistence of free DNA is influenced by its complexation with other chemical species and its aggregation mechanisms. However, it is not well-known how naturally-abundant metal ions, e.g., Al(III) and Fe(III), influence DNA aggregation. This study investigated aggregation behaviors of model DNA from salmon testes as influenced by metal cations, and elucidated the predominant mechanism responsible for DNA aggregation. Compared to monovalent (K + and Na + ) and divalent (Ca 2+ and Mg 2+ ) cations, Al(III) and Fe(III) species in aqueous solution caused rapid DNA aggregations. The maximal DNA aggregation occurred at 0.05 mmol/L Al(III) or 0.075 mmol/L Fe(III), respectively. A combination of atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy revealed that Al(III) and Fe(III) complexed with negatively charged phosphate groups to neutralize DNA charges, resulting in decreased electrostatic repulsion and subsequent DNA aggregation. Zeta potential measurements and molecular computation further support this mechanism. Furthermore, DNA aggregation was enhanced at higher temperature and near neutral pH. Therefore, DNA aggregation is collectively determined by many environmental factors such as ion species, temperature, and solution pH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hail formation triggers rapid ash aggregation in volcanic plumes

    USGS Publications Warehouse

    Van Eaton, Alexa R.; Mastin, Larry G.; Herzog, M.; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi; Clarke, Amanda B

    2015-01-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet’ eruption. The 2009 eruption of Redoubt Volcano in Alaska incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits, and numerical modeling demonstrate that volcanic hail formed rapidly in the eruption plume, leading to mixed-phase aggregation of ~95% of the fine ash and stripping much of the cloud out of the atmosphere within 30 minutes. Based on these findings, we propose a mechanism of hail-like aggregation that contributes to the anomalously rapid fallout of fine ash and the occurrence of concentrically-layered aggregates in volcanic deposits.

  14. Hail formation triggers rapid ash aggregation in volcanic plumes.

    PubMed

    Van Eaton, Alexa R; Mastin, Larry G; Herzog, Michael; Schwaiger, Hans F; Schneider, David J; Wallace, Kristi L; Clarke, Amanda B

    2015-08-03

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.

  15. Hail formation triggers rapid ash aggregation in volcanic plumes

    PubMed Central

    Van Eaton, Alexa R.; Mastin, Larry G.; Herzog, Michael; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi L.; Clarke, Amanda B.

    2015-01-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits. PMID:26235052

  16. Kinetics of Thermal Denaturation and Aggregation of Bovine Serum Albumin

    PubMed Central

    Borzova, Vera A.; Markossian, Kira A.; Chebotareva, Natalia A.; Kleymenov, Sergey Yu.; Poliansky, Nikolay B.; Muranov, Konstantin O.; Stein-Margolina, Vita A.; Shubin, Vladimir V.; Markov, Denis I.; Kurganov, Boris I.

    2016-01-01

    Thermal aggregation of bovine serum albumin (BSA) has been studied using dynamic light scattering, asymmetric flow field-flow fractionation and analytical ultracentrifugation. The studies were carried out at fixed temperatures (60°C, 65°C, 70°C and 80°C) in 0.1 M phosphate buffer, pH 7.0, at BSA concentration of 1 mg/ml. Thermal denaturation of the protein was studied by differential scanning calorimetry. Analysis of the experimental data shows that at 65°C the stage of protein unfolding and individual stages of protein aggregation are markedly separated in time. This circumstance allowed us to propose the following mechanism of thermal aggregation of BSA. Protein unfolding results in the formation of two forms of the non-native protein with different propensity to aggregation. One of the forms (highly reactive unfolded form, Uhr) is characterized by a high rate of aggregation. Aggregation of Uhr leads to the formation of primary aggregates with the hydrodynamic radius (Rh,1) of 10.3 nm. The second form (low reactive unfolded form, Ulr) participates in the aggregation process by its attachment to the primary aggregates produced by the Uhr form and possesses ability for self-aggregation with formation of stable small-sized aggregates (Ast). At complete exhaustion of Ulr, secondary aggregates with the hydrodynamic radius (Rh,2) of 12.8 nm are formed. At 60°C the rates of unfolding and aggregation are commensurate, at 70°C the rates of formation of the primary and secondary aggregates are commensurate, at 80°C the registration of the initial stages of aggregation is complicated by formation of large-sized aggregates. PMID:27101281

  17. Influence of aggregate size on the binding and activation of the first component of human complement by soluble IgG aggregates.

    PubMed Central

    Doekes, G; Vanes, L A; Daha, M R

    1982-01-01

    The interaction between small aggregates of human IgG and the first component of human complement was studied. Stabilized soluble IgG aggregates of restricted size were prepared by heat aggregation of human IgG, followed by sucrose-density ultracentrifugation. Human C1 was isolated in its precursor form by euglobulin precipitation, followed by gel filtration and immunoadsorption. A C1 preparation was obtained of which more than 90% was still in its unactivated form. Soluble aggregates containing 20, 10 or 5 molecules IgG, and monomeric IgG were tested for their ability to bind and to activate C1. The binding of C1 was determined by C1 consumption, whereas the activation of C1 was measured as the increased ability of the C1 preparation to consume purified human C4 after the incubation with the aggregates. The three aggregates tested and monomeric IgG were all able to bind and to activate C1, but the efficiency of both processes markedly increased with increasing aggregate-size. Furthermore, it was found that all four preparations activated an appreciable amount of C1 at concentrations that did not result in any detectable C1 fixation. These results confirm earlier suggestion that C1 can be activated during a short, transient binding to small aggregates or immune complexes that have a low avidity for C1, after which the activated form, C1, is released into the medium. PMID:7068172

  18. Nano-aggregates: emerging delivery tools for tumor therapy.

    PubMed

    Sharma, Vinod Kumar; Jain, Ankit; Soni, Vandana

    2013-01-01

    A plethora of formulation techniques have been reported in the literature for site-specific targeting of water-soluble and -insoluble anticancer drugs. Along with other vesicular and particulate carrier systems, nano-aggregates have recently emerged as a novel supramolecular colloidal carrier with promise for using poorly water-soluble drugs in molecular targeted therapies. Nano-aggregates possess some inherent properties such as size in the nanometers, high loading efficiency, and in vivo stability. Nano-aggregates can provide site-specific drug delivery via either a passive or active targeting mechanism. Nano-aggregates are formed from a polymer-drug conjugated amphiphilic block copolymer. They are suitable for encapsulation of poorly water-soluble drugs by covalent conjugation as well as physical encapsulation. Because of physical encapsulation, a maximum amount of drug can be loaded in nano-aggregates, which helps to achieve a sufficiently high drug concentration at the target site. Active transport can be achieved by conjugating a drug with vectors or ligands that bind specifically to receptors being overexpressed in the tumor cells. In this review, we explore synthesis and tumor targeting potential of nano-aggregates with active and passive mechanisms, and we discuss various characterization parameters, ex vivo studies, biodistribution studies, clinical trials, and patents.

  19. Genetic Profiling Reveals Cross-Contamination and Misidentification of 6 Adenoid Cystic Carcinoma Cell Lines: ACC2, ACC3, ACCM, ACCNS, ACCS and CAC2

    PubMed Central

    Phuchareon, Janyaporn; Ohta, Yoshihito; Woo, Jonathan M.; Eisele, David W.; Tetsu, Osamu

    2009-01-01

    Adenoid cystic carcinoma (ACC) is the second most common malignant neoplasm of the salivary glands. Most patients survive more than 5 years after surgery and postoperative radiation therapy. The 10 year survival rate, however, drops to 40%, due to locoregional recurrences and distant metastases. Improving long-term survival in ACC requires the development of more effective systemic therapies based on a better understanding of the biologic behavior of ACC. Much preclinical research in this field involves the use of cultured cells and, to date, several ACC cell lines have been established. Authentication of these cell lines, however, has not been reported. We performed DNA fingerprint analysis on six ACC cell lines using short tandem repeat (STR) examinations and found that all six cell lines had been contaminated with other cells. ACC2, ACC3, and ACCM were determined to be cervical cancer cells (HeLa cells), whereas the ACCS cell line was composed of T24 urinary bladder cancer cells. ACCNS and CAC2 cells were contaminated with cells derived from non-human mammalian species: the cells labeled ACCNS were mouse cells and the CAC2 cells were rat cells. These observations suggest that future studies using ACC cell lines should include cell line authentication to avoid the use of contaminated or non-human cells. PMID:19557180

  20. Quantification of the aggregation of magnetic nanoparticles with different polymeric coatings in cell culture medium

    NASA Astrophysics Data System (ADS)

    Eberbeck, D.; Kettering, M.; Bergemann, C.; Zirpel, P.; Hilger, I.; Trahms, L.

    2010-10-01

    The knowledge of the physico-chemical characteristics of magnetic nanoparticles (MNPs) is essential to enhance the efficacy of MNP-based therapeutic treatments (e.g. magnetic heating, magnetic drug targeting). According to the literature, the MNP uptake by cells may depend on the coating of MNPs, the surrounding medium as well as on the aggregation behaviour of the MNPs. Therefore, in this study, the aggregation behaviour of MNPs in various media was investigated. MNPs with different coatings were suspended in cell culture medium (CCM) containing fetal calf serum (FCS) and the distribution of the hydrodynamic sizes was measured by magnetorelaxometry (MRX). FCS as well as bovine serum albumin (BSA) buffer (phosphate buffered saline with 0.1% bovine serum albumin) may induce MNP aggregation. Its strength depends crucially on the type of coating. The degree of aggregation in CCM depends on its FCS content showing a clear, local maximum at FCS concentrations, where the IgG concentration (part of FCS) is of the order of the MNP number concentration. Thus, we attribute the observed aggregation behaviour to the mechanism of agglutination of MNPs by serum compartments as for example IgG. No aggregation was induced for MNPs coated with dextran, polyarabic acid or sodium phosphate, respectively, which were colloidally stable in CCM.

  1. Associations of serum LDL particle concentration with carotid intima-media thickness and coronary artery calcification.

    PubMed

    Zaid, Maryam; Miura, Katsuyuki; Fujiyoshi, Akira; Abbott, Robert D; Hisamatsu, Takashi; Kadota, Aya; Arima, Hisatomi; Kadowaki, Sayaka; Torii, Sayuki; Miyagawa, Naoko; Suzuki, Sentaro; Takashima, Naoyuki; Ohkubo, Takayoshi; Sekikawa, Akira; Maegawa, Hiroshi; Horie, Minoru; Nakamura, Yasuyuki; Okamura, Tomonori; Ueshima, Hirotsugu

    2016-01-01

    Low-density lipoprotein particle (LDL-P) has recently been found to be a stronger predictor of cardiovascular disease (CVD) than LDL-cholesterol (LDL-C). Whether LDL-P is associated with subclinical atherosclerosis, independent of LDL-C, as well as other lipid measures has not been fully examined. We aimed to analyze LDL-P associations with measures of subclinical atherosclerosis. We examined 870 Japanese men randomly selected from Kusatsu City, Shiga, Japan, aged 40-79 years from 2006-2008, free of clinical CVD and not using lipid-lowering medication. Cross-sectional associations of lipid measures with carotid intima-media thickness (cIMT) and coronary artery calcification (CAC; >0 Agatston score) were examined. LDL-P was significantly positively associated with cIMT and maintained this association after adjustments for LDL-C and other lipid measures. Although these lipid measures were positively associated with cIMT, model adjustment for LDL-P removed any significant relationships. Higher LDL-P was associated with a significantly higher odds ratio of CAC and further adjustment for LDL-C did not affect this relationship. In contrast, the LDL-C association with CAC was no longer significant after adjustment for LDL-P. Other lipid measures attenuated associations of LDL-P with CAC. Likewise, associations of these measures with CAC were attenuated when model adjustments for LDL-P were made. In a community-based sample of Japanese men, free of clinical CVD, LDL-P was a robust marker for subclinical atherosclerosis, independent of LDL-C and other lipid measures. Associations of LDL-C and other lipid measures with either cIMT or CAC were generally not independent of LDL-P. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  2. Generation of urban road dust from anti-skid and asphalt concrete aggregates.

    PubMed

    Tervahattu, Heikki; Kupiainen, Kaarle J; Räisänen, Mika; Mäkelä, Timo; Hillamo, Risto

    2006-04-30

    Road dust forms an important component of airborne particulate matter in urban areas. In many winter cities the use of anti-skid aggregates and studded tires enhance the generation of mineral particles. The abrasion particles dominate the PM10 during springtime when the material deposited in snow is resuspended. This paper summarizes the results from three test series performed in a test facility to assess the factors that affect the generation of abrasion components of road dust. Concentrations, mass size distribution and composition of the particles were studied. Over 90% of the particles were aluminosilicates from either anti-skid or asphalt concrete aggregates. Mineral particles were observed mainly in the PM10 fraction, the fine fraction being 12% and submicron size being 6% of PM10 mass. The PM10 concentrations increased as a function of the amount of anti-skid aggregate dispersed. The use of anti-skid aggregate increased substantially the amount of PM10 originated from the asphalt concrete. It was concluded that anti-skid aggregate grains contribute to pavement wear. The particle size distribution of the anti-skid aggregates had great impact on PM10 emissions which were additionally enhanced by studded tires, modal composition, and texture of anti-skid aggregates. The results emphasize the interaction of tires, anti-skid aggregate, and asphalt concrete pavement in the production of dust emissions. They all must be taken into account when measures to reduce road dust are considered. The winter maintenance and springtime cleaning must be performed properly with methods which are efficient in reducing PM10 dust.

  3. Characterization of Nanoparticles and Colloids in Aquatic Systems 1. Small Angle Neutron Scattering Investigations of Suwannee River Fulvic Acid Aggregates in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Diallo, Mamadou S.; Glinka, Charles J.; Goddard, William A.; Johnson, James H.

    2005-10-01

    Fulvic acids (FA) and humic acids (HA) constitute 30-50% of dissolved organic matter in natural aquatic systems. In aqueous solutions, a commonly accepted view is that FA and HA exist as soluble macroligands at low concentration and as supramolecular aggregates at higher concentration. The size, shape and structure of these aggregates are still the subject of ongoing debate in the environmental chemistry literature. In this article, we use small angle neutron scattering (SANS) to assess the effects of solute concentration, solution pH and background electrolyte (NaCl) concentration on the structures of Suwannee River FA (SRFA) aggregates in D2O. The qualitative features of the SANS curves and data analysis are not consistent with the view point that SRFA forms micelle-like aggregates as its concentration in aqueous solution increases. We find that SRFA forms fractal aggregates in D20 with size greater than 242 nm. The SRFA aggregates undergo a significant degree of restructuring in compactness as solution pH, solute concentration and NaCl concentration increase.

  4. Aggregation Kinetics of Diesel Soot Nanoparticles in Wet Environments.

    PubMed

    Chen, Chengyu; Huang, Weilin

    2017-02-21

    Soot produced during incomplete combustion consists mainly of carbonaceous nanoparticles (NPs) with severe adverse environmental and health effects, and its environmental fate and transport are largely controlled by aggregation. In this study, we examined the aggregation behavior for diesel soot NPs under aqueous condition in an effort to elucidate the fundamental processes that govern soot particle-particle interactions in wet environments such as rain droplets or surface aquatic systems. The influence of electrolytes and aqueous pH on colloidal stability of these NPs was investigated by measuring their aggregation kinetics in different aqueous solution chemistries. The results showed that the NPs had negatively charged surfaces and exhibited both reaction- and diffusion-limited aggregation regimes with rates depended upon solution chemistry. The aggregation kinetics data were in good agreement with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The critical coagulation concentrations (CCC) were quantified and the Hamaker constant was derived for the soot (1.4 × 10 -20 J) using the colloidal chemistry approach. The study indicated that, depending upon local aqueous chemistry, single soot NPs could remain stable against self-aggregation in typical freshwater environments and in neutral cloud droplets but are likely to aggregate under salty (e.g., estuaries) or acidic (e.g., acid rain droplets) aquatic conditions or both.

  5. Arginine prevents thermal aggregation of hen egg white proteins.

    PubMed

    Hong, Taehun; Iwashita, Kazuki; Handa, Akihiro; Shiraki, Kentaro

    2017-07-01

    The control of aggregation and solubilization of hen egg white protein (HEWP) is an important issue for industrial applications of one of the most familiar food protein sources. Here, we investigated the effects of edible amino acids on heat-induced aggregation of HEWP. The addition of 0.6M arginine (Arg) completely suppressed the formation of insoluble aggregates of 1mgmL -1 HEWP following heat treatment, even at 90°C for 20min. In contrast, lysine (Lys), glycine (Gly), and sodium chloride (NaCl) did little to suppress the aggregation of HEWP under the same conditions. SDS-PAGE indicated that Arg suppresses the thermal aggregation of almost all types of HEWP at 1mgmL -1 . However, Arg did not suppress the thermal aggregation of HEWP at concentrations ≥10mgmL -1 and prompted the formation of aggregates. Transmission electron micrographs revealed a high-density structure of unfolded proteins in the presence of Arg. These results indicate that Arg exerts a greater suppressive effect on a protein mixture, such as HEWP, than on a single model protein. These observations may propose Arg as a safe and reasonable additive to HEWP for the elimination of microorganisms by allowing an increase in sterilization temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Synthetic food additive dye "Tartrazine" triggers amorphous aggregation in cationic myoglobin.

    PubMed

    Al-Shabib, Nasser Abdulatif; Khan, Javed Masood; Khan, Mohd Shahnawaz; Ali, Mohd Sajid; Al-Senaidy, Abdulrahman M; Alsenaidy, Mohammad A; Husain, Fohad Mabood; Al-Lohedan, Hamad A

    2017-05-01

    Protein aggregation, a characteristic of several neurodegenerative diseases, displays vast conformational diversity from amorphous to amyloid-like aggregates. In this study, we have explored the interaction of tartrazine with myoglobin protein at two different pHs (7.4 and 2.0). We have utilized various spectroscopic techniques (turbidity, Rayleigh light scattering (RLS), intrinsic fluorescence, Congo Red and far-UV CD) along with microscopy techniques i.e. atomic force microscopy (AFM) and transmission electron microscopy (TEM) to characterize the tartrazine-induced aggregation in myoglobin. The results showed that higher concentrations of tartrazine (2.0-10.0mM) induced amorphous aggregation in myoglobin at pH 2.0 via electrostatic interactions. However, tartrazine was not able to induce aggregation in myoglobin at pH 7.4; because of strong electrostatic repulsion between myoglobin and tartrazine at this pH. The tartrazine-induced amorphous aggregation process is kinetically very fast, and aggregation occurred without the formation of a nucleus. These results proposed that the electrostatic interaction is responsible for tartrazine-induced amorphous aggregation. This study may help in the understanding of mechanistic insight of aggregation by tartrazine. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Deposition or not? The fate of volcanic ash after aggregation processes

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Wadsworth, Fabian B.; Ayris, Paul M.; Casas, Ana S.; Cimarelli, Corrado; Ametsbichler, Jonathan; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B.

    2017-04-01

    In the course of explosive volcanic eruptions, large amounts of ash are released into the atmosphere and may subsequently pose a threat to infrastructure, such as aviation industry. Ash plume forecasting is therefore a crucial tool for volcanic hazard mitigation but may be significantly affected by aggregation, altering the aerodynamic properties of particles. Models struggle with the implementation of aggregation since external conditions promoting aggregation have not been completely understood; in a previous study we have shown the rapid generation of ash aggregates through liquid bonding via the use of fluidization bed technology and further defined humidity and temperature ranges necessary to trigger aggregation. Salt (NaCl) was required for the recovery of stable aggregates, acting as a cementation agent and granting aggregate cohesion. A numerical model was used to explain the physics behind particle aggregation mechanisms and further predicted a dependency of aggregation efficiency on liquid binder viscosity. In this study we proof the effect of viscosity on particle aggregation. HCl and H2SO4 solutions were diluted to various concentrations resulting in viscosities between 1 and 2 mPas. Phonolitic and rhyolitic ash samples as well as soda-lime glass beads (serving as analogue material) were fluidized in the ProCell Lab® of Glatt Ingenieurtechnik GmbH and treated with the acids via a bottom-spray technique. Chemically driven interaction between acid liquids and surfaces of the three used materials led to crystal precipitation. Salt crystals (e.g. NaCl) have been confirmed through scanning electron microscopy (SEM) and leachate analysis. Both volcanic ash samples as well as the glass beads showed a clear dependency of aggregation efficiency on viscosity of the sprayed HCl solution. Spraying H2SO4 provoked a collapse of the fluidized bed and no aggregation has been observed. This is accounted by the high hygroscopicity of H2SO4. Dissolving CaCl2 (known to be

  8. Rydberg aggregates

    NASA Astrophysics Data System (ADS)

    Wüster, S.; Rost, J.-M.

    2018-02-01

    We review Rydberg aggregates, assemblies of a few Rydberg atoms exhibiting energy transport through collective eigenstates, considering isolated atoms or assemblies embedded within clouds of cold ground-state atoms. We classify Rydberg aggregates, and provide an overview of their possible applications as quantum simulators for phenomena from chemical or biological physics. Our main focus is on flexible Rydberg aggregates, in which atomic motion is an essential feature. In these, simultaneous control over Rydberg-Rydberg interactions, external trapping and electronic energies, allows Born-Oppenheimer surfaces for the motion of the entire aggregate to be tailored as desired. This is illustrated with theory proposals towards the demonstration of joint motion and excitation transport, conical intersections and non-adiabatic effects. Additional flexibility for quantum simulations is enabled by the use of dressed dipole-dipole interactions or the embedding of the aggregate in a cold gas or Bose-Einstein condensate environment. Finally we provide some guidance regarding the parameter regimes that are most suitable for the realization of either static or flexible Rydberg aggregates based on Li or Rb atoms. The current status of experimental progress towards enabling Rydberg aggregates is also reviewed.

  9. Co-existence of monomers and clusters in concentrated protein solutions

    NASA Astrophysics Data System (ADS)

    Chinchalikar, Akshay J.; Kumar, Sugam; Aswal, V. K.; Callow, P.; Wagh, A. G.

    2012-06-01

    Small-angle neutron scattering (SANS) measurements have been performed on concentrated protein solutions in order to study aggregation of lysozyme molecules at different pH. The variation of correlation peak in concentration (C) dependent SANS data shows deviation from C1/3 behavior suggesting the aggregation phenomena in these systems. The aggregates or clusters coexist along with monomers with cluster fraction proportional to protein concentration. The clustering is also favored at higher pH approaching isoelectric point (pI) because of decrease in charge on the protein molecule.

  10. Ion aggregation in high salt solutions. VII. The effect of cations on the structures of ion aggregates and water hydrogen-bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Choi, Hyung Ran; Jeon, Jonggu; Cho, Minhaeng

    2017-10-01

    Ions in high salt solutions have a strong propensity to form polydisperse ion aggregates with broad size and shape distributions. In a series of previous comparative investigations using femtosecond IR pump-probe spectroscopy, molecular dynamics simulation, and graph theoretical analysis, we have shown that there exists a morphological difference in the structures of ion aggregates formed in various salt solutions. As salt concentration increases, the ions in high salt solutions form either cluster-like structures excluding water molecules or network-like structures entwined with water hydrogen-bonding networks. Interestingly, such morphological characteristics of the ion aggregates have been found to be in correlation with the solubility limits of salts. An important question that still remains unexplored is why certain salts with different cations have notably different solubility limits in water. Here, carrying out a series of molecular dynamics simulations of aqueous salt solutions and analyzing the distributions and connectivity patterns of ion aggregates with a spectral graph analysis method, we establish the relationship between the salt solubility and the ion aggregate morphology with a special emphasis on the cationic effects on water structures and ion aggregation. We anticipate that the understanding of large scale ion aggregate structures revealed in this study will be critical for elucidating the specific ion effects on the solubility and conformational stability of co-solute molecules such as proteins in water.

  11. Aggregation of Carbocyanine Dyes in Choline Chloride-Based Deep Eutectic Solvents in the Presence of an Aqueous Base.

    PubMed

    Pal, Mahi; Yadav, Anita; Pandey, Siddharth

    2017-09-26

    Deep eutectic solvents (DESs) have shown potential as novel media to support molecular aggregation. The self-aggregation behavior of two common and popular carbocyanine dyes, 5,5',6,6'-tetrachloro-1,1'-diethyl-3,3'-di(4-sulfobutyl)-benzimidazole carbocyanine (TDBC) and 5,5'-dichloro-3,3'-di(3-sulfopropyl)-9-methyl-benzothiacarbo cyanine (DMTC), is investigated within DES-based systems under ambient conditions. Although TDBC is known to form J-aggregates in basic aqueous solution, DMTC forms H-aggregates under similar conditions. The DESs used, glyceline and reline, are composed of salt choline chloride and two vastly different H-bond donors, glycerol and urea, respectively, in 1:2 mol ratios. Both DESs in the presence of base are found to support J-aggregates of TDBC. These fluorescent J-aggregates are characterized by small Stokes' shifts and subnanosecond fluorescence lifetimes. Under similar conditions, DMTC forms fluorescent H-aggregates along with J-aggregates within the two DES-based systems. The addition of cationic surfactant cetyltrimethylammonium bromide (CTAB) below its critical micelle concentration (cmc) to a TDBC solution of aqueous base-added glyceline shows the prominent presence of J-aggregates, and increasing the CTAB concentration to above cmc results in the disruption of J-aggregates and the formation of unprecedented H-aggregates. DMTC exclusively forms H-aggregates within a CTAB solution of aqueous base-added glyceline irrespective of the surfactant concentration. Anionic surfactant, sodium dodecylsulfate (SDS), present below its cmc within aqueous base-added DESs supports J-aggregation by TDBC; for similar SDS addition, DMTC forms H-aggregates within the glyceline-based system whereas both H- and J-aggregates exist within the reline-based system. A comparison of the carbocyanine dye behavior in various aqueous base-added DES systems to that in aqueous basic media reveals contrasting aggregation tendencies and/or efficiencies. Surfactants as

  12. Melittin Aggregation in Aqueous Solutions: Insight from Molecular Dynamics Simulations.

    PubMed

    Liao, Chenyi; Esai Selvan, Myvizhi; Zhao, Jun; Slimovitch, Jonathan L; Schneebeli, Severin T; Shelley, Mee; Shelley, John C; Li, Jianing

    2015-08-20

    Melittin is a natural peptide that aggregates in aqueous solutions with paradigmatic monomer-to-tetramer and coil-to-helix transitions. Since little is known about the molecular mechanisms of melittin aggregation in solution, we simulated its self-aggregation process under various conditions. After confirming the stability of a melittin tetramer in solution, we observed—for the first time in atomistic detail—that four separated melittin monomers aggregate into a tetramer. Our simulated dependence of melittin aggregation on peptide concentration, temperature, and ionic strength is in good agreement with prior experiments. We propose that melittin mainly self-aggregates via a mechanism involving the sequential addition of monomers, which is supported by both qualitative and quantitative evidence obtained from unbiased and metadynamics simulations. Moreover, by combining computer simulations and a theory of the electrical double layer, we provide evidence to suggest why melittin aggregation in solution likely stops at the tetramer, rather than forming higher-order oligomers. Overall, our study not only explains prior experimental results at the molecular level but also provides quantitative mechanistic information that may guide the engineering of melittin for higher efficacy and safety.

  13. Aggregation of a Monoclonal Antibody Induced by Adsorption to Stainless Steel

    PubMed Central

    Bee, Jared S.; Davis, Michele; Freund, Erwin; Carpenter, John F.; Randolph, Theodore W.

    2014-01-01

    Stainless steel is a ubiquitous surface in therapeutic protein production equipment and is also present as the needle in some pre-filled syringe biopharmaceutical products. Stainless steel microparticles can cause of aggregation of a monoclonal antibody (mAb). The initial rate of mAb aggregation was second-order in steel surface area and zero-order in mAb concentration, generally consistent with a bimolecular surface aggregation being the rate-limiting step. Polysorbate 20 (PS20) suppressed the aggregation yet was unable to desorb the firmly bound first layer of protein that adsorbs to the stainless steel surface. Also, there was no exchange of mAb from the first adsorbed layer to the bulk phase, suggesting that the aggregation process actually occurs on subsequent adsorption layers. No oxidized Met residues were detected in the mass spectrum of a digest of a highly aggregated mAb, although there was five-fold increase in carbonyl groups due to protein oxidation. PMID:19725039

  14. Antimicrobial preservatives induce aggregation of interferon alpha-2a: The order in which preservatives induce protein aggregation is independent of the protein

    PubMed Central

    Bis, Regina L.; Mallela, Krishna M.G.

    2014-01-01

    Antimicrobial preservatives (APs) are included in liquid multi-dose protein formulations to combat the growth of microbes and bacteria. These compounds have been shown to cause protein aggregation, which leads to serious immunogenic and toxic side-effects in patients. Our earlier work on a model protein cytochrome c (Cyt c) demonstrated that APs cause protein aggregation in a specific manner. The aim of this study is to validate the conclusions obtained from our model protein studies on a pharmaceutical protein. Interferon α-2a (IFNA2) is available as a therapeutic treatment for numerous immune-compromised disorders including leukemia and hepatitis c, and APs have been used in its multi-dose formulation. Similar to Cyt c, APs induced IFNA2 aggregation, demonstrated by the loss of soluble monomer and increase in solution turbidity. The extent of IFNA2 aggregation increased with the increase in AP concentration. IFNA2 aggregation also depended on the nature of AP, and followed the order m-cresol > phenol > benzyl alcohol > phenoxyethanol. This specific order exactly matched with that observed for the model protein Cyt c. These and previously published results on antibodies and other recombinant proteins suggest that the general mechanism by which APs induce protein aggregation may be independent of the protein. PMID:24974985

  15. Protein aggregates as depots for the release of biologically active compounds.

    PubMed

    Artemova, Natalya V; Kasakov, Alexei S; Bumagina, Zoya M; Lyutova, Elena M; Gurvits, Bella Ya

    2008-12-12

    Protein misfolding and aggregation is one of the most serious problems in cell biology, molecular medicine, and biotechnology. Misfolded proteins interact with each other or with other proteins in non-productive or damaging ways. However, a new paradigm arises that protein aggregation may be exploited by nature to perform specific functions in different biological contexts. From this consideration, acceleration of stress-induced protein aggregation triggered by any factor resulting in the formation of soluble aggregates may have paradoxical positive consequences. Here, we suggest that amorphous aggregates can act as a source for the release of biologically active proteins after removal of stress conditions. To address this concept, we investigated the kinetics of thermal aggregation in vitro of yeast alcohol dehydrogenase (ADH) as a model substrate in the presence of two amphiphilic peptides: Arg-Phe or Ala-Phe-Lys. Using dynamic light scattering (DLS) and turbidimetry, we have demonstrated that under mild stress conditions the concentration-dependent acceleration of ADH aggregation by these peptides results in formation of large but soluble complexes of proteins prone to refolding.

  16. Dose response of surfactants to attenuate gas embolism related platelet aggregation

    NASA Astrophysics Data System (ADS)

    Eckmann, David M.; Eckmann, Yonaton Y.; Tomczyk, Nancy

    2014-03-01

    Intravascular gas embolism promotes blood clot formation, cellular activation, and adhesion events, particularly with platelets. Populating the interface with surfactants is a chemical-based intervention to reduce injury from gas embolism. We studied platelet activation and platelet aggregation, prominent adverse responses to blood contact with bubbles. We examined dose-response relationships for two chemically distinct surfactants to attenuate the rise in platelet function stimulated by exposure to microbubbles. Significant reduction in platelet aggregation and platelet activation occurred with increasing concentration of the surfactants, indicating presence of a saturable system. A population balance model for platelet aggregation in the presence of embolism bubbles and surfactants was developed. Monte Carlo simulations for platelet aggregation were performed. Results agree qualitatively with experimental findings. Surfactant dose-dependent reductions in platelet activation and aggregation indicate inhibition of the gas/liquid interface's ability to stimulate cellular activation mechanically.

  17. Effect of Excipients on Liquid-Liquid Phase Separation and Aggregation in Dual Variable Domain Immunoglobulin Protein Solutions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-03-07

    Liquid-liquid phase separation (LLPS) and aggregation can reduce the physical stability of therapeutic protein formulations. On undergoing LLPS, the protein-rich phase can promote aggregation during storage due to high concentration of the protein. Effect of different excipients on aggregation in protein solution is well documented; however data on the effect of excipients on LLPS is scarce in the literature. In this study, the effect of four excipients (PEG 400, Tween 80, sucrose, and hydroxypropyl beta-cyclodextrin (HPβCD)) on liquid-liquid phase separation and aggregation in a dual variable domain immunoglobulin protein solution was investigated. Sucrose suppressed both LLPS and aggregation, Tween 80 had no effect on either, and PEG 400 increased LLPS and aggregation. Attractive protein-protein interactions and liquid-liquid phase separation decreased with increasing concentration of HPβCD, indicating its specific binding to the protein. However, HPβCD had no effect on the formation of soluble aggregates and fragments in this study. LLPS and aggregation are highly temperature dependent; at low temperature protein exhibits LLPS, at high temperature protein exhibits aggregation, and at an intermediate temperature both phenomena occur simultaneously depending on the solution conditions.

  18. The clinical and cost burden of coronary calcification in a Medicare cohort: An economic model to address under-reporting and misclassification.

    PubMed

    Garrison, Louis P; Lewin, Jack; Young, Christopher H; Généreux, Philippe; Crittendon, Janna; Mann, Marita R; Brindis, Ralph G

    2015-01-01

    Coronary artery calcification (CAC) is a well-established risk factor for the occurrence of adverse ischemic events. However, the economic impact of the presence of CAC is unknown. Through an economic model analysis, we sought to estimate the incremental impact of CAC on medical care costs and patient mortality for de novo percutaneous coronary intervention (PCI) patients in the 2012 cohort of the Medicare elderly (≥65) population. This aggregate burden-of-illness study is incidence-based, focusing on cost and survival outcomes for an annual Medicare cohort based on the recently introduced ICD9 code for CAC. The cost analysis uses a one-year horizon, and the survival analysis considers lost life years and their economic value. For calendar year 2012, an estimated 200,945 index (de novo) PCI procedures were performed in this cohort. An estimated 16,000 Medicare beneficiaries (7.9%) were projected to have had severe CAC, generating an additional cost in the first year following their PCI of $3500, on average, or $56 million in total. In terms of mortality, the model projects that an additional 397 deaths would be attributable to severe CAC in 2012, resulting in 3770 lost life years, representing an estimated loss of about $377 million, when valuing lost life years at $100,000 each. These model-based CAC estimates, considering both moderate and severe CAC patients, suggest an annual burden of illness approaching $1.3 billion in this PCI cohort. The potential clinical and cost consequences of CAC warrant additional clinical and economic attention not only on PCI strategies for particular patients but also on reporting and coding to achieve better evidence-based decision-making. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Simultaneous measurement of adenosine triphosphate release and aggregation potentiates human platelet aggregation responses for some subjects, including persons with Quebec platelet disorder.

    PubMed

    Hayward, C P M; Moffat, K A; Castilloux, J-F; Liu, Y; Seecharan, J; Tasneem, S; Carlino, S; Cormier, A; Rivard, G E

    2012-04-01

    Platelet aggregometry and dense granule adenosine triphosphate (ATP) release assays are helpful to diagnose platelet disorders. Some laboratories simultaneously measure aggregation and ATP release using Chronolume® a commercial reagent containing D-luciferin, firefly luciferase and magnesium. Chronolume® can potentiate sub-maximal aggregation responses, normalising canine platelet disorder findings. We investigated if Chronolume® potentiates human platelet aggregation responses after observing discrepancies suspicious of potentiation. Among patients simultaneously tested by light transmission aggregometry (LTA) on two instruments, 18/43 (42%), including 14/24 (58%) with platelet disorders, showed full secondary aggregation with one or more agonists only in tests with Chronolume®. As subjects with Quebec platelet disorder (QPD) did not show the expected absent secondary aggregation responses to epinephrine in tests with Chronolume®, the reason for the discrepancy was investigated using samples from 10 QPD subjects. Like sub-threshold ADP (0.75 μM), Chronolume® significantly increased QPD LTA responses to epinephrine (p<0.0001) and it increased both initial and secondary aggregation responses, leading to dense granule release. This potentiation was not restricted to QPD and it was mimicked adding 1-2 mM magnesium, but not D-luciferin or firefly luciferase, to LTA assays. Chronolume® potentiated the ADP aggregation responses of QPD subjects with a reduced response. Furthermore, it increased whole blood aggregation responses of healthy control samples to multiple agonists, tested at concentrations used for the diagnosis of platelet disorders (p values <0.05). Laboratories should be aware that measuring ATP release with Chronolume® can potentiate LTA and whole blood aggregation responses, which alters findings for some human platelet disorders, including QPD.

  20. New, rapid method to measure dissolved silver concentration in silver nanoparticle suspensions by aggregation combined with centrifugation

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Valsami-Jones, Eugenia; Kreft, Jan-Ulrich

    2016-09-01

    It is unclear whether the antimicrobial activities of silver nanoparticles (AgNPs) are exclusively mediated by the release of silver ions (Ag+) or, instead, are due to combined nanoparticle and silver ion effects. Therefore, it is essential to quantify dissolved Ag in nanosilver suspensions for investigations of nanoparticle toxicity. We developed a method to measure dissolved Ag in Ag+/AgNPs mixtures by combining aggregation of AgNPs with centrifugation. We also describe the reproducible synthesis of stable, uncoated AgNPs. Uncoated AgNPs were quickly aggregated by 2 mM Ca2+, forming large clusters that could be sedimented in a low-speed centrifuge. At 20,100g, the sedimentation time of AgNPs was markedly reduced to 30 min due to Ca2+-mediated aggregation, confirmed by the measurements of Ag content in supernatants with graphite furnace atomic absorption spectrometry. No AgNPs were detected in the supernatant by UV-Vis absorption spectra after centrifuging the aggregates. Our approach provides a convenient and inexpensive way to separate dissolved Ag from AgNPs, avoiding long ultracentrifugation times or Ag+ adsorption to ultrafiltration membranes.

  1. Formation of thermally induced aggregates of the soya globulin beta-conglycinin.

    PubMed

    Mills, E N; Huang, L; Noel, T R; Gunning, A P; Morris, V J

    2001-06-11

    The effect of ionic strength (I) on the formation of thermally induced aggregates by the 7S globular storage protein of soya, beta-conglycinin, has been studied using atomic force microscopy. Aggregates were only apparent when I> or =0.1, and had a fibrous appearance, with a height (diameter) of 8-11 nm. At high ionic strength (I=1.0) the aggregates appeared to associate into clumps. When aggregate formation was studied at I=0.2, it was clear that aggregation only began at temperatures above the main thermal transition for the protein at 75 degrees C, as determined by differential scanning calorimetry. This coincided with a small change in secondary structure, as indicated by circular dichroism spectroscopy, suggesting that a degree of unfolding was necessary for aggregation to proceed. Despite prolonged heating the size of the aggregates did not increase indefinitely, suggesting that certain beta-conglycinin isoforms were able to act as chain terminators. At higher protein concentrations (1% w/v) the linear aggregates appeared to form large macroaggregates, which may be the precursors of protein gel formation. The ability of beta-conglycinin to form such distinctive aggregates is discussed in relation to the presence of acidic inserts in certain of the beta-conglycinin subunits, which may play an important role in limiting aggregate length.

  2. Aeolian comminution experiments revealing surprising sandball mineral aggregates

    NASA Astrophysics Data System (ADS)

    Nørnberg, P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Iversen, J. J.; Jensen, S. Knak; Merrison, J. P.

    2014-06-01

    We have undertaken a set of wind erosion experiments on a simple and well defined mineral, quartz. In these experiments wind action is simulated by end over end tumbling of quartz grains in a sealed quartz flask. The tumbling induces collisions among the quartz grains and the walls of the flask. This process simulates wind action impact speed of ∼1.2 m/s. After several months of tumbling we observed the formation of a large number of spherical sand aggregates, which resemble small snowballs under optical microscopy. Upon mechanical load the aggregates are seen to be more elastic than quartz and their mechanical strength is comparable, though slightly lower than that of sintered silica aerogels. Aggregates of this kind have not been reported from field sites or from closed circulation systems. However, sparse occurrence might explain this, or in nature the concentration of the aggregate building particles is so low that they never meet and just appear as the most fine grained tail of the sediment particle size distribution.

  3. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a Karst ecosystem

    NASA Astrophysics Data System (ADS)

    Xiao, Shuangshuang; Zhang, Wei; Ye, Yingying; Zhao, Jie; Wang, Kelin

    2017-02-01

    Understanding the effect of land use on soil carbon, nitrogen, and microbial activity associated with aggregates is critical for thorough comprehension of the C and N dynamics of karst landscapes/ecosystems. We monitored soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), and Cmic: Corg ratio in large macro- (>2 mm), small macro- (0.25-2 mm), and micro- (0.053-0.25 mm) aggregates to determine the changes in soil properties under different land uses in the karst area of Southwest China. Five common land-use types—enclosure land (natural system, control), prescribed-burning land, fuel-wood shrubland, pasture and maize fields—were selected. Results showed that pasture and maize fields remarkably decreased the SOC and TN concentrations in aggregates. Conversion of natural system to other land uses decreased MBC (except for prescribed-burning) and increased Cmic: Corg ratios in aggregates. The extent of the response to land uses of SOC and TN concentrations was similar whereas that of MBC and Cmic: Corg ratios differed across the three aggregate sizes. Further, the SOC concentrations were significantly higher in macro-aggregates than micro-aggregates; the MBC and Cmic: Corg ratios were highest in small macro-aggregates. Therefore, small macro-aggregates might have more active C dynamics.

  4. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a Karst ecosystem

    PubMed Central

    Xiao, Shuangshuang; Zhang, Wei; Ye, Yingying; Zhao, Jie; Wang, Kelin

    2017-01-01

    Understanding the effect of land use on soil carbon, nitrogen, and microbial activity associated with aggregates is critical for thorough comprehension of the C and N dynamics of karst landscapes/ecosystems. We monitored soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), and Cmic: Corg ratio in large macro- (>2 mm), small macro- (0.25–2 mm), and micro- (0.053–0.25 mm) aggregates to determine the changes in soil properties under different land uses in the karst area of Southwest China. Five common land-use types—enclosure land (natural system, control), prescribed-burning land, fuel-wood shrubland, pasture and maize fields—were selected. Results showed that pasture and maize fields remarkably decreased the SOC and TN concentrations in aggregates. Conversion of natural system to other land uses decreased MBC (except for prescribed-burning) and increased Cmic: Corg ratios in aggregates. The extent of the response to land uses of SOC and TN concentrations was similar whereas that of MBC and Cmic: Corg ratios differed across the three aggregate sizes. Further, the SOC concentrations were significantly higher in macro-aggregates than micro-aggregates; the MBC and Cmic: Corg ratios were highest in small macro-aggregates. Therefore, small macro-aggregates might have more active C dynamics. PMID:28211507

  5. Inhibition of GNNQQNY prion peptide aggregation by trehalose: a mechanistic view.

    PubMed

    Katyal, Nidhi; Deep, Shashank

    2017-07-26

    Deposition of amyloid fibrils is the seminal event in the pathogenesis of numerous neurodegenerative diseases. The formation of this amyloid assembly is the manifestation of a cascade of structural transitions including toxic oligomer formation in the early stages of aggregation. Thus a viable therapeutic strategy involves the use of small molecular ligands to interfere with this assembly. In this perspective, we have explored the kinetics of aggregate formation of the fibril forming GNNQQNY peptide fragment from the yeast prion protein SUP35 using multiple all atom MD simulations with explicit solvent and provided mechanistic insights into the way trehalose, an experimentally known aggregation inhibitor, modulates the aggregation pathway. The results suggest that the assimilation process is impeded by different barriers at smaller and larger oligomeric sizes: the initial one being easily surpassed at higher temperatures and peptide concentrations. The kinetic profile demonstrates that trehalose delays the aggregation process by increasing both these activation barriers, specifically the latter one. It increases the sampling of small-sized aggregates that lack the beta sheet conformation. Analysis reveals that the barrier in the growth of larger stable oligomers causes the formation of multiple stable small oligomers which then fuse together bimolecularly. The PCA of 26 properties was carried out to deconvolute the events within the temporary lag phases, which suggested dynamism in lags involving an increase in interchain contacts and burial of SASA. The predominant growth route is monomer addition, which changes to condensation on account of a large number of depolymerisation events in the presence of trehalose. The favourable interaction of trehalose specifically with the sidechain of the peptide promotes crowding of trehalose molecules in its vicinity - the combination of both these factors imparts the observed behaviour. Furthermore, increasing trehalose

  6. Total organic carbon in aggregates as a soil recovery indicator

    NASA Astrophysics Data System (ADS)

    Luciene Maltoni, Katia; Rodrigues Cassiolato, Ana Maria; Amorim Faria, Glaucia; Dubbin, William

    2015-04-01

    The soil aggregation promotes physical protection of organic matter, preservation of which is crucial to improve soil structure, fertility and ensure the agro-ecosystems sustainability. The no-tillage cultivation system has been considered as one of the strategies to increase total soil organic carbono (TOC) contents and soil aggregation, both are closely related and influenced by soil management systems. The aim of this study was to evaluate the distribution of soil aggregates and the total organic carbon inside aggregates, with regard to soil recovery, under 3 different soil management systems, i.e. 10 and 20 years of no-tillage cultivation as compared with soil under natural vegetation (Cerrado). Undisturbed soils (0-5; 5-10; and 10-20 cm depth) were collected from Brazil, Central Region. The soils, Oxisols from Cerrado, were collected from a field under Natural Vegetation-Cerrado (NV), and from fields that were under conventional tillage since 1970s, and 10 and 20 years ago were changed to no-tillage cultivation system (NT-10; NT-20 respectively). The undisturbed samples were sieved (4mm) and the aggregates retained were further fractionated by wet sieving through five sieves (2000, 1000, 500, 250, and 50 μm) with the aggregates distribution expressed as percentage retained by each sieve. The TOC was determined, for each aggregate size, by combustion (Thermo-Finnigan). A predominance of aggregates >2000 μm was observed under NV treatment (92, 91, 82 %), NT-10 (64, 73, 61 %), and NT-20 (71, 79, 63 %) for all three depths (0-5; 5-10; 10-20 cm). In addition greater quantities of aggregates in sizes 1000, 500, 250 and 50 μm under NT-10 and NT-20 treatments, explain the lower aggregate stability under these treatments compared to the soil under NV. The organic C concentration for NV in aggregates >2000 μm was 24,4; 14,2; 8,7 mg/g for each depth (0-5; 5-10; 10-20 cm, respectively), higher than in aggregates sized 250-50 μm (7,2; 5,5; 4,4 mg/g) for all depths

  7. Molecular mechanisms of protein aggregation from global fitting of kinetic models.

    PubMed

    Meisl, Georg; Kirkegaard, Julius B; Arosio, Paolo; Michaels, Thomas C T; Vendruscolo, Michele; Dobson, Christopher M; Linse, Sara; Knowles, Tuomas P J

    2016-02-01

    The elucidation of the molecular mechanisms by which soluble proteins convert into their amyloid forms is a fundamental prerequisite for understanding and controlling disorders that are linked to protein aggregation, such as Alzheimer's and Parkinson's diseases. However, because of the complexity associated with aggregation reaction networks, the analysis of kinetic data of protein aggregation to obtain the underlying mechanisms represents a complex task. Here we describe a framework, using quantitative kinetic assays and global fitting, to determine and to verify a molecular mechanism for aggregation reactions that is compatible with experimental kinetic data. We implement this approach in a web-based software, AmyloFit. Our procedure starts from the results of kinetic experiments that measure the concentration of aggregate mass as a function of time. We illustrate the approach with results from the aggregation of the β-amyloid (Aβ) peptides measured using thioflavin T, but the method is suitable for data from any similar kinetic experiment measuring the accumulation of aggregate mass as a function of time; the input data are in the form of a tab-separated text file. We also outline general experimental strategies and practical considerations for obtaining kinetic data of sufficient quality to draw detailed mechanistic conclusions, and the procedure starts with instructions for extensive data quality control. For the core part of the analysis, we provide an online platform (http://www.amylofit.ch.cam.ac.uk) that enables robust global analysis of kinetic data without the need for extensive programming or detailed mathematical knowledge. The software automates repetitive tasks and guides users through the key steps of kinetic analysis: determination of constraints to be placed on the aggregation mechanism based on the concentration dependence of the aggregation reaction, choosing from several fundamental models describing assembly into linear aggregates and

  8. Surface modification of CoCr alloy using varying concentrations of phosphoric and phosphonoacetic acids: albumin and fibrinogen adsorption, platelet adhesion, activation, and aggregation studies.

    PubMed

    Thiruppathi, Eagappanath; Larson, Mark K; Mani, Gopinath

    2015-01-01

    CoCr alloy is commonly used in various cardiovascular medical devices for its excellent physical and mechanical properties. However, the formation of blood clots on the alloy surfaces is a serious concern. This research is focused on the surface modification of CoCr alloy using varying concentrations (1, 25, 50, 75, and 100 mM) of phosphoric acid (PA) and phosphonoacetic acid (PAA) to generate various surfaces with different wettability, chemistry, and roughness. Then, the adsorption of blood plasma proteins such as albumin and fibrinogen and the adhesion, activation, and aggregation of platelets with the various surfaces generated were investigated. Contact angle analysis showed PA and PAA coatings on CoCr provided a gradient of hydrophilic surfaces. FTIR showed PA and PAA were covalently bound to CoCr surface and formed different bonding configurations depending on the concentrations of coating solutions used. AFM showed the formation of homogeneous PA and PAA coatings on CoCr. The single and dual protein adsorption studies showed that the amount of albumin and fibrinogen adsorbed on the alloy surfaces strongly depend on the type of PA and PAA coatings prepared by different concentrations of coating solutions. All PA coated CoCr showed reduced platelet adhesion and activation when compared to control CoCr. Also, 75 and 100 mM PA-CoCr showed reduced platelet aggregation. For PAA coated CoCr, no significant difference in platelet adhesion and activation was observed between PAA coated CoCr and control CoCr. Thus, this study demonstrated that CoCr can be surface modified using PA for potentially reducing the formation of blood clots and improving the blood compatibility of the alloy.

  9. Antimicrobial preservatives induce aggregation of interferon alpha-2a: the order in which preservatives induce protein aggregation is independent of the protein.

    PubMed

    Bis, Regina L; Mallela, Krishna M G

    2014-09-10

    Antimicrobial preservatives (APs) are included in liquid multi-dose protein formulations to combat the growth of microbes and bacteria. These compounds have been shown to cause protein aggregation, which leads to serious immunogenic and toxic side-effects in patients. Our earlier work on a model protein cytochrome c (Cyt c) demonstrated that APs cause protein aggregation in a specific manner. The aim of this study is to validate the conclusions obtained from our model protein studies on a pharmaceutical protein. Interferon α-2a (IFNA2) is available as a therapeutic treatment for numerous immune-compromised disorders including leukemia and hepatitis C, and APs have been used in its multi-dose formulation. Similar to Cyt c, APs induced IFNA2 aggregation, demonstrated by the loss of soluble monomer and increase in solution turbidity. The extent of IFNA2 aggregation increased with the increase in AP concentration. IFNA2 aggregation also depended on the nature of AP, and followed the order m-cresol>phenol>benzyl alcohol>phenoxyethanol. This specific order exactly matched with that observed for the model protein Cyt c. These and previously published results on antibodies and other recombinant proteins suggest that the general mechanism by which APs induce protein aggregation may be independent of the protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Psychosocial predictors of coronary artery calcification progression in postmenopausal women.

    PubMed

    Low, Carissa A; Matthews, Karen A; Kuller, Lewis H; Edmundowicz, Daniel

    2011-01-01

    Coronary artery calcification (CAC) has been associated with psychosocial factors in some but not all cross-sectional analyses. The goal of this study was to determine whether positive and negative psychosocial factors prospectively predict CAC progression in postmenopausal women. Participants from the Healthy Women Study who also participated in the Pittsburgh Mind-Body Center protocol (n = 149) completed self-report psychosocial measures before two electron beam computed tomographic scans of CAC separated by an average of 3.3 years. Results of exploratory factor analysis were used to create aggregate psychosocial indices: psychological risk (depressive symptoms, perceived stress, cynicism, and anger-in) and psychosocial resources (optimism, purpose in life, mastery, self-esteem, and social support). The psychological risk index predicted significantly greater CAC progression over 3 years (β = 0.16, p = .035, ΔR(2) = 0.03), whereas the psychosocial resources index was not predictive of CAC progression (β = -0.08, p = .30, ΔR(2) = 0.01). On individual scales, higher scores on cynicism emerged as a significant predictor of CAC progression, along with a trend linking anger-in to atherosclerosis progression. A post hoc analysis showed a significant interaction between cynicism and anger-in (β = 0.20, p = .01, ΔR(2) = 0.03), such that women reporting high levels of both cynicism and anger suppression exhibited the most CAC progression. These findings highlight psychosocial risk factors that may accelerate the progression of subclinical atherosclerosis in older women, suggest the potential importance of examining combinations of psychosocial risk factors, and identify potential targets for psychological interventions to reduce cardiovascular risk.

  11. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W. B.; Kabia, Omaru M.; Do, Dung T.; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M.; Ghandi, Sonia; Bohndiek, Sarah E.; Snaddon, Thomas N.; Lee, Steven F.

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H2O2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H2O2. We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H2O2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  12. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species.

    PubMed

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W B; Kabia, Omaru M; Do, Dung T; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M; Ghandi, Sonia; Bohndiek, Sarah E; Snaddon, Thomas N; Lee, Steven F

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H 2 O 2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H 2 O 2 . We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H 2 O 2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  13. [Platelet function in acute myeloid leukemia. II. Aggregation of isolated platelets].

    PubMed

    Zawilska, K; Komarnicki, M; Mańka, B

    1978-01-01

    In 22 patients with acute myeloid leukaemia (17 cases of myeloblastic leukaemia, 4 cases of myelomonocytic leukaemia and 1 case of undifferentiated-cell leukaemia) platelets were isolated from the plasma by the method of Nicholls and Hampton as modified by Levy-Toledano by centrifugation in albumin gradient. The aim of platelet isolation was their "concentration" in cases of thrombocytopenia to values making possible aggregation tests, and platelet separation from the influence of plasma factors. Then aggregation of isolated platelets caused by ADP was studied. In 16 out of 22 patients a fall of aggregation was observed, with the mean values of aggregation rate and intensity were significantly lower. Parallelly done determinations of aggregating activity released from the platelets by thrombin showed lower values as compared with platelets from healthy subjects. In might be thought, in this connection, that the demonstrated reduction of isolated platelets is associated with a diminution of the nucleotide pool or disturbances of the platelet release reaction. The disturbances of the platelet release reaction. The disturbances of aggregation of isolated platelets and reduction of the aggregating activity were most pronounced in acute myelomonocytic leukaemia.

  14. Role of foam drainage in producing protein aggregates in foam fractionation.

    PubMed

    Li, Rui; Zhang, Yuran; Chang, Yunkang; Wu, Zhaoliang; Wang, Yanji; Chen, Xiang'e; Wang, Tao

    2017-10-01

    It is essential to obtain a clear understanding of the foam-induced protein aggregation to reduce the loss of protein functionality in foam fractionation. The major effort of this work is to explore the roles of foam drainage in protein aggregation in the entire process of foam fractionation with bovine serum albumin (BSA) as a model protein. The results show that enhancing foam drainage increased the desorption of BSA molecules from the gas-liquid interface and the local concentration of desorbed molecules in foam. Therefore, it intensified the aggregation of BSA in foam fractionation. Simultaneously, it also accelerated the flow of BSA aggregates from rising foam into the residual solution along with the drained liquid. Because enhancing foam drainage increased the relative content of BSA molecules adsorbed at the gas-liquid interface, it also intensified the aggregation of BSA during both the defoaming process and the storage of the foamate. Furthermore, enhancing foam drainage more readily resulted in the formation of insoluble BSA aggregates. The results are highly important for a better understanding of foam-induced protein aggregation in foam fractionation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Azaphilones inhibit tau aggregation and dissolve tau aggregates in vitro.

    PubMed

    Paranjape, Smita R; Riley, Andrew P; Somoza, Amber D; Oakley, C Elizabeth; Wang, Clay C C; Prisinzano, Thomas E; Oakley, Berl R; Gamblin, T Chris

    2015-05-20

    The aggregation of the microtubule-associated protein tau is a seminal event in many neurodegenerative diseases, including Alzheimer's disease. The inhibition or reversal of tau aggregation is therefore a potential therapeutic strategy for these diseases. Fungal natural products have proven to be a rich source of useful compounds having wide varieties of biological activities. We have previously screened Aspergillus nidulans secondary metabolites for their ability to inhibit tau aggregation in vitro using an arachidonic acid polymerization protocol. One aggregation inhibitor identified was asperbenzaldehyde, an intermediate in azaphilone biosynthesis. We therefore tested 11 azaphilone derivatives to determine their tau assembly inhibition properties in vitro. All compounds tested inhibited tau filament assembly to some extent, and four of the 11 compounds had the advantageous property of disassembling preformed tau aggregates in a dose-dependent fashion. The addition of these compounds to the tau aggregates reduced both the total length and number of tau polymers. The most potent compounds were tested in in vitro reactions to determine whether they interfere with tau's normal function of stabilizing microtubules (MTs). We found that they did not completely inhibit MT assembly in the presence of tau. These derivatives are very promising lead compounds for tau aggregation inhibitors and, more excitingly, for compounds that can disassemble pre-existing tau filaments. They also represent a new class of anti-tau aggregation compounds with a novel structural scaffold.

  16. Effects of oxidative modification on thermal aggregation and gel properties of soy protein by malondialdehyde.

    PubMed

    Wu, Wei; Hua, Yufei; Lin, Qinlu

    2014-03-01

    Malondialdehyde (MDA) was selected as a representative of lipid peroxidation products to investigate the effects of oxidative modification on thermal aggregation and gel properties of soy protein by lipid peroxidation products. Incubation of soy protein with increasing concentration of MDA resulted in gradual decrease of particle size and content of thermal aggregates during heat denaturation. Oxidative modification by MDA resulted in a decrease in water holding capacity, gel hardness, and gel strength of soy protein gel. An increase in coarseness and interstice of MDA modified protein gel network was accompanied by uneven distribution of interstice as MDA concentration increased. The results showed that degree of thermal aggregation of MDA-modified soy protein gradually decreased as MDA concentration increased, which contributed to a decrease in water holding capacity, gel hardness, and gel strength of MDA-modified soy protein gel.

  17. Heat-Induced Soluble Protein Aggregates from Mixed Pea Globulins and β-Lactoglobulin.

    PubMed

    Chihi, Mohamed-Lazhar; Mession, Jean-luc; Sok, Nicolas; Saurel, Rémi

    2016-04-06

    The present work investigates the formation of protein aggregates (85 °C, 60 min incubation) upon heat treatment of β-lactoglobulin (βlg)-pea globulins (Glob) mixtures at pH 7.2 and 5 mM NaCl from laboratory-prepared protein isolates. Various βlg/Glob weight ratios were applied, for a total protein concentration of 2 wt % in admixture. Different analytical methods were used to determine the aggregation behavior of "mixed" aggregates, that is, surface hydrophobicity and also sulfhydryl content, protein interactions by means of SDS-PAGE electrophoresis, and molecule size distribution by DLS and gel filtration. The production of "mixed" thermal aggregates would involve both the formation of new disulfide bonds and noncovalent interactions between the denatured βlg and Glob subunits. The majority of "mixed" soluble aggregates displayed higher molecular weight and smaller diameter than those for Glob heated in isolation. The development of pea-whey protein "mixed" aggregates may help to design new ingredients for the control of innovative food textures.

  18. Picomolar platelet-activating factor mobilizes Ca to change platelet shape without activating phospholipase C or protein kinase C; simultaneous fluorometric measurement of intracellular free Ca concentration and aggregation.

    PubMed

    James-Kracke, M R; Sexe, R B; Shukla, S D

    1994-11-01

    The purpose of this study was to investigate signal transduction mechanisms activated by low and high concentrations of platelet-activating factor (PAF) in rabbit platelets and to contrast the responses to those induced by thrombin. We measured changes in intracellular free calcium ([Ca++]i) with fura2, while monitoring light scatter simultaneously as a measure of shape change and aggregation in a dual-excitation dual-emission spectrofluorometer. An abrupt 20% fall in light scatter, coincident with the peak of the [Ca++]i, indicated shape change in Ca-containing or Ca-free medium and was blocked by BAPTA loading and 10 microM cytochalasin B. A secondary decline in light scatter, indicating aggregation, occurred only in Ca-containing medium and only under conditions favoring protein kinase C (PKC) activation. PAF at 10(-12) M did not increase 1,4,5-inositol triphosphate content, which suggested PKC would not be activated. However, PAF at 10(-12) rapidly increased [Ca++]i to 900 nM in 7 sec seemingly by Ca influx through receptor-operated channels inducing shape change. PAF at 10(-9) and 10(-8) M increased [Ca++]i to 2 microM in 12 sec and induced both shape change and aggregation. However, in platelets pretreated with 100 nM staurosporine to inhibit protein kinases, 10(-9) M PAF did not cause aggregation even though [Ca++]i still rose to 2 microM, which indicated that PKC plays a role in aggregation but not in Ca++ mobilization.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Intra-aggregate CO2 enrichment: a modelling approach for aerobic soils

    NASA Astrophysics Data System (ADS)

    Schlotter, D.; Schack-Kirchner, H.

    2013-02-01

    CO2 concentration gradients inside soil aggregates, caused by the respiration of soil microorganisms and fungal hyphae, might lead to variations in the soil solution chemistry on a mm-scale, and to an underestimation of the CO2 storage. But, up to now, there seems to be no feasible method for measuring CO2 inside natural aggregates with sufficient spatial resolution. We combined a one-dimensional model for gas diffusion in the inter-aggregate pore space with a cylinder diffusion model, simulating the consumption/production and diffusion of O2 and CO2 inside soil aggregates with air- and water-filled pores. Our model predicts that for aerobic respiration (respiratory quotient = 1) the intra-aggregate increase in the CO2 partial pressure can never be higher than 0.9 kPa for siliceous, and 0.1 kPa for calcaric aggregates, independent of the level of water-saturation. This suggests that only for siliceous aggregates CO2 produced by aerobic respiration might cause a high small-scale spatial variability in the soil solution chemistry. In calcaric aggregates, however, the contribution of carbonate species to the CO2 transport should lead to secondary carbonates on the aggregate surfaces. As regards the total CO2 storage in aerobic soils, both siliceous and calcaric, the effect of intra-aggregate CO2 gradients seems to be negligible. To assess the effect of anaerobic respiration on the intra-aggregate CO2 gradients, the development of a device for measuring CO2 on a mm-scale in soils is indispensable.

  20. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates.

    PubMed

    Morita, Masahiko; Malvankar, Nikhil S; Franks, Ashley E; Summers, Zarath M; Giloteaux, Ludovic; Rotaru, Amelia E; Rotaru, Camelia; Lovley, Derek R

    2011-01-01

    Mechanisms for electron transfer within microbial aggregates derived from an upflow anaerobic sludge blanket reactor converting brewery waste to methane were investigated in order to better understand the function of methanogenic consortia. The aggregates were electrically conductive, with conductivities 3-fold higher than the conductivities previously reported for dual-species aggregates of Geobacter species in which the two species appeared to exchange electrons via interspecies electron transfer. The temperature dependence response of the aggregate conductance was characteristic of the organic metallic-like conductance previously described for the conductive pili of Geobacter sulfurreducens and was inconsistent with electron conduction through minerals. Studies in which aggregates were incubated with high concentrations of potential electron donors demonstrated that the aggregates had no significant capacity for conversion of hydrogen to methane. The aggregates converted formate to methane but at rates too low to account for the rates at which that the aggregates syntrophically metabolized ethanol, an important component of the reactor influent. Geobacter species comprised 25% of 16S rRNA gene sequences recovered from the aggregates, suggesting that Geobacter species may have contributed to some but probably not all of the aggregate conductivity. Microorganisms most closely related to the acetate-utilizing Methanosaeta concilii accounted for more than 90% of the sequences that could be assigned to methane producers, consistent with the poor capacity for hydrogen and formate utilization. These results demonstrate for the first time that methanogenic wastewater aggregates can be electrically conductive and suggest that direct interspecies electron transfer could be an important mechanism for electron exchange in some methanogenic systems.

  1. Effect of temperature tuning on the aerosol acoustic aggregation process.

    PubMed

    Qiao, Zhenghui; Dong, Wei; Huang, Yaji; Naso, Vincenzo

    2018-05-01

    Diesel exhaust aerosols (DEAs) can absorb and accumulate toxic metal particulates and bacteria suspended in the atmospheric environment, which impact human health and the environment. The use of acoustic standing waves (ASWs) to aggregate DEA is currently considered to be an efficient particle removal method; however, study of the effect of different temperatures on the acoustic aggregation process is scarce. To explore the method and technology to regulate and optimize the aerosol aggregation process through temperature tuning, an acoustic apparatus integrated with a temperature regulation function was constructed. Using this apparatus, the effect of different characteristic temperatures (CTs) on the aerosol aggregation process was investigated experimentally in the ASW environment. Under constant conditions of acoustic frequency 1.286kHz, voltage amplitude 17V and input electric power 16.7W, the study concentrated on temperature effects on the aggregation process in the CT range of 58-72°C. The DEA opacity was used. The results demonstrate that the aggregation process is quite sensitive to the CT, and that the optimal DEA aggregation can be achieved at 66°C. The aggregated particles of 68.17μm are composed of small nanoparticles of 13.34-62.15nm. At CTs higher and lower than 66°C, the apparatus in non-resonance mode reduces the DEA aggregation level. For other instruments, the method for obtaining the optimum temperature for acoustic agglomeration is universal. This preliminary demonstration shows that the use of acoustic technology to regulate the aerosol aggregation process through tuning the operating temperature is feasible and convenient. Copyright © 2017. Published by Elsevier B.V.

  2. Assessment of Determinants of Emission Potentially Affecting the Concentration of Airborne Nano-Objects and Their Agglomerates and Aggregates.

    PubMed

    Bekker, Cindy; Fransman, Wouter; Boessen, Ruud; Oerlemans, Arné; Ottenbros, Ilse B; Vermeulen, Roel

    2017-01-01

    Nano-specific inhalation exposure models could potentially be effective tools to assess and control worker exposure to nano-objects, and their aggregates and agglomerates (NOAA). However, due to the lack of reliable and consistent collected NOAA exposure data, the scientific basis for validation of the existing NOAA exposure models is missing or limited. The main objective of this study was to gain more insight into the effect of various determinants underlying the potential on the concentration of airborne NOAA close to the source with the purpose of providing a scientific basis for existing and future exposure inhalation models. Four experimental studies were conducted to investigate the effect of 11 determinants of emission on the concentration airborne NOAA close to the source during dumping of ~100% nanopowders. Determinants under study were: nanomaterial, particle size, dump mass, height, rate, ventilation rate, mixing speed, containment, particle surface coating, moisture content of the powder, and receiving surface. The experiments were conducted in an experimental room (19.5 m3) with well-controlled environmental and ventilation conditions. Particle number concentration and size distribution were measured using real-time measurement devices. Dumping of nanopowders resulted in a higher number concentration and larger particles than dumping their reference microsized powder (P < 0.05). Statistically significant more and larger particles were also found during dumping of SiO2 nanopowder compared to TiO2/Al2O3 nanopowders. Particle surface coating did not affect the number concentration but on average larger particles were found during dumping of coated nanopowders. An increase of the powder's moisture content resulted in less and smaller particles in the air. Furthermore, the results indicate that particle number concentration increases with increasing dump height, rate, and mass and decreases when ventilation is turned on. These results give an indication of

  3. Modeling the reversible kinetics of neutrophil aggregation under hydrodynamic shear.

    PubMed Central

    Neelamegham, S; Taylor, A D; Hellums, J D; Dembo, M; Smith, C W; Simon, S I

    1997-01-01

    Neutrophil emigration into inflamed tissue is mediated by beta 2-integrin and L-selectin adhesion receptors. Homotypic neutrophil aggregation is also dependent on these molecules, and it provides a model system in which to study adhesion dynamics. In the current study we formulated a mathematical model for cellular aggregation in a linear shear field based on Smoluchowski's two-body collision theory. Neutrophil suspensions activated with chemotactic stimulus and sheared in a cone-plate viscometer rapidly aggregate. Over a range of shear rates (400-800 s-1), approximately 90% of the single cells were recruited into aggregates ranging from doublets to groupings larger than sextuplets. The adhesion efficiency fit to these kinetics reached maximum levels of > 70%. Formed aggregates remained intact and resistant to shear up to 120 s, at which time they spontaneously dissociated back to singlets. The rate of cell disaggregation was linearly proportional to the applied shear rate, and it was approximately 60% lower for doublets as compared to larger aggregates. By accounting for the time-dependent changes in adhesion efficiency, disaggregation rate, and the effects of aggregate geometry, we succeeded in predicting the reversible kinetics of aggregation over a wide range of shear rates and cell concentrations. The combination of viscometry with flow cytometry and mathematical analysis as presented here represents a novel approach to differentiating between the effects of hydrodynamics and the intrinsic biological processes that control cell adhesion. Images FIGURE 3 FIGURE 5 PMID:9083659

  4. Leucocyte aggregation in subjects with nickel dermatitis.

    PubMed Central

    MacLeod, T M; Hutchinson, F; Raffle, E J

    1976-01-01

    The effect of nickel sulphate on leuco-aggragation in whole blood buffy coat layers was studied in nickel-sensitive and control subjects. At concentrations of 150 mug and 200 mug nickel sulphate per ml a significant increase in the numbers of leuco-aggregates was noted in the nickel sensitive as compared with the control subjects. PMID:1009685

  5. Platelet aggregation responses in clinically healthy adult llamas.

    PubMed

    Gilbert, Rosanne M; Bird, Karyn E; Kutzler, Michelle A

    2009-03-01

    Limited information exists regarding hemostasis in camelids despite the importance of platelet function testing in the accurate identification of platelet disorders. As further importation of llamas to North America is restricted, variability in breeding stock will continue to decrease, potentially leading to an increase in heritable bleeding disorders. The objective of this study was to measure platelet aggregation responses in clinically healthy llamas and provide baseline data to which abnormal platelet function may be compared in the future. Blood samples were collected from 39 healthy adult llamas, citrated, and centrifuged to produce platelet-rich plasma (PRP). Within 4 hours of the blood draw, 20 microL of each agonist reagent were added to 180 microL of PRP. Final concentrations of agonists were 2 x 10(-5) M ADP, 0.19 mg collagen/mL PRP, 1 x 10(-4) M epinephrine, and 500 microg arachidonic acid/mL PRP. Llama platelets were most responsive to ADP and collagen, with a maximum percent aggregation (mean+/-SD) of 71.3+/-18.6% and 55.8+/-19% and aggregation rates of 9.5+/-3.9 and 6.7+/-3.7 cm/min, respectively. Llama platelet aggregation in response to epinephrine and arachidonic acid was minimal to absent. This study is the first of its kind to establish baseline values for platelet aggregation in healthy adult llamas.

  6. Photophysics of aggregated 9-methylthiacarbocyanine bound to polyanions

    NASA Astrophysics Data System (ADS)

    Chibisov, Alexander K.; Görner, Helmut

    2002-05-01

    The photophysical properties of 3,3 '-diethyl-9-methylthiacarbocyanine (DTC) were studied in the presence of polystyrene sulfonate (PSS), polyacrylic acid (PAA) and polymethacrylic acid (PMA). The absorption spectra reflect a monomer/dimer equilibrium in neat aqueous solution and a shift towards bound H-aggregates, bound dimers and bound monomers on increasing the ratio of polyanion residue to dye concentrations ( r). These equilibria also determine the photodeactivation modes of DTC. The fluorescence intensity is reduced, when dimers and aggregates are present and strongly enhanced for low dye loading ( r=10 4). In contrast, the quantum yield of intersystem crossing is enhanced for bound dimers ( r=10 3).

  7. Nuclear aggregates of polyamines in a radiation-induced DNA damage model.

    PubMed

    Iacomino, Giuseppe; Picariello, Gianluca; Stillitano, Ilaria; D'Agostino, Luciano

    2014-02-01

    Polyamines (PA) are believed to protect DNA minimizing the effect of radiation damage either by inducing DNA compaction and aggregation or acting as scavengers of free radicals. Using an in vitro pDNA double strand breakage assay based on gel electrophoretic mobility, we compared the protective capability of PA against γ-radiation with that of compounds generated by the supramolecular self-assembly of nuclear polyamines and phosphates, named Nuclear Aggregates of Polyamines (NAPs). Both unassembled PA and in vitro produced NAPs (ivNAPs) were ineffective in conferring pDNA protection at the sub-mM concentration. Single PA showed an appreciable protective effect only at high (mM) concentrations. However, concentrations of spermine (4+) within a critical range (0.481 mM) induced pDNA precipitation, an event that was not observed with NAPs-pDNA interaction. We conclude that the interaction of individual PA is ineffective to assure DNA protection, simultaneously preserving the flexibility and charge density of the double strand. Furthermore, data obtained by testing polyamine and ivNAPS with the current radiation-induced DNA damage model support the concept that PA-phosphate aggregates are the only forms through which PA interact with DNA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species

    PubMed Central

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W. B.; Kabia, Omaru M.; Do, Dung T.; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M.; Ghandi, Sonia; Bohndiek, Sarah E.; Snaddon, Thomas N.

    2018-01-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H2O2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H2O2. We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H2O2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease. PMID:29515860

  9. Quantitative imaging of aggregated emulsions.

    PubMed

    Penfold, Robert; Watson, Andrew D; Mackie, Alan R; Hibberd, David J

    2006-02-28

    Noise reduction, restoration, and segmentation methods are developed for the quantitative structural analysis in three dimensions of aggregated oil-in-water emulsion systems imaged by fluorescence confocal laser scanning microscopy. Mindful of typical industrial formulations, the methods are demonstrated for concentrated (30% volume fraction) and polydisperse emulsions. Following a regularized deconvolution step using an analytic optical transfer function and appropriate binary thresholding, novel application of the Euclidean distance map provides effective discrimination of closely clustered emulsion droplets with size variation over at least 1 order of magnitude. The a priori assumption of spherical nonintersecting objects provides crucial information to combat the ill-posed inverse problem presented by locating individual particles. Position coordinates and size estimates are recovered with sufficient precision to permit quantitative study of static geometrical features. In particular, aggregate morphology is characterized by a novel void distribution measure based on the generalized Apollonius problem. This is also compared with conventional Voronoi/Delauney analysis.

  10. Aggregation of Adenovirus 2 in Source Water and Impacts on Disinfection by Chlorine

    PubMed Central

    Cromeans, Theresa L.; Metcalfe, Maureen G.; Humphrey, Charles D.; Hill, Vincent R.

    2016-01-01

    It is generally accepted that viral particles in source water are likely to be found as aggregates attached to other particles. For this reason, it is important to investigate the disinfection efficacy of chlorine on aggregated viruses. A method to produce adenovirus particle aggregation was developed for this study. Negative stain electron microscopy was used to measure aggregation before and after addition of virus particles to surface water at different pH and specific conductance levels. The impact of aggregation on the efficacy of chlorine disinfection was also examined. Disinfection experiments with human adenovirus 2 (HAdV2) in source water were conducted using 0.2 mg/L free chlorine at 5 °C. Aggregation of HAdV2 in source water (≥3 aggregated particles) remained higher at higher specific conductance and pH levels. However, aggregation was highly variable, with the percentage of particles present in aggregates ranging from 43 to 71 %. Upon addition into source water, the aggregation percentage dropped dramatically. On average, chlorination CT values (chlorine concentration in mg/L × time in min) for 3-log10 inactivation of aggregated HAdV2 were up to three times higher than those for dispersed HAdV2, indicating that aggregation reduced the disinfection rate. This information can be used by water utilities and regulators to guide decision making regarding disinfection of viruses in water. PMID:26910058

  11. A mechanistic model of tau amyloid aggregation based on direct observation of oligomers

    NASA Astrophysics Data System (ADS)

    Shammas, Sarah L.; Garcia, Gonzalo A.; Kumar, Satish; Kjaergaard, Magnus; Horrocks, Mathew H.; Shivji, Nadia; Mandelkow, Eva; Knowles, Tuomas P. J.; Mandelkow, Eckhard; Klenerman, David

    2015-04-01

    Protein aggregation plays a key role in neurodegenerative disease, giving rise to small oligomers that may become cytotoxic to cells. The fundamental microscopic reactions taking place during aggregation, and their rate constants, have been difficult to determine due to lack of suitable methods to identify and follow the low concentration of oligomers over time. Here we use single-molecule fluorescence to study the aggregation of the repeat domain of tau (K18), and two mutant forms linked with familial frontotemporal dementia, the deletion mutant ΔK280 and the point mutant P301L. Our kinetic analysis reveals that aggregation proceeds via monomeric assembly into small oligomers, and a subsequent slow structural conversion step before fibril formation. Using this approach, we have been able to quantitatively determine how these mutations alter the aggregation energy landscape.

  12. Glycerolipid Headgroups Control Rate and Mechanism of Superoxide Dismutase-1 Aggregation and Accelerate Fibrillization of Slowly Aggregating Amyotrophic Lateral Sclerosis Mutants.

    PubMed

    Rasouli, Sanaz; Abdolvahabi, Alireza; Croom, Corbin M; Plewman, Devon L; Shi, Yunhua; Shaw, Bryan F

    2018-04-20

    Interactions between superoxide dismutase-1 (SOD1) and lipid membranes might be directly involved in the toxicity and intercellular propagation of aggregated SOD1 in amyotrophic lateral sclerosis (ALS), but the chemical details of lipid-SOD1 interactions and their effects on SOD1 aggregation remain unclear. This paper determined the rate and mechanism of nucleation of fibrillar apo-SOD1 catalyzed by liposomal surfaces with identical hydrophobic chains (RCH 2 (O 2 C 18 H 33 ) 2 ), but headgroups of different net charge and hydrophobicity (i.e., R(CH 2 )N + (CH 3 ) 3 , RPO 4 - (CH 2 ) 2 N + (CH 3 ) 3 , and RPO 4 - ). Under semiquiescent conditions (within a 96 well microplate, without a gyrating bead), the aggregation of apo-SOD1 into thioflavin-T-positive (ThT(+)) amyloid fibrils did not occur over 120 h in the absence of liposomal surfaces. Anionic liposomes triggered aggregation of apo-SOD1 into ThT(+) amyloid fibrils; cationic liposomes catalyzed fibrillization but at slower rates and across a narrower lipid concentration; zwitterionic liposomes produced nonfibrillar (amorphous) aggregates. The inability of zwitterionic liposomes to catalyze fibrillization and the dependence of fibrillization rate on anionic lipid concentration suggests that membranes catalyze SOD1 fibrillization by a primary nucleation mechanism. Membrane-catalyzed fibrillization was also examined for eight ALS variants of apo-SOD1, including G37R, G93R, D90A, and E100G apo-SOD1 that nucleate slower than or equal to WT SOD1 in lipid-free, nonquiescent amyloid assays. All ALS variants (with one exception) nucleated faster than WT SOD1 in the presence of anionic liposomes, wherein the greatest acceleratory effects were observed among variants with lower net negative surface charge (G37R, G93R, D90A, E100G). The exception was H46R apo-SOD1, which did not form ThT(+) species.

  13. Neutron attenuation characteristics of polyethylene, polyvinyl chloride, and heavy aggregate concrete and mortars.

    PubMed

    Abdul-Majid, S; Othman, F

    1994-03-01

    Polyethylene and polyvinyl chloride pellets were introduced into concrete to improve its neutron attenuation characteristics while several types of heavy coarse aggregates were used to improve its gamma ray attenuation properties. Neutron and gamma ray attenuation were studied in concrete samples containing coarse aggregates of barite, pyrite, basalt, hematite, and marble as well as polyethylene and polyvinyl chloride pellets in narrow-beam geometry. The highest neutron attenuation was shown by polyethylene mortar, followed by polyvinyl chloride mortar; barite and pyrite concrete showed higher gamma ray attenuation than ordinary concrete. Broad-beam and continuous (infinite) medium geometries were used to study the neutron attenuation of samples containing polymers at different concentrations with and without heavy aggregates, the fitting equations were established, and from these the neutron removal coefficients were deduced. In a radiation field of neutrons and gamma rays, the appropriate concentration of polymer and heavy aggregate can be selected to give the optimum total dose attenuation depending on the relative intensities of each type of radiation. This would give much better design flexibility over ordinary concrete. The compressive strength tests performed on mortar and concrete samples showed that their value, in general, decreases as polymer concentration increases and that the polyvinyl chloride mortar showed higher values than the polyethylene mortar. For general construction purposes, the compression strength was considered acceptable in these samples.

  14. Controlling ion aggregation and conduction in PEO-based ionomers.

    NASA Astrophysics Data System (ADS)

    Caldwell, David, II; Maranas, Janna

    2015-03-01

    PEO-based ionomers are ideal for reducing concentration polarization found in typical solid polymer electrolytes. This is achieved by binding the anion to the polymer backbone, significantly reducing the anions mobility. Ion aggregation is prevalent in these systems, but their influence on SPE performance is difficult to study experimentally. We present results of molecular dynamics simulations that explore the relationship between ion content and temperature on ion aggregation, polymer motion, and ion conduction. An unforeseen result of ionomers is the creation of string like aggregates that form conduction pathways in the amorphous region. These conduction pathways allow for a partial decoupling of ion conduction with polymer dynamics. The improvement in conductivity through the use of ion aggregates can be quantified by calculating the inverse of the Haven Ratio, dubbed f-value. Typical SPEs have an f-value less than 0.2, while the ionomers of study exhibit f-values near unity or higher. Understanding what properties influence the development and use of these conduction pathways will provide insight for further development of solid polymer electrolytes.

  15. Polymer depletion-driven cluster aggregation and initial phase separation in charged nanosized colloids

    NASA Astrophysics Data System (ADS)

    Gögelein, Christoph; Nägele, Gerhard; Buitenhuis, Johan; Tuinier, Remco; Dhont, Jan K. G.

    2009-05-01

    We study polymer depletion-driven cluster aggregation and initial phase separation in aqueous dispersions of charge-stabilized silica spheres, where the ionic strength and polymer (dextran) concentration are systematically varied, using dynamic light scattering and visual observation. Without polymers and for increasing salt and colloid content, the dispersions become increasingly unstable against irreversible cluster formation. By adding nonadsorbing polymers, a depletion-driven attraction is induced, which lowers the stabilizing Coulomb barrier and enhances the cluster growth rate. The initial growth rate increases with increasing polymer concentration and decreases with increasing polymer molar mass. These observations can be quantitatively understood by an irreversible dimer formation theory based on the classical Derjaguin, Landau, Verwey, and Overbeek pair potential, with the depletion attraction modeled by the Asakura-Oosawa-Vrij potential. At low colloid concentration, we observe an exponential cluster growth rate for all polymer concentrations considered, indicating a reaction-limited aggregation mechanism. At sufficiently high polymer and colloid concentrations, and lower salt content, a gas-liquidlike demixing is observed initially. Later on, the system separates into a gel and fluidlike phase. The experimental time-dependent state diagram is compared to the theoretical equilibrium phase diagram obtained from a generalized free-volume theory and is discussed in terms of an initial reversible phase separation process in combination with irreversible aggregation at later times.

  16. Polymer depletion-driven cluster aggregation and initial phase separation in charged nanosized colloids.

    PubMed

    Gögelein, Christoph; Nägele, Gerhard; Buitenhuis, Johan; Tuinier, Remco; Dhont, Jan K G

    2009-05-28

    We study polymer depletion-driven cluster aggregation and initial phase separation in aqueous dispersions of charge-stabilized silica spheres, where the ionic strength and polymer (dextran) concentration are systematically varied, using dynamic light scattering and visual observation. Without polymers and for increasing salt and colloid content, the dispersions become increasingly unstable against irreversible cluster formation. By adding nonadsorbing polymers, a depletion-driven attraction is induced, which lowers the stabilizing Coulomb barrier and enhances the cluster growth rate. The initial growth rate increases with increasing polymer concentration and decreases with increasing polymer molar mass. These observations can be quantitatively understood by an irreversible dimer formation theory based on the classical Derjaguin, Landau, Verwey, and Overbeek pair potential, with the depletion attraction modeled by the Asakura-Oosawa-Vrij potential. At low colloid concentration, we observe an exponential cluster growth rate for all polymer concentrations considered, indicating a reaction-limited aggregation mechanism. At sufficiently high polymer and colloid concentrations, and lower salt content, a gas-liquidlike demixing is observed initially. Later on, the system separates into a gel and fluidlike phase. The experimental time-dependent state diagram is compared to the theoretical equilibrium phase diagram obtained from a generalized free-volume theory and is discussed in terms of an initial reversible phase separation process in combination with irreversible aggregation at later times.

  17. Characterization of Diesel Soot Aggregates by Scattering and Extinction Methods

    NASA Astrophysics Data System (ADS)

    Kamimoto, Takeyuki

    2006-07-01

    Characteristics of diesel soot particles sampled from diesel exhaust of a common-rail turbo-charged diesel engine are quantified by scattering and extinction diagnostics using newly build two laser-based instruments. The radius of gyration representing the aggregates size is measured by the angular distribution of scattering intensity, while the soot mass concentration is measured by a two-wavelength extinction method. An approach to estimate the refractive index of diesel soot by an analysis of the extinction and scattering data using an aggregates scattering theory is proposed.

  18. Photophysical, electrochemical, thermal and aggregation properties of new metal phthalocyanines

    NASA Astrophysics Data System (ADS)

    Jeong, Jaemyeng; Kumar, Rangaraju Satish; Mergu, Naveen; Son, Young-A.

    2017-11-01

    In this study, the synthesis of di(ethylene glycol) naphthalene substituted metal-phthalocyanines was reported. These novel phthalocyanines were characterized by elemental and spectroscopic analysis, including 1H NMR, FT-IR, UV-Vis spectral and MALDI-TOF mass data. The aggregation behavior of these phthalocyanines was examined in chloroform at different concentrations, and we confirmed that the phthalocyanines were non-aggregated. Further thermal stability, electrochemical, theoretical studies and metal sensing properties also investigated. In addition, we successfully prepared phthalocyanine (6d) blended polyurethane electrospun (ES) nanofibers.

  19. To what extent clay mineralogy affects soil aggregation? Consequences for soil organic matter stabilization

    NASA Astrophysics Data System (ADS)

    Fernandez-Ugalde, O.; Barré, P.; Hubert, F.; Virto, I.; Chenu, C.; Ferrage, E.; Caner, L.

    2012-12-01

    Aggregation is a key process for soil functioning as it influences C storage, vulnerability to erosion and water holding capacity. While the influence of soil organic C on aggregation has been documented, much less is known about the role of soil mineralogy. Soils usually contain a mixture of clay minerals with contrasted surface properties, which should result on different abilities of clay minerals to aggregation. We took advantage of the intrinsic mineral heterogeneity of a temperate Luvisol to compare the role of clay minerals (illite, smectite, kaolinite, and mixed-layer illite-smectite) in aggregation. In a first step, grassland and tilled soil samples were fractionated in water in aggregate-size classes according to the hierarchical model of aggregation (Tisdall and Oades, 1982). Clay mineralogy and organic C in the aggregate-size classes were analyzed. The results showed that interstratified minerals containing swelling phases accumulated in aggregated fractions (>2 μm) compared to free clay fractions (<2 μm) in the two land-uses. The accumulation increased from large macro-aggregates (>500 μm) to micro-aggregates (50-250 μm). C concentration and C/N ratio followed the opposite trend. These results constitute a clay mineral-based evidence for the hierarchical model of aggregation, which postulates an increasing importance of the reactivity of clay minerals in the formation of micro-aggregates compared to larger aggregates. In the latter aggregates, formation relies on the physical enmeshment of particles by fungal hyphae, and root and microbial exudates. In a second step, micro-aggregates from the tilled soil samples were submitted to increasingly disaggregating treatments by sonication to evaluate the link between their water stability and clay mineralogy. Micro-aggregates with increasing stability showed an increase of interstratified minerals containing swelling phases and C concentration for low intensities of disaggregation (from 0 to 5 J mL-1

  20. GEOMETRIC CROSS SECTIONS OF DUST AGGREGATES AND A COMPRESSION MODEL FOR AGGREGATE COLLISIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suyama, Toru; Wada, Koji; Tanaka, Hidekazu

    2012-07-10

    Geometric cross sections of dust aggregates determine their coupling with disk gas, which governs their motions in protoplanetary disks. Collisional outcomes also depend on geometric cross sections of initial aggregates. In a previous paper, we performed three-dimensional N-body simulations of sequential collisions of aggregates composed of a number of sub-micron-sized icy particles and examined radii of gyration (and bulk densities) of the obtained aggregates. We showed that collisional compression of aggregates is not efficient and that aggregates remain fluffy. In the present study, we examine geometric cross sections of the aggregates. Their cross sections decrease due to compression as wellmore » as to their gyration radii. It is found that a relation between the cross section and the gyration radius proposed by Okuzumi et al. is valid for the compressed aggregates. We also refine the compression model proposed in our previous paper. The refined model enables us to calculate the evolution of both gyration radii and cross sections of growing aggregates and reproduces well our numerical results of sequential aggregate collisions. The refined model can describe non-equal-mass collisions as well as equal-mass cases. Although we do not take into account oblique collisions in the present study, oblique collisions would further hinder compression of aggregates.« less

  1. The influence of ion content on mobility and ion aggregation in PEO-based single-ion conductors

    NASA Astrophysics Data System (ADS)

    Caldwell, David; Maranas, Janna

    2013-03-01

    PEO-based ionomers reduce concentration polarization in solid polymer electrolytes by binding the anion to the polymer backbone. Ionomers have significant ion aggregation compared to PEO/salt systems, and the influence of these aggregates is unclear. When ion transport is coupled to the segmental dynamics of the polymer, aggregation will always reduce ion motion and conductivity. However, the conductivity of PEO ionomers is not sensitive to the degree of aggregation. We present results of molecular dynamics simulations where ion content is systematically varied. We consider the influence of ion content on ion aggregation, polymer mobility and cation motion.

  2. J-aggregation in porphyrin nanoparticles induced by diphenylalanine

    NASA Astrophysics Data System (ADS)

    Li, Fengqing; Liu, Dongzhi; Wang, Tianyang; Hu, Jianxin; Meng, Fancui; Sun, Haiya; Shang, Zhi; Li, Pingan; Feng, Wenhui; Li, Wei; Zhou, Xueqin

    2017-08-01

    In this report, L-diphenylalanine-decorated tetraphenylporphyrin (TPPtFFC) was synthesized and self-assembled into regular nano-architechtures. The morphology of the assemblies varied with the concentration of TPPtFFC. The absorption spectra of the nanoparticles show the Soret band merges with the Q bands and redistributes with great red-shift, indicative of the formation of J-aggregates of the porphyrin molecules. The fluorescence emission of the nanoparticles is merged and red-shifted to near-infrared region. Studies of absorption and fluorescence spectra reveal an indispensible role of diphenylalanine group in the formation of J-aggregates. The Raman spectra disclose that diprotonation of the porphyrin core contributes to delocalized coherent excited states in the nanoparticles. The positive cotton effect in circular dichroism spectra corresponding to the Soret band of TPPtFFC in solution confirms the formation of J-aggregates with right-handed chirality of the dipole moment. This report will shed light on the rational design of porphyrin-peptide conjugates to mimic naturally light-harvesting complexes.

  3. Lowering of acoustic droplet vaporization threshold via aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Shifang; Shi, Aiwei; Xu, Shanshan; Du, Xuan; Wang, Xin; Zong, Yujin; Bouakaz, Ayache; Wan, Mingxi

    2017-12-01

    Acoustically sensitive emulsion nanodroplets composed of perfluorocarbon have shown great potential for advanced medical diagnosis and therapy but are limited by the required high acoustic droplet vaporization (ADV) threshold for clinical applications. This study investigates the use of an ultrasonic standing wave to lower the ADV threshold while maintaining the generated bubble size in the required size range, ensuring the generation of inertial cavitation and corresponding physical effects. The results showed that disperse nanodroplets were manipulated to form micron-sized aggregations, and the required ADV threshold was significantly lowered, while a similar size range of the microbubbles generated by disperse nanodroplets was maintained. The threshold could be further regulated by adjusting the aggregation size via controlling the concentration of the disperse nanodroplets. Furthermore, the internal pressures in the aggregations with different sizes were calculated to determine their ADV thresholds theoretically, which were shown to be in good agreement with the experimental results.

  4. Epicuticular lipids induce aggregation in Chagas disease vectors

    PubMed Central

    Figueiras, Alicia N Lorenzo; Girotti, Juan R; Mijailovsky, Sergio J; Juárez, M Patricia

    2009-01-01

    Background The triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Aggregation behavior plays an important role in their survival by facilitating the location of refuges and cohesion of aggregates, helping to keep them safely assembled into shelters during daylight time, when they are vulnerable to predators. There are evidences that aggregation is mediated by thigmotaxis, by volatile cues from their faeces, and by hexane-extractable contact chemoreceptive signals from their cuticle surface. The epicuticular lipids of Triatoma infestans include a complex mixture of hydrocarbons, free and esterified fatty acids, alcohols, and sterols. Results We analyzed the response of T. infestans fifth instar nymphs after exposure to different amounts either of total epicuticular lipid extracts or individual lipid fractions. Assays were performed in a circular arena, employing a binary choice test with filter papers acting as aggregation attractive sites; papers were either impregnated with a hexane-extract of the total lipids, or lipid fraction; or with the solvent. Insects were significantly aggregated around papers impregnated with the epicuticular lipid extracts. Among the lipid fractions separately tested, only the free fatty acid fraction promoted significant bug aggregation. We also investigated the response to different amounts of selected fatty acid components of this fraction; receptiveness varied with the fatty acid chain length. No response was elicited by hexadecanoic acid (C16:0), the major fatty acid component. Octadecanoic acid (C18:0) showed a significant assembling effect in the concentration range tested (0.1 to 2 insect equivalents). The very long chain hexacosanoic acid (C26:0) was significantly attractant at low doses (≤ 1 equivalent), although a repellent effect was observed at higher doses. Conclusion The detection of contact aggregation pheromones has practical application in Chagas disease

  5. Epicuticular lipids induce aggregation in Chagas disease vectors.

    PubMed

    Figueiras, Alicia N Lorenzo; Girotti, Juan R; Mijailovsky, Sergio J; Juárez, M Patricia

    2009-01-27

    The triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Aggregation behavior plays an important role in their survival by facilitating the location of refuges and cohesion of aggregates, helping to keep them safely assembled into shelters during daylight time, when they are vulnerable to predators. There are evidences that aggregation is mediated by thigmotaxis, by volatile cues from their faeces, and by hexane-extractable contact chemoreceptive signals from their cuticle surface. The epicuticular lipids of Triatoma infestans include a complex mixture of hydrocarbons, free and esterified fatty acids, alcohols, and sterols. We analyzed the response of T. infestans fifth instar nymphs after exposure to different amounts either of total epicuticular lipid extracts or individual lipid fractions. Assays were performed in a circular arena, employing a binary choice test with filter papers acting as aggregation attractive sites; papers were either impregnated with a hexane-extract of the total lipids, or lipid fraction; or with the solvent. Insects were significantly aggregated around papers impregnated with the epicuticular lipid extracts. Among the lipid fractions separately tested, only the free fatty acid fraction promoted significant bug aggregation. We also investigated the response to different amounts of selected fatty acid components of this fraction; receptiveness varied with the fatty acid chain length. No response was elicited by hexadecanoic acid (C16:0), the major fatty acid component. Octadecanoic acid (C18:0) showed a significant assembling effect in the concentration range tested (0.1 to 2 insect equivalents). The very long chain hexacosanoic acid (C26:0) was significantly attractant at low doses (aggregation pheromones has practical application in Chagas disease vector control. These data may be

  6. Sustainable aggregates production : green applications for aggregate by-products.

    DOT National Transportation Integrated Search

    2015-06-01

    Increased emphasis in the construction industry on sustainability and recycling requires production of : aggregate gradations with lower dust (cleaner aggregates) and smaller maximum sizeshence, increased : amount of quarry by-products (QBs). QBs ...

  7. Polyaspartic Acid Concentration Controls the Rate of Calcium Phosphate Nanorod Formation in High Concentration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogstad, Daniel V.; Wang, Dongbo; Lin-Gibson, Sheng

    Polyelectrolytes are known to greatly affect calcium phosphate (CaP) mineralization. The reaction kinetics as well as the CaP phase, morphology and aggregation state depend on the relative concentrations of the polyelectrolyte and the inorganic ions in a complex, nonlinear manner. This study examines the structural evolution and kinetics of polyaspartic acid (pAsp) directed CaP mineralization at high concentrations of polyelectrolytes, calcium, and total phosphate (19–30 mg/mL pAsp, 50–100 mM Ca2+, Ca/P = 2). Using a novel combination of characterization techniques including cryogenic transmission electron microscopy (cryo-TEM), spectrophotometry, X-ray total scattering pair distribution function analysis, and attenuated total reflectance Fourier transformmore » infrared spectroscopy (ATR-FTIR), it was determined that the CaP mineralization occurred over four transition steps. The steps include the formation of aggregates of pAsp stabilized CaP spherical nanoparticles (sNP), crystallization of sNP, oriented attachment of the sNP into nanorods, and further crystallization of the nanorods. The intermediate aggregate sizes and the reaction kinetics were found to be highly polymer concentration dependent while the sizes of the particles were not concentration dependent. This study demonstrates the complex role of pAsp in controlling the mechanism as well as the kinetics of CaP mineralization.« less

  8. Pyromellitamide gelators: exponential rate of aggregation, hierarchical assembly, and their viscoelastic response to anions.

    PubMed

    Tong, Katie W K; Dehn, Sabrina; Webb, James E A; Nakamura, Kio; Braet, Filip; Thordarson, Pall

    2009-08-04

    The gelation and aggregation properties of a newly synthesized structurally simplified tetrahexyl pyromellitamide 2 have been studied and compared to the previously reported tetra(ethylhexanoate) pyromellitide 1, indicating that the ester groups in the latter significantly impede its aggregation. Morphology studies (AFM and TEM) on the aggregates formed by tetrahexyl pyromellitamide 2 in cyclohexane revealed highly uniform aggregates with different dimensions at different starting concentrations, suggesting that this molecule aggregates in a hierarchical fashion from a one-dimensional supramolecular polymer through hollow tubes or compressed helices to a network structure and then to a gel. This hypothesis is further supported by viscosity measurements that indicate a crossover point where individual supramolecular fibers get entangled at concentrations above ca. 3 mM in cyclohexane. Addition of 1 equiv of tetraalkylammonium salts of chloride or bromide, however, caused the viscosities of these pyromellitamide solutions to drop by a factor of 2-3 orders of magnitude, demonstrating the sensitivity of these aggregates to the presence of small anions. The sensitivity to anions does depend on the solubility of the salts used as small anion salts with little solubility in cyclohexane did not show this effect. Time-dependent viscosity studies showed that the aggregation of pyromellitamide 2 follows an exponential rate law, possibly related to the columnar rearrangements that are associated with the observed 6 angstroms contraction in d spacing in the XRD pattern of these gels. These results, particularly on the importance of kinetics of aggregation of self-assembled pyromellitamide gels, will be useful for future development of related materials for a number of applications, including tissue engineering and drug delivery.

  9. Epigallocatechin Gallate (EGCG) Inhibits Alpha-Synuclein Aggregation: A Potential Agent for Parkinson's Disease.

    PubMed

    Xu, Yan; Zhang, Yanyan; Quan, Zhenzhen; Wong, Winnie; Guo, Jianping; Zhang, Rongkai; Yang, Qinghu; Dai, Rongji; McGeer, Patrick L; Qing, Hong

    2016-10-01

    Protein aggregation is a prominent feature of many neurodegenerative disorders including Parkinson's disease (PD). Aggregation of alpha-synuclein (SNCA) may underlie the pathology of PD. They are the main components of Lewy bodies and dystrophic neurites that are the intraneuronal inclusions characteristic of the disease. We have demonstrated that the polyphenol (-)-epi-gallocatechine gallate (EGCG) inhibited SNCA aggregation, which made it a candidate for therapeutic intervention in PD. Three methods were used: SNCA fibril formation inhibition by EGCG in incubates; inhibition of the SNCA fluorophore A-Syn-HiLyte488 binding to plated SNCA in microwells; and inhibition of the A-Syn-HiLyte488 probe binding to aggregated SNCA in postmortem PD tissue. Recombinant human SNCA was incubated under conditions that result in fibril formation. The aggregation was blocked by 100 nM EGCG in a concentration-dependent manner, as shown by an absence of thioflavin T binding. In the microplate assay system, the ED 50 of EGCG inhibition of A-Syn-HiLyte488 binding to coated SNCA was 250 nM. In the PD tissue based assay, SNCA aggregates were recognized by incubation with 7 nM of A-Syn-HiLyte488. This binding was blocked by EGCG in a concentration dependent manner. The SNCA amino acid sites, which potentially interacted with EGCG, were detected on peptide membranes. It was implicated that EGCG binds to SNCA by instable hydrophobic interactions. In this study, we suggested that EGCG could be a potent remodeling agent of SNCA aggregates and a potential disease modifying drug for the treatment of PD and other α-synucleinopathies.

  10. Aggregation Behavior and a Putative Aggregation Pheromone in Sugar Beet Root Maggot Flies (Diptera: Ulidiidae)

    PubMed Central

    Emmert, Susan Y.; Tindall, Kelly; Ding, Hongjian; Boetel, Mark A.; Rajabaskar, D.; Eigenbrode, Sanford D.

    2017-01-01

    Male-biased aggregations of sugar beet root maggot, Tetanops myopaeformis (Röder) (Diptera: Ulidiidae), flies were observed on utility poles near sugar beet (Beta vulgaris L. [Chenopodiaceae]) fields in southern Idaho; this contrasts with the approximately equal sex ratio typically observed within fields. Peak observation of mating pairs coincided with peak diurnal abundance of flies. Volatiles released by individual male and female flies were sampled from 08:00 to 24:00 hours in the laboratory using solid-phase microextraction and analyzed using gas chromatography/mass spectrometry (GC/MS). Eleven compounds were uniquely detected from males. Three of these compounds (2-undecanol, 2-decanol, and sec-nonyl acetate) were detected in greater quantities during 12:00–24:00 hours than during 08:00–12:00 hours. The remaining eight compounds uniquely detected from males did not exhibit temporal trends in release. Both sexes produced 2-nonanol, but males produced substantially higher (ca. 80-fold) concentrations of this compound than females, again peaking after 12:00 hours. The temporal synchrony among male aggregation behavior, peak mating rates, and release of certain volatile compounds by males suggest that T. myopaeformis flies exhibit lekking behavior and produce an associated pheromone. Field assays using synthetic blends of the putative aggregation pheromone showed evidence of attraction in both females and males. PMID:28423428

  11. Sensing aggregation in highly turbid plasmonic and non-plasmonic colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Ducay, Rey Nann Mark; Philip, Nathan; Boivin, Jordan; Judge, Patrick; Berberich, Jason; Scaffidi, Jonathan; Bali, Lalit; Bali, Samir

    2015-05-01

    We demonstrate a method for sensing the presence of aggregation in highly turbid aqueous suspensions of polystyrene and gold nanospheres. Aggregation is induced either by changing the pH or the ionic strength, by adding small, controlled amounts of an acid or base solution. The particle concentrations used are at least two orders of magnitude higher than previously reported. To the best of our knowledge, this is a first observation of aggregation in highly dense colloidal suspensions without any sample dilution or special sample preparation. We gratefully acknowledge support from the American Chemical Society Petroleum Research Fund and Miami University's Interdisciplinary Roundtable Fund. We also gratefully acknowledge experimental help from the Miami University Instrumentation Laboratory.

  12. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  13. Fluorescence dye-based detection of mAb aggregates in CHO culture supernatants.

    PubMed

    Paul, Albert Jesuran; Schwab, Karen; Prokoph, Nina; Haas, Elena; Handrick, René; Hesse, Friedemann

    2015-06-01

    Product yields, efficacy, and safety of monoclonal antibodies (mAbs) are reduced by the formation of higher molecular weight aggregates during upstream processing. In-process characterization of mAb aggregate formation is a challenge since there is a lack of a fast detection method to identify mAb aggregates in cell culture. In this work, we present a rapid method to characterize mAb aggregate-containing Chinese hamster ovary (CHO) cell culture supernatants. The fluorescence dyes thioflavin T (ThT) and 4-4-bis-1-phenylamino-8-naphthalene sulfonate (Bis-ANS) enabled the detection of soluble as well as large mAb aggregates. Partial least square (PLS) regression models were used to evaluate the linearity of the dye-based mAb aggregate detection in buffer down to a mAb aggregate concentration of 2.4 μg mL(-1). Furthermore, mAb aggregates were detected in bioprocess medium using Bis-ANS and ThT. Dye binding to aggregates was stable for 60 min, making the method robust and reliable. Finally, the developed method using 10 μmol L(-1) Bis-ANS enabled discrimination between CHO cell culture supernatants containing different levels of mAb aggregates. The method can be adapted for high-throughput screening, e.g., to screen for cell culture conditions influencing mAb product quality, and hence can contribute to the improvement of production processes of biopharmaceuticals in mammalian cell culture.

  14. Licochalcones extracted from Glycyrrhiza inflata inhibit platelet aggregation accompanied by inhibition of COX-1 activity

    PubMed Central

    Okuda-Tanino, Asa; Sugawara, Daiki; Tashiro, Takumi; Iwashita, Masaya; Obara, Yutaro; Moriya, Takahiro; Tsushima, Chisato; Saigusa, Daisuke; Tomioka, Yoshihisa; Ishii, Kuniaki; Nakahata, Norimichi

    2017-01-01

    Licochalcones extracted from Glycyrrhiza inflata are known to have a variety of biological properties such as anti-inflammatory, anti-bacterial, and anti-tumor activities, but their action on platelet aggregation has not yet been reported. Therefore, in this study we investigated the effects of licochalcones on platelet aggregation. Collagen and U46619, a thromboxane A2 receptor agonist, caused rabbit platelet aggregation, which was reversed by pretreatment with licochalcones A, C and D in concentration-dependent manners. Among these compounds, licochalcone A caused the most potent inhibitory effect on collagen-induced platelet aggregation. However, the licochalcones showed marginal inhibitory effects on thrombin or ADP-induced platelet aggregation. In addition to rabbit platelets, licochalcone A attenuated collagen-induced aggregation in human platelets. Because licochalcone A also inhibited arachidonic acid-induced platelet aggregation and production of thromboxane A2 induced by collagen in intact platelets, we further examined the direct interaction of licochalcone A with cyclooxygenase (COX)-1. As expected, licochalcone A caused an inhibitory effect on both COX-1 and COX-2 in vitro. Regarding the effect of licochalcone A on COX-1 enzyme reaction kinetics, although licochalcone A showed a stronger inhibition of prostaglandin E2 synthesis induced by lower concentrations of arachidonic acid, Vmax values in the presence or absence of licochalcone A were comparable, suggesting that it competes with arachidonic acid at the same binding site on COX-1. These results suggest that licochalcones inhibit collagen-induced platelet aggregation accompanied by inhibition of COX-1 activity. PMID:28282426

  15. Aggregation of Adenovirus 2 in Source Water and Impacts on Disinfection by Chlorine.

    PubMed

    Kahler, Amy M; Cromeans, Theresa L; Metcalfe, Maureen G; Humphrey, Charles D; Hill, Vincent R

    2016-06-01

    It is generally accepted that viral particles in source water are likely to be found as aggregates attached to other particles. For this reason, it is important to investigate the disinfection efficacy of chlorine on aggregated viruses. A method to produce adenovirus particle aggregation was developed for this study. Negative stain electron microscopy was used to measure aggregation before and after addition of virus particles to surface water at different pH and specific conductance levels. The impact of aggregation on the efficacy of chlorine disinfection was also examined. Disinfection experiments with human adenovirus 2 (HAdV2) in source water were conducted using 0.2 mg/L free chlorine at 5 °C. Aggregation of HAdV2 in source water (≥3 aggregated particles) remained higher at higher specific conductance and pH levels. However, aggregation was highly variable, with the percentage of particles present in aggregates ranging from 43 to 71 %. Upon addition into source water, the aggregation percentage dropped dramatically. On average, chlorination CT values (chlorine concentration in mg/L × time in min) for 3-log10 inactivation of aggregated HAdV2 were up to three times higher than those for dispersed HAdV2, indicating that aggregation reduced the disinfection rate. This information can be used by water utilities and regulators to guide decision making regarding disinfection of viruses in water.

  16. Integration of Vibrio vulnificus into Marine Aggregates and Its Subsequent Uptake by Crassostrea virginica Oysters

    PubMed Central

    Froelich, Brett; Ayrapetyan, Mesrop

    2013-01-01

    Marine aggregates are naturally forming conglomerations of larvacean houses, phytoplankton, microbes, and inorganics adhered together by exocellular polymers. In this study, we show in vitro that the bacterial pathogen Vibrio vulnificus can be concentrated into laboratory-generated aggregates from surrounding water. We further show that environmental (E-genotype) strains exhibit significantly more integration into these aggregates than clinical (C-genotype) strains. Experiments where marine aggregates with attached V. vulnificus cells were fed to oysters (Crassostrea virginica) resulted in greater uptake of both C and E types than nonaggregated controls. When C- and E-genotype strains were cocultured in competitive experiments, the aggregated E-genotype strains exhibited significantly greater uptake by oyster than the C-genotype strains. PMID:23263962

  17. Effects of Pedogenic Fe Oxides on Soil Aggregate-Associated Carbon

    NASA Astrophysics Data System (ADS)

    Asefaw Berhe, A.; Jin, L.

    2017-12-01

    Carbon sequestration is intimately related to the soil structure, mainly soil aggregate dynamics. Carbon storage in soil aggregates has been recognized as an important carbon stabilization mechanism in soils. Organic matter and pedogenic Fe oxides are major binding agents that facilitate soil aggregate formation and stability. However, few studies have investigated how different forms of pedogenic Fe oxides can affect soil carbon distribution in different aggregate-size fractions. We investigated sequentially extracted pedogenic Fe oxides (in the order of organically complexed Fe extracted with sodium pyrophosphate, poorly-crystalline Fe oxides extracted with hydroxylamine hydrochloride, and crystalline Fe oxides extracted with dithionite hydrochloride) and determined the amount and nature of C in macroaggregates (2-0.25mm), microaggregates (0.25-0.053mm), and two silt and clay fractions (0.053-0.02mm, and <0.02mm) in Musick soil from Sierra Nevada mountain in California. We also determined how pedogenic Fe oxides affect soil carbon distribution along soil depth gradients. Findings of our study revealed that the proportion of organic matter complexed Fe decreased, but the proportion of crystalline Fe increased with increasing soil depths. Poorly crystalline Fe oxides (e.g. ferrihydrite) was identified as a major Fe oxide in surface soil, whereas crystalline Fe oxides (e.g. goethite) were found in deeper soil layers. These results suggest that high concentration of organic matter in surface soil suppressed Fe crystallization. Calcium cation was closely related to the pyrophosphate extractable Fe and C, which indicates that calcium may be a major cation that contribute to the organic matter complexed Fe and C pool. Increasing concentrations of extractable Fe and C with decreasing aggregate size fractions also suggests that Fe oxides play an important role in formation and stability of silt and clay fractions, and leading to further stabilization of carbon in soil

  18. Thermally controlled preferential molecular aggregation state in a thiacarbocyanine dye

    NASA Astrophysics Data System (ADS)

    Passier, Rémy; Ritchie, James P.; Toro, Carlos; Diaz, Carlos; Masunov, Artëm E.; Belfield, Kevin D.; Hernandez, Florencio E.

    2010-10-01

    Herein we report the experimental and theoretical study of the temperature dependence of a thiacarbocyanine dye in its monomer, H- and J-aggregates states. We demonstrate the ability to control the ratio of monomer, H- and/or J-aggregates with heat. We link such a control to the conformation dependence of the molecule. An alternative way to gain access to the dominating species without changing the concentration as a complete switching mechanism between all the present species is proposed. The results presented in this work lead to a better understanding of thiacarbocyanine dye's behavior.

  19. Neuroforecasting Aggregate Choice

    PubMed Central

    Knutson, Brian; Genevsky, Alexander

    2018-01-01

    Advances in brain-imaging design and analysis have allowed investigators to use neural activity to predict individual choice, while emerging Internet markets have opened up new opportunities for forecasting aggregate choice. Here, we review emerging research that bridges these levels of analysis by attempting to use group neural activity to forecast aggregate choice. A survey of initial findings suggests that components of group neural activity might forecast aggregate choice, in some cases even beyond traditional behavioral measures. In addition to demonstrating the plausibility of neuroforecasting, these findings raise the possibility that not all neural processes that predict individual choice forecast aggregate choice to the same degree. We propose that although integrative choice components may confer more consistency within individuals, affective choice components may generalize more broadly across individuals to forecast aggregate choice. PMID:29706726

  20. Aggregation behavior of fullerenes in aqueous solutions: a capillary electrophoresis and asymmetric flow field-flow fractionation study.

    PubMed

    Astefanei, Alina; Núñez, Oscar; Galceran, Maria Teresa; Kok, Wim Th; Schoenmakers, Peter J

    2015-10-01

    In this work, the electrophoretic behavior of hydrophobic fullerenes [buckminsterfullerene (C60), C70, and N-methyl-fulleropyrrolidine (C60-pyrr)] and water-soluble fullerenes [fullerol (C60(OH)24); polyhydroxy small gap fullerene, hydrated (C120(OH)30); C60 pyrrolidine tris acid (C60-pyrr tris acid); and (1,2-methanofullerene C60)-61-carboxylic acid (C60CHCOOH)] in micellar electrokinetic capillary chromatography (MECC) was evaluated. The aggregation behavior of the water-soluble compounds in MECC at different buffer and sodium dodecyl sulfate (SDS) concentrations and pH values of the background electrolyte (BGE) was studied by monitoring the changes observed in the electrophoretic pattern of the peaks. Broad and distorted peaks that can be attributed to fullerene aggregation were obtained in MECC which became narrower and more symmetric by working at low buffer and SDS concentrations (below the critical micelle concentration, capillary zone electrophoresis (CZE) conditions). For the characterization of the suspected aggregates formed (size and shape), asymmetrical flow field-flow fractionation (AF4) and transmission electron microscopy (TEM) were used. The results showed that the increase in the buffer concentration promoted the aggregation of the particles, while the presence of SDS micelles revealed multiple peaks corresponding to particles of different aggregation degrees. Furthermore, MECC has been applied for the first time for the analysis of C60 in two different cosmetic products (i.e., anti-aging serum and facial mask).

  1. Theory of nematic order with aggregate dehydration for reversibly assembling proteins in concentrated solutions: Application to sickle-cell hemoglobin polymers

    NASA Astrophysics Data System (ADS)

    Hentschke, Reinhard; Herzfeld, Judith

    1991-06-01

    The reversible association of globular protein molecules in concentrated solution leads to highly polydisperse fibers, e.g., actin filaments, microtubules, and sickle-cell hemoglobin fibers. At high concentrations, excluded-volume interactions between the fibers lead to spontaneous alignment analogous to that in simple lyotropic liquid crystals. However, the phase behavior of reversibly associating proteins is complicated by the threefold coupling between the growth, alignment, and hydration of the fibers. In protein systems aggregates contain substantial solvent, which may cause them to swell or shrink, depending on osmotic stress. Extending previous work, we present a model for the equilibrium phase behavior of the above-noted protein systems in terms of simple intra- and interaggregate interactions, combined with equilibration of fiber-incorporated solvent with the bulk solvent. Specifically, we compare our model results to recent osmotic pressure data for sickle-cell hemoglobin and find excellent agreement. This comparison shows that particle interactions sufficient to cause alignment are also sufficient to squeeze significant amounts of solvent out of protein fibers. In addition, the model is in accord with findings from independent sedimentation and birefringence studies on sickle-cell hemoglobin.

  2. Aggregation Pathways of Native-Like Ubiquitin Promoted by Single-Point Mutation, Metal Ion Concentration, and Dielectric Constant of the Medium.

    PubMed

    Fermani, Simona; Calvaresi, Matteo; Mangini, Vincenzo; Falini, Giuseppe; Bottoni, Andrea; Natile, Giovanni; Arnesano, Fabio

    2018-03-15

    Ubiquitin-positive protein aggregates are biomarkers of neurodegeneration, but the molecular mechanism responsible for their formation and accumulation is still unclear. Possible aggregation pathways of human ubiquitin (hUb) promoted by both intrinsic and extrinsic factors, are here investigated. By a computational analysis, two different hUb dimers are indicated as possible precursors of amyloid-like structures, but their formation is disfavored by an electrostatic repulsion involving Glu16 and other carboxylate residues present at the dimer interface. Experimental data on the E16V mutant of hUb shows that this single-point mutation, although not affecting the overall protein conformation, promotes protein aggregation. It is sufficient to shift the same mutation by only two residues (E18V) to regain the behavior of wild-type hUb. The neutralization of Glu16 negative charge by a metal ion and a decrease of the dielectric constant of the medium by addition of trifluoroethanol (TFE), also promote hUb aggregation. The outcomes of this research have important implications for the prediction of physiological parameters that favor aggregate formation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effects on wetting by spray on concentrated flow erosion and intake rate

    USDA-ARS?s Scientific Manuscript database

    When water flows in dry rills (or furrows), fast wetting and aggregate slaking occur. Conversely, when rain wets the surface of the soil before applying concentrated flow, slow wetting precedes the concentrated flow, and less aggregate disintegration occurs. It is hypothesized that slow wetting by t...

  4. Depletion of E. coli in permeable pavement mineral aggregate storage and reuse systems.

    PubMed

    Myers, B R; Beecham, S; van Leeuwen, J A; Keegan, A

    2009-01-01

    Permeable pavement reservoirs provide an important opportunity for the harvesting and storage of stormwater for reuse. This research aims to determine whether storage in dolomite, calcite and quartzite mineral aggregates in the base course of a permeable pavement impacts on the survival of the pathogen indicator organism Escherichia coli (E. coli) in storage. The reasons for depletion were also investigated. Twelve model permeable pavement storage reservoirs were filled, in triplicate, with dolomite, calcite and quartzite. Three reservoirs contained no aggregate. After filling with pathogen spiked rainwater, the concentration of E. coli was examined for 22 days in the reservoirs. The reservoirs were then agitated to determine if there was E. coli present which was not in aqueous suspension. The results of the experiments show that there is no significant difference in the depletion of E. coli found in reservoirs without aggregate, and those filled with dolomite or calcite. The rate of depletion was found to be significantly lower in the quartzite filled reservoirs. Agitation of the reservoirs yielded increases in the aqueous concentration of E. coli in all reservoir types, suggesting that the bacteria are adhering to the surface of the mineral aggregate and to the reservoir walls.

  5. Effects of ionic strength and temperature on the aggregation and deposition of multi-walled carbon nanotubes.

    PubMed

    Wang, Lixin; Yang, Xuezhi; Wang, Qi; Zeng, Yuxuan; Ding, Lei; Jiang, Wei

    2017-01-01

    The aggregation and deposition of carbon nanotubes (CNTs) determines their transport and fate in natural waters. Therefore, the aggregation kinetics of humic-acid treated multi-walled carbon nanotubes (HA-MWCNTs) was investigated by time-resolved dynamic light scattering in NaCl and CaCl 2 electrolyte solutions. Increased ionic strength induced HA-MWCNT aggregation due to the less negative zeta potential and the reduced electrostatic repulsion. The critical coagulation concentration (CCC) values of HA-MWCNTs were 80mmol/L in NaCl and 1.3mmol/L in CaCl 2 electrolyte, showing that Ca 2+ causes more serious aggregation than Na + . The aggregation behavior of HA-MWCNTs was consistent with Derjaguin-Landau-Verwey-Overbeek theory. The deposition kinetics of HA-MWCNTs was measured by the optical absorbance at 800nm. The critical deposition concentrations for HA-MWCNT in NaCl and CaCl 2 solutions were close to the CCC values, therefore the rate of deposition cannot be increased by changing the ionic strength in the diffusion-limited aggregation regime. The deposition process was correlated to the aggregation since larger aggregates increased gravitational deposition and decreased random Brownian diffusion. HA-MWCNTs hydrodynamic diameters were evaluated at 5, 15 and 25°C. Higher temperature caused faster aggregation due to the reduced electrostatic repulsion and increased random Brownian motion and collision frequency. HA-MWCNTs aggregate faster at higher temperature in either NaCl or CaCl 2 electrolyte due to the decreased electrostatic repulsion and increased random Brownian motion. Our results suggest that CNT aggregation and deposition are two correlated processes governed by the electrolyte, and CNT transport is favored at low ionic strength and low temperature. Copyright © 2016. Published by Elsevier B.V.

  6. Instability Mechanisms of Water-in-Oil Nanoemulsions with Phospholipids: Temporal and Morphological Structures.

    PubMed

    Sommerling, Jan-Hendrik; de Matos, Maria B C; Hildebrandt, Ellen; Dessy, Alberto; Kok, Robbert Jan; Nirschl, Hermann; Leneweit, Gero

    2018-01-16

    Many food preparations, pharmaceuticals, and cosmetics use water-in-oil (W/O) emulsions stabilized by phospholipids. Moreover, recent technological developments try to produce liposomes or lipid coated capsules from W/O emulsions, but are faced with colloidal instabilities. To explore these instability mechanisms, emulsification by sonication was applied in three cycles, and the sample stability was studied for 3 h after each cycle. Clearly identifiable temporal structures of instability provide evidence about the emulsion morphology: an initial regime of about 10 min is shown to be governed by coalescence after which Ostwald ripening dominates. Transport via molecular diffusion in Ostwald ripening is commonly based on the mutual solubility of the two phases and is therefore prohibited in emulsions composed of immiscible phases. However, in the case of water in oil emulsified by phospholipids, these form water-loaded reverse micelles in oil, which enable Ostwald ripening despite the low solubility of water in oil, as is shown for squalene. As is proved for the phospholipid dipalmitoylphosphatidylcholine (DPPC), concentrations below the critical aggregation concentration (CAC) form monolayers at the interfaces and smaller droplet sizes. In contrast, phospholipid concentrations above the CAC create complex multilayers at the interface with larger droplet sizes. The key factors for stable W/O emulsions in classical or innovative applications are first, the minimization of the phospholipids' capacity to form reversed micelles, and second, the adaption of the initial phospholipid concentration to the water content to enable an optimized coverage of phospholipids at the interfaces for the intended drop size.

  7. Platelet activation and aggregation by the opportunistic pathogen Cutibacterium (Propionibacterium) acnes

    PubMed Central

    Petersson, Frida; Kilsgård, Ola; Shannon, Oonagh

    2018-01-01

    Cutibacterium (Propionibacterium) acnes, considered a part of the skin microbiota, is one of the most commonly isolated anaerobic bacteria from medical implants in contact with plasma. However, the precise interaction of C. acnes with blood cells and plasma proteins has not been fully elucidated. Herein, we have investigated the molecular interaction of C. acnes with platelets and plasma proteins. We report that the ability of C. acnes to aggregate platelets is dependent on phylotype, with a significantly lower ability amongst type IB isolates, and the interaction of specific donor-dependent plasma proteins (or concentrations thereof) with C. acnes. Pretreatment of C. acnes with plasma reduces the lag time before aggregation demonstrating that pre-deposition of plasma proteins on C. acnes is an important step in platelet aggregation. Using mass spectrometry we identified several plasma proteins deposited on C. acnes, including IgG, fibrinogen and complement factors. Inhibition of IgG, fibrinogen or complement decreased C. acnes-mediated platelet aggregation, demonstrating the importance of these plasma proteins for aggregation. The interaction of C. acnes and platelets was visualized using fluorescence microscopy, verifying the presence of IgG and fibrinogen as components of the aggregates, and co-localization of C. acnes and platelets in the aggregates. Here, we have demonstrated the ability of C. acnes to activate and aggregate platelets in a bacterium and donor-specific fashion, as well as added mechanistic insights into this interaction. PMID:29385206

  8. Platelet activation and aggregation by the opportunistic pathogen Cutibacterium (Propionibacterium) acnes.

    PubMed

    Petersson, Frida; Kilsgård, Ola; Shannon, Oonagh; Lood, Rolf

    2018-01-01

    Cutibacterium (Propionibacterium) acnes, considered a part of the skin microbiota, is one of the most commonly isolated anaerobic bacteria from medical implants in contact with plasma. However, the precise interaction of C. acnes with blood cells and plasma proteins has not been fully elucidated. Herein, we have investigated the molecular interaction of C. acnes with platelets and plasma proteins. We report that the ability of C. acnes to aggregate platelets is dependent on phylotype, with a significantly lower ability amongst type IB isolates, and the interaction of specific donor-dependent plasma proteins (or concentrations thereof) with C. acnes. Pretreatment of C. acnes with plasma reduces the lag time before aggregation demonstrating that pre-deposition of plasma proteins on C. acnes is an important step in platelet aggregation. Using mass spectrometry we identified several plasma proteins deposited on C. acnes, including IgG, fibrinogen and complement factors. Inhibition of IgG, fibrinogen or complement decreased C. acnes-mediated platelet aggregation, demonstrating the importance of these plasma proteins for aggregation. The interaction of C. acnes and platelets was visualized using fluorescence microscopy, verifying the presence of IgG and fibrinogen as components of the aggregates, and co-localization of C. acnes and platelets in the aggregates. Here, we have demonstrated the ability of C. acnes to activate and aggregate platelets in a bacterium and donor-specific fashion, as well as added mechanistic insights into this interaction.

  9. Patterns of [PSI+] aggregation allow insights into cellular organization of yeast prion aggregates

    PubMed Central

    Tyedmers, Jens

    2012-01-01

    The yeast prion phenomenon is very widespread and mounting evidence suggests that it has an impact on cellular regulatory mechanisms related to phenotypic responses to changing environments. Studying the aggregation patterns of prion amyloids during different stages of the prion life cycle is a first key step to understand major principles of how and where cells generate, organize and turn-over prion aggregates. The induction of the [PSI+] state involves the actin cytoskeleton and quality control compartments such as the Insoluble Protein Deposit (IPOD). An initially unstable transitional induction state can be visualized by overexpression of the prion determinant and displays characteristic large ring- and ribbon-shaped aggregates consisting of poorly fragmented bundles of very long prion fibrils. In the mature prion state, the aggregation pattern is characterized by highly fragmented, shorter prion fibrils that form aggregates, which can be visualized through tagging with fluorescent proteins. The number of aggregates formed varies, ranging from a single large aggregate at the IPOD to multiple smaller ones, depending on several parameters discussed. Aggregate units below the resolution of light microscopy that are detectable by fluorescence correlation spectroscopy are in equilibrium with larger aggregates in this stage and can mediate faithful inheritance of the prion state. Loss of the prion state is often characterized by reduced fragmentation of prion fibrils and fewer, larger aggregates. PMID:22449721

  10. Non-Arrhenius protein aggregation.

    PubMed

    Wang, Wei; Roberts, Christopher J

    2013-07-01

    Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.

  11. Role of clay minerals in the formation of atmospheric aggregates of Saharan dust

    NASA Astrophysics Data System (ADS)

    Cuadros, Javier; Diaz-Hernandez, José L.; Sanchez-Navas, Antonio; Garcia-Casco, Antonio

    2015-11-01

    Saharan dust can travel long distances in different directions across the Atlantic and Europe, sometimes in episodes of high dust concentration. In recent years it has been discovered that Saharan dust aerosols can aggregate into large, approximately spherical particles of up to 100 μm generated within raindrops that then evaporate, so that the aggregate deposition takes place most times in dry conditions. These aerosol aggregates are an interesting phenomenon resulting from the interaction of mineral aerosols and atmospheric conditions. They have been termed "iberulites" due to their discovery and description from aerosol deposits in the Iberian Peninsula. Here, these aggregates are further investigated, in particular the role of the clay minerals in the aggregation process of aerosol particles. Iberulites, and common aerosol particles for reference, were studied from the following periods or single dust events and locations: June 1998 in Tenerife, Canary Islands; June 2001 to August 2002, Granada, Spain; 13-20 August 2012, Granada; and 1-6 June 2014, Granada. Their mineralogy, chemistry and texture were analysed using X-ray diffraction, electron microprobe analysis, SEM and TEM. The mineral composition and structure of the iberulites consists of quartz, carbonate and feldspar grains surrounded by a matrix of clay minerals (illite, smectite and kaolinite) that also surrounds the entire aggregate. Minor phases, also distributed homogenously within the iberulites, are sulfates and Fe oxides. Clays are apparently more abundant in the iberulites than in the total aerosol deposit, suggesting that iberulite formation concentrates clays. Details of the structure and composition of iberulites differ from descriptions of previous samples, which indicates dependence on dust sources and atmospheric conditions, possibly including anthropic activity. Iberulites are formed by coalescence of aerosol mineral particles captured by precursor water droplets. The concentration of

  12. Visible light-induced insulin aggregation on surfaces via photoexcitation of bound thioflavin T.

    PubMed

    Chouchane, Karim; Pignot-Paintrand, Isabelle; Bruckert, Franz; Weidenhaupt, Marianne

    2018-04-01

    Insulin is known to form amyloid aggregates when agitated in a hydrophobic container. Amyloid aggregation is routinely measured by the fluorescence of the conformational dye thioflavin T, which, when incorporated into amyloid fibers, fluoresces at 480 nm. The kinetics of amyloid aggregation in general is characterized by an initial lag-phase, during which aggregative nuclei form on the hydrophobic surface. These nuclei then lead to the formation of fibrils presenting a rapid growth during the elongation phase. Here we describe a novel mechanism of insulin amyloid aggregation which is surprisingly devoid of a lag-time for nucleation. The excitation of thioflavin T by visible light at 440 nm induces the aggregation of thioflavin T-positive insulin fibrils on hydrophobic surfaces in the presence of strong agitation and at physiological pH. This process is material surface-induced and depends on the fact that surface-adsorbed insulin can bind thioflavin T. Light-induced insulin aggregation kinetics is thioflavin T-mediated and is based on an energy transfer from visible light to the protein via thioflavin T. It relies on a constant supply of thioflavin T and insulin from the solution to the aggregate. The growth rate increases with the irradiance and with the concentration of thioflavin T. The supply of insulin seems to be the limiting factor of aggregate growth. This light-induced aggregation process allows the formation of local surface-bound aggregation patterns. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Mechanisms of m-cresol induced protein aggregation studied using a model protein cytochrome c†

    PubMed Central

    Singh, Surinder M.; Hutchings, Regina L.; Mallela, Krishna M.G.

    2014-01-01

    Multi-dose protein formulations require an effective antimicrobial preservative (AP) to inhibit microbial growth during long-term storage of unused formulations. m-cresol is one such AP, but has been shown to cause protein aggregation. However, the fundamental physical mechanisms underlying such AP-induced protein aggregation are not understood. In this study, we used a model protein cytochrome c to identify the protein unfolding that triggers protein aggregation. m-cresol induced cytochrome c aggregation at preservative concentrations that are commonly used to inhibit microbial growth. Addition of m-cresol decreased the temperature at which the protein aggregated and increased the aggregation rate. However, m-cresol did not perturb the tertiary or secondary structure of cytochrome c. Instead, it populated an “invisible” partially unfolded intermediate where a local protein region around the methionine residue at position 80 was unfolded. Stabilizing the Met80 region drastically decreased the protein aggregation, which conclusively shows that this local protein region acts as an aggregation “hot-spot”. Based on these results, we propose that APs induce protein aggregation by partial rather than global unfolding. Because of the availability of site-specific probes to monitor different levels of protein unfolding, cytochrome c provided a unique advantage in characterizing the partial protein unfolding that triggers protein aggregation. PMID:21229618

  14. Characterization of seed nuclei in glucagon aggregation using light scattering methods and field-flow fractionation

    PubMed Central

    Hoppe, Cindy C; Nguyen, Lida T; Kirsch, Lee E; Wiencek, John M

    2008-01-01

    Background Glucagon is a peptide hormone with many uses as a therapeutic agent, including the emergency treatment of hypoglycemia. Physical instability of glucagon in solution leads to problems with the manufacture, formulation, and delivery of this pharmaceutical product. Glucagon has been shown to aggregate and form fibrils and gels in vitro. Small oligomeric precursors serve to initiate and nucleate the aggregation process. In this study, these initial aggregates, or seed nuclei, are characterized in bulk solution using light scattering methods and field-flow fractionation. Results High molecular weight aggregates of glucagon were detected in otherwise monomeric solutions using light scattering techniques. These aggregates were detected upon initial mixing of glucagon powder in dilute HCl and NaOH. In the pharmaceutically relevant case of acidic glucagon, the removal of aggregates by filtration significantly slowed the aggregation process. Field-flow fractionation was used to separate aggregates from monomeric glucagon and determine relative mass. The molar mass of the large aggregates was shown to grow appreciably over time as the glucagon solutions gelled. Conclusion The results of this study indicate that initial glucagon solutions are predominantly monomeric, but contain small quantities of large aggregates. These results suggest that the initial aggregates are seed nuclei, or intermediates which catalyze the aggregation process, even at low concentrations. PMID:18613970

  15. Effect of aggregate graining compositions on skid resistance of Exposed Aggregate Concrete pavement

    NASA Astrophysics Data System (ADS)

    Wasilewska, Marta; Gardziejczyk, Wladysław; Gierasimiuk, Pawel

    2018-05-01

    The paper presents the evaluation of skid resistance of EAC (Exposed Aggregate Concrete) pavements which differ in aggregate graining compositions. The tests were carried out on concrete mixes with a maximum aggregate size of 8 mm. Three types of coarse aggregates were selected depending on their resistance to polishing which was determined on the basis of the PSV (Polished Stone Value). Basalt (PSV 48), gabbro (PSV 50) and trachybasalt (PSV 52) aggregates were chosen. For each type of aggregate three graining compositions were designed, which differed in the content of coarse aggregate > 4mm. Their content for each series was as follows: A - 38%, B - 50% and C - 68%. Evaluation of the skid resistance has been performed using the FAP (Friction After Polishing) test equipment also known as the Wehner/Schulze machine. Laboratory method enables to compare the skid resistance of different types of wearing course under specified conditions simulating polishing processes. In addition, macrotexture measurements were made on the surface of each specimen using the Elatexure laser profile. Analysis of variance showed that at significance level α = 0.05, aggregate graining compositions as well as the PSV have a significant influence on the obtained values of the friction coefficient μm of the tested EAC pavements. The highest values of the μm have been obtained for EAC with the lowest amount of coarse aggregates (compositions A). In these cases the resistance to polishing of the aggregate does not significantly affect the friction coefficients. This is related to the large areas of cement mortar between the exposed coarse grains. Based on the analysis of microscope images, it was observed that the coarse aggregates were not sufficiently exposed. It has been proved that PSV significantly affected the coefficient of friction in the case of compositions B and C. This is caused by large areas of exposed coarse aggregate. The best parameters were achieved for the EAC pavements

  16. Experimental volcanic ash aggregation: Internal structuring of accretionary lapilli and the role of liquid bonding

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Dingwell, Donald B.

    2016-01-01

    Explosive volcanic eruptions can release vast quantities of pyroclastic material into Earth's atmosphere, including volcanic ash, particles with diameters less than two millimeters. Ash particles can cluster together to form aggregates, in some cases reaching up to several centimeters in size. Aggregation alters ash transport and settling behavior compared to un-aggregated particles, influencing ash distribution and deposit stratigraphy. Accretionary lapilli, the most commonly preserved type of aggregates within the geologic record, can exhibit complex internal stratigraphy. The processes involved in the formation and preservation of these aggregates remain poorly constrained quantitatively. In this study, we simulate the variable gas-particle flow conditions which may be encountered within eruption plumes and pyroclastic density currents via laboratory experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. In this apparatus, solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (particle concentration, air flow rate, gas temperature, humidity, liquid composition). Experiments were conducted with soda-lime glass beads and natural volcanic ash particles under a range of experimental conditions. Both glass beads and volcanic ash exhibited the capacity for aggregation, but stable aggregates could only be produced when materials were coated with high but volcanically-relevant concentrations of NaCl. The growth and structure of aggregates was dependent on the initial granulometry, while the rate of aggregate formation increased exponentially with increasing relative humidity (12-45% RH), before overwetting promoted mud droplet formation. Notably, by use of a broad granulometry, we generated spherical, internally structured aggregates similar to some accretionary pellets found in volcanic deposits. Adaptation of a powder-technology model offers an explanation for the origin of natural accretionary

  17. Star Polymers Reduce Islet Amyloid Polypeptide Toxicity via Accelerated Amyloid Aggregation.

    PubMed

    Pilkington, Emily H; Lai, May; Ge, Xinwei; Stanley, William J; Wang, Bo; Wang, Miaoyi; Kakinen, Aleksandr; Sani, Marc-Antonie; Whittaker, Michael R; Gurzov, Esteban N; Ding, Feng; Quinn, John F; Davis, Thomas P; Ke, Pu Chun

    2017-12-11

    Protein aggregation into amyloid fibrils is a ubiquitous phenomenon across the spectrum of neurodegenerative disorders and type 2 diabetes. A common strategy against amyloidogenesis is to minimize the populations of toxic oligomers and protofibrils by inhibiting protein aggregation with small molecules or nanoparticles. However, melanin synthesis in nature is realized by accelerated protein fibrillation to circumvent accumulation of toxic intermediates. Accordingly, we designed and demonstrated the use of star-shaped poly(2-hydroxyethyl acrylate) (PHEA) nanostructures for promoting aggregation while ameliorating the toxicity of human islet amyloid polypeptide (IAPP), the peptide involved in glycemic control and the pathology of type 2 diabetes. The binding of PHEA elevated the β-sheet content in IAPP aggregates while rendering a new morphology of "stelliform" amyloids originating from the polymers. Atomistic molecular dynamics simulations revealed that the PHEA arms served as rodlike scaffolds for IAPP binding and subsequently accelerated IAPP aggregation by increased local peptide concentration. The tertiary structure of the star nanoparticles was found to be essential for driving the specific interactions required to impel the accelerated IAPP aggregation. This study sheds new light on the structure-toxicity relationship of IAPP and points to the potential of exploiting star polymers as a new class of therapeutic agents against amyloidogenesis.

  18. Evaluation of Canadian unconfined aggregate freeze-thaw tests for identifying nondurable aggregates.

    DOT National Transportation Integrated Search

    2012-06-01

    Concrete is the most widely used material in construction. Aggregates contribute 60% to 75% of the total volume : of concrete. The aggregates play a key role in concrete durability. The U.S. Midwest has many aggregates that can : show distress in the...

  19. Effects of different isoforms of apoE on aggregation of the α-synuclein protein implicated in Parkinson's disease.

    PubMed

    Emamzadeh, Fatemeh Nouri; Aojula, Harmesh; McHugh, Patrick C; Allsop, David

    2016-04-08

    Parkinson's disease is a progressive brain disorder due to the degeneration of dopaminergic neurons in the substantia nigra. The accumulation of aggregated forms of α-synuclein protein into Lewy bodies is one of the characteristic features of this disease although the pathological role of any such protein deposits in causing neurodegeneration remains elusive. Here, the effects of different apolipoprotein E isoforms (apoE2, apoE3, apoE4) on the aggregation of α-synuclein in vitro were examined using thioflavin T assays and also an immunoassay to detect the formation of multimeric forms. Our results revealed that the aggregation of α-synuclein is influenced by apoE concentration. At low concentrations of apoE (<15nM), all of the isoforms were able to increase the aggregation of α-synuclein (50μM), with apoE4 showing the greatest stimulatory effect. This is in contrast to a higher concentration (>15nM) of these isoforms, where a decrease in the aggregation of α-synuclein was noted. The data show that exceptionally low levels of apoE may seed α-syn aggregation, which could potentially lead to the pathogenesis of α-synuclein-induced neurodegeneration. On the other hand, higher levels of apoE could potentially lower the degree of α-synuclein aggregation and confer protection. The differential effects noted with apoE4 could explain why this particular isoform results in an earlier age of onset for Parkinson's disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. The Effects of Air-Cooled Blast Furnace Slag (ACBFS) Aggregate on the Chemistry of Pore Solution and the Interfacial Transition Zone

    NASA Astrophysics Data System (ADS)

    Panchmatia, Parth

    Numerous laboratory and field studies have demonstrated that concrete incorporating air cooled blast furnace slag (ACBFS) aggregate showed a higher degree of infilling of voids with ettringite as opposed to concrete prepared using naturally mined carbonate aggregates when exposed to similar environmental conditions. This observation prompted some to link the deterioration observed in the ACBFS aggregate concrete structures to the compromised freeze-thaw resistance due to infilling of air voids. Concerns about the release of sulfur from ACBFS aggregate into the pore solution of concrete had been presented as the reason for the observed ettringite deposits in the air voids. However, literature quantifying the influence of ACBFS aggregate on the chemistry of the pore solution of concrete is absent. Therefore, the main purpose of this research was to quantify the effects of ACBFS aggregate on the chemistry of the pore solution of mortars incorporating them. Coarse and crushed ACBFS aggregates were submerged in artificial pore solutions (APSs) representing pore solutions of 3-day, 7-day, and 28-day hydrated plain, binary, and ternary paste systems. The change in the chemistry of these artificial pore solutions was recorded to quantify the chemical contribution of ACBFS aggregate to the pore solution of concrete. It was observed that the sulfate concentration of all APSs increased once they were in contact with either coarse or crushed ACBFS aggregate. After 28 days of contact, the increase in sulfate concentration of the APSs ranged from 4.85 - 12.23 mmol/L and 14.21 - 16.87 mmol/L for contact with coarse and crushed ACBFS aggregate, respectively. More than 40% of the total sulfate that was released by the ACBFS aggregate occurred during the first 72 hours (3 days) of its contact with the APSs. There was little or no difference in the amount of sulfate released from ACBFS aggregate in the different types of APSs. In other words, the type of binder solution from which

  1. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Aggregation Behaviors of a Two-Species System with Lose-Lose Interactions

    NASA Astrophysics Data System (ADS)

    Song, Mei-Xia; Lin, Zhen-Quan; Li, Xiao-Dong; Ke, Jian-Hong

    2010-06-01

    We propose an aggregation evolution model of two-species (A- and B-species) aggregates to study the prevalent aggregation phenomena in social and economic systems. In this model, A- and B-species aggregates perform self-exchange-driven growths with the exchange rate kernels K (k,l) = Kkl and L(k,l) = Lkl, respectively, and the two species aggregates perform self-birth processes with the rate kernels J1(k) = J1k and J2(k) = J2k, and meanwhile the interaction between the aggregates of different species A and B causes a lose-lose scheme with the rate kernel H(k,l) = Hkl. Based on the mean-field theory, we investigated the evolution behaviors of the two species aggregates to study the competitions among above three aggregate evolution schemes on the distinct initial monomer concentrations A0 and B0 of the two species. The results show that the evolution behaviors of A- and B-species are crucially dominated by the competition between the two self-birth processes, and the initial monomer concentrations A0 and B0 play important roles, while the lose-lose scheme play important roles in some special cases.

  2. Integrating Aggregate Exposure Pathway (AEP) and Adverse ...

    EPA Pesticide Factsheets

    High throughput toxicity testing (HTT) holds the promise of providing data for tens of thousands of chemicals that currently have no data due to the cost and time required for animal testing. Interpretation of these results require information linking the perturbations seen in vitro with adverse outcomes in vivo and requires knowledge of how estimated exposure to the chemicals compare to the in vitro concentrations that show an effect. This abstract discusses how Adverse Outcome Pathways (AOPs) can be used to link HTT with adverse outcomes of regulatory significance and how Aggregate Exposure Pathways (AEPs) can connect concentrations of environment stressors at a source with an expected target site concentration designed to provide exposure estimates that are comparable to concentrations identified in HTT. Presentation at the ICCA-LRI and JRC Workshop: Fit-For-Purpose Exposure Assessment For Risk-Based Decision Making

  3. Influence of Calcium in Extracellular DNA Mediated Bacterial Aggregation and Biofilm Formation

    PubMed Central

    Koop, Leena; Wong, Yie Kuan; Ahmed, Safia; Siddiqui, Khawar Sohail; Manefield, Mike

    2014-01-01

    Calcium (Ca2+) has an important structural role in guaranteeing the integrity of the outer lipopolysaccharide layer and cell walls of bacterial cells. Extracellular DNA (eDNA) being part of the slimy matrix produced by bacteria promotes biofilm formation through enhanced structural integrity of the matrix. Here, the concurrent role of Ca2+ and eDNA in mediating bacterial aggregation and biofilm formation was studied for the first time using a variety of bacterial strains and the thermodynamics of DNA to Ca2+ binding. It was found that the eDNA concentrations under both planktonic and biofilm growth conditions were different among bacterial strains. Whilst Ca2+ had no influence on eDNA release, presence of eDNA by itself favours bacterial aggregation via attractive acid-base interactions in addition, its binding with Ca2+ at biologically relevant concentrations was shown further increase in bacterial aggregation via cationic bridging. Negative Gibbs free energy (ΔG) values in iTC data confirmed that the interaction between DNA and Ca2+ is thermodynamically favourable and that the binding process is spontaneous and exothermic owing to its highly negative enthalpy. Removal of eDNA through DNase I treatment revealed that Ca2+ alone did not enhance cell aggregation and biofilm formation. This discovery signifies the importance of eDNA and concludes that existence of eDNA on bacterial cell surfaces is a key facilitator in binding of Ca2+ to eDNA thereby mediating bacterial aggregation and biofilm formation. PMID:24651318

  4. Dissociation, aggregation of sesame alpha-globulin in nonionic detergent solution.

    PubMed

    Lakshmi, T S; Nandi, P K

    1978-10-01

    Nonionic detergents Triton X-100 and Brij 36T induce dissociation and aggregation of the protein sesame alpha-globulin above the critical micelle concentrations (cmc) of the detergents. Spectrophotometric titration in Triton shows no change in the pKInt value of the tyrosyl groups at 1x10-3 M detergent where both dissociation and aggregation of the protein are observed. Fluorescence measurement does not indicate any change in the environment of the tryptophan groups of the protein in Brij. Viscosity measurements show no major conformational change of the protein in the detergent solution. Binding measurements suggest that perhaps micelles of the detergent predominantly bind to the protein. The detergent micelles preferentially bind to the exposed hydrophobic surfaces of the protein subunits. The association of the protein detergent complex through electrostatic interaction is probably responsible for the formation of the aggregates.

  5. Controlled Aggregation of Ferritin to Modulate MRI Relaxivity

    PubMed Central

    Bennett, Kevin M.; Shapiro, Erik M.; Sotak, Christopher H.; Koretsky, Alan P.

    2008-01-01

    Ferritin is an iron storage protein expressed in varying concentrations in mammalian cells. The deposition of ferric iron in the core of ferritin makes it a magnetic resonance imaging contrast agent, and ferritin has recently been proposed as a gene expression reporter protein for magnetic resonance imaging. To date, ferritin has been overexpressed in vivo and has been coexpressed with transferrin receptor to increase iron loading in cells. However, ferritin has a relatively low T2 relaxivity (R2 ≈ 1 mM−1s−1) at typical magnetic field strengths and so requires high levels of expression to be detected. One way to modulate the transverse relaxivity of a superparamagnetic agent is to cause it to aggregate, thereby manipulating the magnetic field gradients through which water diffuses. In this work, it is demonstrated by computer simulation and in vitro that aggregation of ferritin can alter relaxivity. The effects of aggregate size and intraaggregate perturber spacing on R2 are studied. Computer modeling indicates that the optimal spacing of the ferritin molecules in aggregate for increasing R2 is 100–200 nm for a typical range of water diffusion rates. Chemical cross-linking of ferritin at 12 Å spacing led to a 70% increase in R2 compared to uncross-linked ferritin controls. To modulate ferritin aggregation in a potentially biologically relevant manner, ferritin was attached to actin and polymerized in vitro. The polymerization of ferritin-F-actin caused a 20% increase in R2 compared to unpolymerized ferritin-G-actin. The R2-value was increased by another 10% by spacing the ferritin farther apart on the actin filaments. The modulation of ferritin aggregation by binding to cytoskeletal elements may be a useful strategy to make a functional reporter gene for magnetic resonance imaging. PMID:18326661

  6. Micelle depletion-induced vs. micelle-mediated aggregation in nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, D., E-mail: debes.phys@gmail.com; Aswal, V. K.

    2015-06-24

    The phase behavior anionic silica nanoparticle (Ludox LS30) with non-ionic surfactants decaethylene glycol monododecylether (C12E10) and cationic dodecyltrimethyl ammonium bromide (DTAB) in aqueous electrolyte solution has been studied by small-angle neutron scattering (SANS). The measurements have been carried out for fixed concentrations of nanoparticle (1 wt%), surfactants (1 wt%) and electrolyte (0.1 M NaCl). Each of these nanoparticle–surfactant systems has been examined for different contrast conditions where individual components (nanoparticle or surfactant) are made visible. It is observed that the nanoparticle-micelle system in both the cases lead to the aggregation of nanoparticles. The aggregation is found to be micelle depletion-inducedmore » for C12E10 whereas micelle-mediated aggregation for DTAB. Interestingly, it is also found that phase behavior of mixed surfactant (C12E10 + DTAB) system is similar to that of C12E10 (unlike DTAB) micelles with nanoparticles.« less

  7. Inhibition of cyclooxygenase-independent platelet aggregation by sodium salicylate.

    PubMed

    Violi, F; Alessandri, C; Praticò, D; Guzzo, A; Ghiselli, A; Balsano, F

    1989-06-15

    The effect of acetylsalicylic acid (ASA) on platelet aggregation (PA) and thromboxane A2 (TxA2) formation was investigated in vitro and ex vivo after 1 g or 300 mg ASA administration to healthy subjects. 50-100 microM ASA inhibited PA by single aggregating agent such as platelet aggregating factor (PAF) or epinephrine and reduced to less than or equal to 5% of control platelet TxB2 formation, but did not influence PA by epinephrine plus PAF. The latter was inhibited by increasing ASA concentration. In samples incubated with 100 microM ASA and stimulated with epinephrine plus PAF, PA could be inhibited by the addition of 100-300 microM sodium salicylate. After 300 mg-1 g ASA administration to healthy subjects, the inhibition of PA by epinephrine plus PAF was more marked by highest doses of ASA. This study suggests that aspirin inhibits PA with a cyclooxygenase-independent mechanism; this effect is mediated, at least in vitro, by salicylic acid.

  8. Biosolids increase soil aggregation and protection of soil carbon five years after application on a crested wheatgrass pasture.

    PubMed

    Wallace, Brian M; Krzic, Maja; Forge, Tom A; Broersma, Klaas; Newman, Reg F

    2009-01-01

    Biosolids application to rangelands and pastures recycles nutrients and organic matter back to soils. The effects of biosolids (20 and 60 dry Mg ha(-)(1)) and N+P fertilizer on soil aggregate stability, bulk density, aeration porosity, and total C and N of stable aggregates were evaluated 4 and 5 yr after surface application to a crested wheatgrass [Agropyron cristatum (L.) Gaertn.] pasture in the southern interior of British Columbia (BC). The experiment was established in 2001 in a randomized complete block design with four replications. The 60 Mg ha(-1) biosolids treatment (Bio 60) had a greater aggregate mean weight diameter (MWD) and proportion of water-stable soil aggregates > 1 mm relative to the control and fertilizer treatments. Temporal variation in aggregate stability was attributed to seasonal variations in soil water content. Surface application of 60 Mg ha(-1) of biosolids increased C concentrations within water-stable aggregates relative to the control from 29 to 104, 24 to 79, and 12 to 38 g kg(-1) for the 2 to 6, 1 to 2, and 0.25 to 1 mm size fractions, respectively. The concentration of N within aggregates increased in similar proportions to C. Neither soil bulk density, nor aeration porosity were affected by biosolids application. Increased aggregation and the accumulation of soil C within aggregates following biosolids application creates a potential for better soil C storage, soil water retention, nutrient availability, and ultimately the overall health of semiarid perennial pastures.

  9. Changes in blood aggregation with differences in molecular weight and degree of deacetylation of chitosan.

    PubMed

    Hattori, Hidemi; Ishihara, Masayuki

    2015-01-22

    Because the molecular weight (Mw) and degree of deacetylation (DDA) of chitosan can vary depending on the purification method, the identification of appropriate chitosan structures is important for developing more effective hemostatic agents. In this study, the influence of varying Mw and DDA of chitosan on blood aggregation was characterized by 10 types of chitosan with different Mw and DDA, including oligomers. The highest aggregation of whole blood, washed erythrocytes and platelets in platelet-rich plasma (PRP) were observed in chitosan with Mw of 8.6 kDa or more and with DDA of 75 to 88%. However, chitosan with too high Mw (247 kDa) inhibited the aggregation of whole blood, washed erythrocytes and PRP at high chitosan concentration. At certain concentrations, chitosan with 75-85% DDA and 50-190 kDa and chitosan with 87.6% DDA and 247 kDa both aggregated proteins in PRP. Chitosan oligomer did not affect blood aggregation. The results suggested that the aggregation by chitosan depended on the interaction of positively charged chitosan with negatively charged erythrocytes, platelets and plasma protein. It seemed that a suitable balance of positive charge in chitosan and negative charge in hemocytes and some kinds of proteins was important. To develop a hemostatic with effective blood aggregation, the chitosan should not be limited to a single Mw and a single DDA but may be a mixed chitosan with wide range of Mw (8.6-247 kDa) and DDA of 75 to 88%.

  10. Peptide concentration alters intermediate species in amyloid β fibrillation kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garvey, M., E-mail: megan.garvey@molbiotech.rwth-aachen.de; Morgado, I., E-mail: immorgado@ualg.pt

    2013-04-12

    Highlights: ► Aβ(1–40) aggregation in vitro has been monitored at different concentrations. ► Aβ(1–40) fibrillation does not always follow conventional kinetic mechanisms. ► We demonstrate non-linear features in the kinetics of Aβ(1–40) fibril formation. ► At high Aβ(1–40) concentrations secondary processes dictate fibrillation speed. ► Intermediate species may play significant roles on final amyloid fibril development. -- Abstract: The kinetic mechanism of amyloid aggregation remains to be fully understood. Investigations into the species present in the different kinetic phases can assist our comprehension of amyloid diseases and further our understanding of the mechanism behind amyloid β (Aβ) (1–40) peptide aggregation.more » Thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM) have been used in combination to monitor Aβ(1–40) aggregation in vitro at both normal and higher than standard concentrations. The observed fibrillation behaviour deviates, in several respects, from standard concepts of the nucleation–polymerisation models and shows such features as concentration-dependent non-linear effects in the assembly mechanism. Aβ(1–40) fibrillation kinetics do not always follow conventional kinetic mechanisms and, specifically at high concentrations, intermediate structures become populated and secondary processes may further modify the fibrillation mechanism.« less

  11. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    NASA Astrophysics Data System (ADS)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond

  12. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation.

    PubMed

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung; Rhee, Man Hee; Kim, Yun-Bae

    2013-12-01

    The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow.

  13. Effects of osmolytes on Pelodiscus sinensis creatine kinase: a study on thermal denaturation and aggregation.

    PubMed

    Wang, Wei; Lee, Jinhyuk; Jin, Qin-Xin; Fang, Nai-Yun; Si, Yue-Xiu; Yin, Shang-Jun; Qian, Guo-Ying; Park, Yong-Doo

    2013-09-01

    The protective effect of osmolytes on the thermal denaturation and aggregation of Pelodiscus sinensis muscle creatine kinase (PSCK) was investigated by a combination of spectroscopic methods and thermodynamic analysis. Our results demonstrated that the addition of osmolytes, such as glycine and proline, could prevent thermal denaturation and aggregation of PSCK in a concentration-dependent manner. When the concentration of glycine and proline increased in the denatured system, the relative activation was significantly enhanced; meanwhile, the aggregation of PSCK during thermal denaturation was decreased. Spectrofluorometer results showed that glycine and proline significantly decreased the tertiary structural changes of PSCK and that thermal denaturation directly induced PSCK aggregation. In addition, we also built the 3D structure of PSCK and osmolytes by homology models. The results of computational docking simulations showed that the docking energy was relatively low and that the clustering groups were spread to the surface of PSCK, indicating that osmolytes directly protect the surface of the protein. P. sinensis are poikilothermic and quite sensitive to the change of ambient temperature; however, there were few studies on the thermal denaturation of reptile CK. Our study provides important insight into the protective effects of osmolytes on thermal denaturation and aggregation of PSCK. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles

    USGS Publications Warehouse

    Deonarine, Amrika; Lau, Boris L.T.; Aiken, George R.; Ryan, Joseph N.; Hsu-Kim, Heileen

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn−S−NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn−S−NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment.

  15. Effects of Temperature on Aggregation Kinetics of Graphene Oxide in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Wang, M.; Gao, B.; Tang, D.; Sun, H.; Yin, X.; Yu, C.

    2017-12-01

    Temperature may play an important role in controlling graphene oxide (GO) stability in aqueous solutions, but it has been overlooked in the literature. In this work, laboratory experiments were conducted to determine the effects of temperature (6, 25, and 40 °C) on GO aggregation kinetics under different combinations of ionic strength, cation type, humic acid (HA) concentration by monitoring GO hydrodynamic radii and attachment efficiencies. The results showed that, without HA, temperature increase promoted GO aggregation in both monovalent (Na+ and K+) and divalent (Ca2+) solutions. This phenomenon might be caused by multiple processes including enhanced collision frequency, enhanced cation dehydration, and reduced electrostatic repulsion. The presence of HA introduced steric repulsion forces that enhanced GO stability and temperature showed different effects GO aggregation kinetics in monovalent and divalent electrolytes. In monovalent electrolytes, cold temperature diminished the steric repulsion of HA-coated GO. As a result, the fastest increasing rate of GO hydrodynamic radius and the smallest critical coagulation concentration value appeared at the lowest temperature (6 °C). Conversely, in divalent electrolyte solutions with HA, high temperate favored GO aggregation, probably because the interactions between Ca2+ and HA increased with temperature resulting in lower HA coating on GO. Findings of this work emphasized the importance of temperature as well as solution chemistry on the stability and fate of GO nanoparticles in aquatic environment.

  16. Electrostatic interactions lead to the formation of asymmetric collagen-phosphophoryn aggregates.

    PubMed

    Dahl, Thomas; Veis, Arthur

    2003-01-01

    In bone and dentin the formation and mineralization of the extra cellular matrix structure is a complex process highly dependent on intermolecular interactions. In dentin, the phosphophoryns (PP) and type I collagen (COL1) are the major constituents implicated in mineralization. Thus, as a first step in understanding the tissue organization, we have initiated a study of their interaction as a function of pH, ionic strength, and relative concentrations or mixing ratios. Complex formation has been analyzed by dynamic light scattering to detect aggregate formation and by rotary shadowing electron microscopy (EM) to determine aggregate shape. The EM data showed that at the pH values studied, the PP-COL1 interaction leads to the formation of large fibrillar aggregates in which the PP are present along the fibril surfaces. The quantitative phase distribution data showed a 1/1 molar equivalence at the maximum aggregation point, not at electrostatic PP-COL1 equivalence. As the ionic strength was raised, the PP-COL1 aggregates became smaller but the binding and asymmetric fibrillar aggregation persisted. In EM, the PP appear as dense spheres. Along the surfaces of the collagen aggregates, the PP are larger and more open or extended, suggesting that COL1-bound PP may undergo a conformational change, opening up so that a single PP molecule might interact with and electrostatically link several COL1 molecules. This might have important implications for dentin structure, stability, and mineralization.

  17. A proposed mechanism for the formation of spherical vivianite crystal aggregates in sediments

    USGS Publications Warehouse

    Zelibor, J.L.; Senftle, F.E.; Reinhardt, J.L.

    1988-01-01

    Vivianite [Fe3(PO4)2??8H2O] is often found in the form of nodules composed of spherical aggregates of crystals. Crystallization of vivianite in agar gels of various concentrations yield crystal aggregates (nodules) that have spherical morphology and a bimodal size distribution. The aggregates were formed under both biotic and abiotic conditions. When special redox cells fitted with electrodes were used, more perfect spherical structures were formed when the electrodes were shorted than when they were on open circuit. In nature, vivianite nodules generally are found in sediments or clays that are gelatinous, often caused by the presence of organic debris. A model consistent with experimental observations and based on the dynamics of gels is proposed to explain a possible origin of nodular vivianite. To maintain iron and phosphate concentrations in sedimentary pore spaces filled with gel-like organic debris, the electric field spanning the aerobic-anerobic zones in the upper sediments may be an important driving force in addition to diffusion. It is suggested that the combination of the gel medium in the pore spaces and the natural electric field in the upper sediments could be contributing causes to explain the spherical aggregates of vivianite crystals found in nature. ?? 1988.

  18. Aggregation of asbestos fibers in water: role of solution chemistry

    NASA Astrophysics Data System (ADS)

    Wu, L.; Ortiz, C. P.; Jerolmack, D. J.

    2016-12-01

    Aggregation kinetics and stability of colloidal particles have been extensively studied using bulk techniques such as dynamic light scattering; these techniques involve large ensembles of particles and interpretation of results is difficult when particles are non-spherical and poorly characterized, as is always the case with non-ideal natural hazardous materials such as asbestos fibers. These difficulties hinder greatly progress on fundamental understanding of whether the classic colloidal aggregation theories can be applied to natural materials and how the heterogeneity of particles (e.g., shape) affects the colloidal aggregation kinetics and structure. By using in-situ microscopy and particle tracking techniques, we were able to observe the particle-by-particle growth of aggregated formed by elongated particles (synthetic glass rods and natural asbestos fibers) and demonstrated the rod-shaped geometry induced novel structures and growth dynamics that challenge existing theory. In this study, we continue to use asbestos as model system of elongated colloidal contaminant, and investigate the effects of changing solution chemistry (e.g., ionic strength, pH, and natural organic matter (NOM)), on growth dynamics and aggregates structure. The results show that aggregate growth curves are self-similar with a characteristic timescale that increases with increasing pH. By varying ionic strength for fixed pH values, we determine that the ccc is sensitive to pH. Fractal dimension decreases slightly with increasing pH and decreasing ionic strength, indicating that stronger inter-particle repulsion create sparser aggregates; however, the magnitude of the solution chemistry effects is much smaller than that of colloid shape. In monovalent solutions, regardless of their concentration, HA drastically reduces the aggregation kinetics of asbestos fiber. This work may lead to enhanced prediction of the colloidal contaminants' mobility in the environment, bioavailability, and

  19. Curcumin Attenuates Amyloid-β Aggregate Toxicity and Modulates Amyloid-β Aggregation Pathway.

    PubMed

    Thapa, Arjun; Jett, Stephen D; Chi, Eva Y

    2016-01-20

    The abnormal misfolding and aggregation of amyloid-β (Aβ) peptides into β-sheet enriched insoluble deposits initiates a cascade of events leading to pathological processes and culminating in cognitive decline in Alzheimer's disease (AD). In particular, soluble oligomeric/prefibrillar Aβ have been shown to be potent neurotoxins. The naturally occurring polyphenol curcumin has been shown to exert a neuroprotective effect against age-related neurodegenerative diseases such as AD. However, its protective mechanism remains unclear. In this study, we investigated the effects of curcumin on the aggregation of Aβ40 as well as Aβ40 aggregate induced neurotoxicity. Our results show that the curcumin does not inhibit Aβ fibril formation, but rather enriches the population of "off-pathway" soluble oligomers and prefibrillar aggregates that were nontoxic. Curcumin also exerted a nonspecific neuroprotective effect, reducing toxicities induced by a range of Aβ conformers, including monomeric, oligomeric, prefibrillar, and fibrillar Aβ. The neuroprotective effect is possibly membrane-mediated, as curcumin reduced the extent of cell membrane permeabilization induced by Aβ aggregates. Taken together, our study shows that curcumin exerts its neuroprotective effect against Aβ induced toxicity through at least two concerted pathways, modifying the Aβ aggregation pathway toward the formation of nontoxic aggregates and ameliorating Aβ-induced toxicity possibly through a nonspecific pathway.

  20. Influence of plankton community structure on the sinking velocity of marine aggregates

    NASA Astrophysics Data System (ADS)

    Bach, L. T.; Boxhammer, T.; Larsen, A.; Hildebrandt, N.; Schulz, K. G.; Riebesell, U.

    2016-08-01

    About 50 Gt of carbon is fixed photosynthetically by surface ocean phytoplankton communities every year. Part of this organic matter is reprocessed within the plankton community to form aggregates which eventually sink and export carbon into the deep ocean. The fraction of organic matter leaving the surface ocean is partly dependent on aggregate sinking velocity which accelerates with increasing aggregate size and density, where the latter is controlled by ballast load and aggregate porosity. In May 2011, we moored nine 25 m deep mesocosms in a Norwegian fjord to assess on a daily basis how plankton community structure affects material properties and sinking velocities of aggregates (Ø 80-400 µm) collected in the mesocosms' sediment traps. We noted that sinking velocity was not necessarily accelerated by opal ballast during diatom blooms, which could be due to relatively high porosity of these rather fresh aggregates. Furthermore, estimated aggregate porosity (Pestimated) decreased as the picoautotroph (0.2-2 µm) fraction of the phytoplankton biomass increased. Thus, picoautotroph-dominated communities may be indicative for food webs promoting a high degree of aggregate repackaging with potential for accelerated sinking. Blooms of the coccolithophore Emiliania huxleyi revealed that cell concentrations of 1500 cells/mL accelerate sinking by about 35-40%, which we estimate (by one-dimensional modeling) to elevate organic matter transfer efficiency through the mesopelagic from 14 to 24%. Our results indicate that sinking velocities are influenced by the complex interplay between the availability of ballast minerals and aggregate packaging; both of which are controlled by plankton community structure.

  1. Differential regulation by ATP versus ADP further links CaMKII aggregation to ischemic conditions

    PubMed Central

    Vest, Rebekah S.; O’Leary, Heather; Bayer, K. Ulrich

    2009-01-01

    CaMKII, a major mediator of synaptic plasticity, forms extra-synaptic clusters under ischemic conditions. This study further supports self-aggregation of CaMKII holoenzymes as the underlying mechanism. Aggregation in vitro was promoted by mimicking ischemic conditions: low pH (6.8 or less), Ca2+ (and calmodulin), and low ATP and/or high ADP concentration. Mutational analysis showed that high ATP prevented aggregation by a mechanism involving T286 auto-phosphorylation, and indicated requirement for nucleotide binding but not auto-phosphorylation also for extra-synaptic clustering within neurons. These results clarify a previously apparent paradox in the nucleotide and phosphorylation requirement of aggregation, and support a mechanism that involves inter-holoenzyme T286-region/T-site interaction. PMID:19840793

  2. On the observation of the need for an unusually high concentration of cysteine and homocysteine to induce aggregation of polymer-stabilized gold nano particles

    NASA Astrophysics Data System (ADS)

    Radhakumary, C.; Sreenivasan, K.

    2013-02-01

    This study reports the interaction of chitosan-stabilized gold nanoparticles (CH-AuNPs) with cysteine (Cys) and homocysteine (Hcys) in aqueous media at pH 1.4. Since the polymer precipitates at higher pH, and the amino acids Cys and HCys are soluble at acidic pH, we kept the pH around 1.4 for stabilizing the particles. Zeta potential of CH-AuNPs was found to be positive and it is reasonable to assume that +ve Cys or Hcys at pH 1.4 will experience repulsive force. However, TEM images and absorption spectra indicated formation of aggregates including rod-like assembly. An interesting observation was the need for unusually high concentration of analytes (Cys and Hcys) to induce the assembly of CH-AuNPs. We also found time bound variation of the optical properties probably indicating the interaction is kinetically controlled and only a fraction of the analyte molecules having sufficient energy can bind onto the particles. We observed that at elevated temperature, the reaction was faster with a lower concentration of Cys or Hcys. These observations were supported by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory which describes the interparticle interaction and the colloidal stability in solution. Only molecules possessing enough energy to cross this force barrier can cause the aggregation. We also noted a time lag between Cys and Hcys to influence optical properties reflecting the possibility of using this simple approach to discriminate these two clinically relevant molecules. Our observation shows that simple sensing as well as generation of novel nanostructures could be manipulated by a judicious choice of conditions such as stabilizing agents, pH, etc.

  3. Persistent homology analysis of ion aggregations and hydrogen-bonding networks.

    PubMed

    Xia, Kelin

    2018-05-16

    Despite the great advancement of experimental tools and theoretical models, a quantitative characterization of the microscopic structures of ion aggregates and their associated water hydrogen-bonding networks still remains a challenging problem. In this paper, a newly-invented mathematical method called persistent homology is introduced, for the first time, to quantitatively analyze the intrinsic topological properties of ion aggregation systems and hydrogen-bonding networks. The two most distinguishable properties of persistent homology analysis of assembly systems are as follows. First, it does not require a predefined bond length to construct the ion or hydrogen-bonding network. Persistent homology results are determined by the morphological structure of the data only. Second, it can directly measure the size of circles or holes in ion aggregates and hydrogen-bonding networks. To validate our model, we consider two well-studied systems, i.e., NaCl and KSCN solutions, generated from molecular dynamics simulations. They are believed to represent two morphological types of aggregation, i.e., local clusters and extended ion networks. It has been found that the two aggregation types have distinguishable topological features and can be characterized by our topological model very well. Further, we construct two types of networks, i.e., O-networks and H2O-networks, for analyzing the topological properties of hydrogen-bonding networks. It is found that for both models, KSCN systems demonstrate much more dramatic variations in their local circle structures with a concentration increase. A consistent increase of large-sized local circle structures is observed and the sizes of these circles become more and more diverse. In contrast, NaCl systems show no obvious increase of large-sized circles. Instead a consistent decline of the average size of the circle structures is observed and the sizes of these circles become more and more uniform with a concentration increase. As far

  4. Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells.

    PubMed

    Tien, Joe; Truslow, James G; Nelson, Celeste M

    2012-01-01

    This paper reports the effect of elevated pressure on the invasive phenotype of patterned three-dimensional (3D) aggregates of MDA-MB-231 human breast cancer cells. We found that the directionality of the interstitial pressure profile altered the frequency of invasion by cells located at the surface of an aggregate. In particular, application of pressure at one end of an aggregate suppressed invasion at the opposite end. Experimental alteration of the configuration of cell aggregates and computational modeling of the resulting flow and solute concentration profiles revealed that elevated pressure inhibited invasion by altering the chemical composition of the interstitial fluid near the surface of the aggregate. Our data reveal a link between hydrostatic pressure, interstitial convection, and invasion.

  5. Proteins aggregation and human diseases

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  6. Conformational stability and aggregation of therapeutic monoclonal antibodies studied with ANS and Thioflavin T binding.

    PubMed

    Kayser, Veysel; Chennamsetty, Naresh; Voynov, Vladimir; Helk, Bernhard; Trout, Bernhardt L

    2011-01-01

    Characterization of aggregation profiles of monoclonal antibodies (mAb) is gaining importance because an increasing number of mAb-based therapeutics are entering clinical studies and gaining marketing approval. To develop a successful formulation, it is imperative to identify the critical biochemical properties of each potential mAb drug candidate. We investigated the conformational change and aggregation of a human IgG1 using external dye-binding experiments with fluorescence spectroscopy and compared the aggregation profiles obtained to the results of size-exclusion chromatography. We show that using an appropriate dye at selected mAb concentration, unfolding or aggregation can be studied. In addition, dye-binding experiments may be used as conventional assays to study therapeutic mAb stability.

  7. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae

    PubMed Central

    Brown, Lindsey R.; Caulkins, Rachel C.; Schartel, Tyler E.; Rosch, Jason W.; Honsa, Erin S.; Schultz-Cherry, Stacey; Meliopoulos, Victoria A.; Cherry, Sean; Thornton, Justin A.

    2017-01-01

    Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H2O2. Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms. PMID:28638805

  8. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae.

    PubMed

    Brown, Lindsey R; Caulkins, Rachel C; Schartel, Tyler E; Rosch, Jason W; Honsa, Erin S; Schultz-Cherry, Stacey; Meliopoulos, Victoria A; Cherry, Sean; Thornton, Justin A

    2017-01-01

    Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H 2 O 2 . Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms.

  9. Adsorption and desorption of Cu2+ on paddy soil aggregates pretreated with different levels of phosphate.

    PubMed

    Dai, Jun; Wang, Wenqin; Wu, Wenchen; Gao, Jianbo; Dong, Changxun

    2017-05-01

    Interactions between anions and cations are important for understanding the behaviors of chemical pollutants and their potential risks in the environment. Here we prepared soil aggregates of a yellow paddy soil from the Taihu Lake region, and investigated the effects of phosphate (P) pretreatment on adsorption-desorption of Cu 2+ of soil aggregates, free iron oxyhydrates-removed soil aggregates, goethite, and kaolinite with batch adsorption method. The results showed that Cu 2+ adsorption was reduced on the aggregates pretreated with low concentrations of P, and promoted with high concentrations of P, showing a V-shaped change. Compared with the untreated aggregates, the adsorption capacity of Cu 2+ was reduced when P application rates were lower than 260, 220, 130 and 110mg/kg for coarse, clay, silt and fine sand fractions, respectively. On the contrary, the adsorption capacity of Cu 2+ was higher on P-pretreated soil aggregates than on the control ones when P application rates were greater than those values. However, the desorption of Cu 2+ was enhanced at low levels of P, but suppressed at high levels of P, displaying an inverted V-shaped change over P adsorption. The Cu 2+ adsorption by the aggregate particles with and without P pretreatments was well described by the Freundlich equation. Similar results were obtained on P-pretreated goethite. However, such P effects on Cu 2+ adsorption-desorption were not observed on kaolinite and free iron oxyhydrates-removed soil aggregates. The present results indicate that goethite is one of the main soil substances responsible for the P-induced promotion and inhibition of Cu 2+ adsorption. Copyright © 2016. Published by Elsevier B.V.

  10. Model for fluorescence quenching in light harvesting complex II in different aggregation states.

    PubMed

    Andreeva, Atanaska; Abarova, Silvia; Stoitchkova, Katerina; Busheva, Mira

    2009-02-01

    Low-temperature (77 K) steady-state fluorescence emission spectroscopy and dynamic light scattering were applied to the main chlorophyll a/b protein light harvesting complex of photosystem II (LHC II) in different aggregation states to elucidate the mechanism of fluorescence quenching within LHC II oligomers. Evidences presented that LHC II oligomers are heterogeneous and consist of large and small particles with different fluorescence yield. At intermediate detergent concentrations the mean size of the small particles is similar to that of trimers, while the size of large particles is comparable to that of aggregated trimers without added detergent. It is suggested that in small particles and trimers the emitter is monomeric chlorophyll, whereas in large aggregates there is also another emitter, which is a poorly fluorescing chlorophyll associate. A model, describing populations of antenna chlorophyll molecules in small and large aggregates in their ground and first singlet excited states, is considered. The model enables us to obtain the ratio of the singlet excited-state lifetimes in small and large particles, the relative amount of chlorophyll molecules in large particles, and the amount of quenchers as a function of the degree of aggregation. These dependencies reveal that the quenching of the chl a fluorescence upon aggregation is due to the formation of large aggregates and the increasing of the amount of chlorophyll molecules forming these aggregates. As a consequence, the amount of quenchers, located in large aggregates, is increased, and their singlet excited-state lifetimes steeply decrease.

  11. Viscosity and transient electric birefringence study of clay colloidal aggregation.

    PubMed

    Bakk, Audun; Fossum, Jon O; da Silva, Geraldo J; Adland, Hans M; Mikkelsen, Arne; Elgsaeter, Arnljot

    2002-02-01

    We study a synthetic clay suspension of laponite at different particle and NaCl concentrations by measuring stationary shear viscosity and transient electrically induced birefringence (TEB). On one hand the viscosity data are consistent with the particles being spheres and the particles being associated with large amount bound water. On the other hand the viscosity data are also consistent with the particles being asymmetric, consistent with single laponite platelets associated with a very few monolayers of water. We analyze the TEB data by employing two different models of aggregate size (effective hydrodynamic radius) distribution: (1) bidisperse model and (2) log-normal distributed model. Both models fit, in the same manner, fairly well to the experimental TEB data and they indicate that the suspension consists of polydisperse particles. The models also appear to confirm that the aggregates increase in size vs increasing ionic strength. The smallest particles at low salt concentrations seem to be monomers and oligomers.

  12. Effects of Combined Application of Biogas Slurry and Chemical Fertilizer on Soil Aggregation and C/N Distribution in an Ultisol.

    PubMed

    Zheng, Xuebo; Fan, Jianbo; Xu, Lei; Zhou, Jing

    2017-01-01

    Unreasonable use of chemical fertilizer (CF) on agricultural soil leads to massive losses of soil organic carbon (SOC) and total nitrogen (TN) in tropical and subtropical areas, where soil conditions are unfavorable for aggregate formation. This study evaluated the effects of combined application of biogas slurry (BS) plus CF on soil aggregation and aggregate-associated C/N concentration and storage in an Ultisol. Six treatments included: no fertilizer (T1), CF only (T2), partial (15% (T3), 30% (T4) and 45% (T5)) substitution of TN with BS and BS only (T6). Soil mechanical-stable aggregates (MSAs) formation and stability as well as MSAs-associated C/N concentration and storage were observed in different aggregate sizes (>5, 5-2, 2-1, 1.0-0.5, 0.50-0.25 and <0.25 mm). The proportion of MSAs >5 mm significantly increased with BS substitution (T5), while the proportions of MSAs 1.0-0.5 mm, MSAs 0.50-0.25 mm and MSAs <0.25 mm significantly decreased. Both mean weight diameter and geometric mean diameter were highest in T5, which improved soil aggregation stability as well as resulted in significantly higher SOC and TN concentrations and storage in MSAs >0.5 mm that constituted 72-82% of MSAs. Stepwise regression analysis showed that MSAs >5 mm, SOC in MSAs >5 mm and TN in MSAs >5 mm were the dominant variables affecting aggregate stability. Meanwhile SOC in MSAs <0.25 mm and TN in MSAs 2-1 mm were independent variables affecting SOC and TN concentrations in bulk soils. Therefore, certain rate of combined application of BS plus CF is an effective, eco-friendly way to improve soil quality in an Ultisol.

  13. Unveiling the Aggregation of Lycopene in Vitro and in Vivo: UV-Vis, Resonance Raman, and Raman Imaging Studies.

    PubMed

    Ishigaki, Mika; Meksiarun, Phiranuphon; Kitahama, Yasutaka; Zhang, Leilei; Hashimoto, Hideki; Genkawa, Takuma; Ozaki, Yukihiro

    2017-08-31

    The present study investigates the structure of lycopene aggregates both in vitro and in vivo using ultraviolet-visible (UV-vis) and Raman spectroscopies. The electronic absorption bands of the J- and H-aggregates in vitro shift to lower and higher energies, respectively, compared to that of the lycopene monomer. Along with these results, the frequencies of the ν 1 Raman bands were shifted to lower and higher frequencies, respectively. By plotting the frequencies of the ν 1 Raman band against the S 0 → S 2 transition energy, a linear relationship between the data set with different aggregation conformations can be obtained. Therefore, the band positions depending on the different conformations can be explained based on the idea that the effective conjugated C═C chain lengths within lycopene molecules are different due to the environmental effect (site-shift effect) caused by the aggregation conformation. Applying this knowledge to the in vivo measurement of a tomato fruit sample, the relationship between the aggregation conformation of lycopene and the spectral patterns observed in the UV-vis as well as Raman spectra in different parts of tomato fruits was discussed in detail. The results showed that the concentration of lycopene (particularly that of the J-aggregate) specifically increased, whereas that of chlorophyll decreased, with ripening. Furthermore, Raman imaging indicated that lycopene with different aggregate conformations was distributed inhomogeneously, even within one sample. The layer formation in tomato tissues with high concentrations of J- and H-aggregates was successfully visualized. In this manner, the presence of lycopene distributions with different aggregate conformations was unveiled in vivo.

  14. Threshold concentration in the nonlinear absorbance law.

    PubMed

    Tolbin, Alexander Yu; Pushkarev, Victor E; Tomilova, Larisa G; Zefirov, Nikolay S

    2017-05-24

    A new nonlinear relationship of the absorption coefficient with the concentration was proposed, allowing the calculation of the threshold concentration, which shows that there is a deviation from the Beer-Lambert law. The nonlinear model was successfully tested on a stable dimeric phthalocyanine ligand of J-type in solvents with different polarity. It was shown that deviation from the linearity is connected with a specific association of the macrocyclic molecules, which, in the case of non-polar solvents, leads to the formation of H-aggregates composed of J-type dimeric molecules. The aggregation number was estimated to be less than 1.5, which has allowed us to conduct a series of analytical experiments in a wide range of concentrations (1 × 10 -6 -5 × 10 -4 mol L -1 ).

  15. Effects of maximum aggregate size on UPV of brick aggregate concrete.

    PubMed

    Mohammed, Tarek Uddin; Mahmood, Aziz Hasan

    2016-07-01

    Investigation was carried out to study the effects of maximum aggregate size (MAS) (12.5mm, 19.0mm, 25.0mm, 37.5mm, and 50.0mm) on ultrasonic pulse velocity (UPV) of concrete. For investigation, first class bricks were collected and broken to make coarse aggregate. The aggregates were tested for specific gravity, absorption capacity, unit weight, and abrasion resistance. Cylindrical concrete specimens were made with different sand to aggregate volume ratio (s/a) (0.40 and 0.45), W/C ratio (0.45, 0.50, and 0.55), and cement content (375kg/m(3) and 400kg/m(3)). The specimens were tested for compressive strength and Young's modulus. UPV through wet specimen was measured using Portable Ultrasonic Non-destructive Digital Indicating Tester (PUNDIT). Results indicate that the pulse velocity through concrete increases with an increase in MAS. Relationships between UPV and compressive strength; and UPV and Young's modulus of concrete are proposed for different maximum sizes of brick aggregate. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Calcium Ions Promote Superoxide Dismutase 1 (SOD1) Aggregation into Non-fibrillar Amyloid

    PubMed Central

    Leal, Sónia S.; Cardoso, Isabel; Valentine, Joan S.; Gomes, Cláudio M.

    2013-01-01

    Imbalance in metal ion homeostasis is a hallmark in neurodegenerative conditions involving protein deposition, and amyotrophic lateral sclerosis (ALS) is no exception. In particular, Ca2+ dysregulation has been shown to correlate with superoxide dismutase-1 (SOD1) aggregation in a cellular model of ALS. Here we present evidence that SOD1 aggregation is enhanced and modulated by Ca2+. We show that at physiological pH, Ca2+ induces conformational changes that increase SOD1 β-sheet content, as probed by far UV CD and attenuated total reflectance-FTIR, and enhances SOD1 hydrophobicity, as probed by ANS fluorescence emission. Moreover, dynamic light scattering analysis showed that Ca2+ boosts the onset of SOD1 aggregation. In agreement, Ca2+ decreases SOD1 critical concentration and nucleation time during aggregation kinetics, as evidenced by thioflavin T fluorescence emission. Attenuated total reflectance FTIR analysis showed that Ca2+ induced aggregates consisting preferentially of antiparallel β-sheets, thus suggesting a modulation effect on the aggregation pathway. Transmission electron microscopy and analysis with conformational anti-fibril and anti-oligomer antibodies showed that oligomers and amyloidogenic aggregates constitute the prevalent morphology of Ca2+-induced aggregates, thus indicating that Ca2+ diverts SOD1 aggregation from fibrils toward amorphous aggregates. Interestingly, the same heterogeneity of conformations is found in ALS-derived protein inclusions. We thus hypothesize that transient variations and dysregulation of cellular Ca2+ levels contribute to the formation of SOD1 aggregates in ALS patients. In this scenario, Ca2+ may be considered as a pathogenic effector in the formation of ALS proteinaceous inclusions. PMID:23861388

  17. Descriptive parameters of the erythrocyte aggregation phenomenon using a laser transmission optical chip

    NASA Astrophysics Data System (ADS)

    Toderi, Martín A.; Castellini, Horacio V.; Riquelme, Bibiana D.

    2017-01-01

    The study of red blood cell (RBC) aggregation is of great interest because of its implications for human health. Altered RBC aggregation can lead to microcirculatory problems as in vascular pathologies, such as hypertension and diabetes, due to a decrease in the erythrocyte surface electric charge and an increase in the ligands present in plasma. The process of erythrocyte aggregation was studied in stasis situation (free shear stresses), using an optical chip based on the laser transmission technique. Kinetic curves of erythrocyte aggregation under different conditions were obtained, allowing evaluation and characterization of this process. Two main characteristics of blood that influence erythrocyte aggregation were analyzed: the erythrocyte surface anionic charge (EAC) after digestion with the enzyme trypsin and plasmatic protein concentration in suspension medium using plasma dissolutions in physiological saline with human albumin. A theoretical approach was evaluated to obtain aggregation and disaggregation ratios by syllectograms data fitting. Sensible parameters (Amp100, t) regarding a reduced erythrocyte EAC were determined, and other parameters (AI, M-Index) resulted that are representative of a variation in the plasmatic protein content of the suspension medium. These results are very useful for further applications in biomedicine.

  18. Influence of pH and Metal Cations on Aggregative Growth of Non-Slime-forming Strains of Zoogloea ramigera

    PubMed Central

    Angelbeck, Donald I.; Kirsch, Edwin J.

    1969-01-01

    Aggregative growth of non-slime-forming strains of Zoogloea ramigera was induced by growing the organisms at a depressed pH. Calcium and magnesium ion was found to reverse aggregative growth of the organisms. Conversely, aggregation was stimulated when the available inorganic cation concentration of the growth medium was lowered by the use of a chelating agent. The aggregative effects of pH depression or cation depletion and the dispersal effects of cation supplementation were observed only during cellular growth. The data suggest that aggregate formation of non-slime-forming strains of Z. ramigera may be related to the calcium or magnesium metabolism of the organisms, or both. Images PMID:4976326

  19. The relationship between subclinical atherosclerosis, non-high-density lipoprotein cholesterol, exercise, and diet among male participants of the PACC Project.

    PubMed

    Simprini, Lauren A; Villines, Todd C; Rich, Michael; Taylor, Allen J

    2012-01-01

    Non-high-density lipoprotein (HDL) cholesterol is recommended as a secondary lipid goal treated initially with lifestyle modification. However, the relationship between non-HDL and subclinical atherosclerosis is unknown. We examined the independent relationships between coronary artery calcium (CAC), lipids including non-HDL, exercise, and diet among healthy male participants of the Prospective Army Coronary Calcium (PACC) Project. Male participants from the PACC Project (n = 1637, mean age 42.8 years; no history of coronary heart disease) were studied. We used validated surveys to measure dietary quality and habitual physical exercise. Fasting lipid concentrations and other cardiovascular risk variables were measured. Subclinical atherosclerosis was detected with the use of electron beam computed tomography for CAC. Factors independently associated with the presence of any detectable CAC (CAC score > 0), including standard CV risk variables, non-HDL, exercise, and diet, were evaluated with the use of logistic regression. The mean Framingham risk score was 4.6 ± 2.6%; CAC was present in 22.4%. Fasting lipid concentrations showed mean LDL-C 128 ± 32 mg/dL, HDL-C 50 ± 13 mg/dL, TG-C 130 ± 86 mg/dL, and non-HDL-C 154 ± 37 mg/dL. Men with CAC had significantly greater levels of LDL-C (135 vs 127 mg/dL), TG (148 vs 124 mg/dL), and non-HDL-C (164 vs 151 mg/dL) and less habitual physical activity (P = 0.006). There were nonsignificant trends between prevalent CAC, greater amounts of dietary fat intake, and lower HDL-C. In successive multivariable logistic regression models for the dependent variable CAC, only non-HDL-C (odds ratio [OR] 1.012 per mg/dL; 95% CI 1.002-1.023; P = .019) and age (OR 1.119 per year; 95% CI 1.063-1.178; P < .001) were independently associated with the presence of CAC, and exercise (OR 0.808; 95% CI 0.703-0.928; P = 0.003) was associated with the absence of CAC. Non-HDL-C and exercise are independently predictive of the presence of

  20. Matrix Gla Protein Polymorphisms are Associated with Coronary Artery Calcification in Men

    PubMed Central

    Crosier, Michael D.; Booth, Sarah L.; Peter, Inga; Dawson-Hughes, Bess; Price, Paul A.; O’Donnell, Christopher J.; Hoffmann, Udo; Williamson, Matthew K.; Ordovas, Jose M.

    2009-01-01

    Summary Matrix Gla protein (MGP) is a key regulator of vascular calcification. Genetic variation at the MGP locus could modulate the development of coronary artery calcification (CAC). Our aim was to examine the cross-sectional association between MGP single nucleotide polymorphisms (SNPs) [rs1800802 (T-138C), rs1800801 (G-7A), and rs4236 (Ala102Thr)] and CAC. CAC was measured by multidetector computed tomography (MDCT), in older men and women of European descent, (n = 386; 60 to 80 y of age). Serum MGP was measured by radioimmunoassay. Linear, Tobit and Ordinal regression analyses all revealed that in men, homozygous carriers of the minor allele of rs1800802 , rs1800801 , or rs4236 (minor allele frequency: 21, 38, and 40%, respectively) were associated with a decreased quantity of CAC, relative to major allele carriers. This association was not found in women. Although genetic variation in MGP was associated with serum MGP concentrations, there were no associations between serum MGP and CAC. The results of this study suggest a role for MGP genetic variants in coronary atherosclerosis among men that is not reflected in serum MGP concentrations. PMID:19352064

  1. Oil-Price Shocks: Beyond Standard Aggregate Demand/Aggregate Supply Analysis.

    ERIC Educational Resources Information Center

    Elwood, S. Kirk

    2001-01-01

    Explores the problems of portraying oil-price shocks using the aggregate demand/aggregate supply model. Presents a simple modification of the model that differentiates between production and absorption of goods, which enables it to better reflect the effects of oil-price shocks on open economies. (RLH)

  2. The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm

    NASA Astrophysics Data System (ADS)

    Zhao, Xinying; Hu, Yihua; Gu, Youlin; Li, Le

    2015-10-01

    Microorganism aggregated particle swarm, which is quite an important composition of complex media environment, can be developed as a new kind of infrared functional materials. Current researches mainly focus on the optical properties of single microorganism particle. As for the swarm, especially the microorganism aggregated particle swarm, a more accurate simulation model should be proposed to calculate its extinction effect. At the same time, certain parameters deserve to be discussed, which helps to better develop the microorganism aggregated particle swarm as a new kind of infrared functional materials. In this paper, take Aspergillus Niger spore as an example. On the one hand, a new calculation model is established. Firstly, the cluster-cluster aggregation (CCA) model is used to simulate the structure of Aspergillus Niger spore aggregated particle. Secondly, the single scattering extinction parameters for Aspergillus Niger spore aggregated particle are calculated by using the discrete dipole approximation (DDA) method. Thirdly, the transmittance of Aspergillus Niger spore aggregated particle swarm is simulated by using Monte Carlo method. On the other hand, based on the model proposed above, what influences can wavelength causes has been studied, including the spectral distribution of scattering intensity of Aspergillus Niger spore aggregated particle and the infrared spectral transmittance of the aggregated particle swarm within the range of 8-14μm incident infrared wavelengths. Numerical results indicate that the scattering intensity of Aspergillus Niger spore aggregated particle reduces with the increase of incident wavelengths at each scattering angle. Scattering energy mainly concentrates on the scattering angle between 0-40°, forward scattering has an obvious effect. In addition, the infrared transmittance of Aspergillus Niger spore aggregated particle swarm goes up with the increase of incident wavelengths. However, some turning points of the trend are

  3. Cultivation of recombinant Chinese hamster ovary cells grown as suspended aggregates in stirred vessels.

    PubMed

    Han, Yi; Liu, Xing-Mao; Liu, Hong; Li, Shi-Chong; Wu, Ben-Chuan; Ye, Ling-Ling; Wang, Qu-Wei; Chen, Zhao-Lie

    2006-11-01

    Recombinant Chinese hamster ovary (rCHO) cells capable of producing a prourokinase mutant (mPro-uk) grown as suspended aggregates in stirred vessels were described and characterized. The addition of chitosan to a mixture of DMEM and Ham's F12 (D-MEM/F-12) medium promoted cell aggregation and spheroid formation efficiently. Multicellular aggregates formed immediately after the rCHO cells were inoculated into the chitosan-added medium, and the mean diameter of the cell aggregates reflecting the aggregate size increased with culture time, shifting from 65 to 163 mum after 2 and 9 d of culture in spinner flasks. No significant difference in the metabolism performance of the rCHO cells was observed between suspended aggregates and anchored monolayers. However, the cells cultured as suspended aggregates showed a marked decrease in growth rate as evaluated from specific growth rate (mu). Replacing D-MEM/F-12 medium with CD 293 medium caused compact spherical cell aggregates to dissociate into small irregular aggregates and single cells without apparent effects on cell performance in subcultures. The perfusion culture of the rCHO cells grown as suspended aggregates in a 2-l stirred tank bioreactor for 15 d resulted in a maximum viable cell density of 5.6 x 10(6) cells ml(-1) and an mPro-uk concentration of about 2.6 x 10(3) IU ml(-1), and cell viability was remained at roughly 90% during the entire run.

  4. Microfluidic-Based Measurement Method of Red Blood Cell Aggregation under Hematocrit Variations

    PubMed Central

    2017-01-01

    Red blood cell (RBC) aggregation and erythrocyte sedimentation rate (ESR) are considered to be promising biomarkers for effectively monitoring blood rheology at extremely low shear rates. In this study, a microfluidic-based measurement technique is suggested to evaluate RBC aggregation under hematocrit variations due to the continuous ESR. After the pipette tip is tightly fitted into an inlet port, a disposable suction pump is connected to the outlet port through a polyethylene tube. After dropping blood (approximately 0.2 mL) into the pipette tip, the blood flow can be started and stopped by periodically operating a pinch valve. To evaluate variations in RBC aggregation due to the continuous ESR, an EAI (Erythrocyte-sedimentation-rate Aggregation Index) is newly suggested, which uses temporal variations of image intensity. To demonstrate the proposed method, the dynamic characterization of the disposable suction pump is first quantitatively measured by varying the hematocrit levels and cavity volume of the suction pump. Next, variations in RBC aggregation and ESR are quantified by varying the hematocrit levels. The conventional aggregation index (AI) is maintained constant, unrelated to the hematocrit values. However, the EAI significantly decreased with respect to the hematocrit values. Thus, the EAI is more effective than the AI for monitoring variations in RBC aggregation due to the ESR. Lastly, the proposed method is employed to detect aggregated blood and thermally-induced blood. The EAI gradually increased as the concentration of a dextran solution increased. In addition, the EAI significantly decreased for thermally-induced blood. From this experimental demonstration, the proposed method is able to effectively measure variations in RBC aggregation due to continuous hematocrit variations, especially by quantifying the EAI. PMID:28878199

  5. Impact of asymmetrical flow field-flow fractionation on protein aggregates stability.

    PubMed

    Bria, Carmen R M; Williams, S Kim Ratanathanawongs

    2016-09-23

    The impact of asymmetrical flow field-flow fractionation (AF4) on protein aggregate species is investigated with the aid of multiangle light scattering (MALS) and dynamic light scattering (DLS). The experimental parameters probed in this study include aggregate stability in different carrier liquids, shear stress (related to sample injection), sample concentration (during AF4 focusing), and sample dilution (during separation). Two anti-streptavidin (anti-SA) IgG1 samples composed of low and high molar mass (M) aggregates are subjected to different AF4 conditions. Aggregates suspended and separated in phosphate buffer are observed to dissociate almost entirely to monomer. However, aggregates in citric acid buffer are partially stable with dissociation to 25% and 5% monomer for the low and high M samples, respectively. These results demonstrate that different carrier liquids change the aggregate stability and low M aggregates can behave differently than their larger counterparts. Increasing the duration of the AF4 focusing step showed no significant changes in the percent monomer, percent aggregates, or the average Ms in either sample. Syringe-induced shear related to sample injection resulted in an increase in hydrodynamic diameter (dh) as measured by batch mode DLS. Finally, calculations showed that dilution during AF4 separation is significantly lower than in size exclusion chromatography with dilution occurring mainly at the AF4 channel outlet and not during the separation. This has important ramifications when analyzing aggregates that rapidly dissociate (<∼2s) upon dilution as the size calculated by AF4 theory may be more accurate than that measured by online DLS. Experimentally, the dhs determined by online DLS generally agreed with AF4 theory except for the more well retained larger aggregates for which DLS showed smaller sizes. These results highlight the importance of using AF4 retention theory to understand the impacts of dilution on analytes. Copyright

  6. Leaching assessment of concrete made of recycled coarse aggregate: physical and environmental characterisation of aggregates and hardened concrete.

    PubMed

    Galvín, A P; Agrela, F; Ayuso, J; Beltrán, M G; Barbudo, A

    2014-09-01

    Each year, millions of tonnes of waste are generated worldwide, partially through the construction and demolition of buildings. Recycling the resulting waste could reduce the amount of materials that need to be manufactured. Accordingly, the present work has analysed the potential reuse of construction waste in concrete manufacturing by replacing the natural aggregate with recycled concrete coarse aggregate. However, incorporating alternative materials in concrete manufacturing may increase the pollutant potential of the product, presenting an environmental risk via ground water contamination. The present work has tested two types of concrete batches that were manufactured with different replacement percentages. The experimental procedure analyses not only the effect of the portion of recycled aggregate on the physical properties of concrete but also on the leaching behaviour as indicative of the contamination degree. Thus, parameters such as slump, density, porosity and absorption of hardened concrete, were studied. Leaching behaviour was evaluated based on the availability test performed to three aggregates (raw materials of the concrete batches) and on the diffusion test performed to all concrete. From an environmental point of view, the question of whether the cumulative amount of heavy metals that are released by diffusion reaches the availability threshold was answered. The analysis of concentration levels allowed the establishment of different groups of metals according to the observed behaviour, the analysis of the role of pH and the identification of the main release mechanisms. Finally, through a statistical analysis, physical parameters and diffusion data were interrelated. It allowed estimating the relevance of porosity, density and absorption of hardened concrete on diffusion release of the metals in study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation

    PubMed Central

    Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung

    2013-01-01

    The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow. PMID:24396387

  8. Effects of garlic extract on platelet aggregation: a randomized placebo-controlled double-blind study.

    PubMed

    Morris, J; Burke, V; Mori, T A; Vandongen, R; Beilin, L J

    1995-01-01

    1. Studies of the effects of garlic on platelet aggregation have produced inconsistent results possibly related to variations in study design and in the garlic preparations used. 2. The present study examined the effects on platelet aggregation and serum thromboxane and lyso-platelet activating factor, of feeding garlic extract to healthy men using a placebo-controlled, double-blind design. The effects of the same garlic preparation on platelet aggregation in vitro were also investigated. 3. There were no significant differences in platelet aggregation with adenosine diphosphate, platelet activating factor (PAF) or collagen according to treatment group. Serum thromboxane and lysoPAF also showed no change related to garlic supplements. 4. In vitro aggregation with collagen decreased linearly with increasing amounts of garlic extract, but concentrations were higher than those attainable in vivo. Gastrointestinal side effects prevented the use of higher doses of garlic which must be considered to be pharmacological as they exceed changes achievable by dietary modification.

  9. Stable, Metastable, and Kinetically Trapped Amyloid Aggregate Phases

    PubMed Central

    2015-01-01

    Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer’s disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid–liquid phase separation of proteins and to surfactant aggregation are discussed. PMID:25469942

  10. Tensile strength and fracture of cemented granular aggregates.

    PubMed

    Affes, R; Delenne, J-Y; Monerie, Y; Radjaï, F; Topin, V

    2012-11-01

    Cemented granular aggregates include a broad class of geomaterials such as sedimentary rocks and some biomaterials such as the wheat endosperm. We present a 3D lattice element method for the simulation of such materials, modeled as a jammed assembly of particles bound together by a matrix partially filling the interstitial space. From extensive simulation data, we analyze the mechanical properties of aggregates subjected to tensile loading as a function of matrix volume fraction and particle-matrix adhesion. We observe a linear elastic behavior followed by a brutal failure along a fracture surface. The effective stiffness before failure increases almost linearly with the matrix volume fraction. We show that the tensile strength of the aggregates increases with both the increasing tensile strength at the particle-matrix interface and decreasing stress concentration as a function of matrix volume fraction. The proportion of broken bonds in the particle phase reveals a range of values of the particle-matrix adhesion and matrix volume fraction for which the cracks bypass the particles and hence no particle damage occurs. This limit is shown to depend on the relative toughness of the particle-matrix interface with respect to the particles.

  11. Stable, metastable, and kinetically trapped amyloid aggregate phases.

    PubMed

    Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy D; Muschol, Martin

    2015-01-12

    Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer's disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid-liquid phase separation of proteins and to surfactant aggregation are discussed.

  12. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates.

    PubMed

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.

  13. Protein aggregate turbidity: Simulation of turbidity profiles for mixed-aggregation reactions.

    PubMed

    Hall, Damien; Zhao, Ran; Dehlsen, Ian; Bloomfield, Nathaniel; Williams, Steven R; Arisaka, Fumio; Goto, Yuji; Carver, John A

    2016-04-01

    Due to their colloidal nature, all protein aggregates scatter light in the visible wavelength region when formed in aqueous solution. This phenomenon makes solution turbidity, a quantity proportional to the relative loss in forward intensity of scattered light, a convenient method for monitoring protein aggregation in biochemical assays. Although turbidity is often taken to be a linear descriptor of the progress of aggregation reactions, this assumption is usually made without performing the necessary checks to provide it with a firm underlying basis. In this article, we outline utilitarian methods for simulating the turbidity generated by homogeneous and mixed-protein aggregation reactions containing fibrous, amorphous, and crystalline structures. The approach is based on a combination of Rayleigh-Gans-Debye theory and approximate forms of the Mie scattering equations. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  14. Individual aerosol particles in ambient and updraft conditions below convective cloud bases in the Oman mountain region

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.

    2014-03-01

    An airborne study of cloud microphysics provided an opportunity to collect aerosol particles in ambient and updraft conditions of natural convection systems for transmission electron microscopy (TEM). Particles were collected simultaneously on lacey carbon and calcium-coated carbon (Ca-C) TEM grids, providing information on particle morphology and chemistry and a unique record of the particle's physical state on impact. In total, 22 particle categories were identified, including single, coated, aggregate, and droplet types. The fine fraction comprised up to 90% mixed cation sulfate (MCS) droplets, while the coarse fraction comprised up to 80% mineral-containing aggregates. Insoluble (dry), partially soluble (wet), and fully soluble particles (droplets) were recorded on Ca-C grids. Dry particles were typically silicate grains; wet particles were mineral aggregates with chloride, nitrate, or sulfate components; and droplets were mainly aqueous NaCl and MCS. Higher numbers of droplets were present in updrafts (80% relative humidity (RH)) compared with ambient conditions (60% RH), and almost all particles activated at cloud base (100% RH). Greatest changes in size and shape were observed in NaCl-containing aggregates (>0.3 µm diameter) along updraft trajectories. Their abundance was associated with high numbers of cloud condensation nuclei (CCN) and cloud droplets, as well as large droplet sizes in updrafts. Thus, compositional dependence was observed in activation behavior recorded for coarse and fine fractions. Soluble salts from local pollution and natural sources clearly affected aerosol-cloud interactions, enhancing the spectrum of particles forming CCN and by forming giant CCN from aggregates, thus, making cloud seeding with hygroscopic flares ineffective in this region.

  15. Spatial Modeling of Iron Transformations Within Artificial Soil Aggregates

    NASA Astrophysics Data System (ADS)

    Kausch, M.; Meile, C.; Pallud, C.

    2008-12-01

    Structured soils exhibit significant variations in transport characteristics at the aggregate scale. Preferential flow occurs through macropores while predominantly diffusive exchange takes place in intra-aggregate micropores. Such environments characterized by mass transfer limitations are conducive to the formation of small-scale chemical gradients and promote strong spatial variation in processes controlling the fate of redox-sensitive elements such as Fe. In this study, we present a reactive transport model used to spatially resolve iron bioreductive processes occurring within a spherical aggregate at the interface between advective and diffusive domains. The model is derived from current conceptual models of iron(hydr)oxide (HFO) transformations and constrained by literature and experimental data. Data were obtained from flow-through experiments on artificial soil aggregates inoculated with Shewanella putrefaciens strain CN32, and include the temporal evolution of the bulk solution composition, as well as spatial information on the final solid phase distribution within aggregates. With all iron initially in the form of ferrihydrite, spatially heterogeneous formation of goethite/lepidocrocite, magnetite and siderite was observed during the course of the experiments. These transformations were reproduced by the model, which ascribes a central role to divalent iron as a driver of HFO transformations and master variable in the rate laws of the considered reaction network. The predicted dissolved iron breakthrough curves also match the experimental ones closely. Thus, the computed chemical concentration fields help identify factors governing the observed trends in the solid phase distribution patterns inside the aggregate. Building on a mechanistic description of transformation reactions, fluid flow and solute transport, the model was able to describe the observations and hence illustrates the importance of small-scale gradients and dynamics of bioreductive

  16. Isolation and Structural Characterization of Two Very Large, and Largely Empty, Endohedral Fullerenes: Tm@C3v-C94 and Ca@C3v-C94

    PubMed Central

    Che, Yuliang; Yang, Hua; Wang, Zhimin; Jin, Hongxiao; Lu, Chunxin; Zuo, Tianming; Beavers, Christine M.

    2009-01-01

    The structures of two newly synthesized endohedral fullerenes - Tm@C3v-C94 and Ca@C3v-C94 - have been determined by single crystal X-ray diffraction on samples co-crystallized with NiII(octaethylporphyrin). Both compounds exhibit the same cage geometry and conform to the isolated pentagon rule (IPR). The metal ions within these rather large cages are localized near one end and along the C3 axis. While the calcium ion is situated over a C-C bond at a 6:6 ring junction, the thulium ion is positioned above a six-membered ring of the fullerene. PMID:19507844

  17. Aggregation effects on tritium-based mean transit times and young water fractions in spatially heterogeneous catchments and groundwater systems

    NASA Astrophysics Data System (ADS)

    Stewart, Michael K.; Morgenstern, Uwe; Gusyev, Maksym A.; Małoszewski, Piotr

    2017-09-01

    Kirchner (2016a) demonstrated that aggregation errors due to spatial heterogeneity, represented by two homogeneous subcatchments, could cause severe underestimation of the mean transit times (MTTs) of water travelling through catchments when simple lumped parameter models were applied to interpret seasonal tracer cycle data. Here we examine the effects of such errors on the MTTs and young water fractions estimated using tritium concentrations in two-part hydrological systems. We find that MTTs derived from tritium concentrations in streamflow are just as susceptible to aggregation bias as those from seasonal tracer cycles. Likewise, groundwater wells or springs fed by two or more water sources with different MTTs will also have aggregation bias. However, the transit times over which the biases are manifested are different because the two methods are applicable over different time ranges, up to 5 years for seasonal tracer cycles and up to 200 years for tritium concentrations. Our virtual experiments with two water components show that the aggregation errors are larger when the MTT differences between the components are larger and the amounts of the components are each close to 50 % of the mixture. We also find that young water fractions derived from tritium (based on a young water threshold of 18 years) are almost immune to aggregation errors as were those derived from seasonal tracer cycles with a threshold of about 2 months.

  18. Determinants of platelet aggregation in 50-70-year-old men from three Japanese communities.

    PubMed

    Imano, Hironori; Iso, Hiroyasu; Sato, Shinichi; Kitamura, Akihiko; Okamura, Tomonori; Tanigawa, Takeshi; Ohira, Tetsuya; Kudo, Minako; Naito, Yoshihiko; Iida, Minoru; Shimamoto, Takashi

    2002-12-01

    To investigate the association of lifestyle and constitutional variables with platelet aggregation, we examined the platelet aggregation, serum fatty acid composition, alcohol intake, smoking, and dietary intake of seafood and soybean estimated by a 1-week dietary record in 448 males aged 50-70 in three rural Japanese communities: Ikawa, Akita prefecture (northeast coast), Noichi, Kochi prefecture (southwest coast), and Kyowa, Ibaraki prefecture (central inland). Platelet aggregatory threshold index (PATI) was used to determine the minimum concentration of adenosine 5'-diphosphate (ADP) that caused a non-reversible aggregation of platelets. Intake of seafood and n3-polyunsaturated fatty acid and ingestion of ethanol were higher in the northeast coastal community than in the other two communities. Mean platelet and white blood cell counts were lower in northeast coastal community than in the other two communities. The geometric mean PATI was higher (i.e. platelet aggregation was lower) in the northeast coastal community than the other two communities. Within the entire sample, platelet aggregation correlated inversely with serum level of n3-polyunsaturated fatty acids and gamma-glutamyl transpeptidase, an index of alcohol consumption, and positively with platelet and white blood cell counts. Platelet aggregation tended to correlate positively with serum arachidonic acid. There was no correlation between smoking and platelet aggregation. Our results suggest that seafood intake and moderate alcohol consumption reduce platelet aggregation.

  19. Effects of acute and chronic psychological stress on platelet aggregation in mice.

    PubMed

    Matsuhisa, Fumikazu; Kitamura, Nobuo; Satoh, Eiki

    2014-03-01

    Although psychological stress has long been known to alter cardiovascular function, there have been few studies on the effect of psychological stress on platelets, which play a pivotal role in cardiovascular disease. In the present study, we investigated the effects of acute and chronic psychological stress on the aggregation of platelets and platelet cytosolic free calcium concentration ([Ca(2+)]i). Mice were subjected to both transportation stress (exposure to novel environment, psychological stress) and restraint stress (psychological stress) for 2 h (acute stress) or 3 weeks (2 h/day) (chronic stress). In addition, adrenalectomized mice were subjected to similar chronic stress (both transportation and restraint stress for 3 weeks). The aggregation of platelets from mice and [Ca(2+)]i was determined by light transmission assay and fura-2 fluorescence assay, respectively. Although acute stress had no effect on agonist-induced platelet aggregation, chronic stress enhanced the ability of the platelet agonists thrombin and ADP to stimulate platelet aggregation. However, chronic stress failed to enhance agonist-induced increase in [Ca(2+)]i. Adrenalectomy blocked chronic stress-induced enhancement of platelet aggregation. These results suggest that chronic, but not acute, psychological stress enhances agonist-stimulated platelet aggregation independently of [Ca(2+)]i increase, and the enhancement may be mediated by stress hormones secreted from the adrenal glands.

  20. Towards control of aggregational behaviour of alpha-lactalbumin at acidic pH.

    PubMed

    Pedersen, Jane B; Fojan, Peter; Sorensen, John; Petersen, Steffen B

    2006-07-01

    alpha-Lactalbumin (alpha-La) undergoes considerable structural changes upon loss of bound Ca2+ at acidic pH, leaving alpha-La in a molten globule structure. Using fluorescence the present work provides more insight into the structural transition of alpha-La at acidic pH leading to protein aggregation, most likely caused by a combination of hydrophobic and electrostatic interactions. The rate of aggregation is determined by the protein concentration and temperature applied. Availability of Ca2+ stabilises the protein, and thus prevent aggregation at pH values as low as pH 2.9. In contrast, presence of Cu2+ induces a destabilisation of the protein, which can be explained by a binding to the Zn2+ binding site in alpha-La, possibly resulting in structural alterations of the protein. In general, presence of anions destabilize alpha-La at pH values below pI, with SO4(2-) exhibiting the strongest effect on the protein stability, thus correlating well with the Hofmeister series. At more acidic pH values far from pI, alpha-La becomes more stable towards ion induced aggregation, since higher ion activity is required to efficiently screen the charges on the protein surface. The results presented in this paper provide detailed knowledge on the external parameters leading to aggregation of alpha-La at acidic pH, thus permitting rational design of the aggregation process.

  1. PCSK9 and lipoprotein (a) levels are two predictors of coronary artery calcification in asymptomatic patients with familial hypercholesterolemia.

    PubMed

    Alonso, Rodrigo; Mata, Pedro; Muñiz, Ovidio; Fuentes-Jimenez, Francisco; Díaz, Jose Luis; Zambón, Daniel; Tomás, Marta; Martin, Cesar; Moyon, Thomas; Croyal, Mikaël; Thedrez, Aurélie; Lambert, Gilles

    2016-11-01

    We aimed to assess whether elevated PCSK9 and lipoprotein (a) [Lp(a)] levels associate with coronary artery calcification (CAC), a good marker of atherosclerosis burden, in asymptomatic familial hypercholesterolemia. We selected 161 molecularly defined FH patients treated with stable doses of statins for more than a year. CAC was measured using the Agatston method and quantified as categorical variable. Fasting plasma samples were collected and analyzed for lipids and lipoproteins. PCSK9 was measured by ELISA, Lp(a) and apolipoprotein (a) concentrations by inmunoturbidimetry and LC-MS/MS, respectively. Circulating PCSK9 levels were significantly reduced in patients without CAC (n = 63), compared to those with CAC (n = 99). Patients with the highest CAC scores (above 100) had the highest levels of circulating PCSK9 and Lp(a). In multivariable regression analyses, the main predictors for a positive CAC score was age and sex followed by circulating PCSK9 and Lp(a) levels. In statin treated asymptomatic FH patients, elevated PCSK9 and Lp(a) levels are independently associated with the presence and severity of CAC, a good predictor of coronary artery disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Aggregated Indexing of Biomedical Time Series Data

    PubMed Central

    Woodbridge, Jonathan; Mortazavi, Bobak; Sarrafzadeh, Majid; Bui, Alex A.T.

    2016-01-01

    Remote and wearable medical sensing has the potential to create very large and high dimensional datasets. Medical time series databases must be able to efficiently store, index, and mine these datasets to enable medical professionals to effectively analyze data collected from their patients. Conventional high dimensional indexing methods are a two stage process. First, a superset of the true matches is efficiently extracted from the database. Second, supersets are pruned by comparing each of their objects to the query object and rejecting any objects falling outside a predetermined radius. This pruning stage heavily dominates the computational complexity of most conventional search algorithms. Therefore, indexing algorithms can be significantly improved by reducing the amount of pruning. This paper presents an online algorithm to aggregate biomedical times series data to significantly reduce the search space (index size) without compromising the quality of search results. This algorithm is built on the observation that biomedical time series signals are composed of cyclical and often similar patterns. This algorithm takes in a stream of segments and groups them to highly concentrated collections. Locality Sensitive Hashing (LSH) is used to reduce the overall complexity of the algorithm, allowing it to run online. The output of this aggregation is used to populate an index. The proposed algorithm yields logarithmic growth of the index (with respect to the total number of objects) while keeping sensitivity and specificity simultaneously above 98%. Both memory and runtime complexities of time series search are improved when using aggregated indexes. In addition, data mining tasks, such as clustering, exhibit runtimes that are orders of magnitudes faster when run on aggregated indexes. PMID:27617298

  3. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates

    PubMed Central

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B.

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA. PMID:26161440

  4. Protein aggregation and particle formation in prefilled glass syringes.

    PubMed

    Gerhardt, Alana; Mcgraw, Nicole R; Schwartz, Daniel K; Bee, Jared S; Carpenter, John F; Randolph, Theodore W

    2014-06-01

    The stability of therapeutic proteins formulated in prefilled syringes (PFS) may be negatively impacted by the exposure of protein molecules to silicone oil-water interfaces and air-water interfaces. In addition, agitation, such as that experienced during transportation, may increase the detrimental effects (i.e., protein aggregation and particle formation) of protein interactions with interfaces. In this study, surfactant-free formulations containing either a monoclonal antibody or lysozyme were incubated in PFS, where they were exposed to silicone oil-water interfaces (siliconized syringe walls), air-water interfaces (air bubbles), and agitation stress (occurring during end-over-end rotation). Using flow microscopy, particles (≥2 μm diameter) were detected under all conditions. The highest particle concentrations were found in agitated, siliconized syringes containing an air bubble. The particles formed in this condition consisted of silicone oil droplets and aggregated protein, as well as agglomerates of protein aggregates and silicone oil. We propose an interfacial mechanism of particle generation in PFS in which capillary forces at the three-phase (silicone oil-water-air) contact line remove silicone oil and gelled protein aggregates from the interface and transport them into the bulk. This mechanism explains the synergistic effects of silicone oil-water interfaces, air-water interfaces, and agitation in the generation of particles in protein formulations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Composition, buoyancy regulation and fate of ice algal aggregates in the Central Arctic Ocean.

    PubMed

    Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L; Glud, Ronnie N; Boetius, Antje

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8-35 and 9-40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m(-2), maintaining an estimated net primary production of 0.4-40 mg C m(-2) d(-1), and accounted for 3-80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities.

  6. Composition, Buoyancy Regulation and Fate of Ice Algal Aggregates in the Central Arctic Ocean

    PubMed Central

    Fernández-Méndez, Mar; Wenzhöfer, Frank; Peeken, Ilka; Sørensen, Heidi L.; Glud, Ronnie N.; Boetius, Antje

    2014-01-01

    Sea-ice diatoms are known to accumulate in large aggregates in and under sea ice and in melt ponds. There is recent evidence from the Arctic that such aggregates can contribute substantially to particle export when sinking from the ice. The role and regulation of microbial aggregation in the highly seasonal, nutrient- and light-limited Arctic sea-ice ecosystem is not well understood. To elucidate the mechanisms controlling the formation and export of algal aggregates from sea ice, we investigated samples taken in late summer 2011 and 2012, during two cruises to the Eurasian Basin of the Central Arctic Ocean. Spherical aggregates densely packed with pennate diatoms, as well as filamentous aggregates formed by Melosira arctica showed sign of different stages of degradation and physiological stoichiometries, with carbon to chlorophyll a ratios ranging from 110 to 66700, and carbon to nitrogen molar ratios of 8–35 and 9–40, respectively. Sub-ice algal aggregate densities ranged between 1 and 17 aggregates m−2, maintaining an estimated net primary production of 0.4–40 mg C m−2 d−1, and accounted for 3–80% of total phototrophic biomass and up to 94% of local net primary production. A potential factor controlling the buoyancy of the aggregates was light intensity, regulating photosynthetic oxygen production and the amount of gas bubbles trapped within the mucous matrix, even at low ambient nutrient concentrations. Our data-set was used to evaluate the distribution and importance of Arctic algal aggregates as carbon source for pelagic and benthic communities. PMID:25208058

  7. Aggregation-primed molten globule conformers of the p53 core domain provide potential tools for studying p53C aggregation in cancer.

    PubMed

    Pedrote, Murilo M; de Oliveira, Guilherme A P; Felix, Adriani L; Mota, Michelle F; Marques, Mayra de A; Soares, Iaci N; Iqbal, Anwar; Norberto, Douglas R; Gomes, Andre M O; Gratton, Enrico; Cino, Elio A; Silva, Jerson L

    2018-05-31

    The functionality of the tumor suppressor p53 is altered in more than 50% of human cancers, and many individuals with cancer exhibit amyloid-like buildups of aggregated p53. An understanding of what triggers the pathogenic amyloid conversion of p53 is required for the further development of cancer therapies. Here, perturbation of the p53 core domain (p53C) with sub-denaturing concentrations of guanidine hydrochloride and high hydrostatic pressure revealed native-like molten globule (MG) states, a subset of which were highly prone to amyloidogenic aggregation. We found that MG conformers of p53C, likely representing population-weighted averages of multiple states, have different volumetric properties, as determined by pressure perturbation and size-exclusion chromatography. We also found that they bind the fluorescent dye 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) and have a native-like tertiary structure that occludes the single Trp residue in p53. Fluorescence experiments revealed conformational changes of the single Trp and Tyr residues before p53 unfolding and the presence of MG conformers, some of which were highly prone to aggregation. P53C exhibited marginal unfolding cooperativity, which could be modulated from unfolding to aggregation pathways with chemical or physical forces. We conclude that trapping amyloid precursor states in solution is a promising approach for understanding p53 aggregation in cancer. Our findings support the use of single-Trp fluorescence as a probe for evaluating p53 stability, effects of mutations, and the efficacy of therapeutics designed to stabilize p53. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Modeling Multivalent Ligand-Receptor Interactions with Steric Constraints on Configurations of Cell-Surface Receptor Aggregates

    PubMed Central

    Monine, Michael I.; Posner, Richard G.; Savage, Paul B.; Faeder, James R.; Hlavacek, William S.

    2010-01-01

    Abstract We use flow cytometry to characterize equilibrium binding of a fluorophore-labeled trivalent model antigen to bivalent IgE-FcεRI complexes on RBL cells. We find that flow cytometric measurements are consistent with an equilibrium model for ligand-receptor binding in which binding sites are assumed to be equivalent and ligand-induced receptor aggregates are assumed to be acyclic. However, this model predicts extensive receptor aggregation at antigen concentrations that yield strong cellular secretory responses, which is inconsistent with the expectation that large receptor aggregates should inhibit such responses. To investigate possible explanations for this discrepancy, we evaluate four rule-based models for interaction of a trivalent ligand with a bivalent cell-surface receptor that relax simplifying assumptions of the equilibrium model. These models are simulated using a rule-based kinetic Monte Carlo approach to investigate the kinetics of ligand-induced receptor aggregation and to study how the kinetics and equilibria of ligand-receptor interaction are affected by steric constraints on receptor aggregate configurations and by the formation of cyclic receptor aggregates. The results suggest that formation of linear chains of cyclic receptor dimers may be important for generating secretory signals. Steric effects that limit receptor aggregation and transient formation of small receptor aggregates may also be important. PMID:20085718

  9. Determination of the critical micelle concentration in simulations of surfactant systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Andrew P.; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu

    Alternative methods for determining the critical micelle concentration (cmc) are investigated using canonical and grand canonical Monte Carlo simulations of a lattice surfactant model. A common measure of the cmc is the “free” (unassociated) surfactant concentration in the presence of micellar aggregates. Many prior simulations of micellizing systems have observed a decrease in the free surfactant concentration with overall surfactant loading for both ionic and nonionic surfactants, contrary to theoretical expectations from mass-action models of aggregation. In the present study, we investigate a simple lattice nonionic surfactant model in implicit solvent, for which highly reproducible simulations are possible in bothmore » the canonical (NVT) and grand canonical (μVT) ensembles. We confirm the previously observed decrease of free surfactant concentration at higher overall loadings and propose an algorithm for the precise calculation of the excluded volume and effective concentration of unassociated surfactant molecules in the accessible volume of the solution. We find that the cmc can be obtained by correcting the free surfactant concentration for volume exclusion effects resulting from the presence of micellar aggregates. We also develop an improved method for determination of the cmc based on the maximum in curvature for the osmotic pressure curve determined from μVT simulations. Excellent agreement in cmc and other micellar properties between NVT and μVT simulations of different system sizes is observed. The methodological developments in this work are broadly applicable to simulations of aggregating systems using any type of surfactant model (atomistic/coarse grained) or solvent description (explicit/implicit)« less

  10. Methods of predicting aggregate voids.

    DOT National Transportation Integrated Search

    2013-03-01

    Percent voids in combined aggregates vary significantly. Simplified methods of predicting aggregate : voids were studied to determine the feasibility of a range of gradations using aggregates available in Kansas. : The 0.45 Power Curve Void Predictio...

  11. Blended aggregate study : final report.

    DOT National Transportation Integrated Search

    1980-03-01

    Louisiana produces no naturally occurring skid resistant aggregate and, therefore, must import these aggregates at great expense. : In an effort to extend the yield of these aggregates, a laboratory investigation was initiated to determine the feasib...

  12. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters.

    PubMed

    Yin, Yongguang; Yang, Xiaoya; Zhou, Xiaoxia; Wang, Weidong; Yu, Sujuan; Liu, Jingfu; Jiang, Guibin

    2015-08-01

    The inevitable release of engineered silver nanoparticles (AgNPs) into aquatic environments has drawn great concerns about its environmental toxicity and safety. Although aggregation and transformation play crucial roles in the transport and toxicity of AgNPs, how the water chemistry of environmental waters influences the aggregation and transformation of engineered AgNPs is still not well understood. In this study, the aggregation of polyvinylpyrrolidone (PVP) coated AgNPs was investigated in eight typical environmental water samples (with different ionic strengths, hardness, and dissolved organic matter (DOM) concentrations) by using UV-visible spectroscopy and dynamic light scattering. Raman spectroscopy was applied to probe the interaction of DOM with the surface of AgNPs. Further, the photo-transformation and morphology changes of AgNPs in environmental waters were studied by UV-visible spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. The results suggested that both electrolytes (especially Ca(2+) and Mg(2+)) and DOM in the surface waters are key parameters for AgNP aggregation, and sunlight could accelerate the morphology change, aggregation, and further sedimentation of AgNPs. This water chemistry controlled aggregation and photo-transformation should have significant environmental impacts on the transport and toxicity of AgNPs in the aquatic environments. Copyright © 2015. Published by Elsevier B.V.

  13. Volcanic ash aggregation in the lab - can we mimic natural processes?

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Jacob, Michael; Ayris, Paul; Cimarelli, Corrado; Dingwell, Donald B.; Guttzeit, Melanie; Hess, Kai-Uwe; Walter, Ulrich

    2015-04-01

    Explosive volcanic eruptions release large amounts of particles into the atmosphere. Volcanic ash, by definition pyroclasts smaller than 2 mm, can be distributed around the globe by prevailing winds. Ash poses hazards to aviation industry by melting in jet turbines, to human health by entering respiration systems and to society by damaging infrastructure. Under certain circumstances, ash particles can cluster together and build ash aggregates. Aggregates range in size from few mm to few cm and may exhibit complex internal stratigraphy. During growth, weight, density and aerodynamic properties change, leading to a significantly different settling behavior compared to individual ash particles. Although ash aggregation has been frequently observed in the geologic record, the physical and chemical mechanisms generating the aggregates remain poorly understood. During several field campaigns, we collected numerous ash aggregates and analyzed their textural, chemical and mechanical properties. Based on this knowledge, we have designed experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH, Germany. In this device, a continuous fluidized bed can be applied on solid particles and simulate gas-particle flow conditions as they would be expected in volcanic plumes or pyroclastic density currents. The geological record and direct observations have shown that both processes are capable of producing ash aggregates. As starting material we used Na-glass beads as an analogue and volcanic ash from Laacher See Volcano, Eifel Volcanic Field, Germany. We define parameters such as grainsize, specific surface area and concentration of the starting material, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase to influence form, size, stability and production rate of aggregates. We were able to experimentally produce round, unstructured ash pellets up to 5mm in diameter. A detailed textural description highlights

  14. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates.

    PubMed

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-06-01

    Colonies of N(2)-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. (15)N-isotope labelling experiments and nutrient analyses revealed that N(2) fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N(2) were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (<1 to ⩾0.1 mm) may only arise in low-oxygenated waters (⩽25 μM). We propose that the net effect of aggregates on nitrogen loss is negligible in NO(3)(-)-depleted, fully oxygenated (surface) waters. In NO(3)(-)-enriched (>1.5 μM), O(2)-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes.

  15. Induced nanoparticle aggregation for short nucleic acid quantification by depletion isotachophoresis.

    PubMed

    Marczak, Steven; Senapati, Satyajyoti; Slouka, Zdenek; Chang, Hsueh-Chia

    2016-12-15

    A rapid (<20min) gel-membrane biochip platform for the detection and quantification of short nucleic acids is presented based on a sandwich assay with probe-functionalized gold nanoparticles and their separation into concentrated bands by depletion-generated gel isotachophoresis. The platform sequentially exploits the enrichment and depletion phenomena of an ion-selective cation-exchange membrane created under an applied electric field. Enrichment is used to concentrate the nanoparticles and targets at a localized position at the gel-membrane interface for rapid hybridization. The depletion generates an isotachophoretic zone without the need for different conductivity buffers, and is used to separate linked nanoparticles from isolated ones in the gel medium and then by field-enhanced aggregation of only the linked particles at the depletion front. The selective field-induced aggregation of the linked nanoparticles during the subsequent depletion step produces two lateral-flow like bands within 1cm for easy visualization and quantification as the aggregates have negligible electrophoretic mobility in the gel and the isolated nanoparticles are isotachophoretically packed against the migrating depletion front. The detection limit for 69-base single-stranded DNA targets is 10 pM (about 10 million copies for our sample volume) with high selectivity against nontargets and a three decade linear range for quantification. The selectivity and signal intensity are maintained in heterogeneous mixtures where the nontargets outnumber the targets 10,000 to 1. The selective field-induced aggregation of DNA-linked nanoparticles at the ion depletion front is attributed to their trailing position at the isotachophoretic front with a large field gradient. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The Contribution of Children's Advocacy Centers to Felony Prosecutions of Child Sexual Abuse

    ERIC Educational Resources Information Center

    Miller, Aaron; Rubin, David

    2009-01-01

    Objective: To describe trends of felony sexual abuse prosecutions between 1992 and 2002 for two districts of a large urban city that differed primarily in their use of children's advocacy centers (CACs) for sexual abuse evaluations in children. Methods: Aggregate data for two districts of a large urban city were provided from 1992 to 2002 from the…

  17. Kinetics of Aggregation with Choice

    DOE PAGES

    Ben-Naim, Eli; Krapivsky, Paul

    2016-12-01

    Here we generalize the ordinary aggregation process to allow for choice. In ordinary aggregation, two random clusters merge and form a larger aggregate. In our implementation of choice, a target cluster and two candidate clusters are randomly selected and the target cluster merges with the larger of the two candidate clusters.We study the long-time asymptotic behavior and find that as in ordinary aggregation, the size density adheres to the standard scaling form. However, aggregation with choice exhibits a number of different features. First, the density of the smallest clusters exhibits anomalous scaling. Second, both the small-size and the large-size tailsmore » of the density are overpopulated, at the expense of the density of moderate-size clusters. Finally, we also study the complementary case where the smaller candidate cluster participates in the aggregation process and find an abundance of moderate clusters at the expense of small and large clusters. Additionally, we investigate aggregation processes with choice among multiple candidate clusters and a symmetric implementation where the choice is between two pairs of clusters.« less

  18. The influence of mass transfer on solute transport in column experiments with an aggregated soil

    NASA Astrophysics Data System (ADS)

    Roberts, Paul V.; Goltz, Mark N.; Summers, R. Scott; Crittenden, John C.; Nkedi-Kizza, Peter

    1987-06-01

    The spreading of concentration fronts in dynamic column experiments conducted with a porous, aggregated soil is analyzed by means of a previously documented transport model (DFPSDM) that accounts for longitudinal dispersion, external mass transfer in the boundary layer surrounding the aggregate particles, and diffusion in the intra-aggregate pores. The data are drawn from a previous report on the transport of tritiated water, chloride, and calcium ion in a column filled with Ione soil having an average aggregate particle diameter of 0.34 cm, at pore water velocities from 3 to 143 cm/h. The parameters for dispersion, external mass transfer, and internal diffusion were predicted for the experimental conditions by means of generalized correlations, independent of the column data. The predicted degree of solute front-spreading agreed well with the experimental observations. Consistent with the aggregate porosity of 45%, the tortuosity factor for internal pore diffusion was approximately equal to 2. Quantitative criteria for the spreading influence of the three mechanisms are evaluated with respect to the column data. Hydrodynamic dispersion is thought to have governed the front shape in the experiments at low velocity, and internal pore diffusion is believed to have dominated at high velocity; the external mass transfer resistance played a minor role under all conditions. A transport model such as DFPSDM is useful for interpreting column data with regard to the mechanisms controlling concentration front dynamics, but care must be exercised to avoid confounding the effects of the relevant processes.

  19. Effects of Combined Application of Biogas Slurry and Chemical Fertilizer on Soil Aggregation and C/N Distribution in an Ultisol

    PubMed Central

    Zheng, Xuebo; Fan, Jianbo; Xu, Lei; Zhou, Jing

    2017-01-01

    Unreasonable use of chemical fertilizer (CF) on agricultural soil leads to massive losses of soil organic carbon (SOC) and total nitrogen (TN) in tropical and subtropical areas, where soil conditions are unfavorable for aggregate formation. This study evaluated the effects of combined application of biogas slurry (BS) plus CF on soil aggregation and aggregate—associated C/N concentration and storage in an Ultisol. Six treatments included: no fertilizer (T1), CF only (T2), partial (15% (T3), 30% (T4) and 45% (T5)) substitution of TN with BS and BS only (T6). Soil mechanical—stable aggregates (MSAs) formation and stability as well as MSAs—associated C/N concentration and storage were observed in different aggregate sizes (>5, 5–2, 2–1, 1.0–0.5, 0.50–0.25 and <0.25 mm). The proportion of MSAs >5 mm significantly increased with BS substitution (T5), while the proportions of MSAs 1.0–0.5 mm, MSAs 0.50–0.25 mm and MSAs <0.25 mm significantly decreased. Both mean weight diameter and geometric mean diameter were highest in T5, which improved soil aggregation stability as well as resulted in significantly higher SOC and TN concentrations and storage in MSAs >0.5 mm that constituted 72–82% of MSAs. Stepwise regression analysis showed that MSAs >5 mm, SOC in MSAs >5 mm and TN in MSAs >5 mm were the dominant variables affecting aggregate stability. Meanwhile SOC in MSAs <0.25 mm and TN in MSAs 2–1 mm were independent variables affecting SOC and TN concentrations in bulk soils. Therefore, certain rate of combined application of BS plus CF is an effective, eco—friendly way to improve soil quality in an Ultisol. PMID:28125647

  20. Short-term exposure of platelets to glucose impairs inhibition of platelet aggregation by cyclooxygenase inhibitors.

    PubMed

    Kobzar, Gennadi; Mardla, Vilja; Samel, Nigulas

    2011-01-01

    Aspirin treatment reduces cardiovascular events and deaths in high-risk non-diabetic patients, but not in patients suffering from diabetes. In these patients, hyperglycemia has been found to cause reduced platelet sensitivity to aspirin. It is supposed that long-term exposure of platelets to glucose leads to non-enzymatic glycosylation and impairs aspirin inhibition of platelet aggregation. On the other hand, short-term exposure of platelets to glucose also attenuates the effect of aspirin on platelets. The aim of the present work was to analyse the effect of short-term exposure of glucose on the inhibition of platelet aggregation by aspirin and other cyclooxygenase (COX) inhibitors. Already a 15 min exposure of platelets to glucose impaired aspirin inhibition of the platelet aggregation induced by collagen, thrombin, adenosine diphosphate (ADP), and arachidonic acid (AA). Aspirin inhibition of platelet aggregation in platelet-rich plasma (PRP) was attenuated by 5.6, 11.2, 16.8, and 22.4 mM of glucose in a concentration-dependent way. The same effect was observed with indomethacin and acetaminophen used as cyclooxygenase inhibitors instead of aspirin. N-methyl-L-arginine, an inhibitor of nitric oxide synthase, prevented the effect of glucose on aspirin, indomethacin and acetaminophen inhibition of platelet aggregation. Other monosaccharides, for example fructose and galactose, impaired aspirin inhibition as did glucose. Lactic acid (0.1, 0.2, 0.4, 0.8 mM), the end product of anaerobic glycolysis in platelets, impaired the inhibition of platelet aggregation with aspirin in a concentration-dependent way but did not affect indomethacin. It is suggested that lactic acid might be a mediator of the effect of glucose on aspirin inhibition in platelets.

  1. Modeling coupled nanoparticle aggregation and transport in porous media: A Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Taghavy, Amir; Pennell, Kurt D.; Abriola, Linda M.

    2015-01-01

    Changes in nanoparticle size and shape due to particle-particle interactions (i.e., aggregation or agglomeration) may significantly alter particle mobility and retention in porous media. To date, however, few modeling studies have considered the coupling of transport and particle aggregation processes. The majority of particle transport models employ an Eulerian modeling framework and are, consequently, limited in the types of collisions and aggregate sizes that can be considered. In this work, a more general Lagrangian modeling framework is developed and implemented to explore coupled nanoparticle aggregation and transport processes. The model was verified through comparison of model simulations to published results of an experimental and Eulerian modeling study (Raychoudhury et al., 2012) of carboxymethyl cellulose (CMC)-modified nano-sized zero-valent iron particle (nZVI) transport and retention in water-saturated sand columns. A model sensitivity analysis reveals the influence of influent particle concentration (ca. 70 to 700 mg/L), primary particle size (10-100 nm) and pore water velocity (ca. 1-6 m/day) on particle-particle, and, consequently, particle-collector interactions. Model simulations demonstrate that, when environmental conditions promote particle-particle interactions, neglecting aggregation effects can lead to under- or over-estimation of nanoparticle mobility. Results also suggest that the extent to which higher order particle-particle collisions influence aggregation kinetics will increase with the fraction of primary particles. This work demonstrates the potential importance of time-dependent aggregation processes on nanoparticle mobility and provides a numerical model capable of capturing/describing these interactions in water-saturated porous media.

  2. Modeling coupled nanoparticle aggregation and transport in porous media: a Lagrangian approach.

    PubMed

    Taghavy, Amir; Pennell, Kurt D; Abriola, Linda M

    2015-01-01

    Changes in nanoparticle size and shape due to particle-particle interactions (i.e., aggregation or agglomeration) may significantly alter particle mobility and retention in porous media. To date, however, few modeling studies have considered the coupling of transport and particle aggregation processes. The majority of particle transport models employ an Eulerian modeling framework and are, consequently, limited in the types of collisions and aggregate sizes that can be considered. In this work, a more general Lagrangian modeling framework is developed and implemented to explore coupled nanoparticle aggregation and transport processes. The model was verified through comparison of model simulations to published results of an experimental and Eulerian modeling study (Raychoudhury et al., 2012) of carboxymethyl cellulose (CMC)-modified nano-sized zero-valent iron particle (nZVI) transport and retention in water-saturated sand columns. A model sensitivity analysis reveals the influence of influent particle concentration (ca. 70 to 700 mg/L), primary particle size (10-100 nm) and pore water velocity (ca. 1-6 m/day) on particle-particle, and, consequently, particle-collector interactions. Model simulations demonstrate that, when environmental conditions promote particle-particle interactions, neglecting aggregation effects can lead to under- or over-estimation of nanoparticle mobility. Results also suggest that the extent to which higher order particle-particle collisions influence aggregation kinetics will increase with the fraction of primary particles. This work demonstrates the potential importance of time-dependent aggregation processes on nanoparticle mobility and provides a numerical model capable of capturing/describing these interactions in water-saturated porous media. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Autoantibody against angiotensin AT1 receptor from preeclamptic patients enhances collagen-induced human platelet aggregation.

    PubMed

    Bai, Kehua; Wang, Ke; Li, Xiaoyu; Wang, Jie; Zhang, Jie; Song, Li; Wang, Jin; Zhang, Suli; Lau, Wayne Bond; Ma, Xinliang; Liu, Huirong

    2013-09-01

    Hypercoagulability, platelet activation, and thrombocytopenia are the chief characteristics of preeclampsia, but their responsible underlying molecular mechanisms remain obscure. Recent studies have demonstrated that the autoantibody against angiotensin II type 1 receptor (AT1-AA) constitutes a novel risk factor for preeclampsia. However, the role of AT1-AA in platelet activation and hypercoagulability in preeclampsia has never been investigated. In the present study, we determined whether AT1-AA promotes platelet aggregation in vitro, and dissected the potential underlying mechanisms. AT1-AA was detected by enzyme-linked immunosorbent assay. After immunoglobulin G fractions purified from the preeclamptic patient positive sera were added to platelets isolated from healthy volunteers, platelet aggregation and intracellular Ca(2+) levels were detected. AT1-AA significantly enhanced in vitro collagen-induced platelet aggregation, an effect blocked by the AT1 receptor antagonist losartan. Additionally, AT1-AA increased and maintained collagen-induced cytosolic calcium concentration throughout the experiment. We demonstrated for the first time that AT1-AA significantly promotes collagen-induced platelet aggregation through angiotensin type 1 receptor activation in vitro, potentially via increased intracellular Ca(2+) concentration, supporting AT1-AA as a potential contributor to the hypercoagulable state of preeclampsia.

  4. Amyloid-like aggregates formation by bovine apo-carbonic anhydrase in various alcohols: A comparative study.

    PubMed

    Es-Haghi, Ali; Ebrahim-Habibi, Azadeh; Sabbaghian, Marjan; Nemat-Gorgani, Mohsen

    2016-11-01

    Peptides and proteins convert from their native states to amyloid fibrillar aggregates in a number of pathological conditions. Characterizing these species could provide useful information on their pathogenicity and the key factors involved in their generation. In this study, we have observed the ability of the model protein apo-bovine carbonic anhydrase (apo-BCA) to form amyloid-like aggregates in the presence of halogenated and non-halogenated alcohols. Far-UV circular dichroism, ThT fluorescence, atomic force microscopy and dynamic light scattering were used to characterize these structures. The concentration required for effective protein aggregation varied between the solvents, with non-halogenated alcohols acting in a wider range. These aggregates show amyloid-like structures as determined by specific techniques used for characterizing amyloid structures. Oligomers were obtained with various size distributions, but fibrillar structures were not observed. Use of halogenated alcohols resulted into smaller hydrodynamic radii, and most stable oligomers were formed in hexafluoropropan-2-ol (HFIP). At optimal concentrations used to generate these structures, the non-halogenated alcohols showed higher hydrophobicity, which may be related to the lower stability of the generated oligomers. These oligomers have the potential to be used as models in the search for effective treatments in proteinopathies. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol

    NASA Astrophysics Data System (ADS)

    Zhang, Shulan; Wang, Renjie; Yang, Xueyun; Sun, Benhua; Li, Qinghui

    2016-12-01

    Soil aggregation was studied in a 21-year experiment conducted on an Anthrosol. The soil management regimes consisted of cropland abandonment, bare fallow without vegetation and cropping system. The cropping system was combined with the following nutrient management treatments: control (CONTROL, no nutrient input); nitrogen, phosphorus and potassium (NPK); straw plus NPK (SNPK); and manure (M) plus NPK (MNPK). Compared with the CONTROL treatment, the abandonment treatment significantly increased the formation of large soil macroaggregates (>2 mm) and consequently improved the stability of aggregates in the surface soil layer due to enhancement of hyphal length and of soil organic matter content. However, in response to long-term bare fallow treatment aggregate stability was low, as were the levels of aggregating agents. Long term fertilization significantly redistributed macroaggregates; this could be mainly ascribed to soil organic matter contributing to the formation of 0.5-2 mm classes of aggregates and a decrease in the formation of the >2 mm class of aggregates, especially in the MNPK treatment. Overall, hyphae represented a major aggregating agent in both of the systems tested, while soil organic compounds played significantly different roles in stabilizing aggregates in Anthrosol when the cropping system and the soil management regimes were compared.

  6. Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol

    PubMed Central

    Zhang, Shulan; Wang, Renjie; Yang, Xueyun; Sun, Benhua; Li, Qinghui

    2016-01-01

    Soil aggregation was studied in a 21-year experiment conducted on an Anthrosol. The soil management regimes consisted of cropland abandonment, bare fallow without vegetation and cropping system. The cropping system was combined with the following nutrient management treatments: control (CONTROL, no nutrient input); nitrogen, phosphorus and potassium (NPK); straw plus NPK (SNPK); and manure (M) plus NPK (MNPK). Compared with the CONTROL treatment, the abandonment treatment significantly increased the formation of large soil macroaggregates (>2 mm) and consequently improved the stability of aggregates in the surface soil layer due to enhancement of hyphal length and of soil organic matter content. However, in response to long-term bare fallow treatment aggregate stability was low, as were the levels of aggregating agents. Long term fertilization significantly redistributed macroaggregates; this could be mainly ascribed to soil organic matter contributing to the formation of 0.5–2 mm classes of aggregates and a decrease in the formation of the >2 mm class of aggregates, especially in the MNPK treatment. Overall, hyphae represented a major aggregating agent in both of the systems tested, while soil organic compounds played significantly different roles in stabilizing aggregates in Anthrosol when the cropping system and the soil management regimes were compared. PMID:27958366

  7. Colorimetric detection of biothiols based on aggregation of chitosan-stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohammadi, Somayeh; Khayatian, Gholamreza

    2017-10-01

    We have described a simple and reliable colorimetric method for the sensing of biothiols such as cysteine, homocysteine, and glutathione in biological samples. The selective binding of chitosan capped silver nanoparticles to biothiols induced aggregation of the chitosan-Ag NPs. But the other amino acids that do not have thiol group cannot aggregate the chitosan-Ag NPs. Aggregation of chitosan-Ag NPs has been confirmed with UV-vis absorption spectra, zeta potential and transmission electron microscopy images. Under optimum conditions, good linear relationships existed between the absorption ratios (at A500/A415) and the concentrations of cysteine, homocysteine, and glutathione in the range of 0.1-10.0 μM with detection limits of 15.0, 84.6 and 40.0 nM, respectively. This probe was successfully applied to detect these biothiols in biological samples (urine and plasma).

  8. Thermal Aggregation of Calcium-Fortified Skim Milk Enhances Probiotic Protection during Convective Droplet Drying.

    PubMed

    Wang, Juan; Huang, Song; Fu, Nan; Jeantet, Romain; Chen, Xiao Dong

    2016-08-03

    Probiotic bacteria have been reported to confer benefits on hosts when delivered in an adequate dose. Spray-drying is expected to produce dried and microencapsulated probiotic products due to its low production cost and high energy efficiency. The bottleneck in probiotic application addresses the thermal and dehydration-related inactivation of bacteria during process. A protective drying matrix was designed by modifying skim milk with the principle of calcium-induced protein thermal aggregation. The well-defined single-droplet drying technique was used to monitor the droplet-particle conversion and the protective effect of this modified Ca-aggregated milk on Lactobacillus rhamnosus GG. The Ca-aggregated milk exhibited a higher drying efficiency and superior protection on L. rhamnosus GG during thermal convective drying. The mechanism was explained by the aggregation in milk, causing the lower binding of water in the serum phase and, conversely, local concentrated milk aggregates involved in bacteria entrapment in the course of drying. This work may open new avenues for the development of probiotic products with high bacterial viability and calcium enrichment.

  9. Size-dependent enrichment of waste slag aggregate fragments abraded from asphalt concrete.

    PubMed

    Takahashi, Fumitake; Shimaoka, Takayuki; Gardner, Kevin; Kida, Akiko

    2011-10-30

    Authors consider the environmental prospects of using melted waste slag as the aggregate for asphalt pavement. In particular, the enrichment of slag-derived fragments in fine abrasion dust particles originated from slag asphalt concrete and its size dependency were concerned. A series of surface abrasion tests for asphalt concrete specimens, containing only natural aggregates as reference or 30 wt% of substituted slag aggregates, were performed. Although two of three slag-asphalt concretes generated 1.5-3.0 times larger amount of abrasion dust than the reference asphalt concrete did, it could not be explained only by abrasion resistance of slag. The enrichment of slag-derived fragments in abrasion dust, estimated on the basis of the peak intensity of quartz and heavy metal concentrations, had size dependency for all slag-asphalt concretes. Slag-derived fragments were enriched in abrasion dust particles with diameters of 150-1000 μm. Enrichment factors were 1.4-2.1. In contrast, there was no enrichment in abrasion dust particles with diameter less than 75 μm. This suggests that prior airborne-size fragmentation of substituted slag aggregates does not need to be considered for tested slag aggregates when environmental risks of abrasion dust of slag-asphalt pavement are assessed. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Real-time protein aggregation monitoring with a Bloch surface wave-based approach

    NASA Astrophysics Data System (ADS)

    Santi, Sara; Barakat, Elsie; Descrovi, Emiliano; Neier, Reinhard; Herzig, Hans Peter

    2014-05-01

    The misfolding and aggregation of amyloid proteins has been associated with incurable diseases such as Alzheimer's or Parkinson's disease. In the specific case of Alzheimer's disease, recent studies have shown that cell toxicity is caused by soluble oligomeric forms of aggregates appearing in the early stages of aggregation, rather than by insoluble fibrils. Research on new strategies of diagnosis is imperative to detect the disease prior to the onset of clinical symptoms. Here, we propose the use of an optical method for protein aggregation dynamic studies using a Bloch surface wave based approach. A one dimension photonic crystal made of a periodic stack of silicon oxide and silicon nitride layers is used to excite a Bloch surface wave, which is sensitive to variation of the refractive index of an aqueous solution. The aim is to detect the early dynamic events of protein aggregation and fibrillogenesis of the amyloid-beta peptide Aβ42, which plays a central role in the onset of the Alzheimer's disease. The detection principle relies on the refractive index changes caused by the depletion of the Aβ42 monomer concentration during oligomerization and fibrillization. We demonstrate the efficacy of the Bloch surface wave approach by monitoring in real-time the first crucial steps of Aβ42 oligomerization.

  11. Effect of the slope and initial moisture content on soil loss, aggregate and particle size distribution

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka

    2015-04-01

    Soil structure degradation has effect through the soil water balance and nutrient supply on the agricultural potential of an area. The soil erosion process comprises two phases: detachment and transport by water. To study the transport phase nozzle type laboratory-scale rainfall simulator was used with constant 80 mmhr-1 intensity on an arable haplic Cambisol. Measuring the aggregate and particle size distribution of the soil loss gives a good approach the erosion process. The primary objective of this study was to examine the sediment concentration, and detect the quality and quantity change of the soil loss during a single precipitation under six treatment combinations (recently tilled and crusty soil surface on two different slope steepness, inland inundation and drought soil conditions). Soil loss were collected continually, and separated per aggregate size fractions with sieves in three rounds during a rain to measure the weights. The particle size distribution was measured with Horiba LA-950 particle size analyzer. In general the ratio of the macro aggregates decreases and the ratio of the micro aggregates and clay fraction increases in the sediment with time during the precipitation due to the raindrop impact. Sediment concentration depends on the slope steepness, as from steeper slopes the runoff can transport bigger amount of sediment, but from the tilled surface bigger aggregates were washing down. Micro aggregate fraction is one of the indicators of good soil structure. The degradation of micro aggregates occurs in steeper slopes and the most erosive time period depends on the micromorphology of the surface. And while the aggregate size distribution of the soil loss of the treatments shows high variety of distribution and differs from the original soil, the particle size distribution of each aggregate size fraction shows similar trends except the 50-250 µm fraction where the fine sand fraction is dominating instead of the loam. This anomaly may be

  12. Aggregation Properties and Liquid Crystal Phase of a Dye Based on Naphthalenetetracarboxylic Acid

    NASA Astrophysics Data System (ADS)

    Tomasik, Michelle; Collings, Peter

    2007-03-01

    R003 is a dye produced for thin film optical components by Optiva, Inc.^1 made from the sulfonation of the dibenzimidazole derivative of naphthalenetetracarboxylic acid. Its molecular structure is very different from the aggregating food dye previously investigated in our laboratory^2 and R003 forms a liquid crystal phase at significantly lower concentrations. We have performed polarizing microscopy, absorption spectroscopy, and x-ray diffraction experiments in order to determine the phase diagram and aggregate structure. In addition, we have included both translational and orientational entropy in the theoretical analysis of the aggregation process, and have used a more realistic lineshape in analyzing the absorption data. Our results indicate that the ``bond energy'' for molecules in an aggregate is even larger than for the previously studied dye and that the aggregate structure has a cross-sectional area equal to two or three molecular areas rather than one.^1Lazarev, P., N. Ovchinnikova, M. Paukshto, SID Int. Symp. Digest of Tech. Papers, San Jose, California, June XXXII, 571 (2001).^2V. R. Horowitz, L. A. Janowitz, A. L. Modic, P. A. Heiney, and P. J. Collings, Phys. Rev. E 72, 041710 (2005).

  13. The aggregation efficiency of very fine volcanic ash

    NASA Astrophysics Data System (ADS)

    Del Bello, E.; Taddeucci, J.; Scarlato, P.

    2013-12-01

    Explosive volcanic eruptions can discharge large amounts of very small sized pyroclasts (under 0.090 mm) into the atmosphere that may cause problems to people, infrastructures and environment. The transport and deposition of fine ash are ruled by aggregation that causes premature settling of fine ash and, as consequence, significantly reduces the concentration of airborne material over long distances. Parameterizing the aggregation potential of fine ash is then needed to provide accurate modelling of ash transport and deposition from volcanic plumes. Here we present the first results of laboratory experiments investigating the aggregation efficiency of very fine volcanic particles. Previous laboratory experiments have shown that collision kinetic and relative humidity provide the strongest effect on aggregation behaviour but were only limited to particles with size > 0.125 mm. In our work, we focus on natural volcanic ash at ambient humidity with particles size < 0.090 mm, by taking into account the effect of grain size distribution on aggregation potential. Two types of ash were used in our experiments: fresh ash, collected during fall-out from a recent plume-forming eruption at Sakurajima (Japan -July 2013) and old ash, collected from fall-out tephra deposits at Campi Flegrei (Italy, ca. 10 ka), to account for the different chemical composition and morphoscopic effects of altered ash on aggregation efficiency. Total samples were hand sieved to obtain three classes with unimodal grain size distributions (<0.090 mm, <0.063 mm, <0.032 mm). Bimodal grain size distributions were also obtained by mixing the three classes in different proportions. During each experiments, particles were sieved from the top of a transparent tank where a fan, placed at the bottom, allows turbulent dispersion of particles. Collision and sticking of particles on a vertical glass slide were filmed with a high speed cameras at 6000 fps. Our lenses arrangement provide high image resolution

  14. Inhibition of p53 Mutant Peptide Aggregation In Vitro by Cationic Osmolyte Acetylcholine Chloride.

    PubMed

    Chen, Zhaolin; Kanapathipillai, Mathumai

    2017-01-01

    Mutations of tumor suppressor protein p53 are present in almost about 50% of all cancers. It has been reported that the p53 mutations cause aggregation and subsequent loss of p53 function, leading to cancer progression. Here in this study we focus on the inhibitory effects of cationic osmolyte molecules acetylcholine chloride, and choline on an aggregation prone 10 amino acid p53 mutant peptide WRPILTIITL, and the corresponding wildtype peptide RRPILTIITL in vitro. The characterization tools used for this study include Thioflavin- T (ThT) induced fluorescence, transmission electron microscopy (TEM), congo red binding, turbidity, dynamic light scattering (DLS), and cell viability assays. The results show that acetylcholine chloride in micromolar concentrations significantly inhibit p53 mutant peptide aggregation in vitro, and could be promising candidate for p53 mutant/ misfolded protein aggregation inhibition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. A novel method for study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering technique

    NASA Astrophysics Data System (ADS)

    Long, Xiufen; Zhang, Caihua; Cheng, Jiongjia; Bi, Shuping

    2008-01-01

    We present a novel method for the study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering (RRS) technique. In neutral Tris-HCl medium, the effect of this aggregation of protein results in the enhancement of RRS intensity and the relationship between the enhancement of the RRS signal and the Al concentration is nonlinear. On this basis, we established a new method for the determination of the critical induced-aggregation concentrations ( CCIAC) of metal ion Al(III) inducing the protein aggregation. Our results show that many factors, such as, pH value, anions, salts, temperature and solvents have obvious effects. We also studied the extent of aggregation and structural changes using ultra-violet spectrometry, protein intrinsic fluorescence and circular dichroism to further understand the exact mechanisms of the aggregation characteristics of proteins induced by metal ion Al(III) at the molecular level, to help us to develop effective methods to investigate the toxicity of metal ion Al, and to provide theoretical and quantitative evidences for the development of appropriate treatments for neurodementia such as Parkinson's disease, Alzheimer's disease and dementia related to dialysis.

  16. Lithologic characterization of active ITD aggregate sources and implications for aggregate quality.

    DOT National Transportation Integrated Search

    2014-03-01

    Aggregate from 40 material sources across Idaho were sampled and the lithologies identified quantitatively. Aggregate compositions are compared with commercial AASHTO T 303 and ASTM C1293 results and the geologic map of Idaho to identify those rock t...

  17. Aggregation and disaggregation kinetics of human blood platelets: Part II. Shear-induced platelet aggregation.

    PubMed Central

    Huang, P Y; Hellums, J D

    1993-01-01

    A population balance equation (PBE) mathematical model for analyzing platelet aggregation kinetics was developed in Part I (Huang, P. Y., and J. D. Hellums. 1993. Biophys. J. 65: 334-343) of a set of three papers. In this paper, Part II, platelet aggregation and related reactions are studied in the uniform, known shear stress field of a rotational viscometer, and interpreted by means of the model. Experimental determinations are made of the platelet-aggregate particle size distributions as they evolve in time under the aggregating influence of shear stress. The PBE model is shown to give good agreement with experimental determinations when either a reversible (aggregation and disaggregation) or an irreversible (no disaggregation) form of the model is used. This finding suggests that for the experimental conditions studied disaggregation processes are of only secondary importance. During shear-induced platelet aggregation, only a small fraction of platelet collisions result in the binding together of the involved platelets. The modified collision efficiency is approximately zero for shear rates below 3000 s-1. It increases with shear rates above 3000 s-1 to about 0.01 for a shear rate of 8000 s-1. Addition of platelet chemical agonists yields order of magnitude increases in collision efficiency. The collision efficiency for shear-induced platelet aggregation is about an order of magnitude less at 37 degrees C than at 24 degrees C. The PBE model gives a much more accurate representation of aggregation kinetics than an earlier model based on a monodispersed particle size distribution. PMID:8369442

  18. Oxygen transport and stem cell aggregation in stirred-suspension bioreactor cultures.

    PubMed

    Wu, Jincheng; Rostami, Mahboubeh Rahmati; Cadavid Olaya, Diana P; Tzanakakis, Emmanuel S

    2014-01-01

    Stirred-suspension bioreactors are a promising modality for large-scale culture of 3D aggregates of pluripotent stem cells and their progeny. Yet, cells within these clusters experience limitations in the transfer of factors and particularly O2 which is characterized by low solubility in aqueous media. Cultured stem cells under different O2 levels may exhibit significantly different proliferation, viability and differentiation potential. Here, a transient diffusion-reaction model was built encompassing the size distribution and ultrastructural characteristics of embryonic stem cell (ESC) aggregates. The model was coupled to experimental data from bioreactor and static cultures for extracting the effective diffusivity and kinetics of consumption of O2 within mouse (mESC) and human ESC (hESC) clusters. Under agitation, mESC aggregates exhibited a higher maximum consumption rate than hESC aggregates. Moreover, the reaction-diffusion model was integrated with a population balance equation (PBE) for the temporal distribution of ESC clusters changing due to aggregation and cell proliferation. Hypoxia was found to be negligible for ESCs with a smaller radius than 100 µm but became appreciable for aggregates larger than 300 µm. The integrated model not only captured the O2 profile both in the bioreactor bulk and inside ESC aggregates but also led to the calculation of the duration that fractions of cells experience a certain range of O2 concentrations. The approach described in this study can be employed for gaining a deeper understanding of the effects of O2 on the physiology of stem cells organized in 3D structures. Such frameworks can be extended to encompass the spatial and temporal availability of nutrients and differentiation factors and facilitate the design and control of relevant bioprocesses for the production of stem cell therapeutics.

  19. Model for amorphous aggregation processes

    NASA Astrophysics Data System (ADS)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  20. Influence of water-insoluble nonionic copolymer E(6)P(39)E(6) on the microstructure and self-aggregation dynamics of aqueous SDS solution-NMR and SANS investigations.

    PubMed

    Prameela, G K S; Phani Kumar, B V N; Aswal, V K; Mandal, Asit Baran

    2013-10-28

    The influence of water-insoluble nonionic triblock copolymer PEO-PPO-PEO [poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)] i.e., E6P39E6 with molecular weight 2800, on the microstructure and self-aggregation dynamics of anionic surfactant sodium dodecylsulfate (SDS) in aqueous solution (D2O) were investigated using high resolution nuclear magnetic resonance (NMR) and small-angle neutron scattering (SANS) measurements. Variable concentration and temperature proton ((1)H), carbon ((13)C) NMR chemical shifts, (1)H self-diffusion coefficients, (1)H spin-lattice and spin-spin relaxation rates data indicate that the higher hydrophobic nature of copolymer significantly influenced aggregation characteristics of SDS. The salient features of the NMR investigations include (i) the onset of mixed micelles at lower SDS concentrations (<3 mM) relative to the copolymer-free case and their evolution into SDS free micelles at higher SDS concentrations (~30 mM), (ii) disintegration of copolymer-SDS mixed aggregate at moderate SDS concentrations (~10 mM) and still binding of a copolymer with SDS and (iii) preferential localization of the copolymer occurred at the SDS micelle surface. SANS investigations indicate prolate ellipsoidal shaped mixed aggregates with an increase in SDS aggregation number, while a contrasting behavior in the copolymer aggregation is observed. The aggregation features of SDS and the copolymer, the sizes of mixed aggregates and the degree of counterion dissociation (α) extracted from SANS data analysis corroborate reasonably well with those of (1)H NMR self-diffusion and sodium ((23)Na) spin-lattice relaxation data.

  1. Glyceraldehyde-3-phosphate dehydrogenase aggregation inhibitor peptide: A potential therapeutic strategy against oxidative stress-induced cell death.

    PubMed

    Itakura, Masanori; Nakajima, Hidemitsu; Semi, Yuko; Higashida, Shusaku; Azuma, Yasu-Taka; Takeuchi, Tadayoshi

    2015-11-13

    The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has multiple functions, including mediating oxidative stress-induced neuronal cell death. This process is associated with disulfide-bonded GAPDH aggregation. Some reports suggest a link between GAPDH and the pathogenesis of several oxidative stress-related diseases. However, the pathological significance of GAPDH aggregation in disease pathogenesis remains unclear due to the lack of an effective GAPDH aggregation inhibitor. In this study, we identified a GAPDH aggregation inhibitor (GAI) peptide and evaluated its biological profile. The decapeptide GAI specifically inhibited GAPDH aggregation in a concentration-dependent manner. Additionally, the GAI peptide did not affect GAPDH glycolytic activity or cell viability. The GAI peptide also exerted a protective effect against oxidative stress-induced cell death in SH-SY5Y cells. This peptide could potentially serve as a tool to investigate GAPDH aggregation-related neurodegenerative and neuropsychiatric disorders and as a possible therapy for diseases associated with oxidative stress-induced cell death. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The second Cu(II)-binding site in a proton-rich environment interferes with the aggregation of amyloid-beta(1-40) into amyloid fibrils.

    PubMed

    Jun, Sangmi; Gillespie, Joel R; Shin, Byong-kyu; Saxena, Sunil

    2009-11-17

    The overall morphology and Cu(II) ion coordination for the aggregated amyloid-beta(1-40) [Abeta(1-40)] in N-ethylmorpholine (NEM) buffer are affected by Cu(II) ion concentration. This effect is investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM), and electron spin echo envelope modulation (ESEEM) spectroscopy. At lower than equimolar concentrations of Cu(II) ions, fibrillar aggregates of Abeta(1-40) are observed. At these concentrations of Cu(II), the monomeric and fibrillar Abeta(1-40) ESEEM data indicate that the Cu(II) ion is coordinated by histidine residues. For aggregated Abeta(1-40) at a Cu(II):Abeta molar ratio of 2:1, TEM and AFM images show both linear fibrils and granular amorphous aggregates. The ESEEM spectra show that the multi-histidine coordination for Cu(II) ion partially breaks up and becomes exposed to water or exchangeable protons of the peptide at a higher Cu(II) concentration. Since the continuous-wave electron spin resonance results also suggest two copper-binding sites in Abeta(1-40), the proton ESEEM peak may arise from the second copper-binding site, which may be significantly involved in the formation of granular amorphous aggregates. Thioflavin T fluorescence and circular dichroism experiments also show that Cu(II) inhibits the formation of fibrils and induces a nonfibrillar beta-sheet conformation. Therefore, we propose that Abeta(1-40) has a second copper-binding site in a proton-rich environment and the second binding Cu(II) ion interferes with a conformational transition into amyloid fibrils, inducing the formation of granular amorphous aggregates.

  3. Heating of Porous Icy Dust Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirono, Sin-iti

    At the beginning of planetary formation, highly porous dust aggregates are formed through coagulation of dust grains. Outside the snowline, the main component of an aggregate is H{sub 2}O ice. Because H{sub 2}O ice is formed in amorphous form, its thermal conductivity is extremely small. Therefore, the thermal conductivity of an icy dust aggregate is low. There is a possibility of heating inside an aggregate owing to the decay of radionuclides. It is shown that the temperature increases substantially inside an aggregate, leading to crystallization of amorphous ice. During the crystallization, the temperature further increases sufficiently to continue sintering. Themore » mechanical properties of icy dust aggregates change, and the collisional evolution of dust aggregates is affected by the sintering.« less

  4. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates

    PubMed Central

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-01-01

    Colonies of N2-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. 15N-isotope labelling experiments and nutrient analyses revealed that N2 fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N2 were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (<1 to ⩾0.1 mm) may only arise in low-oxygenated waters (⩽25 μM). We propose that the net effect of aggregates on nitrogen loss is negligible in NO3−-depleted, fully oxygenated (surface) waters. In NO3−-enriched (>1.5 μM), O2-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes. PMID:25575306

  5. Fractal aggregates in tennis ball systems

    NASA Astrophysics Data System (ADS)

    Sabin, J.; Bandín, M.; Prieto, G.; Sarmiento, F.

    2009-09-01

    We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the images of the cluster of balls, following Forrest and Witten's pioneering studies on the aggregation of smoke particles, to estimate their fractal dimension.

  6. Protein aggregation and prionopathies.

    PubMed

    Renner, M; Melki, R

    2014-06-01

    Prion protein and prion-like proteins share a number of characteristics. From the molecular point of view, they are constitutive proteins that aggregate following conformational changes into insoluble particles. These particles escape the cellular clearance machinery and amplify by recruiting the soluble for of their constituting proteins. The resulting protein aggregates are responsible for a number of neurodegenerative diseases such as Creutzfeldt-Jacob, Alzheimer, Parkinson and Huntington diseases. In addition, there are increasing evidences supporting the inter-cellular trafficking of these aggregates, meaning that they are "transmissible" between cells. There are also evidences that brain homogenates from individuals developing Alzheimer and Parkinson diseases propagate the disease in recipient model animals in a manner similar to brain extracts of patients developing Creutzfeldt-Jacob's disease. Thus, the propagation of protein aggregates from cell to cell may be a generic phenomenon that contributes to the evolution of neurodegenerative diseases, which has important consequences on human health issues. Moreover, although the distribution of protein aggregates is characteristic for each disease, new evidences indicate the possibility of overlaps and crosstalk between the different disorders. Despite the increasing evidences that support prion or prion-like propagation of protein aggregates, there are many unanswered questions regarding the mechanisms of toxicity and this is a field of intensive research nowadays. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Experimental aggregation of volcanic ash: the role of liquid bonding

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Kueppers, U.; Jacob, M.; Ayris, P. M.; Dingwell, D. B.

    2015-12-01

    Explosive volcanic eruptions may release vast quantities of ash. Because of its size, it has the greatest dispersal potential and can be distributed globally. Ash may pose severe risks for 1) air traffic, 2) human and animal health, 3) agriculture and 4) infrastructure. Such ash particles can however cluster and form ash aggregates that range in size from millimeters to centimeters. During their growth, weight and aerodynamic properties change. This leads to significantly changed transport and settling behavior. The physico-chemical processes involved in aggregation are quantitatively poorly constrained. We have performed laboratory ash aggregation experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. Solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (e.g., air flow rate, gas temperature, humidity, liquid composition). In this manner we simulate the variable gas-particle flow conditions expected in eruption plumes and pyroclastic density currents. We have used 1) soda-lime glass beads as an analogue material and 2) natural volcanic ash from Laacher See Volcano (Germany). In order to influence form, size, stability and the production rate of aggregates, a range of experimental conditions (e.g., particle concentration, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase) have been employed. We have successfully reproduced several features of natural ash aggregates, including round, internally structured ash pellets up to 3 mm in diameter. These experimental results help to constrain the boundary conditions required for the generation of spherical, internally-structured ash aggregates that survive deposition and are preserved in the volcanological record. These results should also serve as input parameters for models of ash transport and ash mass distribution.

  8. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    NASA Astrophysics Data System (ADS)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  9. Preventing Aggregation of Recombinant Interferon beta-1b in Solution by Additives: Approach to an Albumin-Free Formulation

    PubMed Central

    Mahjoubi, Najmeh; Fazeli, Mohammad Reza; Dinarvand, Rassoul; Khoshayand, Mohammad Reza; Fazeli, Ahmad; Taghavian, Mohammad; Rastegar, Hossein

    2015-01-01

    Purpose: Aggregation suppressing additives have been used to stabilize proteins during manufacturing and storage. Interferonβ-1b is prone to aggregation because of being non-glycosylated. Aggregation behavior of albumin-free formulations of recombinant IFNβ-1b was explored using additives such as n-dodecyl-β-D-maltoside, Tween 20, arginine, glycine, trehalose and sucrose at different pH. Methods: Fractional factorial design was applied to select major factors affecting aggregation in solutions. Box-Behnken technique was used to optimize the best concentration of additives and protein. Results: Quadratic model was the best fitted model for particle size, OD350 and OD280/OD260. The optimal conditions of 0.2% n-Dodecyl-β-D-maltoside, 70 mM arginine, 189 mM trehalose and protein concentration of 0.50 mg/ml at pH 4 were achieved. A potency value of 91% ± 5% was obtained for the optimized formulation. Conclusion: This study shows that the combination of n-Dodecyl-β-D-maltoside, arginine and trehalose would demonstrate a significant stabilizing and anti-aggregating effect on the liquid formulation of interferonβ-1b. It can not only reduce the manufacturing costs but will also ease patient compliance. PMID:26819922

  10. Role of streams in myxobacteria aggregate formation

    NASA Astrophysics Data System (ADS)

    Kiskowski, Maria A.; Jiang, Yi; Alber, Mark S.

    2004-10-01

    Cell contact, movement and directionality are important factors in biological development (morphogenesis), and myxobacteria are a model system for studying cell-cell interaction and cell organization preceding differentiation. When starved, thousands of myxobacteria cells align, stream and form aggregates which later develop into round, non-motile spores. Canonically, cell aggregation has been attributed to attractive chemotaxis, a long range interaction, but there is growing evidence that myxobacteria organization depends on contact-mediated cell-cell communication. We present a discrete stochastic model based on contact-mediated signaling that suggests an explanation for the initialization of early aggregates, aggregation dynamics and final aggregate distribution. Our model qualitatively reproduces the unique structures of myxobacteria aggregates and detailed stages which occur during myxobacteria aggregation: first, aggregates initialize in random positions and cells join aggregates by random walk; second, cells redistribute by moving within transient streams connecting aggregates. Streams play a critical role in final aggregate size distribution by redistributing cells among fewer, larger aggregates. The mechanism by which streams redistribute cells depends on aggregate sizes and is enhanced by noise. Our model predicts that with increased internal noise, more streams would form and streams would last longer. Simulation results suggest a series of new experiments.

  11. Heat aggregation studies of phycobilisomes, ferritin, insulin, and immunoglobulin by dynamic light scattering.

    PubMed

    Singh, B P; Bohidar, H B; Chopra, S

    1991-10-15

    Dynamic laser light scattering studies on the heat aggregation behavior of phycobilisomes (PBS), ferritin, insulin, and immunoglobulin (IgG) in dilute aqueous solutions has been reported. Except for PBS, results are reported for heat aggregation trends in these proteins for three different pH environments (4.0, 7.5, 9.1). For PBS, studies were performed only in the neutral buffer medium (pH 7.5). The experiments were performed in the very dilute concentration regime (between 0.23 and 1.8 gL-1). For all these samples heat aggregation and dissociation trends were found to be linear with temperature. Upon temperature reversal (self-cooling), hysteresis-like behavior observed in insulin was found to be predominantly large at pH 7.5. PBS, ferritin, and IgG showed no such behavior at any of three pH values, and retraced their path of aggregation while dissociating on temperature reversal. Heat aggregation and dissociation processes in ferritin were found to be independent of pH. The IgG samples showed smooth aggregation tendency only up to 35 degrees C in the buffer media pH 4.0 and 9.1, whereas for pH 7.0 the same could be observed until 60 degrees C. Low polydispersity in the correlation spectra was observed in case of all these samples.

  12. Coronary artery calcification and large artery stiffness in renal transplant recipients.

    PubMed

    Stróżecki, Paweł; Serafin, Zbigniew; Adamowicz, Andrzej; Flisiński, Mariusz; Włodarczyk, Zbigniew; Manitius, Jacek

    2015-09-01

    Coronary artery calcification (CAC) is an independent predictor of cardiovascular (CV) events in renal transplant recipients (RTR). Carotid-femoral pulse wave velocity (PWV), a non-invasive measure of large artery stiffness, also predicts CV events in RTR. The study investigated the relationship between CAC and PWV in RTR and assessed the performance of PWV measurement in predicting CAC. The study was performed as cross-sectional analysis in 104 RTR. CAC was determined as total calcium score (CS) and calcium mass (CM). Carotid-femoral PWV was also measured. Sensitivity, specificity and receiver operating characteristic (ROC) curve were used to assess the performance of PWV as diagnostic test for presence of CAC. CAC was found in 69% of participants. PWV was higher in RTR with CAC than in RTR without CAC (10.2±2.2 vs. 8.6±15; p<0.001). In univariate analysis CS was significantly correlated with age, duration of hypertension, waist circumference, PWV, hemoglobin concentration, and serum glucose. In multiple linear regression analysis CS was independently associated with age only, but not with PWV. Sensitivity and specificity of PWV>7.6m/s as cut-off for detecting CAC>0 was 0.889 and 0.406, respectively. Sensitivity and specificity of PWV>10.2m/s as cut-off for detecting severe CAC (CS>400) was 0.319 and 0.969, respectively. The study confirmed high prevalence of coronary artery calcification in renal transplant recipients. The study does not support the hypothesis that aortic stiffness is independently associated with coronary artery calcification in RTR. PWV measurement may be useful in excluding severe CAC in RTR. Copyright © 2015 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Aggregate breakdown of nanoparticulate titania

    NASA Astrophysics Data System (ADS)

    Venugopal, Navin

    Six nanosized titanium dioxide powders synthesized from a sulfate process were investigated. The targeted end-use of this powder was for a de-NOx catalyst honeycomb monolith. Alteration of synthesis parameters had resulted principally in differences in soluble ion level and specific surface area of the powders. The goal of this investigation was to understand the role of synthesis parameters in the aggregation behavior of these powders. Investigation via scanning electron microscopy of the powders revealed three different aggregation iterations at specific length scales. Secondary and higher order aggregate strength was investigated via oscillatory stress rheometry as a means of simulating shear conditions encountered during extrusion. G' and G'' were measured as a function of the applied oscillatory stress. Oscillatory rheometry indicated a strong variation as a function of the sulfate level of the particles in the viscoelastic yield strengths. Powder yield stresses ranged from 3.0 Pa to 24.0 Pa of oscillatory stress. Compaction curves to 750 MPa found strong similarities in extrapolated yield point of stage I and II compaction for each of the powders (at approximately 500 MPa) suggesting that the variation in sulfate was greatest above the primary aggregate level. Scanning electron microscopy of samples at different states of shear in oscillatory rheometry confirmed the variation in the linear elastic region and the viscous flow regime. A technique of this investigation was to approach aggregation via a novel perspective: aggregates are distinguished as being loose open structures that are highly disordered and stochastic in nature. The methodology used was to investigate the shear stresses required to rupture the various aggregation stages encountered and investigate the attempt to realign the now free-flowing constituents comprising the aggregate into a denser configuration. Mercury porosimetry was utilized to measure the pore size of the compact resulting from

  14. Phosphoric acid activation of sugarcane bagasse for removal of o-toluidine and benzidine

    NASA Astrophysics Data System (ADS)

    Adib, M. R. M.; Attahirah, M. H. M. N.; Amirza, A. R. M.

    2018-04-01

    In the effort to find alternatives for low cost adsorbent, activated carbon using sugarcane bagasse (SBAC) has been introduced in this study that has undergo chemical treatment using phosphoric acid to determine the effectiveness of adsorption process in removing o-toluidine and benzidine. Throughout this study, 92.9% of o-toluidine has been successfully removed by SBAC at optimum value of 1.1 g of dosage with contact time of 10 minutes and concentration of 10 mg/L. While benzidine was remove by 83.1% at optimum dosage of 1.1 g with 60 minutes of contact time and at 20 mg/L concentrations. Testing of SEM proves that SBAC has high porosity and comparable to CAC. In FTIR results, shows that CAC has high number of double bond while SBAC shows no double bond at all. Presence of double bond in CAC lead to increase in percentage of removal of adsorbate. After considering other factor such as cost, energy and environmental friendly, it shows that SBAC was considerable to replaced CAC.

  15. Detergent-mediated protein aggregation

    PubMed Central

    Neale, Chris; Ghanei, Hamed; Holyoake, John; Bishop, Russell E.; Privé, Gilbert G.; Pomès, Régis

    2016-01-01

    Because detergents are commonly used to solvate membrane proteins for structural evaluation, much attention has been devoted to assessing the conformational bias imparted by detergent micelles in comparison to the native environment of the lipid bilayer. Here, we conduct six 500-ns simulations of a system with >600,000 atoms to investigate the spontaneous self assembly of dodecylphosphocholine detergent around multiple molecules of the integral membrane protein PagP. This detergent formed equatorial micelles in which acyl chains surround the protein’s hydrophobic belt, confirming existing models of the detergent solvation of membrane proteins. In addition, unexpectedly, the extracellular and periplasmic apical surfaces of PagP interacted with the headgroups of detergents in other micelles 85 and 60% of the time, respectively, forming complexes that were stable for hundreds of nanoseconds. In some cases, an apical surface of one molecule of PagP interacted with an equatorial micelle surrounding another molecule of PagP. In other cases, the apical surfaces of two molecules of PagP simultaneously bound a neat detergent micelle. In these ways, detergents mediated the non-specific aggregation of folded PagP. These simulation results are consistent with dynamic light scattering experiments, which show that, at detergent concentrations ≥600 mM, PagP induces the formation of large scattering species that are likely to contain many copies of the PagP protein. Together, these simulation and experimental results point to a potentially generic mechanism of detergent-mediated protein aggregation. PMID:23466535

  16. Aggregation of TiO2-graphene nanocomposites in aqueous environment: Influence of environmental factors and UV irradiation.

    PubMed

    Hua, Zulin; Zhang, Jianan; Bai, Xue; Ye, Zhengfang; Tang, Zhiqiang; Liang, Lu; Liu, Yuqi

    2016-01-01

    The aggregation kinetics of TiO2-graphene nanocomposites in aqueous solution affected by solution pH, salt types (NaCl, CaCl2) and concentrations of electrolytes, and stability induced by UV irradiation was investigated in this study. The zeta potentials and hydrodynamic diameter of the nanoparticles were used as bases to assess the aggregation behavior, and stability of nanocomposites exposed to UV irradiation was expressed in terms of supernatant concentration. The aggregation of TiO2-graphene nanoparticles in aqueous media followed the colloidal theory. TiO2-graphene nanoparticles were significantly aggregated in the presence of a diavalent cation compared with monovalent cation because the former was more capable of effective charge screening and neutralization. The calculated Hamaker constant of the TiO2-graphene nanocomposites in aqueous solution prepared in the lab was 2.31×10(-20)J. The stability of this composite nanoparticles was between those of pure TiO2 and graphene. A known intensity of UV irradiation was beneficial in the formation of TiO2-graphene nanoparticle aggregates. However, prolonged UV irradiation may stabilize the nanoparticles. These results provided critical information about the colloidal properties of the new TiO2-graphene nanocomposites and were useful in predicting the fate and transport of TiO2-graphene nanocomposites in natural water environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. GENERAL: Kinetic Behaviors of Catalysis-Driven Growth of Three-Species Aggregates on Base of Exchange-Driven Aggregations

    NASA Astrophysics Data System (ADS)

    Sun, Yun-Fei; Chen, Dan; Lin, Zhen-Quan; Ke, Jian-Hong

    2009-06-01

    We propose a solvable aggregation model to mimic the evolution of population A, asset B, and the quantifiable resource C in a society. In this system, the population and asset aggregates themselves grow through self-exchanges with the rate kernels K1(k, j) = K1kj and K2(k, j) = K2kj, respectively. The actions of the population and asset aggregations on the aggregation evolution of resource aggregates are described by the population-catalyzed monomer death of resource aggregates and asset-catalyzed monomer birth of resource aggregates with the rate kernels J1(k, j) = J1k and J2(k, j) = J2k, respectively. Meanwhile, the asset and resource aggregates conjunctly catalyze the monomer birth of population aggregates with the rate kernel I1(k, i, j) = I1kiμjη, and population and resource aggregates conjunctly catalyze the monomer birth of asset aggregates with the rate kernel I2(k, i, j) = I2kivjη. The kinetic behaviors of species A, B, and C are investigated by means of the mean-field rate equation approach. The effects of the population-catalyzed death and asset-catalyzed birth on the evolution of resource aggregates based on the self-exchanges of population and asset appear in effective forms. The coefficients of the effective population-catalyzed death and the asset-catalyzed birth are expressed as J1e = J1/K1 and J2e = J2/K2, respectively. The aggregate size distribution of C species is found to be crucially dominated by the competition between the effective death and the effective birth. It satisfies the conventional scaling form, generalized scaling form, and modified scaling form in the cases of J1e < J2e, J1e = J2e, and J1e > J2e, respectively. Meanwhile, we also find the aggregate size distributions of populations and assets both fall into two distinct categories for different parameters μ, ν, and η: (i) When μ = ν = η = 0 and μ = ν = 0, η = 1, the population and asset aggregates obey the generalized scaling forms; and (ii) When μ = ν = 1, η = 0

  18. Fractal Aggregates in Tennis Ball Systems

    ERIC Educational Resources Information Center

    Sabin, J.; Bandin, M.; Prieto, G.; Sarmiento, F.

    2009-01-01

    We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the…

  19. [Effect of dilution on aggregation of nanoparticles of polycarboxylic derivative of fullerene C60].

    PubMed

    Bobylev, A G; Pen'kov, N V; Troshin, P A; Gudkov, S V

    2015-01-01

    In this work, we investigated the effect of dilution on aggregation of nanoparticles of the polycarboxylic derivative of fullerene C60. It is shown that the diminution of the concentration of PCDF-1 in aqueous medium leads to a decreased amount of aggregates of fullerene and an increased amount of single molecules. This can potentially interfere with the biological activity of a compound on one molecule basis. Addition of organic and inorganic salts to the aqueous medium with fullerene derivative leads to intense disaggregation of PCDF-1. The data obtained suggest an explanation of non-stoichiometric nature of neutralization of reactive oxygen species by derivatives of fullerenes, as well as provide new insight into the physical meaning of the work on the impact of nanoparticles at ultra-low concentrations on biological objects.

  20. Design of an Efficient CAC for a Broadband DVB-S/DVB-RCS Satellite Access Network

    NASA Astrophysics Data System (ADS)

    Inzerilli, Tiziano; Montozzi, Simone

    2003-07-01

    This paper deals with efficient utilization of network resources in an advanced broadband satellite access system. It proposes a technique for admission control of IP streams with guaranteed QoS which does not interfere with the particular BoD (Bandwidth on Demand) algorithm that handles access to uplink bandwidth, an essential part of a DVB- RCS architecture. This feature of the admission control greatly simplify its integration in the satellite network. The purpose of this admission control algorithm in particular is to suitably and dynamically configure the overall traffic control parameters, in the access terminal of the user and service segment, with a simple approach which does not introduces limitations and/or constraints to the BoD algorithm. Performance of the proposed algorithm is evaluated thorugh Opnet simulations using an ad-hoc platform modeling DVB-based satellite access.The results presented in this paper were obtained within SATIP6 project, which is sponsored within the 5th EU Research Programme, IST. The aims of the project are to evaluate and demonstrate key issues of the integration of satellite-based access networks into the Internet in order to support multimedia services over wide areas. The satellite link layer is based on DVB-S on the forward link and DVB-RCS on the return link. Adaptation and optimization of the DVB-RCS access standard in order to support QoS provision are central issues of the project. They are handled through an integration of Connection Admission Control (CAC), Traffic Shaping and Policing techniques.

  1. In vitro effect of sodium nitrite on platelet aggregation in human platelet rich plasma--preliminary report.

    PubMed

    Kadan, M; Doğanci, S; Yildirim, V; Özgür, G; Erol, G; Karabacak, K; Avcu, F

    2015-10-01

    The role of nitrates and nitric oxide on platelet functions has obtained an increasing attention with respect to their potential effects on cardiovascular disorders. In this study we aimed to analyze the effect of sodium nitrite on platelet functions in human platelets. This in vitro study was designed to show the effect of sodium nitrite on platelet functions in seven healthy volunteers. Blood samples were centrifuged to prepare platelet rich plasma and platelet poor plasma. Platelet rich plasma was diluted with the platelet poor plasma to have a final count of 300,000 ± 25,000 platelets. Platelet rich plasma was incubated with six different increasing doses (from 10 μM to 5 mM) of sodium nitrite for 1 hour at 37°C. Then stimulating agents including collagen (3 μg ml-1), adenosine diphosphate (10 μM), and epinephrine (10 μM) were added to the cuvette. Changes in light transmission were observed for 10 minutes. In addition spontaneous aggregation were performed in control group with all aggregating agents separately. Effect of sodium nitrite on agonist-induced platelet aggregation depends on the concentration of sodium nitrite. Compared with control group, agonist-induced platelet aggregations were significantly suppressed by sodium nitrite at the concentration of 5, 1.0 and 0.5 mM. Our results suggested that sodium nitrite has inhibitory effects in vitro on platelet aggregation in a dose-dependent manner.

  2. Molecular aggregation of humic substances

    USGS Publications Warehouse

    Wershaw, R. L.

    1999-01-01

    Humic substances (HS) form molecular aggregates in solution and on mineral surfaces. Elucidation of the mechanism of formation of these aggregates is important for an understanding of the interactions of HS in soils arid natural waters. The HS are formed mainly by enzymatic depolymerization and oxidation of plant biopolymers. These reactions transform the aromatic and lipid plant components into amphiphilic molecules, that is, molecules that consist of separate hydrophobic (nonpolar) and hydrophilic (polar) parts. The nonpolar parts of the molecules are composed of relatively unaltered segments of plant polymers and the polar parts of carboxylic acid groups. These amphiphiles form membrane-like aggregates on mineral surfaces and micelle-like aggregates in solution. The exterior surfaces of these aggregates are hydrophilic, and the interiors constitute separate hydrophobic liquid-like phases.

  3. Aggregation Kinetics of Hematite Particles in the Presence of Outer Membrane Cytochrome OmcA of Shewanella oneidenesis MR-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Anxu; Liu, Feng; Shi, Liang

    2016-09-20

    The aggregation behavior of 9, 36, and 112 nm hematite particles was studied in the presence of OmcA, a bacterial extracellular protein, in aqueous dispersions at pH 5.7 through time-resolved dynamic light scattering, electrophoretic mobility, and circular dichroism spectra, respectively. At low salt concentration, the attachment efficiencies of hematite particles in all sizes first increased, then decreased, and finally remained stable with the increase of OmcA concentration, indicating the dominant interparticle interaction changed along with the increase in the protein-to-particle ratio. Nevertheless, at high salt concentration, the attachment efficiencies of all hematite samples gradually decreased with increasing OmcA concentration, whichmore » can be attributed to increasing steric force. Additionally, the aggregation behavior of OmcA-hematite conjugates was more correlated to total particle-surface area than primary particle size. It was further established that OmcA could stabilize hematite nanoparticles more efficiently than bovine serum albumin (BSA), a model plasma protein, due to the higher affinity of OmcA to hematite surface. This study highlighted the effects of particle properties, solution conditions, and protein properties on the complicated aggregation behavior of protein-nanoparticle conjugates in aqueous environments.« less

  4. Aggregate development in C 60/N-methyl-2-pyrrolidone solution and its mixture with water as revealed by extraction and mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Kyzyma, O. A.; Korobov, M. V.; Avdeev, M. V.; Garamus, V. M.; Snegir, S. V.; Petrenko, V. I.; Aksenov, V. L.; Bulavin, L. A.

    2010-06-01

    The aggregate development in C 60/N-methyl-2-pyrrolidone (C 60/NMP) solution with time is studied by the extraction (hexane) and mass spectroscopy. It is shown that only molecular C 60 in NMP is extracted in hexane, which makes it possible to follow a change in the concentration of non-aggregated fullerene in C 60/NMP during the aggregate growth. It is concluded that almost all fullerene dissolved in NMP is in the aggregates after one month. The reorganization of the aggregates is detected when water is added to the aggregated solution C 60/NMP. Both methods prove that in this case individual fullerene molecules are detached from the aggregates, which contradicts somewhat to complete insolubility of C 60 in water.

  5. DNA sensors and aptasensors based on the hemin/G-quadruplex-controlled aggregation of Au NPs in the presence of L-cysteine.

    PubMed

    Niazov-Elkan, Angelica; Golub, Eyal; Sharon, Etery; Balogh, Dora; Willner, Itamar

    2014-07-23

    L-cysteine induces the aggregation of Au nanoparticles (NPs), resulting in a color transition from red to blue due to interparticle plasmonic coupling in the aggregated structure. The hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme catalyzes the aerobic oxidation of L-cysteine to cystine, a process that inhibits the aggregation of the NPs. The degree of inhibition of the aggregation process is controlled by the concentration of the DNAzyme in the system. These functions are implemented to develop sensing platforms for the detection of a target DNA, for the analysis of aptamer-substrate complexes, and for the analysis of L-cysteine in human urine samples. A hairpin DNA structure that includes a recognition site for the DNA analyte and a caged G-quadruplex sequence, is opened in the presence of the target DNA. The resulting self-assembled hemin/G-quadruplex acts as catalyst that controls the aggregation of the Au NPs. Also, the thrombin-binding aptamer folds into a G-quadruplex nanostructure upon binding to thrombin. The association of hemin to the resulting G-quadruplex aptamer-thrombin complex leads to a catalytic label that controls the L-cysteine-mediated aggregation of the Au NPs. The hemin/G-qaudruplex-controlled aggregation of Au NPs process is further implemented for visual and spectroscopic detection of L-cysteine concentration in urine samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Holographic Characterization of Colloidal Fractal Aggregates

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Cheong, Fook Chiong; Ruffner, David B.; Zhong, Xiao; Ward, Michael D.; Grier, David G.

    In-line holographic microscopy images of micrometer-scale fractal aggregates can be interpreted with the Lorenz-Mie theory of light scattering and an effective-sphere model to obtain each aggregate's size and the population-averaged fractal dimension. We demonstrate this technique experimentally using model fractal clusters of polystyrene nanoparticles and fractal protein aggregates composed of bovine serum albumin and bovine pancreas insulin. This technique can characterize several thousand aggregates in ten minutes and naturally distinguishes aggregates from contaminants such as silicone oil droplets. Work supported by the SBIR program of the NSF.

  7. Observing Convective Aggregation

    NASA Astrophysics Data System (ADS)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  8. Effect of dynamic high pressure homogenization on the aggregation state of soy protein.

    PubMed

    Keerati-U-Rai, Maneephan; Corredig, Milena

    2009-05-13

    Although soy proteins are often employed as functional ingredients in oil-water emulsions, very little is known about the aggregation state of the proteins in solution and whether any changes occur to soy protein dispersions during homogenization. The effect of dynamic high pressure homogenization on the aggregation state of the proteins was investigated using microdifferential scanning calorimetry and high performance size exclusion chromatography coupled with multiangle laser light scattering. Soy protein isolates as well as glycinin and beta-conglycinin fractions were prepared from defatted soy flakes and redispersed in 50 mM sodium phosphate buffer at pH 7.4. The dispersions were then subjected to homogenization at two different pressures, 26 and 65 MPa. The results demonstrated that dynamic high pressure homogenization causes changes in the supramolecular structure of the soy proteins. Both beta-conglycinin and glycinin samples had an increased temperature of denaturation after homogenization. The chromatographic elution profile showed a reduction in the aggregate concentration with homogenization pressure for beta-conglycinin and an increase in the size of the soluble aggregates for glycinin and soy protein isolate.

  9. Dynamic aggregation of the mid-sized gadolinium complex {Ph4[Gd(DTTA)(H2O)2](-)3}.

    PubMed

    Jaccard, Hugues; Miéville, Pascal; Cannizzo, Caroline; Mayer, Cédric R; Helm, Lothar

    2014-02-01

    A compound binding three Gd(3+) ions, {Ph4[Gd(DTTA)(H2O)2](-) 3} (where H5DTTA is diethylenetriaminetetraacetic acid), has been synthesized around a hydrophobic center made up of four phenyl rings. In aqueous solution the molecules start to self-aggregate at concentrations well below 1 mM as shown by the increase of rotational correlation times and by the decrease of the translational self-diffusion constant. NMR spectra recorded in aqueous solution of the diamagnetic analogue {Ph4[Y(DTTA)(H2O)2](-)3} show that the aggregation is dynamic and due to intermolecular π-stacking interactions between the hydrophobic aromatic centers. From estimations of effective radii, it can be concluded that the aggregates are composed of two to three monomers. The paramagnetic {Ph4[Gd(DTTA)(H2O)2](-)3} exhibits concentration-dependent (1)H NMR relaxivities with high values of approximately 50 mM(-1) s(-1) (30 MHz, 25 °C) at gadolinium concentrations above 20 mM. A combined analysis of (1)H NMR dispersion profiles measured at different concentrations of the compound and (17)O NMR data measured at various temperatures was performed using different theoretical approaches. The fitted parameters showed that the increase in relaxivity with increasing concentration of the compound is due to slower global rotational motion and an increase of the Lipari-Szabo order parameter S(2).

  10. Nitrogen-mediated effects of elevated CO2 on intra-aggregate soil pore structure.

    PubMed

    Caplan, Joshua S; Giménez, Daniel; Subroy, Vandana; Heck, Richard J; Prior, Stephen A; Runion, G Brett; Torbert, H Allen

    2017-04-01

    Soil pore structure has a strong influence on water retention, and is itself influenced by plant and microbial dynamics such as root proliferation and microbial exudation. Although increased nitrogen (N) availability and elevated atmospheric CO 2 concentrations (eCO 2 ) often have interacting effects on root and microbial dynamics, it is unclear whether these biotic effects can translate into altered soil pore structure and water retention. This study was based on a long-term experiment (7 yr at the time of sampling) in which a C 4 pasture grass (Paspalum notatum) was grown on a sandy loam soil while provided factorial additions of N and CO 2 . Through an analysis of soil aggregate fractal properties supported by 3D microtomographic imagery, we found that N fertilization induced an increase in intra-aggregate porosity and a simultaneous shift toward greater accumulation of pore space in larger aggregates. These effects were enhanced by eCO 2 and yielded an increase in water retention at pressure potentials near the wilting point of plants. However, eCO 2 alone induced changes in the opposite direction, with larger aggregates containing less pore space than under control conditions, and water retention decreasing accordingly. Results on biotic factors further suggested that organic matter gains or losses induced the observed structural changes. Based on our results, we postulate that the pore structure of many mineral soils could undergo N-dependent changes as atmospheric CO 2 concentrations rise, having global-scale implications for water balance, carbon storage, and related rhizosphere functions. © 2016 John Wiley & Sons Ltd.

  11. Surface properties and aggregate morphology of partially fluorinated carboxylate-type anionic gemini surfactants.

    PubMed

    Yoshimura, Tomokazu; Bong, Miri; Matsuoka, Keisuke; Honda, Chikako; Endo, Kazutoyo

    2009-11-01

    Three anionic homologues of a novel partially fluorinated carboxylate-type anionic gemini surfactant, N,N'-di(3-perfluoroalkyl-2-hydroxypropyl)-N,N'-diacetic acid ethylenediamine (2C(n)(F) edda, where n represents the number of carbon atoms in the fluorocarbon chain (4, 6, and 8)) were synthesized. In these present gemini surfactants, the relatively small carboxylic acid moieties form hydrophilic head groups. The surface properties or structures of the aggregates of these surfactants are strongly influenced by the nonflexible fluorocarbons and small head groups; this is because these surfactants have a closely packed molecular structure. The equilibrium surface tension properties of these surfactants were measured at 298.2K for various fluorocarbon chain lengths. The plot of the logarithm of the critical micelle concentration (cmc) against the fluorocarbon chain lengths for 2C(n)(F) edda (n=4, 6, and 8) showed a minimum for n=6. Furthermore, the lowest surface tension of 2C(6)(F) edda at the cmc was 16.4mNm(-1). Such unique behavior has not been observed even in the other fluorinated surfactants. Changes in the shapes and sizes of these surfactant aggregate with concentration were investigated by dynamic light scattering and transmission electron microscopy (TEM). The TEM micrographs showed that in an aqueous alkali solution, 2C(n)(F) edda mainly formed aggregates with stringlike (n=4), cagelike (n=6), and distorted bilayer structures (n=8). The morphological changes in the aggregates were affected by the molecular structure composed of nonflexible fluorocarbon chains and flexible hydrocarbon chains.

  12. What favors convective aggregation and why?

    NASA Astrophysics Data System (ADS)

    Muller, Caroline; Bony, Sandrine

    2015-07-01

    The organization of convection is ubiquitous, but its physical understanding remains limited. One particular type of organization is the spatial self-aggregation of convection, taking the form of cloud clusters, or tropical cyclones in the presence of rotation. We show that several physical processes can give rise to self-aggregation and highlight the key features responsible for it, using idealized simulations. Longwave radiative feedbacks yield a "radiative aggregation." In that case, sufficient spatial variability of radiative cooling rates yields a low-level circulation, which induces the upgradient energy transport and radiative-convective instability. Not only do vertically integrated radiative budgets matter but the vertical profile of cooling is also crucial. Convective aggregation is facilitated when downdrafts below clouds are weak ("moisture-memory aggregation"), and this is sufficient to trigger aggregation in the absence of longwave radiative feedbacks. These results shed some light on the sensitivity of self-aggregation to various parameters, including resolution or domain size.

  13. Lightweight aggregate abrasion study.

    DOT National Transportation Integrated Search

    1963-02-01

    The rapid increase in the use of lightweight aggregates in structural concrete has created a number of problems for the Materials Engineer in evaluating this type aggregate. Exhaustive studies are being made of a number of properties of lightweight a...

  14. Concurrent changes in aggregation and swelling of coal particles in solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishioka, M.

    1995-12-31

    A new method of coal swelling has been developed tinder the condition of low coal concentrations with continuous mixing of coal and solvent. The change in particle size distributions by a laser scattering procedure was used for the evaluation of coal swelling. Particle size distributions in good and poor solvents were nearly equal, but reversibly changed in good solvents from time to time. The effects of solubles and coal concentrations on the distributions were small. It was concluded that aggregate d coal particles disaggregate in good solvents, and that an increase in the particle size distribution due to swelling inmore » good solvents are compensated by a decrease in the particle size due to disaggregation. Therefore, the behavior of coal particles in solvents is controlled by aggregation in addition to coal swelling. This implies that an increase in the particle size due to coal swelling in actual processes is not so large as expected by the results obtained from the conventional coal swelling methods.« less

  15. Bouncing behavior of microscopic dust aggregates

    NASA Astrophysics Data System (ADS)

    Seizinger, A.; Kley, W.

    2013-03-01

    Context. Bouncing collisions of dust aggregates within the protoplanetary disk may have a significant impact on the growth process of planetesimals. Yet, the conditions that result in bouncing are not very well understood. Existing simulations studying the bouncing behavior used aggregates with an artificial, very regular internal structure. Aims: Here, we study the bouncing behavior of sub-mm dust aggregates that are constructed applying different sample preparation methods. We analyze how the internal structure of the aggregate alters the collisional outcome and we determine the influence of aggregate size, porosity, collision velocity, and impact parameter. Methods: We use molecular dynamics simulations where the individual aggregates are treated as spheres that are made up of several hundred thousand individual monomers. The simulations are run on graphic cards (GPUs). Results: Statistical bulk properties and thus bouncing behavior of sub-mm dust aggregates depend heavily on the preparation method. In particular, there is no unique relation between the average volume filling factor and the coordination number of the aggregate. Realistic aggregates bounce only if their volume filling factor exceeds 0.5 and collision velocities are below 0.1 ms-1. Conclusions: For dust particles in the protoplanetary nebula we suggest that the bouncing barrier may not be such a strong handicap in the growth phase of dust agglomerates, at least in the size range of ≈100 μm.

  16. Asp-Gly based peptides confined at the surface of cationic gemini surfactant aggregates.

    PubMed

    Brizard, Aurélie; Dolain, Christel; Huc, Ivan; Oda, Reiko

    2006-04-11

    Cationic gemini surfactants complexed with anionic oligoglycine-aspartate (called gemini peptides hereafter) were synthesized, and their aggregation behaviors were studied. The effects of the hydrophobic chain length (C10-C22) and the length of the oligoglycine (0-4) were investigated, and it was clearly shown by critical micellar concentration, Krafft temperature, and isothermal surface pressure measurements that the hydrophobic effect and interpeptidic interaction influence the aggregation behavior in a cooperative manner. Below their Krafft temperatures, some of them formed both hydro- and organogels with three-dimensional networks and the Fourier transform infrared measurements show the presence of interpeptidic hydrogen bonds.

  17. Structure and self-assembly properties of a new chitosan-based amphiphile.

    PubMed

    Huang, Yuping; Yu, Hailong; Guo, Liang; Huang, Qingrong

    2010-06-17

    A new chitosan-based amphiphile, octanoyl-chitosan-polyethylene glycol monomethyl ether (acylChitoMPEG), has been prepared using both hydrophobic octanoyl and hydrophilic polyethylene glycol monomethyl ether (MPEG) substitutions. The success of synthesis was confirmed by Fourier transform infrared (FT-IR) and (1)H NMR spectroscopy. The synthesized acylChitoMPEG exhibited good solubility in either aqueous solution or common organic solvents such as ethanol, acetone, and CHCl(3). The self-aggregation behavior of acylChitoMPEG in solutions was studied by a combination of pyrene fluorescence technique, dynamic light scattering, atomic force microscopy, and small-angle X-ray scattering (SAXS). The critical aggregation concentration (CAC) and hydrodynamic diameter were found to be 0.066 mg/mL and 24.4 nm, respectively. SAXS results suggested a coiled structure of the triple helical acylChitoMPEG backbone with the hydrophobic moieties hiding in the center of the backbone, and the hydrophilic MPEG chains surrounding the acylChitoMPEG backbone in a random Gaussian chain conformation. Cytotoxicity results showed that acylChitoMPEG exhibited negligible cytotoxicity even at concentrations as high as 1.0 mg/mL. All results implied that acylChitoMPEG has the potential to be used for biological or medical applications.

  18. Role of Multicellular Aggregates in Biofilm Formation

    PubMed Central

    Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin; Rodesney, Chris; Roberts, Aled E. L.; Irie, Yasuhiko; Jensen, Peter Ø.; Diggle, Stephen P.; Allen, Rosalind J.

    2016-01-01

    ABSTRACT In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation. PMID:27006463

  19. Oxidative stress and protein aggregation during biological aging.

    PubMed

    Squier, T C

    2001-09-01

    represents a regulatory mechanism that functions to minimize the generation of ROS through respiratory control mechanisms. The reduction of the rate of ROS generation, in turn, will promote cellular survival under conditions of oxidative stress, when reactive oxygen and nitrogen species overwhelm cellular antioxidant defense systems, by minimizing the non-selective oxidation of a range of biomolecules. Since protein aggregation occurs if protein repair and degradative systems are unable to act upon oxidized proteins and restore cellular function, the reduction of the oxidative load on the cell by the down-regulation of the electron transport chain functions to minimize protein aggregation. Thus, ROS function as signaling molecules that fine-tune cellular metabolism through the selective oxidation or nitration of calcium regulatory proteins in order to minimize wide-spread oxidative damage and protein aggregation. Oxidative damage to cellular proteins, the loss of calcium homeostasis and protein aggregation contribute to the formation of amyloid deposits that accumulate during biological aging. Critical to understand the relationship between these processes and biological aging is the identification of oxidatively sensitive proteins that modulate energy utilization and the associated generation of ROS. In this latter respect, oxidative modifications to the calcium regulatory proteins calmodulin (CaM) and the sarco/endoplasmic reticulum Ca-ATPase (SERCA) function to down-regulate ATP utilization and the associated generation of ROS associated with replenishing intracellular ATP through oxidative phosphorylation. Reductions in the rate of ROS generation, in turn, will minimize protein oxidation and facilitate intracellular repair and degradative systems that function to eliminate damaged and partially unfolded proteins. Since the rates of protein repair or degradation compete with the rate of protein aggregation, the modulation of intracellular calcium concentrations and energy

  20. Distribution of indoor radon concentrations in Pennsylvania, 1990-2007

    USGS Publications Warehouse

    Gross, Eliza L.

    2013-01-01

    Median indoor radon concentrations aggregated according to geologic units and hydrogeologic settings are useful for drawing general conclusions about the occurrence of indoor radon in specific geologic units and hydrogeologic settings, but the associated data and maps have limitations. The aggregated indoor radon data have testing and spatial accuracy limitations due to lack of available information regarding testing conditions and the imprecision of geocoded test locations. In addition, the associated data describing geologic units and hydrogeologic settings have spatial and interpretation accuracy limitations, which are a result of using statewide data to define conditions at test locations and geologic data that represent a broad interpretation of geologic units across the State. As a result, indoor air radon concentration distributions are not proposed for use in predicting individual concentrations at specific sites nor for use as a decision-making tool for property owners to decide whether to test for indoor radon concentrations at specific property locations.

  1. Applications of aggregation theory to sustainability assessment

    DOE PAGES

    Pollesch, N.; Dale, V. H.

    2015-04-01

    In order to aid in transition towards operations that promote sustainability goals, researchers and stakeholders use sustainability assessments. Although assessments take various forms, many utilize diverse sets of indicators that can number anywhere from two to over 2000. Indices, composite indicators, or aggregate values are used to simplify high dimensional and complex data sets and to clarify assessment results. Although the choice of aggregation function is a key component in the development of the assessment, there are few examples to be found in literature to guide appropriate aggregation function selection. This paper develops a connection between the mathematical study ofmore » aggregation functions and sustainability assessment in order to aid in providing criteria for aggregation function selection. Relevant mathematical properties of aggregation functions are presented and interpreted. Lastly, we provide cases of these properties and their relation to previous sustainability assessment research. Examples show that mathematical aggregation properties can be used to address the topics of compensatory behavior and weak versus strong sustainability, aggregation of data under varying units of measurements, multiple site multiple indicator aggregation, and the determination of error bounds in aggregate output for normalized and non-normalized indicator measures.« less

  2. Modeling of chemical inhibition from amyloid protein aggregation kinetics.

    PubMed

    Vázquez, José Antonio

    2014-02-27

    The process of amyloid proteins aggregation causes several human neuropathologies. In some cases, e.g. fibrillar deposits of insulin, the problems are generated in the processes of production and purification of protein and in the pump devices or injectable preparations for diabetics. Experimental kinetics and adequate modelling of chemical inhibition from amyloid aggregation are of practical importance in order to study the viable processing, formulation and storage as well as to predict and optimize the best conditions to reduce the effect of protein nucleation. In this manuscript, experimental data of insulin, Aβ42 amyloid protein and apomyoglobin fibrillation from recent bibliography were selected to evaluate the capability of a bivariate sigmoid equation to model them. The mathematical functions (logistic combined with Weibull equation) were used in reparameterized form and the effect of inhibitor concentrations on kinetic parameters from logistic equation were perfectly defined and explained. The surfaces of data were accurately described by proposed model and the presented analysis characterized the inhibitory influence on the protein aggregation by several chemicals. Discrimination between true and apparent inhibitors was also confirmed by the bivariate equation. EGCG for insulin (working at pH = 7.4/T = 37°C) and taiwaniaflavone for Aβ42 were the compounds studied that shown the greatest inhibition capacity. An accurate, simple and effective model to investigate the inhibition of chemicals on amyloid protein aggregation has been developed. The equation could be useful for the clear quantification of inhibitor potential of chemicals and rigorous comparison among them.

  3. Aggregation and Gelation of Aromatic Polyamides with Parallel and Anti-parallel Alignment of Molecular Dipole Along the Backbone

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Shang, Jing; Ye, Xiaodong; Shen, Jian

    2016-12-01

    The understanding of macromolecular structures and interactions is important but difficult, due to the facts that a macromolecules are of versatile conformations and aggregate states, which vary with environmental conditions and histories. In this work two polyamides with parallel or anti-parallel dipoles along the linear backbone, named as ABAB (parallel) and AABB (anti-parallel) have been studied. By using a combination of methods, the phase behaviors of the polymers during the aggregate and gelation, i.e., the forming or dissociation processes of nuclei and fibril, cluster of fibrils, and cluster-cluster aggregation have been revealed. Such abundant phase behaviors are dominated by the inter-chain interactions, including dispersion, polarity and hydrogen bonding, and correlatd with the solubility parameters of solvents, the temperature, and the polymer concentration. The results of X-ray diffraction and fast-mode dielectric relaxation indicate that AABB possesses more rigid conformation than ABAB, and because of that AABB aggregates are of long fibers while ABAB is of hairy fibril clusters, the gelation concentration in toluene is 1 w/v% for AABB, lower than the 3 w/v% for ABAB.

  4. Familial aggregation analysis of gene expressions

    PubMed Central

    Rao, Shao-Qi; Xu, Liang-De; Zhang, Guang-Mei; Li, Xia; Li, Lin; Shen, Gong-Qing; Jiang, Yang; Yang, Yue-Ying; Gong, Bin-Sheng; Jiang, Wei; Zhang, Fan; Xiao, Yun; Wang, Qing K

    2007-01-01

    Traditional studies of familial aggregation are aimed at defining the genetic (and non-genetic) causes of a disease from physiological or clinical traits. However, there has been little attempt to use genome-wide gene expressions, the direct phenotypic measures of genes, as the traits to investigate several extended issues regarding the distributions of familially aggregated genes on chromosomes or in functions. In this study we conducted a genome-wide familial aggregation analysis by using the in vitro cell gene expressions of 3300 human autosome genes (Problem 1 data provided to Genetic Analysis Workshop 15) in order to answer three basic genetics questions. First, we investigated how gene expressions aggregate among different types (degrees) of relative pairs. Second, we conducted a bioinformatics analysis of highly familially aggregated genes to see how they are distributed on chromosomes. Third, we performed a gene ontology enrichment test of familially aggregated genes to find evidence to support their functional consensus. The results indicated that 1) gene expressions did aggregate in families, especially between sibs. Of 3300 human genes analyzed, there were a total of 1105 genes with one or more significant (empirical p < 0.05) familial correlation; 2) there were several genomic hot spots where highly familially aggregated genes (e.g., the chromosome 6 HLA genes cluster) were clustered; 3) as we expected, gene ontology enrichment tests revealed that the 1105 genes were aggregating not only in families but also in functional categories. PMID:18466548

  5. Discrete stochastic charging of aggregate grains

    NASA Astrophysics Data System (ADS)

    Matthews, Lorin S.; Shotorban, Babak; Hyde, Truell W.

    2018-05-01

    Dust particles immersed in a plasma environment become charged through the collection of electrons and ions at random times, causing the dust charge to fluctuate about an equilibrium value. Small grains (with radii less than 1 μm) or grains in a tenuous plasma environment are sensitive to single additions of electrons or ions. Here we present a numerical model that allows examination of discrete stochastic charge fluctuations on the surface of aggregate grains and determines the effect of these fluctuations on the dynamics of grain aggregation. We show that the mean and standard deviation of charge on aggregate grains follow the same trends as those predicted for spheres having an equivalent radius, though aggregates exhibit larger variations from the predicted values. In some plasma environments, these charge fluctuations occur on timescales which are relevant for dynamics of aggregate growth. Coupled dynamics and charging models show that charge fluctuations tend to produce aggregates which are much more linear or filamentary than aggregates formed in an environment where the charge is stationary.

  6. Calcium movements during pigment aggregation in freshwater shrimp chromatophores.

    PubMed

    Ribeiro, Márcia; McNamara, John Campbell

    2007-02-01

    Pigment granule migration within crustacean chromatophores provides an excellent model with which to investigate cytoplasmic movements, given the antagonistic, neurosecretory peptide regulation of granule translocation, and the absence of innervation in these large, brightly colored cells. Red pigment-concentrating hormone (RPCH) induces pigment aggregation in shrimp chromatophores via an increase in intracellular Ca2+; however, how this increase is brought about is not known. To examine the putative Ca2+ movements leading to pigment translocation in red, ovarian chromatophores of the freshwater shrimp, Macrobrachium olfersii, this study manipulates intra- and extracellular Ca2+ employing ER Ca2+-ATPase inhibitors, ryanodine-sensitive, ER Ca2+ channel blockers, and EDTA/EGTA-buffered A23187/Ca2+-containing salines. Our findings reveal that during pigment aggregation, cytosolic Ca2+ apparently increases from an intracellular source, the abundant SER, loaded by the SERCA and released through ryanodine-sensitive receptor/channels, triggered by capacitative calcium influx and/or calcium-induced calcium release mechanisms. Aggregation also depends on external calcium, which may modulate RPCH/receptor coupling. Such calcium-regulated pigment movements form the basis of a complex system of chromatic adaptation, which confers selective advantages like camouflage and protection against ultra-violet radiation to this palaemonid shrimp.

  7. Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes.

    PubMed

    Castillo, Virginia; Graña-Montes, Ricardo; Sabate, Raimon; Ventura, Salvador

    2011-06-01

    In the cell, protein folding into stable globular conformations is in competition with aggregation into non-functional and usually toxic structures, since the biophysical properties that promote folding also tend to favor intermolecular contacts, leading to the formation of β-sheet-enriched insoluble assemblies. The formation of protein deposits is linked to at least 20 different human disorders, ranging from dementia to diabetes. Furthermore, protein deposition inside cells represents a major obstacle for the biotechnological production of polypeptides. Importantly, the aggregation behavior of polypeptides appears to be strongly influenced by the intrinsic properties encoded in their sequences and specifically by the presence of selective short regions with high aggregation propensity. This allows computational methods to be used to analyze the aggregation properties of proteins without the previous requirement for structural information. Applications range from the identification of individual amyloidogenic regions in disease-linked polypeptides to the analysis of the aggregation properties of complete proteomes. Herein, we review these theoretical approaches and illustrate how they have become important and useful tools in understanding the molecular mechanisms underlying protein aggregation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Amyloid-beta protofibrils differ from amyloid-beta aggregates induced in dilute hexafluoroisopropanol in stability and morphology.

    PubMed

    Nichols, Michael R; Moss, Melissa A; Reed, Dana Kim; Cratic-McDaniel, Stephanie; Hoh, Jan H; Rosenberry, Terrone L

    2005-01-28

    The brains of Alzheimer's disease (AD) patients contain large numbers of amyloid plaques that are rich in fibrils composed of 40- and 42-residue amyloid-beta (Abeta) peptides. Several lines of evidence indicate that fibrillar Abeta and especially soluble Abeta aggregates are important in the etiology of AD. Recent reports also stress that amyloid aggregates are polymorphic and that a single polypeptide can fold into multiple amyloid conformations. Here we demonstrate that Abeta-(1-40) can form soluble aggregates with predominant beta-structures that differ in stability and morphology. One class of aggregates involved soluble Abeta protofibrils, prepared by vigorous overnight agitation of monomeric Abeta-(1-40) at low ionic strength. Dilution of these aggregation reactions induced disaggregation to monomers as measured by size exclusion chromatography. Protofibril concentrations monitored by thioflavin T fluorescence decreased in at least two kinetic phases, with initial disaggregation (rate constant approximately 1 h(-1)) followed by a much slower secondary phase. Incubation of the reactions without agitation resulted in less disaggregation at slower rates, indicating that the protofibrils became progressively more stable over time. In fact, protofibrils isolated by size exclusion chromatography were completely stable and gave no disaggregation. A second class of soluble Abeta aggregates was generated rapidly (<10 min) in buffered 2% hexafluoroisopropanol (HFIP). These aggregates showed increased thioflavin T fluorescence and were rich in beta-structure by circular dichroism. Electron microscopy and atomic force microscopy revealed initial globular clusters that progressed over several days to soluble fibrous aggregates. When diluted out of HFIP, these aggregates initially were very unstable and disaggregated completely within 2 min. However, their stability increased as they progressed to fibers. Relative to Abeta protofibrils, the HFIP-induced aggregates seeded

  9. Enhancement of properties of recycled coarse aggregate concrete using bacteria

    NASA Astrophysics Data System (ADS)

    Sahoo; Arakha; Sarkar; P; Jha

    2016-01-01

    Due to rapid construction, necessity for raw materials of concrete, especially coarse aggregate, tends to increase the danger of early exhaustion of the natural resources. An alternative source of raw materials would perhaps delay the advent of this early exhaustion. Recycled coarse aggregate (RCA) plays a great role as an alternative raw material that can replace the natural coarse aggregate (NCA) for concrete. Previous studies show that the properties of RCA concrete are inferior in quality compared to NCA concrete. This article attempts to study the improvement of properties of RCA concrete with the addition of bacteria named as Bacillus subtilis. The experimental investigation was carried out to evaluate the improvement of the compressive strength, capillary water absorption, and drying shrinkage of RCA concrete incorporating bacteria. The compressive strength of RCA concrete is found to be increased by about 20% when the cell concentration of B. subtilis is 106 cells/ml. The capillary water absorption as well as drying shrinkage of RCA are reduced when bacteria is incorporated. The improvement of RCA concrete is confirmed to be due to the calcium carbonate precipitation as observed from the microstructure studies carried out on it such as EDX, SEM, and XRD.

  10. Protein aggregation under high concentration/density state during chromatographic and ultrafiltration processes.

    PubMed

    Arakawa, Tsutomu; Ejima, Daisuke; Akuta, Teruo

    2017-02-01

    Local transient high protein concentration or high density condition can occur during processing of protein solutions. Typical examples are saturated binding of proteins during column chromatography and high protein concentration on the semi-permeable membrane during ultrafiltration. Both column chromatography and ultrafiltration are fundamental technologies, specially for production of pharmaceutical proteins. We summarize here our experiences related to such high concentration conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Understanding curcumin-induced modulation of protein aggregation.

    PubMed

    Ahmad, Basir; Borana, Mohanish S; Chaudhary, Ankur P

    2017-07-01

    Curcumin, a diarylheptanoid compound, found in spice turmeric is known to alter the aggregation of proteins and reduce the toxicity of the aggregates. This review looks at the molecular basis of modulating protein aggregation and toxicity of the aggregates. Foremost, we identify the interaction of curcumin and its derivatives with proteins/peptides and the effect of their interaction on the conformational stability and unfolding/folding pathway(s). The unfolding/folding processes generate partially folded/unfolded intermediate, which serve as aggregation precursor state. Secondly, we discuss the effect of curcumin binding on the kinetics parameters of the aggregation process, which give information about the mechanism of the aggregation inhibition. We describe, in addition, that curcumin can accelerate/promote fibril formation by binding to oligomeric intermediate(s) accumulated in the aggregation pathway. Finally, we discuss the correlation of curcumin-induced monomeric and/or oligomeric precursor states with aggregate structure and toxicity. On the basis of these discussions, we propose a model describing curcumin-induced inhibition/promotion of formation of amyloid-like fibrils. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Transportation and utilization of aggregates for road construction

    NASA Astrophysics Data System (ADS)

    Fladvad, Marit; Wigum, Børge Johannes; Aurstad, Joralf

    2017-04-01

    Road construction relies on non-renewable aggregate resources as the main construction material. Sources for high-quality aggregate resources are scattered, and requirements for aggregate quality can cause long transport distances between quarry and road construction site. In European countries, the average aggregate consumption per capita is 5 tonnes per year (European Aggregates Association, 2016), while the corresponding figure for Norway is 11 tonnes (Neeb, 2015). Half the Norwegian aggregate production (sand, gravel and crushed rock) is used for road construction. In Norway, aggregate resources have been considered abundant. However, stricter requirement for aggregate quality, and increased concern for sustainability and environmental issues have spurred focus on reduction of transport lengths through better utilization of local aggregate materials. In this research project, information about pavement design and aggregate quality requirements were gathered from a questionnaire sent to selected experts from the World Road Organization (PIARC), European Committee for Standardization (CEN), and Nordic Road Association (NVF). The gathered data was compared to identify differences and similarities for aggregate use in the participating countries. Further, the data was compared to known data from Norway regarding: - amount of aggregates required for a road structure - aggregate transport lengths and related costs A total of 18 countries participated in the survey, represented by either road authorities, research institutions, or contractors. There are large variations in practice for aggregate use among the represented countries, and the selection of countries is sufficient to illustrate a variety in pavement designs, aggregate sizes, and quality requirements for road construction. There are considerable differences in both pavement thickness and aggregate sizes used in the studied countries. Total thicknesses for pavement structures varies from 220 mm to 2400 mm

  13. Effects of chlorpyrifos on soil carboxylesterase activity at an aggregate-size scale.

    PubMed

    Sanchez-Hernandez, Juan C; Sandoval, Marco

    2017-08-01

    The impact of pesticides on extracellular enzyme activity has been mostly studied on the bulk soil scale, and our understanding of the impact on an aggregate-size scale remains limited. Because microbial processes, and their extracellular enzyme production, are dependent on the size of soil aggregates, we hypothesized that the effect of pesticides on enzyme activities is aggregate-size specific. We performed three experiments using an Andisol to test the interaction between carboxylesterase (CbE) activity and the organophosphorus (OP) chlorpyrifos. First, we compared esterase activity among aggregates of different size spiked with chlorpyrifos (10mgkg -1 wet soil). Next, we examined the inhibition of CbE activity by chlorpyrifos and its metabolite chlorpyrifos-oxon in vitro to explore the aggregate size-dependent affinity of the pesticides for the active site of the enzyme. Lastly, we assessed the capability of CbEs to alleviate chlorpyrifos toxicity upon soil microorganisms. Our principal findings were: 1) CbE activity was significantly inhibited (30-67% of controls) in the microaggregates (<0.25mm size) and smallest macroaggregates (<1.0 - 0.25mm), but did not change in the largest macroaggregates (>1.0mm) compared with the corresponding controls (i.e., pesticide-free aggregates), 2) chlorpyrifos-oxon was a more potent CbE inhibitor than chlorpyrifos; however, no significant differences in the CbE inhibition were found between micro- and macroaggregates, and 3) dose-response relationships between CbE activity and chlorpyrifos concentrations revealed the capability of the enzyme to bind chlorpyrifos-oxon, which was dependent on the time of exposure. This chemical interaction resulted in a safeguarding mechanism against chlorpyrifos-oxon toxicity on soil microbial activity, as evidenced by the unchanged activity of dehydrogenase and related extracellular enzymes in the pesticide-treated aggregates. Taken together, these results suggest that environmental risk

  14. Influence of calcium carbonate and charcoal application on aggregation processes and organic matter retention at the silt-size scale

    NASA Astrophysics Data System (ADS)

    Asefaw Berhe, Asmeret; Kaiser, Michael; Ghezzehei, Teamrat; Myrold, David; Kleber, Markus

    2013-04-01

    The effectiveness of charcoal and calcium carbonate applications to improve soil conditions has been well documented. However, their influence on the formation of silt-sized aggregates and the amount and protection of associated organic matter (OM) against microbial decomposition is still largely unknown. For sustainable management of agricultural soils, silt-sized aggregates (2-53 µm) are of particularly large importance because they store up to 60% of soil organic carbon with mean residence times between 70 and 400 years. The objectives are i) to analyze the ability of CaCO3 and/or charcoal application to increase the amount of silt-sized aggregates and associated OM, ii) vary soil mineral conditions to establish relevant boundary conditions for amendment-induced aggregation processes, iii) to determine how amendment-induced changes in formation of silt-sized aggregates relate to microbial decomposition of OM. We set up artificial high reactive (HR, clay: 40%, sand: 57%, OM: 3%) and low reactive soils (LR, clay: 10%, sand: 89%, OM: 1%) and mixed them with charcoal (CC, 1%) and/or calcium carbonate (Ca, 0.2%). The samples were adjusted to a water potential of 0.3 bar and sub samples were incubated with microbial inoculum (MO). After a 16-weeks aggregation experiment, size fractions were separated by wet-sieving and sedimentation. Since we did not use mineral compounds in the artificial mixtures within the size range of 2 to 53 µm, we consider material recovered in this fraction as silt-sized aggregates, which was confirmed by SEM analyses. For the LR mixtures, we detected increasing N concentrations within the 2-53 µm fractions of the charcoal amended samples (CC, CC+Ca, and CC+Ca+MO) as compared to the Control sample with the strongest effect for the CC+Ca+MO sample. This indicates an association of N-containing microbial derived OM with silt-sized aggregates. For the charcoal amended LR and HR mixtures, the C concentrations of the 2-53 µm fractions are

  15. Reusing recycled aggregates in structural concrete

    NASA Astrophysics Data System (ADS)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  16. Communication: Potentials of mean force study of ionic liquid ion pair aggregation in polar covalent molecule solvents

    NASA Astrophysics Data System (ADS)

    Bandlamudi, Santosh Rathan Paul; Benjamin, Kenneth M.

    2018-05-01

    Molecular dynamics (MD) simulations were conducted for 1-ethyl-3-methylimidazolium methylsulfate [EMIM][MeSO4] dissolved in six polar covalent molecules [acetic acid, acetone, chloroform, dimethyl sulfoxide (DMSO), isopropyl alcohol, and methanol] to understand the free energies of ionic liquid (IL) ion pairing/aggregation in the limit of infinite dilution. Free energy landscapes or potentials of mean force (PMF) were computed using umbrella sampling and the weighted histogram analysis method. The PMF studies showed the strongest IL ion pairing in chloroform, and the strength of IL ion pairing decreases in the order of chloroform, acetone, propanol, acetic acid, DMSO, and methanol. In the limit of infinite dilution, the free energy curves for IL ion aggregation in co-solvents were characterized by two distinct minima [global (˜3.6 Å) and local (˜5.7 Å)], while free energy values at these minima differed significantly for IL in each co-solvent. The PMF studies were extended for determining the free energy of IL ion aggregation as a function of concentration of methanol. Studies showed that as the concentration of methanol increased, the free energy of ion aggregation decreased, suggesting greater ion pair stability, in agreement with previously reported MD clustering and radial distribution function data.

  17. Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite.

    PubMed

    Zegeye, A; Mustin, C; Jorand, F

    2010-06-01

    In the presence of methanoate as electron donor, Shewanella putrefaciens, a Gram-negative, facultative anaerobe, is able to transform lepidocrocite (gamma-FeOOH) to secondary Fe (II-III) minerals such as carbonated green rust (GR1) and magnetite. When bacterial cells were added to a gamma-FeOOH suspension, aggregates were produced consisting of both bacteria and gamma-FeOOH particles. Recently, we showed that the production of secondary minerals (GR1 vs. magnetite) was dependent on bacterial cell density and not only on iron reduction rates. Thus, gamma-FeOOH and S. putrefaciens aggregation pattern was suggested as the main mechanism driving mineralization. In this study, lepidocrocite bioreduction experiments, in the presence of anthraquinone disulfonate, were conducted by varying the [cell]/[lepidocrocite] ratio in order to determine whether different types of aggregate are formed, which may facilitate precipitation of GR1 as opposed to magnetite. Confocal laser scanning microscopy was used to analyze the relative cell surface area and lepidocrocite concentration within the aggregates and captured images were characterized by statistical methods for spatial data (i.e. variograms). These results suggest that the [cell]/[lepidocrocite] ratio influenced both the aggregate structure and the nature of the secondary iron mineral formed. Subsequently, a [cell]/[lepidocrocite] ratio above 1 x 10(7) cells mmol(-1) leads to densely packed aggregates and to the formation of GR1. Below this ratio, looser aggregates are formed and magnetite was systematically produced. The data presented in this study bring us closer to a more comprehensive understanding of the parameters governing the formation of minerals in dense bacterial suspensions and suggest that screening mineral-bacteria aggregate structure is critical to understanding (bio)mineralization pathways.

  18. Polyglutamine aggregation in Huntington and related diseases.

    PubMed

    Polling, Saskia; Hill, Andrew F; Hatters, Danny M

    2012-01-01

    Polyglutamine (polyQ)-expansions in different proteins cause nine neurodegenerative diseases. While polyQ aggregation is a key pathological hallmark of these diseases, how aggregation relates to pathogenesis remains contentious. In this chapter, we review what is known about the aggregation process and how cells respond and interact with the polyQ-expanded proteins. We cover detailed biophysical and structural studies to uncover the intrinsic features of polyQ aggregates and concomitant effects in the cellular environment. We also examine the functional consequences ofpolyQ aggregation and how cells may attempt to intervene and guide the aggregation process.

  19. Platelet activation, adhesion, inflammation, and aggregation potential are altered in the presence of electronic cigarette extracts of variable nicotine concentrations.

    PubMed

    Hom, Sarah; Chen, Li; Wang, Tony; Ghebrehiwet, Berhane; Yin, Wei; Rubenstein, David A

    2016-11-01

    Tobacco smoke extracts prepared from both mainstream and sidestream smoking have been associated with heightened platelet activation, aggregation, adhesion, and inflammation. Conversely, it has been shown that pure nicotine inhibits similar platelet functions. In this work, we 1) evaluated the effects of e-cigarette extracts on platelet activities and 2) elucidated the differences between the nicotine-dependent and non-nicotine dependent (e.g. fine particulate matter or toxic compounds) effects of tobacco and e-cigarette products on platelet activities. To accomplish these goals, platelets from healthy volunteers (n = 50) were exposed to tobacco smoke extracts, e-cigarette vapor extracts, and pure nicotine and changes in platelet activation, adhesion, aggregation, and inflammation were evaluated, using optical aggregation, flow cytometry, and ELISA methods. Interestingly, the exposure of platelets to e-vapor extracts induced a significant up-regulation in the expression of the pro-inflammatory gC1qR and cC1qR and induced a marked increase in the deposition of C3b as compared with traditional tobacco smoke extracts. Similarly, platelet activation, as measured by a prothrombinase based assay, and platelet aggregation were also significantly enhanced after exposure to e-vapor extracts. Finally, platelet adhesion potential toward fibrinogen, von Willebrand factor, and other platelets was also enhanced after exposure to e-cigarette vapor extracts. In the presence of pure nicotine, platelet functions were observed to be inhibited, which further suggests that other constituents of tobacco smoke and electronic vapor can antagonize platelet functions, however, the presence of nicotine in extracts somewhat perpetuated the platelet functional changes in a dose-dependent manner.

  20. Enrichment Ratio and Aggregate Stability Dynamics in Intensely Managed Landscapes

    NASA Astrophysics Data System (ADS)

    Wacha, K.; Papanicolaou, T.; Filley, T. R.; Hou, T.; Abban, B. K.; Wilson, C. G.; Boys, J.

    2015-12-01

    Challenges in understanding the soil carbon dynamics within intensely managed landscapes (IMLs), found throughout much the US Midwest, is highly complex due to the presence of heterogeneous landscape features and properties, as well as a mosaic of physical and biogeochemical processes occurring at different time scales. In addition, rainfall events exacerbate the effects of tillage by the impact of raindrops, which break down aggregates that encase carbon and dislodge and entrain soil particles and aggregates along the downslope. The redistribution of soil and carbon can have huge implications on biogeochemical cycling and overall carbon budgeting. In this study, we provide some rare field data on the mechanisms impacting aggregate stability, enrichment ratio values to estimate fluxes of carbon, as well as lignin chemistry to see influences on oxidation/mineralization rates. Rainfall simulation experiments were conducted within agricultural fields. Experiments were performed on the midslope (eroding) and toeslope (depositional) sections of representative hillslopes, under a variety of land managements, including row crop (conventional and conservation) and restored grasslands. Sensors were utilized to capture the evolution of soil moisture, temperature, microbial respiration pulses, and discharge rates to identify pseudo-steady state conditions. Samples collected at the weir outlet were tested for sediment concentrations and size fractions, as well as carbon and lignin fluxes. Preliminary findings show that conservation management practices have higher aggregate stability and decreased mass fluxes of carbon in the downslope than conventional tillage techniques.

  1. Excited-state dynamics of astaxanthin aggregates

    NASA Astrophysics Data System (ADS)

    Fuciman, Marcel; Durchan, Milan; Šlouf, Václav; Keşan, Gürkan; Polívka, Tomáš

    2013-05-01

    Astaxanthin forms three types of aggregates in hydrated dimethyl sulfoxide (DMSO). In DMSO/water ratio of 1:1, a red-shifted J-aggregate with maximum at 570 nm is generated, while a ratio of 1:9 produces blue-shifted H-aggregates with peaks at 386 nm (H1) and 460 nm (H2). Monomeric astaxanthin in DMSO has an S1 lifetime of 5.3 ps, but a long-lived (33 ps) S∗ signal was also identified. Aggregation changes the S1 lifetimes to 17 ps (H1), 30 ps (H2), and 14 ps (J). Triplet state of astaxanthin, most likely generated via singlet homofission, was observed in H1 and H2 aggregates.

  2. Detection and aggregation of the antitumoral drug parietin in ethanol/water mixture and on plasmonic metal nanoparticles studied by surface-enhanced optical spectroscopy: Effect of pH and ethanol concentration.

    PubMed

    Lopez-Tobar, Eduardo; Verebova, Valeria; Blascakova, Ludmila; Jancura, Daniel; Fabriciova, Gabriela; Sanchez-Cortes, Santiago

    2016-04-15

    In the present paper, we have investigated the effect of ethanol in aqueous media, the pH and the presence of Ag nanoparticles (NPs) on the aggregation processes of the antitumoral anthraquinone parietin in aqueous media and on the metal surface. UV-visible absorption, fluorescence and Raman spectra of parietin were used for such purpose. The present study provides information about the deprotonation and molecular aggregation processes occurring in parietin under different environments: ethanol/water mixture and when adsorbed onto Ag nanoparticles. The effect of ethanol on the optical properties of parietin in alcohol-water mixtures was also investigated at different ethanol concentrations with the time. For the case of the adsorption and organization of parietin molecules on the surface of Ag NPs, special attention was paid to the use of surface-enhanced optical techniques, SEF (surface-enhanced fluorescence) and SERS (surface-enhanced Raman scattering), for the characterization of the parietin aggregates and the ionization of the molecule on the surface. In particular, we have studied the variation of the SEF signal with the pH, which depends on the molecular organization of the molecule on the surface. Furthermore, a detailed analysis of the SERS spectra at different pH was accomplished and the main Raman bands of the protonated, mono-deprotonated and di-deprotonated parietin were identified. Finally, the second ionization pK of parietin on metal NPs was deduced from the SERS spectra. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Detection and aggregation of the antitumoral drug parietin in ethanol/water mixture and on plasmonic metal nanoparticles studied by surface-enhanced optical spectroscopy: Effect of pH and ethanol concentration

    NASA Astrophysics Data System (ADS)

    Lopez-Tobar, Eduardo; Verebova, Valeria; Blascakova, Ludmila; Jancura, Daniel; Fabriciova, Gabriela; Sanchez-Cortes, Santiago

    2016-04-01

    In the present paper, we have investigated the effect of ethanol in aqueous media, the pH and the presence of Ag nanoparticles (NPs) on the aggregation processes of the antitumoral anthraquinone parietin in aqueous media and on the metal surface. UV-visible absorption, fluorescence and Raman spectra of parietin were used for such purpose. The present study provides information about the deprotonation and molecular aggregation processes occurring in parietin under different environments: ethanol/water mixture and when adsorbed onto Ag nanoparticles. The effect of ethanol on the optical properties of parietin in alcohol-water mixtures was also investigated at different ethanol concentrations with the time. For the case of the adsorption and organization of parietin molecules on the surface of Ag NPs, special attention was paid to the use of surface-enhanced optical techniques, SEF (surface-enhanced fluorescence) and SERS (surface-enhanced Raman scattering), for the characterization of the parietin aggregates and the ionization of the molecule on the surface. In particular, we have studied the variation of the SEF signal with the pH, which depends on the molecular organization of the molecule on the surface. Furthermore, a detailed analysis of the SERS spectra at different pH was accomplished and the main Raman bands of the protonated, mono-deprotonated and di-deprotonated parietin were identified. Finally, the second ionization pK of parietin on metal NPs was deduced from the SERS spectra.

  4. A Blood-Brain Barrier (BBB) Disrupter Is Also a Potent α-Synuclein (α-syn) Aggregation Inhibitor

    PubMed Central

    Shaltiel-Karyo, Ronit; Frenkel-Pinter, Moran; Rockenstein, Edward; Patrick, Christina; Levy-Sakin, Michal; Schiller, Abigail; Egoz-Matia, Nirit; Masliah, Eliezer; Segal, Daniel; Gazit, Ehud

    2013-01-01

    The development of disease-modifying therapy for Parkinson disease has been a main drug development challenge, including the need to deliver the therapeutic agents to the brain. Here, we examined the ability of mannitol to interfere with the aggregation process of α-synuclein in vitro and in vivo in addition to its blood-brain barrier-disrupting properties. Using in vitro studies, we demonstrated the effect of mannitol on α-synuclein aggregation. Although low concentration of mannitol inhibited the formation of fibrils, high concentration significantly decreased the formation of tetramers and high molecular weight oligomers and shifted the secondary structure of α-synuclein from α-helical to a different structure, suggesting alternative potential pathways for aggregation. When administered to a Parkinson Drosophila model, mannitol dramatically corrected its behavioral defects and reduced the amount of α-synuclein aggregates in the brains of treated flies. In the mThy1-human α-synuclein transgenic mouse model, a decrease in α-synuclein accumulation was detected in several brain regions following treatment, suggesting that mannitol promotes α-synuclein clearance in the cell bodies. It appears that mannitol has a general neuroprotective effect in the transgenic treated mice, which includes the dopaminergic system. We therefore suggest mannitol as a basis for a dual mechanism therapeutic agent for the treatment of Parkinson disease. PMID:23637226

  5. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs)

    USGS Publications Warehouse

    Zhao, Lin; Boufadel, Michel C.; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith A.

    2016-01-01

    Oil–particle interactions play a major role in removal of free oil from the water column. We present a new conceptual–numerical model, A-DROP, to predict oil amount trapped in oil–particle aggregates. A new conceptual formulation of oil–particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil–particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil–particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil–particle aggregation.

  6. Rigid aggregates: theory and applications

    NASA Astrophysics Data System (ADS)

    Richardson, D. C.

    2005-08-01

    Numerical models employing ``perfect'' self-gravitating rubble piles that consist of monodisperse rigid spheres with configurable contact dissipation have been used to explore collisional and rotational disruption of gravitational aggregates. Applications of these simple models include numerical simulations of planetesimal evolution, asteroid family formation, tidal disruption, and binary asteroid formation. These studies may be limited by the idealized nature of the rubble pile model, since perfect identical spheres stack and shear in a very specific, possibly over-idealized way. To investigate how constituent properties affect the overall characteristics of a gravitational aggregate, particularly its failure modes, we have generalized our numerical code to model colliding, self-gravitating, rigid aggregates made up of variable-size spheres. Euler's equation of rigid-body motion in the presence of external torques are implemented, along with a self-consistent prescription for handling non-central impacts. Simple rules for sticking and breaking are also included. Preliminary results will be presented showing the failure modes of gravitational aggregates made up of smaller, rigid, non-idealized components. Applications of this new capability include more realistic aggregate models, convenient modeling of arbitrary rigid shapes for studies of the stability of orbiting companions (replacing one or both bodies with rigid aggregates eliminates expensive interparticle collisions while preserving the shape, spin, and gravity field of the bodies), and sticky particle aggregation in dense planetary rings. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. NAG511722 issued through the Office of Space Science and by the National Science Foundation under Grant No. AST0307549.

  7. Production of lightweight aggregates from washing aggregate sludge and fly ash

    NASA Astrophysics Data System (ADS)

    González-Corrochano, Beatriz; Alonso-Azcárate, Jacinto; Rodas, Magdalena

    2010-05-01

    Increasing generation of wastes is one of the main environmental problems in industrialised countries. Heat treatment at high temperatures can convert some types of wastes into ceramic products with a wide range of microstructural features and properties (Bethanis et al., 2004). A lightweight aggregate (LWA) is a granular material with a bulk density (bd) not exceeding 1.20 g/cm3 or with a particle density not exceeding 2.00 g/cm3 (UNE-EN-13055-1, 2003). They have become a focus of interest because the low particle density and the low bulk density entail a decrease in the load transmitted to the ground, and less work and effort are required to transport them (De' Gennaro et al., 2004). The benefits associated with these low densities, which are due to the formation of voids and pores, are very good thermal and acoustic insulation and materials with a good resistance to fire (Benbow, 1987; Fakhfakh et al., 2007). The objective was to recycle fly ash, used motor oil from cars and mineral wastes from washing aggregate sludge, in order to obtain a usable material such as lightweight aggregates, and also to ensure that they are of good quality for different applications. Raw materials have been physically, chemically and mineralogically characterized. On the basis of the results obtained, they were mixed, milled to a grain size of less than 200 μm (Yasuda, 1991), formed into pellets, pre-heated for 5 min and sintered in a rotary kiln at 1150°C, 1175°C, 1200°C and 1225°C for 10 and 15 min at each temperature (Theating). Effects of raw material characteristics, heating temperature and dwell time on the following LWAs properties were determined: loss on ignition (LOI), bloating index (BI), loose bulk density (bd), apparent and dry particle density (ad, dd), voids (H), water absorption (WA24h) and compressive strength (S). The products obtained were lightweight aggregates in accordance with norm UNE-EN-13055-1 (bd ≤1.20 g/cm3 or particle density ≤2.00 g/cm3). LWAs

  8. Flow Partitioning in Fully Saturated Soil Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Richmond, Marshall C.; Scheibe, Timothy D.

    2014-03-30

    Microbes play an important role in facilitating organic matter decomposition in soils, which is a major component of the global carbon cycle. Microbial dynamics are intimately coupled to environmental transport processes, which control access to labile organic matter and other nutrients that are needed for the growth and maintenance of microorganisms. Transport of soluble nutrients in the soil system is arguably most strongly impacted by preferential flow pathways in the soil. Since the physical structure of soils can be characterized as being formed from constituent micro aggregates which contain internal porosity, one pressing question is the partitioning of the flowmore » among the “inter-aggregate” and “intra-aggregate” pores and how this may impact overall solute transport within heterogeneous soil structures. The answer to this question is particularly important in evaluating assumptions to be used in developing upscaled simulations based on highly-resolved mechanistic models. We constructed a number of diverse multi-aggregate structures with different packing ratios by stacking micro-aggregates containing internal pores and varying the size and shape of inter-aggregate pore spacing between them. We then performed pore-scale flow simulations using computational fluid dynamics methods to determine the flow patterns in these aggregate-of-aggregates structures and computed the partitioning of the flow through intra- and inter-aggregate pores as a function of the spacing between the aggregates. The results of these numerical experiments demonstrate that soluble nutrients are largely transported via flows through inter-aggregate pores. Although this result is consistent with intuition, we have also been able to quantify the relative flow capacity of the two domains under various conditions. For example, in our simulations, the flow capacity through the aggregates (intra-aggregate flow) was less than 2% of the total flow when the spacing between the

  9. Stress distribution during cold compression of a quartz aggregate using synchrotron X-ray diffraction: Observed yielding, damage, and grain crushing: STRESS DISTRIBUTION OF QUARTZ AGGREGATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, C. S. N.; Weidner, D. J.; Li, L.

    We report new experimental results that quantify the stress distribution within a quartz aggregate during pore collapse and grain crushing. The samples were probed with synchrotron X-ray diffraction as they were compressed in a multianvil deformation apparatus at room temperature from low pressure (tens of megapascal) to pressures of a few gigapascal. In such a material, stress is likely to concentrate at grain-to-grain contacts and vanish where grains are bounded by open porosity. Therefore, internal stress is likely to vary significantly from point to point in such an aggregate, and hence, it is important to understand both the heterogeneity andmore » anisotropy of such variation with respect to the externally applied stress. In our quartz aggregate (grain size of ~4 μm), the measured diffraction peaks broaden asymmetrically at low pressure (tens of megapascal), suggesting that open pores are still a dominant characteristic of grain boundaries. In contrast, a reference sample of novaculite (a highly dense quartz polycrystal, grain size of ~6–9 μm) showed virtually no peak broadening with increasing pressure. In the quartz aggregate, we observed significant deviation in the pressure-volume curves in the range of P = 400–600 MPa. We suggest that this marks the onset of grain crushing (generally denoted as P* in the rock mechanic literature), which is commonly reported to occur in sandstones at pressures of this order, in general agreement with a Hertzian analysis of fracturing at grain contacts.« less

  10. Precursor Ion–Ion Aggregation in the Brust–Schiffrin Synthesis of Alkanethiol Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Trent R.; Renslow, Ryan; Govind, Niranjan

    Tetraoctylammonium bromide is used in the Brust-Schiffrin nanoparticle synthesis to phase-transfer chloroaurate ions from the aqueous phase to the organic phase. While it is established that the quaternary ammonium complex self-associates in the organic phase, the actual self-assembled structure is debated. We have confirmed the presence of ion-ion aggregates through quantitative 1H Nuclear Magnetic Resonance spectroscopy (NMR), pulsed field gradient, diffusion-ordered NMR (DOSY-NMR) and density functional theory (DFT) based NMR shift calculations. Tetraoctylammonium complexes (TOA-X, where X = Br, Cl, AuCl4-xBrx, AuBr4/Br and AuCl4-xBrx/Br) were investigated to measure the extraction of water into the organic phase. 1H NMR and DFTmore » based NMR shielding calculations indicated that deshielding of water is due to hydration of the anion and not the formation of the aqueous core of a reverse micelle. DOSYNMR results were consistent with the formation of small aggregates at typical Brust-Schiffrin synthesis concentrations. The extent of aggregation correlated with the size and electronegativity of the anion and was analyzed with a modified, isodesmic, indefinite aggregation model. The substitution of bromoauric acid for chlororoauric acid at conditions emulating the Brust-Schiffrin synthesis increased the aggregation of the quaternary ammonium complex. The increase in aggregation corresponded with an increase in the size of the produced nanoparticles from 4.3 to 4.6 nm. Understanding the selfassembly and supramolecular structure of precursors in the Brust-Schiffrin synthesis will enable further refinement of models that predict the growth of noble metal nanoparticles.« less

  11. Key role of the N-terminus of chicken annexin A5 in vesicle aggregation.

    PubMed

    Turnay, Javier; Guzmán-Aránguez, Ana; Lecona, Emilio; Barrasa, Juan I; Olmo, Nieves; Lizarbe, Ma Antonia

    2009-05-01

    Annexins are calcium-dependent phospholipid-binding proteins involved in calcium signaling and intracellular membrane trafficking among other functions. Vesicle aggregation is a crucial event to make possible the membrane remodeling but this process is energetically unfavorable, and phospholipid membranes do not aggregate and fuse spontaneously. This issue can be circumvented by the presence of different agents such as divalent cations and/or proteins, among them some annexins. Although human annexin A5 lacks the ability to aggregate vesicles, here we demonstrate that its highly similar chicken ortholog induces aggregation of vesicles containing acidic phospholipids even at low protein and/or calcium concentration by establishment of protein dimers. Our experiments show that the ability to aggregate vesicles mainly resides in the N-terminus as truncation of the N-terminus of chicken annexin A5 significantly decreases this process and replacement of the N-terminus of human annexin A5 by that of chicken switches on aggregation; in both cases, there are no changes in the overall protein structure and only minor changes in phospholipid binding. Electrostatic repulsions between negatively charged residues in the concave face of the molecule, mainly in the N-terminus, seem to be responsible for the impairment of dimer formation in human annexin A5. Taking into account that chicken annexin A5 presents a high sequence and structural similarity with mammalian annexins absent in birds, as annexins A3 and A4, some of the physiological functions exerted by these proteins may be carried out by chicken annexin A5, even those that could require calcium-dependent membrane aggregation.

  12. Structure-based inhibitors of tau aggregation

    NASA Astrophysics Data System (ADS)

    Seidler, P. M.; Boyer, D. R.; Rodriguez, J. A.; Sawaya, M. R.; Cascio, D.; Murray, K.; Gonen, T.; Eisenberg, D. S.

    2018-02-01

    Aggregated tau protein is associated with over 20 neurological disorders, which include Alzheimer's disease. Previous work has shown that tau's sequence segments VQIINK and VQIVYK drive its aggregation, but inhibitors based on the structure of the VQIVYK segment only partially inhibit full-length tau aggregation and are ineffective at inhibiting seeding by full-length fibrils. Here we show that the VQIINK segment is the more powerful driver of tau aggregation. Two structures of this segment determined by the cryo-electron microscopy method micro-electron diffraction explain its dominant influence on tau aggregation. Of practical significance, the structures lead to the design of inhibitors that not only inhibit tau aggregation but also inhibit the ability of exogenous full-length tau fibrils to seed intracellular tau in HEK293 biosensor cells into amyloid. We also raise the possibility that the two VQIINK structures represent amyloid polymorphs of tau that may account for a subset of prion-like strains of tau.

  13. Thiol oxidation and di-tyrosine formation in human plasma proteins induced by inflammatory concentrations of hypochlorous acid.

    PubMed

    Colombo, Graziano; Clerici, Marco; Altomare, Alessandra; Rusconi, Francesco; Giustarini, Daniela; Portinaro, Nicola; Garavaglia, Maria Lisa; Rossi, Ranieri; Dalle-Donne, Isabella; Milzani, Aldo

    2017-01-30

    In this study, we assessed the oxidative damage occurring in plasma proteins when human blood was exposed to inflammatory concentrations of hypochlorous acid (HOCl). We used specific thiol labelling and Western blot analyses to determine protein thiol oxidation, as well as analytical gel filtration HPLC coupled to fluorescence detection to explore formation of high molecular weight (HMW) protein aggregates. Thiol-containing proteins oxidized by HOCl were identified by redox proteomics. Mass spectrometry (MS) analysis was performed to elucidate the protein composition of HMW aggregates. α1-antitrypsin, transthyretin, and haptoglobin showed thiol oxidation at HOCl concentrations higher than those causing complete oxidation of albumin. At the highest HOCl concentrations, formation of carbonylated and di-tyrosine cross-linked HMW protein aggregates also occurred. MS analysis identified fibrinogen, complement C3 and apolipoprotein A-I as components of HMW protein aggregates. These results could be relevant for human diseases characterized by inflammatory conditions in which myeloperoxidase and HOCl are involved. In this study we evaluated the oxidative damage occurring on plasma proteins when reconstituted human blood was exposed to inflammatory concentrations of hypochlorous acid (HOCl). Pathophysiological concentrations of HOCl are able to induce different modifications on plasma proteins such as carbonylation, sulfhydryl oxidation and formation of high molecular weight (HMW) protein aggregates characterized by di-tyrosine fluorescence. There are two relevant aspects emerging from this paper. The first one consists on identifying low abundant proteins undergoing sulfhydryl oxidation by biotin-maleimide derivatization followed by MALDI-TOF mass spectrometry. This approach suggests three low-abundant proteins undergoing HOCl-induced oxidation: transthyretin, α1-antitrypsin, and haptoglobin. In addition, we analysed HMW protein aggregates forming after HOCl exposure

  14. Macrophage triggering by aggregated immunoglobulins. II. Comparison of IgE and IgG aggregates or immune complexes.

    PubMed Central

    Pestel, J; Dessaint, J P; Joseph, M; Bazin, H; Capron, A

    1984-01-01

    Macrophages incubated with complexed or aggregated IgE released beta-glucuronidase (beta-G) within 30 min. In contrast in the presence of aggregated or complexed IgG, macrophages liberated equivalent amount of beta-G only after 6 h incubation. In addition the rapid macrophage stimulation induced by aggregated IgE was also followed by a faster 3H-glucosamine incorporation when compared to the delayed activation caused by aggregated IgG. However, macrophages stimulated either by IgG or by IgE oligomers produced the same percentage of plasminogen activator at 24 h. In contrast, while the interaction between macrophages and aggregated IgE was only followed by a peak of cyclic GMP and a beta-G release during the first 30 min of incubation, the interaction between macrophages and IgG oligomers was accompanied by a simultaneous increase of cyclic GMP and AMP nucleotides and by an absence of beta-G exocytosis. Moreover, the beta-G release induced by aggregated IgE was increased when macrophages were preincubated with aggregated IgG. This additive effect was not observed in the reverse situation. Finally macrophages activated by IgG oligomers were demonstrated to exert a cytotoxic effect on tumour cells and to kill schistosomula in the presence of a low level of complement. Taken together these results underline the peculiar ability of aggregated or complexed IgE to trigger rapidly the macrophage activation compared to aggregated IgG and can explain the important role of complexed IgE in some macrophage dependent cytotoxicity mechanisms (i.e. in parasitic diseases). PMID:6088135

  15. 24 CFR 58.32 - Project aggregation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Project aggregation. 58.32 Section... Environmental Review Process: Documentation, Range of Activities, Project Aggregation and Classification § 58.32 Project aggregation. (a) A responsible entity must group together and evaluate as a single project all...

  16. 24 CFR 58.32 - Project aggregation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Project aggregation. 58.32 Section... Environmental Review Process: Documentation, Range of Activities, Project Aggregation and Classification § 58.32 Project aggregation. (a) A responsible entity must group together and evaluate as a single project all...

  17. 24 CFR 58.32 - Project aggregation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Project aggregation. 58.32 Section... Environmental Review Process: Documentation, Range of Activities, Project Aggregation and Classification § 58.32 Project aggregation. (a) A responsible entity must group together and evaluate as a single project all...

  18. 24 CFR 58.32 - Project aggregation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Project aggregation. 58.32 Section... Environmental Review Process: Documentation, Range of Activities, Project Aggregation and Classification § 58.32 Project aggregation. (a) A responsible entity must group together and evaluate as a single project all...

  19. Modeling anoxic aggregates in the ocean - implications for nitrogen, sulfur and trace metal cycling

    NASA Astrophysics Data System (ADS)

    Bianchi, D.; Weber, T. S.; Deutsch, C.

    2016-02-01

    Anoxic conditions are uncommon in the open ocean, and mostly confined to the cores of oxygen minimum zones (OMZs). When oxygen runs out, a suite of alternative electron acceptors are used, leading to denitrification and, rarely in open waters, sulfate reduction. Anoxic conditions have been shown to develop inside millimeter-scale organic particles and aggregates, establishing microscale gradients that could sustain diverse microbial communities along a sequence of redox niches. We develop a model of the biogeochemistry of anoxic aggregates that includes aerobic and anaerobic reactions in a diffusion-limited environment, and present analytical and numerical solutions for the conditions that allow denitrification and sulfate reduction inside aggregates. The model is applied to realistic size spectra of particles sinking through the water column, and used to estimate the potential for particle-bound denitrification and sulfate reduction in the global ocean. We show that anoxia inside aggregates may be common throughout low oxygen waters, extending the niche of denitrifying metabolisms beyond fully anoxic zones. In the OMZ cores, aggregates can sustain pockets of sulfate reduction in otherwise non-sulfidic waters, depending on ambient nitrate concentrations, particle respiration rates, and other factors. We further discuss the implications for nitrogen, sulfur and trace metal cycling in the ocean.

  20. Macroeconomic susceptibility, inflation, and aggregate supply

    NASA Astrophysics Data System (ADS)

    Hawkins, Raymond J.

    2017-03-01

    We unify aggregate-supply dynamics as a time-dependent susceptibility-mediated relationship between inflation and aggregate economic output. In addition to representing well various observations of inflation-output dynamics this parsimonious formalism provides a straightforward derivation of popular representations of aggregate-supply dynamics and a natural basis for economic-agent expectations as an element of inflation formation. Our formalism also illuminates questions of causality and time-correlation that challenge central banks for whom aggregate-supply dynamics is a key constraint in their goal of achieving macroeconomic stability.

  1. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes

    NASA Astrophysics Data System (ADS)

    Mayer, Florian; Tiruvadi Krishnan, Sriram; Schühle, Daniel T.; Eliseeva, Svetlana V.; Petoud, Stéphane; Tóth, Éva; Djanashvili, Kristina

    2018-01-01

    Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic GdIII-ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of TbIII-DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analogue substituted with a phthalimide chromophore (TbIII-DOTA-calix[4]arene-3OPr-OPhth). We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analogue demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behaviour. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.

  2. Luminescence Properties of Self-Aggregating TbIII-DOTA-Functionalized Calix[4]arenes.

    PubMed

    Mayer, Florian; Tiruvadi Krishnan, Sriram; Schühle, Daniel T; Eliseeva, Svetlana V; Petoud, Stéphane; Tóth, Éva; Djanashvili, Kristina

    2018-01-01

    Self-aggregating calix[4]arenes carrying four DOTA ligands on the upper rim for stable complexation of paramagnetic Gd III -ions have already been proposed as MRI probes. In this work, we investigate the luminescence properties of Tb III -DOTA-calix[4]arene-4OPr containing four propyl-groups and compare them with those of the analog substituted with a phthalimide chromophore (Tb III -DOTA-calix[4]arene-3OPr-OPhth). We show that, given its four aromatic rings, the calix[4]arene core acts as an effective sensitizer of Tb-centered luminescence. Substituents on the lower rim can modulate the aggregation behavior, which in turn determines the luminescence properties of the compounds. In solid state, the quantum yield of the phthalimide derivative is almost three times as high as that of the propyl-functionalized analog demonstrating a beneficial role of the chromophore on Tb-luminescence. In solution, however, the effect of the phthalimide group vanishes, which we attribute to the large distance between the chromophore and the lanthanide, situated on the opposite rims of the calix[4]arene. Both quantum yields and luminescence lifetimes show clear concentration dependence in solution, related to the strong impact of aggregation on the luminescence behavior. We also evidence the variability in the values of the critical micelle concentration depending on the experimental technique. Such luminescent calix[4]arene platforms accommodating stable lanthanide complexes can be considered valuable building blocks for the design of dual MR/optical imaging probes.

  3. Aggregation server for grid-integrated vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempton, Willett

    2015-05-26

    Methods, systems, and apparatus for aggregating electric power flow between an electric grid and electric vehicles are disclosed. An apparatus for aggregating power flow may include a memory and a processor coupled to the memory to receive electric vehicle equipment (EVE) attributes from a plurality of EVEs, aggregate EVE attributes, predict total available capacity based on the EVE attributes, and dispatch at least a portion of the total available capacity to the grid. Power flow may be aggregated by receiving EVE operational parameters from each EVE, aggregating the received EVE operational parameters, predicting total available capacity based on the aggregatedmore » EVE operational parameters, and dispatching at least a portion of the total available capacity to the grid.« less

  4. Aggregated particles caused by instrument artifact

    NASA Astrophysics Data System (ADS)

    Pierce, Ashley M.; Loría-Salazar, S. Marcela; Arnott, W. Patrick; Edwards, Grant C.; Miller, Matthieu B.; Gustin, Mae S.

    2018-04-01

    Previous studies have indicated that superaggregates, clusters of aggregates of soot primary particles, can be formed in large-scale turbulent fires. Due to lower effective densities, higher porosity, and lower aerodynamic diameters, superaggregates may pass through inlets designed to remove particles < 2.5 µm in aerodynamic diameter (PM2.5). Ambient particulate matter samples were collected at Peavine Peak, NV, USA (2515 m) northwest of Reno, NV, USA from June to November 2014. The Teledyne Advanced Pollution Instrumentation (TAPI) 602 BetaPlus particulate monitor was used to collect PM2.5 on two filter types. During this time, aggregated particles > 2.5 µm in aerodynamic diameter were collected on 36 out of 158 sample days. On preliminary analysis, it was thought that these aggregated particles were superaggregates, depositing past PM10 (particles < 10 µm in aerodynamic diameter) pre-impactors and PM2.5 cyclones. However, further analysis revealed that these aggregated particles were dissimilar to superaggregates observed in previous studies, both in morphology and in elemental composition. To determine if the aggregated particles were superaggregates or an instrument artifact, samples were investigated for the presence of certain elements, the occurrence of fires, high relative humidity and wind speeds, as well as the use of generators on site. Samples with aggregated particles, referred to as aggregates, were analyzed using a scanning electron microscope for size and shape and energy dispersive X-ray spectroscopy was used for elemental analysis. It was determined, based on the high amounts of aluminum present in the aggregate samples, that a sampling artifact associated with the sample inlet and prolonged, high wind events was the probable reason for the observed aggregates.

  5. Seasonal variability of soil aggregate stability

    NASA Astrophysics Data System (ADS)

    Rohoskova, M.; Kodesova, R.; Jirku, V.; Zigova, A.; Kozak, J.

    2009-04-01

    Seasonal variability of soil properties measured in surface horizons of three soil types (Haplic Luvisol, Greyic Phaeozem, Haplic Cambisol) was studied in years 2007 and 2008. Undisturbed and disturbed soil samples were taken every month to evaluate field water content, bulk density, porosity, ration of gravitational and capillary pores, pHKCl and pHH2O, organic matter content and its quality, aggregate stability using WSA index. In addition, micromorphological features of soil aggregates were studied in thin soil sections that were made from undisturbed large soil aggregates. Results showed that soil aggregate stability depended on stage of the root zone development, soil management and climatic conditions. Larger aggregate stabilities and also larger ranges of measure values were obtained in the year 2007 then those measured in 2008. This was probably caused by lower precipitations and consequently lower soil water contents observed in 2007 than those measured in 2008. The highest aggregate stability was measured at the end of April in the years 2007 and 2008 in Haplic Luvisol and Greyic Phaeozem, and at the end of June in the year 2007 and at the beginning of June in 2008 in Haplic Cambisol. In all cases aggregate stability increased during the root growth and then gradually decreased due to summer rainfall events. Aggregate stability reflected aggregate structure and soil pore system development, which was documented on micromorphological images and evaluated using the ration of gravitational and capillary pores measured on the undisturbed sol samples. Acknowledgement: Authors acknowledge the financial support of the Grant Agency of the Czech Republic grant No. 526/08/0434, and the Ministry of Education, Youth and Sports grant No. MSM 6046070901.

  6. Sensitive colorimetric visualization of dihydronicotinamide adenine dinucleotide based on anti-aggregation of gold nanoparticles via boronic acid-diol binding.

    PubMed

    Liu, Shufeng; Du, Zongfeng; Li, Peng; Li, Feng

    2012-05-15

    A facile, highly sensitive colorimetric strategy for dihydronicotinamide adenine dinucleotide (NADH) detection is proposed based on anti-aggregation of gold nanoparticles (AuNPs) via boronic acid-diol binding chemistry. The aggregation agent, 4-mercaptophenylboronic acid (MPBA), has specific affinity for AuNPs through Au-S interaction, leading to the aggregation of AuNPs by self-dehydration condensation at a certain concentration, which is responsible for a visible color change of AuNPs from wine red to blue. With the addition of NADH, MPBA would prefer reacting with NADH to form stable borate ester via boronic acid-diol binding dependent on the pH and solvent, revealing an obvious color change from blue to red with increasing the concentration of NADH. The anti-aggregation effect of NADH on AuNPs was seen by the naked eye and monitored by UV-vis extinction spectra. The linear range of the colorimetric sensor for NADH is from 8.0 × 10(-9)M to 8.0 × 10(-6)M, with a low detection limit of 2.0 nM. The as-established colorimetric strategy opened a new avenue for NADH determination. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Stochastic Noise and Synchronisation during Dictyostelium Aggregation Make cAMP Oscillations Robust

    PubMed Central

    Kim, Jongrae; Heslop-Harrison, Pat; Postlethwaite, Ian; Bates, Declan G

    2007-01-01

    Stable and robust oscillations in the concentration of adenosine 3′, 5′-cyclic monophosphate (cAMP) are observed during the aggregation phase of starvation-induced development in Dictyostelium discoideum. In this paper we use mathematical modelling together with ideas from robust control theory to identify two factors which appear to make crucial contributions to ensuring the robustness of these oscillations. Firstly, we show that stochastic fluctuations in the molecular interactions play an important role in preserving stable oscillations in the face of variations in the kinetics of the intracellular network. Secondly, we show that synchronisation of the aggregating cells through the diffusion of extracellular cAMP is a key factor in ensuring robustness of the oscillatory waves of cAMP observed in Dictyostelium cell cultures to cell-to-cell variations. A striking and quite general implication of the results is that the robustness analysis of models of oscillating biomolecular networks (circadian clocks, Ca2+ oscillations, etc.) can only be done reliably by using stochastic simulations, even in the case where molecular concentrations are very high. PMID:17997595

  8. Amphiphilically modified chitosan cationic nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    You, Jie; Li, Wenfeng; Yu, Chang; Zhao, Chengguang; Jin, Langping; Zhou, Yili; Xu, Xuzhong; Dong, Siyang; Lu, Xincheng; Wang, Ouchen

    2013-12-01

    A series of amphiphilic N-(2-hydroxy)propyl-3-trimethylammonium-chitosan-cholic acid (HPTA-CHI-CA) polymers were synthesized by grafting cholic acid (CA) and glycidyltrimethylammonium chloride onto chitosan. The self-assembly behavior of HPTA-CHI-CA was studied by fluorescence technique. The polymers were able to self-assemble into NPs in phosphate buffered saline with a critical aggregation concentration (CAC) in the range of 66-26 mg/L and the CAC decreased with the increasing of the degree of substitution (DS) of CA. The size of cationic HPTA-CHI-CA NPs ranges from 170 to 220 nm (PDI < 0.2). It was found that doxorubicin (DOX) could be encapsulated into HPTA-CHI-CA NPs based on self-assembly. The drug loading content and efficiency varies depending on the DS of CA and feeding ratio of DOX to polymer. In vitro release studies suggested that DOX released slowly from HPTA-CHI-CA NPs without any burst initial release. Besides, the confocal microscopic measurements indicated that DOX-HPTA-CHI-CA NPs could easily be uptaken by breast cancer (MCF-7) cells and release DOX in cytoplasm. Anti-tumor efficacy results showed that DOX-HPTA-CHI-CA NPs have a significant activity of inhibition MCF-7 cells growth. These results suggest cationic HPTA-CHI-CA may have great potential for anticancer drug delivery.

  9. Reuse of industrial sludge as construction aggregates.

    PubMed

    Tay, J H; Show, K Y; Hong, S Y

    2001-01-01

    Industrial wastewater sludge and dredged marine clay are high volume wastes that needed enormous space at landfill disposal sites. Due to the limitation of land space, there is an urgent need for alternative disposal methods for these two wastes. This study investigates the possibility of using the industrial sludge in combination with marine clay as construction aggregates. Different proportions of sludge and clay were made into round and angular aggregates. It was found that certain mix proportions could provide aggregates of adequate strength, comparable to that of conventional aggregates. Concrete samples cast from the sludge-clay aggregates yield compressive strengths in the range of 31.0 to 39.0 N/mm2. The results showed that the round aggregates of 100% sludge and the crush aggregates of sludge with up to 20% clay produced concrete of compressive strengths which are superior to that of 38.0 N/mm2 for conventional aggregate. The study indicates that the conversion of high volume wastes into construction materials is a potential option for waste management.

  10. Field site leaching from recycled concrete aggregates applied as sub-base material in road construction.

    PubMed

    Engelsen, Christian J; Wibetoe, Grethe; van der Sloot, Hans A; Lund, Walter; Petkovic, Gordana

    2012-06-15

    The release of major and trace elements from recycled concrete aggregates used in an asphalt covered road sub-base has been monitored for more than 4 years. A similar test field without an asphalt cover, directly exposed to air and rain, and an asphalt covered reference field with natural aggregates in the sub-base were also included in the study. It was found that the pH of the infiltration water from the road sub-base with asphalt covered concrete aggregates decreased from 12.6 to below pH 10 after 2.5 years of exposure, whereas this pH was reached within only one year for the uncovered field. Vertical temperature profiles established for the sub-base, could explain the measured infiltration during parts of the winter season. When the release of major and trace elements as function of field pH was compared with pH dependent release data measured in the laboratory, some similar pH trends were found. The field concentrations of Cd, Ni, Pb and Zn were found to be low throughout the monitoring period. During two of the winter seasons, a concentration increase of Cr and Mo was observed, possibly due to the use of de-icing salt. The concentrations of the trace constituents did not exceed Norwegian acceptance criteria for ground water and surface water Class II. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Aggregated Computational Toxicology Online Resource

    EPA Pesticide Factsheets

    Aggregated Computational Toxicology Online Resource (AcTOR) is EPA's online aggregator of all the public sources of chemical toxicity data. ACToR aggregates data from over 1,000 public sources on over 500,000 chemicals and is searchable by chemical name, other identifiers and by chemical structure. It can be used to query a specific chemical and find all publicly available hazard, exposure and risk assessment data. It also provides access to EPA's ToxCast, ToxRefDB, DSSTox, Dashboard and DSSTox data.

  12. Lightweight alumina refractory aggregate. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swansiger, T.G.; Pearson, A.

    1996-07-16

    Objective was to develop a lightweight, high alumina refractory aggregate for use in various high performance insulating (low thermal conductivity) refractory applications (e.g., in the aluminium, glass, cement, and iron and steel industries). A new aggregate process was developed through bench and pilot-scale experiments involving extrusion of a blend of calcined and activated alumina powders and organic extrusion aids and binders. The aggregate, with a bulk density approaching 2.5 g/cc, exhibited reduced thermal conductivity and adequate fired strength compared to dense tabular aggregate. Refractory manufacturers were moderately enthusiastic over the results. Alcoa prepared an economic analysis for producing lightweight aggregate,more » based on a retrofit of this process into existing Alcoa production facilities. However, a new, competing lightweight aggregate material was developed by another company; this material (Plasmal{trademark})had a significantly more favorable cost base than the Alcoa/DOE material, due to cheap raw materials and fewer processing steps. In late 1995, Alcoa became a distributor of Plasmal. Alcoa estimated that {ge}75% of the market originally envisioned for the Alcoa/DOE aggregate would be taken by Plasmal. Hence, it was decided to terminate the contract without the full- scale demonstration.« less

  13. Extract from Aronia melanocarpa fruits potentiates the inhibition of platelet aggregation in the presence of endothelial cells

    PubMed Central

    Luzak, Boguslawa; Golanski, Jacek; Rozalski, Marek; Krajewska, Urszula; Olas, Beata

    2010-01-01

    Introduction Some polyphenolic compounds extracted from Aronia melanocarpa fruits (AM) have been reported to be cardioprotective agents. In this study we evaluated the ability of AM extract to increase the efficacy of human umbilical vein endothelial cells (HUVECs) to inhibit platelet functions in vitro. Material and methods This study encompasses two models of monitoring platelet reactivity: optical aggregation and platelet degranulation (monitored as the surface CD62P expression) in PRP upon the stimulation with ADP. Results We observed that only at low concentrations (5 µg/ml) did AM extract significantly improve antiplatelet action of HUVECs towards ADP-activated platelets in the aggregation test. Conclusions It is concluded that the potentiating effect of AM extract on the endothelial cell-mediated inhibition of platelet aggregation clearly depends on the used concentrations of Aronia-derived active compounds. Therefore, despite these encouraging preliminary outcomes on the beneficial effects of AM extract polyphenols, more profound dose-effect studies should certainly be considered before the implementation of Aronia-originating compounds in antiplatelet therapy and the prevention of cardiovascular diseases. PMID:22371737

  14. Locally available aggregate and sediment production

    Treesearch

    Randy B. Foltz; Mark Truebe

    2003-01-01

    Selection of suitable locally available materials to build strong and durable roads with aggregate surfaces is desired to minimize road construction and maintenance costs and to minimize the detrimental effects of sedimentation. Eighteen aggregates were selected from local sources in Idaho, Oregon, South Dakota, and Washington State. Aggregate was placed in shallow...

  15. Microwave-induced formation of oligomeric amyloid aggregates.

    PubMed

    Lee, Wonseok; Choi, Yeseong; Lee, Sang Won; Kim, Insu; Lee, Dongtak; Hong, Yoochan; Lee, Gyudo; Yoon, Dae Sung

    2018-08-24

    Amyloid aggregates have emerged as a significant hallmark of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Although it has been recently reported that microwave heating induces amyloid aggregation compared with conventional heating methods, the mechanism of amyloid aggregate induction has remained unclear. In this study, we investigated the formation of oligomeric amyloid aggregates (OAAs) by microwave irradiation at microscale volumes of solution. Microwave irradiation of protein monomer solution triggered rapid formation of OAAs within 7 min. We characterized the formation of OAAs using atomic force microscopy, thioflavin T fluorescent assay and circular dichroism. In the microwave system, we also investigated the inhibitory effect on the formation of amyloid aggregates by L-ascorbic acid as well as enhanced amyloid aggregation by silver nanomaterials such as nanoparticles and nanowires. We believe that microwave technology has the potential to facilitate the study of amyloid aggregation in the presence of chemical agents or nanomaterials.

  16. Mg(II) and Ni(II) induce aggregation of poly(rA)poly(rU) to either tetra-aggregate or triplex depending on the metal ion concentration.

    PubMed

    Biver, Tarita; Busto, Natalia; García, Begoña; Leal, José M; Menichetti, Luisa; Secco, Fernando; Venturini, Marcella

    2015-10-01

    The ability of magnesium(II) and nickel(II) to induce dramatic conformational changes in the synthetic RNA poly(rA)poly(rU) has been investigated. Kinetic experiments, spectrofluorometric titrations, melting experiments and DSC measurements contribute in shedding light on a complex behaviour where the action of metal ions (Na(+), Mg(2+), Ni(2+)), in synergism with other operators as the intercalating dye coralyne and temperature, all concur in stabilising a peculiar RNA form. Mg(2+) and Ni(2+) (M) bind rapidly and almost quantitatively to the duplex (AU) to give a RNA/metal ion complex (AUM). Then, by the union of two AUM units, an unstable tetra-aggregate (UAUA(M2)*) is formed which, in the presence of a relatively modest excess of metal, evolves to the UAUM triplex by releasing a single AM strand. On the other hand, under conditions of high metal content, the UAUA(M2)* intermediate rearranges to give a more stable tetra-aggregate (UAUA(M2)). As concerns the role of coralyne (D), it is found that D strongly interacts with UAUA(M2). Also, in the presence of coralyne, the ability of divalent ions to promote the transition of AUD into UAUD is enhanced, according to the efficiency sequence [Ni(2+)]≫[Mg(2+)]≫[Na(+)]. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Biogeochemical Controls on Biodegradation of MC252 Oil:Sand Aggregates on a Rapidly Eroding Coastal Headland Beach

    NASA Astrophysics Data System (ADS)

    Pardue, J.; Elango, V.; Urbano, M.; Lemelle, K.

    2012-12-01

    The research described below was conducted on Fourchon Beach, a coastal headland consisting of nine miles of fairly pristine sandy beaches and dunes, backed by wetlands and tidal channels, located between Belle Pass tidal inlet on the west and Elmer's Island on the east in Lafourche Parish, Louisiana. MC252 oil first arrived in large quantities on Fourchon Beach on or around May 20, 2010. A unique oil form created under these conditions was an aggregate of sand and emulsified oil, typically 0.1-10 cm in diameter, termed small surface residue balls (SSRBs). The work from this project made critical measurements on the factors controlling biodegradability of these SSRB aggregates. SSRB aggregates were sampled across transects perpendicular to the beach from the intertidal to the supratidal. Areas in the supratidal that were sampled initially were set aside for research purposes and not altered by any clean-up activities. Chemical composition of SSRBs was measured including concentrations of n-alkanes, PAHs, hopanes, nutrients (nitrate, nitrite, ammonium and orthophosphate measured on water extracts of SSRBs), and electron acceptor concentrations (O2 microprofiles measured on intact SSRBs and sulfate). Physical characterization of the SSRBs including length and area dimensions, mass, density, porosity, moisture content, and salinity using standard methods. Microbial characterization of SSRBs was also conducted using denaturing gradient gel electrophoresis and sequencing of dominant bands. SSRBs were sampled from various locations across the beach profile deposited by 2 significant tropical events in 2010; Hurricane Alex and TS Bonnie, and one event in 2011, TS Lee. Sampling focused on comparing and contrasting impacts of biogeochemistry on weathering of oil stranded in three beach microenvironments; supratidal surface; subtidal subsurface which is permanently inundated and intertidal subsurface samples which are intermittently inundated. The three types of oil are

  18. pH-responsive modulation of insulin aggregation and structural transformation of the aggregates.

    PubMed

    Smirnova, Ekaterina; Safenkova, Irina; Stein-Margolina, Vita; Shubin, Vladimir; Polshakov, Vladimir; Gurvits, Bella

    2015-02-01

    Over the past two decades, much information has appeared on electrostatically driven molecular mechanisms of protein self-assembly and formation of aggregates of different morphology, varying from soluble amorphous structures to highly-ordered amyloid-like fibrils. Protein aggregation represents a special tool in biomedicine and biotechnology to produce biological materials for a wide range of applications. This has awakened interest in identification of pH-triggered regulators of transformation of aggregation-prone proteins into structures of higher order. The objective of the present study is to elucidate the effects of low-molecular-weight biogenic agents on aggregation and formation of supramolecular structures of human recombinant insulin, as a model therapeutic protein. Using dynamic light scattering, turbidimetry, circular dichroism, fluorescence spectroscopy, atomic force microscopy, transmission electron microscopy, and nuclear magnetic resonance, we have demonstrated that the amino acid l-arginine (Arg) has the striking potential to influence insulin aggregation propensity. It was shown that modification of the net charge of insulin induced by changes in the pH level of the incubation medium results in dramatic changes in the interaction of the protein with Arg. We have revealed the dual effects of Arg, highly dependent on the pH level of the solution - suppression or acceleration of the aggregation of insulin at pH 7.0 or 8.0, respectively. These effects can be regulated by manipulating the pH of the environment. The results of this study may be of interest for development of appropriate drug formulations and for the more general insight into the functioning of insulin in living systems, as the protein is known to release by exocytosis from pancreatic beta cells in a pH-dependent manner. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  19. Effect of acid on the aggregation of poly(ethylene xide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers.

    PubMed

    Yang, Bin; Guo, Chen; Chen, Shu; Ma, Junhe; Wang, Jing; Liang, Xiangfeng; Zheng, Lily; Liu, Huizhou

    2006-11-23

    The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.

  20. Light-induced aggregation of microbial exopolymeric substances.

    PubMed

    Sun, Luni; Xu, Chen; Zhang, Saijin; Lin, Peng; Schwehr, Kathleen A; Quigg, Antonietta; Chiu, Meng-Hsuen; Chin, Wei-Chun; Santschi, Peter H

    2017-08-01

    Sunlight can inhibit or disrupt the aggregation process of marine colloids via cleavage of high molecular weight compounds into smaller, less stable fragments. In contrast, some biomolecules, such as proteins excreted from bacteria can form aggregates via cross-linking due to photo-oxidation. To examine whether light-induced aggregation can occur in the marine environment, we conducted irradiation experiments on a well-characterized protein-containing exopolymeric substance (EPS) from the marine bacterium Sagitulla stellata. Our results show that after 1 h sunlight irradiation, the turbidity level of soluble EPS was 60% higher than in the dark control. Flow cytometry also confirmed that more particles of larger sized were formed by sunlight. In addition, we determined a higher mass of aggregates collected on filter in the irradiated samples. This suggests light can induce aggregation of this bacterial EPS. Reactive oxygen species hydroxyl radical and peroxide played critical roles in the photo-oxidation process, and salts assisted the aggregation process. The observation that Sagitulla stellata EPS with relatively high protein content promoted aggregation, was in contrast to the case where no significant differences were found in the aggregation of a non-protein containing phytoplankton EPS between the dark and light conditions. This, together with the evidence that protein-to-carbohydrate ratio of aggregates formed under light condition is significantly higher than that formed under dark condition suggest that proteins are likely the important component for aggregate formation. Light-induced aggregation provides new insights into polymer assembly, marine snow formation, and the fate/transport of organic carbon and nitrogen in the ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.