Science.gov

Sample records for aggregate distribution stability

  1. Stability and heavy metal distribution of soil aggregates affected by application of apatite, lime, and charcoal.

    PubMed

    Cui, Hongbiao; Ma, Kaiqiang; Fan, Yuchao; Peng, Xinhua; Mao, Jingdong; Zhou, Dongmei; Zhang, Zhongbin; Zhou, Jing

    2016-06-01

    Only a few studies have been reported on the stability and heavy metal distribution of soil aggregates after soil treatments to reduce the availability of heavy metals. In this study, apatite (22.3 t ha(-1)), lime (4.45 t ha(-1)), and charcoal (66.8 t ha(-1)) were applied to a heavy metal-contaminated soil for 4 years. The stability and heavy metal distribution of soil aggregates were investigated by dry and wet sieving. No significant change in the dry mean weight diameter was observed in any treatments. Compared with the control, three-amendment treatments significantly increased the wet mean weight diameter, but only charcoal treatment significantly increased the wet aggregate stability. The soil treatments increased the content of soil organic carbon, and the fraction 0.25-2 mm contained the highest content of soil organic carbon. Amendments' application slightly increased soil total Cu and Cd, but decreased the concentrations of CaCl2 -extractable Cu and Cd except for the fraction <0.053 mm. The fractions >2 and 0.25-2 mm contained the highest concentrations of CaCl2-extractable Cu and Cd, accounted for about 74.5-86.8 % of CaCl2-extractable Cu and Cd in soil. The results indicated that amendments' application increased the wet soil aggregate stability and decreased the available Cu and Cd. The distribution of available heavy metals in wet soil aggregates was not controlled by soil aggregate stability, but possibly by soil organic carbon. PMID:26893180

  2. Structure Stability and Carbon Distribution in Silty Loam Soil Aggregates as Affected Tillage and Corn-Soybean Crop Rotation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different tillage intensities may influence soil physical and chemical properties, distribution of nutrients and organic carbon between and within the aggregates. We studied the effect of long term (25 years) conservation tillage on structure stability and the total C and N distribution in Miami sil...

  3. Effects of vegetation restoration on the aggregate stability and distribution of aggregate-associated organic carbon in a typical karst gorge region

    NASA Astrophysics Data System (ADS)

    Tang, F. K.; Cui, M.; Lu, Q.; Liu, Y. G.; Guo, H. Y.; Zhou, J. X.

    2015-08-01

    Changes in soil utilization significantly affect aggregate stability and aggregate-associated soil organic carbon (SOC). A field investigation and indoor analysis were conducted in order to study the soil aggregate stability and organic carbon distribution in the water-stable aggregates (WSA) of the bare land (BL), grassland (GL), shrubland (SL), and woodland (WL) in a typical karst gorge region. The results indicated that the BL, GL, SL, and WL were dominated by particles with sizes > 5 mm under dry sieving treatment, and that the soil aggregate contents of various sizes decreased as the particle size decreased. In addition, the BL, GL, SL, and WL were predominantly comprised of WSA < 0.25 mm under wet sieving treatment, and that the WSA contents initially increased, then decreased, and then increased again as the particle size decreased. Furthermore, at a soil depth of 0-60 cm, the mean weight diameter (MWD), geometrical mean diameter (GMD), and fractal dimensions (D) of the dry aggregates and water-stable aggregates in the different types of land were ranked, in descending order, as WL > GL > SL > BL. The contents of WSA > 0.25 mm, MWD and GMD increased significantly, in that order, and the percentage of aggregate destruction (PAD) and fractal dimensions decreased significantly as the soil aggregate stability improved. The results of this study indicated that, as the SOC contents increased after vegetation restoration, the average SOC content of WL was 2.35, 1.37, and 1.26 times greater than that in the BL, GL, and SL, respectively. The total SOC and SOC associated in WSA of various sizes were the highest at a soil depth of 0-20 cm. In addition, the SOC contents of the WSA increased as the soil aggregate sizes decreased. The SOC contents of the WSA < 0.25 mm were highest except in the bare land, and the SOC contents of the aggregates < 0.25 mm, which ranged from 18.85 to 41.08 %, comprised the majority of the total aggregate SOC contents. The woodland and

  4. Dynamics of aggregate stability and soil organic C distribution as affected by climatic aggressiveness: a mesocosm approach

    NASA Astrophysics Data System (ADS)

    Pellegrini, Sergio; Elio Agnelli, Alessandro; Costanza Andrenelli, Maria; Barbetti, Roberto; Castelli, Fabio; Costantini, Edoardo A. C.; Lagomarsino, Alessandra; Pasqui, Massimiliano; Tomozeiu, Rodica; Razzaghi, Somayyeh; Vignozzi, Nadia

    2014-05-01

    In the framework of a research project aimed at evaluating the adaptation scenarios of the Italian agriculture to the current climate change, a mesocosm experiment under controlled conditions was set up for studying the dynamics of soil aggregate stability and organic C in different size fractions. Three alluvial loamy soils (BOV - Typic Haplustalfs coarse-loamy; CAS - Typic Haplustalfs fine-loamy; MED - Typic Hapludalfs fine-loamy) along a climatic gradient (from dryer to moister pedoclimatic conditions) in the river Po valley (northern Italy), under crop rotation for animal husbandry from more than 40 years, were selected. The Ap horizons (0-30cm) were taken and placed in 9 climatic chambers under controlled temperature and rainfall. Each soil was subjected to three different climate scenarios in terms of erosivity index obtained by combining Modified Fournier and Bagnouls-Gaussen indexes: i) typical (TYP), the median year of each site related to the 1961-1990 reference period; ii) maximum aggressive year (MAX) observed in the same period, and iii) the simulated climate (SIM), obtained by projections of climate change precipitation and temperature for the period 2021-2050 as provided by the IPCC-A1B emission scenario. In the climatic chambers the year climate was reduced to six months. The soils were analyzed for particle size distribution, aggregate stability by wet and dry sieving, and organic C content at the beginning and at the end of the trial. The soils showed different behaviour in terms of aggregate stability and dynamics of organic C in the diverse size fractions. The soils significantly differed in terms of initial mean weight diameter (MWD) (CAS>MED>BOV). A general reduction of MWD in all sites was observed at the end of the experiment, with the increase of the smallest aggregate fractions (0.250-0.05 mm). In particular, BOV showed the maximum decrease of the aggregate stability and MED the lowest. C distribution in aggregate fractions significantly

  5. Aggregate size distribution of the soil loss

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka; Józsa, Sándor; Szalai, Zoltán; Centeri, Csaba

    2016-04-01

    In agricultural areas the soil erosion and soil loss estimation is vital information in long-term planning. During the initial period of the erosion a part of the soil particles and aggregates get transportable and nutrients and organic matter could be transported due to the effect of water or wind. This preliminary phase was studied with laboratory-scale rainfall simulator. Developed surface crust and aggregate size composition of the runoff was examined in six different slope-roughness-moisture content combination of a Cambisol and a Regosol. The ratio of micro- and macro aggregates in the runoff indicate the stability of the aggregates and determine the transport capacity of the runoff. Both soil samples were taken from field where the water erosion is a potential hazard. During the experiment the whole amount of runoff and sediment was collected through sieve series to a bucket to separate the micro- and macro aggregates. In case of both samples the micro aggregates dominate in the runoff and the runoff rates are similar. Although the runoff of the Regosol - with dominant >1000μm macro aggregate content - contained almost nothing but <50μm sized micro aggregates. Meanwhile the runoff of the Cambisol - with more balanced micro and macro aggregate content - contained dominantly 50-250μm sized micro aggregates and in some case remarkable ratio 250-1000μm sized macro aggregates. This difference occurred because the samples are resistant against drop erosion differently. In case of both sample the selectivity of the erosion and substance matrix redistribution manifested in mineral crusts in the surface where the quartz deposited in place while the lighter organic matter transported with the sediment. The detachment of the aggregates and the redistribution of the particles highly effect on the aggregate composition of the runoff which is connected with the quality of the soil loss. So while the estimation of soil loss quantity is more or less is easy, measuring

  6. Quicklime application instantly increases soil aggregate stability

    NASA Astrophysics Data System (ADS)

    Keiblinger, Katharina M.; Bauer, Lisa M.; Deltedesco, Evi; Holawe, Franz; Unterfrauner, Hans; Zehetner, Franz; Peticzka, Robert

    2016-01-01

    Agricultural intensification, especially enhanced mechanisation of soil management, can lead to the deterioration of soil structure and to compaction. A possible amelioration strategy is the application of (structural) lime. In this study, we tested the effect of two different liming materials, ie limestone (CaCO3) and quicklime (CaO), on soil aggregate stability in a 3-month greenhouse pot experiment with three agricultural soils. The liming materials were applied in the form of pulverised additives at a rate of 2 000 kg ha-1. Our results show a significant and instantaneous increase of stable aggregates after quicklime application whereas no effects were observed for limestone. Quicklime application seems to improve aggregate stability more efficiently in soils with high clay content and cation exchange capacity. In conclusion, quicklime application may be a feasible strategy for rapid improvement of aggregate stability of fine textured agricultural soils.

  7. Organic carbon, water repellency and soil stability to slaking at aggregate and intra-aggregate scales

    NASA Astrophysics Data System (ADS)

    Jordán López, Antonio; García-Moreno, Jorge; Gordillo-Rivero, Ángel J.; Zavala, Lorena M.; Cerdà, Artemi; Alanís, Nancy; Jiménez-Compán, Elizabeth

    2015-04-01

    Water repellency (WR) is a property of some soils that inhibits or delays water infiltration between a few seconds and days or weeks. Inhibited or delayed infiltration contributes to ponding and increases runoff flow generation, often increasing soil erosion risk. In water-repellent soils, water infiltrates preferentially through cracks or macropores, causing irregular soil wetting patterns, the development of preferential flow paths and accelerated leaching of nutrients. Although low inputs of hydrophobic organic substances and high mineralization rates lead to low degrees of WR in cropped soils, it has been reported that conservative agricultural practices may induce soil WR. Although there are many studies at catchment, slope or plot scales very few studies have been carried out at particle or aggregate scale. Intra-aggregate heterogeneity of physical, biological and chemical properties conditions the transport of substances, microbial activity and biochemical processes, including changes in the amount, distribution and chemical properties of organic matter. Some authors have reported positive relationships between soil WR and aggregate stability, since it may delay the entry of water into aggregates, increase structural stability and contribute to reduce soil erosion risk. Organic C (OC) content, aggregate stability and WR are therefore strongly related parameters. In the case of agricultural soils, where both the type of management as crops can influence all these parameters, it is important to evaluate the interactions among them and their consequences. Studies focused on the intra-aggregate distribution of OC and WR are necessary to shed light on the soil processes at a detailed scale. It is extremely important to understand how the spatial distribution of OC in soil aggregates can protect against rapid water entry and help stabilize larger structural units or lead to preferential flow. The objectives of this research are to study [i] the OC content and the

  8. Aggregate stability in soils cultivated with eucalyptus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eucalyptus cultivation has increased in many Brazilian regions. In order to recommend good management practices, it is necessary to understand changes in soil properties where eucalyptus is planted. Aggregate stability analyses have proved to be a useful tool to measure soil effects caused by change...

  9. Impacts of Organic Farming on Soil Aggregate Stability

    NASA Astrophysics Data System (ADS)

    Petticrew, E. L.; Williams, N. D.

    2009-04-01

    Organic farming has expanded rapidly in the UK in recent years, amid increasing concerns for long term environmental and economic sustainability in agricultural systems. Much of the motivation for the shift away from conventional intensive agricultural practices has focused on soil nutrient management. Little attention has been directed toward the relative merits of organic farming for the physical structure of soils, despite aggregate structure and stability being of particular importance to soil erosion potential and sustainable soil quality. In this study, soil samples were collected from four arable sites within a small geographical area, in order to represent (1) an organic farm; (2) a conventional farm that only used artificial fertilizers; (3) a conventional farm that used artificial and cattle slurry fertilizers; and (4) a non-cultivated control site. Samples were analysed for living biomass and total organic content, bulk aggregate size and density distributions, bulk fragmentation fractal dimensions (which represent indices of soil erodibility), aggregate stability under simulated rainfall, and the stability of micro-aggregates that were mobilized in surface runoff generated by simulated rainfall. The relationships between the different soil properties were found to be complex. However, there were some significant differences between the samples, which were related to the different methods (or absence) of agriculture. The non-cultivated soil was determined to have the lowest erodibility and greatest aggregate stability. The conventional soil that was only fertilized by artificial means exhibited the lowest aggregate stability. There were few apparent differences between the organic soil and the conventional soil that received an input of organic fertilizer. The results of the physical analysis reflect the mining and replenishment of organic matter to each soil by the different management practices. This leads to the conclusion that the addition of organic

  10. HEMC: A sensitive aggregate stability method for soil quality evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil aggregate stability is an important soil quality index, representing mainly soil structural stability and affecting, among others, hydraulic conductivity, seal formation, runoff, water and wind erosion. The most common method of assessing aggregate stability is wet sieving where aggregate stabi...

  11. Organic carbon, water repellency and soil stability to slaking at aggregate and intra-aggregate scales

    NASA Astrophysics Data System (ADS)

    Jordán López, Antonio; García-Moreno, Jorge; Gordillo-Rivero, Ángel J.; Zavala, Lorena M.; Cerdà, Artemi; Alanís, Nancy; Jiménez-Compán, Elizabeth

    2015-04-01

    Water repellency (WR) is a property of some soils that inhibits or delays water infiltration between a few seconds and days or weeks. Inhibited or delayed infiltration contributes to ponding and increases runoff flow generation, often increasing soil erosion risk. In water-repellent soils, water infiltrates preferentially through cracks or macropores, causing irregular soil wetting patterns, the development of preferential flow paths and accelerated leaching of nutrients. Although low inputs of hydrophobic organic substances and high mineralization rates lead to low degrees of WR in cropped soils, it has been reported that conservative agricultural practices may induce soil WR. Although there are many studies at catchment, slope or plot scales very few studies have been carried out at particle or aggregate scale. Intra-aggregate heterogeneity of physical, biological and chemical properties conditions the transport of substances, microbial activity and biochemical processes, including changes in the amount, distribution and chemical properties of organic matter. Some authors have reported positive relationships between soil WR and aggregate stability, since it may delay the entry of water into aggregates, increase structural stability and contribute to reduce soil erosion risk. Organic C (OC) content, aggregate stability and WR are therefore strongly related parameters. In the case of agricultural soils, where both the type of management as crops can influence all these parameters, it is important to evaluate the interactions among them and their consequences. Studies focused on the intra-aggregate distribution of OC and WR are necessary to shed light on the soil processes at a detailed scale. It is extremely important to understand how the spatial distribution of OC in soil aggregates can protect against rapid water entry and help stabilize larger structural units or lead to preferential flow. The objectives of this research are to study [i] the OC content and the

  12. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues.

    PubMed

    Zhu, Feng; Li, Yubing; Xue, Shengguo; Hartley, William; Wu, Hao

    2016-05-01

    In order to successfully establish vegetation on bauxite residue, properties such as aggregate structure and stability require improvement. Spontaneous plant colonization on the deposits in Central China over the last 20 years has revealed that natural processes may improve the physical condition of bauxite residues. Samples from three different stacking ages were selected to determine aggregate formation and stability and its relationship with iron-aluminium oxides and organic carbon. The residue aggregate particles became coarser in both dry and wet sieving processes. The mean weight diameter (MWD) and geometry mean diameter (GMD) increased significantly, and the proportion of aggregate destruction (PAD) decreased. Natural stacking processes could increase aggregate stability and erosion resistant of bauxite residues. Free iron oxides and amorphous aluminium oxides were the major forms in bauxite residues, but there was no significant correlation between the iron-aluminium oxides and aggregate stability. Aromatic-C, alkanes-C, aliphatic-C and alkenes-C were the major functional groups present in the residues. With increasing stacking age, total organic carbon content and aggregate-associated organic carbon both increased. Alkanes-C, aliphatic-C and alkenes-C increased and were mainly distributed in macro-aggregates, whereas aromatic-C was mainly distributed in <0.05-mm aggregates. Organic carbon stability in micro-aggregates was higher than that in macro-aggregates and became more stable. Organic carbon contents in total residues, and within different aggregate sizes, were all negatively correlated with PAD. It indicated that organic materials had a more significant effect on macro-aggregate stability and the effects of iron-aluminium oxides maybe more important for stability of micro-aggregates. PMID:26832865

  13. Soil aggregate stability within the morphologically diverse area

    NASA Astrophysics Data System (ADS)

    Jaksik, Ondrej; Kodesova, Radka; Kubis, Adam; Klement, Ales; Fer, Miroslav

    2013-04-01

    . The highest aggregate stability was measured on soils sampled at relatively flat upper parts, which were only slightly influenced by erosion processes. Higher stability was also obtained on base slope, where the sedimentation of previously eroded soil material occurred. Following correlations were obtained between different test results: R=0.911 for WSA and KV1, R=0.481 for WSA and KV2, R=0.700 for WSA and KV3. The statistical significant correlation was found between WSA index and SOM (R=0.403), WSA and pH_CaCl2 (R=-0.360), WSA and Mnd (R=0.408), WSA and Mno (R=0.355), KV1 and SOM (R=-0.377), KV1 and pH_CaCl2 (R=0.352), KV2 and CO3 (R=0.379), KV3 and pH_CaCl2 (R=0.376). We also found statistical significant correlation between WSA index and two terrain attributes (plan curvature R=-0.490, and total curvature R=-0.501). Acknowledgment: Authors acknowledge the financial support of the Ministry of Agriculture of the Czech Republic (QJ1230319). References Le Bissonnais Y. 1996. Aggregate stability and assessment of soil crustability and erodibility: Theory and methodology. Eur. J. Soil Sci. 47: 425-437. Nimmo J.R., Perkins K.S. 2002. Aggregate stability and size distribution, pp. 317-328. In: Dane J. H. & Topp G.C. (eds), Methods of Soil Analysis, Part 4 - Physical Methods. Soil Science Society of America, Inc. Madison, USA.

  14. Effects of Redox on Aggregate Stability of Upland Soils.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Upland soils in the US Midwest often undergo reducing conditions when soils are temporally flooded during the spring. The redox effect on the aggregate/structural stability of upland soils is not well understood. We hypothesized that aggregate stability would decrease under reducing conditions. Thre...

  15. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    NASA Astrophysics Data System (ADS)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond

  16. Aggregation in ecosystem models and model stability

    NASA Astrophysics Data System (ADS)

    Giricheva, Evgeniya

    2015-05-01

    Using a multimodal approach to research ecosystems improves usage of available information on an object. This study presents several models of the Bering Sea ecosystem. The ecosystem is considered as a closed object, that is, the influence of the environment is not provided. We then add the links with the external medium in the models. The models differ in terms of the degree and method of grouping components. Our method is based on the differences in habitat and food source of groups, which allows us to determine the grouping of species with a greater effect on system dynamics. In particular, we determine whether benthic fish aggregation or pelagic fish aggregation can change the consumption structure of some groups of species, and consequently, the behavior of the entire model system.

  17. Aggregate stability in citrus plantations. The impact of drip irrigation

    NASA Astrophysics Data System (ADS)

    Cerdà, A.; Mataix-Solera, J.; Arcenegui, V.

    2012-04-01

    Soil aggregate stability is a key property for soil and water conservation, and a synthetic parameter to quantify the soil degradation. Aggregation is relevant in soils where vegetation cover is scarce (Cerdà, 1996). Most of the research carried out to determine the soil aggregate stability was done in forest soils (Mataix-Solera et al., 2011) and little is done on farms (Cerdà, 2000). The research have show the effect of vegetation cover on soil aggregate stability (Cerdà, 1998) but little is known when vegetation is scarce, rare or not found such it can be seeing in agriculture soils. Then, aggregation is the main factor to control the soil losses and to improve the water availability. Moreover, agriculture management can improve the soil aggregate characteristics and the first step in this direction should be to quantify the aggregate stability. There is no information about the aggregate stability of soils under citrus production, although the research did show that the soil losses in the farms with citrus plantations is very high (Cerdà et al., 2009), and that aggregation should play a key role as the soils are bare due to the widespread use of herbicides. From 2009 to 2011, samples were collected in summer and winter in a chemically managed farm in Montesa, Eastern Iberian Peninsula. Ten irrigated patches and ten non-irrigated patches were selected to compare the effect of the drip irrigation on the soil aggregate stability. The Ten Drop Impacts (TDI) and the Counting the number of drops (CND) tests were applied at 200 aggregates (10 samples x 10 aggregates x 2 sites) in winter and summer in 2009, 2010 and 2011. The results show that the irrigated patches had TDI values that ranged from 43 to 56 % and that the non-irrigated reached values of 41 to 54 %. The CND samples ranged from 29 to 38 drops in the non-irrigated patches to 32 to 42 drop-impacts in the irrigated soil patches. No trends were found from winter to summer during the three years time period

  18. Soil aggregation and slope stability related to soil density, root length, and mycorrhiza

    NASA Astrophysics Data System (ADS)

    Graf, Frank; Frei, Martin

    2013-04-01

    Eco-engineering measures combine the use of living plants and inert mechanical constructions to protect slopes against erosion and shallow mass movement. Whereas in geotechnical engineering several performance standards and guidelines for structural safety and serviceability of construction exist, there is a lack of comparable tools in the field of ecological restoration. Various indicators have been proposed, including the fractal dimension of soil particle size distribution, microbiological parameters, and soil aggregate stability. We present results of an soil aggregate stability investigation and compare them with literature data of the angle of internal friction ?' which is conventionally used in slope stability analysis and soil failure calculation. Aggregate stability tests were performed with samples of differently treated moraine, including soil at low (~15.5 kN/m³) and high (~19.0 kN/m³) dry unit weight, soil planted with Alnus incana (White Alder) as well as the combination of soil planted with alder and inoculated with the mycorrhizal fungus Melanogaster variegatus s.l. After a 20 weeks growth period in a greenhouse, a total of 100 samples was tested and evaluated. Positive correlations were found between the soil aggregate stability and the three variables dry unit weight, root length per soil volume, and degree of mycorrhization. Based on robust statistics it turned out that dry unit weight and mycorrhization degree were strongest correlated with soil aggregate stability. Compared to the non-inoculated control plants, mycorrhized White Alder produced significantly more roots and higher soil aggregate stability. Furthermore, the combined biological effect of plant roots and mycorrhizal mycelia on aggregate stability on soil with low density (~15.5 kN/m³) was comparable to the compaction effect of the pure soil from 15.5 to ~19.0 kN/m³. Literature data on the effect of vegetation on the angle of internal friction ?' of the same moraine showed

  19. Aggregation kinetics and colloidal stability of functionalized nanoparticles.

    PubMed

    Gambinossi, Filippo; Mylon, Steven E; Ferri, James K

    2015-08-01

    The functionalization of nanoparticles has primarily been used as a means to impart stability in nanoparticle suspensions. In most cases even the most advanced nanomaterials lose their function should suspensions aggregate and settle, but with the capping agents designed for specific solution chemistries, functionalized nanomaterials generally remain monodisperse in order to maintain their function. The importance of this cannot be underestimated in light of the growing use of functionalized nanomaterials for wide range of applications. Advanced functionalization schemes seek to exert fine control over suspension stability with small adjustments to a single, controllable variable. This review is specific to functionalized nanoparticles and highlights the synthesis and attachment of novel functionalization schemes whose design is meant to affect controllable aggregation. Some examples of these materials include stimulus responsive polymers for functionalization which rely on a bulk solution physicochemical threshold (temperature or pH) to transition from a stable (monodisperse) to aggregated state. Also discussed herein are the primary methods for measuring the kinetics of particle aggregation and theoretical descriptions of conventional and novel models which have demonstrated the most promise for the appropriate reduction of experimental data. Also highlighted are the additional factors that control nanoparticle stability such as the core composition, surface chemistry and solution condition. For completeness, a case study of gold nanoparticles functionalized using homologous block copolymers is discussed to demonstrate fine control over the aggregation state of this type of material. PMID:25150615

  20. Decomposition-aggregation stability analysis of the spinning Skylab

    NASA Technical Reports Server (NTRS)

    Cuk, S. M.; Siljak, D. D.

    1974-01-01

    Stability of an 11-th order linear model of the spinning Skylab is determined by the decomposition-aggregation method based upon the comparison principle and vector Liapunov functions. To reduce the inherent conservativeness of the method an optimization problem is formulated and resolved producing the optimum comparison system. The system provides the best estimate of the stability region of the important structural parameter - asymmetry in the boom settings.

  1. Stability region maximization by decomposition-aggregation method. [Skylab stability

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Cuk, S. M.

    1974-01-01

    This work is to improve the estimates of the stability regions by formulating and resolving a proper maximization problem. The solution of the problem provides the best estimate of the maximal value of the structural parameter and at the same time yields the optimum comparison system, which can be used to determine the degree of stability of the Skylab. The analysis procedure is completely computerized, resulting in a flexible and powerful tool for stability considerations of large-scale linear as well as nonlinear systems.

  2. Organic carbon, water repellency and soil stability to slaking under different crops and managements: a case study at aggregate and intra-aggregate scales

    NASA Astrophysics Data System (ADS)

    Jordán, A.; García-Moreno, J.; Gordillo-Rivero, Á. J.; Zavala, L. M.; Cerdà, A.

    2014-08-01

    This research studies the distribution of organic C and intensity of water repellency in soil aggregates with different size and in the interior of aggregates from Mediterranean soils under different crops (apricot, citrus and wheat) and management (conventional tilling and no tilling/mulching). For this, undisturbed aggregates were sampled and carefully divided in size fractions (0.25-0.5, 0.5-1, 1-2, 2-5, 5-10 and 10-15 mm) or peeled to obtain separated aggregate layers (exterior, transitional and interior). Organic C content in the fine earth fraction of soils under different crops did not show important variations, although it increased significantly from conventionally tilled to mulched soils. The distribution of organic C content in aggregates with different size varied among soils under different crops, generally increasing with decreasing size. At the intra-aggregate level, organic C concentrated preferably in the exterior layer of aggregates from conventionally tilled soils, probably because of recent organic inputs or leachates. In the case of mulched soils, higher concentrations were observed, but no significant differences among aggregate regions were found. The intensity of water repellency, determined by the ethanol method, did not show great variations among crops, but increased significantly from conventionally tilled to mulched soils. Coarser aggregates were generally wettable, while finer aggregates showed slight water repellency. Regardless of variations in the distribution of organic C in aggregate layers from conventionally tilled soils, great or significant differences in the distribution of water repellency at the intra-aggregate level were not found in any case. Finally, the intensity of water repellency was much more important than the concentration of organic C in the stability to slaking of aggregates.

  3. Stabilized fiber-reinforced pavement base course with recycled aggregate

    NASA Astrophysics Data System (ADS)

    Sobhan, Khaled

    This study evaluates the benefits to be gained by using a composite highway base course material consisting of recycled crushed concrete aggregate, portland cement, fly ash, and a modest amount of reinforcing fibers. The primary objectives of this research were to (a) quantify the improvement that is obtained by adding fibers to a lean concrete composite (made from recycled aggregate and low quantities of Portland cement and/or fly ash), (b) evaluate the mechanical behavior of such a composite base course material under both static and repeated loads, and (c) utilize the laboratory-determined properties with a mechanistic design method to assess the potential advantages. The split tensile strength of a stabilized recycled aggregate base course material was found to be exponentially related to the compacted dry density of the mix. A lean mix containing 4% cement and 4% fly ash (by weight) develops sufficient unconfined compressive, split tensile, and flexural strengths to be used as a high quality stabilized base course. The addition of 4% (by weight) of hooked-end steel fibers significantly enhances the post-peak load-deformation response of the composite in both indirect tension and static flexure. The flexural fatigue behavior of the 4% cement-4% fly ash mix is comparable to all commonly used stabilized materials, including regular concrete; the inclusion of 4% hooked-end fibers to this mix significantly improves its resistance to fatigue failure. The resilient moduli of stabilized recycled aggregate in flexure are comparable to the values obtained for traditional soil-cement mixes. In general, the fibers are effective in retarding the rate of fatigue damage accumulation, which is quantified in terms of a damage index defined by an energy-based approach. The thickness design curves for a stabilized recycled aggregate base course, as developed by using an elastic layer approach, is shown to be in close agreement with a theoretical model (based on Westergaard

  4. Enrichment Ratio and Aggregate Stability Dynamics in Intensely Managed Landscapes

    NASA Astrophysics Data System (ADS)

    Wacha, K.; Papanicolaou, T.; Filley, T. R.; Hou, T.; Abban, B. K.; Wilson, C. G.; Boys, J.

    2015-12-01

    Challenges in understanding the soil carbon dynamics within intensely managed landscapes (IMLs), found throughout much the US Midwest, is highly complex due to the presence of heterogeneous landscape features and properties, as well as a mosaic of physical and biogeochemical processes occurring at different time scales. In addition, rainfall events exacerbate the effects of tillage by the impact of raindrops, which break down aggregates that encase carbon and dislodge and entrain soil particles and aggregates along the downslope. The redistribution of soil and carbon can have huge implications on biogeochemical cycling and overall carbon budgeting. In this study, we provide some rare field data on the mechanisms impacting aggregate stability, enrichment ratio values to estimate fluxes of carbon, as well as lignin chemistry to see influences on oxidation/mineralization rates. Rainfall simulation experiments were conducted within agricultural fields. Experiments were performed on the midslope (eroding) and toeslope (depositional) sections of representative hillslopes, under a variety of land managements, including row crop (conventional and conservation) and restored grasslands. Sensors were utilized to capture the evolution of soil moisture, temperature, microbial respiration pulses, and discharge rates to identify pseudo-steady state conditions. Samples collected at the weir outlet were tested for sediment concentrations and size fractions, as well as carbon and lignin fluxes. Preliminary findings show that conservation management practices have higher aggregate stability and decreased mass fluxes of carbon in the downslope than conventional tillage techniques.

  5. Soil aggregate stability: comparison of field and laboratory data

    NASA Astrophysics Data System (ADS)

    Graf, Frank

    2014-05-01

    Eco-engineering first and foremost, aims at stabilising soil and slopes in order to protect humans and infrastructure from potential damages caused by soil failure, usually due to heavy rainstorms. Whereas the technical constructions are well-defined and their protective effects in general calculable, this is rarely the case for biological measures. Furthermore, unlike engineering structures which are immediately useable and operative after their completion, the effects of plants are developing as a function of time. Within this scope, soil aggregation processes play a decisive role in in the re-colonisation process and the re-establishing of a protective vegetation cover. The strength of soil aggregates is not only critical to the stability of slopes but plays a key role in ecosystem functioning in general as it affects water, gas and nutrient fluxes and storage influencing the activity and growth of living organisms. Not by chance, therefore, soil aggregate stability has been proposed as an indicator reflecting multiple aspects allowing extensive information on ecosystem status to be gathered in a relatively short time, in particular in respect of protecting slopes from erosion and shallow mass movements. Various methods and approaches have been used to quantify soil aggregate stability but the lack of standardisation complicates the comparison of different investigations. From this perspective we investigated soil samples from the field as well as samples artificially prepared in the laboratory using the same soil material and testing procedure. The field samples were collected at two sites in the landslide area of Dallenwil-Wirzweli in Central Switzerland, once in a gully recently affected by erosion and landslide processes bare of vegetation (control site) and once in a re-stabilised gully with 25 year old eco-engineering measures dominated by Alnus incana (re-vegetated site). The laboratory samples were prepared with the soil from the control site. Two

  6. Colloidal Stability of Graphene Oxide: Aggregation in Two Dimensions.

    PubMed

    Gudarzi, Mohsen Moazzami

    2016-05-24

    Colloidal stability of graphene oxide (GO) is studied in aqueous and organic media accompanied by an improved aggregation model based on Derjaguin-Landau-Verwey- Overbeek (DLVO) theory for ultrathin colloidal flakes. It is found that both magnitude and scaling laws for the van der Waals forces are affected significantly by the two-dimensional (2D) nature of GO. Experimental critical coagulation concentrations (CCC) of GO in monovalent salt solutions concur with DLVO theory prediction. The surface charge density of GO is largely affected by pH. However, theoretical calculations and experimental observations show that the colloidal stability of the 2D colloids is less sensitive to the changes in the surface charge density compared to the classical picture of 3D colloids. The DLVO theory also quantitatively predicts the colloidal stability of reduced GO (rGO). The origin of lower stability of rGO compared to GO is rooted in the higher van der Waals forces among rGO sheets, and particularly, in the removal of negatively charged groups, and possibly formation of some cationic groups during reduction. GO also exfoliates in the polar organic solvents and results in stable dispersions. However, addition of nonpolar solvents perturbs the colloidal stability at a critical volume fraction. Analyzing the aggregation of GO in mixtures of different nonpolar solvents and N-methyl-2-pyrrolidone proposed that the solvents with dielectric constants of less than 24 are not able to host stable colloids of GO. However, dispersions of GO in very polar solvents shows unexpected stability at high concentration (>1 M) of salts and acids. The origin of this stability is most probably solvation forces. A crucial parameter affecting the ability of polar solvents to impart high stability to GO is their molecular size: the bigger they are, the higher the chance for stabilization. PMID:27143102

  7. Abnormal Stability in Growth of Diffusion-Limited Aggregation

    NASA Astrophysics Data System (ADS)

    Ohta, Shonosuke

    2009-01-01

    An abnormal and unsteady growth of an isotropic cluster in diffusion-limited aggregation (DLA) is observed in stability analyses. Macroscopic fluctuation due to the delay of transition from a dendritic tip to a tip-splitting growth induces the anisotropy of DLA. An asymptotic deformation factor \\varepsilon∞ = 0.0888 is obtained from large DLA clusters. A symmetric oval model proposed from the dual-stability growth of DLA gives an asymptotic fractal dimension of 1.7112 using \\varepsilon∞. The correspondence of this model to the box dimension is excellent.

  8. Soil aggregate stability and grassland productivity associations in a northern mixed-grass prairie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil (aggregate) stability is widely used as an indicator of soil and rangeland health. The empirical evidence justifying soil aggregate stability as an indicator of rangeland health, however, is thin and confusing. Here we revisit the hypothesis that soil aggregate stability is positively correla...

  9. A novel method for soil aggregate stability measurement by laser granulometry with sonication

    NASA Astrophysics Data System (ADS)

    Rawlins, B. G.; Lark, R. M.; Wragg, J.

    2012-04-01

    Regulatory authorities need to establish rapid, cost-effective methods to measure soil physical indicators - such as aggregate stability - which can be applied to large numbers of soil samples to detect changes of soil quality through monitoring. Limitations of sieve-based methods to measure the stability of soil macro-aggregates include: i) the mass of stable aggregates is measured, only for a few, discrete sieve/size fractions, ii) no account is taken of the fundamental particle size distribution of the sub-sampled material, and iii) they are labour intensive. These limitations could be overcome by measurements with a Laser Granulometer (LG) instrument, but this technology has not been widely applied to the quantification of aggregate stability of soils. We present a novel method to quantify macro-aggregate (1-2 mm) stability. We measure the difference between the mean weight diameter (MWD; μm) of aggregates that are stable in circulating water of low ionic strength, and the MWD of the fundamental particles of the soil to which these aggregates are reduced by sonication. The suspension is circulated rapidly through a LG analytical cell from a connected vessel for ten seconds; during this period hydrodynamic forces associated with the circulating water lead to the destruction of unstable aggregates. The MWD of stable aggregates is then measured by LG. In the next step, the aggregates - which are kept in the vessel at a minimal water circulation speed - are subject to sonication (18W for ten minutes) so the vast majority of the sample is broken down into its fundamental particles. The suspension is then recirculated rapidly through the LG and the MWD measured again. We refer to the difference between these two measurements as disaggregation reduction (DR) - the reduction in MWD on disaggregation by sonication. Soil types with more stable aggregates have larger values of DR. The stable aggregates - which are resistant to both slaking and mechanical breakdown by the

  10. Microelectrode Measurements of the Activity Distribution in Nitrifying Bacterial Aggregates

    PubMed Central

    de Beer, D.; van den Heuvel, J. C.; Ottengraf, S. P. P.

    1993-01-01

    Microelectrodes for ammonium, oxygen, nitrate, and pH were used to study nitrifying aggregates grown in a fluidized-bed reactor. Local reactant fluxes and distribution of microbial activity could be determined from the microprofiles. The interfacial fluxes of the reactants closely reflected the stoichiometry of bacterial nitrification. Both ammonium consumption and nitrate production were localized in the outer shells, with a thickness of approximately 100 to 120 μm, of the aggregates. Under conditions in which ammonium and oxygen penetrated the whole aggregate, nitrification was restricted to this zone; oxygen was consumed in the central parts of the aggregates as well, probably because of oxidation of dead biomass. A sudden increase of the oxygen concentration to saturation (pure oxygen) was inhibitory to nitrification. The pH profiles showed acidification in the aggregates, but not to an inhibitory level. The distribution of activity was determined by the penetration depth of oxygen during aggregate development in the reactor. Mass transfer was significantly limited by the boundary layer surrounding the aggregates. Microelectrode measurements showed that the thickness of this layer was correlated with the diffusion coefficient of the species. Determination of the distribution of nitrifying activity required the use of ammonium or nitrate microelectrodes, whereas the use of oxygen microelectrodes alone would lead to erroneous results. Images PMID:16348875

  11. Stability of a Random Walk Model for Fruiting Body Aggregation in M. xanthus

    NASA Astrophysics Data System (ADS)

    McKenzie-Smith, G. C.; Schüttler, H. B.; Cotter, C.; Shimkets, L.

    2015-03-01

    Myxococcus xanthus exhibits the social starvation behavior of aggregation into a fruiting body containing myxospores able to survive harsh conditions. During fruiting body aggregation, individual bacteria follow random walk paths determined by randomly selected runtimes, turning angles, and speeds. We have simulated this behavior in terms of a continuous-time random walk (CTRW) model, re-formulated as a system of integral equations, describing the angle-resolved cell density, R(r, t, θ), at position r and cell orientation angle θ at time t, and angle-integrated ambient cell density ρ(r, t). By way of a linear stability analysis, we investigated whether a uniform cell density R0 will be unstable for a small non-uniform density perturbation δR(r, t, θ). Such instability indicates aggregate formation, whereas stability indicates absence of aggregation. We show that a broadening of CTRW distributions of the random speed and/or random runtimes strongly favors aggregation. We also show that, in the limit of slowly-varying (long-wavelength) density perturbations, the time-dependent linear density response can be approximated by a drift-diffusion model for which we calculate diffusion and drift coefficients as functions of the CTRW model parameters. Funded by the Fungal Genomics and Computational Biology REU at UGA.

  12. Soil aggregate stability as affected by clay mineralogy and polyacrylamide addition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of polyacrylamide (PAM) to soil leads to stabilization of existing aggregates and improved bonding between, and aggregation of adjacent soil particles However, the dependence of PAM efficacy as an aggregate stabilizing agent on soil-clay mineralogy has not been studied. Sixteen soil sam...

  13. Settling Velocity, Aggregate Stability, and Interrill Erodibility of Soils Varying in Clay Mineralogy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relation of soil structural stability with soil erodibility depends on the mechanisms of aggregate disruption of different aggregate sizes and the measurement technique. In this study, we evaluated the relationship between settling velocity and stability of aggregates of different sizes, and int...

  14. Polyacrylamide effects on aggregate and structure stability of soils with different clay mineralogy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adding anionic polyacrylamide (PAM) to soils stabilizes existing aggregates and improves bonding between and aggregation of soil particles. However, the dependence of PAM efficacy as an aggregate stabilizing agent with soils having different clay mineralogy has not been studied. Sixteen soil samples...

  15. Variation of Soil Aggregation along the Weathering Gradient: Comparison of Grain Size Distribution under Different Disruptive Forces

    PubMed Central

    Wu, Xinliang; Xia, Jinwen; Shen, Xue; Cai, Chongfa

    2016-01-01

    The formation and stabilization of soil aggregates play a key role in soil functions. To date, few studies have been performed on the variation of soil aggregation with increasing soil weathering degree. Here, soil aggregation and its influencing factors along the weathering gradient were investigated. Six typical zonal soils (derived from similar parent materials) were sampled from temperate to tropical regions. Grain size distribution (GSD) in aggregate fragmentation with increasing disruptive forces (air-dried, water dispersion and chemical dispersion) was determined by laser diffraction particle size analyzer. Different forms of sesquioxides were determined by selective chemical extraction and their contributions to soil aggregation were identified by multiple stepwise regression analysis. The high variability of sesquioxides in different forms appeared with increasing free oxide content (Fed and Ald) from the temperate to tropical soils. The transformation of GSD peak to small size varied with increasing disruptive forces (p<0.05). Although in different weathering degrees, zonal soils showed a similar fragmentation process. Aggregate water stability generally increased with increasing soil weathering (p<0.01), with higher stability in eluvium (A) horizon than in illuvium (B) horizon (p<0.01). Crystalline oxides and amorphous iron oxides (Feo), especially (Fed-Feo) contributed to the formation of air-dried macroaggregates and their stability against slaking (R2 = 55%, p<0.01), while fine particles (<50μm) and Feo (excluding the complex form Fep) played a positive role in the formation of water stable aggregates (R2 = 93%, p<0.01). Additionally, water stable aggregates (including stability, size distribution and specific surface area) were closely related with pH, organic matter, cation exchange capacity (CEC), bulk density (BD), and free oxides (including various forms) (p<0.05). The overall results indicate that soil aggregation conforms to aggregate

  16. Variation of Soil Aggregation along the Weathering Gradient: Comparison of Grain Size Distribution under Different Disruptive Forces.

    PubMed

    Wei, Yujie; Wu, Xinliang; Xia, Jinwen; Shen, Xue; Cai, Chongfa

    2016-01-01

    The formation and stabilization of soil aggregates play a key role in soil functions. To date, few studies have been performed on the variation of soil aggregation with increasing soil weathering degree. Here, soil aggregation and its influencing factors along the weathering gradient were investigated. Six typical zonal soils (derived from similar parent materials) were sampled from temperate to tropical regions. Grain size distribution (GSD) in aggregate fragmentation with increasing disruptive forces (air-dried, water dispersion and chemical dispersion) was determined by laser diffraction particle size analyzer. Different forms of sesquioxides were determined by selective chemical extraction and their contributions to soil aggregation were identified by multiple stepwise regression analysis. The high variability of sesquioxides in different forms appeared with increasing free oxide content (Fed and Ald) from the temperate to tropical soils. The transformation of GSD peak to small size varied with increasing disruptive forces (p<0.05). Although in different weathering degrees, zonal soils showed a similar fragmentation process. Aggregate water stability generally increased with increasing soil weathering (p<0.01), with higher stability in eluvium (A) horizon than in illuvium (B) horizon (p<0.01). Crystalline oxides and amorphous iron oxides (Feo), especially (Fed-Feo) contributed to the formation of air-dried macroaggregates and their stability against slaking (R2 = 55%, p<0.01), while fine particles (<50μm) and Feo (excluding the complex form Fep) played a positive role in the formation of water stable aggregates (R2 = 93%, p<0.01). Additionally, water stable aggregates (including stability, size distribution and specific surface area) were closely related with pH, organic matter, cation exchange capacity (CEC), bulk density (BD), and free oxides (including various forms) (p<0.05). The overall results indicate that soil aggregation conforms to aggregate

  17. Aggregate distribution and associated organic carbon influenced by cover crops

    NASA Astrophysics Data System (ADS)

    Barquero, Irene; García-González, Irene; Benito, Marta; Gabriel, Jose Luis; Quemada, Miguel; Hontoria, Chiquinquirá

    2013-04-01

    Replacing fallow with cover crops during the non-cropping period seems to be a good alternative to diminish soil degradation by enhancing soil aggregation and increasing organic carbon. The aim of this study was to analyze the effect of replacing fallow by different winter cover crops (CC) on the aggregate distribution and C associated of an Haplic Calcisol. The study area was located in Central Spain, under semi-arid Mediterranean climate. A 4-year field trial was conducted using Barley (Hordeum vulgare L.) and Vetch (Vicia sativa L.) as CC during the intercropping period of maize (Zea mays L.) under irrigation. All treatments were equally irrigated and fertilized. Maize was directly sown over CC residues previously killed in early spring. Composite samples were collected at 0-5 and 5-20 cm depths in each treatment on autumn of 2010. Soil samples were separated by wet sieving into four aggregate-size classes: large macroaggregates ( >2000 µm); small macroaggregates (250-2000 µm); microaggregates (53-250 µm); and < 53 µm (silt + clay size). Organic carbon associated to each aggregate-size class was measured by Walkley-Black Method. Our preliminary results showed that the aggregate-size distribution was dominated by microaggregates (48-53%) and the <53 µm fraction (40-44%) resulting in a low mean weight diameter (MWD). Both cover crops increased aggregate size resulting in a higher MWD (0.28 mm) in comparison with fallow (0.20 mm) in the 0-5 cm layer. Barley showed a higher MWD than fallow also in 5-20 cm layer. Organic carbon concentrations in aggregate-size classes at top layer followed the order: large macroaggregates > small macroaggregates > microaggregates > silt + clay size. Treatments did not influence C concentration in aggregate-size classes. In conclusion, cover crops improved soil structure increasing the proportion of macroaggregates and MWD being Barley more effective than Vetch at subsurface layer.

  18. Soil aggregate stability as an indicator for eco-engineering effectiveness?

    NASA Astrophysics Data System (ADS)

    Graf, Frank

    2015-04-01

    Eco-engineering aims at stabilising soil and slopes by applying technical and biological measures. Engineering structures are commonly well defined, immediately usable and operative, and their stability effects quantifiable and verifiable. Differently, the use of plants requires more restrictive boundary conditions and the protection potential is rarely easily calculable and develop-ing as a function of growth rate. Although the use of vegetation is widely appreciated and their stabilising effect recognised, there is an increasing demand on sound facts on its efficiency, in particular, in relation to time. Conclusively, a certain necessity has been recognised to monitor, assess and quantify the effectiveness of ecological restora-tion measures in order to facilitate the transfer of technology and knowledge. Recent theoretical models emphasize the im-portance of taking an integrated monitoring approach that considers multiple variables. However, limited financial and time resources often prevent such comprehensive assessments. A solution to this problem may be to use integrated indicators that reflect multiple aspects and, therefore, allow extensive information on ecosystem status to be gathered in a relatively short time. Among various other indicators, such as fractal dimension of soil particle size distribution or microbiological parameters, soil aggregate stability seems the most appropriate indicator with regard to protecting slopes from superficial soil failure as it is critical to both plant growth and soil structure. Soil aggregation processes play a crucial role in re-establishing soil structure and function and, conclusively, for successful and sustainable re-colonisation. Whereas the key role of soil aggregate stability in ecosystem functioning is well known concerning water, gas, and nutrient fluxes, only limited information is available with regard to soil mechanical and geotechnical aspects. Correspondingly, in the last couple of years several studies

  19. Aggregate stability in mine residues after reclamation with biochar

    NASA Astrophysics Data System (ADS)

    Moreno-Barriga, Fabián; Díaz, Vicente; Acosta, José; Faz, Ángel; Zornoza, Raúl

    2016-04-01

    This study aims to assess how the addition of biochar and marble waste to acidic mine residues affected aggregate stability (AS) and contributed to the improvement of soil texture. For this purpose, a lab incubation was carried out for 90 days. Biochars derived from pig manure (PM), crop residues (CR) and municipal solid waste (MSW) were added to the soil at a rate of 20 g kg-1. The marble waste (MW) was added at a rate of 200 g kg-1, with the aim of increasing pH from 3 to 8 (pH of the native soils of the area). Biochars and MW were applied independently and combined. A control treatment was used without application of amendments. The evolution of AS was periodically monitored at 2, 4, 7, 15, 30 and 90 days by the method of artificial rainfall. Results showed, at the end of the incubation, that the addition of MW alone did not significantly increased AS with comparison to CT (30%). However, the biochar, alone or together with MW, significantly increased AS, the treatment receiving CR derived biochar being the one with the highest values (46%). Increments in AS were significant from the day 30 of incubation. AS showed a significant correlation with the total organic carbon content, but was not correlated with organic carbon fractions (soluble, labile, recalcitrant), inorganic carbon, microbial biomass carbon, enzyme activities, exchangeable fraction of heavy metals (As, Cd, Cu, Pb, Zn), pH, electrical conductivity nor greenhouse gas emissions (NO₂, CH₄). Thus, the application of biochar (alone or in combination with MW as a source of calcium carbonate) significantly increased the formation of stable aggregates in former acidic mine residues, favoring the development of soil structure, essential to create a soil from residues. It seems that the total content of organic carbon is directly controlling aggregation, rather than other labile organic sources. Moreover, pH, salinity or the presence of exchangeable metals did not seem to affect soil aggregation

  20. Stability of Soil Carbon Fractions - Aggregation Versus Mineral Association

    NASA Astrophysics Data System (ADS)

    Mueller, C. W.; Koegel-Knabner, I.

    2007-12-01

    Models that seek to describe the dynamics of soil organic C typically distinguish between two or more C fractions according to differences of biochemical and microbial degradation. The rates are a consequence of recalcitrance, accessibility and interactions. Soil aggregation is an important mechanism controlling the accessibility of substrates by microbes and enzymes and thus the dynamics of minerals bound C are interacting with soil aggregate dynamics. In this study we focused on C fractions isolated by particle size fractionation. The main objective of our study was to differentiate between C stabilization of soil fractions due to accessibility/aggregation or to association with minerals. For a detailed understanding of these processes and the sources of respired soil CO2 we combined the measurement of heterotrophic respiration, CO2-13C analyses and radiocarbon dating of the respired CO2 in a long-term laboratory mineralization experiment. For the experiment we took soil material from the A horizon of an Albic Luvisol under Norway spruce forest (Picea abies) in southern Germany. The air dried bulk soil (< 2000 µm) was subjected to ultrasonication (1st step 60 J ml-1; 2nd step 440 J ml-1) and separated according to particle size in three fractions: > 63 µm to 2000 µm - sand, > 6.3 µm to 63 µm - silt and silt/clay fraction < 6.3 µm - clay. Solid-state 13C-CPMAS NMR spectroscopy was used to analyze the composition of bulk soil and fractions. The incubation of the three fractions and the bulk soil was done for 250 days in triplicate at 20 degree Celsius and 70% of maximal water holding capacity. A relative enrichment of alkyl C and an increase of the alkyl / O/N-alkyl C ratios in the order of sand < silt < clay were observed by 13C-NMR. On a long term the sand fraction and the bulk soil showed a sustained C bioavailability. For the silt and clay fraction similar respiration rates and a low C bioavailability were detected. The recombined fractions (by

  1. Aggregate Stability of Tropical Soils Under Long-Term Eucalyptus Cultivation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eucalyptus cultivation has increased in all Brazilian regions. Despite the large amount of cultivated area, little is known about how this kind of management system affects soil properties, mainly the aggregate stability. Aggregate stability analyses have proved to be a sensitive tool to measure soi...

  2. SOIL AGGREGATE STABILITY AS AFFECTED BY LONG-TERM TILLAGE AND CLAY TYPE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil aggregate stability and dispersivity depend on clay mineralogy. However, little is known about the effect of soil mineralogy on soil crustability for long-term cultivated soil. The effect of long-term tillage on aggregate stability was the objective of our study. More than 20 soil samples chara...

  3. Effect of Salinity, Sodicity and Soil Texture on Aggregate Stability of Semi-arid Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil texture, sodicity and salinity or water quality play a significant role in determining soil aggregate stability, hydraulic properties and the response of soil clays to dispersion and swelling. We studied aggregate stability from 60 samples of Israeli top soils, widely varying in clay content an...

  4. Highly magnetizable superparamagnetic colloidal aggregates with narrowed size distribution from ferrofluid emulsion.

    PubMed

    Lobaz, Volodymyr; Klupp Taylor, Robin N; Peukert, Wolfgang

    2012-05-15

    The formation of spherical superparamagnetic colloidal aggregates of magnetite nanoparticles by emulsification of a ferrofluid and subsequent solvent evaporation has been systematically studied. The colloidal aggregates occur as a dense sphere with magnetite nanoparticles randomly packed and preserved particle-particle separation due to chemisorbed oleic acid. The voids between nanoparticles are filled with solvent and free oleic acid. The latter was found to influence the formation of colloidal aggregates and their surface properties. The choice of surfactant, whether low molecular weight or polymeric, was shown to lead to the colloidal aggregates having tailored interfacial behavior. Magnetization measurements at ambient temperature revealed that the magnetite colloidal aggregates preserve the superparamagnetic properties of the starting nanoparticle units and show high saturation magnetization values up to 57 emu/g. The size distribution of magnetite nanoparticle colloidal aggregates produced by such an approach was found to be a function of emulsion droplet breakup-coalescence and stabilization kinetics and therefore is influenced by the emulsification process conditions and concentrations of the emulsion compounds. PMID:22365838

  5. Aggregation, stability, and oscillations in different models for host-macroparasite interactions.

    PubMed

    Rosà, Roberto; Pugliese, Andrea

    2002-05-01

    Aggregation is generally recognized as an important factor in the dynamics of host-macroparasite interactions and it has been found relevant in stabilizing the dynamics toward an equilibrium coexistence. In this paper we review the models of Anderson and May (1978, J. Anim. Ecol. 47, 219-247, 249-267) and compare them with some more recently developed models, which incorporate explicit mechanisms (multiple infections or host heterogeneity) for generating aggregation and different degrees of mathematical accuracy. We found that the stabilization yielded by aggregation depends strongly on the mechanism producing the aggregation: multiple infections are much less stabilizing than when aggregation is assumed to be fixed from the outside, while the opposite holds for host heterogeneity. We also give analytical estimates of the period of oscillations occurring when the equilibrium is unstable. Finally, we explore in these models the role of aggregation in host regulation and in determining a threshold value for parasite establishment. PMID:12027618

  6. Aggregation dynamics explain vegetation patch-size distributions.

    PubMed

    Irvine, M A; Bull, J C; Keeling, M J

    2016-04-01

    Vegetation patch-size distributions have been an intense area of study for theoreticians and applied ecologists alike in recent years. Of particular interest is the seemingly ubiquitous nature of power-law patch-size distributions emerging in a number of diverse ecosystems. The leading explanation of the emergence of these power-laws is due to local facilitative mechanisms. There is also a common transition from power law to exponential distribution when a system is under global pressure, such as grazing or lack of rainfall. These phenomena require a simple mechanistic explanation. Here, we study vegetation patches from a spatially implicit, patch dynamic viewpoint. We show that under minimal assumptions a power-law patch-size distribution appears as a natural consequence of aggregation. A linear death term also leads to an exponential term in the distribution for any non-zero death rate. This work shows the origin of the breakdown of the power-law under increasing pressure and shows that in general, we expect to observe a power law with an exponential cutoff (rather than pure power laws). The estimated parameters of this distribution also provide insight into the underlying ecological mechanisms of aggregation and death. PMID:26742959

  7. Soil Aggregate Stability and Grassland Productivity Associations in a Northern Mixed-Grass Prairie.

    PubMed

    Reinhart, Kurt O; Vermeire, Lance T

    2016-01-01

    Soil aggregate stability data are often predicted to be positively associated with measures of plant productivity, rangeland health, and ecosystem functioning. Here we revisit the hypothesis that soil aggregate stability is positively associated with plant productivity. We measured local (plot-to-plot) variation in grassland community composition, plant (aboveground) biomass, root biomass, % water-stable soil aggregates, and topography. After accounting for spatial autocorrelation, we observed a negative association between % water-stable soil aggregates (0.25-1 and 1-2 mm size classes of macroaggregates) and dominant graminoid biomass, and negative associations between the % water-stable aggregates and the root biomass of a dominant sedge (Carex filifolia). However, variation in total root biomass (0-10 or 0-30 cm depths) was either negatively or not appreciably associated with soil aggregate stabilities. Overall, regression slope coefficients were consistently negative thereby indicating the general absence of a positive association between measures of plant productivity and soil aggregate stability for the study area. The predicted positive association between factors was likely confounded by variation in plant species composition. Specifically, sampling spanned a local gradient in plant community composition which was likely driven by niche partitioning along a subtle gradient in elevation. Our results suggest an apparent trade-off between some measures of plant biomass production and soil aggregate stability, both known to affect the land's capacity to resist erosion. These findings further highlight the uncertainty of plant biomass-soil stability associations. PMID:27467598

  8. Soil Aggregate Stability and Grassland Productivity Associations in a Northern Mixed-Grass Prairie

    PubMed Central

    Reinhart, Kurt O.; Vermeire, Lance T.

    2016-01-01

    Soil aggregate stability data are often predicted to be positively associated with measures of plant productivity, rangeland health, and ecosystem functioning. Here we revisit the hypothesis that soil aggregate stability is positively associated with plant productivity. We measured local (plot-to-plot) variation in grassland community composition, plant (aboveground) biomass, root biomass, % water-stable soil aggregates, and topography. After accounting for spatial autocorrelation, we observed a negative association between % water-stable soil aggregates (0.25–1 and 1–2 mm size classes of macroaggregates) and dominant graminoid biomass, and negative associations between the % water-stable aggregates and the root biomass of a dominant sedge (Carex filifolia). However, variation in total root biomass (0–10 or 0–30 cm depths) was either negatively or not appreciably associated with soil aggregate stabilities. Overall, regression slope coefficients were consistently negative thereby indicating the general absence of a positive association between measures of plant productivity and soil aggregate stability for the study area. The predicted positive association between factors was likely confounded by variation in plant species composition. Specifically, sampling spanned a local gradient in plant community composition which was likely driven by niche partitioning along a subtle gradient in elevation. Our results suggest an apparent trade-off between some measures of plant biomass production and soil aggregate stability, both known to affect the land’s capacity to resist erosion. These findings further highlight the uncertainty of plant biomass-soil stability associations. PMID:27467598

  9. Effect of freeze-thawing on aggregate stability in a calcareous Mediterranean soil

    NASA Astrophysics Data System (ADS)

    Lozano, Elena; Temporal, Beatriz; Oltra, Ángel; Mataix-Solera, Jorge; Arcenegui, Victoria; García-Orenes, Fuensanta

    2013-04-01

    Soil freezing has been reported as both beneficial and detrimental for soil structure depending on various factors (Dagesse, 2011), but the subsequent thawing process has not been adequately investigated as a factor in determining the net effect of freezing and thawing. In this study changes in soil aggregate stability (AS) were studied under different moisture and speed of thawing conditions in a laboratory experiment. Conditions favoring sublimation and commonly experienced during the winter include bare soil surfaces and synoptic meteorological conditions of clear skies, low humidity, and moderate winds. Aggregate stability measured may therefore reflect the effects of drying of the soil aggregates via the freezing process and the resulting water content distribution following thawing. The soil used is from an agricultural area located in Sierra de Enguera (Valencia, E Spain). Soil samples were collected in February 2012 from the first 2.5 cm depth of A horizon. We also studied the effect of a mulch cover in buffering soil temperature during 2 months under field conditions using thermocouples and data-loggers. Soil samples at two initial water contents (10% and 40%) were subjected to different treatments, including not frozen (control), freeze-thaw (freezing at -4 °C for 3 h and thawing at room temperature for 24 h) and freeze-drying (freezing at -4 for 3h and thawing at 60 °C for 3 h in a forced air oven). We measured the possible soil disruption of soil aggregates quantifying the soil mass in the fractions 2-0.25 mm and

  10. Measurement of aggregates' size distribution by angular light scattering

    NASA Astrophysics Data System (ADS)

    Caumont-Prim, Chloé; Yon, Jérôme; Coppalle, Alexis; Ouf, François-Xavier; Fang Ren, Kuan

    2013-09-01

    A novel method is introduced for in situ determination of the size distribution of submicronic fractal aggregate particles by unique measurement of angular scattering of light. This method relies on the dependence of a new defined function Rg⋆ on the polydispersity of the aggregates' size distribution. The function Rg⋆ is then interpreted by the use of iso-level charts to determine the parameters of the log-normal soot size distribution. The main advantage of this method is its independence of the particle optical properties and primary sphere diameter. Moreover, except for the knowledge of fractal dimension, this method does not require any additional measurement. It is validated on monodisperse particles selected by a differential mobility analyzer and polydisperse soot from ethylene diffusion flame whose size distribution is independently determined by Transmission Electron Microscopy. Finally, the size distribution of soot generated by a commercial apparatus is measured by the proposed method and the comparison to that given by a commercial granulometer shows a good agreement.

  11. Denatured state aggregation parameters derived from concentration dependence of protein stability.

    PubMed

    Schön, Arne; Clarkson, Benjamin R; Siles, Rogelio; Ross, Patrick; Brown, Richard K; Freire, Ernesto

    2015-11-01

    Protein aggregation is a major issue affecting the long-term stability of protein preparations. Proteins exist in equilibrium between the native and denatured or partially denatured conformations. Often denatured or partially denatured conformations are prone to aggregate because they expose to solvent the hydrophobic core of the protein. The aggregation of denatured protein gradually shifts the protein equilibrium toward increasing amounts of denatured and ultimately aggregated protein. Recognizing and quantitating the presence of denatured protein and its aggregation at the earliest possible time will bring enormous benefits to the identification and selection of optimal solvent conditions or the engineering of proteins with the best stability/aggregation profile. In this article, a new approach that allows simultaneous determination of structural stability and the amount of denatured and aggregated protein is presented. This approach is based on the analysis of the concentration dependence of the Gibbs energy (ΔG) of protein stability. It is shown that three important quantities can be evaluated simultaneously: (i) the population of denatured protein, (ii) the population of aggregated protein, and (iii) the fraction of denatured protein that is aggregated. PMID:26239214

  12. Effects of Polyacrylamide Molecular Weight, Soil Texture and Electrolyte Concentration on Drainable Porosity and Aggregate Stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The literature reports on the intricate relations between soil type and molecular weight (MW) of polyacrylamide (PAM) with respect to PAM efficacy as a soil conditioner. This relation may depend on the ability of PAM to penetrate into aggregates and thus stabilize both outer and inner aggregate surf...

  13. Multiscale variability of soil aggregate stability: implications for rangeland hydrology and erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation of soil and water resources in rangelands is a crucial step in stopping desertification processes. The formation of water-stable soil aggregates reduces soil erodibility and can increase infiltration capacity in many soils. Soil aggregate stability is highly variable at scales ranging f...

  14. Quantitative characterization of non-classic polarization of cations on clay aggregate stability.

    PubMed

    Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui

    2015-01-01

    Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10-5 to 10-1 mol L-1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation-surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability. PMID:25874864

  15. Quantitative Characterization of Non-Classic Polarization of Cations on Clay Aggregate Stability

    PubMed Central

    Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui

    2015-01-01

    Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10−5 to 10−1 mol L−1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation–surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability. PMID:25874864

  16. Heat stability of aggregated particles of casein micelles and kappa-carrageenan.

    PubMed

    Flett, Kelly L; Corredig, Milena; Goff, H Douglas

    2010-06-01

    Aggregated particles of casein micelles and kappa-carrageenan were produced as a dried milk ingredient, then reconstituted and subjected to a heat treatment of 70 degrees C for 10 min. The reconstituted aggregates were found to be unstable when heated. Light scattering results showed that the aggregates dissociated partially into casein micelles. It was hypothesized that the removal of ions during ultrafiltration before spray-drying to produce the powdered ingredient significantly decreased stability upon reconstitution and heat treatment. When ions, either from whey permeate or calcium addition, were added to reconstituted aggregates, stability was greatly enhanced and the aggregates remained intact when subjected to heat. The effect of heat treatment on aggregates freshly produced with skim milk powder and kappa-carrageenan was also studied. These aggregates were found to be stable during heating due to the unchanged ionic environment. Therefore, incorporation of powdered aggregates of casein micelles and kappa-carrageenan into products would require the addition of whey permeate or calcium after reconstitution for stability during subsequent heating. PMID:20629864

  17. Friability and aggregate stability of loamy soil after 5 years of biochar application

    NASA Astrophysics Data System (ADS)

    Utomo, Wani; Ganika, Shaory; Wisnubroto, Erwin; Islami, Titiek

    2016-04-01

    The effect of biochar application on soil friability and aggregate stability of loamy soil was studied at Brawijaya University field experimental station, Jatikerto, Malang, Indonesia. The soil has been planted with cassava for 4 years continuously and 1 year planted with maiz. The biochar applied was made from cassava stem and farm yard manure. It was found that biochar application, either made from cassava stem or farm yard manure improved soil qualities. Soil applied with biochar was more friable compared to that of the no biochar soil, although biochar application did not influence Atterberg limits. It seems that the higher friability of biochar applied soil was associated with the higher soil organic matter. It was found that until 5 years application, the biochar treated soil had a higher soil organic matter content. Soil applied with biochar possessed a better soil aggregate stability, both dry and wet stability. This was shown by the higher aggregate mean weight diameter (MWD) of biochar applied soil. The cassava biochar applied soil had MWD of 2.22 mm (dry stability) and 1.56 mm (wet stability), whereas the control soil had MWD of 1.45 mm (dry stability) and 1.25 (wet stability). There was a significant positive correlation between soil friability and dry aggregate stability. The biochar applied soils also had higher soil permeability. Key words: soil qualities, soil physical properties, Atterberg limits, hydraulic conductivity

  18. Intergranular stress distributions in polycrystalline aggregates of irradiated stainless steel

    NASA Astrophysics Data System (ADS)

    Hure, J.; El Shawish, S.; Cizelj, L.; Tanguy, B.

    2016-08-01

    In order to predict InterGranular Stress Corrosion Cracking (IGSCC) of post-irradiated austenitic stainless steel in Light Water Reactor (LWR) environment, reliable predictions of intergranular stresses are required. Finite elements simulations have been performed on realistic polycrystalline aggregate with recently proposed physically-based crystal plasticity constitutive equations validated for neutron-irradiated austenitic stainless steel. Intergranular normal stress probability density functions are found with respect to plastic strain and irradiation level, for uniaxial loading conditions. In addition, plastic slip activity jumps at grain boundaries are also presented. Intergranular normal stress distributions describe, from a statistical point of view, the potential increase of intergranular stress with respect to the macroscopic stress due to grain-grain interactions. The distributions are shown to be well described by a master curve once rescaled by the macroscopic stress, in the range of irradiation level and strain considered in this study. The upper tail of this master curve is shown to be insensitive to free surface effect, which is relevant for IGSCC predictions, and also relatively insensitive to small perturbations in crystallographic texture, but sensitive to grain shapes.

  19. Stabilizing Off-pathway Oligomers by Polyphenol Nanoassemblies for IAPP Aggregation Inhibition

    PubMed Central

    Nedumpully-Govindan, Praveen; Kakinen, Aleksandr; Pilkington, Emily H.; Davis, Thomas P.; Chun Ke, Pu; Ding, Feng

    2016-01-01

    Experimental studies have shown that many naturally occurring polyphenols have inhibitory effect on the aggregation of several proteins. Here, we use discrete molecular dynamics (DMD) simulations and high-throughput dynamic light scattering (DLS) experiments to study the anti-aggregation effects of two polyphenols, curcumin and resveratrol, on the aggregation of islet amyloid polypeptide (IAPP or amylin). Our DMD simulations suggest that the aggregation inhibition is caused by stabilization of small molecular weight IAPP off-pathway oligomers by the polyphenols. Our analysis indicates that IAPP-polyphenol hydrogen bonds and π-π stacking combined with hydrophobic interactions are responsible for the stabilization of oligomers. The presence of small oligomers is confirmed with DLS measurements in which nanometer-sized oligomers are found to be stable for up to 7.5 hours, the time frame within which IAPP aggregates in the absence of polyphenols. Our study offers a general anti-aggregation mechanism for polyphenols, and further provides a computational framework for the future design of anti-amyloid aggregation therapeutics. PMID:26763863

  20. Stabilizing Off-pathway Oligomers by Polyphenol Nanoassemblies for IAPP Aggregation Inhibition.

    PubMed

    Nedumpully-Govindan, Praveen; Kakinen, Aleksandr; Pilkington, Emily H; Davis, Thomas P; Chun Ke, Pu; Ding, Feng

    2016-01-01

    Experimental studies have shown that many naturally occurring polyphenols have inhibitory effect on the aggregation of several proteins. Here, we use discrete molecular dynamics (DMD) simulations and high-throughput dynamic light scattering (DLS) experiments to study the anti-aggregation effects of two polyphenols, curcumin and resveratrol, on the aggregation of islet amyloid polypeptide (IAPP or amylin). Our DMD simulations suggest that the aggregation inhibition is caused by stabilization of small molecular weight IAPP off-pathway oligomers by the polyphenols. Our analysis indicates that IAPP-polyphenol hydrogen bonds and π-π stacking combined with hydrophobic interactions are responsible for the stabilization of oligomers. The presence of small oligomers is confirmed with DLS measurements in which nanometer-sized oligomers are found to be stable for up to 7.5 hours, the time frame within which IAPP aggregates in the absence of polyphenols. Our study offers a general anti-aggregation mechanism for polyphenols, and further provides a computational framework for the future design of anti-amyloid aggregation therapeutics. PMID:26763863

  1. Medium-term evolution of water repellency and aggregate stability in Mediterranean calcareous soils after wildfire

    NASA Astrophysics Data System (ADS)

    Gordillo-Rivero, Ángel; García-Moreno, Jorge; Zavala, Lorena M.; Jordán, Antonio; Granged, Arturo JP; Gil, Juan

    2013-04-01

    Wildfires are a common feature of Mediterranean ecosystems due to environmental factors and anthropic influence, especially in those areas where land use change and the development of touristic infrastructures are more intense. Wildfires induce a series of soil changes affecting their physical and chemical properties and the hydrological and erosive response. Two of the properties that are commonly affected by burning are soil water repellency (WR) and aggregate stability (AS). Both properties play an important role in the hydrological response of soils and other processes, and may be used as indices for assessing burn severity (Gordillo-Rivero et al., 2013). OBJECTIVES The field study was carried out between August 2006 (date of burning) and August 2011 with the following objectives: [i] to study the changes in SWR and AS immediately after fire and in the medium-term (6 years after burning) and its distribution within aggregate size fractions (<2, 1-2, 0.5-1 and 0.25-0.5 mm), [ii] to assess the relationships between postfire AS and WR, and [iii] to investigate interactions between AS and WR and different factors (site, time since burning, lithology and vegetation type) in calcareous Mediterranean soils. METHODS Five areas affected by wildfires during summer 2006 were selected for this research. Vegetation was characterized by grassland and Mediterranean shrubland. Soils were calcareous, with loam to clayey texture. As shown from adjacent areas, soils were wettable or slightly water-repellent immediately before burning. Soil WR and AS were measured in soil samples (0-15 mm deep) in fine earth (<2 mm) and aggregate sieve fractions (1-2, 0.5-1 and 0.25-0.5 mm). WR was assessed using the WDPT test, and AS was determined as the percentage of stable aggregates after laboratory rainfall simulation. RESULTS Both properties showed different tendencies in different aggregate size fractions. Results showed that soil WR was induced in wettable soils or enhanced in slightly or

  2. The neuronal extracellular matrix restricts distribution and internalization of aggregated Tau-protein.

    PubMed

    Suttkus, A; Holzer, M; Morawski, M; Arendt, T

    2016-01-28

    Alzheimer's disease (AD) is a chronic degenerative disorder characterized by fibrillary aggregates of Aß and Tau-protein. Formation and progression of these pathological hallmarks throughout the brain follow a specific spatio-temporal pattern which provides the basis for neuropathological staging. Previously, we could demonstrate that cortical and subcortical neurons are less frequently affected by neurofibrillary degeneration if they are enwrapped by a specialized form of the hyaluronan-based extracellular matrix (ECM), the so called 'perineuronal net' (PN). PNs are composed of large aggregating chondroitin sulfate proteoglycans connected to a hyaluronan backbone, stabilized by link proteins and cross-linked via tenascin-R. Recently, PN-associated neurons were shown to be better protected against iron-induced neurodegeneration compared to neurons without PN, indicating a neuroprotective function. Here, we investigated the role of PNs in distribution and internalization of exogenous Tau-protein by using organotypic slice cultures of wildtype mice as well as mice lacking the ECM-components aggrecan, HAPLN1 or tenascin-R. We could demonstrate that PNs restrict both distribution and internalization of Tau. Accordingly, PN-ensheathed neurons were less frequently affected by Tau-internalization, than neurons without PN. Finally, the PNs as well as their three investigated components were shown to modulate the processes of distribution as well as internalization of Tau. PMID:26621125

  3. Server-side Filtering and Aggregation within a Distributed Environment

    NASA Astrophysics Data System (ADS)

    Currey, J. C.; Bartle, A.

    2015-12-01

    Intercalibration, validation, and data mining use cases require more efficient access to the massive volumes of observation data distributed across multiple agency data centers. The traditional paradigm of downloading large volumes of data to a centralized server or desktop computer for analysis is no longer viable. More analysis should be performed within the host data centers using server-side functions. Many comparative analysis tasks require far less than 1% of the available observation data. The Multi-Instrument Intercalibration (MIIC) Framework provides web services to find, match, filter, and aggregate multi-instrument observation data. Matching measurements from separate spacecraft in time, location, wavelength, and viewing geometry is a difficult task especially when data are distributed across multiple agency data centers. Event prediction services identify near coincident measurements with matched viewing geometries near orbit crossings using complex orbit propagation and spherical geometry calculations. The number and duration of event opportunities depend on orbit inclinations, altitude differences, and requested viewing conditions (e.g., day/night). Event observation information is passed to remote server-side functions to retrieve matched data. Data may be gridded, spatially convolved onto instantaneous field-of-views, or spectrally resampled or convolved. Narrowband instruments are routinely compared to hyperspectal instruments such as AIRS and CRIS using relative spectral response (RSR) functions. Spectral convolution within server-side functions significantly reduces the amount of hyperspectral data needed by the client. This combination of intelligent selection and server-side processing significantly reduces network traffic and data to process on local servers. OPeNDAP is a mature networking middleware already deployed at many of the Earth science data centers. Custom OPeNDAP server-side functions that provide filtering, histogram analysis (1D

  4. Trifluoroethanol modulates α-synuclein amyloid-like aggregate formation, stability and dissolution.

    PubMed

    Di Carlo, Maria Giovanna; Vetri, Valeria; Buscarino, Gianpiero; Leone, Maurizio; Vestergaard, Bente; Foderà, Vito

    2016-09-01

    The conversion of proteins into amyloid fibrils and other amyloid-like aggregates is closely connected to the onset of a series of age-related pathologies. Upon changes in environmental conditions, amyloid-like aggregates may also undergo disassembly into oligomeric aggregates, the latter being recognized as key effectors in toxicity. This indicates new possible routes for in vivo accumulation of toxic species. In the light of the recognized implication of α-Synuclein (αSN) in Parkinson's disease, we present an experimental study on supramolecular assembly of αSN with a focus on stability and disassembly paths of such supramolecular aggregate species. Using spectroscopic techniques, two-photon microscopy, small-angle X-ray scattering and atomic force microscopy, we report evidences on how the stability of αSN amyloid-like aggregates can be altered by changing solution conditions. We show that amyloid-like aggregate formation can be induced at high temperature in the presence of trifluoroethanol (TFE). Moreover, sudden disassembly or further structural reorganisation toward higher hierarchical species can be induced by varying TFE concentration. Our results may contribute in deciphering fundamental mechanisms and interactions underlying supramolecular clustering/dissolution of αSN oligomers in cells. PMID:27372900

  5. Preparation of biocatalytic nanofibres with high activity and stability via enzyme aggregate coating on polymer nanofibres

    NASA Astrophysics Data System (ADS)

    Kim, Byoung Chan; Nair, Sujith; Kim, Jungbae; Kwak, Ja Hun; Grate, Jay W.; Kim, Seong H.; Gu, Man Bock

    2005-07-01

    We have developed a unique approach for the fabrication of enzyme aggregate coatings on the surfaces of electrospun polymer nanofibres. This approach employs covalent attachment of seed enzymes onto nanofibres consisting of a mixture of polystyrene and poly(styrene-co-maleic anhydride), followed by a glutaraldehyde (GA) treatment that cross-links additional enzyme molecules and aggregates from the solution onto the covalently attached seed enzyme molecules. These cross-linked enzyme aggregates, covalently attached to the nanofibres via the linkers of seed enzyme molecules, are expected to improve the enzyme activity due to increased enzyme loading, and also the enzyme stability. To demonstrate the principle, we coated α-chymotrypsin (CT) on nanofibres electrospun from a mixture of polystyrene and poly(styrene-co-maleic anhydride). The initial activity of CT-aggregate-coated nanofibres was nine times higher than nanofibres with just a layer of covalently attached CT molecules. The enzyme stability of CT-aggregate-coated nanofibres was greatly improved with essentially no measurable loss of activity over a month of observation under rigorous shaking conditions. This new approach of enzyme coating on nanofibres, yielding high activity and stability, creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, and biosensors.

  6. Effect of cover crops management in aggregate stability of a vineyard in Central Spain.

    NASA Astrophysics Data System (ADS)

    Ruiz-Colmenero, Marta; Bienes, Ramon; Marques, Maria-Jose

    2010-05-01

    Our research focuses in cover crop treatments used to avoid soil degradation in hillsides. The soil-plant interaction can influence the soil structure. In this study we pay special attention to the soil aggregates in a hillside vineyard (average slope of 14%), under Mediterranean semiarid climatic conditions (average annual temperature 14°C, annual rainfall around 400 mm), in the South East of Madrid located at an altitude of 800 masl. The soil classification according to USDA (2006) is Calcic Haploxeralf. Its particle size yields 58% sand, 18% silt and 24% clay, so that according to USDA classification it is a sandy clay loam soil. The bulk density of the first 10 cm of topsoil is 1.2 g cm-3 and its real density is 2.4 g cm-3. It has low organic matter content: 1.3 ± 0.1% (Walkley and Black, 1934). Three treatments were tested: i) traditional tillage ii) soil covered by Brachypodium distachyon allowing self-sowing, and iii) soil covered by Secale cereale, mown in early spring. In each treatment the aggregate stability was measured. These cover crops were established in a 2m wide strip at the center of the rows. We have collected samples of soil for each treatment along 2 years and we analyzed the aggregates, trying to find changes in their stability. Aggregates of 4 to 4.75 mm diameter were selected by dry sieving. The stability was measured with Drop-test: CND and TDI (Imeson and Vis, 1984). An improvement in the stability of aggregates was observed after two years of cover crop treatment. There are significant differences among the treatments analyzed with Kolmogorov-Smirnov test, being Brachypodium distachyon the treatment with more stable aggregates, it is necessary a mean higher than 8 drops to disintegrate every aggregate completely. Organic carbon was also measured by Loss on Ignition method (Schulte and Hopkins, 1996). This method can lead to an overestimation of the organic matter in soil samples but is considered suitable for aggregates. Again, those

  7. How hydrophobically modified chitosans are stabilized by biocompatible lipid aggregates.

    PubMed

    Ruocco, Nino; Frielinghaus, Heide; Vitiello, Giuseppe; D'Errico, Gerardino; Leal, Leslie G; Richter, Dieter; Ortona, Ornella; Paduano, Luigi

    2015-08-15

    Nanostructured hydrogels composed by biocompatible molecules are formulated and characterized. They are based on a polymer network formed by hydrophobically modified chitosans (HMCHIT or CnCHIT) in which vesicles of monoolein (MO) and oleic acid or sodium oleate (NaO), depending on pH, are embedded. The best conditions for gel formation, in terms of pH, length of the hydrophobic moieties of chitosan, and weight proportion among the three components were estimated by visual inspection of a large number of samples. Among all possible combinations, the system C12CHIT-MO-NaO in the weight proportion (1:1:1) is optimal for the formation of a well-structured gel-like system, which is also confirmed by rheological experiments. Electron paramagnetic resonance (EPR) measurements unambiguously show the presence of lipid bilayers in this mixture, indicating that MO-NaO vesicles are stabilized by C12CHIT even at acid pH. A wide small angle neutron scattering investigation performed on several ternary systems of general formula CnCHIT-MO-NaO shows that the length of the hydrophobic tail Cn is a crucial parameter in stabilizing the polymer network in which lipid vesicles are embedded. Structural parameters for the vesicles are determined by using a multilamellar model that admits the possibility of displacement of the center of each shell. The number of shells tends to be reduced by increasing the polymer content. The thickness and the distance between consecutive lamellae are not influenced by either the polymer or MO-NaO concentration. The hydrogel presented in this work, being fully biocompatible and nanostructured, is well-suited for possible application in drug delivery. PMID:25935287

  8. Aggregate structure and stability linked to carbon dynamics in a south Chilean Andisol

    NASA Astrophysics Data System (ADS)

    Huygens, D.; Boeckx, P.; van Cleemput, O.; Godoy, R.; Oyarzún, C.

    2005-02-01

    The extreme vulnerability of soil organic carbon to climate and land use change emphasizes the need for further research in different terrestrial ecosystems. We have studied the aggregate stability and carbon dynamics in a chronosequence of three different land uses in a south Chilean Andisols: a second growth Nothofagus obliqua forest (SGFOR), a grassland (GRASS) and a Pinus radiata plantation (PINUS). The aim of this study was to investigate the role of Al as soil organic matter stabilizing agent in this Andisol. In a case study, we linked differences in carbon dynamics between the three land use treatments to physical protection and recalcitrance of the soil organic matter (SOM). In this study, C aggregate stability and dynamics were studied using size and density fractionation experiments of the SOM, δ13C and total carbon analysis of the different SOM fractions, and mineralization measurements. The results showed that electrostatic attractions between and among Al-oxides and clay minerals are mainly responsible for the stabilization of soil aggregates and the physical protection of the enclosed soil organic carbon. Whole soil C mineralization rate constants were highest for SGFOR and PINUS, followed by GRASS. In contrast, incubation experiments of isolated macro organic matter fractions showed that the recalcitrance of the SOM decreased in another order: PINUS > SGFOR > GRASS. We concluded that physical protection of soil aggregates was the main process determining whole soil C mineralization. Land use changes affected soil organic carbon dynamics in this south Chilean Andisol by altering soil pH and consequently available Al.

  9. SOIL ORGANIC MATTER AND AGGREGATE STABILITY UNDER CONTRASTING MANAGEMENT IN EASTERN SOUTH DAKOTA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil aggregation and stability is an important soil attribute influencing erodibility and hydraulic characteristics of arable lands and is linked to quantity (and quality) of soil organic matter (SOM). Objectives were to 1) determine effect of management on components of SOM and 2) elucidate relatio...

  10. Organic Matter and Water Stability of Field Aggregates Affected by Tillage in South Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased tillage intensity has been associated with declines in soil organic matter (SOM). A case study was conducted (2001-2004) on adjacent farms (both in a two-year crop rotation) in eastern South Dakota to quantify tillage effects on components of SOM and soil aggregate stability. One farm used...

  11. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    NASA Astrophysics Data System (ADS)

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  12. Co-chaperone CHIP stabilizes aggregate-prone malin, a ubiquitin ligase mutated in Lafora disease.

    PubMed

    Rao, Sudheendra N R; Sharma, Jaiprakash; Maity, Ranjan; Jana, Nihar Ranjan

    2010-01-01

    Lafora disease (LD) is an autosomal recessive neurodegenerative disorder caused by mutation in either the dual specificity phosphatase laforin or ubiquitin ligase malin. A pathological hallmark of LD is the accumulation of cytoplasmic polyglucosan inclusions commonly known as Lafora bodies in both neuronal and non-neuronal tissues. How mutations in these two proteins cause disease pathogenesis is not well understood. Malin interacts with laforin and recruits to aggresomes upon proteasome inhibition and was shown to degrade misfolded proteins. Here we report that malin is spontaneously misfolded and tends to be aggregated, degraded by proteasomes, and forms not only aggresomes but also other cytoplasmic and nuclear aggregates in all transfected cells upon proteasomal inhibition. Malin also interacts with Hsp70. Several disease-causing mutants of malin are comparatively more unstable than wild type and form aggregates in most transfected cells even without the inhibition of proteasome function. These cytoplasmic and nuclear aggregates are immunoreactive to ubiquitin and 20 S proteasome. Interestingly, progressive proteasomal dysfunction and cell death is also most frequently observed in the mutant malin-overexpressed cells compared with the wild-type counterpart. Finally, we demonstrate that the co-chaperone carboxyl terminus of the Hsc70-interacting protein (CHIP) stabilizes malin by modulating the activity of Hsp70. All together, our results suggest that malin is unstable, and the aggregate-prone protein and co-chaperone CHIP can modulate its stability. PMID:19892702

  13. Stability and Aggregation Kinetics of Titania Nanomaterials under Environmentally Realistic Conditions.

    PubMed

    Raza, Ghulam; Amjad, Muhammad; Kaur, Inder; Wen, Dongsheng

    2016-08-16

    Nanoparticle morphology is expected to play a significant role in the stability, aggregation behavior, and ultimate fate of engineered nanomaterials in natural aquatic environments. The aggregation kinetics of ellipsoidal and spherical titanium dioxide (TiO2) nanoparticles (NPs) under different surfactant loadings, pH values, and ionic strengths were investigated in this study. The stability results revealed that alteration of surface charge was the stability determining factor. Among five different surfactants investigated, sodium citrate and Suwannee river fulvic acid (SRFA) were the most effective stabilizers. It was observed that both types of NPs were more stable in monovalent salts (NaCl and NaNO3) as compared with divalent salts (Ca(NO3)2 and CaCl2). The aggregation of spherical TiO2 NPs demonstrated a strong dependency on the ionic strength regardless of the presence of mono or divalent salts; while the ellipsoids exhibited a lower dependency on the ionic strength but was more stable. This work acts as a benchmark study toward understanding the ultimate fate of stabilized NPs in natural environments that are rich in Ca(CO3)2, NaNO3, NaCl, and CaCl2 along with natural organic matters. PMID:27228447

  14. Stability of Iowa mutant and wild type Aβ-peptide aggregates

    SciTech Connect

    Alred, Erik J.; Scheele, Emily G.; Berhanu, Workalemahu M.; Hansmann, Ulrich H. E.

    2014-11-07

    Recent experiments indicate a connection between the structure of amyloid aggregates and their cytotoxicity as related to neurodegenerative diseases. Of particular interest is the Iowa Mutant, which causes early-onset of Alzheimer's disease. While wild-type Amyloid β-peptides form only parallel beta-sheet aggregates, the mutant also forms meta-stable antiparallel beta sheets. Since these structural variations may cause the difference in the pathological effects of the two Aβ-peptides, we have studied in silico the relative stability of the wild type and Iowa mutant in both parallel and antiparallel forms. We compare regular molecular dynamics simulations with such where the viscosity of the samples is reduced, which, we show, leads to higher sampling efficiency. By analyzing and comparing these four sets of all-atom molecular dynamics simulations, we probe the role of the various factors that could lead to the structural differences. Our analysis indicates that the parallel forms of both wild type and Iowa mutant aggregates are stable, while the antiparallel aggregates are meta-stable for the Iowa mutant and not stable for the wild type. The differences result from the direct alignment of hydrophobic interactions in the in-register parallel oligomers, making them more stable than the antiparallel aggregates. The slightly higher thermodynamic stability of the Iowa mutant fibril-like oligomers in its parallel organization over that in antiparallel form is supported by previous experimental measurements showing slow inter-conversion of antiparallel aggregates into parallel ones. Knowledge of the mechanism that selects between parallel and antiparallel conformations and determines their relative stability may open new avenues for the development of therapies targeting familial forms of early-onset Alzheimer's disease.

  15. EFFECT OF SOIL AGGREGATE SIZE DISTRIBUTION ON WATER RETENTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative information on soil water retention is in demand in hydrology, agrometeorology, agronomy, contaminant transport, and other soil-related disciplines of earth and environmental sciences. Soil aggregate composition is an important characteristic of soil structure and, as such, has been exp...

  16. Anionic Polyacrylamide (PAM) and Extracellular Polysaccharides (EPS) effects on flocculation and aggregate stability of soil

    NASA Astrophysics Data System (ADS)

    Albalasmeh, A. A.; Gharaibeh, M. A.; Ghezzehei, T. A.

    2015-12-01

    Soil structure influences many soil properties including aeration, water retention, drainage, bulk density, and resistance to erosion and indirectly influences most biological and chemical processes that occur in and around soil. A significant amount of literature showed that PAM plays an important role to control erosion. However, researchers are looking for more natural alternative for PAM. This study evaluated two anionic polymers including low and high molecular weight (MW), root exudates and bacterial exudates. We evaluated their influence on the rate and efficacy of colloid flocculation and the percent of water stable aggregates. We found that PAM was more effective than EPS in flocculating the colloids and all polymers increased the percent of stable soil aggregates although the PAM was more effective. These data suggest that the EPS would be less effective than PAM for reducing water erosion owing to its lesser flocculation and aggregate stabilizing potential.

  17. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices.

    PubMed

    Keller, Arturo A; Wang, Hongtao; Zhou, Dongxu; Lenihan, Hunter S; Cherr, Gary; Cardinale, Bradley J; Miller, Robert; Ji, Zhaoxia

    2010-03-15

    There is a pressing need for information on the mobility of nanoparticles in the complex aqueous matrices found in realistic environmental conditions. We dispersed three different metal oxide nanoparticles (TiO(2), ZnO and CeO(2)) in samples taken from eight different aqueous media associated with seawater, lagoon, river, and groundwater, and measured their electrophoretic mobility, state of aggregation, and rate of sedimentation. The electrophoretic mobility of the particles in a given aqueous media was dominated by the presence of natural organic matter (NOM) and ionic strength, and independent of pH. NOM adsorbed onto these nanoparticles significantly reduces their aggregation, stabilizing them under many conditions. The transition from reaction to diffusion limited aggregation occurs at an electrophoretic mobility from around -2 to -0.8 microm s(-1) V(-1) cm. These results are key for designing and interpreting nanoparticle ecotoxicity studies in various environmental conditions. PMID:20151631

  18. Thrombin action decreases acetylcholine receptor aggregate number and stability in cultured mouse myotubes.

    PubMed

    Davenport, R W; Lanuza, M; Kim, S; Jia, M; Snyder, E; Nelson, P G

    2000-08-30

    Neurons develop and make very stable, long-term synaptic connections with other nerve cells and with muscle. Synaptic stability at the neuromuscular junction changes over development in that a proliferation of synaptic input are made to individual myotubes and synapses from all but one neuron are lost during development. In an established co-culture paradigm in which spinal motoneurons synaptically contact myotubes, thrombin and associated protease inhibitors have been shown to affect the loss of functional synaptic contacts [6]. Evidence has not been provided which clearly demonstrate whether protease/protease inhibitors affect either the pre- or postsynaptic terminal, or both. In an effort to determine whether these reagents directly affect postsynaptic receptors on myotubes, myotubes were cultured in the absence of neurons and the spontaneous presence and stability of aggregates of acetylcholine receptors (AChR) in control and thrombin-containing media were evaluated. In dishes fixed after treatment and in dishes in which individual aggregates were observed live, thrombin action appeared to increase loss of AChR aggregates over time. Hirudin, a specific inhibitor of the thrombin protease, diminished this loss. Neither reagent affected the overall incorporation or degradation of AChR; therefore, it appears these protease/protease inhibitors affect the state of AChR aggregation. PMID:10960680

  19. Glycosaminoglycan-mediated selective changes in the aggregation states, zeta potentials, and intrinsic stability of liposomes.

    PubMed

    Nyren-Erickson, Erin K; Haldar, Manas K; Totzauer, Jessica R; Ceglowski, Riley; Patel, Dilipkumar S; Friesner, Daniel L; Srivastava, D K; Mallik, Sanku

    2012-11-20

    Though the aggregation of glycosaminoglycans (GAGs) in the presence of liposomes and divalent cations has been previously reported, the effects of different GAG species and minor changes in GAG composition on the aggregates that are formed are yet unknown. If minor changes in GAG composition produce observable changes in the liposome aggregate diameter or zeta potential, such a phenomenon may be used to detect potentially dangerous oversulfated contaminants in heparin. We studied the mechanism of the interactions between heparin and its oversulfated glycosaminoglycan contaminants with liposomes. Herein, we demonstrate that Mg(2+) acts to shield the incoming glycosaminoglycans from the negatively charged phosphate groups of the phospholipids and that changes in the aggregate diameter and zeta potential are a function of the glycosaminoglycan species and concentration as well as the liposome bilayer composition. These observations are supported by TEM studies. We have shown that the organizational states of the liposome bilayers are influenced by the presence of GAG and excess Mg(2+), resulting in a stabilizing effect that increases the T(m) value of DSPC liposomes; the magnitude of this effect is also dependent on the GAG species and concentration present. There is an inverse relationship between the percent change in aggregate diameter and the percent change in aggregate zeta potential as a function of GAG concentration in solution. Finally, we demonstrate that the diameter and zeta potential changes in POPC liposome aggregates in the presence of different oversulfated heparin contaminants at low concentrations allow for an accurate detection of oversulfated chondroitin sulfate at concentrations of as low as 1 mol %. PMID:23102026

  20. Role of water repellency in aggregate stability of cultivated soils under simulated raindrop impact

    NASA Astrophysics Data System (ADS)

    Kořenková, Lucia; Matúš, Peter

    2015-07-01

    Soil aggregate stability (AS) is an important indicator of soil physical quality. For the purpose of this research it was hypothesized that particular properties such as water repellency (WR) influence soil aggregation and AS. Directly after sampling, WR was detected for three soils, after a week of air-drying two of these soils still showed some resistance to penetration by a water drop placed on the surface (WDPT test). The study examines AS of air-dried texturally different aggregates of size 0.25-0.5 mm taken from surface layers (5-15 cm depth) of six agriculturally used soils. The procedure involves exposure of soil aggregates to direct impact of water drops. Results showed that soil AS increases in order: cutanic Luvisol (siltic) < haplic Chernozem < calcic mollic Fluvisol < mollic grumic Vertisol (pellic) < mollic Fluvisol (calcaric) < gleyic Fluvisol (eutric). Gradual increase in AS can be explained by the increase in soil organic matter content and its hydrophobic properties. Although WR has been most commonly observed in soils under forests and grass cover, the results confirmed that cultivated soils may also create water-stable aggregates, especially in the case when their organic matter induces WR under particular moisture conditions.

  1. Effects of the net charge on abundance and stability of supramolecular surfactant aggregates in gas phase.

    PubMed

    Bongiorno, David; Ceraulo, Leopoldo; Giorgi, Gianluca; Indelicato, Serena; Ferrugia, Mirella; Ruggirello, Angela; Liveri, Vincenzo Turco

    2011-02-01

    Self-assembling of amphiphilic molecules under electrospray ionization (ESI) conditions is characterized by quite unexpected phenomenology. The noticeable differences with respect to the condensed phase are attributable to the absence of the surfactant-solvent interactions, the presence of net charge in the aggregates, and the strong deviation from equilibrium conditions. Aiming to investigate the effects of the net charge on abundance and stability of supramolecular surfactant aggregates, positively and negatively charged aggregates of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and sodium methane sulfonate (MetS), butane sulfonate (ButS) and octane sulfonate (OctS) have been studied by ESI mass spectrometry, energy resolved mass spectrometry and density functional theory calculations. The negatively charged aggregates are found to be less stable than their positive counterparts. The results are consistent with a self-assembling pattern dominated by electrostatic interactions involving the counterions and head groups of the investigated amphiphilic compounds while the alkyl chains point outwards, protecting the aggregates from unlimited growth processes. PMID:21259391

  2. Correlation of Red Blood Cell Aggregate Size with Transmitted Light Intensity Distributions

    NASA Astrophysics Data System (ADS)

    Hitt, Darren L.

    1998-11-01

    Under sufficiently low shear rates, such as those encountered in the microcirculation, human red blood cells are known to form aggregate structures (`rouleaux'). These aggregates may range in size from a simple chain containing only a few cells to complex three-dimensional structures containing tens of cells. Previous studies have attempted to characterize the aggregate size by examining the spatial distribution of transmitted light intensity resulting from transillumination of the blood flow. For experiments performed in vitro and in vivo, spectral analysis of the transmitted light intensities has shown that the presence of aggregates in the flow can linked with an increase in the spectral power at small wavenumbers. The magnitudes of the affected wavenumbers correspond to structures considerably larger than individual cells. A precise numerical correlation, however, is difficult to establish. In this work, computer simulations of aggregating blood flow are used along with statistical considerations in an attempt to better correlate the observed spectral trends with actual aggregate size.

  3. [Effect of Biochar Application on Soil Aggregates Distribution and Moisture Retention in Orchard Soil].

    PubMed

    An, Yan; Ji, Qiang; Zhao, Shi-xiang; Wang, Xu-dong

    2016-01-15

    Applying biochar to soil has been considered to be one of the important practices in improving soil properties and increasing carbon sequestration. In order to investigate the effects of biochar application on soil aggregates distribution and its organic matter content and soil moisture constant in different size aggregates, various particle-size fractions of soil aggregates were obtained with the dry-screening method. The results showed that, compared to the treatment without biochar (CK), the application of biochar reduced the mass content of 5-8 mm and < 0.25 mm soil aggregates at 0-10 cm soil horizon, while increased the content of 1-2 mm and 2-5 mm soil aggregates at this horizon, and the content of 1-2 mm aggregates significantly increased along with the rates of biochar application. The mean diameter of soil aggregates was reduced by biochar application at 0-10 cm soil horizon. However, the effect of biochar application on the mean diameter of soil aggregates at 10-20 cm soil horizon was not significant. Compared to CK, biochar application significantly increased soil organic carbon content in aggregates, especially in 1-2 mm aggregates which was increased by > 70% compared to CK. Both the water holding capacity and soil porosity were significantly increased by biochar application. Furthermore, the neutral biochar was more effective than alkaline biochar in increasing soil moisture. PMID:27078970

  4. Microbial life in variably saturated soil aggregates - upscaling gaseous fluxes across distributed aggregate sizes in a soil profile

    NASA Astrophysics Data System (ADS)

    Or, D.; Ebrahimi, A.

    2015-12-01

    Recent studies revealed highly dynamic and rich behavior of microbial communities inhabiting soil aggregates. Modeling of these processes in three dimensional (unsaturated) pore networks provided insights into the unique conditions essential for coexistence of oxic and anoxic microsites that shape (and respond to) aerobic and anaerobic microbial communities. Soil hydration dynamics continuously alter the spatial extent of anoxic niches (hotspots) that flicker in time (hot moments) and support anaerobic microbial activity even in unsaturated and oxic soil profiles. We extend a model for individual-based microbial community growth in 3-D angular pore networks mimicking soil aggregates of different sizes placed in different ambient boundary conditions reflecting profiles of water, carbon, and oxygen in soil. An upscaling scheme was developed to account for aerobic and anaerobic activity within each aggregate class size and soil depth integrated over the aggregate size distribution in the soil for a range of hydration conditions. Results show that dynamic adjustments in microbial community composition affect CO2 and N2O production rates in good agreement with experimental data. The modeling approach addresses a long-standing challenge of linking hydration conditions to dynamic adjustments of microbial communities within "hotspots" with the emergence of "hot moments" reflecting high rates of denitrification and organic matter decomposition.

  5. Field soil aggregate stability kit for soil quality and rangeland health evaluations

    USGS Publications Warehouse

    Herrick, J.E.; Whitford, W.G.; de Soyza, A. G.; Van Zee, J. W.; Havstad, K.M.; Seybold, C.A.; Walton, M.

    2001-01-01

    Soil aggregate stability is widely recognized as a key indicator of soil quality and rangeland health. However, few standard methods exist for quantifying soil stability in the field. A stability kit is described which can be inexpensively and easily assembled with minimal tools. It permits up to 18 samples to be evaluated in less than 10 min and eliminates the need for transportation, minimizing damage to soil structure. The kit consists of two 21??10.5??3.5 cm plastic boxes divided into eighteen 3.5??3.5 cm sections, eighteen 2.5-cm diameter sieves with 1.5-mm distance openings and a small spatula used for soil sampling. Soil samples are rated on a scale from one to six based on a combination of ocular observations of slaking during the first 5 min following immersion in distilled water, and the percent remaining on a 1.5-mm sieve after five dipping cycles at the end of the 5-min period. A laboratory comparison yielded a correlation between the stability class and percent aggregate stability based on oven dry weight remaining after treatment using a mechanical sieve. We have applied the method in a wide variety of agricultural and natural ecosystems throughout western North America, including northern Mexico, and have found that it is highly sensitive to differences in management and plant community composition. Although the field kit cannot replace the careful laboratory-based measurements of soil aggregate stability, it can clearly provide valuable information when these more intensive procedures are not possible.

  6. Side-chain hydrophobicity and the stability of Aβ16–22 aggregates

    PubMed Central

    Berhanu, Workalemahu M; Hansmann, Ulrich H E

    2012-01-01

    Recent mutagenesis studies using the hydrophobic segment of Aβ suggest that aromatic π-stacking interactions may not be critical for fibril formation. We have tested this conjecture by probing the effect of Leu, Ile, and Ala mutation of the aromatic Phe residues at positions 19 and 20, on the double-layer hexametric chains of Aβ fragment Aβ16–22 using explicit solvent all-atom molecular dynamics. As these simulations rely on the accuracy of the utilized force fields, we first evaluated the dynamic and stability dependence on various force fields of small amyloid aggregates. These initial investigations led us to choose AMBER99SB-ILDN as force field in multiple long molecular dynamics simulations of 100 ns that probe the stability of the wild-type and mutants oligomers. Single-point and double-point mutants confirm that size and hydrophobicity are key for the aggregation and stability of the hydrophobic core region (Aβ16–22). This suggests as a venue for designing Aβ aggregation inhibitors the substitution of residues (especially, Phe 19 and 20) in the hydrophobic region (Aβ16–22) with natural and non-natural amino acids of similar size and hydrophobicity. PMID:23015407

  7. Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability.

    PubMed

    Hartley, William; Riby, Philip; Waterson, James

    2016-10-01

    Previous studies have demonstrated both beneficial and detrimental effects on soil properties from biochar incorporation. Several biochars, with different feedstock origins, were evaluated for their effectiveness at improving soil quality of a sandy agricultural soil. A pot trial was used to investigate aggregate stability and microbial activity, pore water trace element mobility and micronutrient concentrations in grain of spring wheat after incorporation of three biochars. The feedstocks for biochar production were selected because they were established UK waste products, namely oversize woody material from green waste composting facilities, and rhododendron and soft wood material from forest clearance operations. Biochars were incorporated into the soil at a rate of 5% v/v. Aggregate stability was improved following addition of oversize biochar whilst microbial activity increased in all treatments. Dissolved organic carbon (DOC) concentrations in soil pore water from biochar-treated soils were raised, whilst micronutrient concentrations in wheat grain grown in the treated soils were significantly reduced. It was concluded that incorporation of biochar to temperate agricultural soils requires caution as it may result in reductions of essential grain micronutrients required for human health, whilst the effect on aggregate stability may be linked to organic carbon functional groups on biochar surfaces and labile carbon released from the char into the soil system. PMID:27444723

  8. Interfacial aggregation of a nonionic surfactant: Effect on the stability of silica suspensions

    SciTech Connect

    Giordano-Palmino, F.; Denoyel, R.; Rouquerol, J. . Centre de thermodynamique et Microcalorimetrie)

    1994-06-01

    Nonionic surfactants are in widespread use in technological applications such as flotation, detergency, suspension stabilization (paints, ceramic preparation, pharmaceuticals, cosmetics), and enhanced oil recovery. The adsorption of the nonionic surfactant TX 100 in two silica suspensions (Ludox HS40 and Syton W30) has been studied with the aim of relating the structure of the adsorbed layer to the stability of the suspension. First, a thermodynamic study based on the determination of adsorption isotherms and displacement enthalpies as a function of pH and solid/liquid ratio was carried out and lead to the conclusion that such a surfactant forms micelle-like aggregates on the silica surface. Then, a stability study based on visual observation, turbidimetry, and particle size determination (by photon correlation spectroscopy) was performed in order to determine the TX 100 concentration range in which flocculation occurs. Considering that the surface is covered with micelle-like aggregates in the flocculation range and that the [zeta]-potential (determined by microelectrophoresis) has varied only slightly at the onset of flocculation, it is concluded that the flocculation mechanism is a bridging of particles by surface micelles. This bridging of particles by aggregates similar in size and shape could be an explanation of the presence, in such systems, of optimum flocculation at half surface coverage.

  9. Stabilization of Organic Matter by Interactions with Iron Oxides: Relative Importance of Sorption vs. Aggregation

    NASA Astrophysics Data System (ADS)

    Jin, L.; Berhe, A. A.

    2015-12-01

    Persistence of organic matter in soil is largely determined by the environmental conditions that organic compounds encounter in the environment. The most important stabilization mechanisms for carbon in soil include chemical and physical association of organic compounds with soil minerals. However, to date, we don't have a complete understanding of the relative contribution of each process to carbon stabilization, especially under different soil conditions. To develop better process-level understanding of these stabilization mechanisms, the relative importance of chemical vs. physical mechanisms of carbon stabilization facilitated by iron oxides at different soil solution conditions using a variety of advanced approaches including electron microscopy and infrared spectroscopy is determined. Our preliminary results suggest that aggregation may be the dominant process in mineral-organic associations. These results improve our understanding of factors that regulate persistence of organic matter in soil system.

  10. Formulation of artificial aggregates from dredged harbour sediments for coastline stabilization.

    PubMed

    Brakni, Samira; Abriak, Nor Edine; Hequette, Arnaud

    2009-07-01

    Coastal erosion is a common phenomenon along the shores of the member states of the European Union. In 2004, approximately 20,000 km of coastlines, accounting for 20% of the whole of the EU coastline, were considered particularly affected by this phenomenon. Coastal erosion and shoreline retreat already affect a significant proportion of the French coast, the beaches in the north of France being no exception, and will probably increase during the 21st Century because of climate change. Because erosion is often accentuated by sedimentary deficits, artificial beach replenishment often represents an appropriate engineering solution for coastline stabilization. Meanwhile, large quantities of sediments are dredged every year from ports, with approximately 25 to 45 million tons of sediments (dry matter) per year being dredged for the maintenance of harbours. The purpose of the study presented in this article is to report on the potential use of artificial aggregates formulated with harbour sediments in order to recharge beaches and/or nearshore environments. The manufacture of the aggregates consisted of several stages, beginning with the characterization and the preparation of the sediment before the fabrication of aggregates by extrusion, associating the sediments with a specific hydraulic binder. Various parameters, such as water content of the mixing sediment, the cement content and the shape of the aggregates, were taken into account, in order to ensure the criteria regarding the strength of these aggregates are entirely fulfilled. The first simulations in a wave flume are encouraging and reveal the possibilities for use of the aggregates in coastal engineering. PMID:19705669

  11. Probing the self-assembly and stability of oligohistidine based rod-like micelles by aggregation induced luminescence.

    PubMed

    Frisch, Hendrik; Spitzer, Daniel; Haase, Mathias; Basché, Thomas; Voskuhl, Jens; Besenius, Pol

    2016-06-15

    The synthesis and self-assembly of a new C2-symmetric oligohistidine amphiphile equipped with an aggregation induced emission luminophore is reported. We observe the formation of highly stable and ordered rod-like micelles in phosphate buffered saline, with a critical aggregation concentration below 200 nM. Aggregation induced emission of the luminophore confirms the high stability of the anisotropic assemblies in serum. PMID:26972230

  12. Topsoil and Deep Soil Organic Carbon Concentration and Stability Vary with Aggregate Size and Vegetation Type in Subtropical China.

    PubMed

    Fang, Xiang-Min; Chen, Fu-Sheng; Wan, Song-Ze; Yang, Qing-Pei; Shi, Jian-Min

    2015-01-01

    The impact of reforestation on soil organic carbon (OC), especially in deep layer, is poorly understood and deep soil OC stabilization in relation with aggregation and vegetation type in afforested area is unknown. Here, we collected topsoil (0-15 cm) and deep soil (30-45 cm) from six paired coniferous forests (CF) and broad-leaved forests (BF) reforested in the early 1990s in subtropical China. Soil aggregates were separated by size by dry sieving and OC stability was measured by closed-jar alkali-absorption in 71 incubation days. Soil OC concentration and mean weight diameter were higher in BF than CF. The cumulative carbon mineralization (Cmin, mg CO2-C kg-1 soil) varied with aggregate size in BF and CF topsoils, and in deep soil, it was higher in larger aggregates than in smaller aggregates in BF, but not CF. The percentage of soil OC mineralized (SOCmin, % SOC) was in general higher in larger aggregates than in smaller aggregates. Meanwhile, SOCmin was greater in CF than in BF at topsoil and deep soil aggregates. In comparison to topsoil, deep soil aggregates generally exhibited a lower Cmin, and higher SOCmin. Total nitrogen (N) and the ratio of carbon to phosphorus (C/P) were generally higher in BF than in CF in topsoil and deep soil aggregates, while the same trend of N/P was only found in deep soil aggregates. Moreover, the SOCmin negatively correlated with OC, total N, C/P and N/P. This work suggests that reforested vegetation type might play an important role in soil OC storage through internal nutrient cycling. Soil depth and aggregate size influenced OC stability, and deep soil OC stability could be altered by vegetation reforested about 20 years. PMID:26418563

  13. Soil microbial parameters and stability of soil aggregate fractions under different grassland communities on the Loess Plateau, China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over-grazing and large scale monocultures on the Loess plateau in China have caused serious soil erosion by water and wind. Grassland revegetation has been reported as one of the most effective counter measures. Therefore, we investigated soil aggregation, aggregate stability and soil microbial ac...

  14. An adaptive distributed data aggregation based on RCPC for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hua, Guogang; Chen, Chang Wen

    2006-05-01

    One of the most important design issues in wireless sensor networks is energy efficiency. Data aggregation has significant impact on the energy efficiency of the wireless sensor networks. With massive deployment of sensor nodes and limited energy supply, data aggregation has been considered as an essential paradigm for data collection in sensor networks. Recently, distributed source coding has been demonstrated to possess several advantages in data aggregation for wireless sensor networks. Distributed source coding is able to encode sensor data with lower bit rate without direct communication among sensor nodes. To ensure reliable and high throughput transmission with the aggregated data, we proposed in this research a progressive transmission and decoding of Rate-Compatible Punctured Convolutional (RCPC) coded data aggregation with distributed source coding. Our proposed 1/2 RSC codes with Viterbi algorithm for distributed source coding are able to guarantee that, even without any correlation between the data, the decoder can always decode the data correctly without wasting energy. The proposed approach achieves two aspects in adaptive data aggregation for wireless sensor networks. First, the RCPC coding facilitates adaptive compression corresponding to the correlation of the sensor data. When the data correlation is high, higher compression ration can be achieved. Otherwise, lower compression ratio will be achieved. Second, the data aggregation is adaptively accumulated. There is no waste of energy in the transmission; even there is no correlation among the data, the energy consumed is at the same level as raw data collection. Experimental results have shown that the proposed distributed data aggregation based on RCPC is able to achieve high throughput and low energy consumption data collection for wireless sensor networks

  15. Linking soil permeability and soil aggregate stability with root development: a pots experiment (preliminary results)

    NASA Astrophysics Data System (ADS)

    Vergani, Chiara; Graf, Frank; Gerber, Werner

    2015-04-01

    Quantifying and monitoring the contribution of vegetation to the stability of the slopes is a key issue for implementing effective soil bioengineering measures. This topic is being widely investigated both from the hydrological and mechanical point of view. Nevertheless, due to the high variability of the biological components, we are still far from a comprehensive understanding of the role of plants in slope stabilization, especially if the different succession phases and the temporal development of vegetation is considered. Graf et al., 2014, found within the scope of aggregate stability investigations that the root length per soil volume of alder specimen grown for 20 weeks under laboratory conditions is comparable to the one of 20 years old vegetation in the field. This means that already relatively short time scales can provide meaningful information at least for the first stage of colonization of soil bioengineering measures, which is also the most critical. In the present study we analyzed the effect of root growth on two soil properties critical to evaluate the performance of vegetation in restoring and re-stabilizing slopes: permeability and soil aggregate stability. We set up a laboratory experiment in order to work under controlled conditions and limit as much as possible the natural variability. Alnus incana was selected as the study species as it is widely used in restoration projects in the Alps, also because of its capacity to fix nitrogen and its symbiosis with both ecto and arbuscular mycorrhizal fungi. After the first month of growth in germination pots, we planted one specimen each in big quasi cylindrical pots of 34 cm diameter and 35 cm height. The pots were filled with the soil fraction smaller than 10 mm coming from an oven dried moraine collected in a subalpine landslide area (Hexenrübi catchment, central Switzerland). The targeted dry unit weight was 16 kN/m3. The plants have been maintained at a daily temperature of 25°C and relative

  16. Stability of aggregates of some weathered soils in south-eastern Nigeria in relation to their geochemical properties

    NASA Astrophysics Data System (ADS)

    Igwe, C. A.; Zarei, M.; Stahr, K.

    2013-10-01

    The stability of some highly weathered soils of the tropics is controlled by their organo-mineral substances. Highly weathered soils from 10 different locations were sampled from their A and B horizons to determine their aggregate stability. The objective of the study was to determine the aggregate stability of the soils and their relationships with geochemical constituents. The major geochemical elements of the soils are quartz and kaolinite, SiO2, Al2O3 and Fe2O3, while the dithionite extractable Fe and Al was greater than their corresponding oxalate and pyrophosphate forms. The mean-weight diameter from dried aggregates (MWDd) and their corresponding wet mean-weight diameter (MWDw) were related significantly (r = 0.64*). The dithionite extracted Al and Fe or the crystalline forms of these elements were outstanding in the stability of the aggregates. However, this did not diminish the influence of SOC reduced to third order level in the stability of the soils. The influence of SOC in these soils, however, indirectly manifested on the role of Fep and Alp in the aggregation of these soils. The crystalline Fe and Al sesquioxides were very prominent in the aggregation and stability of these soils.

  17. Rational design of mutations that change the aggregation rate of a protein while maintaining its native structure and stability

    PubMed Central

    Camilloni, Carlo; Sala, Benedetta Maria; Sormanni, Pietro; Porcari, Riccardo; Corazza, Alessandra; De Rosa, Matteo; Zanini, Stefano; Barbiroli, Alberto; Esposito, Gennaro; Bolognesi, Martino; Bellotti, Vittorio; Vendruscolo, Michele; Ricagno, Stefano

    2016-01-01

    A wide range of human diseases is associated with mutations that, destabilizing proteins native state, promote their aggregation. However, the mechanisms leading from folded to aggregated states are still incompletely understood. To investigate these mechanisms, we used a combination of NMR spectroscopy and molecular dynamics simulations to compare the native state dynamics of Beta-2 microglobulin (β2m), whose aggregation is associated with dialysis-related amyloidosis, and its aggregation-resistant mutant W60G. Our results indicate that W60G low aggregation propensity can be explained, beyond its higher stability, by an increased average protection of the aggregation-prone residues at its surface. To validate these findings, we designed β2m variants that alter the aggregation-prone exposed surface of wild-type and W60G β2m modifying their aggregation propensity. These results allowed us to pinpoint the role of dynamics in β2m aggregation and to provide a new strategy to tune protein aggregation by modulating the exposure of aggregation-prone residues. PMID:27150430

  18. Rational design of mutations that change the aggregation rate of a protein while maintaining its native structure and stability.

    PubMed

    Camilloni, Carlo; Sala, Benedetta Maria; Sormanni, Pietro; Porcari, Riccardo; Corazza, Alessandra; De Rosa, Matteo; Zanini, Stefano; Barbiroli, Alberto; Esposito, Gennaro; Bolognesi, Martino; Bellotti, Vittorio; Vendruscolo, Michele; Ricagno, Stefano

    2016-01-01

    A wide range of human diseases is associated with mutations that, destabilizing proteins native state, promote their aggregation. However, the mechanisms leading from folded to aggregated states are still incompletely understood. To investigate these mechanisms, we used a combination of NMR spectroscopy and molecular dynamics simulations to compare the native state dynamics of Beta-2 microglobulin (β2m), whose aggregation is associated with dialysis-related amyloidosis, and its aggregation-resistant mutant W60G. Our results indicate that W60G low aggregation propensity can be explained, beyond its higher stability, by an increased average protection of the aggregation-prone residues at its surface. To validate these findings, we designed β2m variants that alter the aggregation-prone exposed surface of wild-type and W60G β2m modifying their aggregation propensity. These results allowed us to pinpoint the role of dynamics in β2m aggregation and to provide a new strategy to tune protein aggregation by modulating the exposure of aggregation-prone residues. PMID:27150430

  19. Rational design of mutations that change the aggregation rate of a protein while maintaining its native structure and stability

    NASA Astrophysics Data System (ADS)

    Camilloni, Carlo; Sala, Benedetta Maria; Sormanni, Pietro; Porcari, Riccardo; Corazza, Alessandra; De Rosa, Matteo; Zanini, Stefano; Barbiroli, Alberto; Esposito, Gennaro; Bolognesi, Martino; Bellotti, Vittorio; Vendruscolo, Michele; Ricagno, Stefano

    2016-05-01

    A wide range of human diseases is associated with mutations that, destabilizing proteins native state, promote their aggregation. However, the mechanisms leading from folded to aggregated states are still incompletely understood. To investigate these mechanisms, we used a combination of NMR spectroscopy and molecular dynamics simulations to compare the native state dynamics of Beta-2 microglobulin (β2m), whose aggregation is associated with dialysis-related amyloidosis, and its aggregation-resistant mutant W60G. Our results indicate that W60G low aggregation propensity can be explained, beyond its higher stability, by an increased average protection of the aggregation-prone residues at its surface. To validate these findings, we designed β2m variants that alter the aggregation-prone exposed surface of wild-type and W60G β2m modifying their aggregation propensity. These results allowed us to pinpoint the role of dynamics in β2m aggregation and to provide a new strategy to tune protein aggregation by modulating the exposure of aggregation-prone residues.

  20. Fractal analysis of the effect of particle aggregation distribution on thermal conductivity of nanofluids

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Cai, Jianchao; Hu, Xiangyun; Han, Qi; Liu, Shuang; Zhou, Yingfang

    2016-08-01

    A theoretical effective thermal conductivity model for nanofluids is derived based on fractal distribution characteristics of nanoparticle aggregation. Considering two different mechanisms of heat conduction including particle aggregation and convention, the model is expressed as a function of the fractal dimension and concentration. In the model, the change of fractal dimension is related to the variation of aggregation shape. The theoretical computations of the developed model provide a good agreement with the experimental results, which may serve as an effective approach for quantitatively estimating the effective thermal conductivity of nanofluids.

  1. Mechanical stability of hollow spherical nano-aggregates as ultrasound contrast agent.

    PubMed

    Hadinoto, Kunn

    2009-06-01

    Gas-filled hollow nanoparticulate aggregates designed for use as an ultrasound contrast agent and as an ultrasound-mediated nanoparticulate drug delivery vehicle are manufactured by spray drying of nanoparticulate suspension at a fast convective drying rate. The gas outward diffusion from the hollow particles during insonication reduces the shell mechanical stability hence shortening the lifespan of the ultrasound contrast agent. The present work aims to develop a formulation method to produce micron-size hollow nanoparticulate aggregates with high shell mechanical stability by controlling the shell thickness-to-particle radius (S/R) ratio. The impacts of changing (1) the spray drying parameters, (2) nanoparticulate suspension concentration, and (3) surfactant inclusion (i.e. phospholipids) on the particle morphology and the S/R ratio are investigated. Biocompatible PMMA-MeOPEGMA nanoparticles of varying sizes (i.e. 50+/-20, 110+/-40, and 230+/-80 nm) are used as the model nanoparticles. The results indicate that the S/R ratio increases with decreasing particle size and the shell mechanical stability is linearly dependent on the S/R ratio. The effects of the spray drying parameters and nanoparticle concentration are found to be minimal in the absence of the phospholipids. The S/R ratio can be significantly increased by using larger size nanoparticles with the phospholipids inclusion. PMID:19446772

  2. Influence of sustainable management on aggregate stability and soil organic matter on agricultural soil of southern Spain

    NASA Astrophysics Data System (ADS)

    Morugan-Coronado, Alicia; Arcenegui, Victoria; Mataix-Solera, Jorge; Gomez-Lucas, Ignacio; Garcia-Orenes, Fuensanta

    2016-04-01

    Intensive agriculture has increased crop yields but also posed severe environmental problems. Unsustainable land management such as excessive tillage can lead to a loss of soil fertility and a drastic reduction in the aggregate stability and soil organic matter content. However sustainable agriculture can keep good crop yields with minimal impact on ecological factors conserving the soil quality and its ecosystem services. Sustainable agriculture management promotes the maintenance of soil organic matter levels providing plant nutrients through the microbial decomposition of organic materials. Also this management has a positive effect on soil structure with the improvement of stability of aggregates. The resistance of soil aggregates to the slaking and dispersive effects of water (aggregate stability) is important for maintaining the structure in arable soils. Our purpose was to investigate and compare the effects of sustainable agricultural practices versus intensive agriculture on aggregate stability and soil organic matter. Three agricultural areas are being monitored in the southern of Spain, two of them with citrus orchards (AL) and (FE) and one with grapevine(PA). In all of them two agricultural treatments are being developed, organic with no-tillage management(O) and inorganic fertilization with herbicide application and intensive tillage (I). The sustainable agricultural management (manure, no tillage and vegetation cover) contributed to the improve of soil conditions, increasing organic matter and aggregate stability. Meanwhile, herbicide treatment and intensive tillage with inorganic fertilization managements resulted in the decreasing of aggregate stability and low levels of soil organic carbon. Soil organic matter content is generally low in all unsustainable treatments plots and tends to decline in aggregate stability and soil physical condition. In both treatments the crop yield are comparable.

  3. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

    NASA Astrophysics Data System (ADS)

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-10-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm 2000-250 μm 250-53 μm and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000-250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture.

  4. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

    PubMed Central

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-01-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000–250 μm; 250–53 μm; and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000–250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture. PMID:26423355

  5. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates.

    PubMed

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-01-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000-250 μm; 250-53 μm; and <53 μm). The treatments include no fertilization (CK), low and high manure amendment (M1, M2), chemical nitrogen, phosphorus and potassium fertilizers (NPK), and combined manure and chemical fertilizers (NPKM1, NPKM2). Though SOC, GRSPe and GRSPt in soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000-250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture. PMID:26423355

  6. Decomposition-aggregation stability analysis. [for large scale dynamic systems with application to spinning Skylab control system

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Weissenberger, S.; Cuk, S. M.

    1973-01-01

    This report presents the development and description of the decomposition aggregation approach to stability investigations of high dimension mathematical models of dynamic systems. The high dimension vector differential equation describing a large dynamic system is decomposed into a number of lower dimension vector differential equations which represent interconnected subsystems. Then a method is described by which the stability properties of each subsystem are aggregated into a single vector Liapunov function, representing the aggregate system model, consisting of subsystem Liapunov functions as components. A linear vector differential inequality is then formed in terms of the vector Liapunov function. The matrix of the model, which reflects the stability properties of the subsystems and the nature of their interconnections, is analyzed to conclude over-all system stability characteristics. The technique is applied in detail to investigate the stability characteristics of a dynamic model of a hypothetical spinning Skylab.

  7. Seasonal distribution, aggregation, and habitat selection of common carp in Clear Lake, Iowa

    USGS Publications Warehouse

    Penne, C.R.; Pierce, C.L.

    2008-01-01

    The common carp Cyprinus carpio is widely distributed and frequently considered a nuisance species outside its native range. Common carp are abundant in Clear Lake, Iowa, where their presence is both a symptom of degradation and an impediment to improving water quality and the sport fishery. We used radiotelemetry to quantify seasonal distribution, aggregation, and habitat selection of adult and subadult common carp in Clear Lake during 2005-2006 in an effort to guide future control strategies. Over a 22-month period, we recorded 1,951 locations of 54 adults and 60 subadults implanted with radio transmitters. Adults demonstrated a clear tendency to aggregate in an offshore area during the late fall and winter and in shallow, vegetated areas before and during spring spawning. Late-fall and winter aggregations were estimated to include a larger percentage of the tracked adults than spring aggregations. Subadults aggregated in shallow, vegetated areas during the spring and early summer. Our study, when considered in combination with previous research, suggests repeatable patterns of distribution, aggregation, and habitat selection that should facilitate common carp reduction programs in Clear Lake and similar systems. ?? Copyright by the American Fisheries Society 2008.

  8. The influence of organic amendments on soil aggregate stability from semiarid sites

    NASA Astrophysics Data System (ADS)

    Hueso Gonzalez, Paloma; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose

    2016-04-01

    Restoring the native vegetation is the most effective way to regenerate soil health. Under these conditions, vegetation cover in areas having degraded soils may be better sustained if the soil is amended with an external source of organic matter. The addition of organic materials to soils also increases infiltration rates and reduces erosion rates; these factors contribute to an available water increment and a successful and sustainable land management. The goal of this study was to analyze the effect of various organic amendments on the aggregate stability of soils in afforested plots. An experimental paired-plot layout was established in southern of Spain (homogeneous slope gradient: 7.5%; aspect: N170). Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. The vegetation was planted in a grid pattern with 0.5 m between plants in each plot. During the afforestation process the soil was tilled to 25 cm depth from the surface. Soil from the afforested plots was sampled in: i) 6 months post-afforestation; ii) 12 months post-afforestation; iii) 18 months post-afforestation; and iv) 24 months post-afforestation. The sampling strategy for each plot involved collection of 4 disturbed soil samples taken from the surface (0-10 cm depth). The stability of aggregates was measured by wet-sieving. Regarding to soil aggregate stability, the percentage of stable aggregates has increased slightly in all the treatments in relation to control. Specifically, the differences were recorded in the fraction of macroaggregates (≥ 0.250 mm). The largest increases have been associated with straw mulch, pinus mulch and sludge. Similar results have been registered for the soil organic carbon content

  9. Changes in soil aggregate stability under different irrigation doses of waste water

    NASA Astrophysics Data System (ADS)

    Morugán, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Victoria; Bárcenas, Gema

    2010-05-01

    Freshwater availability and soil degradation are two of the most important environmental problems in the Mediterranean area acerbated by incorrect agricultural use of irrigation in which organic matter is not correctly managed, the use of low quality water for irrigation, and the inefficiency of dose irrigation. For these reasons strategies for saving water and for the restoration of the mean properties of soil are necessary. The use of treated waste water for the irrigation of agricultural land could be a good solution to these problems, as it reduces the utilization of fresh water and could potentially improve key soil properties. In this work we have been studying, for more than three years, the effects on soil properties of different doses of irrigation with waste water. Here we show the results on aggregate stability. The study is located in an agricultural area at Biar (Alicante, SE of Spain), with a crop of grape (Vitis labrusca). Three types of waters are being used in the irrigation of the soil: fresh water (control) (TC), and treated waste water from secondary (T2) and tertiary treatment (T3). Three different doses of irrigation have been applied to fit the efficiency of the irrigation to the crop and soil type: D10 (10 L m-2 every week during 17 months), D50 (50 L m-2 every fifteen days during 14 moths) and D30 (30 L m-2 every week during 6 months up to present day). The results showed a clear decrease of aggregate stability during the period we used the second dose (D50) independent of the type of water used. That dose of irrigation and frequency produced strong wetting and drying cycles (WD) in the soil, and this is suspected to be the main factor responsible for the results. When we changed the dose of irrigation to D30, reducing the quantity per event and increasing the frequency, the soil aggregate stability started to improve. This dose avoids strong drying periods between irrigation events and the aggregate stability is confirmed to be slowly

  10. Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange.

    PubMed

    Wu, Qiang-Sheng; Cao, Ming-Qin; Zou, Ying-Ning; He, Xin-hua

    2014-01-01

    To test direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability, perspex pots separated by 37-μm nylon mesh in the middle were used to form root-free hyphae and root/hyphae chambers, where trifoliate orange (Poncirus trifoliata) seedlings were colonized by Funneliformis mosseae or Paraglomus occultum in the root/hyphae chamber. Both fungal species induced significantly higher plant growth, root total length, easily-extractable glomalin-related soil protein (EE-GRSP) and total GRSP (T-GRSP), and mean weight diameter (an aggregate stability indicator). The Pearson correlation showed that root colonization or soil hyphal length significantly positively correlated with EE-GRSP, difficultly-extractable GRSP (DE-GRSP), T-GRSP, and water-stable aggregates in 2.00-4.00, 0.50-1.00, and 0.25-0.50 mm size fractions. The path analysis indicated that in the root/hyphae chamber, aggregate stability derived from a direct effect of root colonization, EE-GRSP or DE-GRSP. Meanwhile, the direct effect was stronger by EE-GRSP or DE-GRSP than by mycorrhizal colonization. In the root-free hyphae chamber, mycorrhizal-mediated aggregate stability was due to total effect but not direct effect of soil hyphal length, EE-GRSP and T-GRSP. Our results suggest that GRSP among these tested factors may be the primary contributor to aggregate stability in the citrus rhizosphere. PMID:25059396

  11. Effect of the slope and initial moisture content on soil loss, aggregate and particle size distribution

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Jakab, Gergely; Szabó, Boglárka

    2015-04-01

    Soil structure degradation has effect through the soil water balance and nutrient supply on the agricultural potential of an area. The soil erosion process comprises two phases: detachment and transport by water. To study the transport phase nozzle type laboratory-scale rainfall simulator was used with constant 80 mmhr-1 intensity on an arable haplic Cambisol. Measuring the aggregate and particle size distribution of the soil loss gives a good approach the erosion process. The primary objective of this study was to examine the sediment concentration, and detect the quality and quantity change of the soil loss during a single precipitation under six treatment combinations (recently tilled and crusty soil surface on two different slope steepness, inland inundation and drought soil conditions). Soil loss were collected continually, and separated per aggregate size fractions with sieves in three rounds during a rain to measure the weights. The particle size distribution was measured with Horiba LA-950 particle size analyzer. In general the ratio of the macro aggregates decreases and the ratio of the micro aggregates and clay fraction increases in the sediment with time during the precipitation due to the raindrop impact. Sediment concentration depends on the slope steepness, as from steeper slopes the runoff can transport bigger amount of sediment, but from the tilled surface bigger aggregates were washing down. Micro aggregate fraction is one of the indicators of good soil structure. The degradation of micro aggregates occurs in steeper slopes and the most erosive time period depends on the micromorphology of the surface. And while the aggregate size distribution of the soil loss of the treatments shows high variety of distribution and differs from the original soil, the particle size distribution of each aggregate size fraction shows similar trends except the 50-250 µm fraction where the fine sand fraction is dominating instead of the loam. This anomaly may be

  12. Chaperonin-Based Biolayer Interferometry To Assess the Kinetic Stability of Metastable, Aggregation-Prone Proteins.

    PubMed

    Lea, Wendy A; O'Neil, Pierce T; Machen, Alexandra J; Naik, Subhashchandra; Chaudhri, Tapan; McGinn-Straub, Wesley; Tischer, Alexander; Auton, Matthew T; Burns, Joshua R; Baldwin, Michael R; Khar, Karen R; Karanicolas, John; Fisher, Mark T

    2016-09-01

    Stabilizing the folded state of metastable and/or aggregation-prone proteins through exogenous ligand binding is an appealing strategy for decreasing disease pathologies caused by protein folding defects or deleterious kinetic transitions. Current methods of examining binding of a ligand to these marginally stable native states are limited because protein aggregation typically interferes with analysis. Here, we describe a rapid method for assessing the kinetic stability of folded proteins and monitoring the effects of ligand stabilization for both intrinsically stable proteins (monomers, oligomers, and multidomain proteins) and metastable proteins (e.g., low Tm) that uses a new GroEL chaperonin-based biolayer interferometry (BLI) denaturant pulse platform. A kinetically controlled denaturation isotherm is generated by exposing a target protein, immobilized on a BLI biosensor, to increasing denaturant concentrations (urea or GuHCl) in a pulsatile manner to induce partial or complete unfolding of the attached protein population. Following the rapid removal of the denaturant, the extent of hydrophobic unfolded/partially folded species that remains is detected by an increased level of GroEL binding. Because this kinetic denaturant pulse is brief, the amplitude of binding of GroEL to the immobilized protein depends on the duration of the exposure to the denaturant, the concentration of the denaturant, wash times, and the underlying protein unfolding-refolding kinetics; fixing all other parameters and plotting the GroEL binding amplitude versus denaturant pulse concentration result in a kinetically controlled denaturation isotherm. When folding osmolytes or stabilizing ligands are added to the immobilized target proteins before and during the denaturant pulse, the diminished population of unfolded/partially folded protein manifests as a decreased level of GroEL binding and/or a marked shift in these kinetically controlled denaturation profiles to higher denaturant

  13. Quantification of quaternary structure stability in aggregation-prone proteins under physiological conditions: the transthyretin case.

    PubMed

    Robinson, Lei Z; Reixach, Natàlia

    2014-10-21

    The quaternary structure stability of proteins is typically studied under conditions that accelerate their aggregation/unfolding processes on convenient laboratory time scales. Such conditions include high temperature or pressure, chaotrope-mediated unfolding, or low or high pH. These approaches have the limitation of being nonphysiological and that the concentration of the protein in solution is changing as the reactions proceed. We describe a methodology to define the quaternary structure stability of the amyloidogenic homotetrameric protein transthyretin (TTR) under physiological conditions. This methodology expands from a described approach based on the measurement of the rate of subunit exchange of TTR with a tandem flag-tagged (FT₂) TTR counterpart. We demonstrate that subunit exchange of TTR with FT₂·TTR can be analyzed and quantified using a semi-native polyacrylamide gel electrophoresis technique. In addition, we biophysically characterized two FT₂·TTR variants derived from wild-type and the amyloidogenic variant Val122Ile TTR, both of which are associated with cardiac amyloid deposition late in life. The FT₂·TTR variants have similar amyloidogenic potential and similar thermodynamic and kinetic stabilities compared to those of their nontagged counterparts. We utilized the methodology to study the potential of the small molecule SOM0226, a repurposed drug under clinical development for the prevention and treatment of the TTR amyloidoses, to stabilize TTR. The results enabled us to characterize the binding energetics of SOM0226 to TTR. The described technique is well-suited to study the quaternary structure of other human aggregation-prone proteins under physiological conditions. PMID:25245430

  14. Quantification of Quaternary Structure Stability in Aggregation-Prone Proteins under Physiological Conditions: The Transthyretin Case

    PubMed Central

    2015-01-01

    The quaternary structure stability of proteins is typically studied under conditions that accelerate their aggregation/unfolding processes on convenient laboratory time scales. Such conditions include high temperature or pressure, chaotrope-mediated unfolding, or low or high pH. These approaches have the limitation of being nonphysiological and that the concentration of the protein in solution is changing as the reactions proceed. We describe a methodology to define the quaternary structure stability of the amyloidogenic homotetrameric protein transthyretin (TTR) under physiological conditions. This methodology expands from a described approach based on the measurement of the rate of subunit exchange of TTR with a tandem flag-tagged (FT2) TTR counterpart. We demonstrate that subunit exchange of TTR with FT2·TTR can be analyzed and quantified using a semi-native polyacrylamide gel electrophoresis technique. In addition, we biophysically characterized two FT2·TTR variants derived from wild-type and the amyloidogenic variant Val122Ile TTR, both of which are associated with cardiac amyloid deposition late in life. The FT2·TTR variants have similar amyloidogenic potential and similar thermodynamic and kinetic stabilities compared to those of their nontagged counterparts. We utilized the methodology to study the potential of the small molecule SOM0226, a repurposed drug under clinical development for the prevention and treatment of the TTR amyloidoses, to stabilize TTR. The results enabled us to characterize the binding energetics of SOM0226 to TTR. The described technique is well-suited to study the quaternary structure of other human aggregation-prone proteins under physiological conditions. PMID:25245430

  15. The effect of oil type on the aggregation stability of nanostructured lipid carriers.

    PubMed

    Yang, Yihui; Corona, Alessandro; Schubert, Beth; Reeder, Robert; Henson, Michael A

    2014-03-15

    Second generation lipid systems for the delivery of bioactive compounds have been developed by mixing a liquid carrier oil with a solid lipid to form so-called nanostructured lipid carriers (NLCs). In this study, we investigated the effect of different liquid carrier oils on the crystallization and aggregation behavior of tristearin NLC dispersions. We found that NLC suspension stability was strongly affected by the type and amount of the carrier oil. As the oil concentration was increased, the crystallization and melting temperatures decreased, the polymorphic transformation rate increased, the particles became more spherical, and suspension stability was enhanced. These results suggest that oil trapped within the growing crystal matrix accelerated polymorphic transformation but retarded the large shape change normally associated with the transformation. We also found that considerably less surfactant was necessary to produce stable NLC suspensions than was required to stabilize solid lipid nanoparticle (SLN) suspensions without a carrier oil. Based on preliminary simulation results, we hypothesized that improved NLC suspension stability was attributable to both reduced particle shape change, which created less new surface area to be covered by surfactant, and increased mobility of surfactant molecules, which resulted in available surfactant being more efficient at covering created surface area. PMID:24461844

  16. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability.

    PubMed

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention. PMID:27064570

  17. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability

    PubMed Central

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention. PMID:27064570

  18. Transformations in soil organic matter and aggregate stability after conversion of Mediterranean forest to agriculture

    NASA Astrophysics Data System (ADS)

    Recio Vázquez, Lorena; Almendros, Gonzalo; Carral, Pilar; Knicker, Heike; González Pérez, José Antonio; González Vila, Francisco Javier

    2013-04-01

    Conversion of forest ecosystems into croplands often leads to severe decrease of the soil organic matter (SOM) levels with the concomitant deterioration of soil structure. The present research focuses on the effects of cultivation on the stability of soil macroaggregates, as well as on the total quantity and quality of SOM. Three representative soils from central Spain (i.e., Petric Calcisol, Cutanic Luvisol and Calcic Vertisol) were sampled. Each site had natural vegetation (NV) dominated either by characteristic Mediterranean forest (dehesa) or cereal crops (CC) under conventional tillage. For each site, three spatial replicates of the NV and CC were sampled. Soil aggregate stability was measured by the wet sieving method. The structural stability index was then calculated as the mass of aggregated soil (>250 μm) remaining after wet sieving, as a percent of total aggregate weight. The analytical characterization of the SOM was carried out after chemical fractionation for quantifying the different organic pools: free organic matter (FOM), humic acids (HA), fulvic acids (FA) and humin (H). Furthermore, whole soil samples pretreated with 10 % HF solution were analyzed by CP-MAS 13C NMR and the purified HA fraction was characterized by elementary analysis, visible and infrared spectroscopies and Py-GC/MS. A marked reduction in the proportion of stable aggregates when the natural ecosystem was converted to agriculture was observed. Values of the structural stability index (%) changed over from 96.2 to 38.1, 95.1 to 83.7 and 98.5 to 60.6 for the Calcisol, Luvisol and Vertisol respectively. Comparatively higher contents of SOM were found in the soils under NV (11.69 to 0.93, 3.29 to 2.72 and 9.51 to 0.79 g C100 g-1soil) even though a quantitative rearrangement of the SOM pools was noticed. In all sites, the relative contribution of the labile C (FOM) to the total SOM content decreased when the forest soils were converted into croplands, whereas the proportion of both

  19. Primary particle size distribution of eroded material affected by degree of aggregate slaking and seal development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Primary particle size distribution (PSD) of eroded sediments can be used to estimate potential nutrient losses from soil and pollution hazards to the environment. We studied eroded sediment PSDs from three saturated soils, packed in trays (20 x 40 x 4 cm), that had undergone either minimal aggregate...

  20. Shear-driven aggregation of binary colloids for randomly distributing nanoparticles in a matrix.

    PubMed

    Meng, Xia; Wu, Hua; Morbidelli, Massimo

    2016-04-20

    We propose a methodology for preparing composite materials where A nanoparticles (NPs) are uniformly and randomly distributed inside a matrix of B NPs. It is based on intense shear-driven aggregation of binary colloids composed of A and B NPs, without using any additives. Its feasibility has been demonstrated using stable binary colloids composed of poly-methyl methacrylate (PMMA) particles and polystyrene (PS) particles. The PS particles alone undergo shear-driven aggregation (shear-active), while the PMMA particles alone do not exhibit any aggregation under the same conditions (shear-inactive). It is found that the shear-driven aggregation of the binary colloids does occur, and the formed clusters are composed of both the "shear-active" PS and "shear-inactive" PMMA particles. The SEM pictures demonstrate that the PMMA particles are uniformly and randomly distributed among the PS particles in the clusters, thus confirming the feasibility of the proposed methodology. The mechanism leading to the aggregation of the binary colloids has been discussed based on the experimental observations. PMID:26983559

  1. Cost-Efficient and Multi-Functional Secure Aggregation in Large Scale Distributed Application

    PubMed Central

    Zhang, Ping; Li, Wenjun; Sun, Hua

    2016-01-01

    Secure aggregation is an essential component of modern distributed applications and data mining platforms. Aggregated statistical results are typically adopted in constructing a data cube for data analysis at multiple abstraction levels in data warehouse platforms. Generating different types of statistical results efficiently at the same time (or referred to as enabling multi-functional support) is a fundamental requirement in practice. However, most of the existing schemes support a very limited number of statistics. Securely obtaining typical statistical results simultaneously in the distribution system, without recovering the original data, is still an open problem. In this paper, we present SEDAR, which is a SEcure Data Aggregation scheme under the Range segmentation model. Range segmentation model is proposed to reduce the communication cost by capturing the data characteristics, and different range uses different aggregation strategy. For raw data in the dominant range, SEDAR encodes them into well defined vectors to provide value-preservation and order-preservation, and thus provides the basis for multi-functional aggregation. A homomorphic encryption scheme is used to achieve data privacy. We also present two enhanced versions. The first one is a Random based SEDAR (REDAR), and the second is a Compression based SEDAR (CEDAR). Both of them can significantly reduce communication cost with the trade-off lower security and lower accuracy, respectively. Experimental evaluations, based on six different scenes of real data, show that all of them have an excellent performance on cost and accuracy. PMID:27551747

  2. Cost-Efficient and Multi-Functional Secure Aggregation in Large Scale Distributed Application.

    PubMed

    Zhang, Ping; Li, Wenjun; Sun, Hua

    2016-01-01

    Secure aggregation is an essential component of modern distributed applications and data mining platforms. Aggregated statistical results are typically adopted in constructing a data cube for data analysis at multiple abstraction levels in data warehouse platforms. Generating different types of statistical results efficiently at the same time (or referred to as enabling multi-functional support) is a fundamental requirement in practice. However, most of the existing schemes support a very limited number of statistics. Securely obtaining typical statistical results simultaneously in the distribution system, without recovering the original data, is still an open problem. In this paper, we present SEDAR, which is a SEcure Data Aggregation scheme under the Range segmentation model. Range segmentation model is proposed to reduce the communication cost by capturing the data characteristics, and different range uses different aggregation strategy. For raw data in the dominant range, SEDAR encodes them into well defined vectors to provide value-preservation and order-preservation, and thus provides the basis for multi-functional aggregation. A homomorphic encryption scheme is used to achieve data privacy. We also present two enhanced versions. The first one is a Random based SEDAR (REDAR), and the second is a Compression based SEDAR (CEDAR). Both of them can significantly reduce communication cost with the trade-off lower security and lower accuracy, respectively. Experimental evaluations, based on six different scenes of real data, show that all of them have an excellent performance on cost and accuracy. PMID:27551747

  3. Solidification/stabilization of landfill leachate concentrate using different aggregate materials.

    PubMed

    Hunce, Selda Yigit; Akgul, Deniz; Demir, Goksel; Mertoglu, Bulent

    2012-07-01

    The application of reverse osmosis for the treatment of landfill leachate is becoming widespread in Turkey as well as in Europe. A major drawback of this process is the production of concentrate, which could be as much as 30% of the feed stream, and high concentrations of salts and contaminants. The reverse osmosis concentrate is disposed of by using several methods including re-infiltration, drying, incineration and solidification/stabilization. In this study, solidification/stabilization (S/S) technology was studied for the treatment of reverse osmosis concentrate produced from landfill leachate. In order to benefit from its capability to absorb heavy metals, ammonia and some other pollutants, zeolite and different aggregate materials were used in solidification experiments. Main pollutants in the leachate concentrate, TOC, DOC, TDS and ammonia were successfully solidified and approximately 1% of TOC, DOC, TDS and ammonia remained in the eluate water. The results indicated that the landfill disposal limits could be attained by solidification/stabilization process. PMID:22498574

  4. How Does Hyperphopsphorylation Promote Tau Aggregation and Modulate Filament Structure and Stability?

    PubMed

    Xu, Liang; Zheng, Jie; Margittai, Martin; Nussinov, Ruth; Ma, Buyong

    2016-05-18

    Tau proteins are hyperphosphorylated at common sites in their N- and C-terminal domains in at least three neurodegenerative diseases, Parkinson, dementia with Lewy bodies, and Alzheimer's, suggesting specific pathology but general mechanism. Full-length human tau filament comprises a rigid core and a two-layered fuzzy coat. Tau is categorized into two groups of isoforms, with either four repeats (R1-R4) or three repeats (R1, R3, and R4); their truncated constructs are respectively called K18 and K19. Using multiscale molecular dynamics simulations, we explored the conformational consequences of hyperhposphorylation on tau's repeats. Our lower conformational energy filament models suggest a rigid filament core with a radius of ∼30 to 40 Å and an outer layer with a thickness of ∼140 Å consisting of a double-layered polyelectrolyte. The presence of the phosphorylated terminal domains alters the relative stabilities in the K18 ensemble, thus shifting the populations of the full-length filaments. However, the structure with the straight repeats in the core region is still the most stable, similar to the truncated K18 peptide species without the N- and C-terminus. Our simulations across different scales of resolution consistently reveal that hyperphosphorylation of the two terminal domains decreases the attractive interactions among the N- and C-terminus and repeat domain. To date, the relationship on the conformational level between phosphorylation and aggregation has not been understood. Our results suggest that the exposure of the repeat domain upon hyperphosphorylation could enhance tau filament aggregation. Thus, we discovered that even though these neurodegenerative diseases vary and their associated tau filaments are phosphorylated to different extents, remarkably, the three pathologies appear to share a common tau aggregation mechanism. PMID:26854860

  5. Dynamics of Soil Organic Carbon and Aggregate Stability with Grazing Exclusion in the Inner Mongolian Grasslands

    PubMed Central

    Wen, Ding; He, Nianpeng; Zhang, Jinjing

    2016-01-01

    Grazing exclusion (GE) has been deemed as an important approach to enhance the soil carbon storage of semiarid grasslands in China; however, it remains unclear how different organic carbon (OC) components in soils vary with the duration of GE. Here, we observed the changing trends of different OC components in soils with increased GE duration in five grassland succession series plots, ranging from free grazing to 31-year GE. Specifically, we measured microbial biomass carbon (MBC), easily oxidizable OC (EOC), water-soluble OC (WSOC), and OC in water stable aggregates (macroaggregates [250–2000 μm], microaggregates [53–250 μm], and mineral fraction [< 53 μm]) at 0–20 cm soil depths. The results showed that GE significantly enhanced EOC and WSOC contents in soils, but caused a decline of MBC at the three decade scale. Macroaggregate content (F = 425.8, P < 0.001), OC stored in macroaggregates (F = 84.1, P < 0.001), and the mean weight diameter (MWD) of soil aggregates (F = 371.3, P < 0.001) increased linearly with increasing GE duration. These findings indicate that OC stored in soil increases under three-decade GE with soil organic matter (SOM) stability improving to some extent. Long-term GE practices enhance the formation of soil aggregates through higher SOM input and an exclusion of animal trampling. Therefore, the practice of GE may be further encouraged to realize the soil carbon sequestration potential of semi-arid grasslands, China. PMID:26751370

  6. Dynamics of Soil Organic Carbon and Aggregate Stability with Grazing Exclusion in the Inner Mongolian Grasslands.

    PubMed

    Wen, Ding; He, Nianpeng; Zhang, Jinjing

    2016-01-01

    Grazing exclusion (GE) has been deemed as an important approach to enhance the soil carbon storage of semiarid grasslands in China; however, it remains unclear how different organic carbon (OC) components in soils vary with the duration of GE. Here, we observed the changing trends of different OC components in soils with increased GE duration in five grassland succession series plots, ranging from free grazing to 31-year GE. Specifically, we measured microbial biomass carbon (MBC), easily oxidizable OC (EOC), water-soluble OC (WSOC), and OC in water stable aggregates (macroaggregates [250-2000 μm], microaggregates [53-250 μm], and mineral fraction [< 53 μm]) at 0-20 cm soil depths. The results showed that GE significantly enhanced EOC and WSOC contents in soils, but caused a decline of MBC at the three decade scale. Macroaggregate content (F = 425.8, P < 0.001), OC stored in macroaggregates (F = 84.1, P < 0.001), and the mean weight diameter (MWD) of soil aggregates (F = 371.3, P < 0.001) increased linearly with increasing GE duration. These findings indicate that OC stored in soil increases under three-decade GE with soil organic matter (SOM) stability improving to some extent. Long-term GE practices enhance the formation of soil aggregates through higher SOM input and an exclusion of animal trampling. Therefore, the practice of GE may be further encouraged to realize the soil carbon sequestration potential of semi-arid grasslands, China. PMID:26751370

  7. A microcomputer program for energy assessment and aggregation using the triangular probability distribution

    USGS Publications Warehouse

    Crovelli, R.A.; Balay, R.H.

    1991-01-01

    A general risk-analysis method was developed for petroleum-resource assessment and other applications. The triangular probability distribution is used as a model with an analytic aggregation methodology based on probability theory rather than Monte-Carlo simulation. Among the advantages of the analytic method are its computational speed and flexibility, and the saving of time and cost on a microcomputer. The input into the model consists of a set of components (e.g. geologic provinces) and, for each component, three potential resource estimates: minimum, most likely (mode), and maximum. Assuming a triangular probability distribution, the mean, standard deviation, and seven fractiles (F100, F95, F75, F50, F25, F5, and F0) are computed for each component, where for example, the probability of more than F95 is equal to 0.95. The components are aggregated by combining the means, standard deviations, and respective fractiles under three possible siutations (1) perfect positive correlation, (2) complete independence, and (3) any degree of dependence between these two polar situations. A package of computer programs named the TRIAGG system was written in the Turbo Pascal 4.0 language for performing the analytic probabilistic methodology. The system consists of a program for processing triangular probability distribution assessments and aggregations, and a separate aggregation routine for aggregating aggregations. The user's documentation and program diskette of the TRIAGG system are available from USGS Open File Services. TRIAGG requires an IBM-PC/XT/AT compatible microcomputer with 256kbyte of main memory, MS-DOS 3.1 or later, either two diskette drives or a fixed disk, and a 132 column printer. A graphics adapter and color display are optional. ?? 1991.

  8. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate.

    PubMed

    Yoo, Hyuk Sang; Park, Tae Gwan

    2004-11-24

    For folate-receptor-targeted anti-cancer therapy, doxorubicin aggregates in a nano-scale size were produced employing doxorubicin-polyethylene glycol-folate (DOX-PEG-FOL) conjugate. Doxorubicin and folate were respectively conjugated to alpha- and omega-terminal end group of a PEG chain. The conjugates assisted to form doxorubicin nano-aggregates with an average size of 200 nm in diameter when combined with an excess amount of deprotonated doxorubicin in an aqueous phase. Hydrophobically deprotonated doxorubicin molecules were aggregated within the core, while the DOX-PEG-FOL conjugates stabilized the aggregates with exposing folate moieties on the surface. The doxorubicin nano-aggregates showed a greater extent of intracellular uptake against folate-receptor-positive cancer cells than folate-receptor-negative cells, indicating that the cellular uptake occurred via a folate-receptor-mediated endocytosis mechanism. They also exhibited more potent cytotoxic effect on KB cells than free doxorubicin. In a human tumor xenograft nude mouse model, folate-targeted doxorubicin nano-aggregates significantly reduced the tumor volume compared to non-targeted doxorubicin aggregates or free doxorubicin. These results suggested that folate-targeted doxorubicin nano-aggregates could be a potentially useful delivery system for folate-receptor-positive cancer cells. PMID:15544872

  9. Molecular mechanism of poly(vinyl alcohol) mediated prevention of aggregation and stabilization of insulin in nanoparticles.

    PubMed

    Rawat, Sanjay; Gupta, Pawan; Kumar, Anil; Garg, Prabha; Suri, C Raman; Sahoo, Debendra K

    2015-04-01

    It is a challenge to formulate polymer based nanoparticles of therapeutic proteins as excipients and process conditions affect stability and structural integrity of the protein. Hence, understanding the protein stability and complex aggregation phenomena is an important area of research in therapeutic protein delivery. Herein we investigated the comparative role of three kinds of surfactant systems (Tween 20:Tween 80), small molecular weight poly(vinyl alcohol) (SMW-PVA), and high molecular weight PVA (HMW-PVA) in prevention of aggregation and stabilization of hexameric insulin in poly(lactide-co-glycolide) (PLGA) based nanoparticle formulation. The nanoparticles were prepared using solid-in-oil-in-water (S/O/W) emulsification method with one of the said surfactant system in inner aqueous phase. The thermal unfolding analysis of released insulin using circular dichroism (CD) indicated thermal stability of the hexameric form. Insulin aggregation monitored by differential scanning calorimetry (DSC) suggested the importance of nuclei formation for aggregation and its prevention by HMW-PVA. Additional guanidinium hydrochloride based equilibrium unfolding and in silico (molecular docking) studies suggested maximum stability of released insulin from formulation containing HMW-PVA (F3). Furthermore, in vivo studies of insulin loaded nanoparticle formulation (F3) in diabetic rats showed its bioactivity. In conclusion, our studies highlight the importance of C-terminal residues of insulin in structural integrity and suggest that the released insulin from formulation containing HMW-PVA in inner aqueous phase was conformationally and thermodynamically stable and bioactive in vivo. PMID:25644480

  10. Stabilization of heavy metals in lightweight aggregate made from sewage sludge and river sediment.

    PubMed

    Xu, Guoren; Liu, Mingwei; Li, Guibai

    2013-09-15

    The primary goal of this research is to investigate the stabilization of heavy metals in lightweight aggregate (LWA) made from sewage sludge and river sediment. The effects of the sintering temperature, the (Fe₂O₃+CaO+MgO)/(SiO₂+Al₂O₃) ratio (K ratio), SiO₂/Al₂O₃ and Fe₂O₃/CaO/MgO (at fixed K ratio), pH, and oxidative conditions on the stabilization of heavy metals were studied. Sintering at temperatures above 1100 °C effectively binds Cd, Cr, Cu and Pb in the LWA, because the stable forms of the heavy metals are strongly bound to the aluminosilicate or silicate frameworks. Minimum leachabilities of Cd, Cr, Cu and Pb were obtained at K ratios between 0.175 and 0.2. When the LWA was subjected to rigorous leaching conditions, the heavy metals remained in the solid even when the LWA bulk structure was broken. LWA made with sewage sludge and river sediment can therefore be used as an environmentally safe material for civil engineering and other construction applications. PMID:23747465

  11. Nucleobases bind to and stabilize aggregates of a prebiotic amphiphile, providing a viable mechanism for the emergence of protocells.

    PubMed

    Black, Roy A; Blosser, Matthew C; Stottrup, Benjamin L; Tavakley, Ravi; Deamer, David W; Keller, Sarah L

    2013-08-13

    Primordial cells presumably combined RNAs, which functioned as catalysts and carriers of genetic information, with an encapsulating membrane of aggregated amphiphilic molecules. Major questions regarding this hypothesis include how the four bases and the sugar in RNA were selected from a mixture of prebiotic compounds and colocalized with such membranes, and how the membranes were stabilized against flocculation in salt water. To address these questions, we explored the possibility that aggregates of decanoic acid, a prebiotic amphiphile, interact with the bases and sugar found in RNA. We found that these bases, as well as some but not all related bases, bind to decanoic acid aggregates. Moreover, both the bases and ribose inhibit flocculation of decanoic acid by salt. The extent of inhibition by the bases correlates with the extent of their binding, and ribose inhibits to a greater extent than three similar sugars. Finally, the stabilizing effects of a base and ribose are additive. Thus, aggregates of a prebiotic amphiphile bind certain heterocyclic bases and sugars, including those found in RNA, and this binding stabilizes the aggregates against salt. These mutually reinforcing mechanisms might have driven the emergence of protocells. PMID:23901105

  12. Nucleobases bind to and stabilize aggregates of a prebiotic amphiphile, providing a viable mechanism for the emergence of protocells

    PubMed Central

    Black, Roy A.; Blosser, Matthew C.; Stottrup, Benjamin L.; Tavakley, Ravi; Deamer, David W.; Keller, Sarah L.

    2013-01-01

    Primordial cells presumably combined RNAs, which functioned as catalysts and carriers of genetic information, with an encapsulating membrane of aggregated amphiphilic molecules. Major questions regarding this hypothesis include how the four bases and the sugar in RNA were selected from a mixture of prebiotic compounds and colocalized with such membranes, and how the membranes were stabilized against flocculation in salt water. To address these questions, we explored the possibility that aggregates of decanoic acid, a prebiotic amphiphile, interact with the bases and sugar found in RNA. We found that these bases, as well as some but not all related bases, bind to decanoic acid aggregates. Moreover, both the bases and ribose inhibit flocculation of decanoic acid by salt. The extent of inhibition by the bases correlates with the extent of their binding, and ribose inhibits to a greater extent than three similar sugars. Finally, the stabilizing effects of a base and ribose are additive. Thus, aggregates of a prebiotic amphiphile bind certain heterocyclic bases and sugars, including those found in RNA, and this binding stabilizes the aggregates against salt. These mutually reinforcing mechanisms might have driven the emergence of protocells. PMID:23901105

  13. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions.

    PubMed

    Yin, Baoru; Zhang, Rujing; Yao, Ping

    2015-01-01

    The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI) with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS), and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry. PMID:25803397

  14. Speciation and distribution of P associated with Fe and Al oxides in aggregate-sized fraction of an arable soil

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Bol, R.; Willbold, S.; Vereecken, H.; Klumpp, E.

    2015-07-01

    To maximize crop productivity fertilizer P is generally applied to arable soils, a significant proportion of which becomes stabilized by mineral components and in part subsequently becomes unavailable to plants. However, little is known about the relative contributions of the different organic and inorganic P bound to Fe/Al oxides in the smaller soil particles. The alkaline (NaOH-Na2EDTA) extraction with solution 31P-nuclear magnetic resonance (31P-NMR) spectroscopy is considered as a reliable method for extracting and quantifying organic P and (some) inorganic P. However, any so-called residual P after the alkaline extraction has remained unidentified. Therefore, in the present study, the amorphous (a) and crystalline (c) Fe/Al oxide minerals and related P in soil aggregate-sized fractions (> 20, 2-20, 0.45-2 and < 0.45 μm) were specifically extracted by oxalate (a-Fe/Al oxides) and dithionite (DCB, both a- and c-Fe/Al oxides). These soil aggregate-sized fractions with and without the oxalate and DCB pre-treatments were then sequentially extracted by alkaline extraction prior to solution 31P-NMR spectroscopy. This was done to quantify the various chemical P forms which were associated with a- and c-Fe/Al oxides both in alkaline extraction and in the residual P of different soil aggregate-sized fractions. The results showed that overall P contents increased with decreasing size of the soil aggregate-sized fractions. However, the relative distribution and speciation of varying P forms were found to be independent of soil aggregate-size. The majority of alkaline extractable P was in the a-Fe/Al oxide fraction (42-47 % of total P), most of which was orthophosphate (36-41 % of total P). Furthermore, still significant amounts of particularly monoester P were bound to the oxides. Intriguingly, however, Fe/Al oxides were not the main bonding sites for pyrophosphate. Residual P contained similar amounts of total P associated with both a- (10-13 % of total P) and c

  15. Speciation and distribution of P associated with Fe and Al oxides in aggregate-sized fraction of an arable soil

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Bol, R.; Willbold, S.; Vereecken, H.; Klumpp, E.

    2015-11-01

    To maximize crop productivity fertilizer P is generally applied to arable soils, a significant proportion of which becomes stabilized by mineral components and in part subsequently becomes unavailable to plants. However, little is known about the relative contributions of the different organic and inorganic P bound to Fe/Al oxides in the smaller soil particles. Alkaline (NaOH-Na2EDTA) extraction with solution 31P-nuclear magnetic resonance (31P-NMR) spectroscopy is considered a reliable method for extracting and quantifying organic P and (some) inorganic P. However, any so-called residual P after the alkaline extraction has remained unidentified. Therefore, in the present study, the amorphous (a) and crystalline (c) Fe/Al oxide minerals and related P in soil aggregate-sized fractions (> 20, 2-20, 0.45-2 and < 0.45 μm) were specifically extracted by oxalate (a-Fe/Al oxides) and dithionite-citrate-bicarbonate (DCB, both a- and c-Fe/Al oxides). These soil aggregate-sized fractions with and without the oxalate and DCB pre-treatments were then sequentially extracted by alkaline extraction prior to solution 31P-NMR spectroscopy. This was done to quantify the P associated with a- and c-Fe/Al oxides in both alkaline extraction and the residual P of different soil aggregate-sized fractions. The results showed that overall P contents increased with decreasing size of the soil aggregate-sized fractions. However, the relative distribution and speciation of varying P forms were found to be independent of soil aggregate-size. The majority of alkaline-extractable P was in the a-Fe/Al oxide fraction (42-47 % of total P), most of which was ortho-phosphate (36-41 % of total P). Furthermore, still significant amounts of particularly monoester P were bound to these oxides. Intriguingly, however, Fe/Al oxides were not the main bonding sites for pyrophosphate. Residual P contained similar amounts of total P associated with both a- (11-15 % of total P) and c-Fe oxides (7-13 % of total P

  16. Relaxation times and modes of disturbed aggregate distribution in micellar solutions with fusion and fission of micelles

    SciTech Connect

    Zakharov, Anatoly I.; Adzhemyan, Loran Ts.; Shchekin, Alexander K.

    2015-09-28

    We have performed direct numerical calculations of the kinetics of relaxation in the system of surfactant spherical micelles under joint action of the molecular mechanism with capture and emission of individual surfactant molecules by molecular aggregates and the mechanism of fusion and fission of the aggregates. As a basis, we have taken the difference equations of aggregation and fragmentation in the form of the generalized kinetic Smoluchowski equations for aggregate concentrations. The calculations have been made with using the droplet model of molecular surfactant aggregates and two modified Smoluchowski models for the coefficients of aggregate-monomer and aggregate-aggregate fusions which take into account the effects of the aggregate size and presence of hydrophobic spots on the aggregate surface. A full set of relaxation times and corresponding relaxation modes for nonequilibrium aggregate distribution in the aggregation number has been found. The dependencies of these relaxation times and modes on the total concentration of surfactant in the solution and the special parameter controlling the probability of fusion in collisions of micelles with other micelles have been studied.

  17. Preparation of biocatalytic nanofibers with high activity and stability via enzyme aggregate coating on polymer nanofibers

    SciTech Connect

    Kim, Byoung Chan; Nair, Sujith; Kim, Jungbae; Kwak, Ja Hun; Grate, Jay W.; Kim, Seong H.; Gu, Man Bock

    2005-04-01

    We have developed a unique approach for the fabrication of enzyme coating on the surface of electrospun polymer nanofibers. This approach employs covalent attachment of seed enzymes onto nanofibers, followed by the glutaraldehyde treatment that crosslinks additional enzymes onto the seed enzyme molecules. These crosslinked enzyme aggregates, covalently attached to the nanofibers via seed enzyme linker, would improve not only the enzyme activity due to increased enzyme loading, but also the enzyme stability. To demonstrate the principle of concept, we fabricated the coating of alpha-chymotrypsin (CT) on the nanofibers electrospun from a mixture of polystyrene and poly(styrene-co-maleic anhydride). The addition of poly(styrene-co-maleic anhydride) makes it much easier to attach the seed enzyme molecules onto electrospun nanofibers without any rigorous functionalization of nanofibers for the attachment of enzymes. The initial activity of final CT coating was 17 and 9 times higher than those of simply-adsorbed CT and covalently-attached CT, respectively. While adsorbed and covalently-attached CT resulted in a serious enzyme leaching during initial incubation in a shaking condition, the CT coating did not show any leaching from the beginning of incubation in the same condition. As a result, the enzyme stability of CT coating was impressively improved with a half-life of 686 days under rigorous shaking while the half-life of covalently-attached CT was only 21 hours. This new approach of enzyme coating with high stability and activity will make a great impact in various applications of enzymes such as bioconversion, bioremediation, and biosensors.

  18. Strength and Stability of Olivine Aggregates Under Wet and Dry Conditions

    NASA Astrophysics Data System (ADS)

    Boettcher, M. S.; Hirth, G.

    2005-12-01

    We investigate the micromechanical processes that control localization, strength, and sliding stability of olivine aggregates through laboratory experiments at temperatures and effective pressures similar to those at the base of the seismogenic zone on a typical transform fault. Triaxial compression tests were conducted under both wet and dry conditions on olivine powder (grain size ≤ 60 μ m) at effective pressures Peff between 50 and 300 MPa, temperatures T between 600°C and 1000°C, and displacement rates from 0.06 to 60 μ m/s. In all dry tests deformation localized onto a narrow shear plane oriented between 30-45 degrees to the shortening direction. Sample strength increased linearly with Peff}, nearly independent of both temperature and water content. A transition from velocity-weakening to velocity-strengthening behavior occurred at T= 1000°C in the dry experiments, while a transition from velocity-weakening frictional sliding to ductile deformation occurred at T=1000°C under wet conditions. The pressure-dependent strength and temperature-dependent stability can be explained with a Bowden/Tabor asperity hypothesis. At high temperatures and low strain rates, plastic yielding at the asperity stabilizes frictional sliding of the bulk sample. Rapid compaction occurred at the start of each experiment and was followed by deformation at approximately constant volume. Dilatant behavior was most pronounced at low pressure and high strain rates. Extrapolation of our experimental data is consistent with the observation that seismicity is restricted to T ≤ 600°C in the oceanic lithosphere.

  19. Runoff and sediment yield relationships with soil aggregate stability for a state-and-transition model in southeastern Arizona

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion has been identified as the primary abiotic driver of site degradation on many semiarid rangelands. A key indicator of erosion potential that is being increasingly implemented in rangeland evaluations is soil aggregate stability (AS) as measured by a field soil slake test. However, the...

  20. Aggregation and Stability of Reduced Graphene Oxide: Complex Roles of Divalent Cations, pH, and Natural Organic Matter

    EPA Science Inventory

    The aggregation and stability of graphene oxide (GO) and three successively reduced GO (rGO) nanomaterials were investigated. Reduced GO species were partially reduced GO (rGO-1h), intermediately reduced GO (rGO-2h), and fully reduced GO (rGO-5h). Specifically, influence of pH, i...

  1. Stability of Child Behavioral Style in the First 30 Months of Life: Single Timepoint and Aggregated Measures

    ERIC Educational Resources Information Center

    Parade, Stephanie H.; Dickstein, Susan; Schiller, Masha; Hayden, Lisa; Seifer, Ronald

    2015-01-01

    The current study examined the stability of temperament over time. Observers and mothers rated child behavior at eight timepoints across three assessment waves (8, 15, and 30 months of age). Internal consistency reliability of aggregates of the eight observer reports and eight mother reports were high. When considering single timepoint…

  2. Aggregate stability, surface-water runoff, and soil loss in wheat-sunflower and corn-soybean rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing improved management options that limit soil erosion requires a greater understanding of the interactions between crop rotation, residue management, and precipitation patterns. We conducted a six-year study to evaluate how seasonal variation in aggregate stability, ground cover, soil moist...

  3. An Efficient Method to Calculate the Aggregated Isotopic Distribution and Exact Center-Masses

    NASA Astrophysics Data System (ADS)

    Claesen, Jürgen; Dittwald, Piotr; Burzykowski, Tomasz; Valkenborg, Dirk

    2012-04-01

    In this article, we present a computation- and memory-efficient method to calculate the probabilities of occurrence and exact center-masses of the aggregated isotopic distribution of a molecule. The method uses fundamental mathematical properties of polynomials given by the Newton-Girard theorem and Viete's formulae. The calculation is based on the atomic composition of the molecule and the natural abundances of the elemental isotopes in normal terrestrial matter. To evaluate the performance of the proposed method, which we named BRAIN, we compare it with the results obtained from five existing software packages ( IsoPro, Mercury, Emass, NeutronCluster, and IsoDalton) for 10 biomolecules. Additionally, we compare the computed mass centers with the results obtained by calculating, and subsequently aggregating, the fine isotopic distribution for two of the exemplary biomolecules. The algorithm will be made available as a Bioconductor package in R, and is also available upon request.

  4. A uniform measurement expression for cross method comparison of nanoparticle aggregate size distributions.

    PubMed

    Dudkiewicz, Agnieszka; Wagner, Stephan; Lehner, Angela; Chaudhry, Qasim; Pietravalle, Stéphane; Tiede, Karen; Boxall, Alistair B A; Allmaier, Guenter; Tiede, Dirk; Grombe, Ringo; von der Kammer, Frank; Hofmann, Thilo; Mølhave, Kristian

    2015-08-01

    Available measurement methods for nanomaterials are based on very different measurement principles and hence produce different values when used on aggregated nanoparticle dispersions. This paper provides a solution for relating measurements of nanomaterials comprised of nanoparticle aggregates determined by different techniques using a uniform expression of a mass equivalent diameter (MED). The obtained solution is used to transform into MED the size distributions of the same sample of synthetic amorphous silica (nanomaterial comprising aggregated nanoparticles) measured by six different techniques: scanning electron microscopy in both high vacuum (SEM) and liquid cell setup (Wet-SEM); gas-phase electrophoretic mobility molecular analyzer (GEMMA); centrifugal liquid sedimentation (CLS); nanoparticle tracking analysis (NTA); and asymmetric flow field flow fractionation with inductively coupled plasma mass spectrometry detection (AF4-ICP-MS). Transformed size distributions are then compared between the methods and conclusions drawn on methods' measurement accuracy, limits of detection and quantification related to the synthetic amorphous silca's size. Two out of the six tested methods (GEMMA and AF4-ICP-MS) cross validate the MED distributions between each other, providing a true measurement. The measurement accuracy of other four techniques is shown to be compromised either by the high limit of detection and quantification (CLS, NTA, Wet-SEM) or the sample preparation that is biased by increased retention of smaller nanomaterials (SEM). This study thereby presents a successful and conclusive cross-method comparison of size distribution measurements of aggregated nanomaterials. The authors recommend the uniform MED size expression for application in nanomaterial risk assessment studies and clarifications in current regulations and definitions concerning nanomaterials. PMID:26081166

  5. Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate

    SciTech Connect

    Woehl, Taylor J.; Park, Chiwoo; Evans, James E.; Arslan, Ilke; Ristenpart, William D.; Browning, Nigel D.

    2014-01-08

    Direct observations of solution-phase nanoparticle growth using in situ liquid transmission electron microscopy (TEM) have demonstrated the importance of “non-classical” growth mechanisms, such as aggregation and coalescence, on the growth and final morphology of nanocrystals at the atomic and single nanoparticle scales. To date, groups have quantitatively interpreted the mean growth rate of nanoparticles in terms of the Lifshitz-Slyozov-Wagner (LSW) model for Ostwald ripening, but less attention has been paid to modeling the corresponding particle size distribution. Here we use in situ fluid stage scanning TEM to demonstrate that silver nanoparticles grow by a length-scale dependent mechanism, where individual nanoparticles grow by monomer attachment but ensemble-scale growth is dominated by aggregation. Although our observed mean nanoparticle growth rate is consistent with the LSW model, we show that the corresponding particle size distribution is broader and more symmetric than predicted by LSW. Following direct observations of aggregation, we interpret the ensemble-scale growth using Smoluchowski kinetics and demonstrate that the Smoluchowski model quantitatively captures the mean growth rate and particle size distribution.

  6. Immigrant Pantoea agglomerans embedded within indigenous microbial aggregates: a novel spatial distribution of epiphytic bacteria.

    PubMed

    Yu, Qing; Ma, Anzhou; Cui, Mengmeng; Zhuang, Xuliang; Zhuang, Guoqiang

    2014-02-01

    Immigrant bacteria located on leaf surfaces are important to the health of plants as well as to people who consume fresh fruits and vegetables. However, the spatial distribution and organization of these immigrant bacteria on leaf surfaces are still poorly understood. To examine the spatial organization of these strains, two bacterial strains on tobacco leaves: (1) an indigenous strain, Pseudomonas stutzeri Nov. Y2011 labeled with green fluorescent protein, and (2) an immigrant strain Pantoea agglomerans labeled with cyan fluorescent protein isolated from pear, were studied. Under moist conditions, P. agglomerans cells quickly disappeared from direct observation by laser-scanning confocal microscopy, although elution results indicated that large amounts of live cells were still present on the leaves. Following exposure to desiccation stress, particles of cyan fluorescent protein-labeled P. agglomerans were visible within cracked aggregates of P. stutzeri Nov. Y2011. Detailed observation of sectioned aggregates showed that colonies of immigrant P. agglomerans were embedded within aggregates of P. stutzeri Nov. Y2011. Furthermore, carbon-resource partitioning studies suggested that these two species could coexist without significant nutritional competition. This is the first observation of an immigrant bacterium embedding within aggregates of indigenous bacteria on leaves to evade harsh conditions in the phyllosphere. PMID:25076531

  7. Potential Carbon Transport: Linking Soil Aggregate Stability and Sediment Enrichment for Updating the Soil Active Layer within Intensely Managed Landscapes

    NASA Astrophysics Data System (ADS)

    Wacha, K.; Papanicolaou, T.; Abban, B. K.; Wilson, C. G.

    2014-12-01

    Currently, many biogeochemical models lack the mechanistic capacity to accurately simulate soil organic carbon (SOC) dynamics, especially within intensely managed landscapes (IMLs) such as those found in the U.S. Midwest. These modeling limitations originate by not accounting for downslope connectivity of flowpathways initiated and governed by landscape processes and hydrologic forcing, which induce dynamic updates to the soil active layer (generally top 20-30cm of soil) with various sediment size fractions and aggregates being transported and deposited along the downslope. These hydro-geomorphic processes, often amplified in IMLs by tillage events and seasonal canopy, can greatly impact biogeochemical cycles (e.g., enhanced mineralization during aggregate breakdown) and in turn, have huge implications/uncertainty when determining SOC budgets. In this study, some of these limitations were addressed through a new concept, Potential Carbon Transport (PCT), a term which quantifies a maximum amount of material available for transport at various positions of the landscape, which was used to further refine a coupled modeling framework focused on SOC redistribution through downslope/lateral connectivity. Specifically, the size fractions slaked from large and small aggregates during raindrop-induced aggregate stability tests were used in conjunction with rainfall-simulated sediment enrichment ratio (ER) experiments to quantify the PCT under various management practices, soil types and landscape positions. Field samples used in determining aggregate stability and the ER experiments were collected/performed within the historic Clear Creek Watershed, home of the IML Critical Zone Observatory, located in Southeastern Iowa.

  8. Small molecule-mediated stabilization of vesicle-associated helical α-synuclein inhibits pathogenic misfolding and aggregation.

    PubMed

    Fonseca-Ornelas, Luis; Eisbach, Sybille E; Paulat, Maria; Giller, Karin; Fernández, Claudio O; Outeiro, Tiago F; Becker, Stefan; Zweckstetter, Markus

    2014-01-01

    α-synuclein is an abundant presynaptic protein that is important for regulation of synaptic vesicle trafficking, and whose misfolding plays a key role in Parkinson's disease. While α-synuclein is disordered in solution, it folds into a helical conformation when bound to synaptic vesicles. Stabilization of helical, folded α-synuclein might therefore interfere with α-synuclein-induced neurotoxicity. Here we show that several small molecules, which delay aggregation of α-synuclein in solution, including the Parkinson's disease drug selegiline, fail to interfere with misfolding of vesicle-bound α-synuclein. In contrast, the porphyrin phtalocyanine tetrasulfonate directly binds to vesicle-bound α-synuclein, stabilizes its helical conformation and thereby delays pathogenic misfolding and aggregation. Our study suggests that small-molecule-mediated stabilization of helical vesicle-bound α-synuclein opens new possibilities to target Parkinson's disease and related synucleinopathies. PMID:25524885

  9. Stabilizer information inequalities from phase space distributions

    NASA Astrophysics Data System (ADS)

    Gross, David; Walter, Michael

    2013-08-01

    The Shannon entropy of a collection of random variables is subject to a number of constraints, the best-known examples being monotonicity and strong subadditivity. It remains an open question to decide which of these "laws of information theory" are also respected by the von Neumann entropy of many-body quantum states. In this article, we consider a toy version of this difficult problem by analyzing the von Neumann entropy of stabilizer states. We find that the von Neumann entropy of stabilizer states satisfies all balanced information inequalities that hold in the classical case. Our argument is built on the fact that stabilizer states have a classical model, provided by the discrete Wigner function: The phase-space entropy of the Wigner function corresponds directly to the von Neumann entropy of the state, which allows us to reduce to the classical case. Our result has a natural counterpart for multi-mode Gaussian states, which sheds some light on the general properties of the construction. We also discuss the relation of our results to recent work by Linden, Ruskai, and Winter ["The quantum entropy cone of stabiliser states," e-print arXiv:1302.5453].

  10. Thioglucose-stabilized gold nanoparticles as a novel platform for colorimetric bioassay based on nanoparticle aggregation.

    PubMed

    Watanabe, Shigeru; Yoshida, Kazuma; Shinkawa, Keitarou; Kumagawa, Daisuke; Seguchi, Hideki

    2010-12-01

    Gold nanoparticles stabilized with thioglucose (TGlu-AuNPs), which have carboxyl groups on the particle surface as anchoring sites for covalent immobilization of biomolecules, were prepared by the chemical reduction of HAuCl4 using 1-thio-β-D-glucose as a reducing and stabilizing agent, and their application to colorimetric bioassay was demonstrated using the carbohydrate-lectin system. p-Aminophenyl α-D-mannose (Man-NH2) was covalently attached by a conventional method to the activated carboxyl groups on the TGlu-AuNPs. On addition of Con A to the Man-AuNPs, multiple binding events occurred between Con A and the mannoses immobilized on the particle surface. This Con A-induced aggregation resulted in a significant red shift in local surface plasmon resonance. The binding isotherm showed a sigmoidal curve, indicating cooperativity in the binding of Con A and the Man-AuNPs. In addition, Hill plots showed two nonequivalent binding modes, with the Kd values for high- and low-affinity binding of 11.3 and 66.5 pM, respectively, which was significantly lower than that for methyl-α-D-mannose binding to Con A. The enhanced binding affinity between Man-AuNPs and Con A involves the cluster effect of the carbohydrate groups on the AuNPs. A linear correlation curve was obtained in the range 10-100 nM (R2=0.983). The limit of detection (LOD) for Con A was 9.0 nM in aqueous buffer, which is comparable to that of other conventional methods such as ELISA. PMID:20801619

  11. Distributed curvature and stability of fullerenes.

    PubMed

    Fowler, Patrick W; Nikolić, Sonja; De Los Reyes, Rasthy; Myrvold, Wendy

    2015-09-21

    Energies of non-planar conjugated π systems are typically described qualitatively in terms of the balance of π stabilisation and the steric strain associated with geometric curvature. Curvature also has a purely graph-theoretical description: combinatorial curvature at a vertex of a polyhedral graph is defined as one minus half the vertex degree plus the sum of reciprocal sizes of the faces meeting at that vertex. Prisms and antiprisms have positive combinatorial vertex curvature at every vertex. Excluding these two infinite families, we call any other polyhedron with everywhere positive combinatorial curvature a PCC polyhedron. Cubic PCC polyhedra are initially common, but must eventually die out with increasing vertex count; the largest example constructed so far has 132 vertices. The fullerenes Cn have cubic polyhedral molecular graphs with n vertices, 12 pentagonal and (n/2 - 10) hexagonal faces. We show that there are exactly 39 PCC fullerenes, all in the range 20 ≤n≤ 60. In this range, there is only partial correlation between PCC status and stability as defined by minimum pentagon adjacency. The sum of vertex curvatures is 2 for any polyhedron; for fullerenes the sum of squared vertex curvatures is linearly related to the number of pentagon adjacencies and hence is a direct measure of relative stability of the lower (n≤ 60) fullerenes. For n≥ 62, non-PCC fullerenes with a minimum number of pentagon adjacencies minimise mean-square curvature. For n≥ 70, minimum mean-square curvature implies isolation of pentagons, which is the strongest indicator of stability for a bare fullerene. PMID:26283188

  12. Thermal stability of human plasma electronegative low-density lipoprotein: A paradoxical behavior of low-density lipoprotein aggregation.

    PubMed

    Rull, Anna; Jayaraman, Shobini; Gantz, Donald L; Rivas-Urbina, Andrea; Pérez-Cuellar, Montserrat; Ordóñez-Llanos, Jordi; Sánchez-Quesada, Jose Luis; Gursky, Olga

    2016-09-01

    Low-density lipoprotein (LDL) aggregation is central in triggering atherogenesis. A minor fraction of electronegative plasma LDL, termed LDL(-), plays a special role in atherogenesis. To better understand this role, we analyzed the kinetics of aggregation, fusion and disintegration of human LDL and its fractions, LDL(+) and LDL(-). Thermal denaturation of LDL was monitored by spectroscopy and electron microscopy. Initially, LDL(-) aggregated and fused faster than LDL(+), but later the order reversed. Most LDL(+) disintegrated and precipitated upon prolonged heating. In contrast, LDL(-) partially retained lipoprotein morphology and formed soluble aggregates. Biochemical analysis of all fractions showed no significant degradation of major lipids, mild phospholipid oxidation, and an increase in non-esterified fatty acid (NEFA) upon thermal denaturation. The main baseline difference between LDL subfractions was higher content of NEFA in LDL(-). Since NEFA promote lipoprotein fusion, increased NEFA content can explain rapid initial aggregation and fusion of LDL(-) but not its resistance to extensive disintegration. Partial hydrolysis of apoB upon heating was similar in LDL subfractions, suggesting that minor proteins importantly modulate LDL disintegration. Unlike LDL(+), LDL(-) contains small amounts of apoA-I and apoJ. Addition of exogenous apoA-I to LDL(+) hampered lipoprotein aggregation, fusion and precipitation, while depletion of endogenous apoJ had an opposite effect. Therefore, the initial rapid aggregation of LDL(-) is apparently counterbalanced by the stabilizing effects of minor proteins such as apoA-I and apoJ. These results help identify key determinants for LDL aggregation, fusion and coalescence into lipid droplets in vivo. PMID:27233433

  13. Evaluation of the physical properties, bulk density and aggregate stability of potential substrates in quarry restoration.

    NASA Astrophysics Data System (ADS)

    Jordan, M.; Garcia-Orenes, F.; Mataix-Solera, J.; Garcia-Sanchez, E.

    2012-04-01

    Quarrying activity entails significant environmental impact affecting the soil, water, plants, landscape, etc. One of the most important impacts is the loss of the productive layer of the soil and its vegetation cover. However, mining activities are absolutely necessary for human development; keeping them sustainable implicates looking for viable solutions for the restoration of these areas to prevent degradation during and after the exploitation period. The aim of this study was to evaluate different substrates obtained from different mixes of sewage sludge and different mine spoils, to check how they are effective in quarry restoration, and to establish good practises in mining restoration. Also, the study tried to approach two refuses, one deriving from mining activity, as are the mine spoils that need to be reused for their valorisation, and the other, sewage sludge, obtained in the water depuration process to acquire a cheap substrate for soil rehabilitation. This preliminary work, which is included in a larger study, shows the results obtained from two physical properties studied, bulk density and aggregate stability, as key properties in the substrate structure for use in mining area restoration. Two doses of composted sewage sludge (30 and 90 Tm/Ha), both very rich in calcium carbonate, were applied to two different mine spoils under lab conditions. The first material, of poor quality, originated from the acquisition of arid particles in crushed limestone (Z). It is characterized by stable ''coarse elements'' predominance (up to 75% of its weight), and by the presence of elevated percentages of sand. The other waste material tested comes from limestone extraction (basically formed by the levels of interspersed non-limestone materials and the remains of stripped soils (D)). The results show that the high dose of sewage sludge applied to a mix of the two mine spoils significantly increased the percentage of stable aggregates by more than 50% than the control

  14. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation.

    PubMed

    Chi, Eva Y; Krishnan, Sampathkumar; Randolph, Theodore W; Carpenter, John F

    2003-09-01

    Irreversible protein aggregation is problematic in the biotechnology industry, where aggregation is encountered throughout the lifetime of a therapeutic protein, including during refolding, purification, sterilization, shipping, and storage processes. The purpose of the current review is to provide a fundamental understanding of the mechanisms by which proteins aggregate and by which varying solution conditions, such as temperature, pH, salt type, salt concentration, cosolutes, preservatives, and surfactants, affect this process. PMID:14567625

  15. Size distribution of particles in Saturn’s rings from aggregation and fragmentation

    PubMed Central

    Brilliantov, Nikolai; Krapivsky, P. L.; Bodrova, Anna; Spahn, Frank; Hayakawa, Hisao; Stadnichuk, Vladimir; Schmidt, Jürgen

    2015-01-01

    Saturn’s rings consist of a huge number of water ice particles, with a tiny addition of rocky material. They form a flat disk, as the result of an interplay of angular momentum conservation and the steady loss of energy in dissipative interparticle collisions. For particles in the size range from a few centimeters to a few meters, a power-law distribution of radii, ∼r−q with q≈3, has been inferred; for larger sizes, the distribution has a steep cutoff. It has been suggested that this size distribution may arise from a balance between aggregation and fragmentation of ring particles, yet neither the power-law dependence nor the upper size cutoff have been established on theoretical grounds. Here we propose a model for the particle size distribution that quantitatively explains the observations. In accordance with data, our model predicts the exponent q to be constrained to the interval 2.75≤q≤3.5. Also an exponential cutoff for larger particle sizes establishes naturally with the cutoff radius being set by the relative frequency of aggregating and disruptive collisions. This cutoff is much smaller than the typical scale of microstructures seen in Saturn’s rings. PMID:26183228

  16. Size distribution of particles in Saturn's rings from aggregation and fragmentation.

    PubMed

    Brilliantov, Nikolai; Krapivsky, P L; Bodrova, Anna; Spahn, Frank; Hayakawa, Hisao; Stadnichuk, Vladimir; Schmidt, Jürgen

    2015-08-01

    Saturn's rings consist of a huge number of water ice particles, with a tiny addition of rocky material. They form a flat disk, as the result of an interplay of angular momentum conservation and the steady loss of energy in dissipative interparticle collisions. For particles in the size range from a few centimeters to a few meters, a power-law distribution of radii, ~r(-q) with q ≈ 3, has been inferred; for larger sizes, the distribution has a steep cutoff. It has been suggested that this size distribution may arise from a balance between aggregation and fragmentation of ring particles, yet neither the power-law dependence nor the upper size cutoff have been established on theoretical grounds. Here we propose a model for the particle size distribution that quantitatively explains the observations. In accordance with data, our model predicts the exponent q to be constrained to the interval 2.75 ≤ q ≤ 3.5. Also an exponential cutoff for larger particle sizes establishes naturally with the cutoff radius being set by the relative frequency of aggregating and disruptive collisions. This cutoff is much smaller than the typical scale of microstructures seen in Saturn's rings. PMID:26183228

  17. SOIL AGGREGATE STABILITY AND ENZYME ACTIVITY IN AGROFORESTRY AND ROW-CROP SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The proportion of water-stable aggregates (WSA) influences soil quality, crop growth, nutrient retention, water infiltration, and surface runoff. Roots, fungi, and bacteria as well as numerous chemical substances secreted by these agents play important roles in soil aggregate formation, persistence...

  18. Effects of fire on organic matter content and aggregate stability of soils in South of Spain.

    NASA Astrophysics Data System (ADS)

    Martínez-Murillo, Juan F.; Ruiz-Sinoga, José D.; Jiménez-Donaire, Virginia; Hueso-González, Paloma; Gabarrón-Galeote, Miguel A.

    2014-05-01

    Wildfires affect dramatically to soil physical, chemical and biological properties, which changes the hydrological and erosive soil response. The objectives of this study are to compare some soil properties affected by fire in field conditions. The experimental area is located in the South of Spain, 32 km western of the city of Málaga. In general, the area is characterized by a sub-humid Mediterranean climate (mean annual precipitation: 699 mm year-1; mean annual temperature: 17°C), with a substratum of alkaline metamorphic rocks. Vegetation cover consists on a mixed open wood of Quercus spp. and Pinus spp. with typical degraded Mediterranean scrub, where the dominant genus are Ulex spp. and Cistus spp. This area was partially affected by a wildfire on September 11th 2011. Soil samples were taken in burned and unburned areas: soil covered by shrubs, trees and bare soils. Unburned area was adjacent to the burned one and both of them had the same general conditions. On each microenvironment samples of the first 5 cm of soil were collected on September 19th 2011. The analyzed properties in the laboratory were organic matter (OM) and aggregate stability (AS). In general, fire affected mainly to OM (p<0.01). When we performed the analyses dividing the samples according to vegetal cover, the ANOVA showed that the wildfire only affected the OM content in soil covered by shrubs. In soil covered by trees and bare soil OM decreased, but it was insignificant. AS were not affected in any sampled environment.

  19. Secure and Cost-Effective Distributed Aggregation for Mobile Sensor Networks.

    PubMed

    Guo, Kehua; Zhang, Ping; Ma, Jianhua

    2016-01-01

    Secure data aggregation (SDA) schemes are widely used in distributed applications, such as mobile sensor networks, to reduce communication cost, prolong the network life cycle and provide security. However, most SDA are only suited for a single type of statistics (i.e., summation-based or comparison-based statistics) and are not applicable to obtaining multiple statistic results. Most SDA are also inefficient for dynamic networks. This paper presents multi-functional secure data aggregation (MFSDA), in which the mapping step and coding step are introduced to provide value-preserving and order-preserving and, later, to enable arbitrary statistics support in the same query. MFSDA is suited for dynamic networks because these active nodes can be counted directly from aggregation data. The proposed scheme is tolerant to many types of attacks. The network load of the proposed scheme is balanced, and no significant bottleneck exists. The MFSDA includes two versions: MFSDA-I and MFSDA-II. The first one can obtain accurate results, while the second one is a more generalized version that can significantly reduce network traffic at the expense of less accuracy loss. PMID:27120599

  20. Secure and Cost-Effective Distributed Aggregation for Mobile Sensor Networks

    PubMed Central

    Guo, Kehua; Zhang, Ping; Ma, Jianhua

    2016-01-01

    Secure data aggregation (SDA) schemes are widely used in distributed applications, such as mobile sensor networks, to reduce communication cost, prolong the network life cycle and provide security. However, most SDA are only suited for a single type of statistics (i.e., summation-based or comparison-based statistics) and are not applicable to obtaining multiple statistic results. Most SDA are also inefficient for dynamic networks. This paper presents multi-functional secure data aggregation (MFSDA), in which the mapping step and coding step are introduced to provide value-preserving and order-preserving and, later, to enable arbitrary statistics support in the same query. MFSDA is suited for dynamic networks because these active nodes can be counted directly from aggregation data. The proposed scheme is tolerant to many types of attacks. The network load of the proposed scheme is balanced, and no significant bottleneck exists. The MFSDA includes two versions: MFSDA-I and MFSDA-II. The first one can obtain accurate results, while the second one is a more generalized version that can significantly reduce network traffic at the expense of less accuracy loss. PMID:27120599

  1. Soil aggregate stability and wind erodible fraction in a semi-arid environment of White Nile State, Sudan

    NASA Astrophysics Data System (ADS)

    Elhaja, Mohamed Eltom; Ibrahim, Ibrahim Saeed; Adam, Hassan Elnour; Csaplovics, Elmar

    2014-11-01

    One of the most important recent issues facing White Nile State, Sudan, as well as Sub Saharan Africa, is the threat of continued land degradation and desertification as a result of climatic factors and human activities. Remote sensing and satellites imageries with multi-temporal and spectral and GIS capability, plays a major role in developing a global and local operational capability for monitoring land degradation and desertification in dry lands, as well as in White Nile State. The process of desertification in form of sand encroachment in White Nile State has increased rapidly, and much effort has been devoted to define and study its causes and impacts. This study depicts the capability afforded by remote sensing and GIS to analyze and map the aggregate stability as indicator for the ability of soil to wind erosion process in White Nile State by using Geo-statistical techniques. Cloud-free subset Landsat; Enhance Thematic Mapper plus (ETM +) scenes covering the study area dated 2008 was selected in order to identify the different features covering the study area as well as to make the soil sampling map. Wet-sieving method was applied to determine the aggregate stability. The geo-statistical methods in EARDAS 9.1 software was used for mapping the aggregate stability. The results showed that the percentage of aggregate stability ranged from (0 to 61%) in the study area, which emphasized the phenomena of sand encroachment from the western part (North Kordofan) to the eastern part (White Nile State), following the wind direction. The study comes out with some valuable recommendations and comments, which could contribute positively in reducing sand encroachments

  2. A zwitterion-DNA coating stabilizes nanoparticles against Mg2+ driven aggregation enabling attachment to DNA nanoassemblies.

    PubMed

    Mudalige, Thilak Kumara; Gang, Oleg; Sherman, William B

    2012-04-28

    Plasmonics and photonics demand new methods for the controlled construction of nanoparticle (NP) arrays. Complex, low-symmetry configurations of DNA-functionalized NPs are obtained by connection to scaffolds of branched and folded DNA nanostructures. However, the stabilization of these branched structures by Mg(2+) counterions also drives the uncontrolled aggregation of NPs. We demonstrate, using a two-dimensional DNA scaffold, that derivatizing gold nanoparticles (AuNPs) with zwitterionic ligands overcomes this problem. PMID:22473590

  3. Particle Restabilization in Silica/PEG/Ethanol Suspensions: How Strongly do Polymers Need To Adsorb To Stabilize Against Aggregation?

    SciTech Connect

    Kim, So Youn; Zukoski, Charles F.

    2014-09-24

    We study the effects of increasing the concentration of a low molecular weight polyethylene glycol on the stability of 44 nm diameter silica nanoparticles suspended in ethanol. Polymer concentration, c{sub p}, is increased from zero to that characterizing the polymer melt. Particle stability is accessed through measurement of the particle second-virial coefficient, B{sub -2}, performed by light scattering and ultrasmall angle X-ray scattering (USAXS). The results show that at low polymer concentration, c{sub p} < 3 wt %, B{sub -2} values are positive, indicating repulsive interactions between particles. B{sub -2} decreases at intermediate concentrations (3 wt % < c{sub p} < 50 wt %), and particles aggregates are formed. At high concentrations (50 wt % < c{sub p}) B{sub -2} increases and stabilizes at a value expected for hard spheres with a diameter near 44 nm, indicating the particles are thermodynamically stable. At intermediate polymer concentrations, rates of aggregation are determined by measuring time-dependent changes in the suspension turbidity, revealing that aggregation is slowed by the necessity of the particles diffusing over a repulsive barrier in the pair potential. The magnitude of the barrier passes through a minimum at c{sub p} {approx} 12 wt % where it has a value of {approx}12kT. These results are understood in terms of a reduction of electrostatic repulsion and van der Waals attractions with increasing c{sub p}. Depletion attractions are found to play a minor role in particle stability. A model is presented suggesting displacement of weakly adsorbed polymer leads to slow aggregation at intermediate concentration, and we conclude that a general model of depletion restabilization may involve increased strength of polymer adsorption with increasing polymer concentration.

  4. Effects of black carbon on aggregate stability, runoff generation, splash erosion and slopewash of a clay loam under simulated rainfall

    NASA Astrophysics Data System (ADS)

    Aston, Steve; Doerr, Stefan; Street-Perrott, Alayne

    2013-04-01

    Black (pyrogenic) carbon (BC) was produced from native hardwoods pyrolysed in a ring kiln at ~400° C and ground and sieved to < 2 mm. The BC was then added to a clay loam (sieved to 3.35 mm remaining. After 200 days of incubation, the remainder of each sample was air-dried and sieved to < 5 mm. Each sample was then placed in a square plot and subjected to 40 minutes of simulated rainfall. Runoff and subsurface drainage were measured at 2 minute intervals and runoff was collected at 5 minute intervals to enable subsequent determination of sediment concentrations, sediment yields and erosion rates of soil and BC. Splash cups were placed on each side of the plot to allow measurement of overall splash detachment for each simulation. A BC content of 5g kg-1 did not affect the mean aggregate stability of the clay loam, but a content of 25 g kg-1 led to a decrease in mean aggregate stability of >40%, with a further significant reduction observed when the BC content was 50 g kg-1. There were no statistically significant changes in aggregate stability between 50, 100 and 150 days of incubation for any of the application rates. Results showing the effects of BC on runoff generation, splash erosion and slopewash will also be presented.

  5. Positive evolution features in soil restoration assessed by means of glomalin and its relationship to aggregate stability

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Gispert Negrell, María; Pardini, Giovanni; Solé Benet, Albert

    2014-05-01

    Restoration of limestone quarries in arid environments mainly consists of regenerating a highly degraded soil and/or creating a soil-like substrate with minimal physico-chemical and biological properties. In an experimental soil restoration in limestone quarries from Sierra de Gádor (Almería), SE Spain, with the aim to improve soil/substrate properties and to reduce evaporation and erosion, 18 plots 15 x 5 m were prepared to test organic amendments (sludge, compost, control) and different mulches (gravel, chopped forest residue, control). In order to evaluate the soil quality of the different treatments, their chemical, physical and biological properties were analyzed. Among the most efficient biological indicators are arbuscular mycorrhizal fungi (AMF). AMF play an important role in aggregate stability due to the production of a glycoprotein called glomalin. Therefore, the aim of this study was to quantify, 5 years after the start the experiment, the content of total glomalin (TG) and to analyze its relationship with other soil parameters such as organic matter (OM) and aggregate stability soil (AE). Results indicated a remarkable effect of organic amendments on glomalin content, which was higher in the treatments with compost (6.96 mg g -1) than in sludge and control (0.54 and 0.40 mg g-1, respectively). Amendments also significantly influenced aggregate stability: the highest values were recorded in treatments with sludge and compost (23.14 and 25.09%, respectively) compared to control (13.37%). The gravel mulch had a negative influenced on AE: an average of 16% compared to 23.4% for chopped forest residues and 23.1% of control. Data showed a positive and significant correlation between values of TG and OM content (r = 0.95). We also found a positive and significant correlation between abundance of TG and AE when OM contents were lower than 4% (r = 0.93), however, there was no significant correlation to higher OM when it was higher than 4% (r = 0.34). This

  6. Effect of Surface Curvature and Chemistry on Protein Stability, Adsorption and Aggregation

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun

    Enzyme immobilization has been of great industrial importance because of its use in various applications like bio-fuel cells, bio-sensors, drug delivery and bio-catalytic films. Although research on enzyme immobilization dates back to the 1970's, it has been only in the past decade that scientists have started to address the problems involved systematically. Most of the previous works on enzyme immobilization have been retrospective in nature i.e enzymes were immobilized on widely used substrates without a compatibility study between the enzyme and the substrate. Consequently, most of the enzymes lost their activity upon immobilization onto these substrates due to many governing factors like protein-surface and inter-protein interactions. These interactions also play a major role biologically in cell signaling, cell adhesion and inter-protein interactions specifically is believed to be the major cause for neurodegenerative diseases like Alzheimer's and Parkinson's disease. Therefore understanding the role of these forces on proteins is the need of the hour. In my current research, I have mainly focused on two factors a) Surface Curvature b) Surface Chemistry as both of these play a pivotal role in influencing the activity of the enzymes upon immobilization. I study the effect of these factors computationally using a stochastic method known as Monte Carlo simulations. My research work carried out in the frame work of a Hydrophobic-Polar (HP) lattice model for the protein shows that immobilizing enzymes inside moderately hydrophilic or hydrophobic pores results in an enhancement of the enzymatic activity compared to that in the bulk. Our results also indicate that there is an optimal value of surface curvature and hydrophobicity/hydrophilicity where this enhancement of enzymatic activity is highest. Further, our results also show that immobilization of enzymes inside hydrophobic pores of optimal sizes are most effective in mitigating protein-aggregation. These

  7. The response of aggregate production to fertility-induced changes in population age distribution.

    PubMed

    Denton, F T; Mountain, D C; Spencer, B G

    1996-01-01

    With a particular focus upon long-term supply effects, the authors explored the implications of different population age distributions for the productive capacity of an economy. A multilevel aggregate production process was specified, plausible values assigned to its parameters, and steady-state solutions obtained under a range of alternative fertility assumptions. The theoretical model was calibrated to conform with Canadian data and published estimates of age-sex substitution elasticities. The study found productive capacity to be related to age distribution, although the output effects exceed 8%, regardless of the structure of the economy, only when total fertility rate is less than 1.6 or well above 3.0; within the range of variation, productive capacity and output per capita are lower for both younger and older populations; altering the elasticity of substitution between different tasks has negligible effects upon the sensitivity of the economy to changes in age distribution; altering the elasticity of substitution between different age-sex groups for a given task has a markedly greater effect; introducing either increasing or decreasing returns to scale has only a minor effect upon the sensitivity of the economy to changes in age distribution; and marginal products are quite sensitive to changes in age distribution for both younger and older workers, but far less sensitive for middle-aged workers. PMID:12320140

  8. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: Influence of aggregate formation on process stability

    SciTech Connect

    Kleyboecker, A.; Liebrich, M.; Kasina, M.; Kraume, M.; Wittmaier, M.; Wuerdemann, H.

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Mechanism of process recovery with calcium oxide. Black-Right-Pointing-Pointer Formation of insoluble calcium salts with long chain fatty acids and phosphate. Black-Right-Pointing-Pointer Adsorption of VFAs by the precipitates resulting in the formation of aggregates. Black-Right-Pointing-Pointer Acid uptake and phosphate release by the phosphate-accumulating organisms. Black-Right-Pointing-Pointer Microbial degradation of volatile fatty acids in the aggregates. - Abstract: Following a process failure in a full-scale biogas reactor, different counter measures were undertaken to stabilize the process of biogas formation, including the reduction of the organic loading rate, the addition of sodium hydroxide (NaOH), and the introduction of calcium oxide (CaO). Corresponding to the results of the process recovery in the full-scale digester, laboratory experiments showed that CaO was more capable of stabilizing the process than NaOH. While both additives were able to raise the pH to a neutral milieu (pH > 7.0), the formation of aggregates was observed particularly when CaO was used as the additive. Scanning electron microscopy investigations revealed calcium phosphate compounds in the core of the aggregates. Phosphate seemed to be released by phosphorus-accumulating organisms, when volatile fatty acids accumulated. The calcium, which was charged by the CaO addition, formed insoluble salts with long chain fatty acids, and caused the precipitation of calcium phosphate compounds. These aggregates were surrounded by a white layer of carbon rich organic matter, probably consisting of volatile fatty acids. Thus, during the process recovery with CaO, the decrease in the amount of accumulated acids in the liquid phase was likely enabled by (1) the formation of insoluble calcium salts with long chain fatty acids, (2) the adsorption of volatile fatty acids by the precipitates, (3) the acid uptake by phosphorus-accumulating organisms and (4

  9. Effects of biodegradable plastics on the predominant culturable bacteria associated with soil aggregate formation and stability after 9 months of incubation in natural soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An in vitro study of the effects of biodegradable plastics on the predominant soil aggregating bacteria associated to soil aggregate formation and stability after 9 months of incubation in soil. Caesar-TonThat TC, Fukui R*, Caesar AJ., Lartey, RT, and Gaskin, JF. USDA-Agricultural Research Service, ...

  10. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application

    PubMed Central

    Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A.; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu

    2016-01-01

    A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability. PMID:27191160

  11. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application.

    PubMed

    Ma, Ningning; Zhang, Lili; Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu

    2016-01-01

    A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability. PMID:27191160

  12. Interaction between soil mineralogy and the application of crop residues on aggregate stability and hydraulic conductivity of the soil

    NASA Astrophysics Data System (ADS)

    Lado, M.; Kiptoon, R.; Bar-Tal, A.; Wakindiki, I. I. C.; Ben-Hur, M.

    2012-04-01

    One of the main goals of modern agriculture is to achieve sustainability by maintaining crop productivity while avoiding soil degradation. Intensive cultivation could lead to a reduction in soil organic matter that could affect the structure stability and hydraulic conductivity of the soil. Moreover, crops extract nutrients from the soil that are taken away from the field when harvested, and as a consequence, the addition of fertilizers to the soil is necessary to maintain crop productivity. One way to deal with these problems is to incorporate crop residues into the soil after harvest. Crop residues are a source of organic matter that could improve soil physical properties, such as aggregate stability and soil hydraulic conductivity. However, this effect could vary according to other soil properties, such as clay content, clay mineralogy, and the presence of other cementing materials in the soil (mainly carbonates and aluminum and iron oxides). In the present work, the interaction between the addition of chickpea crop residues to the soil and clay mineralogy on aggregate stability and saturated hydraulic conductivity were studied. Chickpea plant residues were added at a rate of 0.5% (w/w) to smectitic, kaolinitic, illitic and non-phyllosilicate soils from different regions. The soils without (control) and with chickpea residues were incubated for 0, 3, 7 and 30 days, and the saturated hydraulic conductivity of the soils was measured in columns after each incubation time. The response of hydraulic conductivity to the addition of residues and incubation time was different in the soils with various mineralogies, although in general, the addition of chickpea residues increased the saturated hydraulic conductivity as compared with the control soils. This positive effect of crop residues on hydraulic conductivity was mainly a result of improved aggregate stability and resistance to slaking during wetting.

  13. Adjusting particle-size distributions to account for aggregation in tephra-deposit model forecasts

    NASA Astrophysics Data System (ADS)

    Mastin, Larry G.; Van Eaton, Alexa R.; Durant, Adam J.

    2016-07-01

    Volcanic ash transport and dispersion (VATD) models are used to forecast tephra deposition during volcanic eruptions. Model accuracy is limited by the fact that fine-ash aggregates (clumps into clusters), thus altering patterns of deposition. In most models this is accounted for by ad hoc changes to model input, representing fine ash as aggregates with density ρagg, and a log-normal size distribution with median μagg and standard deviation σagg. Optimal values may vary between eruptions. To test the variance, we used the Ash3d tephra model to simulate four deposits: 18 May 1980 Mount St. Helens; 16-17 September 1992 Crater Peak (Mount Spurr); 17 June 1996 Ruapehu; and 23 March 2009 Mount Redoubt. In 192 simulations, we systematically varied μagg and σagg, holding ρagg constant at 600 kg m-3. We evaluated the fit using three indices that compare modeled versus measured (1) mass load at sample locations; (2) mass load versus distance along the dispersal axis; and (3) isomass area. For all deposits, under these inputs, the best-fit value of μagg ranged narrowly between ˜ 2.3 and 2.7φ (0.20-0.15 mm), despite large variations in erupted mass (0.25-50 Tg), plume height (8.5-25 km), mass fraction of fine ( < 0.063 mm) ash (3-59 %), atmospheric temperature, and water content between these eruptions. This close agreement suggests that aggregation may be treated as a discrete process that is insensitive to eruptive style or magnitude. This result offers the potential for a simple, computationally efficient parameterization scheme for use in operational model forecasts. Further research may indicate whether this narrow range also reflects physical constraints on processes in the evolving cloud.

  14. Rapid changes in microbial biomass and aggregate size distribution in response to changes in organic matter management in grass pasture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adding high quantities of organic matter can increase carbon (C) inputs to soil and help maintain soil structure. This study investigated short-term effects of application of different levels of composted dairy manure (CDM) versus interseeding a legume into grass pasture on aggregate stability and s...

  15. Assessment of optimum threshold and particle shape parameter for the image analysis of aggregate size distribution of concrete sections

    NASA Astrophysics Data System (ADS)

    Ozen, Murat; Guler, Murat

    2014-02-01

    Aggregate gradation is one of the key design parameters affecting the workability and strength properties of concrete mixtures. Estimating aggregate gradation from hardened concrete samples can offer valuable insights into the quality of mixtures in terms of the degree of segregation and the amount of deviation from the specified gradation limits. In this study, a methodology is introduced to determine the particle size distribution of aggregates from 2D cross sectional images of concrete samples. The samples used in the study were fabricated from six mix designs by varying the aggregate gradation, aggregate source and maximum aggregate size with five replicates of each design combination. Each sample was cut into three pieces using a diamond saw and then scanned to obtain the cross sectional images using a desktop flatbed scanner. An algorithm is proposed to determine the optimum threshold for the image analysis of the cross sections. A procedure was also suggested to determine a suitable particle shape parameter to be used in the analysis of aggregate size distribution within each cross section. Results of analyses indicated that the optimum threshold hence the pixel distribution functions may be different even for the cross sections of an identical concrete sample. Besides, the maximum ferret diameter is the most suitable shape parameter to estimate the size distribution of aggregates when computed based on the diagonal sieve opening. The outcome of this study can be of practical value for the practitioners to evaluate concrete in terms of the degree of segregation and the bounds of mixture's gradation achieved during manufacturing.

  16. Do aggregate stability and soil organic matter content increase following organic inputs?

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Gísladóttir, Guðrún; van Leeuwen, Jeroen P.; Bloem, Jaap; Steffens, Markus; Vala Ragnarsdóttir, Kristin

    2014-05-01

    Agriculture is facing several challenges such as loss of soil organic matter (SOM); thus, sustainable farming management practices are needed. Organic farming is growing as an alternative to conventional farming; in Iceland approximately 1% and in Austria 16% of utilized agricultural area is under organic farming practice. We analyzed the effect of different farming practices (organic, and conventional) on soil physicochemical and microbiological properties in grassland soils in Iceland and cropland soils in Austria. Organic farms differed from conventional farms by absence of chemical fertilizers and pesticide use. At these farms, we investigated soil physicochemical (e.g. soil texture, pH, CAL-extractable P and K) and microbiological properties (fungal and bacterial biomass and activity). The effects of farming practices on soil macroaggregate stability and SOM quantity, quality and distribution between different fractions were studied following a density fractionation. In Iceland, we sampled six grassland sites on Brown (BA) and Histic (HA) Andosols; two sites on extensively managed grasslands, two sites under organic and two sites under conventional farming practice. In Austria, we sampled four cropland sites on Haplic Chernozems; two sites under organic and two sites under conventional farming practice. We found significantly higher macroaggregate stability in the organic compared to the conventional grasslands in Iceland. In contrast, slightly higher macroaggregation in conventional compared to the organic farming practice was found in croplands in Austria, although the difference was not significant. Macroaggregates were positively correlated with fungal biomass in Iceland, and with Feo and fungal activity in Austria. In Austria, SOM content and nutrient status (except for lower CAL-extractable P at one site) were similar between organic and conventional farms. Our results show that the organic inputs may have enhanced macroaggregation in organic farming

  17. Local-aggregate modeling for big data via distributed optimization: Applications to neuroimaging.

    PubMed

    Hu, Yue; Allen, Genevera I

    2015-12-01

    Technological advances have led to a proliferation of structured big data that have matrix-valued covariates. We are specifically motivated to build predictive models for multi-subject neuroimaging data based on each subject's brain imaging scans. This is an ultra-high-dimensional problem that consists of a matrix of covariates (brain locations by time points) for each subject; few methods currently exist to fit supervised models directly to this tensor data. We propose a novel modeling and algorithmic strategy to apply generalized linear models (GLMs) to this massive tensor data in which one set of variables is associated with locations. Our method begins by fitting GLMs to each location separately, and then builds an ensemble by blending information across locations through regularization with what we term an aggregating penalty. Our so called, Local-Aggregate Model, can be fit in a completely distributed manner over the locations using an Alternating Direction Method of Multipliers (ADMM) strategy, and thus greatly reduces the computational burden. Furthermore, we propose to select the appropriate model through a novel sequence of faster algorithmic solutions that is similar to regularization paths. We will demonstrate both the computational and predictive modeling advantages of our methods via simulations and an EEG classification problem. PMID:26295449

  18. Stabilization of copper nanoparticles with volume- and surface-distribution inside ion-exchange matrices

    NASA Astrophysics Data System (ADS)

    Kravchenko, T. A.; Sakardina, E. A.; Kalinichev, A. I.; Zolotukhina, E. V.

    2015-09-01

    Nanocomposites characterized by the surface and volume distributions of deposited copper nanoparticles are obtained via the chemical deposition of copper onto sulfonic acid and carboxylic cation exchanger and strongly basic anion exchanger matrices. The electrode behavior of the synthesized composites in CuSO4 solution is studied by open-circuit chronopotentiometry. The effect the nature of the fixed centers of the ion-exchange matrix has on the initial state of metallic particles and the processes that occur in solutions of their metal ions is established from the deviation of the nanocomposites' electrode potential from the potential of a compact electrode and the nature of its change over time. It is shown that the mechanism behind the interaction of the matrix and metal ions (ion exchange, non-exchange absorption, complexation) determines not only the initial size and distribution of metal particles, but also the rate at which they achieve aggregative stability.

  19. VARIATIONS IN SOIL AGGREGATE STABILITY AND ENZYME ACTIVITIES IN A TEMPERATE AGROFORESTRY PRACTICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agroforestry and grass buffers have been shown to improve soil properties and overall environmental quality. The objective of this study was to examine management and landscape effects on water stable soil aggregates (WSA), soil carbon, soil nitrogen, enzyme activity, and microbial community DNA co...

  20. Stabilized Fiber-Optic Distribution of Reference Frequency

    NASA Technical Reports Server (NTRS)

    Calhoun, Malcolm; Tjoelker, Robert; Diener, William; Dick, G. John; Wang, Rabi; Kirk, Albert

    2003-01-01

    An optoelectronic system distributes a reference signal of low noise and highly stabilized phase and frequency (100 MHz) from an atomic frequency standard to a remote facility at a distance up to tens of kilometers. The reference signal is transmitted to the remote station as amplitude modulation of an optical carrier signal propagating in an optical fiber. The stabilization scheme implemented in this system is intended particularly to suppress phase and frequency fluctuations caused by vibrations and by expansion and contraction of the optical fiber and other components in diurnal and seasonal heating and cooling cycles. The system (see figure) comprises several subsystems, the main one being (1) a hydrogen-maser or linear-ion-trap frequency standard in an environmentally controlled room in a signal-processing center (SPC), (2) a stabilized fiber-optic distribution assembly (SFODA), (3) a compensated sapphire oscillator (CSO) in an environmentally controlled room in the remote facility, (4) thermally stabilized distribution amplifiers and cabling from the environmentally controlled room to end users, and (5) performance- measuring equipment.

  1. The Predictive Performance and Stability of Six Species Distribution Models

    PubMed Central

    Huang, Min-Yi; Fan, Wei-Yi; Wang, Zhi-Gao

    2014-01-01

    Background Predicting species’ potential geographical range by species distribution models (SDMs) is central to understand their ecological requirements. However, the effects of using different modeling techniques need further investigation. In order to improve the prediction effect, we need to assess the predictive performance and stability of different SDMs. Methodology We collected the distribution data of five common tree species (Pinus massoniana, Betula platyphylla, Quercus wutaishanica, Quercus mongolica and Quercus variabilis) and simulated their potential distribution area using 13 environmental variables and six widely used SDMs: BIOCLIM, DOMAIN, MAHAL, RF, MAXENT, and SVM. Each model run was repeated 100 times (trials). We compared the predictive performance by testing the consistency between observations and simulated distributions and assessed the stability by the standard deviation, coefficient of variation, and the 99% confidence interval of Kappa and AUC values. Results The mean values of AUC and Kappa from MAHAL, RF, MAXENT, and SVM trials were similar and significantly higher than those from BIOCLIM and DOMAIN trials (p<0.05), while the associated standard deviations and coefficients of variation were larger for BIOCLIM and DOMAIN trials (p<0.05), and the 99% confidence intervals for AUC and Kappa values were narrower for MAHAL, RF, MAXENT, and SVM. Compared to BIOCLIM and DOMAIN, other SDMs (MAHAL, RF, MAXENT, and SVM) had higher prediction accuracy, smaller confidence intervals, and were more stable and less affected by the random variable (randomly selected pseudo-absence points). Conclusions According to the prediction performance and stability of SDMs, we can divide these six SDMs into two categories: a high performance and stability group including MAHAL, RF, MAXENT, and SVM, and a low performance and stability group consisting of BIOCLIM, and DOMAIN. We highlight that choosing appropriate SDMs to address a specific problem is an important

  2. Soil Aggregates and Organic Carbon Distribution in Red Soils after Long-term Fertilization with Different Fertilizer Treatments

    NASA Astrophysics Data System (ADS)

    Tang, J.; Wang, Y.

    2013-12-01

    Red soils, a typical Udic Ferrosols, widespread throughout the subtropical and tropical region in southern China, support the majority of grain production in this region. The red soil is naturally low in pH values, cation exchange capacity, fertility, and compaction, resulting in low organic matter contents and soil aggregation. Application of chemical fertilizers and a combination of organic-chemical fertilizers are two basic approaches to improve soil structure and organic matter contents. We studied the soil aggregation and the distribution of aggregate-associated organic carbon in red soils with a long-term fertilization experiment during 1988-2009. We established treatments including 1) NPK and NK in the chemical fertilizer plots, 2) CK (Control), and 3) CK+ Peanut Straw (PS), CK+ Rice Straw (RS), CK+ Fresh Radish (FR), and CK + Pig Manure (PM) in the organic-chemical fertilizer plots. Soil samples were fractionated into 6 different sized aggregate particles through the dry-wet sieving method according to the hierarchical model of aggregation. Organic carbon in the aggregate/size classes was analyzed. The results showed that the distribution of mechanically stable aggregates in red soils after long-term fertilization decreased with the size, from > 5mm, 5 ~ 2 mm, 2 ~ 1 mm, 1~ 0.25 mm, to < 0.25 mm, but the distribution of water-stable aggregates did not follow this pattern. Compared with the chemical fertilizer application alone, the addition of pig manure and green manure can significantly improve the distribution of aggregates in the 5-2 mm, 2-1 mm and 1-0.25 mm classes. The organic carbon (OC) contents in red soils were all increased after the long-term fertilization. Compared with Treatment NK, soil OC in Treatment NPK was increased by 45.4%. Compared with Treatment CK (low chemical fertilizer), organic fertilizer addition increased soil OC. The OC in the different particle of water-stable aggregates were all significantly increased after long

  3. Suppression of Photocyclization: Stabilization of an Aggregation-Induced Tetraaryldistyrylbenzene Emitter.

    PubMed

    Freudenberg, Jan; Rominger, Frank; Bunz, Uwe H F

    2016-06-20

    The synthesis of 2,3,5,6-tetrakis(2,6-difluorophenyl)di(styryl)benzene by using a conventional synthetic sequence, including Diels-Alder and Horner reactions is reported. The target is an effective aggregation-induced emitter. It is photostable with respect to electrocyclization, due to the presence of the fluorine substituents. This compound undergoes photochemical trans/cis isomerization of its styryl double bonds. PMID:27124375

  4. A HIGH STABILITY, LOW NOISE RF DISTRIBUTION SYSTEM

    SciTech Connect

    Bernstein, Dorel

    2002-08-20

    Next generation linear colliders require high stability, low noise distribution of RF phase and timing signals. We describe a fiber-optics system that transmits phase at 357MHz, at a 1500nm wavelength, over a distance of 15 kilometers. Phase length errors in the transmission fiber are measured using the phase of the signal reflected from the fiber end. Corrections are performed by controlling the temperature of a 6-kilometer fiber spool placed in series with the main transmission fiber. This system has demonstrated a phase stability better than 10 femtoseconds per degree C, per kilometer, an improvement of a factor of >2000 relative to un-stabilized fiber. This system uses standard low cost telecom fiber and components.

  5. The capture and stabilization of curcumin using hydrophobically modified polyacrylate aggregates and hydrogels.

    PubMed

    Harada, Takaaki; Pham, Duc-Truc; Lincoln, Stephen F; Kee, Tak W

    2014-08-01

    Hydrophobically modified polyacrylates are shown to suppress the degradation of the medicinal pigment curcumin under physiological conditions. In aqueous solution, the 3% octadecyl randomly substituted polyacrylate, PAAC18, forms micelle-like aggregates at a concentration of <1 wt % and a hydrogel at >1 wt %. Under both conditions, PAAC18 shows a remarkable ability to suppress the degradation of curcumin at pH 7.4 and 37 °C such that its degradation half-life is increased by 1600-2000-fold. The suppression of degradation is attributed to hydrophobic interactions between curcumin and the octadecyl substituents of PAAC18 within the micelle-like aggregates and the hydrogel, as indicated by 2D NOESY (1)H NMR spectroscopy. UV-visible absorption titration results are consistent with the interaction of curcumin with five octadecyl substituents on average, which appears to substantially exclude water and greatly decrease the curcumin degradation rate. Dynamic light scattering and zeta potential measurements show the average hydrodynamic diameters of the PAAC18 aggregates to be 0.86-1.15 μm with a negative surface charge. In contrast to the octadecyl substitution, the 3% dodecyl randomly substituted polyacrylate, PAAC12, shows a negligible effect on slowing the degradation of curcumin, consistent with the dodecyl substituents being insufficiently long to capture curcumin in a adequately hydrophobic environment. These observations indicate the potential for PAAC18 to act as a model drug delivery system. PMID:25029529

  6. The influence of density distribution on the stability of beams

    SciTech Connect

    Guy, F.W.; Lapostolle, P.M.; Wangler, T.P.

    1987-01-01

    We examine the effect of various density distributions in four-dimensional phase space and their projections in real and velocity space on the stability of continuous beams in alternating-gradient transport lines using particle-following computer simulations. We discuss the susceptibility of three different distributions (Kapchinskii-Vladimirskii, bicylinder, and thermal) to third- and higher-order mode instabilities. These distributions are all uniform in real space, but their velocity distributions are different; they also react differently to structure resonances. Velocity distributions of high-current beams tend to evolve to a peaked Gaussian-like form. Is there a specific velocity distribution that is stable and, therefore, the preferred injection distribution for minimizing emittance growth. Forced smoothness or uniformity in real space is necessary for setting up particle simulations of high-current beams so that spurious charge-redistribution emittance growth can be avoided. Is forced smoothness also desirable in four dimensions for continuous beams and possibly in six dimensions for bunched beams. We consider these and related questions.

  7. Enhancing stabilities of lipase by enzyme aggregate coating immobilized onto ionic liquid modified mesoporous materials

    NASA Astrophysics Data System (ADS)

    Zou, Bin; Song, Chunyan; Xu, Xiaping; Xia, Jiaojiao; Huo, Shuhao; Cui, Fengjie

    2014-08-01

    Mesoporous material SBA-15 as the matrix and hydrophilic methyl imidazolium ionic liquids [MSiIM]+BF4- as modifier were involved in preparing ionic liquid modified materials as enzyme carriers through after-grafting silane coupling reaction. The method of enzyme aggregates coating was firstly used to immobilize porcine pancreatic lipase (PPL) onto ionic liquid modified SBA-15. Characterization before and after modification and immobilization were conducted using infrared spectroscopy (FT-IR), differential thermal-thermal analysis (DTA-TG) and N2 adsorption-desorption method (BET). The results indicated that the ordering degree of SBA-15 declined after ionic liquid modification, but mesoporous structure remained. After enzyme immobilization, pore size and specific surface area of carrier became smaller. The cross-linking agent amount, reaction temperature and pH were optimized in this paper. The result demonstrated that the initial activity of enzyme was raised from 35% to 53% after five times recycle by enzyme aggregate coating. 74% of the original activity remained after 25 days storage.

  8. Scaling structure of the growth-probability distribution in diffusion-limited aggregation processes

    NASA Astrophysics Data System (ADS)

    Hayakawa, Y.; Sato, S.; Matsushita, M.

    1987-08-01

    In nonequilibrium growth such as diffusion-limited aggregation (DLA), the growth-site probability distribution characterizes these growth processes. By solving the Laplace equation numerically, we calculate the growth probability Pg(x) at the perimeter site x of clusters for the DLA and its generalized version called the η model, and obtain the generalized dimension D(q) and the f-α spectrum proposed by Halsey et al.

    [Phys. Rev. A 33, 1141 (1986)]
    . It is found that D(q) depends strongly on q and that the f-α spectrum is continuous. Our results suggest that these growth processes cannot be described by a simple scaling theory with a few scaling exponents. This is in clear contrast to the Botet-Jullien model
    [Phys. Rev. Lett. 55, 1943 (1985)]
    which yields equilibrium patterns whose D(q) is constant. It is also found that the information dimension D(1) which represents the properties of the unscreened surface is in good agreement with our recent theory.

  9. Stability of single sheet GNNQQNY aggregates analyzed by replica exchange molecular dynamics: Antiparallel versus parallel association

    SciTech Connect

    Vitagliano, Luigi; Esposito, Luciana; Pedone, Carlo; De Simone, Alfonso

    2008-12-26

    Protein and peptide aggregation into amyloid plaques is associated with a large variety of neurodegenerative diseases. The definition of the molecular bases of these pathologies is hampered by the transient nature of pre-fibrillar small-oligomers that are considered the toxic species. The ability of the peptide GNNQQNY to form amyloid-like structures makes it a good model to investigate the complex processes involved into amyloid fiber formation. By employing full atomistic replica exchange molecular dynamics simulations, we constructed the free energy surface of small assemblies of GNNQQNY to gain novel insights into the fiber formation process. The calculations suggest that the peptide exhibits a remarkable tendency to form both parallel and antiparallel {beta}-sheets. The data show that GNNQQNY preference for parallel or antiparallel {beta}-sheets is governed by a subtle balance of factors including assemblies' size, sidechain-sidechain interactions and pH. The samplings analysis provides a rationale to the observed trends.

  10. Simulation of infrared scattering from ice aggregates by use of a size-shape distribution of circular ice cylinders.

    PubMed

    Baran, Anthony J

    2003-05-20

    The scalar optical properties (extinction coefficient, mass extinction coefficient, single-scattering albedo, and asymmetry parameter) of a distribution of randomly oriented ice aggregates are simulated generally to well within 4% accuracy by use of a size-shape distribution of randomly oriented circular ice cylinders at wavelengths in the terrestrial window region. The single-scattering properties of the ice aggregates are calculated over the whole size distribution function by the finite-difference time-domain and improved geometric optics methods. The single-scattering properties of the size-shape distribution of circular ice cylinders are calculated by the T-matrix method supplemented by scattering solutions obtained from complex-angular-momentum theory. Moreover, radiative-transfer studies demonstrate that the maximum error in brightness temperature space when the size-shape distribution of circular ice cylinders is used to represent scattering from ice aggregates is only approximately 0.4 K The methodology presented should find wide applicability in remote sensing of ice cloud and parameterization of cirrus cloud scalar optical properties in climate models. PMID:12777019

  11. Kinetics of Formation and Asymmetrical Distribution of Hsp104-Bound Protein Aggregates in Yeast.

    PubMed

    Paoletti, Camille; Quintin, Sophie; Matifas, Audrey; Charvin, Gilles

    2016-04-12

    Budding yeast cells have a finite replicative life span; that is, a mother cell produces only a limited number of daughter cells before it slows division and dies. Despite the gradual aging of the mother cell, all daughters are born rejuvenated and enjoy a full replicative lifespan. It has been proposed that entry of mother cells into senescence is driven by the progressive accumulation and retention of damaged material, including protein aggregates. This additionally allows the daughter cells to be born damage free. However, the mechanism underlying such asymmetrical segregation of protein aggregates by mother and daughter cells remains controversial, in part because of the difficulties inherent in tracking the dynamics and fate of protein aggregates in vivo. To overcome such limitations, we have developed single-cell real-time imaging methodology to track the formation of heat-induced protein aggregates in otherwise unperturbed dividing cells. By combining the imaging data with a simple computational model of protein aggregation, we show that the establishment of asymmetrical partitioning of protein aggregates upon division is driven by the large bud-specific dilution rate associated with polarized growth and the absence of significant mother/bud exchange of protein aggregates during the budded phase of the cell cycle. To our knowledge, this study sheds new light on the mechanism of establishment of a segregation bias, which can be accounted for by simple physical arguments. PMID:27074685

  12. Stability of distributed MPC in an intersection scenario

    NASA Astrophysics Data System (ADS)

    Sprodowski, T.; Pannek, J.

    2015-11-01

    The research topic of autonomous cars and the communication among them has attained much attention in the last years and is developing quickly. Among others, this research area spans fields such as image recognition, mathematical control theory, communication networks, and sensor fusion. We consider an intersection scenario where we divide the shared road space in different cells. These cells form a grid. The cars are modelled as an autonomous multi-agent system based on the Distributed Model Predictive Control algorithm (DMPC). We prove that the overall system reaches stability using Optimal Control for each multi-agent and demonstrate that by numerical results.

  13. Free-surface stability criterion as affected by velocity distribution

    USGS Publications Warehouse

    Cheng-Lung, Chen

    1995-01-01

    This paper examines how the velocity distribution of flow in open channels affects the kinematic and dynamic wave velocities, from which the various forms of the Vedernikov number V can be formulated. When V >1, disturbances created in open-channel flow will amplify in the form of roll waves; when V <1, some (though not all) disturbances will attenuate. A study of the Vedernikov stability criterion reveals that it can be readily deduced within the framework of the kinematic and dynamic wave theories by comparing the kinematic wave velocity to the corresponding dynamic wave velocity. -from Author

  14. Distribution of low molecular weight platelet aggregation inhibitors from snake venoms.

    PubMed

    Oyama, Etsuko; Takahashi, Hidenobu

    2007-03-01

    An assay of platelet aggregation inhibitors measured by the turbidimeter using Aggregometer PAM 8C (Mebanix) was performed after each crude snake venom (57 species) was subjected to ultrafiltration using MILLIPORE UFP 1 LGC. The snake venoms of Viperidae (three species), Elapidae (11 species), and Hydrophiidae (two species) inhibited ADP-induced rabbit platelet aggregation. In particular, six venoms of Bitis gabonica, Pseudocerastes persicus, Dendroaspis angusticeps, D. polylepis, Ophiophagus hannah, and N. nigricollis crawshawii strongly inhibited platelet aggregation. Furthermore, adenosine was identified from Bitis gabonica venom using HPLC and FAB/MS analysis. PMID:17141819

  15. Structure and Thermodynamic Stability of Islet Amyloid Polypeptide Monomers and Small Aggregates

    NASA Astrophysics Data System (ADS)

    Chiu, Chi-Cheng; Singh, Sadanand; de Pablo, Juan

    2013-03-01

    Human islet amyloid polypeptide (hIAPP, also known as human amylin) is associated with the development of type II diabetes. It is known to form amyloid fibrils that are found in pancreatic islets. Pramlintide, a synthetic analog of hIAPP with three proline substitutions, is not amyloidogenic and has been applied in amylin replacement treatments. In this work, we use molecular simulations with advanced sampling techniques to examine the effect of these proline substitutions on hIAPP monomer conformations. We find that all three proline substitutions are required to attenuate the formation of β-sheets encountered in amylin. Furthermore, we investigate the formation of hIAPP dimers and trimers, and investigate how that process is affected by the presence of various additives. Our simulations show that hIAPP can form a β-sheet at the N-terminus and the C-terminus independently, in agreement with experimental observations. Our results provide valuable insights into the mechanism of hIAPP early aggregation and the design of fibril formation inhibitors.

  16. TDP-43 and ubiquitinated cytoplasmic aggregates in sporadic ALS are low frequency and widely distributed in the lower motor neuron columns independent of disease spread.

    PubMed

    Bodansky, Aaron; Kim, Jae Mun Hugo; Tempest, Lynne; Velagapudi, Amit; Libby, Ryan; Ravits, John

    2010-05-01

    Ubiqitinated and TDP-43 immunoreactive cytoplasmic aggregates are hallmark features of ALS molecular pathology. Since clinically most ALS begins focally and advances contiguously, it is important to characterize their distribution. Our objective was to determine the extent and distribution of TDP-43 immunoreactive aggregates in the lower motor neuron columns as a function of disease onset, and to correlate ubiquitinated with TDP-43 aggregates in the lumbar region. We examined TDP-43 cytoplasmic aggregates at four separate neuraxis levels - hypoglossal nucleus and cervical, thoracic, and lumbar anterior horns - in five controls and 20 sporadic ALS nervous systems from patients whose disease began in various sites, i.e. five bulbar, five arm, five trunk, and five leg onsets. We correlated ubiquitinated to TDP-43 aggregates on adjacent histological sections for the lumbar regions. We found that TDP-43 cytoplasmic aggregates are seen in about 8% of motor neurons but there is marked variability between nervous systems, ranging from 0.4% to 20.6%. The aggregates are uniformly distributed within individual nervous systems. There is no obvious correlation between site of disease onset and rate of spread. Almost all ubiquitinated aggregates correlate to TDP-43 aggregates. Thus, TDP-43 immunoreactive cytoplasmic aggregates have a low overall average frequency that does not correlate with either disease course or clinical spread and is the prime ubiquitinated protein. PMID:20225928

  17. Aggregation and stability of anisotropic charged clay colloids in aqueous medium in the presence of salt.

    PubMed

    Ali, Samim; Bandyopadhyay, Ranjini

    2016-01-01

    Na-montmorillonite nanoclay is a colloid of layered mineral silicate. When dispersed in water, this mineral swells on absorption of water and exfoliates into platelets with electric double layers on their surfaces. Even at low particle concentration, the aqueous dispersion can exhibit a spontaneous ergodicity breaking phase transition from a free flowing liquid to nonequilibrium, kinetically arrested and disordered states such as gels and glasses. In an earlier publication [Applied Clay Science, 2015, 114, 8592], we showed that the stability of clay gels can be enhanced by adding a salt later to the clay dispersion prepared in deionized water, rather than by adding the clay mineral to a previously mixed salt solution. Here, we directly track the collapsing interface of sedimenting clay gels using an optical method and show that adding salt after dispersing the clay mineral does indeed result in more stable gels even in very dilute dispersions. These weak gels are seen to exhibit a transient collapse after a finite delay time, a phenomenon observed previously in depletion gels. The velocity of the collapse oscillates with the age of the sample. However, the average velocity of collapse increases with sample age up to a peak value before decreasing at higher ages. With increasing salt concentration, the delay time for transient collapse decreases, while the peak value of the collapsing velocity increases. Using ultrasound attenuation spectroscopy, rheometry and cryogenic scanning electron microscopy, we confirm that morphological changes of the gel network assembly, facilitated by thermal fluctuations, lead to the observed collapse phenomenon. Since clay minerals are used extensively in polymer nanocomposites, as rheological modifiers, stabilizers and gas absorbents, we believe that the results reported in this work are extremely useful for several practical applications and also for understanding geophysical phenomena such as the formation and stability of quicksand

  18. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand

    NASA Astrophysics Data System (ADS)

    Van Eaton, Alexa R.; Wilson, Colin J. N.

    2013-01-01

    This study documents the processes and products of volcanic ash aggregation in phreatomagmatic phases of the 25.4 ka Oruanui supereruption from Taupo volcano, New Zealand. Detailed textural and stratigraphic relationships of aggregates are examined in six of the ten erupted units, which range from relatively dry styles of eruption and deposition (units 2, 5) to mixed (units 6, 7, 8) and dominantly wet (unit 3). Aggregate structures and grain size distributions shift abruptly over vertical scales of cm to dm, providing diagnostic features to identify deposits emplaced primarily as vertical fallout or pyroclastic density currents (PDCs). The six categories of ash aggregates documented here are used to infer distinct volcanic and meteorological interactions in the eruption cloud related to dispersal characteristics and mode of emplacement. Our field observations support the notion of Brown et al. (2010, Origin of accretionary lapilli within ground-hugging density currents: evidence from pyroclastic couplets on Tenerife. Geol. Soc. Am. Bull. 122, 305-320) that deposits bearing matrix-supported accretionary lapilli with concentric internal structure and abundant rim fragments are associated with emplacement of PDCs. However, on the basis of grain size distributions and field relationships, it is inferred that these types of ash aggregates formed their ultrafine ash (dominantly < 10 μm) outer layers in the buoyant plumes of fine ash lofted from PDCs, rather than during lateral transport in ground-hugging density currents. The propagation of voluminous PDCs beneath an overriding buoyant cloud - whether coignimbrite or vent-derived in origin - is proposed to generate the observed, concentrically structured accretionary lapilli by producing multiple updrafts of convectively unstable, ash-laden air. The apparent coarsening of mean grain size with distance from source, which is observed in aggregate-bearing fall facies, reflects a combination of multi-level plume transport

  19. Effects of hesperidin, a flavanone glycoside interaction on the conformation, stability, and aggregation of lysozyme: multispectroscopic and molecular dynamic simulation studies?

    PubMed

    Ratnaparkhi, Aditi; Muthu, Shivani A; Shiriskar, Sonali M; Pissurlenkar, Raghuvir R S; Choudhary, Sinjan; Ahmad, Basir

    2015-09-01

    Hesperidin (HESP), a flavanone glycoside, shows high antioxidant properties and possess ability to go through the blood-brain barrier. Therefore, it could be a potential drug molecule against aggregation based diseases such as Alzheimer's, Parkinson's, and systemic amyloidoses. In this work, we investigated the potential of HESP to interact with hen egg-white lysozyme (HEWL) monomer and prevent its aggregation. The HESP-HEWL binding studies were performed using a fluorescence quenching technique, molecular docking and molecular dynamics simulations. We found a strong interaction of HESP with the lysozyme monomer (Ka, ~ 5 × 10(4) M(-1)) mainly through hydrogen bonding, water bridges, and hydrophobic interactions. We showed that HESP molecule spanned the highly aggregation prone region (amino acid residues 48-101) of HEWL and prevented its fibrillar aggregation. Further, we found that HESP binding completely inhibited amorphous aggregation of the protein induced by disulfide-reducing agent tries-(2-carboxyethyl) phosphine. Conformational and stability studies as followed by various tertiary and secondary structure probes revealed that HESP binding only marginally affected the lysozyme monomer conformation and increased both stability and reversibility of the protein against thermal denaturation. Future studies should investigate detail effects of HESP on solvent dynamics, structure, and toxicity of various aggregates. The answers to these questions will not only target the basic sciences, but also have application in biomedical and biotechnological sciences. PMID:25301518

  20. Change in Chirality of Semiconducting Single-Walled Carbon Nanotubes Can Overcome Anionic Surfactant Stabilization: A Systematic Study of Aggregation Kinetics

    PubMed Central

    Khan, Iftheker A.; Flora, Joseph R. V.; Nabiul Afrooz, A. R. M.; Aich, Nirupam; Schierz, P. Ariette; Ferguson, P. Lee; Sabo-Attwood, Tara; Saleh, Navid B.

    2015-01-01

    Single-walled carbon nanotubes’ (SWNT) effectiveness in applications is enhanced by debundling or stabilization. Anionic surfactants are known to effectively stabilize SWNTs. However, the role of specific chirality on surfactant-stabilized SWNT aggregation has not been studied to date. The aggregation behavior of chirally enriched (6,5) and (7,6) semiconducting SWNTs, functionalized with three anionic surfactants—sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), and sodium deoxycholate (SDOCO)—was evaluated with time-resolved dynamic light scattering. A wide range of mono- (NaCl) and di-valent (CaCl2) electrolytes as well as a 2.5 mg TOC/L Suwannee River humic acid (SRHA) were used as background chemistry. Overall, SDBS showed the most effectiveness in SWNT stability, followed by SDOCO and SDS. However, the relatively larger diameter (7,6) chiral tubes compromised the surfactant stability, compared to (6,5) chiral enrichment, due to enhanced van der Waals interaction. The presence of di-valent electrolytes overshadowed the chirality effects and resulted in similar aggregation behavior for both the SWNT samples. Molecular modeling results enumerated key differences in surfactant conformation on SWNT surfaces and identified interaction energy changes between the two chiralities to delineate aggregation mechanisms. The stability of SWNTs increased in the presence of SRHA under 10 mM monovalent and mixed electrolyte conditions. The results suggest that change in chirality can overcome surfactant stabilization of semiconducting SWNTs. SWNT stability can also be strongly influenced by the anionic surfactant structure. PMID:26855611

  1. Stability and effectiveness of chlorine disinfectants in water distribution systems

    SciTech Connect

    Olivieri, V.P.; Snead, M.C.; Kruse, C.W.; Kawata, K.

    1986-11-01

    A test system for water distribution was used to evaluate the stability and effectiveness of three residual disinfectants - free chlorine, combined chlorine, and chlorine dioxide - when challenged with a sewage contaminant. The test distribution system consisted of the street main and internal plumbing for two barracks at Fort George G. Meade, MD. To the existing pipe network, 152 m (500 ft) of 13-mm (0.5 in.) copper pipe were added for sampling, and 60 m (200 ft) of 2.54-cm (1.0 in.) plastic pipe were added for circulation. The levels of residual disinfectants tested were 0.2 mg/L and 1.0 mg/L as available chlorine. In the absence of a disinfectant residual, microorganisms in the sewage contaminant were consistently recovered at high levels. The presence of any disinfectant residual reduced the microorganism level and frequency of occurrence at the consumer's tap. Free chlorine was the most effective residual disinfectant and may serve as a marker or flag in the distribution network. Free chlorine and chlorine dioxide were the least stable in the pipe network. The loss of disinfectant in the pipe network followed first-order kinetics. The half-life determined in static tests for free chlorine, chlorine dioxide, and combined chlorine was 140, 93, and 1680 min.

  2. Stability and effectiveness of chlorine disinfectants in water distribution systems.

    PubMed Central

    Olivieri, V P; Snead, M C; Krusé, C W; Kawata, K

    1986-01-01

    A test system for water distribution was used to evaluate the stability and effectiveness of three residual disinfectants--free chlorine, combined chlorine, and chlorine dioxide--when challenged with a sewage contaminant. The test distribution system consisted of the street main and internal plumbing for two barracks at Fort George G. Meade, MD. To the existing pipe network, 152 m (500 ft) of 13-mm (0.5 in.) copper pipe were added for sampling, and 60 m (200 ft) of 2.54-cm (1.0 in.) plastic pipe were added for circulation. The levels of residual disinfectants tested were 0.2 mg/L and 1.0 mg/L as available chlorine. In the absence of a disinfectant residual, microorganisms in the sewage contaminant were consistently recovered at high levels. The presence of any disinfectant residual reduced the microorganism level and frequency of occurrence at the consumer's tap. Free chlorine was the most effective residual disinfectant and may serve as a marker or flag in the distribution network. Free chlorine and chlorine dioxide were the least stable in the pipe network. The loss of disinfectant in the pipe network followed first-order kinetics. The half-life determined in static tests for free chlorine, chlorine dioxide, and combined chlorine was 140, 93, and 1680 min. PMID:3028767

  3. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.

    PubMed

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2013-10-15

    The behavior of manufactured TiO2 nanoparticles is studied in a systematic way in presence of alginate and Suwannee River humic acids at variable concentrations. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is discussed by considering three pH-dependent electrostatic scenarios. In the first scenario, when pH is below the TiO2 nanoparticle point of zero charge, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee River humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation. By increasing further alginate and Suwannee River humic acids concentrations charge inversion and stabilization of TiO2 nanoparticles are obtained. In the second electrostatic scenario, at the surface charge neutralization pH, TiO2 nanoparticles are rapidly forming aggregates. Adsorption of alginate and Suwannee River humic acids on aggregates leads to their partial fragmentation. In the third electrostatic scenario, when nanoparticles, alginate and Suwannee River humic acids are negatively charged, only a small amount of Suwannee River humic acids is adsorbed on TiO2 nanoparticles surface. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions, steric and van der Waals interactions, as well as concentration ratio. Results also suggest that environmental aquatic concentration ranges of humic acids and biopolymers largely modify the stability of aggregated or dispersed TiO2 nanoparticles. PMID:23969399

  4. Modeling capsid kinetics assembly from the steady state distribution of multi-sizes aggregates

    NASA Astrophysics Data System (ADS)

    Hozé, Nathanaël; Holcman, David

    2014-01-01

    The kinetics of aggregation for particles of various sizes depends on their diffusive arrival and fusion at a specific nucleation site. We present here a mean-field approximation and a stochastic jump model for aggregates at equilibrium. This approach is an alternative to the classical Smoluchowski equations that do not have a close form and are not solvable in general. We analyze these mean-field equations and obtain the kinetics of a cluster formation. Our approach provides a simplified theoretical framework to study the kinetics of viral capsid formation, such as HIV from the self-assembly of the structural proteins Gag.

  5. Effect of sustainable land management practices on soil aggregation and stabilization of organic carbon in semiarid mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Garcia-Franco, Noelia; Albaladejo, Juan; Almagro, María; Wiesmeier, Martin; Martínez-Mena, María

    2016-04-01

    Arid and semiarid regions represent about 47% of the total land area of the world (UNEP, 1992). At present, there is a priority interest for carbon (C) sequestration in drylands. These areas are considered as very fragile ecosystems with low organic carbon (OC) saturation, and potentially, high capacity for soil OC sequestration. In addition, the restoration of these areas is one of the major challenges for scientists, who will be able to identify and recommended the best land uses and sustainable land management (SLM) practices for soil conservation and mitigation of climate change in these environments. In this regard, in semiarid Mediterranean ecosystems there is an urgent need for the implementation of SLM practices regardless of land-use type (forest, agricultural and shrubland) to maintain acceptable levels of soil organic matter (SOM) and the physico-chemical protection of the OC. Long- and short-term effects of SLM practices on soil aggregation and SOC stabilization were studied in two land uses. The long-term experiment was conducted in a reforestation area with Pinus halepensis Mill., where two afforestation techniques were implemented 20 years ago: a) mechanical terracing with a single application of organic waste of urban soil refuse, and b) mechanical terracing without organic amendment. An adjacent shrubland was considered as the reference plot. The short-term experiment was conducted in a rain-fed almond (Prunus dulcis Mill., var. Ferragnes) orchard where two SLM practices were introduced 4 years ago: a) reduced tillage plus green manure, and b) no tillage. Reduced tillage was considered as the reference plot given that it is the habitual management practice. Four aggregate size classes were differentiated by sieving (large and small macroaggregates, microaggregates, and the silt plus clay fraction), and the microaggregates occluded within small macroaggregates (SMm) were isolated. In addition, different organic C fractions corresponding with active

  6. Aggregated Particle-size distributions for tephra-deposit model forecasts

    NASA Astrophysics Data System (ADS)

    Mastin, L. G.; Durant, A. J.; Van Eaton, A. R.

    2015-12-01

    The accuracy of models that forecast atmospheric transport and deposition of tephra to anticipate hazards during volcanic eruptions is limited by the fact that fine ash tends to aggregate and fall out more rapidly than the individual constituent particles. Aggregation is generally accounted for by representing fine ash as aggregates with density ρagg and a log-normal size range with median μagg and standard deviation σagg. Values of these parameters likely vary with eruption type, grain size, and atmospheric conditions. To date, no studies have examined how the values vary from one eruption or deposit to another. In this study, we used the Ash3d tephra model to simulate four deposits: 18 May 1980 Mount St. Helens, 16-17 September 1992 Crater Peak (Mount Spurr), Alaska, 17 June 1996 Ruapehu, and 23 March 2009 Mount Redoubt volcano. In 158 simulations, we systematically varied μagg (1-2.3Φ) and σagg (0.1-0.3Φ), using ellipsoidal aggregates with =600 kg m-3 and a shape factor F≡((b+c)/2a)=0.44 . We evaluated the goodness of fit using three statistical comparisons: modeled versus measured (1) mass load at individual sample locations; (2) mass load versus distance along the dispersal axis; and (3) isomass area. For all deposits, the best-fit μagg ranged narrowly between ~1.6-2.0Φ (0.33-0.25mm), despite large variations in erupted mass (0.25-50 Tg), plume height (8.5-25 km), mass fraction of fine (<0.063mm) ash (3-59%), atmospheric temperature, aggregation mechanism, and water content between these eruptions. This close agreement suggests that the aggregation process may be modeled as a discrete process that is agnostic to the eruptive style or magnitude of eruption. This result paves the way to a simple, computationally-efficient parameterization of aggregation that is suitable for use in operational deposit forecasts. Further research may indicate whether this narrow range also reflects physical constraints on processes in the evolving cloud.

  7. Uniform distribution of graphene oxide sheets into a poly-vinylidene fluoride nanoparticle matrix through shear-driven aggregation.

    PubMed

    Sheng, Xinxin; Xie, Delong; Zhang, Xinya; Zhong, Li; Wu, Hua; Morbidelli, Massimo

    2016-07-01

    A general methodology has been developed for preparing nanocomposites with uniform, random distribution of fillers in polymer matrices, purely based on intense shear-driven aggregation, while avoiding filler aggregation. This procedure is demonstrated for a binary colloid composed of graphene oxide (GO) sheets and poly-vinylidene fluoride (PVDF) nanoparticles (NPs), both negatively charged and stable at rest. On the other hand, the PVDF NPs are shear-active (i.e. aggregation occurs under intensive shear), while the GO sheets are shear-inactive. It is found that when the two suspensions are mixed and the resulting binary colloid is forced to pass through a microchannel (MC) device (at a very high shear rate, G = 1.2 × 10(6) s(-1)), the shear-inactive GO sheets are captured and well distributed inside the PVDF NP clusters or gels. In addition, it is shown that in order to have 100% capture efficiency for the GO sheets, a minimum solid content of the binary colloid is required, which can be identified experimentally as the minimum leading to gelation after passing through the MC only one time. PMID:27334421

  8. Distributed microbially- and chemically-mediated redox processes controlling arsenic dynamics within Mn-/Fe-oxide constructed aggregates

    NASA Astrophysics Data System (ADS)

    Ying, Samantha C.; Masue-Slowey, Yoko; Kocar, Benjamin D.; Griffis, Sarah D.; Webb, Samuel; Marcus, Matthew A.; Francis, Christopher A.; Fendorf, Scott

    2013-03-01

    The aggregate-based structure of soils imparts physical heterogeneity that gives rise to variation in microbial and chemical processes which influence the speciation and retention of trace elements such as As. To examine the impact of distributed redox conditions on the fate of As in soils, we imposed various redox treatments upon constructed soil aggregates composed of ferrihydrite- and birnessite-coated sands presorbed with As(V) and inoculation with the dissimilatory metal reducing bacterium Shewanella sp. ANA-3. Aeration of the advecting solution surrounding the aggregates was varied to simulate environmental conditions. We find that diffusion-limited transport within high dissolved organic carbon environments allows reducing conditions to persist in the interior of aggregates despite aerated advecting external solutes, causing As, Mn, and Fe to migrate from the reduced aggregate interiors to the aerated exterior region. Upon transitioning to anoxic conditions in the external solutes, pulses of As, Mn and Fe are released into the advecting solution, while, conversely, a transition to aerated conditions in the exterior resulted in a cessation of As, Mn, and Fe release. Importantly, we find that As(III) oxidation by birnessite is appreciable only in the presence of O2; oxidation of As(III) to As(V) by Mn-oxides ceases under anaerobic conditions apparently as a result of microbially mediated Mn(IV/III) reduction. Our results demonstrate the importance of considering redox conditions and the physical complexity of soils in determining As dynamics, where redox transitions can either enhance or inhibit As release due to speciation shifts in both sorbents (solubilization versus precipitation of Fe and Mn oxides) and sorbates (As).

  9. Age-related changes in the composition, the molecular stoichiometry and the stability of proteoglycan aggregates extracted from human articular cartilage.

    PubMed Central

    Wells, Terri; Davidson, Catherine; Mörgelin, Matthias; Bird, Joseph L E; Bayliss, Michael T; Dudhia, Jayesh

    2003-01-01

    The heterogeneity of the components of proteoglycan aggregates, their stoichiometry within the aggregate and the aggregates' stability was investigated in normal human articular cartilage specimens (age-range newborn to 63 years). Proteoglycans were extracted from tissue by sequentially extracting them with PBS alone, PBS containing oligosaccharides of hyaluronan, and PBS containing solutions of increasing guanidinium chloride concentration (1 M, 2 M, 3 M and 4 M). A high proportion of each of the components of the proteoglycan aggregate, i.e. uronic acid, sulphated glycosaminoglycan, hyaluronan binding domain of aggrecan (G1-domain), link protein (LP) and hyaluronan, was extracted from immature cartilage by PBS alone and PBS containing oligosaccharides of hyaluronan. This was in marked contrast to adult cartilage, which required high concentrations of guanidinium chloride for the efficient extraction of these components. The molar ratios of total G1-domain:LP and the G1-domain associated with aggrecan:LP also differed markedly between immature and mature cartilage and between each of the sequential extracts. The concentration of LP was less than that of the G1-domain in all extracts of cartilage from individuals over 13 years, but this was particularly noticeable in the 1 M guanidinium chloride extracts, and it was surmised that a deficiency in LP produces unstable aggregates in situ. The fragmentation of LP, which is known to occur with advancing age, did not influence the extractability of LP, and fragments were present in each of the sequential extracts. Therefore the generally accepted model of proteoglycan aggregation presented in the literature, which is mostly derived from analysis of immature animal cartilage, cannot be used to describe the structure and organization of aggregates in adult human articular cartilage, where a heterogeneous population of complexes exist that have varying degrees of stability. PMID:12431185

  10. Wheat roots and residue effects on soil aggregation and carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues have been identified for a number of off-field uses. Poor understanding of the role of crop residues in key soil processes limits our ability to predict sustainable crop residue removal rates. A study was conducted to compare aggregate size distribution, aggregate stability, and soil ...

  11. Static and Dynamic Microscopy of the Chemical Stability and Aggregation State of Silver Nanowires in Components of Murine Pulmonary Surfactant.

    PubMed

    Theodorou, Ioannis G; Botelho, Danielle; Schwander, Stephan; Zhang, Junfeng; Chung, Kian Fan; Tetley, Teresa D; Shaffer, Milo S P; Gow, Andrew; Ryan, Mary P; Porter, Alexandra E

    2015-07-01

    The increase of production volumes of silver nanowires (AgNWs) and of consumer products incorporating them may lead to increased health risks from occupational and public exposures. There is currently limited information about the putative toxicity of AgNWs upon inhalation and incomplete understanding of the properties that control their bioreactivity. The lung lining fluid (LLF), which contains phospholipids and surfactant proteins, represents a first contact site with the respiratory system. In this work, the impact of dipalmitoylphosphatidylcholine (DPPC), Curosurf, and murine LLF on the stability of AgNWs was examined. Both the phospholipid and protein components of the LLF modified the dissolution kinetics of AgNWs, due to the formation of a lipid corona or aggregation of the AgNWs. Moreover, the hydrophilic proteins, but neither the hydrophobic surfactant proteins nor the phospholipids, induced agglomeration of the AgNWs. Finally, the generation of a secondary population of nanosilver was observed and attributed to the reduction of Ag(+) ions by the surface capping of the AgNWs. Our findings highlight that combinations of spatially resolved dynamic and static techniques are required to develop a holistic understanding of which parameters govern AgNW behavior at the point of exposure and to accurately predict their risks on human health and the environment. PMID:26061974

  12. Static and dynamic microscopy of the chemical stability and aggregation state of silver nanowires in components of murine pulmonary surfactant

    PubMed Central

    Theodorou, Ioannis G.; Botelho, Danielle; Schwander, Stephan; Zhang, Junfeng (Jim); Chung, Kian Fan; Tetley, Teresa D.; Shaffer, Milo S. P.; Gow, Andrew; Ryan, Mary P.; Porter, Alexandra E.

    2016-01-01

    The increase of production volumes of silver nanowires (AgNWs) and of consumer products incorporating them, may lead to increased health risks from occupational and public exposures. There is currently limited information about the putative toxicity of AgNWs upon inhalation, and incomplete understanding of the properties that control their bioreactivity. The lung lining fluid (LLF), which contains phospholipids and surfactant proteins, represents a first contact site with the respiratory system. In this work, the impact of Dipalmitoylphosphatidylcholine (DPPC), Curosurf® and murine LLF on the stability of AgNWs was examined. Both the phospholipid and protein components of the LLF modified the dissolution kinetics of AgNWs, due to the formation of a lipid corona or aggregation of the AgNWs. Moreover, the hydrophilic, but neither the hydrophobic surfactant proteins nor the phospholipids, induced agglomeration of the AgNWs. Finally, the generation of a secondary population of nano-silver was observed and attributed to the reduction of Ag+ ions by the surface capping of the AgNWs. Our findings highlight that combinations of spatially resolved dynamic and static techniques are required to develop a holistic understanding of which parameters govern AgNW behavior at the point of exposure and to accurately predict their risks on human health and the environment. PMID:26061974

  13. The SAWO (Small And Well Organized) avatar teaches the importance of the aggregates on the soil system and how to determine their stability

    NASA Astrophysics Data System (ADS)

    Mataix-Solera, Jorge; Cerdà, Artemi; Jordán, Antonio; Úbeda, Xavier; Pereira, Paulo

    2015-04-01

    Soil structure is the key factor that determine the soil quality as control the organic matter turnnover, soil biology and soil erodibility (Cerdà, 1996; 1998; Wick et al., 2014; Gelaw, 2015). There is a need to understand better the factors and the processes that act on the soil aggregation and the dynamics of the soil aggregation, which will make easier to understand the soil system functioning (Jordán et al., 2011; Jordán et al., 2012; Pulido Moncada et al., 2013). Fire, mines, grazing and agricultura (Cerdà, 2000; Mataix Solera et al., 2011; Cerdà et al., 2012; Hallett et al., 2014; Lozano et al., 2013) determines how the soil structure is highly affected by the humankind. And this determines the sustainability of the land managements (García Orenes et al., 2012; K¨ropfl et al., 2013; Mekuria and Aynekulu, 2013; Taguas et al., 2013; Zhao et al., 2013). Aggregates are Small And Well Organized (SAWO) structures that allow the water to flow, the air fill the porous and the life to be diverse and abundant in the soil. The SAWO avatar will teach the importance of the functions and the services of the aggregates to students and other scientists, but also to any audience. This means that the experiments and the vocabulary to be used by SAWO will be very wide and rich. The Avatar SAWO will use different strategies and skills to teach the soil aggregation properties and characteristics. And also, how to measure. Easy to carry out experiments will be shown by SAWO to measure the aggregate stability in the field and in the laboratory, and the soil sampling in the field. The SAWO avatar will play a special attention to the impact of forest fires on aggregate stability changes and how to measure. The SAWO avatar will teach how to take samples in the field, how to transport and manage in the laboratory, and finally which measurements and test can be done to determine the aggregate stability. Acknowledgements To the "Ministerio de Economía and Competitividad" of

  14. A competitive aggregation model for flash nanoprecipitation.

    PubMed

    Cheng, Janine Chungyin; Vigil, R D; Fox, R O

    2010-11-15

    Flash NanoPrecipitation (FNP) is a novel approach for producing functional nanoparticles stabilized by amphiphilic block copolymers. FNP involves the rapid mixing of a hydrophobic active (organic) and an amphiphilic di-block copolymer with a non-solvent (water) and subsequent co-precipitation of nanoparticles composed of both the organic and copolymer. During this process, the particle size distribution (PSD) is frozen and stabilized by the hydrophilic portion of the amphiphilic di-block copolymer residing on the particle surface. That is, the particle growth is kinetically arrested and thus a narrow PSD can be attained. To model the co-precipitation process, a bivariate population balance equation (PBE) has been formulated to account for the competitive aggregation of the organic and copolymer versus pure organic-organic or copolymer-copolymer aggregation. Aggregation rate kernels have been derived to account for the major aggregation events: free coupling, unimer insertion, and aggregate fusion. The resulting PBE is solved both by direct integration and by using the conditional quadrature method of moments (CQMOM). By solving the competitive aggregation model under well-mixed conditions, it is demonstrated that the PSD is controlled primarily by the copolymer-copolymer aggregation process and that the energy barrier to aggregate fusion plays a key role in determining the PSD. It is also shown that the characteristic aggregation times are smaller than the turbulent mixing time so that the FNP process is always mixing limited. PMID:20800847

  15. Principles of moment distribution applied to stability of structures composed of bars or plates

    NASA Technical Reports Server (NTRS)

    Lundquist, Eugene E; Stowell, Elbridge Z; Schuette, Evan H

    1943-01-01

    Principles of the cross method of moment distribution, which have previously been applied to the stability of structures composed of bars under axial load, are applied to the stability of structures composed of long plates under longitudinal load.

  16. Complex aggregation patterns in drying nanocolloidal suspensions: size matters when it comes to the thermomechanical stability of nanoparticle-based structures.

    PubMed

    Darwich, Samer; Mougin, Karine; Haidara, Hamidou

    2010-11-16

    We report the results of a model study on the interrelation among the occurrence of complex aggregation patterns in drying nanofluids, the size of the constitutive nanoparticles (NPs), and the drying temperature, which is a critical issue in the genesis of complex drying patterns that was never systematically reported before. We show that one can achieve fine control over the occurrence and topological features of these drying-mediated complex structures through the combination of the particle size, the drying temperature, and the substrate surface energy. Most importantly, we show that a transition in the occurrence of the patterns appears with the temperature and the particle size, which accounts for the size dependence of the thermomechanical stability of the aggregates in the nanoscale range. Using simple phenomenological and scaling considerations, we showed that the thermomechanical stability of the aggregates was underpinned by physical quantities that scale with the size of the NPs (R) either as R(-2) or R(-3). These insights into the size-dependent dissipation mechanisms in nanoclusters should help in designing NPs-based structures with tailored thermomechanical and environmental stability and hence with an optimized morphological stability that guarantees their long-term functional properties. PMID:20883008

  17. Structure, Stability, and Fragmentation of Sodium bis(2-ethylhexyl)Sulfosuccinate Negatively Charged Aggregates In Vacuo by MD Simulations

    NASA Astrophysics Data System (ADS)

    Longhi, Giovanna; Abbate, Sergio; Ceselli, Alberto; Ceraulo, Leopoldo; Fornili, Sandro L.; Turco Liveri, Vincenzo

    2014-09-01

    Negatively charged supramolecular aggregates formed in vacuo by n bis(2-ethylhexyl)sulfosuccinate (AOT-) anions and n + n c sodium counterions (i.e., [AOT n Na n+nc ] nc ) have been investigated by molecular dynamics (MD) simulations for n = 1 to 20 and n c = -1 to -5. By comparing the maximum excess charge values of negatively and positively charged AOTNa aggregates, it is found that the charge storage capability is higher for the latter systems, the difference decreasing as the aggregation number increases. Statistical analysis of physical properties like gyration radii and moment of inertia tensors of aggregates provides detailed information on their structural properties. Even for n c = -5, all stable aggregates show a reverse micelle-like structure with an internal core, including sodium counterions and surfactant polar heads, surrounded by an external layer consisting of the surfactant alkyl chains. Interestingly, the reverse micelle-like structure is retained also in proximity of fragmentation. Moreover, the aggregate shapes may be approximated by elongated ellipsoids whose longer axis increases with n and | n c |. The fragmentation patterns of a number of these aggregates have also been examined and have been found to markedly depend on the aggregate charge state. The simulated fragmentation patterns of a representative aggregate show good agreement with experimental data obtained using low collision voltages.

  18. Structure, stability, and fragmentation of sodium bis(2-ethylhexyl)sulfosuccinate negatively charged aggregates in vacuo by MD simulations.

    PubMed

    Longhi, Giovanna; Abbate, Sergio; Ceselli, Alberto; Ceraulo, Leopoldo; Fornili, Sandro L; Turco Liveri, Vincenzo

    2014-09-01

    Negatively charged supramolecular aggregates formed in vacuo by n bis(2-ethylhexyl)sulfosuccinate (AOT(-)) anions and n + n(c) sodium counterions (i.e., [AOT(n) Na(n+nc)](nc)) have been investigated by molecular dynamics (MD) simulations for n = 1 to 20 and n(c) = -1 to -5. By comparing the maximum excess charge values of negatively and positively charged AOTNa aggregates, it is found that the charge storage capability is higher for the latter systems, the difference decreasing as the aggregation number increases. Statistical analysis of physical properties like gyration radii and moment of inertia tensors of aggregates provides detailed information on their structural properties. Even for n(c) = -5, all stable aggregates show a reverse micelle-like structure with an internal core, including sodium counterions and surfactant polar heads, surrounded by an external layer consisting of the surfactant alkyl chains. Interestingly, the reverse micelle-like structure is retained also in proximity of fragmentation. Moreover, the aggregate shapes may be approximated by elongated ellipsoids whose longer axis increases with n and |n(c)|. The fragmentation patterns of a number of these aggregates have also been examined and have been found to markedly depend on the aggregate charge state. The simulated fragmentation patterns of a representative aggregate show good agreement with experimental data obtained using low collision voltages. PMID:24969925

  19. Characterisation of Stress-Induced Aggregate Size Distributions and Morphological Changes of a Bi-Specific Antibody Using Orthogonal Techniques.

    PubMed

    Hamrang, Zahra; Hussain, Maryam; Tingey, Katie; Tracka, Malgorzata; Casas-Finet, José R; Uddin, Shahid; van der Walle, Christopher F; Pluen, Alain

    2015-08-01

    A critical step in monoclonal antibody (mAb) screening and formulation selection is the ability of the mAb to resist aggregation following exposure to environmental stresses. Regulatory authorities welcome not only information on the presence of micron-sized particles, but often any information on sub-visible particles in the size range obtained by orthogonal sizing techniques. The present study demonstrates the power of combining established techniques such as dynamic light scattering (DLS) and micro-flow imaging (MFI), with novel analyses such as raster image correlation spectroscopy (RICS) that offer to bridge existent particle sizing gaps in this area. The influence of thermal and freeze-thaw stress treatments on particle size and morphology was assessed for a bi-specific antibody (mAb2). Aggregation of mAb2 was confirmed to be concentration- and treatment-dependent following thermal stress and freeze-thaw cycling. Particle size and count data show concentration- and treatment-dependent behaviour of aggregate counts, morphological descriptors and particle size distributions. Complementarity in particle size output was observed between all approaches utilised, where RICS bridged the analytical size gap (∼0.5-5 μm) between DLS and MFI. Overall, this study highlights the potential of orthogonal image analyses such as RICS (analytical size gap) and MFI (particle morphology) for formulation screening. PMID:26053418

  20. Grazing cessation changes quantity, quality and distribution of soil organic matter and (micro-)aggregates in a semiarid steppe ecosystem in Inner Mongolia

    NASA Astrophysics Data System (ADS)

    Steffens, M.; Wiesmeier, M.; Koelbl, A.; Kogel-Knabner, I.

    2012-12-01

    Grazing is one of the most important factors that may reduce soil organic carbon (SOC) stocks and subsequently deteriorate aggregate stability in grassland soils. Improvements to land use management, e.g. grazing reduction, are assumed to increase the carbon sequestration of steppe ecosystems which may act as one of the big global carbon sinks. The central aims of this study were to investigate the effects of grazing on semiarid steppe ecosystems and to evaluate the benefits and potentials of grazing management to mitigate the detrimental effects of grazing. Special emphasize was placed on changes in the amount, composition and turnover of soil organic matter (SOM) and its effects on soil structure and aggregation. We sampled 5 differently grazed plots (ungrazed since 1979 = Ug79, ungrazed since 1999 = Ug99, winter grazing = Wg, continuously grazed = Cg, heavily grazed = Hg) and a 7-year grazing experiment with regular orthogonal grids and representative soil pits in a semiarid steppe ecosystem in Inner Mongolia, China. Topsoil and vegetation samples from grids were analysed statistically and geostatistically. Differently sized grids allowed the exploration of scale effects. Pit samples were taken from three horizons and were analysed for aggregate stability and physically fractionated according to aggregate size, density and particle size. Statistical analyses showed that physical and chemical parameters of bulked steppe topsoils deteriorated significantly following heavy grazing, remained stable if grazing was reduced or excluded for five years and recovered significantly after 25 years of grazing exclusion. Spatial heterogeneity of topsoil properties increased with decreasing grazing intensity from a homogeneous to a patchy distribution. This is attributed to vegetation recovery/succession and deposition of windblown material in ungrazed areas. On the large scale (>50 m) spatial variability of topsoil and vegetation was controlled by topography or soil erosion

  1. The SAWO (Small And Well Organized) avatar teaches the importance of the aggregates on the soil system and how to determine their stability

    NASA Astrophysics Data System (ADS)

    Mataix-Solera, Jorge; Cerdà, Artemi; Jordán, Antonio; Úbeda, Xavier; Pereira, Paulo

    2015-04-01

    Soil structure is the key factor that determine the soil quality as control the organic matter turnnover, soil biology and soil erodibility (Cerdà, 1996; 1998; Wick et al., 2014; Gelaw, 2015). There is a need to understand better the factors and the processes that act on the soil aggregation and the dynamics of the soil aggregation, which will make easier to understand the soil system functioning (Jordán et al., 2011; Jordán et al., 2012; Pulido Moncada et al., 2013). Fire, mines, grazing and agricultura (Cerdà, 2000; Mataix Solera et al., 2011; Cerdà et al., 2012; Hallett et al., 2014; Lozano et al., 2013) determines how the soil structure is highly affected by the humankind. And this determines the sustainability of the land managements (García Orenes et al., 2012; K¨ropfl et al., 2013; Mekuria and Aynekulu, 2013; Taguas et al., 2013; Zhao et al., 2013). Aggregates are Small And Well Organized (SAWO) structures that allow the water to flow, the air fill the porous and the life to be diverse and abundant in the soil. The SAWO avatar will teach the importance of the functions and the services of the aggregates to students and other scientists, but also to any audience. This means that the experiments and the vocabulary to be used by SAWO will be very wide and rich. The Avatar SAWO will use different strategies and skills to teach the soil aggregation properties and characteristics. And also, how to measure. Easy to carry out experiments will be shown by SAWO to measure the aggregate stability in the field and in the laboratory, and the soil sampling in the field. The SAWO avatar will play a special attention to the impact of forest fires on aggregate stability changes and how to measure. The SAWO avatar will teach how to take samples in the field, how to transport and manage in the laboratory, and finally which measurements and test can be done to determine the aggregate stability. Acknowledgements To the "Ministerio de Economía and Competitividad" of

  2. Characterizing Single-Scattering Properties of Snow Aggregate Particles Integrated over Size Distributions in the Microwave Spectrum

    NASA Astrophysics Data System (ADS)

    Kuo, K.; Van Aartsen, B.; Haddad, Z. S.; Tanelli, S.; Skofronick Jackson, G.; Olson, W. S.

    2012-12-01

    Approximately 7000 snow aggregate particles have been synthesized, using a heuristic aggregation algorithm, from 9 realistic snowflake habits simulated using the now famous Snowfake ice crystal growth model. These particles exhibit mass-dimension relations consistent with those derived from observations. In addition, ranging from 0.1 to 3.5 mm in liquid-equivalent diameter, the sizes of these particle cover ranges wide enough for assemblies of realistic particle size distributions. The single-scattering properties, such as scattering/absorption/extinction/backscatter cross sections, single-scattering albedo, asymmetry factor, as well as the scattering matrix, are obtained for each aggregate particle using the discrete-dipole approximation (DDA) code DDSCAT at 13 microwave frequencies, ranging from 10 to 190 GHz. Preliminary radiative transfer calculations show that the single-scattering properties so obtained yield much more reasonable brightness temperatures than those derived from "fluffy sphere" Mie approximations. However, in order to achieve better retrievals involving these complex particles, we need to be able to characterize their single-scattering with only a few parameters. In this study, we present such an attempt using a pair of generalized effective radii, expressed as ratios of particle volume to particle surface area and to orientation-averaged particle cross section, in addition to mass content. It is shown that these effective radii are indeed effective in characterizing the PSD-integrated single-scattering properties of these complex particles. Pristine ice crystals simulated using the "Snowfake" ice crystal growth mode (3rd row from top) and example aggregates generated using the corresponding pristine particles (bottom 3 rows, i.e. 4th to 6th rows from top).

  3. Assessment of structure, stability and aggregation of soluble lens proteins and alpha-crystallin upon non-enzymatic glycation: The pathomechanisms underlying cataract development in diabetic patients.

    PubMed

    Yousefi, Reza; Javadi, Sajjad; Amirghofran, Sara; Oryan, Ahmad; Moosavi-Movahedi, Ali Akbar

    2016-01-01

    Total soluble lens proteins (TSPs) and α-crystallin (α-Cry) were individually subjected to the long-term glycation in the presence of d-glucose. The glycated and non-glycated protein counterparts were incubated under different stress conditions and compared according to their structure, stability and aggregation propensity by various spectroscopic techniques and gel mobility shift analyses. Extensive glycation of the lens proteins was accompanied with structural alteration, reduction in their surface hydrophobicity and increment of their surface tension. Our results suggest that glycation causes lens crystallins to partially resist against structural alteration and aggregation/fibrillation under both thermal and thermochemical systems. The conformational stability of lens crystallins was increased upon glycation, showing the reason behind resistance of glycated proteins against stress-induced structural alteration and aggregation. Due to the resistance of glycated lens crystallins against aggregation, the role of this modification in development of senile cataract can be explained with the associated damaging consequences highlighted in this article. PMID:26478093

  4. Elucidation of the aggregation pathways of helix-turn-helix peptides: Stabilization at the turn region is critical for fibril formation

    PubMed Central

    Do, Thanh D.; Chamas, Ali; Zheng, Xueyun; Barnes, Aaron; Chang, Dayna; Veldstra, Tjitske; Takhar, Harmeet; Dressler, Nicolette; Trapp, Benjamin; Miller, Kylie; McMahon, Audrene; Meredith, Stephen C.; Shea, Joan-Emma; Cantrell, Kristi Lazar; Bowers, Michael T.

    2015-01-01

    Aggregation of proteins to fiber-like aggregates often involves a transformation of native monomers to β-sheet-rich oligomers. This general observation underestimates the importance of α-helical segments in the aggregation cascade. Here, using a combination of experimental techniques and accelerated molecular dynamics simulations, we investigate the aggregation of a 43-residue, apolipoprotein A-I mimetic peptide and its E21Q and D26N mutants. Our study indicates a strong propensity of helical segments not to adopt cross-β fibrils. The helix-turn-helix monomeric conformation of the peptides is preserved in the mature fibrils. Furthermore, we reveal opposite effects of mutations on and near the turn region in the self-assembly of these peptides. We show that the E21-R24 salt bridge is a major contributor to helix-turn-helix folding, subsequently leading to abundant fibril formation. On the other hand, the K19-D26 interaction is not required to fold the native helix-turn-helix. However, removal of the charged D26 residue decreases the stability of helix-turn-helix monomer, and consequently reduces aggregation. Finally, we provide a more refined assembly model for the helix-turn-helix peptides from apolipoprotein A-I based on the parallel stacking of helix-turn-helix dimers. PMID:26070092

  5. Measurement of particle size distribution of soil and selected aggregate sizes using the hydrometer method and laser diffractometry

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Gómez, J. A.; Giráldez, J. V.

    2010-05-01

    Soil particle size distribution has been traditionally determined by the hydrometer or the sieve-pipette methods, both of them time consuming and requiring a relatively large soil sample. This might be a limitation in situations, such as for instance analysis of suspended sediment, when the sample is small. A possible alternative to these methods are the optical techniques such as laser diffractometry. However the literature indicates that the use of this technique as an alternative to traditional methods is still limited, because the difficulty in replicating the results obtained with the standard methods. In this study we present the percentages of soil grain size determined using laser diffractometry within ranges set between 0.04 - 2000 μm. A Beckman-Coulter ® LS-230 with a 750 nm laser beam and software version 3.2 in five soils, representative of southern Spain: Alameda, Benacazón, Conchuela, Lanjarón and Pedrera. In three of the studied soils (Alameda, Benacazón and Conchuela) the particle size distribution of each aggregate size class was also determined. Aggregate size classes were obtained by dry sieve analysis using a Retsch AS 200 basic ®. Two hundred grams of air dried soil were sieved during 150 s, at amplitude 2 mm, getting nine different sizes between 2000 μm and 10 μm. Analyses were performed by triplicate. The soil sample preparation was also adapted to our conditions. A small amount each soil sample (less than 1 g) was transferred to the fluid module full of running water and disaggregated by ultrasonication at energy level 4 and 80 ml of sodium hexametaphosphate solution during 580 seconds. Two replicates of each sample were performed. Each measurement was made for a 90 second reading at a pump speed of 62. After the laser diffractometry analysis, each soil and its aggregate classes were processed calibrating its own optical model fitting the optical parameters that mainly depends on the color and the shape of the analyzed particle. As a

  6. Distribution of Two C Cycle Enzymes in Soil Aggregates of a Prairie Chronosequence

    SciTech Connect

    Fansler, Sarah J.; Smith, Jeffery L.; Bolton, Harvey; Bailey, Vanessa L.

    2005-11-01

    Recently attention has focused on the potential of using soil as a sink for atmospheric CO2. The objective of this study was to use soil enzymes and classical methods of soil aggregate fractionation to explore the relationship between microbial community function and soil structure of a tallgrass prairie chronosequence. The soils within the chronosequence were: (1) remnant native prairie, (2) agricultural soil, and (3, 4) tallgrass prairies restored from agriculture in 1979 and 1993. β-glucosidase (E.C. 3.2.1.21) and N-acetyl-β-glucosaminidase (NAGase, EC 3.2.1.30) assays were conducted on four different aggregate size fractions (>2 mm, 1 -2 mm, 250µm-1 mm, and 2 - 250 µm) from each soil. Specific activities for both enzymes (µg PNP g-1 soil h-1) were greatest in the microaggregate (2 µm -250 µm) fractions across the chronosequence; however, this size fraction makes up only a small proportion of the whole soil. Therefore, it is the larger macroaggregate-derived enzyme activities that have the greatest impact on the activity of the whole soil. Analyzing both enzymes and the physical structure, a reversion from an agricultural soil through the restored to more like the prairie soil, was not detected. It appears that the function of these microbial community systems in the native tallgrass prairie and agricultural soils of the chronosequence are in equilibria while the lands restored to tallgrass prairie are in an ongoing state of recovery.

  7. Detangling the Effects of Environmental Filtering and Dispersal Limitation on Aggregated Distributions of Tree and Shrub Species: Life Stage Matters

    PubMed Central

    Liu, He-Ming; Wang, Zhang-Hua; Ma, Zun-Ping; Fang, Xiao-Feng; Zhang, Jian; Wang, Xi-Hua

    2016-01-01

    The pervasive pattern of aggregated tree distributions in natural communities is commonly explained by the joint effect of two clustering processes: environmental filtering and dispersal limitation, yet little consensus remains on the relative importance of the two clustering processes on tree aggregations. Different life stages of examined species were thought to be one possible explanation of this disagreement, because the effect of environmental filtering and dispersal limitation are expected to increase and decrease with tree life stages, respectively. However, few studies have explicitly tested these expectations. In this study, we evaluated these expectations by three different methods (species-habitat association test based on Poisson Clustering model and spatial point pattern analyses based on Heterogeneous Poisson model and the jointly modeling approach) using 36 species in a 20-ha subtropical forest plot. Our results showed that the percentage of species with significant habitat association increased with life stages, and there were fewer species affected by dispersal limitation in later life stages compared with those in earlier stages. Percentage of variance explained by the environmental filtering and dispersal limitation also increases and decreases with life stages. These results provided a promising alternative explanation on the existing mixed results about the relative importance of the two clustering processes. These findings also highlighted the importance of plant life stages for fully understanding species distributions and species coexistence. PMID:27227538

  8. Detangling the Effects of Environmental Filtering and Dispersal Limitation on Aggregated Distributions of Tree and Shrub Species: Life Stage Matters.

    PubMed

    Yang, Qing-Song; Shen, Guo-Chun; Liu, He-Ming; Wang, Zhang-Hua; Ma, Zun-Ping; Fang, Xiao-Feng; Zhang, Jian; Wang, Xi-Hua

    2016-01-01

    The pervasive pattern of aggregated tree distributions in natural communities is commonly explained by the joint effect of two clustering processes: environmental filtering and dispersal limitation, yet little consensus remains on the relative importance of the two clustering processes on tree aggregations. Different life stages of examined species were thought to be one possible explanation of this disagreement, because the effect of environmental filtering and dispersal limitation are expected to increase and decrease with tree life stages, respectively. However, few studies have explicitly tested these expectations. In this study, we evaluated these expectations by three different methods (species-habitat association test based on Poisson Clustering model and spatial point pattern analyses based on Heterogeneous Poisson model and the jointly modeling approach) using 36 species in a 20-ha subtropical forest plot. Our results showed that the percentage of species with significant habitat association increased with life stages, and there were fewer species affected by dispersal limitation in later life stages compared with those in earlier stages. Percentage of variance explained by the environmental filtering and dispersal limitation also increases and decreases with life stages. These results provided a promising alternative explanation on the existing mixed results about the relative importance of the two clustering processes. These findings also highlighted the importance of plant life stages for fully understanding species distributions and species coexistence. PMID:27227538

  9. An aggregate analysis of personal care products in the environment: Identifying the distribution of environmentally-relevant concentrations.

    PubMed

    Hopkins, Zachary R; Blaney, Lee

    2016-01-01

    Over the past 3-4 decades, per capita consumption of personal care products (PCPs) has steadily risen, resulting in increased discharge of the active and inactive ingredients present in these products into wastewater collection systems. PCPs comprise a long list of compounds employed in toothpaste, sunscreen, lotions, soaps, body washes, and insect repellants, among others. While comprehensive toxicological studies are not yet available, an increasing body of literature has shown that PCPs of all classes can impact aquatic wildlife, bacteria, and/or mammalian cells at low concentrations. Ongoing research efforts have identified PCPs in a variety of environmental compartments, including raw wastewater, wastewater effluent, surface water, wastewater solids, sediment, groundwater, and drinking water. Here, an aggregate analysis of over 5000 reported detections was conducted to better understand the distribution of environmentally-relevant PCP concentrations in, and between, these compartments. The distributions were used to identify whether aggregated environmentally-relevant concentration ranges intersected with available toxicity data. For raw wastewater, wastewater effluent, and surface water, a clear overlap was present between the 25th-75th percentiles and identified toxicity levels. This analysis suggests that improved wastewater treatment of antimicrobials, UV filters, and polycyclic musks is required to prevent negative impacts on aquatic species. PMID:27128715

  10. Tillage and liming effects on aggregate distribution and associated carbon and nitrogen in acid soils of SW Spain

    NASA Astrophysics Data System (ADS)

    Gómez-Paccard, Clara; Zabaleta, Javier; Benito, Marta; León, Paloma; Mariscal-Sancho, Ignacio; Espejo, Rafael; Hontoria, Chiquinquirá

    2013-04-01

    Beneficial effects of conservation tillage are well known on a wide variety of environmental aspects. The lack of ploughing in no till systems conserves soil structure, enhances the accumulation of organic carbon in the surface layer and promotes the development of soil microorganisms. On the other hand, liming is a common practice in acid soils. Lime raises the pH, reduces Al toxicity enhancing root development, but controversial results have been found about the effects of liming on soil structure. Ultisols from SW of Spain present severe chemical constraints as poor nutrient availability and high Al contents in the exchange complex. On the other hand, traditional practices as conventional tillage led to a dramatic decrease on soil organic carbon and a degraded soil structure. No till plus liming might be recommendable to achieve a sustainable and productive agriculture in these particular soils, but little is known about the effect of these practices on soil structure when applied together. The aim of this study was to evaluate the effect of traditional tillage (TT) versus no tillage (NT), and liming versus no liming on aggregate size distribution and associated carbon and nitrogen. The study was conducted on a Plinthic Palexerult (Soil Survey Staff, 1999) in the Cañamero's Raña (SW Spain) under Mediterranean climate (mean annual temperature: 15.0° C; mean annual precipitation: 869 mm). The experimental design was a split-plot with four replications. The main factor was tillage (no till versus traditional till) while the second was the inclusion or not of Ca-amendment (sugar foam plus red gypsum). Samples were collected in 2011 after six years of treatment at a 0-5, 5-10 and 10-25 cm depths. The aggregate distribution was determined by wet sieving method to separate four aggregate size classes: (i) >2000 µm (large macroaggregates), (ii) 250-2000 µm (small macroaggregates), (iii) 53-250 µm (microaggregates), (iv) <53 µm (silt and clay fraction). Soil

  11. Geotechnical Characteristics and Stability Analysis of Rock-Soil Aggregate Slope at the Gushui Hydropower Station, Southwest China

    PubMed Central

    Shi, Chong; Xu, Fu-gang

    2013-01-01

    Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope. PMID:24082854

  12. Changes in carbon stability and microbial activity in size fractions of micro-aggregates in a rice soil chronosequence under long term rice cultivation

    NASA Astrophysics Data System (ADS)

    Pan, Genxing; Liu, Yalong; Wang, Ping; Li, Lianqinfg; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Bian, Rongjun; Ding, Yuanjun; Ma, Chong

    2016-04-01

    Recent studies have shown soil carbon sequestration through physical protection of relative labile carbon intra micro-aggregates with formation of large sized macro-aggregates under good management of soil and agricultural systems. While carbon stabilization had been increasingly concerned as ecosystem properties, the mechanisms underspin bioactivity of soil carbon with increased carbon stability has been still poorly understood. In this study, topsoil samples were collected from rice soils derived from salt marsh under different length of rice cultivation up to 700 years from eastern China. Particle size fractions (PSF) of soil aggregates were separated using a low energy dispersion protocol. Carbon fractions in the PSFs were analyzed either with FTIR spectroscopy. Soil microbial community of bacterial, fungal and archaeal were analyzed with molecular fingerprinting using specific gene primers. Soil respiration and carbon gain from amended maize as well as enzyme activities were measured using lab incubation protocols. While the PSFs were dominated by the fine sand (200-20μm) and silt fraction (20-2μm), the mass proportion both of sand (2000-200μm) and clay (<2μm) fraction increased with prolonged rice cultivation, giving rise to an increasing trend of mean weight diameter of soil aggregates (also referred to aggregate stability). Soil organic carbon was found most enriched in coarse sand fraction (40-60g/kg), followed by the clay fraction (20-24.5g/kg), but depleted in the silt fraction (~10g/kg). Phenolic and aromatic carbon as recalcitrant pool were high (33-40% of total SOC) in both coarse sand and clay fractions than in both fine sand and silt fractions (20-29% of total SOC). However, the ratio of LOC/total SOC showed a weak decreasing trend with decreasing size of the aggregate fractions. Total gene content in the size fractions followed a similar trend to that of SOC. Bacterial and archaeal gene abundance was concentrated in both sand and clay fractions

  13. Generating Within-Plant Spatial Distributions of an Insect Herbivore Based on Aggregation Patterns and Per-Node Infestation Probabilities.

    PubMed

    Rincon, Diego F; Hoy, Casey W; Cañas, Luis A

    2015-04-01

    Most predator-prey models extrapolate functional responses from small-scale experiments assuming spatially uniform within-plant predator-prey interactions. However, some predators focus their search in certain plant regions, and herbivores tend to select leaves to balance their nutrient uptake and exposure to plant defenses. Individual-based models that account for heterogeneous within-plant predator-prey interactions can be used to scale-up functional responses, but they would require the generation of explicit prey spatial distributions within-plant architecture models. The silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), is a significant pest of tomato crops worldwide that exhibits highly aggregated populations at several spatial scales, including within the plant. As part of an analytical framework to understand predator-silverleaf whitefly interactions, the objective of this research was to develop an algorithm to generate explicit spatial counts of silverleaf whitefly nymphs within tomato plants. The algorithm requires the plant size and the number of silverleaf whitefly individuals to distribute as inputs, and includes models that describe infestation probabilities per leaf nodal position and the aggregation pattern of the silverleaf whitefly within tomato plants and leaves. The output is a simulated number of silverleaf whitefly individuals for each leaf and leaflet on one or more plants. Parameter estimation was performed using nymph counts per leaflet censused from 30 artificially infested tomato plants. Validation revealed a substantial agreement between algorithm outputs and independent data that included the distribution of counts of both eggs and nymphs. This algorithm can be used in simulation models that explore the effect of local heterogeneity on whitefly-predator dynamics. PMID:26313173

  14. Stability of fluctuating and transient aggregates of amphiphilic solutes in aqueous binary mixtures: Studies of dimethylsulfoxide, ethanol, and tert-butyl alcohol

    NASA Astrophysics Data System (ADS)

    Banerjee, Saikat; Bagchi, Biman

    2013-10-01

    In aqueous binary mixtures, amphiphilic solutes such as dimethylsulfoxide (DMSO), ethanol, tert-butyl alcohol (TBA), etc., are known to form aggregates (or large clusters) at small to intermediate solute concentrations. These aggregates are transient in nature. Although the system remains homogeneous on macroscopic length and time scales, the microheterogeneous aggregation may profoundly affect the properties of the mixture in several distinct ways, particularly if the survival times of the aggregates are longer than density relaxation times of the binary liquid. Here we propose a theoretical scheme to quantify the lifetime and thus the stability of these microheterogeneous clusters, and apply the scheme to calculate the same for water-ethanol, water-DMSO, and water-TBA mixtures. We show that the lifetime of these clusters can range from less than a picosecond (ps) for ethanol clusters to few tens of ps for DMSO and TBA clusters. This helps explaining the absence of a strong composition dependent anomaly in water-ethanol mixtures but the presence of the same in water-DMSO and water-TBA mixtures.

  15. Stability of fluctuating and transient aggregates of amphiphilic solutes in aqueous binary mixtures: studies of dimethylsulfoxide, ethanol, and tert-butyl alcohol.

    PubMed

    Banerjee, Saikat; Bagchi, Biman

    2013-10-28

    In aqueous binary mixtures, amphiphilic solutes such as dimethylsulfoxide (DMSO), ethanol, tert-butyl alcohol (TBA), etc., are known to form aggregates (or large clusters) at small to intermediate solute concentrations. These aggregates are transient in nature. Although the system remains homogeneous on macroscopic length and time scales, the microheterogeneous aggregation may profoundly affect the properties of the mixture in several distinct ways, particularly if the survival times of the aggregates are longer than density relaxation times of the binary liquid. Here we propose a theoretical scheme to quantify the lifetime and thus the stability of these microheterogeneous clusters, and apply the scheme to calculate the same for water-ethanol, water-DMSO, and water-TBA mixtures. We show that the lifetime of these clusters can range from less than a picosecond (ps) for ethanol clusters to few tens of ps for DMSO and TBA clusters. This helps explaining the absence of a strong composition dependent anomaly in water-ethanol mixtures but the presence of the same in water-DMSO and water-TBA mixtures. PMID:24182023

  16. Estimation of air void and aggregate spatial distributions in concrete under uniaxial compression using computer tomography scanning

    SciTech Connect

    Wong, R.C.K. . E-mail: rckwong@ucalgary.ca; Chau, K.T.

    2005-08-01

    Normal- and high-strength concrete cylinders (designed compressive strengths of 30 and 90 MPa at 28 days) were loaded uniaxially. Computer tomography (CT) scanning technique was used to examine the evolution of air voids inside the specimens at various loading states up to 85% of the ultimate compressive strength. The normal-strength concrete yielded a very different behaviour in changes of internal microstructure as compared to the high-strength concrete. There were significant instances of nucleation and growth in air voids in the normal-strength concrete specimen, while the increase in air voids in the high-strength concrete specimen was insignificant. In addition, CT images were used for mapping the aggregate spatial distributions within the specimens. No intrinsic anisotropy was detected from the fabric analysis.

  17. Optimal exploitation of spatially distributed trophic resources and population stability

    USGS Publications Warehouse

    Basset, A.; Fedele, M.; DeAngelis, D.L.

    2002-01-01

    The relationships between optimal foraging of individuals and population stability are addressed by testing, with a spatially explicit model, the effect of patch departure behaviour on individual energetics and population stability. A factorial experimental design was used to analyse the relevance of the behavioural factor in relation to three factors that are known to affect individual energetics; i.e. resource growth rate (RGR), assimilation efficiency (AE), and body size of individuals. The factorial combination of these factors produced 432 cases, and 1000 replicate simulations were run for each case. Net energy intake rates of the modelled consumers increased with increasing RGR, consumer AE, and consumer body size, as expected. Moreover, through their patch departure behaviour, by selecting the resource level at which they departed from the patch, individuals managed to substantially increase their net energy intake rates. Population stability was also affected by the behavioural factors and by the other factors, but with highly non-linear responses. Whenever resources were limiting for the consumers because of low RGR, large individual body size or low AE, population density at the equilibrium was directly related to the patch departure behaviour; on the other hand, optimal patch departure behaviour, which maximised the net energy intake at the individual level, had a negative influence on population stability whenever resource availability was high for the consumers. The consumer growth rate (r) and numerical dynamics, as well as the spatial and temporal fluctuations of resource density, which were the proximate causes of population stability or instability, were affected by the behavioural factor as strongly or even more strongly than by the others factors considered here. Therefore, patch departure behaviour can act as a feedback control of individual energetics, allowing consumers to optimise a potential trade-off between short-term individual fitness

  18. Soil Organic Matter Fractions and Aggregate Distribution In Response to Tall Fescue Stands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study was conducted to evaluate the influences of tall fescue management on soil organic matter fractions and macro- and microaggregate distribution. Soil samples were collected from four paired adjacent fields consisting of five years of tall fescue mono and poly stands in Western Kentucky. Soi...

  19. Aggregate stability, root length and root thickness influenced by a mycorrhizal inoculum? - Results from a three-year eco-engineering field experiment on an alpine slope.

    NASA Astrophysics Data System (ADS)

    Bast, Alexander; Wilcke, Wolfgang; Lüscher, Peter; Graf, Frank; Gärtner, Holger

    2014-05-01

    In mountain environments many slopes are covered by coarse grained, glacial-, periglacial- or/and denudation-derived substrate. These slopes show a high geomorphic activity and are susceptible for erosional processes, shallow landslides or debris flows, which can result in a high socio-economic hazard potential. This is especially true for steep slopes, lacking a protecting vegetation cover. Regarding hazard prevention, eco-engineering gained in importance because related techniques provide a sustainable measure to protect erosion-prone hillslopes. The idea of using plants for sustainable erosion control and protection against shallow landslides, demands some essential requirements, as e.g., a stable seedbed providing appropriate water and nutrient supply. However, degraded alpine slopes are often unstable and the coarse-grained material shows a low retention capacity of water and nutrients. Extreme conditions like this hamper a fast and sustainable development of a protecting vegetation cover even if pioneer plants are used to stabilize the slopes. Thus, the question arises what needs to be done to give planted saplings within eco-engineering projects maximum support developing their above- and belowground structures to promote slope stabilization. Laboratory experiments using potted plants have shown a positive impact of mycorrhizal fungi inoculation plant development and soil structure, i.e. the formation of (stable) aggregates within several months. Soil aggregate stability is an integrating parameter, reflecting several aspects of the plant-soil system and for this also an indicator of soil development and soil stability. Because of this and based on the promising laboratory results, we intended to apply this approach in a field-experiment We established (i) mycorrhizal and (ii) non-mycorrhizal treated eco-engineered research plots on a field experimental scale, covering a total area of approx. 1000 m2 on an ENE exposed slope (coarse morainic and denudation

  20. Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics.

    PubMed

    Rehman, Saima; Bhatti, Haq Nawaz; Bilal, Muhammad; Asgher, Muhammad

    2016-10-01

    Cross-linked enzyme aggregates (CLEAs) are considered as an effective tool for the immobilization of enzyme. In this study, Pencillium notatum lipase (PNL) was immobilized as carrier free cross-linked enzyme aggregates using glutaraldehyde (GLA) and Ethylene glycol-bis [succinic acid N-hydroxysuccinimide] (EG-NHS) as cross-linking agents. The optimal conditions for the synthesis of an efficient lipase CLEAs such as precipitant type, the nature and amount of cross-linking reagent, and cross-linking time were optimized. The recovered activities of CLEAs were considerably dependent on the concentration of GLA; however, the activity recovery was not severely affected by EG-NHS as a mild cross-linker. The EG-NHS aggregates displayed superior hydrolytic (52.08±2.52%) and esterification (64.42%) activities as compared to GLA aggregates which showed 23.8±1.86 and 34.54% of hydrolytic and esterification activity, respectively. Morphological analysis by fluorescence and scanning electron microscope revealed that EG-NHS aggregates were smaller in size with larger surface area compared to GLA aggregates. The pH optima of both types of CLEAs were displaced to slightly alkaline region and higher temperature as compared to native enzyme. Highest enzyme activity of CLEAs was achieved at the pH of 9.0 and 42°C temperature. Moreover, a significant improvement in the thermal resistance was also recorded after immobilization. After ten reusability cycles in aqueous medium, GLA and EG-NHS cross-linked lipase CLEAs preserved 63.62% and 70.9% of their original activities, respectively. The results suggest that this novel CLEA-lipase is potentially usable in many industrial applications. PMID:27365121

  1. Conformational and Colloidal Stabilities of Isolated Constant Domains of Human Immunoglobulin G and Their Impact on Antibody Aggregation under Acidic Conditions.

    PubMed

    Yageta, Seiki; Lauer, Timothy M; Trout, Bernhardt L; Honda, Shinya

    2015-05-01

    Antibody therapeutics are now in widespread use and provide a new approach for treating serious diseases such as rheumatic diseases and cancer. Monoclonal antibodies used as therapeutic agents must be of high quality, and their safety must be guaranteed. Aggregated antibody is a degradation product that may be generated during the manufacturing process. To maintain the high quality and safety of antibody therapeutics, it is necessary to understand the mechanism of aggregation and to develop technologies to strictly control aggregate formation. Here, we extensively investigated the conformational and colloidal characteristics of isolated antibody constant domains, and provided insights into the molecular mechanism of antibody aggregation. Isolated domains (CH2, CH3, CL, and CH1-CL dimer) of human immunoglobulin G were synthesized, solubilized using 49 sets of solution conditions (pH 2-8 and 0-300 mM NaCl), and characterized using circular dichroism, intrinsic tryptophan fluorescence, and dynamic light scattering. Salt-induced conformational changes and oligomer formation were kinetically analyzed by NaCl-jump measurements (from 0 to 300 mM at pH 3). Phase diagrams revealed that the domains have different conformational and colloidal stabilities. The unfolded fractions of CH3 and CH2 at pH 3 were larger than that of CL and CH1-CL dimer. The secondary and tertiary structures and particle sizes of CH3 and CH2 showed that, in non-native states, these domains were sensitive to salt concentration. Kinetic analyses suggest that oligomer formation by CH3 and CH2 proceeds through partially refolded conformations. The colloidal stability of CH3 in non-native states is the lowest of the four domains under the conditions tested. We propose that the impact of IgG constant domains on aggregation follows the order CH3 > CH2 > CH1-CL dimer > CL; furthermore, we suggest that CH3 plays the most critical role in driving intact antibody aggregation under acidic conditions. PMID

  2. Biophysical Characterization of Met-G-CSF: Effects of Different Site-Specific Mono-Pegylations on Protein Stability and Aggregation

    PubMed Central

    Natalello, Antonino; Ami, Diletta; Collini, Maddalena; D’Alfonso, Laura; Chirico, Giuseppe; Tonon, Giancarlo; Scaramuzza, Silvia; Schrepfer, Rodolfo; Doglia, Silvia Maria

    2012-01-01

    The limited stability of proteins in vitro and in vivo reduces their conversion into effective biopharmaceuticals. To overcome this problem several strategies can be exploited, as the conjugation of the protein of interest with polyethylene glycol, in most cases, improves its stability and pharmacokinetics. In this work, we report a biophysical characterization of the non-pegylated and of two different site-specific mono-pegylated forms of recombinant human methionyl-granulocyte colony stimulating factor (Met-G-CSF), a protein used in chemotherapy and bone marrow transplantation. In particular, we found that the two mono-pegylations of Met-G-CSF at the N-terminal methionine and at glutamine 135 increase the protein thermal stability, reduce the aggregation propensity, preventing also protein precipitation, as revealed by circular dichroism (CD), Fourier transform infrared (FTIR), intrinsic fluorescence spectroscopies and dynamic light scattering (DLS). Interestingly, the two pegylation strategies were found to drastically reduce the polydispersity of Met-G-CSF, when incubated under conditions favouring protein aggregation, as indicated by DLS measurements. Our in vitro results are in agreement with preclinical studies, underlining that preliminary biophysical analyses, performed in the early stages of the development of new biopharmaceutical variants, might offer a useful tool for the identification of protein variants with improved therapeutic values. PMID:22905140

  3. Stability and Aggregation of Silver and Titanium Dioxide Nanoparticles in Seawater: Role of Salinity and Dissolved Organic Matter

    EPA Science Inventory

    The behavior and fate of nanoparticles (NPs) in the marine environment is largely unknown and has the potential to have important environmental and human health implications. The aggregation state and fate of NPs in the marine environment is greatly influenced by their interactio...

  4. Influence of hydrogen surface passivation on Sn segregation, aggregation, and distribution in GeSn/Ge(001) materials

    NASA Astrophysics Data System (ADS)

    Johll, Harman; Samuel, Milla; Koo, Ruey Yi; Kang, Hway Chuan; Yeo, Yee-Chia; Tok, Eng Soon

    2015-05-01

    Plane-wave density functional theory is used to investigate the impact of hydrogen passivation of the p(2×2) reconstructed Ge1-xSnx surface on Sn segregation, aggregation, and distribution. On a clean surface, Sn preferentially segregates to the surface layer, with surface coverages of 25%, 50%, and 100% for total Sn concentrations of 2.5%, 5.0%, and 10.0%, respectively. In contrast, a hydrogen passivated surface increases interlayer migration of Sn to subsurface layers, in particular, to the third layer from the surface, and results in surface coverages of 0%, 0%, and 50% corresponding to Sn concentrations of 2.5%, 5.0%, and 10.0%, respectively. Hydrogen transfer from a Ge-capped surface to the one enriched with increasing Sn surface coverage is also an unfavorable process. The presence of hydrogen therefore reduces the surface energy by passivating the reactive dangling bonds and enhancing Sn interlayer migration to the subsurface layers. For both clean and hydrogenated surfaces, aggregation of Sn at the surface layer is also not favored. We explain these results by considering bond enthalpies and the enthalpies of hydrogenation for various surface reactions. Our results thus point to reduced Sn segregation to the surface in a Ge1-xSnx epitaxial thin film if CVD growth, using hydride precursors in the hydrogen limited growth regime, is used. This would lead to a more abrupt interface and is consistent with recent experimental observation. Hydrogenation is therefore a promising method for controlling and manipulating elemental population of Sn in a Ge1-xSnx epitaxial thin film.

  5. Aggregation Behavior of Several Ionic Liquids in Molecular Solvents of Low Polarity--Indication of a Bimodal Distribution.

    PubMed

    Cade, Elise A; Petenuci, João; Hoffmann, Markus M

    2016-02-16

    The structure and dynamics of ion pairing and aggregation is studied by concentration- and temperature-dependent measurements of (1) H and (19) F self-diffusion coefficients, viscosity, and conductivity for the following five solutions: 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([Cn mim][NTf2], n=2, 4, 6) in dichloromethane (CH2Cl2), and [C6 mim][NTf2] in tetrahydrofuran (THF) and chlorobenzene (C6 H5 Cl). The temperature dependence of these properties at constant IL concentrations follows the Arrhenius law for all five solutions. The IL-concentration dependence of the respective activation energies obtained from the Arrhenius analysis is nonlinear in the case of conductivity, but indicates linear relationships for viscosity and self-diffusion. All five solutions studied display average solute radius maxima as plotted against IL concentration. The maximum average solute radii follow an order of solvents of CHCl3 >C6 H5 Cl>CH2 Cl2 ≈THF, which corresponds to the order of increasing solvent dielectric constant. The observed trends in the physical properties of these solutions indicate the development of a bimodal distribution of solute size with increasing IL concentration. Specifically, the presence of aggregates is supported by the analysis of the conductivity data and the observation of the same self-diffusion coefficients for the cation and anion. The concurrent presence of freely dissolved ions is supported by the obtained average solute radii that do not exceed the radii of the corresponding ion pairs. PMID:26684927

  6. A simple and sensitive fluorimetric aptasensor for the ultrasensitive detection of arsenic(III) based on cysteamine stabilized CdTe/ZnS quantum dots aggregation.

    PubMed

    Ensafi, Ali A; Kazemifard, N; Rezaei, B

    2016-03-15

    A new approach for developing a fluorimetric aptasensor has been described and applied for determination of a highly toxic cation, As(III). In this method an aptamer was used to aggregate cationic cysteamine-stabilized CdTe/ZnS core/shell quantum dots, as a result fluorescence quenching was accrued. In the presence of As(III), the aptamer and As(III) make a complex, which prevents aggregation of the quantum dots. Thus, the fluorescence intensity of the quantum dots was enhanced upon the de-aggregation, which depends on the concentration of As(III). The fluorimetric assay has a very low detection limit of 1.3 pmolL(-1) As(III) with a dynamic range of 1.0 × 10(-11) to 1.0 × 10(-6) molL(-1). The interference effect of a wide variety of cations and anions was investigated, and the obtained results confirm high selectivity of the aptasensor for As(III) detection. The present assay was successfully applied for the determination of As(III) in several water samples. PMID:26457735

  7. Epigallocatechin-3-gallate (EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity.

    PubMed

    Zhang, Jingnan; Zhou, Xianbo; Yu, Qianqian; Yang, Licong; Sun, Dongdong; Zhou, Yanhui; Liu, Jie

    2014-06-11

    Alzheimer's disease (AD), the most common neurodegenerative disease, is caused by an accumulation of amyloid-β (Aβ) plaque deposits in the brains. Evidence is increasingly showing that epigallocatechin-3-gallate (EGCG) can partly protect cells from Aβ-mediated neurotoxicity by inhibiting Aβ aggregation. In order to better understand the process of Aβ aggregation and amyloid fibril disaggregation and reduce the cytotoxicity of EGCG at high doses, we attached EGCG onto the surface of selenium nanoparticles (EGCG@Se). Given the low delivery efficiency of EGCG@Se to the targeted cells and the involvement of selenoprotein in antioxidation and neuroprotection, which are the key factors for preventing the onset and progression of AD, we synthesized EGCG-stabilized selenium nanoparticles coated with Tet-1 peptide (Tet-1-EGCG@Se, a synthetic selenoprotein analogue), considering the affinity of Tet-1 peptide to neurons. We revealed that Tet-1-EGCG@Se can effectively inhibit Aβ fibrillation and disaggregate preformed Aβ fibrils into nontoxic aggregates. In addition, we found that both EGCG@Se and Tet-1-EGCG@Se can label Aβ fibrils with a high affinity, and Tet-1 peptides can significantly enhance the cellular uptake of Tet-1-EGCG@Se in PC12 cells rather than in NIH/3T3 cells. PMID:24758520

  8. Dielectric Analysis for the Spherical and Rodlike Micelle Aggregates Formed from a Gemini Surfactant: Driving Forces of Micellization and Stability of Micelles.

    PubMed

    Wang, Shanshan; Zhao, Kongshuang

    2016-08-01

    The self-aggregation behavior of Gemini surfactant 12-2-12 (ethanediyl-1,2-bis(dimethyldodecylammonium bromide)) in water was investigated by dielectric relaxation spectroscopy (DRS) over a frequency range from 40 Hz to 110 MHz. Dielectric determination shows that well-defined spherical micelles formed when the concentration of the surfactant was above a critical micelle concentration CMC1 of 3 mM and rodlike micelles formed above CMC2, 16 mM. The formation mechanism of the spherical micelles and their transition mechanism to clubbed micelles were proposed by calculating the degree of counterion binding of the micelles. The interactions between the head groups and the hydrophobic chains of the surfactant led to the formation of the micelles, whereas the transition is mainly attributed to the interaction among the hydrophobic chains. By analyzing the dielectric relaxation observed at about 10(7) Hz based on the interface polarization theory, the permittivity and conductivity of micelle aggregates (spherical and clubbed) and volume fraction of micelles were calculated theoretically as well as the electrical properties of the solution medium. Furthermore, we also calculated the electrokinetic parameters of the micelle particle surface, surface conductivity, surface charge density, and zeta potential, using the relaxation parameters and phase parameters. On the basis of these results, the balance of forces controlling morphological transitions, interfacial electrokinetic properties, and the stability of the micelle aggregates was discussed. PMID:27396495

  9. Lift distribution and longitudinal stability of an airplane

    NASA Technical Reports Server (NTRS)

    Topfer, Carl

    1931-01-01

    The preliminary calculation of the airplane polar and hence of the flight performances and characteristics rests on the assumption of an elliptical lift distribution at all altitudes. For large angles of attack below C(sub a (sub max)), this method of calculation yields no satisfactory agreement with measurements made in flight. An attempt is made to eliminate the errors in the preliminary calculation by the assumption of a disturbance of the lift distribution in this angle-of-attack range, which is so important for the constructor. An explanation is also given of the great differences found in flight with and without propeller slipstream.

  10. METALS DISTRIBUTION IN SOLIDIFIED/STABILIZED WASTE FORMS AFTER LEACHING

    EPA Science Inventory

    A series of leach tests were conducted to study the metal distributions in cement based waste form before and after leaching in acetic acid solutions. he specimens were prepared in the laboratory with a Type I portland cement and sludges containing high levels of lead, cadmium, a...

  11. Final technical report for project titled Quantitative Characterization of Cell Aggregation/Adhesion as Predictor for Distribution and Transport of Microorganisms in Subsurface Environment

    SciTech Connect

    Gu, April Z; Wan, Kai-tak

    2014-09-02

    This project aims to explore and develop enabling methodology and techniques for nano-scale characterization of microbe cell surface contact mechanics, interactions and adhesion quantities that allow for identification and quantification of indicative properties related to microorganism migration and transport behavior in porous media and in subsurface environments. Microbe transport has wide impact and therefore is of great interest in various environmental applications such as in situ or enhanced subsurface bioremediation,filtration processes for water and wastewater treatments and protection of drinking water supplies. Although great progress has been made towards understanding the identities and activities of these microorganisms in the subsurface, to date, little is known of the mechanisms that govern the mobility and transport of microorganisms in DOE’s contaminated sites, making the outcomes of in situ natural attenuation or contaminant stability enhancement unpredictable. Conventionally, movement of microorganisms was believed to follows the rules governing solute (particle) transport. However, recent studies revealed that cell surface properties, especially those pertaining to cell attachment/adhesion and aggregation behavior, can cause the microbe behavior to deviate from non-viable particles and hence greatly influence the mobility and distribution of microorganisms in porous media.This complexity highlights the need to obtain detailed information of cell-cell and cell-surface interactions in order to improve and refine the conceptual and quantitative model development for fate and transport of microorganisms and contaminant in subsurface. Traditional cell surface characterization methods are not sufficient to fully predict the deposition rates and transport behaviors of microorganism observed. A breakthrough of methodology that would allow for quantitative and molecular-level description of intrinsic cell surface properties indicative for cell

  12. Disease causing mutants of TDP-43 nucleic acid binding domains are resistant to aggregation and have increased stability and half-life

    PubMed Central

    Austin, James A.; Wright, Gareth S. A.; Watanabe, Seiji; Grossmann, J. Günter; Antonyuk, Svetlana V.; Yamanaka, Koji; Hasnain, S. Samar

    2014-01-01

    Over the last two decades many secrets of the age-related human neural proteinopathies have been revealed. A common feature of these diseases is abnormal, and possibly pathogenic, aggregation of specific proteins in the effected tissue often resulting from inherent or decreased structural stability. An archetype example of this is superoxide dismutase-1, the first genetic factor to be linked with amyotrophic lateral sclerosis (ALS). Mutant or posttranslationally modified TAR DNA binding protein-32 (TDP-43) is also strongly associated with ALS and an increasingly large number of other neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD). Cytoplasmic mislocalization and elevated half-life is a characteristic of mutant TDP-43. Furthermore, patient age at the onset of disease symptoms shows a good inverse correlation with mutant TDP-43 half-life. Here we show that ALS and FTLD-associated TDP-43 mutations in the central nucleic acid binding domains lead to elevated half-life and this is commensurate with increased thermal stability and inhibition of aggregation. It is achieved without impact on secondary, tertiary, or quaternary structure. We propose that tighter structural cohesion contributes to reduced protein turnover, increasingly abnormal proteostasis and, ultimately, faster onset of disease symptoms. These results contrast our perception of neurodegenerative diseases as misfolded proteinopathies and delineate a novel path from the molecular characteristics of mutant TDP-43 to aberrant cellular effects and patient phenotype. PMID:24591609

  13. Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange

    PubMed Central

    Zou, Ying-Ning; Srivastava, A. K.; Ni, Qiu-Dan; Wu, Qiang-Sheng

    2015-01-01

    Arbuscular mycorrhizas possess well developed extraradical mycelium (ERM) network that enlarge the surrounding soil for better acquisition of water and nutrients, besides soil aggregation. Distinction in ERM functioning was studied under a rootbox system, which consisted of root+hyphae and root-free hyphae compartments separated by 37-μm nylon mesh with an air gap. Trifoliate orange (Poncirus trifoliata) seedlings were inoculated with Funneliformis mosseae in root+hyphae compartment, and the ERM network was established between the two compartments. The ERM network of air gap was disrupted before 8 h of the harvest (one time disruption) or multiple disruptions during seedlings acclimation. Our results showed that mycorrhizal inoculation induced a significant increase in growth (plant height, stem diameter, and leaf, stem, and root biomass) and physiological characters (leaf relative water content, leaf water potential, and transpiration rate), irrespective of ERM status. Easily-extractable glomalin-related soil protein (EE-GRSP) and total GRSP (T-GRSP) concentration and mean weight diameter (MWD, an indicator of soil aggregate stability) were significantly higher in mycorrhizosphere of root+hyphae and root-free hyphae compartments than non-mycorrhizosphere. One time disruption of ERM network did not influence plant growth and soil properties but only notably decreased leaf water. Periodical disruption of ERM network at weekly interval markedly inhibited the mycorrhizal roles on plant growth, leaf water, GRSP production, and MWD in root+hyphae and hyphae chambers. EE-GRSP was the most responsive GRSP fraction to changes in leaf water and MWD under root+hyphae and hyphae conditions. It suggests that effect of peridical disruption of ERM network was more impactful than one-time disruption of ERM network with regard to leaf water, plant growth, and aggregate stability responses, thereby, implying ERM network aided in developing the host plant metabolically more active

  14. Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange.

    PubMed

    Zou, Ying-Ning; Srivastava, A K; Ni, Qiu-Dan; Wu, Qiang-Sheng

    2015-01-01

    Arbuscular mycorrhizas possess well developed extraradical mycelium (ERM) network that enlarge the surrounding soil for better acquisition of water and nutrients, besides soil aggregation. Distinction in ERM functioning was studied under a rootbox system, which consisted of root+hyphae and root-free hyphae compartments separated by 37-μm nylon mesh with an air gap. Trifoliate orange (Poncirus trifoliata) seedlings were inoculated with Funneliformis mosseae in root+hyphae compartment, and the ERM network was established between the two compartments. The ERM network of air gap was disrupted before 8 h of the harvest (one time disruption) or multiple disruptions during seedlings acclimation. Our results showed that mycorrhizal inoculation induced a significant increase in growth (plant height, stem diameter, and leaf, stem, and root biomass) and physiological characters (leaf relative water content, leaf water potential, and transpiration rate), irrespective of ERM status. Easily-extractable glomalin-related soil protein (EE-GRSP) and total GRSP (T-GRSP) concentration and mean weight diameter (MWD, an indicator of soil aggregate stability) were significantly higher in mycorrhizosphere of root+hyphae and root-free hyphae compartments than non-mycorrhizosphere. One time disruption of ERM network did not influence plant growth and soil properties but only notably decreased leaf water. Periodical disruption of ERM network at weekly interval markedly inhibited the mycorrhizal roles on plant growth, leaf water, GRSP production, and MWD in root+hyphae and hyphae chambers. EE-GRSP was the most responsive GRSP fraction to changes in leaf water and MWD under root+hyphae and hyphae conditions. It suggests that effect of peridical disruption of ERM network was more impactful than one-time disruption of ERM network with regard to leaf water, plant growth, and aggregate stability responses, thereby, implying ERM network aided in developing the host plant metabolically more active

  15. Calorimetric analysis of thermodynamic stability and aggregation for apo and holo amyotrophic lateral sclerosis-associated Gly-93 mutants of superoxide dismutase.

    PubMed

    Stathopulos, Peter B; Rumfeldt, Jessica A O; Karbassi, Farhad; Siddall, Clare A; Lepock, James R; Meiering, Elizabeth M

    2006-03-10

    Differential scanning calorimetry was used to measure changes in thermodynamic stability and aggregation for glycine 93 mutants of human copper, zinc-superoxide dismutase (SOD). Glycine 93 is a conserved residue at position i + 3 of a tight turn and has been found to be a mutational hot spot in familial amyotrophic lateral sclerosis (fALS). The fALS-associated mutations, G93A, G93S, G93R, G93D, and G93V, were made in a pseudo wild-type background containing no free cysteines, which prevented the formation of aberrant disulfide bonds upon thermal unfolding, and enabled quantitative thermodynamic analysis of the effects of the mutations. Thermal unfolding was highly reversible for all the SODs in both the fully metallated (holo) and metal-free (apo) forms. The data for all the holo-SODs and for the apo-pseudo-wild-type SOD were well fit by a 2-state unfolding model for native dimer (N2) to two unfolded monomers (2U), N2 <--> 2U. The holo- and apo-forms of the mutants are significantly destabilized (by 1.5-3.5 kcal mol(-1) monomer) relative to the corresponding forms of pseudo wild-type, with the relative stabilities being correlated with statistical preferences for amino acids in this structural context. Although van't Hoff (DeltaHvH) to calorimetric (DeltaHcal) enthalpy ratios are close to unity for all the holo-SODs and for apo-pseudo-wild-type, consistent with a 2-state transition, DeltaHvH is considerably larger than DeltaHcal for all the apo-mutants. This suggests that the mutations cause apo-SOD to have an increased propensity to misfold or aggregate, which may be linked to increased toxic mutant SOD aggregation in fALS. PMID:16407238

  16. Unfolding and aggregation of monoclonal antibodies on cation exchange columns: effects of resin type, load buffer, and protein stability.

    PubMed

    Guo, Jing; Carta, Giorgio

    2015-04-01

    The chromatographic behavior of a monoclonal antibody (mAb) that exhibits a pronounced two-peak elution behavior is studied for a range of strong cation exchange resins and with varying load buffer pH and composition. Six stationary phases are considered, including two tentacle-type resins (Fractogel EMD SO3-(M) and Eshmuno S), a resin with grafted polymeric surface extenders (Nuvia S), a resin with a bimodal pore size distribution (POROS HS 50), and two macroporous resins without polymer grafts (Source 30S and UNOsphere Rapid S). The two-peak elution behavior is very pronounced for the tentacle and polymer-grafted resins and for POROS HS 50, but is essentially absent for the two macroporous resins. The extent of this behavior decreases as the buffer pH and concentration increase and, consequently, mAb binding becomes weaker. Replacing sodium with arginine as the buffer counterion, which is expected to decrease the mAb binding strength, nearly completely eliminates the two-peak behavior, while replacing sodium with tetra-n-butylammonium hydroxide, which is expected to increase the mAb binding strength, dramatically exacerbate the effect. As shown by hydrogen-deuterium exchange mass spectrometry (HX-MS), the two-peak elution behavior is related to conformational changes that occur when the mAb binds. These changes result in increased solvent exposure of specific peptides in the Fc-region for either the Fractogel or the Nuvia resin. No significant conformational changes were seen by HX-MS when the mAb was bound to the UNOsphere resin or on the Fractogel resin when arginine was used in lieu of sodium as the load buffer counterion. Experiments with two additional mAbs on the Fractogel resin show that the two-peak elution behavior is dependent on the particular antibody. Circular dichroism suggests that the propensity of different mAbs to either precipitate directly or to form stabilizing intermolecular structures upon exposure to thermal stress can be related to their

  17. The uniform continuity of characteristic function from convoluted exponential distribution with stabilizer constant

    NASA Astrophysics Data System (ADS)

    Devianto, Dodi

    2016-02-01

    It is constructed convolution of generated random variable from independent and identically exponential distribution with stabilizer constant. The characteristic function of this distribution is obtained by using Laplace-Stieltjes transform. The uniform continuity property of characteristic function from this convolution is obtained by using analytical methods as basic properties.

  18. The long-term effects on aggregate stability (AS) from a forest fire of varying intensity in a Mediterranean environment (1994-2012).

    NASA Astrophysics Data System (ADS)

    Velasco, Antonio; Alcañiz, Meritxell; Úbeda, Xavier; Pereira, Paulo; Mataix-Solera, Jorge

    2013-04-01

    Forest fires can affect many soil properties and this fact is deeply connected with fire severity, intensity, soil type and many others factors. Aggregate stability (AS) indicates the soil structure resilience in response to external mechanical forces. AS is one of the factors that strongly affect on soil erodibility and infiltration. This property can be used as an indicator of the state of the soil structure and physical stability. The aim of this study is to analyze the soil AS of a determined area that suffered a wildfire in 1994 and compare them with a control area with the same characteristics. The study area is located in the Cadiretes Massif, in the northernmost zone of the Catalan Coastal Ranges, northeast Spain, at an altitude of around 190 - 250 m.a.m.s.l. The Cadiretes Massif is predominantly granite, although soils developed over Paleozoic metamorphic rocks such as schist and slates can also be found. In some areas metamorphic features underlie this relief. The massif is covered by dense Mediterranean vegetation, e.g. Quercus suber, Arbutus unedo, Erica arborea, and in some places Pinus pinaster plantations are found. This area receives about 700 - 800 mm of annual rainfall, with a fairly marked seasonal variability. The maximum is registered in autumn. Summer temperatures often surpass 25°C, while in winter temperatures are generally mild. The predominant soil type in Cadiretes is classified as a Lithic Xerept, with a 15 cm deep sandy-loam A horizon. In the control forest area, this horizon is protected by a 3 cm deep O horizon of moder humus. Three areas with different burnt intensity were identified in 1994 and they are the same plots that were chosen to sample in 2012. The 4 plots (Low intensity, Medium Intensity, High Intensity and Control) had the same orientation (S) and slope (5%). The TDI (Ten Drop Impact) test, that simulates rainfall impact on aggregates, was used to measure AS in the laboratory. Twenty samples were collected per plot. Ten

  19. Metal distribution and stability in constructed wetland sediment.

    PubMed

    Knox, Anna Sophia; Paller, Michael H; Nelson, Eric A; Specht, Winona L; Halverson, Nancy V; Gladden, John B

    2006-01-01

    The A-01 wetland treatment system (WTS) is a surface flow wetland planted with giant bulrush [Schoenoplectus californicus (C.A. Mey.) Palla] that is designed to remove Cu and other metals from the A-01 National Pollution Discharge Elimination System (NPDES) effluent at the Savannah River Site near Aiken, SC. Copper, Zn, and Pb concentrations in water were usually reduced 60 to 80% by passage through the treatment system. The Cu concentrations in the wetland sediments increased from about 4 to 205 and 796 mg kg(-1), respectively, in the organic and floc sediment layers in cell 4A over a 5-yr period. Metal concentrations were higher in the two top layers of sediment (i.e., the floc and organic layers) than in the deeper inorganic layers. Sequential extraction was used to evaluate remobilization and retention of Cu, Pb, Zn, Mn, and Fe in the wetland sediment. Metal remobilization was determined by the potentially mobile fraction (PMF) and metal retention by the recalcitrant factor (RF). The PMF values were high in the floc layer but comparatively low in the organic and inorganic layers. High RF values for Cu, Zn, and Pb in the organic and inorganic layers indicated that these metals were strongly bound in the sediment. The RF values for Mn were lower than for the other elements especially in the floc layer, indicating low retention or binding capacity. Retention of contaminants was also evaluated by distribution coefficient (Kd) values. Distribution coefficient (Kd) values were lower for Cu and Zn than for Pb, indicating a smaller exchangeable fraction for Pb. PMID:16973636

  20. Effects of antibiotic resistance genes on the performance and stability of different microbial aggregates in a granular sequencing batch reactor.

    PubMed

    Zou, Wenci; Xue, Bin; Zhi, Weijia; Zhao, Tianyu; Yang, Dong; Qiu, Zhigang; Shen, Zhiqiang; Li, Junwen; Zhang, Bin; Wang, Jingfeng

    2016-03-01

    Antibiotic resistance genes (ARGs) have emerged as key factors in wastewater environmental contaminants and continue to pose a challenge for wastewater treatment processes. With the aim of investigating the performance of granular sludge system when treating wastewater containing a considerable amount of ARGs, a lab-scale granular sequencing batch reactor (GSBR) where flocculent and granular sludge coexisted was designed. The results showed that after inoculation of donor strain NH4(+)-N purification efficiency diminished from 94.7% to 32.8% and recovered to 95.2% after 10 days. Meanwhile, RP4 plasmid had varying effects on different forms of microbial aggregates. As the size of aggregates increased, the abundance of RP4 in sludge decreased. The residence time of RP4 in granules with particle size exceeding 0.9 mm (14 days) was far shorter than that in flocculent sludge (26 days). Therefore, our studies conclude that with increasing number of ARGs being detected in wastewater, the use of granular sludge system in wastewater treatment processes will allow the reduction of ARGs transmissions and lessen potential ecological threats. PMID:26590870

  1. Distribution and stability of eelgrass beds at Izembek Lagoon, Alaska

    USGS Publications Warehouse

    Ward, D.H.; Markon, C.J.; Douglas, D.C.

    1997-01-01

    Spatial change in eelgrass meadows, Zostera marina L., was assessed between 1978 and 1987 and between 1987 and 1995 at Izembek Lagoon, Alaska. Change in total extent was evaluated through a map to map comparison of data interpreted from a 1978 Landsat multi-spectral scanner image and 1987 black and white aerial photographs. A ground survey in 1995 was used to assess spatial change from 1987. Eelgrass beds were the predominant vegetation type in the lagoon, comprising 44-47% (15000-16000 ha) of the total area in 1978 and 1987. Izembek Lagoon contains the largest bed of seagrass along the Pacific Coast of North America and largest known single stand of eelgrass in the world. There was a high degree of overlap in the spatial distribution of eelgrass among years of change detection. The overall net change was a 6% gain between, 1978 and 1987 and a <1% gain between 1987 and 1995. The lack of significant change in eelgrass cover suggests that eelgrass meadows in Izembek Lagoon have been stable during the 17-year period of our study.

  2. Effects of Asphaltene Aggregation in Model Heptane-Toluene Mixtures on Stability of Water-in-Oil Emulsions

    PubMed

    McLean; Kilpatrick

    1997-12-01

    As part of an ongoing investigation into the stability of water-in-crude oil emulsions, model oils have been utilized to further probe the effects of crude solvency as well as specific resin-asphaltene interactions on emulsion stability. These model oils were constructed by dissolving varying amounts of resins and/or asphaltenes in a mixture of heptane and toluene. The resins and asphaltenes used in this study were isolated from four different crude types-Arab Berri (AB), Arab Heavy (AH), Alaska North Slope (ANS), and San Joaquin Valley (SJV)-and characterized in a previous study using heptane precipitation of the asphaltenes followed by an extrographic separation of the resins from silica gel. Asphaltenes dissolved in heptol at concentrations of just 0.5% were shown to generate emulsions which were even more stable than those generated from their respective whole crude oils. Some types of resins (e.g., from AH and SJV) also demonstrated an ability to stabilize emulsions although these resin-stabilized emulsions were considerably less stable than those prepared with asphaltenes. The primary factors governing the stability of these model emulsions were the aromaticity of the crude medium (as controlled by the heptane:toluene ratio), the concentration of asphaltenes, and the availability of solvating resins in the oil (i.e., the resin/asphaltene or R/A ratio). The model emulsions were the most stable when the crude medium was 30-40% toluene and in many cases at small R/A ratios (i.e., R/A stabilizing emulsions when they are near the point of incipient precipitation. The types of resins and asphaltenes used to construct these model oils also played a role in determining the resultant emulsion stability which indicates the importance of specific resin-asphaltene interactions. The interfacially active components that stabilized these model systems were the most polar and/or condensed

  3. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.

    PubMed

    Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie

    2015-02-01

    Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. PMID:25586667

  4. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors

    NASA Astrophysics Data System (ADS)

    Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu

    2016-02-01

    We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.

  5. Exponential stability preservation in discrete-time analogues of artificial neural networks with distributed delays

    NASA Astrophysics Data System (ADS)

    Mohamad, Sannay

    2008-05-01

    This paper demonstrates that there is a discrete-time analogue which does not require any restriction on the size of the time-step in order to preserve the exponential stability of an artificial neural network with distributed delays. The analysis exploits an appropriate Lyapunov sequence and a discrete-time system of Halanay inequalities, and also either a Young inequality or a geometric-arithmetic mean inequality, to derive several sufficient conditions on the network parameters for the exponential stability of the analogue. The sufficiency conditions are independent of the time-step, and they correspond to those that establish the exponential stability of the continuous-time network.

  6. Urea and methylamine effects on rabbit muscle phosphofructokinase. Catalytic stability and aggregation state as a function of pH and temperature.

    PubMed

    Hand, S C; Somero, G N

    1982-01-25

    The effects of urea and several methylamine solutes on the catalytic stability and aggregation properties of rabbit muscle phosphofructokinase were assessed at physiologically realistic concentrations of the solutes under several pH and temperature regimes. The loss of catalytic activity observed under conditions of pH-induced cold lability was significantly reduced in the presence of trimethylamine-N-oxide, N-trimethylglycine and N-methylglycine (order of decreasing effectiveness). The concentration-dependent methylamine stabilization of the enzyme, seen with as little as 50 mM trimethylamine-N-oxide, was accompanied by increased aggregation of the enzyme to molecular weights greater than the tetramer (polytetramer) as solute concentration was raised to 400 mM. At pH 6.5-6.7 and 25 degrees C, concentrations of urea greater than 25 mM promoted a time-dependent inactivation of the enzyme which was enhanced at lower temperatures. The urea sensitivity of the enzyme exhibited with 0.8 M urea for 1 h at pH 8.0 did not result in measurable inactivation. The fluorescence emission wavelength maximum of the enzyme was shifted to longer wavelengths and the fluorescence intensity was increased as pH was lowered to 7.0, suggesting the occurrence of a protein conformation change as specific amino acid residues of the tetramer became protonated. Measurements of enzyme light scattering indicated that perturbation by urea was correlated with tetramer dissociation, which was irreversible by dialysis at 25 degrees C. The urea and methylamine influences on phosphofructokinase activity and structure were not counteracting. The synergistic interactions among pH, temperature, and solutes observed with phosphofructokinase are compared to effects on other associating-dissociating protein systems in order to evaluate possible mechanisms of action of these low molecular weight solutes. PMID:6459323

  7. Association of Soil Aggregation with the Distribution and Quality of Organic Carbon in Soil along an Elevation Gradient on Wuyi Mountain in China.

    PubMed

    Li, Liguang; Vogel, Jason; He, Zhenli; Zou, Xiaoming; Ruan, Honghua; Huang, Wei; Wang, Jiashe; Bianchi, Thomas S

    2016-01-01

    Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250-2000 μm), rather than within the microaggregates (53-250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions. PMID:26964101

  8. Association of Soil Aggregation with the Distribution and Quality of Organic Carbon in Soil along an Elevation Gradient on Wuyi Mountain in China

    PubMed Central

    Li, Liguang; Vogel, Jason; He, Zhenli; Zou, Xiaoming; Ruan, Honghua; Huang, Wei; Wang, Jiashe; Bianchi, Thomas S.

    2016-01-01

    Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250–2000 μm), rather than within the microaggregates (53–250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions. PMID:26964101

  9. Roles of octabutoxy substitution and J-aggregation in stabilization of the excited state in nickel phthalocyanine.

    PubMed

    Rais, David; Toman, Petr; Cerný, Jiří; Menšík, Miroslav; Pfleger, Jiří

    2014-07-24

    Nickel phthalocyanine (NiPc) complexes are known to show a rapid nonradiative deactivation of the photoexcited state through the internal conversion. This could be exploited in practical applications, such as photoprotection and photodynamic therapy. The butoxy substitution of NiPc plays an important role for drug delivery but also greatly influences its photophysics. We prepared novel peripherally substituted 2,3,9,10,16,17,23,24-octabutoxy nickel(II) phthalocyanine and characterized the deactivation pathway of its photoexcited state in solution by femtosecond transient absorption spectroscopy and quantum chemical calculations. We bring experimental evidence for the kinetic model, in which the photoexcitation evolves in two independent branches. In the first branch, assigned to the monomer, it undergoes ultrafast intersystem crossing to a triplet state, which subsequently decays to the ground state through a pathway involving lower-lying triplet states, with a ground-state recovery lifetime of 814 ps. It is about three-times longer than the lifetime published for unsubstituted NiPc. In the second branch, the photoexcitation decayed to a triplet state with an orders of magnitude longer lifetime, with the quantum yield of about 4%. This state showed spectral features of J-aggregates. These findings are important for the applications that rely on singlet oxygen formation or fast nonradiative deactivation of the excited state. PMID:24968193

  10. Ion-specific aggregation of hydrophobic particles.

    PubMed

    López-León, Teresa; Ortega-Vinuesa, Juan Luis; Bastos-González, Delfina

    2012-06-18

    This work shows that colloidal stability and aggregation kinetics of hydrophobic polystyrene (PS) nanospheres are extremely sensitive to the nature of the salt used to coagulate them. Three PS latices and four aggregating electrolytes, which all share the same cation (Na(+)) but have various anions located at different positions in the classical Hofmeister series depending on their kosmotropic or chaotropic character, are used. The present study focuses on analyzing different aggregating parameters, such as critical coagulation concentrations (CCC), cluster size distributions (CSD), initial kinetic constants K(11), and fractal dimensions of the aggregates d(f). While aggregation induced by SO(4)(2-) and Cl(-) behaved according to the predictions of the classical Derjaguin-Landau-Verwey-Overbeek theory, important discrepancies are found with NO(3)(-), which become dramatic when using SCN(-). These discrepancies among the anions were far more significant when they acted as counterions rather than as co-ions. While SO(4)(2-) and Cl(-) trigger fast diffusion-limited aggregation, SCN(-) gives rise to a stationary cluster size distribution in a few aggregation times when working with cationic PS particles. Clear differences are found among all analyzed parameters (CCC, CSD, K(11), and d(f)), and the experimental findings show that particles aggregate in potential wells whose depth is controlled by the chaotropic character of the anion. This paper presents new experimental evidence that may help to understand the microscopic origin of Hofmeister effects, as the observations are consistent with appealing theoretical models developed in the last few years. PMID:22556130

  11. Equilibrium and stability in a heliotron with anisotropic hot particle slowing-down distribution

    SciTech Connect

    Cooper, W. A.; Asahi, Y.; Narushima, Y.; Suzuki, Y.; Watanabe, K. Y.; Graves, J. P.; Isaev, M. Yu.

    2012-10-15

    The equilibrium and linear fluid Magnetohydrodynamic (MHD) stability in an inward-shifted large helical device heliotron configuration are investigated with the 3D ANIMEC and TERPSICHORE codes, respectively. A modified slowing-down distribution function is invoked to study anisotropic pressure conditions. An appropriate choice of coefficients and exponents allows the simulation of neutral beam injection in which the angle of injection is varied from parallel to perpendicular. The fluid stability analysis concentrates on the application of the Johnson-Kulsrud-Weimer energy principle. The growth rates are maximum at <{beta}>{approx}2%, decrease significantly at <{beta}>{approx}4.5%, do not vary significantly with variations of the injection angle and are similar to those predicted with a bi-Maxwellian hot particle distribution function model. Stability is predicted at <{beta}>{approx}2.5% with a sufficiently peaked energetic particle pressure profile. Electrostatic potential forms from the MHD instability necessary for guiding centre orbit following are calculated.

  12. Stability of weighted spectral distribution in a pseudo tree-like network model

    NASA Astrophysics Data System (ADS)

    Bo, Jiao; Yuan-ping, Nie; Cheng-dong, Huang; Jing, Du; Rong-hua, Guo; Fei, Huang; Jian-mai, Shi

    2016-05-01

    The comparison of networks with different orders strongly depends on the stability analysis of graph features in evolving systems. In this paper, we rigorously investigate the stability of the weighted spectral distribution (i.e., a spectral graph feature) as the network order increases. First, we use deterministic scale-free networks generated by a pseudo tree-like model to derive the precise formula of the spectral feature, and then analyze the stability of the spectral feature based on the precise formula. Except for the scale-free feature, the pseudo tree-like model exhibits the hierarchical and small-world structures of complex networks. The stability analysis is useful for the classification of networks with different orders and the similarity analysis of networks that may belong to the same evolving system. Project supported by the National Natural Science Foundation of China (Grant Nos. 61402485, 61303061, and 71201169).

  13. Molecular-scale investigations of structures and surface charge distribution of surfactant aggregates by three-dimensional force mapping

    SciTech Connect

    Suzuki, Kazuhiro; Oyabu, Noriaki; Matsushige, Kazumi; Yamada, Hirofumi; Kobayashi, Kei

    2014-02-07

    Surface charges on nanoscale structures in liquids, such as biomolecules and nano-micelles, play an essentially important role in their structural stability as well as their chemical activities. These structures interact with each other through electric double layers (EDLs) formed by the counter ions in electrolyte solution. Although static-mode atomic force microscopy (AFM) including colloidal-probe AFM is a powerful technique for surface charge density measurements and EDL analysis on a submicron scale in liquids, precise surface charge density analysis with single-nanometer resolution has not been made because of its limitation of the resolution and the detection sensitivity. Here we demonstrate molecular-scale surface charge measurements of self-assembled micellar structures, molecular hemicylinders of sodium dodecyl sulfate (SDS), by three-dimensional (3D) force mapping based on frequency modulation AFM. The SDS hemicylindrical structures with a diameter of 4.8 nm on a graphite surface were clearly imaged. We have succeeded in visualizing 3D EDL forces on the SDS hemicylinder surfaces and obtaining the molecular-scale charge density for the first time. The results showed that the surface charge on the trench regions between the hemicylinders was much smaller than that on the hemicylinder tops. The method can be applied to a wide variety of local charge distribution studies, such as spatial charge variation on a single protein molecule.

  14. Analysis of topsoil aggregation with linkage to dust emission potential

    NASA Astrophysics Data System (ADS)

    Swet, Nitzan; Katra, Itzhak

    2015-04-01

    Dust emission by soil erosion has environmental and socioeconomic significances due to loss of a natural resource and air pollution. Topsoil resistance to erosion depends on its physicochemical properties, especially on the soil aggregation. Aggregate size distribution of soil samples is commonly used for the assessment of soil stability and fertility. It is suggested that aggregates larger than 840 µm in their effective diameter are stable to aeolian (wind) soil erosion. However the physicochemical properties of aggregates should be considered in determining the dust emission potential from soils. This study focuses on quantitative analyses of physical and chemical properties of aggregates in order to develop a soil stability index for dust emission. The study integrates laboratory analyses of soil samples and aeolian experiments of dust emission. Soil samples were taken from different land uses in a semi-arid loess soil that is subjected to aeolian erosion and dust emission. Laboratory tests include particle size distribution (PSD), soil organic carbon (SOC), inorganic carbon (CaCO3), water content (WC), and elemental composition by XRF technique. The size analysis shows significant differences in aggregation between natural-soil plots (N) and grazing-soil plots (G). The MWD index was higher in N (1204 µm) than that of G (400 µm). Basic aeolain experiments with a boundary layer wind tunnel showed dust emission of particulate matter (PM10) from both soils, although the concentrations were significantly lower in N plots. Aggregates at specific size fractions are characterized by different content of cementing agents. The content of fine particles (< 20 µm) and SOM were higher in macro-aggregates (500-2000 µm), while the CaCO3 content was higher in aggregate fraction of 63-250 µm. WC values were highest in micro-aggregates (< 63 µm). However the lowest content of these cementing agents were mostly found in the aggregate size fraction of 1000 µm. Differences

  15. Transport and Aggregation of Nanoparticles in Packed Beds: Effects of Pore Velocity and Initially-Fed Particle Size on Transient Particle Size Distributions

    NASA Astrophysics Data System (ADS)

    Pham, Ngoc; Papavassiliou, Dimitrios

    2015-11-01

    Aggregation of colloidal particles in flow through porous media has received careful consideration, as it reduces particle breakthrough due to pore clogging and sedimentation. Additionally, in unstable colloidal systems, deposition of colloidal aggregates on the pore surfaces can create sub-surfaces for further colloidal attachment. This phenomenon is known as ripening effect. In this study, transient particle size distributions of nano-particle systems, propagating in a bed packed with spheres are numerically investigated. In our simulation, only pair interactions are considered, and the aggregation rate is varied with the relative position of two particles in a pair. The packed bed consists of spheres of known size, randomly packed in a simulation box. To generate the velocity field of water inside the porous medium, the lattice Boltzmann method (LBM) is used. In conjunction with that, the trajectories of thousands of massless particles moving with the flow under convection and diffusion are recorded employing a Lagrangian framework. While pore clogging is neglected, we draw attention to the change of the distribution of particle size under different pore velocities and different initially-fed particle sizes.

  16. Stability and Hopf bifurcation for a regulated logistic growth model with discrete and distributed delays

    NASA Astrophysics Data System (ADS)

    Fang, Shengle; Jiang, Minghui

    2009-12-01

    In this paper, we investigate the stability and Hopf bifurcation of a new regulated logistic growth with discrete and distributed delays. By choosing the discrete delay τ as a bifurcation parameter, we prove that the system is locally asymptotically stable in a range of the delay and Hopf bifurcation occurs as τ crosses a critical value. Furthermore, explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived by normal form theorem and center manifold argument. Finally, an illustrative example is also given to support the theoretical results.

  17. Impact of Distribution-Connected Large-Scale Wind Turbines on Transmission System Stability during Large Disturbances: Preprint

    SciTech Connect

    Zhang, Y.; Allen, A.; Hodge, B. M.

    2014-02-01

    This work examines the dynamic impacts of distributed utility-scale wind power during contingency events on both the distribution system and the transmission system. It is the first step toward investigating high penetrations of distribution-connected wind power's impact on both distribution and transmission stability.

  18. Thermal stability and long-chain fatty acid positional distribution on glycerol of argan oil.

    PubMed

    Khallouki, Farid; Mannina, Luisa; Viel, Stéphane; Owen, Robert W

    2008-09-01

    The primary aim of this study was to determine the oxidative stability of argan oils by using peroxides and conjugated diene hydroperoxides measurements as analytical indicators. Both food and cosmetic argan oils were investigated. Their oxidative stability was also determined by monitoring the relative changes of their fatty acid profiles by (1)H NMR. In addition, valuable information regarding minor components as well as the acyl positional distribution, were obtained for both grades by high field (1)H and (13)C NMR, respectively. Given that the cosmetic and food grades have a similar profile and content of phenolic antioxidants, vitamers, and squalene, it appears that the ratio of fatty acid aliphatic to bisallylic CH2 groups, much higher in argan oils than in other vegetable oils, is responsible for their higher thermal stability. PMID:26050165

  19. A Study of Strong Stability of Distributed Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cataltepe, Tayfun

    1989-01-01

    The strong stability of distributed systems is studied and the problem of characterizing strongly stable semigroups of operators associated with distributed systems is addressed. Main emphasis is on contractive systems. Three different approaches to characterization of strongly stable contractive semigroups are developed. The first one is an operator theoretical approach. Using the theory of dilations, it is shown that every strongly stable contractive semigroup is related to the left shift semigroup on an L(exp 2) space. Then, a decomposition for the state space which identifies strongly stable and unstable states is introduced. Based on this decomposition, conditions for a contractive semigroup to be strongly stable are obtained. Finally, extensions of Lyapunov's equation for distributed parameter systems are investigated. Sufficient conditions for weak and strong stabilities of uniformly bounded semigroups are obtained by relaxing the equivalent norm condition on the right hand side of the Lyanupov equation. These characterizations are then applied to the problem of feedback stabilization. First, it is shown via the state space decomposition that under certain conditions a contractive system (A,B) can be strongly stabilized by the feedback -B(*). Then, application of the extensions of the Lyapunov equation results in sufficient conditions for weak, strong, and exponential stabilizations of contractive systems by the feedback -B(*). Finally, it is shown that for a contractive system, the first derivative of x with respect to time = Ax + Bu (where B is any linear bounded operator), there is a related linear quadratic regulator problem and a corresponding steady state Riccati equation which always has a bounded nonnegative solution.

  20. Characterization and modeling of thermal diffusion and aggregation in nanofluids.

    SciTech Connect

    Gharagozloo, Patricia E.; Goodson, Kenneth E.

    2010-05-01

    Fluids with higher thermal conductivities are sought for fluidic cooling systems in applications including microprocessors and high-power lasers. By adding high thermal conductivity nanoscale metal and metal oxide particles to a fluid the thermal conductivity of the fluid is enhanced. While particle aggregates play a central role in recent models for the thermal conductivity of nanofluids, the effect of particle diffusion in a temperature field on the aggregation and transport has yet to be studied in depth. The present work separates the effects of particle aggregation and diffusion using parallel plate experiments, infrared microscopy, light scattering, Monte Carlo simulations, and rate equations for particle and heat transport in a well dispersed nanofluid. Experimental data show non-uniform temporal increases in thermal conductivity above effective medium theory and can be well described through simulation of the combination of particle aggregation and diffusion. The simulation shows large concentration distributions due to thermal diffusion causing variations in aggregation, thermal conductivity and viscosity. Static light scattering shows aggregates form more quickly at higher concentrations and temperatures, which explains the increased enhancement with temperature reported by other research groups. The permanent aggregates in the nanofluid are found to have a fractal dimension of 2.4 and the aggregate formations that grow over time are found to have a fractal dimension of 1.8, which is consistent with diffusion limited aggregation. Calculations show as aggregates grow the viscosity increases at a faster rate than thermal conductivity making the highly aggregated nanofluids unfavorable, especially at the low fractal dimension of 1.8. An optimum nanoparticle diameter for these particular fluid properties is calculated to be 130 nm to optimize the fluid stability by reducing settling, thermal diffusion and aggregation.

  1. Influence of humic acid applications on modulus of rupture, aggregate stability, electrical conductivity, carbon and nitrogen content of a crusting problem soil

    NASA Astrophysics Data System (ADS)

    Gümüş, İ.; Şeker, C.

    2015-11-01

    Soil structure is often said to be the key to soil productivity since a fertile soil, with desirable soil structure and adequate moisture supply, constitutes a productive soil. Soil structure influences soil water movement and retention, erosion, crusting, nutrient recycling, root penetration and crop yield. The objective of this work is to study humic acid (HA) application on some physical and chemical properties in weakly structured soils. The approach involved establishing a plot experiment in laboratory conditions. Different rates of HA (control, 0.5, 1, 2 and 4 %) were applied to soil during three incubation periods (21, 42 and 62 days). At the end of the each incubation period, the changes in physicochemical properties were measured. Generally, HA addition increased electrical conductivity values during all incubation periods. HA applications decreased soil modulus of rupture. Application of HA at the rate of 4 % significantly increased soil organic carbon contents. HA applications at the rate of 4 % significantly increased both mean soil total nitrogen content and aggregate stability after three incubation periods (p < 0.05). Therefore, HA has the potential to improve the structure of soil in the short term.

  2. Characterizing short-term stability for Boolean networks over any distribution of transfer functions

    NASA Astrophysics Data System (ADS)

    Seshadhri, C.; Smith, Andrew M.; Vorobeychik, Yevgeniy; Mayo, Jackson R.; Armstrong, Robert C.

    2016-07-01

    We present a characterization of short-term stability of Kauffman's N K (random) Boolean networks under arbitrary distributions of transfer functions. Given such a Boolean network where each transfer function is drawn from the same distribution, we present a formula that determines whether short-term chaos (damage spreading) will happen. Our main technical tool which enables the formal proof of this formula is the Fourier analysis of Boolean functions, which describes such functions as multilinear polynomials over the inputs. Numerical simulations on mixtures of threshold functions and nested canalyzing functions demonstrate the formula's correctness.

  3. Characterizing short-term stability for Boolean networks over any distribution of transfer functions.

    PubMed

    Seshadhri, C; Smith, Andrew M; Vorobeychik, Yevgeniy; Mayo, Jackson R; Armstrong, Robert C

    2016-07-01

    We present a characterization of short-term stability of Kauffman's NK (random) Boolean networks under arbitrary distributions of transfer functions. Given such a Boolean network where each transfer function is drawn from the same distribution, we present a formula that determines whether short-term chaos (damage spreading) will happen. Our main technical tool which enables the formal proof of this formula is the Fourier analysis of Boolean functions, which describes such functions as multilinear polynomials over the inputs. Numerical simulations on mixtures of threshold functions and nested canalyzing functions demonstrate the formula's correctness. PMID:27575142

  4. Distributed Multi-Agent-Based Protection Scheme for Transient Stability Enhancement in Power Systems

    NASA Astrophysics Data System (ADS)

    Rahman, M. S.; Mahmud, M. A.; Pota, H. R.; Hossain, M. J.; Orchi, T. F.

    2015-04-01

    This paper presents a new distributed agent-based scheme to enhance the transient stability of power systems by maintaining phase angle cohesiveness of interconnected generators through proper relay coordination with critical clearing time (CCT) information. In this distributed multi-agent infrastructure, intelligent agents represent various physical device models to provide dynamic information and energy flow among different physical processes of power systems. The agents can communicate with each other in a distributed manner with a final aim to control circuit breakers (CBs) with CCT information as this is the key issue for maintaining and enhancing the transient stability of power systems. The performance of the proposed scheme is evaluated on a standard IEEE 39-bus New England benchmark system under different large disturbances such as three-phase short-circuit faults and changes in loads within the systems. From the simulation results, it is found that the proposed scheme significantly enhances the transient stability of power systems as compared to a conventional scheme of static CB operation.

  5. A Byzantine-Fault Tolerant Self-Stabilizing Protocol for Distributed Clock Synchronization Systems

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2006-01-01

    Embedded distributed systems have become an integral part of safety-critical computing applications, necessitating system designs that incorporate fault tolerant clock synchronization in order to achieve ultra-reliable assurance levels. Many efficient clock synchronization protocols do not, however, address Byzantine failures, and most protocols that do tolerate Byzantine failures do not self-stabilize. Of the Byzantine self-stabilizing clock synchronization algorithms that exist in the literature, they are based on either unjustifiably strong assumptions about initial synchrony of the nodes or on the existence of a common pulse at the nodes. The Byzantine self-stabilizing clock synchronization protocol presented here does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The proposed protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period. Proofs of the correctness of the protocol as well as the results of formal verification efforts are reported.

  6. Does the Spatial Distribution of the Parasitic Mite Varroa jacobsoni Oud. (Mesostigmata: Varroidae) in Worker Brood of Honey Bee Apis Mellifera L. (Hymenoptera: Apidae) Rely on an Aggregative Process?

    NASA Astrophysics Data System (ADS)

    Salvy, M.; Capowiez, Y.; Le Conte, Y.; Salvy, M.; Clément, J.-L.

    Varroa jacobsoni is an ectoparasite of honey bees which reproduces in capped brood cells. Multi-infestation is frequently observed in worker brood and can be interpreted as an aggregative phenomenon. The aim of this study was to determine whether the distribution of V. jacobsoni in worker brood cells relies on a random or an aggregative process. We studied the distribution of Varroa females in capped worker brood at similar age by comparing, by a Monte Carlo test, the observed frequency distribution of mites per cell to simulated distributions based on a random process. A complementary approach, using the "nearest neighbor distances" (NND) with Monte Carlo tests, was investigated to study the spatial distribution (a) between mites in different cells and (b) between infested cells in brood. The observed distributions did not differ significantly from that expected by a random process, and we conclude that there is no aggregation during invasion of V. jacobsoni in worker brood.

  7. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1995-01-01

    Part of the 1994 Industrial Minerals Review. The production, consumption, and applications of construction aggregates are reviewed. In 1994, the production of construction aggregates, which includes crushed stone and construction sand and gravel combined, increased 7.7 percent to 2.14 Gt compared with the previous year. These record production levels are mostly a result of funding for highway construction work provided by the Intermodal Surface Transportation Efficiency Act of 1991. Demand is expected to increase for construction aggregates in 1995.

  8. Photophoretic force on aggregate grains

    NASA Astrophysics Data System (ADS)

    Matthews, Lorin S.; Kimery, Jesse B.; Wurm, Gerhard; de Beule, Caroline; Kuepper, Markus; Hyde, Truell W.

    2016-01-01

    The photophoretic force may impact planetary formation by selectively moving solid particles based on their composition and structure. This generates collision velocities between grains of different sizes and sorts the dust in protoplanetary discs by composition. This numerical simulation studied the photophoretic force acting on fractal dust aggregates of μm-scale radii. Results show that aggregates tend to have greater photophoretic drift velocities than spheres of similar mass or radii, though with a greater spread in the velocity. While the drift velocities of compact aggregates continue to increase as the aggregates grow larger in size, fluffy aggregates have drift velocities which are relatively constant with size. Aggregates formed from an initially polydisperse size distribution of dust grains behave differently from aggregates formed from a monodisperse population, having smaller drift velocities with directions which deviate substantially from the direction of illumination. Results agree with microgravity experiments which show the difference of photophoretic forces with aggregation state.

  9. Stability Analysis of SIR Model with Distributed Delay on Complex Networks.

    PubMed

    Huang, Chuangxia; Cao, Jie; Wen, Fenghua; Yang, Xiaoguang

    2016-01-01

    In this paper, by taking full consideration of distributed delay, demographics and contact heterogeneity of the individuals, we present a detailed analytical study of the Susceptible-Infected-Removed (SIR) epidemic model on complex population networks. The basic reproduction number [Formula: see text] of the model is dominated by the topology of the underlying network, the properties of individuals which include birth rate, death rate, removed rate and infected rate, and continuously distributed time delay. By constructing suitable Lyapunov functional and employing Kirchhoff's matrix tree theorem, we investigate the globally asymptotical stability of the disease-free and endemic equilibrium points. Specifically, the system shows threshold behaviors: if [Formula: see text], then the disease-free equilibrium is globally asymptotically stable, otherwise the endemic equilibrium is globally asymptotically stable. Furthermore, the obtained results show that SIR models with different types of delays have different converge time in the process of contagion: if [Formula: see text], then the system with distributed time delay stabilizes fastest; while [Formula: see text], the system with distributed time delay converges most slowly. The validness and effectiveness of these results are demonstrated through numerical simulations. PMID:27490363

  10. Stability Analysis of SIR Model with Distributed Delay on Complex Networks

    PubMed Central

    Huang, Chuangxia; Cao, Jie; Wen, Fenghua; Yang, Xiaoguang

    2016-01-01

    In this paper, by taking full consideration of distributed delay, demographics and contact heterogeneity of the individuals, we present a detailed analytical study of the Susceptible-Infected-Removed (SIR) epidemic model on complex population networks. The basic reproduction number R0 of the model is dominated by the topology of the underlying network, the properties of individuals which include birth rate, death rate, removed rate and infected rate, and continuously distributed time delay. By constructing suitable Lyapunov functional and employing Kirchhoff’s matrix tree theorem, we investigate the globally asymptotical stability of the disease-free and endemic equilibrium points. Specifically, the system shows threshold behaviors: if R0≤1, then the disease-free equilibrium is globally asymptotically stable, otherwise the endemic equilibrium is globally asymptotically stable. Furthermore, the obtained results show that SIR models with different types of delays have different converge time in the process of contagion: if R0>1, then the system with distributed time delay stabilizes fastest; while R0≤1, the system with distributed time delay converges most slowly. The validness and effectiveness of these results are demonstrated through numerical simulations. PMID:27490363

  11. [Impact of Land Utilization Pattern on Distributing Characters of Labile Organic Carbon in Soil Aggregates in Jinyun Mountain].

    PubMed

    Li, Rui; Jiang, Chang-sheng; Hao, Qing-ju

    2015-09-01

    Four land utilization patterns were selected for this study in Jinyun mountain, including subtropical evergreen broad-leaved forest (abbreviation: forest), sloping farmland, orchard and abandoned land. Soil samples were taken every 10 cm in the depth of 60 cm soil and proportions of large macroaggregates (> 2 mm), small macroaggregates (0. 25-2 mm), microaggregates (0. 053 - 0. 25 mm) and silt + clay (<0. 053 mm) were obtained by wet sieving method to measure the content of organic carbon and labile organic carbon in each aggregate fraction and analyze impacts of land uses on organic carbon and labile organic carbon of soil aggregates. LOC content of four soil aggregates were significantly reduced with the increase of soil depth; in layers of 0-60 cm soil depth, our results showed that LOC contents of forest and abandoned land were higher than orchard and sloping farmland. Reserves of labile organic carbon were estimated by the same soil quality, it revealed that forest (3. 68 Mg.hm-2) > abandoned land (1. 73 Mg.hm-2) > orchard (1. 43 Mg.hm-2) >sloping farmland (0.54 Mg.hm-2) in large macroaggregates, abandoned land (7.77, 5. 01 Mg.hm-2) > forest (4. 96, 2.71 Mg.hm-2) > orchard (3. 33, 21. 10 Mg.hm-2) > sloping farmland (1. 68, 1. 35 Mg.hm-2) in small macroaggregates and microaggregates, and abandoned land(4. 32 Mg.hm-2) > orchard(4. 00 Mg.hm-2) > forest(3. 22 Mg.hm-2) > sloping farmland (2.37 Mg.hm-2) in silt + clay, forest and abandoned land were higher than orchard and sloping farmland in other three soil aggregates except silt + clay. It was observed that the level of organic carbon and labile organic carbon were decreased when bringing forest under cultivation to orchard or farmland, and augments on organic carbon and labile organic carbon were found after exchanging farmland to abandoned land. The most reverses of forest and abandoned land emerged in small macroaggregates, orchard and sloping farmland were in microaggregates. That was, during the

  12. Control over Particle Size Distribution by Autoclaving Poloxamer-Stabilized Trimyristin Nanodispersions.

    PubMed

    Göke, Katrin; Roese, Elin; Arnold, Andreas; Kuntsche, Judith; Bunjes, Heike

    2016-09-01

    Lipid nanoparticles are under investigation as delivery systems for poorly water-soluble drugs. The particle size in these dispersions strongly influences important pharmaceutical properties like biodistribution and drug loading capacity; it should be below 500 nm for direct injection into the bloodstream. Consequently, small particles with a narrow particle size distribution are desired. Hitherto, there are, however, only limited possibilities for the preparation of monodisperse, pharmaceutically relevant dispersions. In this work, the effect of autoclaving at 121 °C on the particle size distribution of lipid nanoemulsions and -suspensions consisting of the pharmaceutically relevant components trimyristin and poloxamer 188 was studied. Additionally, the amount of emulsifier needed to stabilize both untreated and autoclaved particles was assessed. In our study, four dispersions of mean particle sizes from 45 to 150 nm were prepared by high-pressure melt homogenization. The particle size distribution before and after autoclaving was characterized using static and dynamic light scattering, differential scanning calorimetry, and transmission electron microscopy. Asymmetrical flow field-flow fractionation was used for particle size distribution analyses and for the determination of free poloxamer 188. Upon autoclaving, the mean particle size increased to up to 200 nm, but not proportionally to the initial size. At the same time, the particle size distribution width decreased remarkably. Heat treatment thus seems to be a promising approach to achieve the desired narrow particle size distribution of such dispersions. Related to the lipid content, suspension particles needed more emulsifier for stabilization than emulsion droplets, and smaller particles more than larger ones. PMID:27463039

  13. Weighted aggregation

    NASA Technical Reports Server (NTRS)

    Feiveson, A. H. (Principal Investigator)

    1979-01-01

    The use of a weighted aggregation technique to improve the precision of the overall LACIE estimate is considered. The manner in which a weighted aggregation technique is implemented given a set of weights is described. The problem of variance estimation is discussed and the question of how to obtain the weights in an operational environment is addressed.

  14. Pressure Distribution Tests on a Series of Clark Y Biplane Cellules with Special Reference to Stability

    NASA Technical Reports Server (NTRS)

    Noyes, Richard W

    1933-01-01

    The pressure distribution data discussed in this report represents the results of part of an investigation conducted on the factors affecting the aerodynamic safety of airplanes. The present tests were made on semispan, circular-tipped Clark Y airfoil models mounted in the conventional manner on a separation plane. Pressure readings were made simultaneously at all test orifices at each of 20 angles of attack between -8 degrees and +90 degrees. The results of the tests on each wing arrangement are compared on the bases of maximum normal force coefficient, lateral stability at a low rate of roll, and relative longitudinal stability. Tabular data are also presented giving the center of pressure location of each wing.

  15. Model Checking a Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2011-01-01

    This report presents the mechanical verification of a self-stabilizing distributed clock synchronization protocol for arbitrary digraphs in the absence of faults. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. The system under study is an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. This protocol deterministically converges within a time bound that is a linear function of the self-stabilization period.

  16. Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system.

    PubMed

    Karra, Udayarka; Huang, Guoxian; Umaz, Ridvan; Tenaglier, Christopher; Wang, Lei; Li, Baikun

    2013-09-01

    A novel and robust distributed benthic microbial fuel cell (DBMFC) was developed to address the energy supply issues for oceanographic sensor network applications, especially under scouring and bioturbation by aquatic life. Multi-anode/cathode configuration was employed in the DBMFC system for enhanced robustness and stability in the harsh ocean environment. The results showed that the DBMFC system achieved peak power and current densities of 190mW/m(2) and 125mA/m(2) respectively. Stability characterization tests indicated the DBMFC with multiple anodes achieved higher power generation over the systems with single anode. A computational model that integrated physical, electrochemical and biological factors of MFCs was developed to validate the overall performance of the DBMFC system. The model simulation well corresponded with the experimental results, and confirmed the hypothesis that using a multi anode/cathode MFC configuration results in reliable and robust power generation. PMID:23890975

  17. Evidences of Changes in Surface Electrostatic Charge Distribution during Stabilization of HPV16 Virus-Like Particles

    PubMed Central

    Vega, Juan F.; Vicente-Alique, Ernesto; Núñez-Ramírez, Rafael; Wang, Yang; Martínez-Salazar, Javier

    2016-01-01

    The stabilization of human papillomavirus type 16 virus-like particles has been examined by means of different techniques including dynamic and static light scattering, transmission electron microscopy and electrophoretic mobility. All these techniques provide different and often complementary perspectives about the aggregation process and generation of stabilized virus-like particles after a period of time of 48 hours at a temperature of 298 K. Interestingly, static light scattering results point towards a clear colloidal instability in the initial systems, as suggested by a negative value of the second virial coefficient. This is likely related to small repulsive electrostatic interactions among the particles, and in agreement with relatively small absolute values of the electrophoretic mobility and, hence, of the net surface charges. At this initial stage the small repulsive interactions are not able to compensate binding interactions, which tend to aggregate the particles. As time proceeds, an increase of the size of the particles is accompanied by strong increases, in absolute values, of the electrophoretic mobility and net surface charge, suggesting enhanced repulsive electrostatic interactions and, consequently, a stabilized colloidal system. These results show that electrophoretic mobility is a useful methodology that can be applied to screen the stabilization factors for virus-like particles during vaccine development. PMID:26885635

  18. The concept of "stability" in asynchronous distributed decision-making systems.

    PubMed

    Lee, T S; Ghosh, S

    2000-01-01

    Asynchronous distributed decision-making (ADDM) systems constitute a special class of distributed problems and are characterized as large, complex systems wherein the principal elements are the geographically dispersed entities that communicate among themselves, asynchronously, through message passing and are permitted autonomy in local decision making. Such systems generally offer significant advantages over the traditional, centralized algorithms in the form of concurrency, scalability, high throughput, efficiency, low vulnerability to catastrophic failures, and robustness. A fundamental property of ADDM systems is stability that refers to their behavior under representative perturbations to their operating environments, given that such systems are intended to be real, complex, and to some extent, mission-critical, and are subject to unexpected changes in their operating conditions. This paper introduces the concept of stability in ADDM systems and proposes an intuitive yet practical and usable definition that is inspired by those used in control systems and physics. An ADDM system is defined as a stable system if it returns to a steady state in finite time, following perturbation, provided that it is initiated in a steady state. Equilibrium or steady state is defined through placing bounds on the measured error in the system. Where the final steady state is equivalent to the initial one, a system is referred to as strongly stable. If the final steady state is potentially worse then the initial one, a system is deemed marginally stable. When a system fails to return to steady state following the perturbation, it is unstable. The perturbations are classified as either changes in the input pattern or changes in one or more environmental characteristics of the system, such as hardware failures. For a given ADDM system, the definitions are based on the performance indices that must be judiciously identified by the system architect and are likely to be unique. To

  19. Global asymptotic stability and the ideal free distribution in a starvation driven diffusion.

    PubMed

    Kim, Yong-Jung; Kwon, Ohsang; Li, Fang

    2014-05-01

    We study a logistic model with a nonlinear random diffusion in a Fokker-Planck type law, but not in Fick's law. In the model individuals are assumed to increase their motility if they starve. Any directional information to resource is not assumed in this starvation driven diffusion and individuals disperse in a random walk style strategy. However, the non-uniformity in the motility produces an advection toward surplus resource. Several basic properties of the model are obtained including the global asymptotic stability and the acquisition of the ideal free distribution. PMID:23553461

  20. Active polarization stabilization in optical fibers suitable for quantum key distribution.

    PubMed

    Chen, Jie; Wu, Guang; Li, Yao; Wu, E; Zeng, Heping

    2007-12-24

    Polarization feedback control of single-photon pulses has been achieved in long-distance fibers for more than 10 hours, which facilitated "one-way" polarization-encoded quantum key distribution with long-term stabilities. Experimental test of polarization encoding in 75 km fibers demonstrated that the single-photon polarization transformation in long-distance fibers could be controlled to provide a typical QBER of (3.9+/-1.5)% within a long-term operation of 620 minutes. PMID:19551088

  1. Stability of the spatio-temporal distribution and niche overlap in neotropical earthworm assemblages

    NASA Astrophysics Data System (ADS)

    Jiménez, Juan-José; Decaëns, Thibaud; Rossi, Jean-Pierre

    2006-11-01

    The spatial distribution of soil invertebrates is aggregated with high-density patches alternating with low-density zones. A high degree of spatio-temporal organization generally exists with identified patches of specific species assemblages, in which species coexist according to assembly rules related to competitive mechanisms for spatial and trophic resources occur. However, these issues have seldom been addressed. The spatio-temporal structure of a native earthworm community in a natural savanna and a grass-legume pasture in the Colombian "Llanos" was studied during a 2-year-period. A spatially explicit sampling design (regular grid) was used to discern the distribution pattern of species assemblages in both systems. Earthworms were collected from small soil pits at three different sampling dates. Data collected from 1 m 2 soil monoliths were also used in the present study. Data were analyzed with the partial triadic analysis (PTA) and correlograms, while niche overlap was computed with the Pianka index. The PTA and correlogram analysis revealed that earthworm communities displayed a similar stable spatial structure in both systems during the 2-year study period. An alternation of population patches where different species' assemblages dominated was common to all sampling dates. The medium-sized Andiodrilus sp. and Glossodrilus sp. exhibited a clear spatial opposition in natural savanna and the grass-legume pasture for the duration of the study. The Pianka index showed a high degree of niche overlapping in several dimensions (vertical distribution, seasonality of population density) between both species. The inclusion of space-time data analysis tools as the PTA and the use of classical ecological indices (Pianka) in soil ecology studies may improve our knowledge of earthworm assemblages' dynamics.

  2. Correctness Proof of a Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2011-01-01

    This report presents a deductive proof of a self-stabilizing distributed clock synchronization protocol. It is focused on the distributed clock synchronization of an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. This protocol does not rely on assumptions about the initial state of the system, and no central clock or a centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. We present a deductive proof of the correctness of the protocol as it applies to the networks with unidirectional and bidirectional links. We also confirm the claims of determinism and linear convergence.

  3. Benford's law predicted digit distribution of aggregated income taxes: the surprising conformity of Italian cities and regions

    NASA Astrophysics Data System (ADS)

    Mir, Tariq Ahmad; Ausloos, Marcel; Cerqueti, Roy

    2014-11-01

    The yearly aggregated tax income data of all, more than 8000, Italian municipalities are analyzed for a period of five years, from 2007 to 2011, to search for conformity or not with Benford's law, a counter-intuitive phenomenon observed in large tabulated data where the occurrence of numbers having smaller initial digits is more favored than those with larger digits. This is done in anticipation that large deviations from Benford's law will be found in view of tax evasion supposedly being widespread across Italy. Contrary to expectations, we show that the overall tax income data for all these years is in excellent agreement with Benford's law. Furthermore, we also analyze the data of Calabria, Campania and Sicily, the three Italian regions known for strong presence of mafia, to see if there are any marked deviations from Benford's law. Again, we find that all yearly data sets for Calabria and Sicily agree with Benford's law whereas only the 2007 and 2008 yearly data show departures from the law for Campania. These results are again surprising in view of underground and illegal nature of economic activities of mafia which significantly contribute to tax evasion. Some hypothesis for the found conformity is presented.

  4. Power system voltage stability and agent based distribution automation in smart grid

    NASA Astrophysics Data System (ADS)

    Nguyen, Cuong Phuc

    2011-12-01

    Our interconnected electric power system is presently facing many challenges that it was not originally designed and engineered to handle. The increased inter-area power transfers, aging infrastructure, and old technologies, have caused many problems including voltage instability, widespread blackouts, slow control response, among others. These problems have created an urgent need to transform the present electric power system to a highly stable, reliable, efficient, and self-healing electric power system of the future, which has been termed "smart grid". This dissertation begins with an investigation of voltage stability in bulk transmission networks. A new continuation power flow tool for studying the impacts of generator merit order based dispatch on inter-area transfer capability and static voltage stability is presented. The load demands are represented by lumped load models on the transmission system. While this representation is acceptable in traditional power system analysis, it may not be valid in the future smart grid where the distribution system will be integrated with intelligent and quick control capabilities to mitigate voltage problems before they propagate into the entire system. Therefore, before analyzing the operation of the whole smart grid, it is important to understand the distribution system first. The second part of this dissertation presents a new platform for studying and testing emerging technologies in advanced Distribution Automation (DA) within smart grids. Due to the key benefits over the traditional centralized approach, namely flexible deployment, scalability, and avoidance of single-point-of-failure, a new distributed approach is employed to design and develop all elements of the platform. A multi-agent system (MAS), which has the three key characteristics of autonomy, local view, and decentralization, is selected to implement the advanced DA functions. The intelligent agents utilize a communication network for cooperation and

  5. Model Checking a Byzantine-Fault-Tolerant Self-Stabilizing Protocol for Distributed Clock Synchronization Systems

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2007-01-01

    This report presents the mechanical verification of a simplified model of a rapid Byzantine-fault-tolerant self-stabilizing protocol for distributed clock synchronization systems. This protocol does not rely on any assumptions about the initial state of the system. This protocol tolerates bursts of transient failures, and deterministically converges within a time bound that is a linear function of the self-stabilization period. A simplified model of the protocol is verified using the Symbolic Model Verifier (SMV) [SMV]. The system under study consists of 4 nodes, where at most one of the nodes is assumed to be Byzantine faulty. The model checking effort is focused on verifying correctness of the simplified model of the protocol in the presence of a permanent Byzantine fault as well as confirmation of claims of determinism and linear convergence with respect to the self-stabilization period. Although model checking results of the simplified model of the protocol confirm the theoretical predictions, these results do not necessarily confirm that the protocol solves the general case of this problem. Modeling challenges of the protocol and the system are addressed. A number of abstractions are utilized in order to reduce the state space. Also, additional innovative state space reduction techniques are introduced that can be used in future verification efforts applied to this and other protocols.

  6. Construction aggregates

    USGS Publications Warehouse

    Langer, W.H.; Tepordei, V.V.; Bolen, W.P.

    2000-01-01

    Construction aggregates consist primarily of crushed stone and construction sand and gravel. Total estimated production of construction aggregates increased in 1999 by about 2% to 2.39 Gt (2.64 billion st) compared with 1998. This record production level continued an expansion that began in 1992. By commodities, crushed stone production increased 3.3%, while sand and gravel production increased by about 0.5%.

  7. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1994-01-01

    Part of a special section on industrial minerals in 1993. The 1993 production of construction aggregates increased 6.3 percent over the 1992 figure, to reach 2.01 Gt. This represents the highest estimated annual production of combined crushed stone and construction sand and gravel ever recorded in the U.S. The outlook for construction aggregates and the issues facing the industry are discussed.

  8. A coupled distributed hydrological-stability analysis on a terraced slope of Valtellina (northern Italy)

    NASA Astrophysics Data System (ADS)

    Camera, C.; Apuani, T.; Masetti, M.

    2013-02-01

    The aim of this work was to understand and reproduce the hydrological dynamics of a slope, which was terraced using dry-stone retaining walls and its response to these processes in terms of stability at the slope scale. The slope studied is located in Valtellina (northern Italy), near the village of Tresenda, and in the last 30 yr has experienced several soil slip/debris flow events. In 1983 alone, such events caused the death of 18 people. Direct observation of the events of 1983 enabled the principal triggering cause of these events to be recognized in the formation of an overpressure at the base of a dry-stone wall, which caused its failure. To perform the analyses it is necessary to include the presence of dry-stone walls, considering the importance they have in influencing hydrological and geotechnical processes at the slope scale. This requires a very high resolution DEM (1 m × 1 m because the walls are from 0.60 m to 1.0 m wide) that has been appositely derived. A hydrogeological raster-based model, which takes into account both the unsaturated and saturated flux components, was applied. This was able to identify preferential infiltration zones and was rather precise in the prediction of maximum groundwater levels, providing valid input for the distributed stability analysis. Results of the hydrogeological model were used for the successive stability analysis. Sections of terrace were identified from the downslope base of a retaining wall to the top of the next downslope retaining wall. Within each section a global method of equilibrium was applied to determine its safety factor. The stability model showed a general tendency to overestimate the amount of unstable areas. An investigation of the causes of this unexpected behavior was, therefore, also performed in order to progressively improve the reliability of the model.

  9. Changes on aggregation in mine waste amended with biochar and marble mud

    NASA Astrophysics Data System (ADS)

    Ángeles Muñoz, María; Guzmán, Jose; Zornoza, Raúl; Moreno-Barriga, Fabián; Faz, Ángel; Lal, Rattan

    2016-04-01

    Mining activities have produced large amounts of wastes over centuries accumulated in tailing ponds in Southeast Spain. Applications of biochar may have a high potential for reclamation of degraded soils. Distribution, size and stability of aggregates are important indices of soil physical quality. However, research data on aggregation processes at amended mining tailings with biochar are scanty. Therefore, the aim of this study was to determine the effects of seven different treatments involving biochar and marble mud (MM) on the aggregation in mine waste (MW). Seven different treatments were tested after 90 days of incubation in the laboratory. These treatments were the mix of MW and: biochar from solid pig manure (PM), biochar from cotton crop residues (CR), biochar from municipal solid waste (MSW), marble mud (MM), PM+MM, CR+MM, MSW+MM and control without amendment. High sand percentages were identified in the MW. The biochars made from wastes (PM, CR, MSW) were obtained through pyrolysis of feedstocks. The water stability of soil aggregates was studied. The data on total aggregation were corrected for the primary particles considering the sandy texture of the MW. Moreover, partial aggregation was determined for each fraction and the mean weight diameter (MWD) of aggregates was computed. Soil bulk density and total porosity were also determined. No significant differences were observed in total aggregation and MWD among treatments including the control. For the size range of >4.75 mm, there were significant differences in aggregates > 4.75 mm between CR+MM in comparison with that for CT. There were also significant differences between MSW and PM+MM for the 1-0.425 mm fraction, and between CT and MM and CR for 0.425-0.162 mm aggregate size fractions. Therefore, CR-derived biochar applied with MM enhanced stability of macro-aggregates. Furthermore, soil bulk density was also the lowest bulk density and total porosity the highest for the CR-derived biochar

  10. Spatiotemporal Stability of Cu-ATSM and FLT Positron Emission Tomography Distributions During Radiation Therapy

    SciTech Connect

    Bradshaw, Tyler J.; Yip, Stephen; Jallow, Ngoneh; Forrest, Lisa J.; Jeraj, Robert

    2014-06-01

    Purpose: In dose painting, in which functional imaging is used to define biological targets for radiation therapy dose escalation, changes in spatial distributions of biological properties during treatment can compromise the quality of therapy. The goal of this study was to assess the spatiotemporal stability of 2 potential dose painting targets—hypoxia and proliferation—in canine tumors during radiation therapy. Methods and Materials: Twenty-two canine patients with sinonasal tumors (14 carcinoma and 8 sarcoma) were imaged before hypofractionated radiation therapy with copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) positron emission tomography/computed tomography (PET/CT) for hypoxia and 3′-deoxy-3′-{sup 18}F-fluorothymidine (FLT) PET/CT for proliferation. The FLT scans were repeated after 2 fractions and the Cu-ATSM scans after 3 fractions. Midtreatment PET/CT images were deformably registered to pretreatment PET/CT images. Voxel-based Spearman correlation coefficients quantified the spatial stability of Cu-ATSM and FLT uptake distributions between pretreatment and midtreatment scans. Paired t tests determined significant differences between the patients' respective Cu-ATSM and FLT correlations coefficients. Standardized uptake value measures were also compared between pretreatment and midtreatment scans by use of paired t tests. Results: Spatial distributions of Cu-ATSM and FLT uptake were stable through midtreatment for both sarcomas and carcinomas: the population mean ± standard deviation in Spearman correlation coefficient was 0.88 ± 0.07 for Cu-ATSM and 0.79 ± 0.13 for FLT. The patients' Cu-ATSM correlation coefficients were significantly higher than their respective FLT correlation coefficients (P=.001). Changes in Cu-ATSM SUV measures from pretreatment to midtreatment were histology dependent: carcinomas experienced significant decreases in Cu-ATSM uptake (P<.05), whereas sarcomas did not (P>.20). Both histologies

  11. Effects of earthworms and plants on the soil structure, the physical stabilization of soil organic matter and the microbial abundance and diversity in soil aggregates in a long term study

    NASA Astrophysics Data System (ADS)

    Zangerlé, Anne; Hissler, Christophe; Lavelle, Patrick

    2014-05-01

    Earthworms and plant roots, as ecosystem engineers, have large effects on biotic and abiotic properties of the soil system. They create biogenic soil macroaggregates (i.e. earthworm casts and root macroaggregates) with specific physical, chemical and microbiological properties. Research to date has mainly considered their impacts in isolation thereby ignoring potential interactions between these organisms. On the other hand, most of the existing studies focused on short to midterm time scale. We propose in this study to consider effect of earthworms and plants on aggregate dynamics at long time scale. A 24 months macrocosm experiment, under semi-controlled conditions, was conducted to assess the impacts of corn and endogeic plus anecic earthworms (Apporectodea caliginosa and Lumbricus terrestris) on soil structure, C stabilization and microbial abundance and biodiversity. Aggregate stability was assessed by wet-sieving. Macroaggregates (>2 mm) were also visually separated according to their biological origin (e.g., earthworms, roots). Total C and N contents were measured in aggregates of all size classes and origins. Natural abundances of 13C of corn, a C4 plant, were used as a supplemental marker of OM incorporation in aggregates. The genetic structure and the abundance of the bacterial and fungal communities were characterized by using respectively the B- and F-ARISA fingerprinting approach and quantitative PCR bacteria (341F/515R) and fungi (FF330/FR1). They significantly impacted the soil physical properties in comparison to the other treatments: lower bulk density in the first 10cm of the soil with 0.95 g/cm3 in absence of corn plants and 0.88 g/cm3 in presence of corn plants compared to control soil (1.21g/cm3). The presence of earthworms increased aggregate stability (mean weight diameter) by 7.6 %, while plants alone had no simple impacts on aggregation. A significant interaction revealed that earthworms increased aggregate stability in the presence of

  12. A Graphical Procedure for the Simultaneous Determination of the Distribution Constant of Iodine and the Stability Constants of Trihalide Anions.

    ERIC Educational Resources Information Center

    Kahwa, I. A.

    1984-01-01

    Discusses a graphical procedure which allows the distribution constant of iodine to be determined simultaneously with the trihalide anion stability constant. In addition, the procedure extends the experimental chemistry from distribution equilibria to important thermodynamic and bonding features. Advantages of using the procedure are also…

  13. Study of soil aggregate breakdown dynamics under low dispersive ultrasonic energies with sedimentation and X-ray attenuation**

    PubMed Central

    Schomakers, Jasmin; Zehetner, Franz; Mentler, Axel; Ottner, Franz; Mayer, Herwig

    2016-01-01

    It has been increasingly recognized that soil organic matter stabilization is strongly controlled by physical binding within soil aggregates. It is therefore essential to measure soil aggregate stability reliably over a wide range of disruptive energies and different aggregate sizes. To this end, we tested high-accuracy ultrasonic dispersion in combination with subsequent sedimentation and X-ray attenuation. Three arable topsoils (notillage) from Central Europe were subjected to ultrasound at four different specific energy levels: 0.5, 6.7, 100 and 500 J cm−3, and the resulting suspensions were analyzed for aggregate size distribution by wet sieving (2 000-63 μm) and sedimentation/X-ray attenuation (63-2 μm). The combination of wet sieving and sedimentation technique allowed for a continuous analysis, at high resolution, of soil aggregate breakdown dynamics after defined energy inputs. Our results show that aggregate size distribution strongly varied with sonication energy input and soil type. The strongest effects were observed in the range of low specific energies (< 10 J cm−3), which previous studies have largely neglected. This shows that low ultrasonic energies are required to capture the full range of aggregate stability and release of soil organic matter upon aggregate breakdown. PMID:27099408

  14. The Interannual Stability of Cumulative Frequency Distributions for Convective System Size and Intensity

    NASA Technical Reports Server (NTRS)

    Mohr, Karen I.; Molinari, John; Thorncroft, Chris D,

    2010-01-01

    The characteristics of convective system populations in West Africa and the western Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in convective activity in tropical continental and oceanic environments is driven by variations in the number of events during the wet season or by favoring large and/or intense convective systems. Convective systems were defined from TRMM data as a cluster of pixels with an 85 GHz polarization-corrected brightness temperature below 255 K and with an area at least 64 km 2. The study database consisted of convective systems in West Africa from May Sep for 1998-2007 and in the western Pacific from May Nov 1998-2007. Annual cumulative frequency distributions for system minimum brightness temperature and system area were constructed for both regions. For both regions, there were no statistically significant differences among the annual curves for system minimum brightness temperature. There were two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set, there was no statistically significant interannual variability. Sub-setting the database revealed some sensitivity in distribution shape to the size of the sampling area, length of sample period, and climate zone. From a regional perspective, the stability of the cumulative frequency distributions implied that the probability that a convective system would attain a particular size or intensity does not change interannually. Variability in the number of convective events appeared to be more important in determining whether a year is wetter or drier than normal.

  15. Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions

    SciTech Connect

    Gong Jingyu; Du Jiulin; Liu Zhipeng

    2012-08-15

    The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.

  16. A molecular dynamics study of structure, stability and fragmentation patterns of sodium bis(2-ethylhexyl)sulfosuccinate positively charged aggregates in vacuo.

    PubMed

    Longhi, Giovanna; Abbate, Sergio; Ceraulo, Leopoldo; Ceselli, Alberto; Fornili, Sandro L; Turco Liveri, Vincenzo

    2011-12-28

    Positively charged supramolecular aggregates formed in vacuo by n AOTNa (sodium bis(2-ethylhexyl)sulfosuccinate) molecules and n(c) additional sodium ions, i.e. [AOT(n)Na(n+n(c))](n(c)), have been investigated by molecular dynamics (MD) simulations for n = 1-20 and n(c) = 0-5. Statistical analysis of physical quantities like gyration radii, atomic B-factors and moment of inertia tensors provides detailed information on their structural and dynamical properties. Even for n(c) = 5, all stable aggregates show a reverse micelle-like structure with an internal solid-like core including sodium counterions and surfactant polar heads surrounded by an external layer consisting of the surfactant alkyl chains. Moreover, the aggregate shapes may be approximated by rather flat and elongated ellipsoids whose longer axis increases with n and n(c). The fragmentation patterns of a number of these aggregates have also been examined and have been found to markedly depend on the aggregate charge state. In one particular case, for which experimental findings are available in the literature, a good agreement is found with the present fragmentation data. PMID:22048331

  17. Character, mass, distribution, and origin of tephra-fall deposits from the 2009 eruption of Redoubt Volcano, Alaska—Highlighting the significance of particle aggregation

    NASA Astrophysics Data System (ADS)

    Wallace, Kristi L.; Schaefer, Janet R.; Coombs, Michelle L.

    2013-06-01

    The 2009 eruption of Redoubt Volcano included 20 tephra-producing explosions between March 15, 2009 and April 4, 2009 (UTC). Next-Generation radar (NEXRAD) data show that plumes reached heights between 4.6 km and 19 km asl and were distributed downwind along nearly all azimuths of the volcano. Explosions lasted between < 1 and 31 min based on the signal duration at a distal seismic station (86 km). From Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and field data, we estimate that over 80,000 km2 received at least minor ash fall (> 0.8 mm thick), including communities along the Kenai Peninsula (80-100 km) and the city of Anchorage (170 km). Trace ash (< 0.8 mm) was reported as far as Fairbanks, 550 km NNE of the volcano. We estimate the total mass of tephra-fall deposits at 54.6 × 109 kg with a total DRE volume of 20.6 × 106 m3. On March 15, a small (4.6 km asl) phreatic explosion containing minor, non-juvenile ash, erupted through the summit ice cap. The first five magmatic explosions (events 1-5) occurred within a 6-hour period on March 23. Plumes rose to heights between 5.5 km and 14.9 km asl during 2- to 20-minute-duration explosions, and were dispersed mainly along a NNE trajectory. Trace ash fall was reported as far as Fairbanks. Owing to a shift in wind direction and heavy snowfall during these events, field discrimination among many of these layers was possible. All deposits comprise a volumetrically significant amount of particle aggregates, yet only event 5 deposits contain coarse clasts including glacier ice. The most voluminous tephra fall was deposited on March 24 (event 6) from a 15 minute explosion that sent a plume to 18.3 km asl, and dispersed tephra to the WNW. Within 10 km of the vent, this deposit contains 1-11 cm pumice clasts in a matrix of 1-2 mm aggregate lapilli. A small dome was presumably emplaced between March 23 and March 26 and was subsequently destroyed during 1-14 minute magmatic explosions of events 7-8 (March 26

  18. Global Stability of an HIV-1 Infection Model with General Incidence Rate and Distributed Delays

    PubMed Central

    2014-01-01

    In this work an HIV-1 infection model with nonlinear incidence rate and distributed intracellular delays and with humoral immunity is investigated. The disease transmission function is assumed to be governed by general incidence rate f(T, V)V. The intracellular delays describe the time between viral entry into a target cell and the production of new virus particles and the time between infection of a cell and the emission of viral particle. Lyapunov functionals are constructed and LaSalle invariant principle for delay differential equation is used to establish the global asymptotic stability of the infection-free equilibrium, infected equilibrium without B cells response, and infected equilibrium with B cells response. The results obtained show that the global dynamics of the system depend on both the properties of the general incidence function and the value of certain threshold parameters R0 and R1 which depends on the delays. PMID:27355007

  19. Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks

    NASA Astrophysics Data System (ADS)

    Wehbe, Ali; Youssef, Wael

    2010-10-01

    In this paper, we study the energy decay rate for the elastic Bresse system in one-dimensional bounded domain. The physical system consists of three wave equations. The two wave equations about the rotation angle and the longitudinal displacement are damped by two locally distributed feedbacks at the neighborhood of the boundary. Then indirect damping is applied to the equation for the transverse displacement of the beam through the coupling terms. We will establish the exponential stability for this system in the case of the same speed of propagation in the equation for the vertical displacement and the equation for the rotation angle of the system. When the wave speeds are different, nonexponential decay rate is proved and a polynomial-type decay rate is obtained. The frequency domain method and the multiplier technique are applied.

  20. Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks

    SciTech Connect

    Wehbe, Ali; Youssef, Wael

    2010-10-15

    In this paper, we study the energy decay rate for the elastic Bresse system in one-dimensional bounded domain. The physical system consists of three wave equations. The two wave equations about the rotation angle and the longitudinal displacement are damped by two locally distributed feedbacks at the neighborhood of the boundary. Then indirect damping is applied to the equation for the transverse displacement of the beam through the coupling terms. We will establish the exponential stability for this system in the case of the same speed of propagation in the equation for the vertical displacement and the equation for the rotation angle of the system. When the wave speeds are different, nonexponential decay rate is proved and a polynomial-type decay rate is obtained. The frequency domain method and the multiplier technique are applied.

  1. Distributed-Roughness Effects on Stability and Transition In Swept-Wing Boundary Layers

    NASA Technical Reports Server (NTRS)

    Carrillo, Ruben B., Jr.; Reibert, Mark S.; Saric, William S.

    1997-01-01

    Boundary-layer stability experiments are conducted in the Arizona State University Unsteady Wind Tunnel on a 45 deg swept airfoil. The pressure distribution and test conditions are designed to suppress Tollmien-Schlichting disturbances and provide crossflow-dominated transition. The surface of the airfoil is finely polished to a near mirror finish. Under these conditions, submicron surface irregularities cause the naturally occurring stationary crossflow waves to grow to nonuniform amplitudes. Spanwise-uniform stationary crossflow disturbances are generated through careful control of the initial conditions with full-span arrays of micron-high roughness elements near the attachment line. Detailed hot-wire measurements are taken to document the stationary crossflow structure and determine growth rates for the total and individual-mode disturbances. Naphthalene flow visualization provides transition location information. Roughness spacing and roughness height are varied to examine the effects on transition location and all amplified wavelengths. The measurements show that roughness spacings that do not contain harmonics equal to the most unstable wavelength as computed by linear stability theory effectively suppress the most unstable mode. Under certain conditions, subcritical roughness spacing delays transition past that of the corresponding smooth surface.

  2. Applying Distributed, Coupled Hydrological Slope-Stability Models for Landslide Hazard Assessments

    NASA Astrophysics Data System (ADS)

    Godt, J. W.; Baum, R. L.; Lu, N.; Savage, W. Z.; McKenna, J. P.

    2006-12-01

    Application of distributed, coupled hydrological slope-stability models requires knowledge of hydraulic and material-strength properties at the scale of landslide processes. We describe results from a suite of laboratory and field tests that were used to define the soil-water characteristics of landslide-prone colluvium on the steep coastal bluffs in the Seattle, Washington area and then use these results in a coupled model. Many commonly used tests to determine soil-water characteristics are performed for the drying process. Because most soils display a pronounced hysteresis in the relation between moisture content and matric suction, results from such tests may not accurately describe the soil-water characteristics for the wetting process during rainfall infiltration. Open-tube capillary-rise and constant-flow permeameter tests on bluff colluvium were performed in the laboratory to determine the soil-water characteristic curves (SWCC) and unsaturated hydraulic conductivity functions (HCF) for the wetting process. Field-tests using a borehole permeameter were used to determine the saturated hydraulic conductivity of colluvial materials. Measurements of pore-water response to rainfall were used in an inverse numerical modeling procedure to determine the in-situ hydraulic parameters of hillside colluvium at the scale of the instrument installation. Comparison of laboratory and field results show that although both techniques generally produce SWCCs and HCFs with similar shapes, differences in bulk density among field and lab tests yield differences in saturated moisture content and saturated hydrologic conductivity. We use these material properties in an application of a new version of a distributed transient slope stability model (TRIGRS) that accounts for the effects of the unsaturated zone on the infiltration process. Applied over a LiDAR-based digital landscape of part of the Seattle area for an hourly rainfall history known to trigger shallow landslides, the

  3. Total organic carbon in aggregates as a soil recovery indicator

    NASA Astrophysics Data System (ADS)

    Luciene Maltoni, Katia; Rodrigues Cassiolato, Ana Maria; Amorim Faria, Glaucia; Dubbin, William

    2015-04-01

    The soil aggregation promotes physical protection of organic matter, preservation of which is crucial to improve soil structure, fertility and ensure the agro-ecosystems sustainability. The no-tillage cultivation system has been considered as one of the strategies to increase total soil organic carbono (TOC) contents and soil aggregation, both are closely related and influenced by soil management systems. The aim of this study was to evaluate the distribution of soil aggregates and the total organic carbon inside aggregates, with regard to soil recovery, under 3 different soil management systems, i.e. 10 and 20 years of no-tillage cultivation as compared with soil under natural vegetation (Cerrado). Undisturbed soils (0-5; 5-10; and 10-20 cm depth) were collected from Brazil, Central Region. The soils, Oxisols from Cerrado, were collected from a field under Natural Vegetation-Cerrado (NV), and from fields that were under conventional tillage since 1970s, and 10 and 20 years ago were changed to no-tillage cultivation system (NT-10; NT-20 respectively). The undisturbed samples were sieved (4mm) and the aggregates retained were further fractionated by wet sieving through five sieves (2000, 1000, 500, 250, and 50 μm) with the aggregates distribution expressed as percentage retained by each sieve. The TOC was determined, for each aggregate size, by combustion (Thermo-Finnigan). A predominance of aggregates >2000 μm was observed under NV treatment (92, 91, 82 %), NT-10 (64, 73, 61 %), and NT-20 (71, 79, 63 %) for all three depths (0-5; 5-10; 10-20 cm). In addition greater quantities of aggregates in sizes 1000, 500, 250 and 50 μm under NT-10 and NT-20 treatments, explain the lower aggregate stability under these treatments compared to the soil under NV. The organic C concentration for NV in aggregates >2000 μm was 24,4; 14,2; 8,7 mg/g for each depth (0-5; 5-10; 10-20 cm, respectively), higher than in aggregates sized 250-50 μm (7,2; 5,5; 4,4 mg/g) for all depths

  4. Holographic characterization of protein aggregates

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Zhong, Xiao; Ruffner, David; Stutt, Alexandra; Philips, Laura; Ward, Michael; Grier, David

    Holographic characterization directly measures the size distribution of subvisible protein aggregates in suspension and offers insights into their morphology. Based on holographic video microscopy, this analytical technique records and interprets holograms of individual aggregates in protein solutions as they flow down a microfluidic channel, without requiring labeling or other exceptional sample preparation. The hologram of an individual protein aggregate is analyzed in real time with the Lorenz-Mie theory of light scattering to measure that aggregate's size and optical properties. Detecting, counting and characterizing subvisible aggregates proceeds fast enough for time-resolved studies, and lends itself to tracking trends in protein aggregation arising from changing environmental factors. No other analytical technique provides such a wealth of particle-resolved characterization data in situ. Holographic characterization promises accelerated development of therapeutic protein formulations, improved process control during manufacturing, and streamlined quality assurance during storage and at the point of use. Mrsec and MRI program of the NSF, Spheryx Inc.

  5. Byzantine-fault tolerant self-stabilizing protocol for distributed clock synchronization systems

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R. (Inventor)

    2010-01-01

    A rapid Byzantine self-stabilizing clock synchronization protocol that self-stabilizes from any state, tolerates bursts of transient failures, and deterministically converges within a linear convergence time with respect to the self-stabilization period. Upon self-stabilization, all good clocks proceed synchronously. The Byzantine self-stabilizing clock synchronization protocol does not rely on any assumptions about the initial state of the clocks. Furthermore, there is neither a central clock nor an externally generated pulse system. The protocol converges deterministically, is scalable, and self-stabilizes in a short amount of time. The convergence time is linear with respect to the self-stabilization period.

  6. Aggregation kinetic dataset to determine the stability of the purified and refolded recombinant ppTvCP4 protein of Trichomonas vaginalis.

    PubMed

    Cárdenas-Guerra, Rosa E; Ortega-López, Jaime; Arroyo, Rossana

    2016-09-01

    The recombinant ppTvCP4 (ppTvCP4r) protein, a specific inhibitor of the proteolytic activity and virulence properties of Trichomonas vaginalis, depending on cathepsin L-like cysteine proteinases (CPs) (http:dx.doi.org/ 10.1016/j.biocel.2014.12.001[1], http:dx.doi.org/ 10.1016/j.micinf.2013.09.002[2], http:dx.doi.org/ 10.1155/2015/946787[3]) was stable in the elution buffer up to two months at 4 °C. However, it was prone to aggregate in PBS (functional assay buffer) [1]. Therefore, before functional assays, the aggregation kinetic of refolded ppTvCP4r was determined after the exchange to PBS. Samples of purified and refolded ppTvCP4r (0.15 mg/ml) in PBS were incubated for 0-24 h at 4 and 25 °C, spun down, measured the protein concentration in the supernatant and checked for the presence of aggregated protein in the pellet. The concentration of protein progressively decreased in the supernatant through time at both temperatures as the protein aggregated. Data in this article are related to the research paper [1]. PMID:27331109

  7. A Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R.

    2011-01-01

    This report presents a self-stabilizing distributed clock synchronization protocol in the absence of faults in the system. It is focused on the distributed clock synchronization of an arbitrary, non-partitioned digraph ranging from fully connected to 1-connected networks of nodes while allowing for differences in the network elements. This protocol does not rely on assumptions about the initial state of the system, other than the presence of at least one node, and no central clock or a centrally generated signal, pulse, or message is used. Nodes are anonymous, i.e., they do not have unique identities. There is no theoretical limit on the maximum number of participating nodes. The only constraint on the behavior of the node is that the interactions with other nodes are restricted to defined links and interfaces. We present an outline of a deductive proof of the correctness of the protocol. A model of the protocol was mechanically verified using the Symbolic Model Verifier (SMV) for a variety of topologies. Results of the mechanical proof of the correctness of the protocol are provided. The model checking results have verified the correctness of the protocol as they apply to the networks with unidirectional and bidirectional links. In addition, the results confirm the claims of determinism and linear convergence. As a result, we conjecture that the protocol solves the general case of this problem. We also present several variations of the protocol and discuss that this synchronization protocol is indeed an emergent system.

  8. Stable Colloidal Drug Aggregates Catch and Release Active Enzymes.

    PubMed

    McLaughlin, Christopher K; Duan, Da; Ganesh, Ahil N; Torosyan, Hayarpi; Shoichet, Brian K; Shoichet, Molly S

    2016-04-15

    Small molecule aggregates are considered nuisance compounds in drug discovery, but their unusual properties as colloids could be exploited to form stable vehicles to preserve protein activity. We investigated the coaggregation of seven molecules chosen because they had been previously intensely studied as colloidal aggregators, coformulating them with bis-azo dyes. The coformulation reduced colloid sizes to <100 nm and improved uniformity of the particle size distribution. The new colloid formulations are more stable than previous aggregator particles. Specifically, coaggregation of Congo Red with sorafenib, tetraiodophenolphthalein (TIPT), or vemurafenib produced particles that are stable in solutions of high ionic strength and high protein concentrations. Like traditional, single compound colloidal aggregates, the stabilized colloids adsorbed and inhibited enzymes like β-lactamase, malate dehydrogenase, and trypsin. Unlike traditional aggregates, the coformulated colloid-protein particles could be centrifuged and resuspended multiple times, and from resuspended particles, active trypsin could be released up to 72 h after adsorption. Unexpectedly, the stable colloidal formulations can sequester, stabilize, and isolate enzymes by spin-down, resuspension, and release. PMID:26741163

  9. Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring Demonstration

    SciTech Connect

    Meliopoulos, Sakis; Cokkinides, George; Fardanesh, Bruce; Hedrington, Clinton

    2013-12-31

    This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based

  10. The Interannual Stability of Cumulative Frequency Distributions for Convective System Size and Intensity

    NASA Technical Reports Server (NTRS)

    Mohr, Karen I.; Molinari, John; Thorncroft, Chris

    2009-01-01

    The characteristics of convective system populations in West Africa and the western Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in convective activity in tropical continental and oceanic environments is driven by variations in the number of events during the wet season or by favoring large and/or intense convective systems. Convective systems were defined from Tropical Rainfall Measuring Mission (TRMM) data as a cluster of pixels with an 85-GHz polarization-corrected brightness temperature below 255 K and with an area of at least 64 square kilometers. The study database consisted of convective systems in West Africa from May to September 1998-2007, and in the western Pacific from May to November 1998-2007. Annual cumulative frequency distributions for system minimum brightness temperature and system area were constructed for both regions. For both regions, there were no statistically significant differences between the annual curves for system minimum brightness temperature. There were two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set, there was no statistically significant interannual variability. Subsetting the database revealed some sensitivity in distribution shape to the size of the sampling area, the length of the sample period, and the climate zone. From a regional perspective, the stability of the cumulative frequency distributions implied that the probability that a convective system would attain a particular size or intensity does not change interannually. Variability in the number of convective events appeared to be more important in determining whether a year is either wetter or drier than normal.

  11. Global exponential stability of impulsive complex-valued neural networks with both asynchronous time-varying and continuously distributed delays.

    PubMed

    Song, Qiankun; Yan, Huan; Zhao, Zhenjiang; Liu, Yurong

    2016-09-01

    This paper investigates the stability problem for a class of impulsive complex-valued neural networks with both asynchronous time-varying and continuously distributed delays. By employing the idea of vector Lyapunov function, M-matrix theory and inequality technique, several sufficient conditions are obtained to ensure the global exponential stability of equilibrium point. When the impulsive effects are not considered, several sufficient conditions are also given to guarantee the existence, uniqueness and global exponential stability of equilibrium point. Two examples are given to illustrate the effectiveness and lower level of conservatism of the proposed criteria in comparison with some existing results. PMID:27239891

  12. STOCK AND DISTRIBUTION OF TOTAL AND CORN-DERIVED SOIL ORGANIC CARBON IN AGGREGATE AND PRIMARY PARTICLE FRACTIONS FOR DIFFERENT LAND USE AND SOIL MANAGEMENT PRACTICES

    SciTech Connect

    Puget, P; Lal, Rattan; Izaurralde, R Cesar C.; Post, M; Owens, Lloyd

    2005-04-01

    Land use, soil management, and cropping systems affect stock, distribution, and residence time of soil organic carbon (SOC). Therefore, SOC stock and its depth distribution and association with primary and secondary particles were assessed in long-term experiments at the North Appalachian Experimental Watersheds near Coshocton, Ohio, through *13C techniques. These measurements were made for five land use and soil management treatments: (1) secondary forest, (2) meadow converted from no-till (NT) corn since 1988, (3) continuous NT corn since 1970, (4) continuous NT corn-soybean in rotation with ryegrass since 1984, and (5) conventional plow till (PT) corn since 1984. Soil samples to 70-cm depth were obtained in 2002 in all treatments. Significant differences in soil properties were observed among land use treatments for 0 to 5-cm depth. The SOC concentration (g C kg*1 of soil) in the 0 to 5-cm layer was 44.0 in forest, 24.0 in meadow, 26.1 in NT corn, 19.5 in NT corn-soybean, and 11.1 i n PT corn. The fraction of total C in corn residue converted to SOC was 11.9% for NT corn, 10.6% for NT corn-soybean, and 8.3% for PT corn. The proportion of SOC derived from corn residue was 96% for NT corn in the 0 to 5-cm layer, and it decreased gradually with depth and was 50% in PT corn. The mean SOC sequestration rate on conversion from PT to NT was 280 kg C ha*1 y*1. The SOC concentration decreased with reduction in aggregate size, and macro-aggregates contained 15 to 35% more SOC concentration than microaggregates. In comparison with forest, the magnitude of SOC depletion in the 0 to 30-cm layer was 15.5 Mg C/ha (24.0%) in meadow, 12.7 Mg C/ha (19.8%) in NT corn, 17.3 Mg C/ha (26.8%) in NT corn-soybean, and 23.3 Mg C/ha (35.1%) in PT corn. The SOC had a long turnover time when located deeper in the subsoil.

  13. High Performance Computing for probabilistic distributed slope stability analysis, an early example

    NASA Astrophysics Data System (ADS)

    Rossi, Guglielmo; Catani, Filippo

    2010-05-01

    The term shallow landslides is widely used in literature to describe a slope movement of limited size that mainly develops in soils up to a maximum of a few meters thick. Shallow landslides are usually triggered by heavy rainfall because, as the water starts to infiltrate into the soil, the pore-water pressure increases so that the shear strength of the soil is reduced leading to slope failure. We have developed a distributed hydrological-geotechnical model for forecasting the temporal and spatial distribution of shallow landslides to be used as a real time warning system for civil protection purposes. The stability simulator is developed to use High Performance Computing (HPC) resources and in this way can manage large areas, with high spatial and temporal resolution, at useful computational time for a warning system . The output of the model is a probabilistic value of slope instability. In its current stage the model applied for predicting the expected location of shallow landslides involves several stand-alone components. The base solution suggested by Iverson for the Richards equation is adapted to be used in a real time simulator to estimate the probabilistic distribution of the transient groundwater pressure head according to radar detected rainfall intensity. The use of radar detected rainfall intensity as the input for the hydrological simulation of the infiltration allows a more accurate computation of the redistribution of the groundwater pressure associated with transient infiltration of rain. A soil depth prediction scheme and a limit-equilibrium infinite slope stability algorithm are used to calculate the distributed factor of safety (FS) at different depths and to record the probability distribution of slope instability in the final output file. The additional ancillary data required have been collected during fieldwork and with laboratory standard tests. The model deals with both saturated and unsaturated conditions taking into account the effect of

  14. Phosphorus content as a function of soil aggregate size and paddy cultivation in highly weathered soils.

    PubMed

    Li, Baozhen; Ge, Tida; Xiao, Heai; Zhu, Zhenke; Li, Yong; Shibistova, Olga; Liu, Shoulong; Wu, Jinshui; Inubushi, Kazuyuki; Guggenberger, Georg

    2016-04-01

    Red soils are the major land resource in subtropical and tropical areas and are characterized by low phosphorus (P) availability. To assess the availability of P for plants and the potential stability of P in soil, two pairs of subtropical red soil samples from a paddy field and an adjacent uncultivated upland were collected from Hunan Province, China. Analysis of total P and Olsen P and sequential extraction was used to determine the inorganic and organic P fractions in different aggregate size classes. Our results showed that the soil under paddy cultivation had lower proportions of small aggregates and higher proportions of large aggregates than those from the uncultivated upland soil. The portion of >2-mm-sized aggregates increased by 31 and 20 % at Taoyuan and Guiyang, respectively. The total P and Olsen P contents were 50-150 and 50-300 % higher, respectively, in the paddy soil than those in the upland soil. Higher inorganic and organic P fractions tended to be enriched in both the smallest and largest aggregate size classes compared to the middle size class (0.02-0.2 mm). Furthermore, the proportion of P fractions was higher in smaller aggregate sizes (<2 mm) than in the higher aggregate sizes (>2 mm). In conclusion, soils under paddy cultivation displayed improved soil aggregate structure, altered distribution patterns of P fractions in different aggregate size classes, and to some extent had enhanced labile P pools. PMID:26728283

  15. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1993-01-01

    Part of a special section on the market performance of industrial minerals in 1992. Production of construction aggregates increased by 4.6 percent in 1992. This increase was due, in part, to the increased funding for transportation and infrastructure projects. The U.S. produced about 1.05 Gt of crushed stone and an estimated 734 Mt of construction sand and gravel in 1992. Demand is expected to increase by about 5 percent in 1993.

  16. Construction aggregates

    USGS Publications Warehouse

    Tepordei, V.V.

    1996-01-01

    Part of the Annual Commodities Review 1995. Production of construction aggregates such as crushed stone and construction sand and gravel showed a marginal increase in 1995. Most of the 1995 increases were due to funding for highway construction work. The major areas of concern to the industry included issues relating to wetlands classification and the classification of crystalline silica as a probable human carcinogen. Despite this, an increase in demand is anticipated for 1996.

  17. Construction aggregates

    USGS Publications Warehouse

    Nelson, T.I.; Bolen, W.P.

    2007-01-01

    Construction aggregates, primarily stone, sand and gravel, are recovered from widespread naturally occurring mineral deposits and processed for use primarily in the construction industry. They are mined, crushed, sorted by size and sold loose or combined with portland cement or asphaltic cement to make concrete products to build roads, houses, buildings, and other structures. Much smaller quantities are used in agriculture, cement manufacture, chemical and metallurgical processes, glass production and many other products.

  18. Structure of Viral Aggregates

    NASA Astrophysics Data System (ADS)

    Barr, Stephen; Luijten, Erik

    2010-03-01

    The aggregation of virus particles is a particular form of colloidal self-assembly, since viruses of a give type are monodisperse and have identical, anisotropic surface charge distributions. In small-angle X-ray scattering experiments, the Qbeta virus was found to organize in different crystal structures in the presence of divalent salt and non-adsorbing polymer. Since a simple isotropic potential cannot explain the occurrence of all observed phases, we employ computer simulations to investigate how the surface charge distribution affects the virus interactions. Using a detailed model of the virus particle, we find an asymmetric ion distribution around the virus which gives rise to the different phases observed.

  19. [Influence of limk1 Gene Polymorphism on Learning Acquisition and Memory Formation with pCREB Distribution and Aggregate Formation in Neuromuscular Junctions in Drosophila melanogaster].

    PubMed

    Kaminskaya, A N; Nikitina, E A; Medvedeva, A V; Gerasimenko, M S; Chernikova, D A; Savateeva-Popova, E V

    2015-06-01

    We have shown previously that the polymorphic structure of the limk1 gene in drosophila leads to changes in LIMK1 content and to defects in courtship behavior, sound production, and learning/memory. The results of the present study of three wild-type strains and mutant agn(ts3) with altered limk1 structure demonstrate that long-term memory is normal in Canton-S and Oregon-R but is impaired in Berlin and drastically suppressed in agn(ts3). This temperature-sensitive mutant carries the S-element from the Tc1/mariner family insertion near the dlimk1 3'-UTR and, compared to Canton-S, has a reverse pCREB distribution in adult neuromuscular junctions (NMJ) of the second dorsal imago nerve before and after learning. Moreover, only agn(ts3) demonstrates amyloid-like aggregate formation in NMJ. This suggests that this impedes pCREb transport and thereby impairs the formation of short- and long-term memory. PMID:26310031

  20. A distributed model for slope stability analysis using radar detected rainfall intensity

    NASA Astrophysics Data System (ADS)

    Leoni, L.; Rossi, G.; Catani, F.

    2009-04-01

    The term shallow landslides is widely used in literature to describe a slope movement of limited size that mainly develops in soils up to a maximum of a few meters. Shallow landslides are usually triggered by heavy rainfall because, as the water starts to infiltrate in the soil, the pore-water pressure increases so that the shear strength of the soil is reduced leading to slope failure. We have developed a distributed hydrological-geotechnical model for the forecasting of the temporal and spatial distribution of shallow landslides to be used as a warning system for civil protection purpose. The model uses radar detected rainfall intensity as the input for the hydrological simulation of the infiltration. Using the rainfall pattern detected by the radar is in fact possible to dynamically control the redistribution of groundwater pressure associated with transient infiltration of rain so as to infer the slope stability of the studied area. The model deals with both saturated and unsaturated conditions taking into account the effect of soil suction when the soil is not completely saturated. Two pilot sites have been chosen to develop and test this model: the Armea basin (Liguria, Italy) and the Ischia Island (Campania, Italy). In recent years several severe rainstorms have occurred in both these areas. In at least two cases these have triggered numerous shallow landslides that have caused victims and damaged roads, buildings and agricultural activities. In its current stage, the basic basin-scale model applied for predicting the probable location of shallow landslides involves several stand-alone components. The solution suggested by Iverson for the Richards equation is used to estimate the transient groundwater pressure head distribution according to radar detected rainfall intensity. A soil depth prediction scheme and a limit-equilibrium infinite slope stability algorithm are used to calculate the distributed factor of safety (FS) at different depths and to record

  1. Character, mass, distribution, and origin of tephra-fall deposits from the 2009 eruption of Redoubt Volcano, Alaska: highlighting the significance of particle aggregation

    USGS Publications Warehouse

    Wallace, Kristi; Coombs, Michelle L; Schaefer, Janet R.

    2013-01-01

    Particle size data showing a preponderance of fine ash, even in the most proximal locations, along with the abundance of aggregate lapilli documented in most samples, confirms that particle aggregation played a significant role in the 2009 eruption and induced premature fallout of fine ash.

  2. PM10 emissions from aggregate fractions of an Entic Haplustoll under two contrasting tillage systems

    NASA Astrophysics Data System (ADS)

    Mendez, Mariano J.; Aimar, Silvia B.; Buschiazzo, Daniel E.

    2015-12-01

    Tillage systems affect physical and chemical properties of soils modifying its aggregation. How changes of the aggregate size distribution affect the capacity of the soil to emit fine particulate matter (PM10) to the atmosphere during wind erosion processes, is a less investigated issue. In order to answer this question, PM10 emissions from an Entic Haplustoll submitted to 25 years of continuous conventional tillage (LC) and no-till (NT) were analyzed. Soil samples were sieved with a rotary sieve in order to determine the aggregate size distribution (fractions : <0.42 mm, 0.42-0.84 mm, 0.84-2 mm, 2-6.4 mm, 6.4-19.2 mm, and >19.2 mm), the dry aggregate stability (DAS) and the erodible fraction (EF). The organic matter contents (OM), the particle size composition and the PM10 emission of each aggregate fraction were also measured. Results showed that NT promoted OM accumulations in all aggregate fractions which favored DAS and soil aggregation. The <0.42 mm sized aggregates (27%) predominated in CT and the >19.2 mm (41.7%) in NT, while the proportion of the other aggregate fractions was similar in both tillage systems. As a consequence of the smaller proportion of the <0.42 mm aggregates, the erodible fraction was lower in NT (EF: 17.3%) than in CT (30.8%). PM10 emissions of each aggregate fraction (AE) decreased exponentially with increasing size of the fractions in both tillage systems, mainly as a consequence of the smaller size and higher specific surface. AE was higher in CT than in NT for all aggregate fractions, but the higher differences were found in the <0.42 mm aggregates (18 μg g-1 in CT vs 8 μg g-1 in NT). The PM10 emission of the whole soil was three times higher in CT than in NT, while the emission of the erodible fraction (EFE) was in CT four times higher than in NT. PM10 emissions of the <0.42 mm aggregates represented over 50% of SE and 90% of EFE. We concluded that NT reduced the capacity of soils of the semiarid Pampas to emit PM10 because it

  3. Oceanic Distribution, Behaviour, and a Winter Aggregation Area of Adult Atlantic Sturgeon, Acipenser oxyrinchus oxyrinchus, in the Bay of Fundy, Canada.

    PubMed

    Taylor, Andrew Douglas; Ohashi, Kyoko; Sheng, Jinyu; Litvak, Matthew Kenneth

    2016-01-01

    Seasonal distribution of adult Atlantic sturgeon was examined using pop-up satellite archival tags (PSATs) and ultrasonic transmitters deployed in the Saint John River, New Brunswick, Canada. Seven MK10 PSATs programmed for release in June 2012 and seven MiniPAT PSATs programmed for release in February and April 2013 were deployed in August 2011 and 2012, respectively. Eleven of 14 PSATs surfaced and transmitted depth and temperature data archived for the duration of their deployment (121-302 days). Among these eleven PSATs, five were recovered and 15-sec archival data was downloaded. Following exit from the Saint John River in the fall, tagged fish occupied a mean monthly depth of 76.3-81.6 m at temperatures as low as 4.9˚C throughout the winter before returning to shallower areas in the spring. The majority of ultrasonic detections occurred in the Bay of Fundy, but fish were detected as far as Riviere Saint-Jean, Quebec, approximately 1500 km from the Bay of Fundy (representing long-distance migratory rates of up to 44 km/day). All PSATs were first detected in the Bay of Fundy. Tags that released in February and April were found 5-21 km offshore of the Saint John Harbour, while tags that released in June were first detected in near shore areas throughout the Bay of Fundy. The substrate at winter tag release locations (estimated from backward numerical particle-tracking experiments) consisted primarily of moraines and postglacial mud substrate with low backscatter strength, indicative of soft or smooth seabed. Based on the proximity of winter tag release locations, the consistent depths observed between fish, and previous research, it is suspected that a winter aggregation exists in the Bay of Fundy. This study expands the understanding of the marine distribution and range of Atlantic sturgeon on the east coast of Canada. PMID:27043209

  4. Oceanic Distribution, Behaviour, and a Winter Aggregation Area of Adult Atlantic Sturgeon, Acipenser oxyrinchus oxyrinchus, in the Bay of Fundy, Canada

    PubMed Central

    Taylor, Andrew Douglas; Ohashi, Kyoko; Sheng, Jinyu; Litvak, Matthew Kenneth

    2016-01-01

    Seasonal distribution of adult Atlantic sturgeon was examined using pop-up satellite archival tags (PSATs) and ultrasonic transmitters deployed in the Saint John River, New Brunswick, Canada. Seven MK10 PSATs programmed for release in June 2012 and seven MiniPAT PSATs programmed for release in February and April 2013 were deployed in August 2011 and 2012, respectively. Eleven of 14 PSATs surfaced and transmitted depth and temperature data archived for the duration of their deployment (121–302 days). Among these eleven PSATs, five were recovered and 15-sec archival data was downloaded. Following exit from the Saint John River in the fall, tagged fish occupied a mean monthly depth of 76.3–81.6 m at temperatures as low as 4.9˚C throughout the winter before returning to shallower areas in the spring. The majority of ultrasonic detections occurred in the Bay of Fundy, but fish were detected as far as Riviere Saint-Jean, Quebec, approximately 1500 km from the Bay of Fundy (representing long-distance migratory rates of up to 44 km/day). All PSATs were first detected in the Bay of Fundy. Tags that released in February and April were found 5–21 km offshore of the Saint John Harbour, while tags that released in June were first detected in near shore areas throughout the Bay of Fundy. The substrate at winter tag release locations (estimated from backward numerical particle-tracking experiments) consisted primarily of moraines and postglacial mud substrate with low backscatter strength, indicative of soft or smooth seabed. Based on the proximity of winter tag release locations, the consistent depths observed between fish, and previous research, it is suspected that a winter aggregation exists in the Bay of Fundy. This study expands the understanding of the marine distribution and range of Atlantic sturgeon on the east coast of Canada. PMID:27043209

  5. Actomyosin contraction, aggregation and traveling waves in a treadmilling actin array

    NASA Astrophysics Data System (ADS)

    Oelz, Dietmar; Mogilner, Alex

    2016-04-01

    We use perturbation theory to derive a continuum model for the dynamic actomyosin bundle/ring in the regime of very strong crosslinking. Actin treadmilling is essential for contraction. Linear stability analysis and numerical solutions of the model equations reveal that when the actin treadmilling is very slow, actin and myosin aggregate into equidistantly spaced peaks. When treadmilling is significant, actin filament of one polarity are distributed evenly, while filaments of the opposite polarity develop a shock wave moving with the treadmilling velocity. Myosin aggregates into a sharp peak surfing the crest of the actin wave. Any actomyosin aggregation diminishes contractile stress. The easiest way to maintain higher contraction is to upregulate the actomyosin turnover which destabilizes nontrivial patterns and stabilizes the homogeneous actomyosin distributions. We discuss the model's implications for the experiment.

  6. Stability of spatial distributions of stink bugs, boll injury, and NDVI in cotton.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A two-year study was conducted to determine the degree of aggregation of thrips, stink bugs, and aphids in cotton, Gossypium hirsutum L., and their spatial association with soil apparent electrical conductivity (ECa), a multispectral vegetation index (Normalized Difference Vegetation Index [NDVI]), ...

  7. Construction aggregates

    USGS Publications Warehouse

    Bolen, W.P.; Tepordei, V.V.

    2001-01-01

    The estimated production during 2000 of construction aggregates, crushed stone, and construction sand and gravel increased by about 2.6% to 2.7 Gt (3 billion st), compared with 1999. The expansion that started in 1992 continued with record production levels for the ninth consecutive year. By commodity, construction sand and gravel production increased by 4.5% to 1.16 Gt (1.28 billion st), while crushed stone production increased by 1.3% to 1.56 Gt (1.72 billion st).

  8. Development of the Radiation Stabilized Distributed Flux Burner, Phase II Final Report

    SciTech Connect

    Webb, A.; Sullivan, J.D.

    1997-06-01

    This report covers progress made during Phase 2 of a three-phase DOE-sponsored project to develop and demonstrate the Radiation Stabilized Distributed Flux burner (also referred to as the Radiation Stabilized Burner, or RSB) for use in industrial watertube boilers and process heaters. The goal of the DOE-sponsored work is to demonstrate an industrial boiler burner with NOx emissions below 9 ppm and CO emissions below 50 ppm (corrected to 3% stack oxygen). To be commercially successful, these very low levels of NOx and CO must be achievable without significantly affecting other measures of burner performance such as reliability, turndown, and thermal efficiency. Phase 1 of the project demonstrated that sub-9 ppm NOx emissions and sub-50 ppm CO emissions (corrected to 3% oxygen) could be achieved with the RSB in a 3 million Btu/Hr laboratory boiler using several methods of NOx reduction. The RSB was also tested in a 60 million Btu/hr steam generator used by Chevron for Thermally Enhanced Oil Recovery (TEOR). In the larger scale tests, fuel staging was demonstrated, with the RSB consistently achieving sub-20 ppm NOx and as low as 10 ppm NOx. Large-scale steam generator tests also demonstrated that flue gas recirculation (FGR) provided a more predictable and reliable method of achieving sub-9 ppm NOx levels. Based on the results of tests at San Francisco Thermal and Chevron, the near-term approach selected by Alzeta for achieving low NOx is to use FGR. This decision was based on a number of factors, with the most important being that FGR has proved to be an easier approach to transfer to different facilities and boiler designs. In addition, staging has proved difficult to implement in a way that allows good combustion and emissions performance in a fully modulating system. In Phase 3 of the project, the RSB will be demonstrated as a very low emissions burner product suitable for continuous operation in a commercial installation. As such, the Phase 3 field demonstration

  9. Complexation of Arsenite with Dissolved Organic Matter: Conditional Distribution Coefficients and Apparent Stability Constants

    PubMed Central

    Liu, Guangliang; Cai, Yong

    2010-01-01

    The complexation of arsenic (As) with dissolved organic matter (DOM), although playing an important role in regulating As mobility and transformation, is poorly characterized, as evidenced by scarce reporting of fundamental parameters of As-DOM complexes. The complexation of arsenite (AsIII) with Aldrich humic acid (HA) at different pHs was characterized using a recently developed analytical technique to measure both free and DOM-bound As. Conditional distribution coefficient (KD), describing capacity of DOM in binding AsIII from the mass perspective, and apparent stability constant (Ks), describing stability of resulting AsIII-DOM complexes, were calculated to characterize AsIII-DOM complexation. Log KD of AsIII ranged from 3.7 to 2.2 (decreasing with increase of As/DOM ratio) at pH 5.2, from 3.6 to 2.6 at pH 7, and from 4.3 to 3.2 at pH = 9.3, respectively. Two-site ligand binding models can capture the heterogeneity of binding sites and be used to calculate Ks by classifying the binding sites into strong (S1) and weak (S2) groups. Log Ks for S1 sites are 7.0, 6.5, and 5.9 for pH 5.2, 7, and 9.3, respectively, which are approximately 1–2 orders of magnitude higher than for weak S2 sites. The results suggest that AsIII complexation with DOM increases with pH, as evidenced by significant spikes in concentrations of DOM-bound AsIII and in KD values at pH 9.3. In contrary to KD, log Ks decreased with pH, in particular for S1 sites, probably due to the presence of negatively charged H2AsO3− and the involvement of metal-bridged AsIII-DOM complexation at pH 9.3. PMID:20801484

  10. Ultra-long and high-stability random laser based on EDF gain-media and Rayleigh scattering distributed mirror

    NASA Astrophysics Data System (ADS)

    Aporta, I.; Quintela, M. A.; Rodríguez-Cobo, L.; López-Higuera, J. M.

    2015-09-01

    An ultra-long, low-threshold and high-stability Random distributed feedback fiber laser (RDF-FL) based on Erbium-doped fiber (EDF) to provide the gain medium, and single mode fiber (SMF) as a distributed mirror in combination with fiber-brag grating (FBG) to form the cavity is proposed in this paper. Typical random laser radiation for a SMF length of 50 km with a low-threshold of 10 dBm and high-stability (~0.1 dB) is achieved, thanks to the design of the cavity and the high-gain from the pumped erbium-doped fiber. Besides, 200 km quasi-losses random laser due to the distributed mirror and the FBG reflector is demonstrated.

  11. Ant Diversity and Distribution along Elevation Gradients in the Australian Wet Tropics: The Importance of Seasonal Moisture Stability.

    PubMed

    Nowrouzi, Somayeh; Andersen, Alan N; Macfadyen, Sarina; Staunton, Kyran M; VanDerWal, Jeremy; Robson, Simon K A

    2016-01-01

    The threat of anthropogenic climate change has seen a renewed focus on understanding contemporary patterns of species distribution. This is especially the case for the biota of tropical mountains, because tropical species often have particularly narrow elevational ranges and there are high levels of short-range endemism. Here we describe geographic patterns of ant diversity and distribution in the World Heritage-listed rainforests of the Australian Wet Tropics (AWT), revealing seasonal moisture stability to be an important environmental correlate of elevational patterns of species composition. We sampled ants in leaf litter, on the litter surface and on tree trunks at 26 sites from six subregions spanning five degrees of latitude and elevation ranges from 100-1,300 m. A total of 296 species from 63 genera were recorded. Species richness showed a slight peak at mid elevations, and did not vary significantly with latitude. Species composition varied substantially between subregions, and many species have highly localised distributions. There was very marked species turnover with elevation, with a particularly striking compositional disjunction between 600 m and 800 m at each subregion. This disjunction coincides with a strong environmental threshold of seasonal stability in moisture associated with cloud 'stripping'. Our study therefore provides further support for climatic stability as a potential mechanism underlying patterns of diversity. The average height of orographic cloud layers is predicted to rise under global warming, and associated shifts in seasonal moisture stability may exacerbate biotic change caused by rising temperature alone. PMID:27073848

  12. Ant Diversity and Distribution along Elevation Gradients in the Australian Wet Tropics: The Importance of Seasonal Moisture Stability

    PubMed Central

    Nowrouzi, Somayeh; Andersen, Alan N.; Macfadyen, Sarina; Staunton, Kyran M.; VanDerWal, Jeremy; Robson, Simon K. A.

    2016-01-01

    The threat of anthropogenic climate change has seen a renewed focus on understanding contemporary patterns of species distribution. This is especially the case for the biota of tropical mountains, because tropical species often have particularly narrow elevational ranges and there are high levels of short-range endemism. Here we describe geographic patterns of ant diversity and distribution in the World Heritage-listed rainforests of the Australian Wet Tropics (AWT), revealing seasonal moisture stability to be an important environmental correlate of elevational patterns of species composition. We sampled ants in leaf litter, on the litter surface and on tree trunks at 26 sites from six subregions spanning five degrees of latitude and elevation ranges from 100–1,300 m. A total of 296 species from 63 genera were recorded. Species richness showed a slight peak at mid elevations, and did not vary significantly with latitude. Species composition varied substantially between subregions, and many species have highly localised distributions. There was very marked species turnover with elevation, with a particularly striking compositional disjunction between 600 m and 800 m at each subregion. This disjunction coincides with a strong environmental threshold of seasonal stability in moisture associated with cloud ‘stripping’. Our study therefore provides further support for climatic stability as a potential mechanism underlying patterns of diversity. The average height of orographic cloud layers is predicted to rise under global warming, and associated shifts in seasonal moisture stability may exacerbate biotic change caused by rising temperature alone. PMID:27073848

  13. pp ii Global exponential stability and periodic solutions of Cohen-Grossberg neural networks with continuously distributed delays

    NASA Astrophysics Data System (ADS)

    Sun, Jianhua; Wan, Li

    2005-08-01

    Convergence dynamics of Cohen-Grossberg neural networks (CGNNs) with continuously distributed delays are discussed. Without assuming the differentiability and monotonicity of activation functions, the differentiability of amplification functions and the symmetry of synaptic interconnection weights, by skilfully constructing suitable Lyapunov functionals and employing inequality technique, three sets of easily verifiable delay independent criteria to guarantee the global exponential stability of a unique equilibrium point are given, and moreover, by constructing Poincaré mapping, other three sets of easily verifiable delay independent criteria to assure the existence and globally exponential stability of periodic solutions are obtained. Six examples are given to illustrate the theoretical results.

  14. Non-local models for the formation of hepatocyte-stellate cell aggregates.

    PubMed

    Green, J E F; Waters, S L; Whiteley, J P; Edelstein-Keshet, L; Shakesheff, K M; Byrne, H M

    2010-11-01

    Liver cell aggregates may be grown in vitro by co-culturing hepatocytes with stellate cells. This method results in more rapid aggregation than hepatocyte-only culture, and appears to enhance cell viability and the expression of markers of liver-specific functions. We consider the early stages of aggregate formation, and develop a new mathematical model to investigate two alternative hypotheses (based on evidence in the experimental literature) for the role of stellate cells in promoting aggregate formation. Under Hypothesis 1, each population produces a chemical signal which affects the other, and enhanced aggregation is due to chemotaxis. Hypothesis 2 asserts that the interaction between the two cell types is by direct physical contact: the stellates extend long cellular processes which pull the hepatocytes into the aggregates. Under both hypotheses, hepatocytes are attracted to a chemical they themselves produce, and the cells can experience repulsive forces due to overcrowding. We formulate non-local (integro-partial differential) equations to describe the densities of cells, which are coupled to reaction-diffusion equations for the chemical concentrations. The behaviour of the model under each hypothesis is studied using a combination of linear stability analysis and numerical simulations. Our results show how the initial rate of aggregation depends upon the cell seeding ratio, and how the distribution of cells within aggregates depends on the relative strengths of attraction and repulsion between the cell types. Guided by our results, we suggest experiments which could be performed to distinguish between the two hypotheses. PMID:20709085

  15. Variable Sweep Transition Flight Experiment (VSTFE)-Parametric Pressure Distribution Boundary Layer Stability Study and Wing Glove Design Task

    NASA Technical Reports Server (NTRS)

    Rozendaal, Rodger A.

    1986-01-01

    The Variable Sweep Transition Flight Experiment (VSTFE) was initiated to establish a boundary-layer transition data base for laminar flow wing design. For this experiment, full-span upper-surface gloves will be fitted to a variable sweep F-14 aircraft. The results of two initial tasks are documented: a parametric pressure distribution/boundary-layer stability study and the design of an upper-surface glove for Mach 0.8. The first task was conducted to provide a data base from which wing-glove pressure distributions could be selected for glove designs. Boundary-layer stability analyses were conducted on a set of pressure distributions for various wing sweep angles, Mach numbers, and Reynolds number in the range of those anticipated for the flight-test program. The design procedure for the Mach 0.8 glove is described, and boundary-layer stability calculations and pressure distributions are presented both at design and off-design conditions. Also included is the analysis of the clean-up glove (smoothed basic wing) that will be flight-tested initially and the analysis of a Mach 0.7 glove designed at the NASA Langley Research Center.

  16. Exploring the biological stability situation of a full scale water distribution system in south China by three biological stability evaluation methods.

    PubMed

    Zhang, Junpeng; Li, Wei-Ying; Wang, Feng; Qian, Lin; Xu, Chen; Liu, Yao; Qi, Wanqi

    2016-10-01

    Bacterial regrowth especially opportunistic pathogens regrowth and contamination in drinking water distribution systems (DWDS) have become an emerging threat to public health in the whole world. To explore bacterial regrowth and biological stability, assimilable organic carbon (AOC), biodegradable dissolved organic carbon (BDOC) and bacterial regrowth potential (BRP) were evaluated in a full scale DWDS and bench tests in South China. A significant correlation between BRP and AOC in both water treatment processes (WTP) and DWDS was obtained. For BRP and BDOC, the correlation was more significant in WTP than in DWDS. Both AOC and BRP were significantly correlated with UV254, total organic carbon (TOC), and heterotrophic plate count (HPC) (p < 0.01), whereas BDOC was only significantly associated with UV254, temperature and chlorine residual (p < 0.01). Through a bench test, when chlorine was higher than 0.5 mg/L, the HPC level was low and AOC concentration almost unchanged. On contrary the HPC level increased quickly and declined slightly, with chlorine lower than 0.15 mg/L, which was in accordance with the large amount of biological stability data obtained from DWDS. Through another bench test, the HPC level was positively correlated to AOC concentration and when AOC was below 135 μg/L, the growth rate of HPC was low, which was verified by the analysis of biological stability data from DWDS. PMID:27421100

  17. Making Graphene Resist Aggregation

    NASA Astrophysics Data System (ADS)

    Luo, Jiayan

    Graphene-based sheets have stimulated great interest in many scientific disciplines and shown promise for wide potential applications. Among various ways of creating single atomic layer carbon sheets, a promising route for bulk production is to first chemically exfoliate graphite powders to graphene oxide (GO) sheets, followed by reduction to form chemically modified graphene (CMG). Due to the strong van der Waals attraction between graphene sheets, CMG tends to aggregate. The restacking of sheets is largely uncontrollable and irreversible, thus it reduces their processability and compromises properties such as accessible surface area. Strategies based on colloidal chemistry have been applied to keep CMG dispersed in solvents by introducing electrostatic repulsion to overcome the van der Waals attraction or adding spacers to increase the inter-sheet spacing. In this dissertation, two very different ideas that can prevent CMG aggregation without extensively modifying the material or introducing foreign spacer materials are introduced. The van der Waals potential decreases with reduced overlapping area between sheets. For CMG, reducing the lateral dimension from micrometer to nanometer scale should greatly enhance their colloidal stability with additional advantages of increased charge density and decreased probability to interact. The enhanced colloidal stability of GO and CMG nanocolloids makes them especially promising for spectroscopy based bio-sensing applications. For potential applications in a compact bulk solid form, the sheets were converted into paper-ball like structure using capillary compression in evaporating aerosol droplets. The crumpled graphene balls are stabilized by locally folded pi-pi stacked ridges, and do not unfold or collapse during common processing steps. They can tightly pack without greatly reducing the surface area. This form of graphene leads to scalable performance in energy storage. For example, planer sheets tend to aggregate and

  18. EFFECTS OF LEACHING ON PORE SIZE DISTRIBUTION OF SOLIDIFIED/STABILIZED WASTES

    EPA Science Inventory

    Chemical solidification/stabilization processes are commonly used to immobilize metals in fly ash and flue gas desulfurization (FGD) sludges and to convert these wastes into monolithic or granular materials with better handling properties and reduced permeabilities. his study eva...

  19. Trapped Field Characteristics of Stacked YBCO Thin Plates for Compact NMR Magnets: Spatial Field Distribution and Temporal Stability.

    PubMed

    Hahn, Seungyong; Kim, Seok Beom; Ahn, Min Cheol; Voccio, John; Bascuñán, Juan; Iwasa, Yukikazu

    2010-06-01

    This paper presents experimental and analytical results of trapped field characteristics of a stack of square YBCO thin film plates for compact NMR magnets. Each YBCO plate, 40 mm × 40 mm × 0.08 mm, has a 25-mm diameter hole at its center. A total of 500 stacked plates were used to build a 40-mm long magnet. Its trapped field, in a bath of liquid nitrogen, was measured for spatial field distribution and temporal stability. Comparison of measured and analytical results is presented: the effects on trapped field characteristics of the unsaturated nickel substrate and the non-uniform current distribution in the YBCO plate are discussed. PMID:20585463

  20. Changes in soil aggregate, carbon, and nitrogen storages following the conversion of cropland to alfalfa forage land in the marginal oasis of northwest China.

    PubMed

    Su, Yong Zhong; Liu, Wen Jie; Yang, Rong; Chang, Xue Xiang

    2009-06-01

    Maintenance of soil organic carbon (SOC) is important for sustainable use of soil resources due to the multiple effects of SOC on soil nutrient status and soil structural stability. The objective of this study was to identify the changes in soil aggregate distribution and stability, SOC, and nitrogen (N) concentrations after cropland was converted to perennial alfalfa (Medicago sativa L. Algonguin) grassland for 6 years in the marginal oasis of the middle of Hexi Corridor region, northwest China. Significant changes in the size distribution of dry-sieving aggregates and water-stable aggregates, SOC, and N concentrations occurred after the conversion from crop to alfalfa. SOC and N stocks increased by 20.2% and 18.5%, respectively, and the estimated C and N sequestration rates were 0.4 Mg C ha(-1) year(-1) and 0.04 Mg N ha(-1) year(-1) following the conversion. The large aggregate (>5 mm) was the most abundant dry aggregate size fraction in both crop and alfalfa soils, and significant difference in the distribution of dry aggregates between the two land use types occurred only in the >5 mm aggregate fraction. The percentage of water-stable macroaggregates (>2, 2-0.25 mm) and aggregate stability (mean weight diameter of water-stable aggregates, WMWD) were significantly higher in alfalfa soils than in crop soils. There was a significant linear relationship between total SOC concentration and aggregate parameters (mean weight diameter) for alfalfa soils, indicating that aggregate stability was closely associated with increased SOC concentration following the conversion of crops to alfalfa. The SOC and N concentrations and the C/N ratio were greatest in the >2 mm water-stable aggregates and the smallest in the 0.25-0.05 mm aggregates in crop and alfalfa soils. For the same aggregate, SOC and N concentrations in aggregate fractions increased with increasing total SOC and N concentrations. The result showed that the conversion of annual crops to alfalfa in the marginal

  1. Soil-Structural Stability as Affected by Clay Mineralogy, Soil Texture and Polyacrylamide Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-structural stability (expressed in terms of aggregate stability and pore size distribution) depends on (i) soil inherent properties, (ii) extrinsic condition prevailing in the soil that may vary temporally and spatially, and (iii) addition of soil amendments. Different soil management practices...

  2. Particle aggregation mechanisms in ionic liquids.

    PubMed

    Szilagyi, Istvan; Szabo, Tamas; Desert, Anthony; Trefalt, Gregor; Oncsik, Tamas; Borkovec, Michal

    2014-05-28

    Aggregation of sub-micron and nano-sized polystyrene latex particles was studied in room temperature ionic liquids (ILs) and in their water mixtures by time-resolved light scattering. The aggregation rates were found to vary with the IL-to-water molar ratio in a systematic way. At the water side, the aggregation rate is initially small, but increases rapidly with increasing IL content, and reaches a plateau value. This behaviour resembles simple salts, and can be rationalized by the competition of double-layer and van der Waals forces as surmised by the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). At the IL side, aggregation slows down again. Two generic mechanisms could be identified to be responsible for the stabilization in ILs, namely viscous stabilization and solvation stabilization. Viscous stabilization is important in highly viscous ILs, as it originates from the slowdown of the diffusion controlled aggregation due to the hindrance of the diffusion in a viscous liquid. The solvation stabilization mechanism is system specific, but can lead to a dramatic slowdown of the aggregation rate in ILs. This mechanism is related to repulsive solvation forces that are operational in ILs due to the layering of the ILs close to the surfaces. These two stabilization mechanisms are suspected to be generic, as they both occur in different ILs, and for particles differing in surface functionalities and size. PMID:24727976

  3. Magnetic Fluids Have Ability to Decrease Amyloid Aggregation Associated with Amyloid-Related Diseases

    NASA Astrophysics Data System (ADS)

    Antosova, Andrea; Koneracka, Martina; Siposova, Katarina; Zavisova, Vlasta; Daxnerova, Zuzana; Vavra, Ivo; Fabian, Martin; Kopcansky, Peter; Gazova, Zuzana

    2010-12-01

    At least twenty human proteins can fold abnormally to form pathological deposits that are associated with several amyloid-related diseases. We have investigated the effect of four magnetic fluids (MFs)—electrostatically stabilized Fe3O4 magnetic nanoparticles (MF1) and sterically stabilized Fe3O4 magnetic nanoparticles by sodium oleate (MF2, MF3 and MF4) with adsorbed BSA (MF2) or dextran (MF4)—on amyloid aggregation of two proteins, human insulin and chicken egg lysozyme. The morphology, particle size and size distribution of the prepared magnetic fluids were characterized. We have found that MFs are able to decrease amyloid aggregation of both studied proteins and the extent of depolymerization depended on the MF properties. The most effective reduction was observed for MF4 as 90% decrease of amyloids was detected for insulin and lysozyme amyloid aggregates. Our findings indicate that MFs have potential to be used for treatment of amyloid diseases.

  4. Fire effects on soil aggregation: A review

    NASA Astrophysics Data System (ADS)

    Mataix-Solera, J.; Cerdà, A.; Arcenegui, V.; Jordán, A.; Zavala, L. M.

    2011-11-01

    Fire can affect soil properties depending on a number of factors including fire severity and soil type. Aggregate stability (AS) refers to soil structure resilience in response to external mechanical forces. Many authors consider soil aggregation to be a parameter reflecting soil health, as it depends on chemical, physical and biological factors. The response of AS to forest fires is complex, since it depends on how fire has affected other related properties such as organic matter content, soil microbiology, water repellency and soil mineralogy. Opinions differ concerning the effect of fire on AS. Some authors have observed a decrease in AS in soils affected by intense wildfire or severe laboratory heating. However, others have reported increases. We provide an up to date review of the research on this topic and an analysis of the causes for the different effects observed. The implications for soil system functioning and for the hydrology of the affected areas are also discussed. Generally, low severity fires do not produce notable changes in AS, although in some cases an increase has been observed and attributed to increased water repellency. In contrast, high severity fires can induce important changes in this property, but with different effects depending on the type of soil affected. The patterns observed can vary from a disaggregation as a consequence of the organic matter destruction, to a strong aggregation if a recrystallization of some minerals such as Fe and Al oxyhydroxides occurs when they are present in sufficient quantities in the soil, after exposure to high temperatures. Because of the complexity of the different possible effects and reasons for the potential changes in the fire-affected soil aggregates, the inclusion of other parameters in the studies is necessary to understand the results. The suggested parameters to include in the examination of AS are: soil organic matter, microbial biomass, water repellency, texture, aggregate size distribution

  5. Euphausiid distribution along the Western Antarctic Peninsula—Part A: Development of robust multi-frequency acoustic techniques to identify euphausiid aggregations and quantify euphausiid size, abundance, and biomass

    NASA Astrophysics Data System (ADS)

    Lawson, Gareth L.; Wiebe, Peter H.; Stanton, Timothy K.; Ashjian, Carin J.

    2008-02-01

    Methods were refined and tested for identifying the aggregations of Antarctic euphausiids ( Euphausia spp.) and then estimating euphausiid size, abundance, and biomass, based on multi-frequency acoustic survey data. A threshold level of volume backscattering strength for distinguishing euphausiid aggregations from other zooplankton was derived on the basis of published measurements of euphausiid visual acuity and estimates of the minimum density of animals over which an individual can maintain visual contact with its nearest neighbor. Differences in mean volume backscattering strength at 120 and 43 kHz further served to distinguish euphausiids from other sources of scattering. An inversion method was then developed to estimate simultaneously the mean length and density of euphausiids in these acoustically identified aggregations based on measurements of mean volume backscattering strength at four frequencies (43, 120, 200, and 420 kHz). The methods were tested at certain locations within an acoustically surveyed continental shelf region in and around Marguerite Bay, west of the Antarctic Peninsula, where independent evidence was also available from net and video systems. Inversion results at these test sites were similar to net samples for estimated length, but acoustic estimates of euphausiid density exceeded those from nets by one to two orders of magnitude, likely due primarily to avoidance and to a lesser extent to differences in the volumes sampled by the two systems. In a companion study, these methods were applied to the full acoustic survey data in order to examine the distribution of euphausiids in relation to aspects of the physical and biological environment [Lawson, G.L., Wiebe, P.H., Ashjian, C.J., Stanton, T.K., 2008. Euphausiid distribution along the Western Antarctic Peninsula—Part B: Distribution of euphausiid aggregations and biomass, and associations with environmental features. Deep-Sea Research II, this issue [doi:10.1016/j.dsr2.2007.11.014

  6. Aggregate Model for Heterogeneous Thermostatically Controlled Loads with Demand Response

    SciTech Connect

    Zhang, Wei; Kalsi, Karanjit; Fuller, Jason C.; Elizondo, Marcelo A.; Chassin, David P.

    2012-07-22

    Due to the potentially large number of Distributed Energy Resources (DERs) – demand response, distributed generation, distributed storage - that are expected to be deployed, it is impractical to use detailed models of these resources when integrated with the transmission system. Being able to accurately estimate the fast transients caused by demand response is especially important to analyze the stability of the system under different demand response strategies. On the other hand, a less complex model is more amenable to design feedback control strategies for the population of devices to provide ancillary services. The main contribution of this paper is to develop aggregated models for a heterogeneous population of Thermostatic Controlled Loads (TCLs) to accurately capture their collective behavior under demand response and other time varying effects of the system. The aggregated model efficiently includes statistical information of the population and accounts for a second order effect necessary to accurately capture the collective dynamic behavior. The developed aggregated models are validated against simulations of thousands of detailed building models using GridLAB-D (an open source distribution simulation software) under both steady state and severe dynamic conditions caused due to temperature set point changes.

  7. On the stability and spatiotemporal variance distribution of salinity in the upper ocean

    NASA Astrophysics Data System (ADS)

    O'Kane, Terence J.; Monselesan, Didier P.; Maes, Christophe

    2016-06-01

    Despite recent advances in ocean observing arrays and satellite sensors, there remains great uncertainty in the large-scale spatial variations of upper ocean salinity on the interannual to decadal timescales. Consonant with both broad-scale surface warming and the amplification of the global hydrological cycle, observed global multidecadal salinity changes typically have focussed on the linear response to anthropogenic forcing but not on salinity variations due to changes in the static stability and or variability due to the intrinsic ocean or internal climate processes. Here, we examine the static stability and spatiotemporal variability of upper ocean salinity across a hierarchy of models and reanalyses. In particular, we partition the variance into time bands via application of singular spectral analysis, considering sea surface salinity (SSS), the Brunt Väisälä frequency (N2), and the ocean salinity stratification in terms of the stabilizing effect due to the haline part of N2 over the upper 500m. We identify regions of significant coherent SSS variability, either intrinsic to the ocean or in response to the interannually varying atmosphere. Based on consistency across models (CMIP5 and forced experiments) and reanalyses, we identify the stabilizing role of salinity in the tropics—typically associated with heavy precipitation and barrier layer formation, and the role of salinity in destabilizing upper ocean stratification in the subtropical regions where large-scale density compensation typically occurs.

  8. Nanohybrids from nanotubular J-aggregates and transparent silica nanoshells.

    PubMed

    Qiao, Yan; Polzer, Frank; Kirmse, Holm; Kirstein, Stefan; Rabe, Jürgen P

    2015-08-01

    Organic-inorganic nanohybrids have been synthesized by in situ coating supramolecular nanotubular J-aggregates with helically wound silica ribbons, reflecting the J-aggregates' superstructure. The J-aggregates retain their morphology and optical properties in the nanohybrids, and display improved stability against elevated temperatures, chemical ambient and photo-bleaching. PMID:26121136

  9. Stability analysis of a two-stage tapered gyrotron traveling-wave tube amplifier with distributed losses

    SciTech Connect

    Hung, C. L.; Lian, Y. H.; Cheng, N. H.; Yeh, Y. S.; Chang, T. H.

    2012-11-15

    The two-stage tapered gyrotron traveling-wave tube (gyro-TWT) amplifier has achieved wide bandwidth in the millimeter wave range. However, possible oscillations in each stage limit this amplifier's operating beam current and thus its output power. To further enhance the amplifier's stability, distributed losses are applied to the interaction circuit of the two-stage tapered gyro-TWT. A self-consistent particle-tracing code is used for analyzing the beam-wave interactions. The stability analysis includes the effects of the wall losses and the length of each stage on the possible oscillations. Simulation results reveal that the distributed-loss method effectively stabilizes all the oscillations in the two stages. Under stable operating conditions, the device is predicted to produce a peak power of 60 kW with an efficiency of 29% and a saturated gain of 52 dB in the Ka-band. The 3-dB bandwidth is 5.7 GHz, which is approximately 16% of the center frequency.

  10. Budget Stability, Revenue Volatility, and District Relations: Determinants of Georgia ELOST Distribution to Municipal School Districts

    ERIC Educational Resources Information Center

    Reinagel, Tyler P.

    2014-01-01

    School districts across the United States are often forced into situations where limited public funds must be distributed among multiple districts. These are often reliant on distribution rates negotiated by district leadership and elected officials. An example of this is Georgia's 1% Education Local Option Sales Tax (ELOST). The tax is collected…

  11. Effects of size polydispersity on the extinction spectra of colloidal nanoparticle aggregates

    NASA Astrophysics Data System (ADS)

    Ershov, Alexander E.; Isaev, Ivan L.; Semina, Polina N.; Markel, Vadim A.; Karpov, Sergei V.

    2012-01-01

    We investigate the effect of particle polydispersity on the optical extinction spectra of colloidal aggregates of spherical metallic (silver) nanoparticles, taking into account the realistic interparticle gaps caused by layers of stabilizing polymer adsorbed on the metal surface (adlayers). The spectra of computer-generated aggregates are computed using two different methods. The coupled-multipole method is used in the quasistatic approximation and the coupled-dipole method beyond the quasistatics. The latter approach is applicable if the interparticle gaps are sufficiently wide relative to the particle radii. Simulations are performed for two different particle size distribution functions (bimodal and Gaussian), varying the number of particles per aggregate, and different distribution functions of the interparticle gap width. The strong influence of the latter factor on the spectra is demonstrated and investigated in detail.

  12. Influence of aggregation on thermal conductivity in stable and unstable nanofluids

    NASA Astrophysics Data System (ADS)

    Shima, P. D.; Philip, John; Raj, Baldev

    2010-10-01

    We study the effect of nanoparticle aggregation on thermal conductivity (k), viscosity (η) and size distribution of a stable and unstable nanofluid of iron oxide (Fe3O4) and copper oxide (CuO), respectively. The k, η, and size are found to be time independent in Fe3O4 while they are time dependant in CuO nanofluid. The microscopic study shows a progressive increase in the size of aggregate from nano to micron in CuO nanofluid. Our results show the prominent role of agglomeration on thermal properties and the importance of surface functionalization for improved stability and performance of nanofluids.

  13. Investigating the mechanisms leading to protein aggregation

    NASA Astrophysics Data System (ADS)

    McNamara, Ruth; McManus, Jennifer J.

    2014-03-01

    The formation of protein aggregates is a feature of several diseases and is a problem during the manufacture of biopharmaceutical and protein based food products. During processing, stability may become compromised leading to the condensation of proteins to form non-native aggregates. The aim of this work is to induce aggregation on model proteins by the imposition of a particular stress to evaluate the extent of aggregation and to assess the degree of structural change to the protein. Aggregation of two proteins, lysozyme and bovine serum albumin has been induced by several mechanisms. Using various techniques (electrophoresis, HPLC, spectroscopic analysis, and microscopic techniques) both the level of aggregation extent of protein unfolding has been investigated for a range of solution conditions. Our results show that the amount of aggregation depends strongly on the mechanism by which non-native aggregation proceeds, and within each mechanism, solution conditions are an important factor. With the exception of aggregation by self-association (which is concentration dependent), the appearance of aggregation is driven by structural changes induced by the applied stress (heat, chemical denaturant, oxidation or contact with a surface). Author would like to acknowledge support from Science Foundation Ireland (SFI), National University of Maynooth John and Pat Hume Scholarship.

  14. Distribution of high-stability 10 GHz local oscillator over 100 km optical fiber with accurate phase-correction system.

    PubMed

    Wang, Siwei; Sun, Dongning; Dong, Yi; Xie, Weilin; Shi, Hongxiao; Yi, Lilin; Hu, Weisheng

    2014-02-15

    We have developed a radio-frequency local oscillator remote distribution system, which transfers a phase-stabilized 10.03 GHz signal over 100 km optical fiber. The phase noise of the remote signal caused by temperature and mechanical stress variations on the fiber is compensated by a high-precision phase-correction system, which is achieved using a single sideband modulator to transfer the phase correction from intermediate frequency to radio frequency, thus enabling accurate phase control of the 10 GHz signal. The residual phase noise of the remote 10.03 GHz signal is measured to be -70  dBc/Hz at 1 Hz offset, and long-term stability of less than 1×10⁻¹⁶ at 10,000 s averaging time is achieved. Phase error is less than ±0.03π. PMID:24562233

  15. Empirical evidence and stability analysis of the linear car-following model with gamma-distributed memory effect

    NASA Astrophysics Data System (ADS)

    Pei, Xin; Pan, Yan; Wang, Haixin; Wong, S. C.; Choi, Keechoo

    2016-05-01

    Car-following models, which describe the reactions of the driver of a following car to the changes of the leading car, are essential for the development of traffic flow theory. A car-following model with a stochastic memory effect is considered to be more realistic in modeling drivers' behavior. Because a gamma-distributed memory function has been shown to outperform other forms according to empirical data, in this study, we thus focus on a car-following model with a gamma-distributed memory effect; analytical and numerical studies are then conducted for stability analysis. Accordingly, the general expression of undamped and stability points is achieved by analytical study. The numerical results show great agreement with the analytical results: introducing the effect of the driver's memory causes the stable regions to weaken slightly, but the metastable region is obviously enlarged. In addition, a numerical study is performed to further analyze the variation of the stable and unstable regions with respect to the different profiles of gamma distribution.

  16. A review of volcanic ash aggregation

    NASA Astrophysics Data System (ADS)

    Brown, R. J.; Bonadonna, C.; Durant, A. J.

    2012-01-01

    Most volcanic ash particles with diameters <63 μm settle from eruption clouds as particle aggregates that cumulatively have larger sizes, lower densities, and higher terminal fall velocities than individual constituent particles. Particle aggregation reduces the atmospheric residence time of fine ash, which results in a proportional increase in fine ash fallout within 10-100 s km from the volcano and a reduction in airborne fine ash mass concentrations 1000 s km from the volcano. Aggregate characteristics vary with distance from the volcano: proximal aggregates are typically larger (up to cm size) with concentric structures, while distal aggregates are typically smaller (sub-millimetre size). Particles comprising ash aggregates are bound through hydro-bonds (liquid and ice water) and electrostatic forces, and the rate of particle aggregation correlates with cloud liquid water availability. Eruption source parameters (including initial particle size distribution, erupted mass, eruption column height, cloud water content and temperature) and the eruption plume temperature lapse rate, coupled with the environmental parameters, determines the type and spatiotemporal distribution of aggregates. Field studies, lab experiments and modelling investigations have already provided important insights on the process of particle aggregation. However, new integrated observations that combine remote sensing studies of ash clouds with field measurement and sampling, and lab experiments are required to fill current gaps in knowledge surrounding the theory of ash aggregate formation.

  17. Effects of tangential velocity distribution on flow stability in a draft tube

    NASA Astrophysics Data System (ADS)

    Dou, Huashu; Niu, Lin; Cao, Shuliang

    2014-10-01

    Numerical simulations of the flow in the draft tube of a Francis turbine are carried out in order to elucidate the effects of tangential velocity on flow stability. Influence of the location of the maximum tangential velocity is explored considering the equality of the total energy at the inlet of the draft tube. It is found that the amplitude of the pressure fluctuation decreases when the location of the maximum of the tangential velocity moves from the centre to the wall on the cross section. Thus, the stability of the flow in the draft tube increases with the moving of the location of the maximum tangential velocity. However, the relative hydraulic loss increases and the recovery coefficient of the draft tube decreases slightly.

  18. Continuously active interferometer stabilization and control for time-bin entanglement distribution.

    PubMed

    Toliver, P; Dailey, J M; Agarwal, A; Peters, N A

    2015-02-23

    We describe a new method enabling continuous stabilization and fine-level phase control of time-bin entanglement interferometers. Using this technique we demonstrate entangled photon transmission through 50 km of standard single-mode fiber. This technique reuses the entangled-pair generation pump which is co-propagated with the transmitted entangled photons. The co-propagating pump adds minimal noise to the entangled photons which are characterized by measuring a two-photon interference fringe. PMID:25836451

  19. Coupling scale-dependent slope stability and fractal analysis of topography for the investigation of landslide size distributions

    NASA Astrophysics Data System (ADS)

    Frattini, P.; Crosta, G. B.

    2009-04-01

    We investigate the physics laying behind landslide size distributions, by coupling slope stability analysis and scale-sensitive fractal analysis of topography within a probabilistic approach. Slope stability analyses have been performed under ideal conditions, in order to highlight the control of slope angle, friction angle, and cohesion on the size distribution of landslides. We demonstrate that, for a given slope angle, cohesion exerts a primary control on both the depth and the length of landslides: the larger the cohesion, the deeper and longer the landslide. As a consequence, the landslide size distribution in cohesive materials is limited toward the smaller size. Scale-sensitive fractal analysis of topography have been performed by using the patchwork method, by applying triangular patches to virtually tile the topographic surface. The fractal behaviour of the topography is modelled by decreasing triangle sizes (i.e., scale of measurement), thus replicating the surface more and more precisely. We apply the patchwork method to study the fractal behaviour of two topographic datasets from Avisio river Catchment, Trento Province (Italy): an interpolated 10x10 m DTM and a Lidar 2x2 m DTM. The interpolated DTM shows a fractal behaviour in a range of area scale between 10-4 and 10-6 sqm. For smaller scale, we observe a rollover that is caused by artificial smoothing of topographic data due to interpolation algorithms. The Lidar DTM shows a fractal behaviour between 10-2 and 10-6. For smaller scales, the rollover seems to be related to a transition from a landscape composed of ridges and valleys to one composed of relatively smooth hillslopes. Results of slope stability analyses over idealized cases and topographic analysis have been used to derive a synthetic landslide size distributions, by applying few simplifying assumptions and a probabilistic approach. As a result, we show that: (1) the landslide size distribution of non cohesive materials does not show a

  20. Spatially distributed three-dimensional slope stability modelling in a raster GIS

    NASA Astrophysics Data System (ADS)

    Mergili, Martin; Marchesini, Ivan; Rossi, Mauro; Guzzetti, Fausto; Fellin, Wolfgang

    2014-02-01

    We present a GRASS GIS implementation of a three-dimensional slope stability model capable of dealing with shallow and deep-seated slope failures, r.rotstab. It exploits a modified version of the revised Hovland method and evaluates the slope stability over a large number of randomly selected slip surfaces, ellipsoidal or truncated in shape. For each raster cell in the modelling domain, the factor of safety is taken from the most critical slip surface. This results in an overview of potentially unstable regions without showing the individual sliding areas. Furthermore, the model produces a susceptibility index for each cell, based on the proportion of slip surfaces with a low factor of safety. We test the model in the Collazzone area, Umbria, central Italy where detailed information on shallow and deep-seated landslides, morphology and lithology is available. The rate of true predictions (landslide plus non-landslide) ranges from 54.7 to 81.2% for shallow landslides and from 58.5 to 87.4% for deep-seated landslides, depending on the adjustment of the uncertain geotechnical parameters. In the same order, the rate of true landslide predictions decreases from 80.2 to 19.9% (shallow) and from 64.3 to 3.6% (deep-seated) so that an increase of the true landslide prediction rate can only be achieved at the cost of a significant increase of the false alarm rate. The results for shallow landslides are very similar to those yielded with the infinite slope stability model in terms of the minimum factor of safety, but differ substantially in terms of the spatial patterns. The evaluation of the landslide susceptibility index yields areas under the ROC curves of 0.68-0.70 (shallow landslides, r.rotstab), 0.61-0.65 (shallow landslides, infinite slope stability model) and 0.59-0.63 (deep-seated landslides). We conclude that the r.rotstab model outperforms the infinite slope stability model.

  1. Can intra-aggregate pore structures affect the aggregate's effectiveness in protecting carbon?

    SciTech Connect

    Ananyeva, K; Wang, W; Smucker, A J.M.; Rivers, M L; Kravchenko, A N

    2012-11-15

    Aggregates are known to provide physical protection to soil organic matter shielding it from rapid decomposition. Spatial arrangement and size distribution of intra-aggregate pores play an important role in this process. This study examined relationships between intra-aggregate pores measured using X-ray computed micro-tomography images and concentrations of total C in 4–6 mm macro-aggregates from two contrasting land use and management practices, namely, conventionally tilled and managed row crop agricultural system (CT) and native succession vegetation converted from tilled agricultural land in 1989 (NS). Previous analyses of these aggregates indicated that small (<15 μm) and large (>100 μm) pores prevail in NS aggregates while medium (30–90 μm) pores are more abundant in CT aggregates (Kravchenko et al., 2011; Wang et al., 2012). We hypothesized that these differences in pore size distributions affect the ability of macro-aggregates to protect C. The results of this study supported this hypothesis. Consistent with greater heterogeneity of pore distributions within NS aggregates we observed higher total C and greater intra-aggregate C variability in NS as compared with CT aggregates. Total C concentrations and intra-aggregate C standard deviations were negatively correlated with fractions of medium sized pores, indicating that presence of such pores was associated with lower but more homogeneously distributed total C. While total C was positively correlated with presence of small and large pores. The results suggest that because of their pore structure NS macro-aggregates provide more effective physical protection to C than CT aggregates.

  2. Exponential Stability of the Energy of the Wave Equation with Variable Coefficients and a Boundary Distributed Delay

    NASA Astrophysics Data System (ADS)

    Liu, Wenjun

    2014-11-01

    In this paper, we consider a wave equation with space variable coefficients. Due to physical considerations, a distributed delay damping is acted on the part of the boundary. Under suitable assumptions, we prove the exponential stability of the energy based on the use of Riemannian geometry method, the perturbed energy argument, and some observability inequalities. From the applications point of view, our results may provide some qualitative analysis and intuition for the researchers in fields such as engineering, biophysics, and mechanics. And the method is rather general and can be adapted to other evolution systems with variable coefficients (e. g. elasticity plates) as well.

  3. 0. 04 Hz relative optical-frequency stability in a 1. 5. mu. m distributed-Bragg-reflector (DBR) laser

    SciTech Connect

    Ishida, O.; Toba, H. ); Tohmori, Y. )

    1989-12-01

    The optical frequency of a 1.5 {mu}m distributed-Bragg-reflector (DBR) laser is stabilized against that of a master laser by heterodyne-type frequency locking with a phase-locked loop (PLL). Despite its wide linewidth of 16 MHz, stable PLL operation with an optical hold-in range of 26 GHz is realized, and residual frequency fluctuations are reduced to 0.04 Hz at an averaging time of 500 s. The combination of DBR laser and PLL is, therefore, suitable for future frequency-controlled light sources. The offset error from the settled frequency caused by the band-limited beat spectrum is also discussed.

  4. Aggregated Recommendation through Random Forests

    PubMed Central

    2014-01-01

    Aggregated recommendation refers to the process of suggesting one kind of items to a group of users. Compared to user-oriented or item-oriented approaches, it is more general and, therefore, more appropriate for cold-start recommendation. In this paper, we propose a random forest approach to create aggregated recommender systems. The approach is used to predict the rating of a group of users to a kind of items. In the preprocessing stage, we merge user, item, and rating information to construct an aggregated decision table, where rating information serves as the decision attribute. We also model the data conversion process corresponding to the new user, new item, and both new problems. In the training stage, a forest is built for the aggregated training set, where each leaf is assigned a distribution of discrete rating. In the testing stage, we present four predicting approaches to compute evaluation values based on the distribution of each tree. Experiments results on the well-known MovieLens dataset show that the aggregated approach maintains an acceptable level of accuracy. PMID:25180204

  5. Aggregated recommendation through random forests.

    PubMed

    Zhang, Heng-Ru; Min, Fan; He, Xu

    2014-01-01

    Aggregated recommendation refers to the process of suggesting one kind of items to a group of users. Compared to user-oriented or item-oriented approaches, it is more general and, therefore, more appropriate for cold-start recommendation. In this paper, we propose a random forest approach to create aggregated recommender systems. The approach is used to predict the rating of a group of users to a kind of items. In the preprocessing stage, we merge user, item, and rating information to construct an aggregated decision table, where rating information serves as the decision attribute. We also model the data conversion process corresponding to the new user, new item, and both new problems. In the training stage, a forest is built for the aggregated training set, where each leaf is assigned a distribution of discrete rating. In the testing stage, we present four predicting approaches to compute evaluation values based on the distribution of each tree. Experiments results on the well-known MovieLens dataset show that the aggregated approach maintains an acceptable level of accuracy. PMID:25180204

  6. Enhancing ionic conductivity of bulk single-crystal yttria-stabilized zirconia by tailoring dopant distribution

    SciTech Connect

    Lee, E.; Prinz, F. B.; Cai, W.

    2011-02-11

    We present an ab initio–based kinetic Monte Carlo model for ionic conductivity in single-crystal yttria-stabilized zirconia. Ionic interactions are taken into account by combining density functional theory calculations and the cluster expansion method and are found to be essential in reproducing the effective activation energy observed in experiments. The model predicts that the effective energy barrier can be reduced by 0.15–0.25 eV by arranging the dopant ions into a superlattice.

  7. The stability analysis of a general viral infection model with distributed delays and multi-staged infected progression

    NASA Astrophysics Data System (ADS)

    Wang, Jinliang; Liu, Shengqiang

    2015-01-01

    We investigate an in-host model with general incidence and removal rate, as well as distributed delays in virus infections and in productions. By employing Lyapunov functionals and LaSalle's invariance principle, we define and prove the basic reproductive number R0 as a threshold quantity for stability of equilibria. It is shown that if R0 > 1 , then the infected equilibrium is globally asymptotically stable, while if R0 ⩽ 1 , then the infection free equilibrium is globally asymptotically stable under some reasonable assumptions. Moreover, n + 1 distributed delays describe (i) the time between viral entry and the transcription of viral RNA, (ii) the n - 1 -stage time needed for activated infected cells between viral RNA transcription and viral release, and (iii) the time necessary for the newly produced viruses to be infectious (maturation), respectively. The model can describe the viral infection dynamics of many viruses such as HIV-1, HCV and HBV.

  8. Synthetic clay-magnetite aggregates designed for controlled deposition experiments

    NASA Astrophysics Data System (ADS)

    Feinberg, J. M.; Galindo-Gonzalez, C.; Kasama, T.; Cervera, L.; Posfai, M.; Harrison, R. J.; Dunin-Borkowski, R. E.

    2007-12-01

    The behavior of magnetic particles in fluid environments is key to the acquisition of detrital remanence magnetization and is essential to a multitude of industrial applications. This study introduces a series of synthetic clay-magnetite aggregates whose physical attributes can be tailored for controlled depositional experiments. We describe the mineralogical structure and magnetic behavior of montmorillonite platelets coated with nanometer-scale magnetite crystals using both electron microscopy and rock magnetism techniques. Selected area electron diffraction of the magnetite and the montmorillonite host shows no evidence of preferred orientation or oriented aggregation. Grain size distributions of magnetite in three different clay-magnetite assemblages were directly measured using conventional bright-field transmission electron microscopy. The spacing of the magnetite grains and their three-dimensional distribution around individual clay platelets was imaged using a tomographic reconstruction generated from high-angle annular dark-field (HAADF) images. The grain size distributions determined from the bright-field images and the tomographic reconstruction agree within error with estimates derived from magnetic granulometry techniques based on magnetic hysteresis and low-field susceptibility measurements. All three samples behave superparamagnetically at room temperature, and display increasing levels of single domain behavior as the samples are cooled to liquid nitrogen temperatures (- 195°C). Off-axis electron holography images show that superparamagnetic grains are also stabilized into flux closure structures at -195°C. The average spacing between adjacent magnetite crystals and the overall platelet shape of the aggregates creates an anisotropy of magnetic susceptibility that allows assemblages to align with external magnetic fields at room temperature. By adjusting the dimensions and concentrations of the magnetite grains in these aggregates, we can create

  9. Effects of Soy Protein Nanoparticle Aggregate Size on the Viscoelastic Properties of Styrene-Butadiene Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy protein nanoparticle aggregates were prepared by alkaline hydrolysis of soy protein isolate (SPI). Light scattering measurements indicated a narrow size distribution of SPI aggregates. Nanocomposites were formed by mixing hydrolyzed SPI (HSPI) nanoparticle aggregates with styrene-butadiene (SB...

  10. Biodistribution, Stability, and Blood Distribution of the Cell Penetrating Peptide Maurocalcine in Mice

    PubMed Central

    Perret, Pascale; Ahmadi, Mitra; Riou, Laurent; Bacot, Sandrine; Pecher, Julien; Poillot, Cathy; Broisat, Alexis; Ghezzi, Catherine; De Waard, Michel

    2015-01-01

    Maurocalcine (MCa) is the first natural cell penetrating peptide to be discovered in animal venom. In addition to the fact that it represents a potent vector for the cell penetration of structurally diverse therapeutic compounds, MCa also displays several distinguishing features that make it a potential peptide of choice for clinical and biotechnological applications. The aim of the present study was to gain new information about the properties of MCa in vivo in order to delineate the future potential applications of this vector. For this purpose, two analogues of this peptide with (Tyr-MCa) and without (Lin-Tyr-MCa) disulfide bridges were synthesized, radiolabeled with 125I, and their in vitro stabilities were first evaluated in mouse blood. The results indicated that 125I-Tyr-MCa was stable in vitro and that the disulfide bridges conferred a competitive advantage for the stability of peptide. Following in vivo injection in mice, 125I-Tyr-MCa targeted peripheral organs with interesting quantitative differences and the main route of peptide elimination was renal. PMID:26610471

  11. The impact of agriculture terraces on soil organic matter, aggregate stability, water repellency and bulk density. A study in abandoned and active farms in the Sierra de Enguera, Eastern Spain.

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Burguet, Maria; Keesstra, Saskia; Prosdocimi, Massimo; Di Prima, Simone; Brevik, Erik; Novara, Agata; Jordan, Antonio; Tarolli, Paolo

    2016-04-01

    Soil erosion, land degradation, lack of organic matter, erodible soils, rock outcrops… are a consequence of the human abuse and misuse of the soil resources. And this is a worldwide environmental issue (Novara et al., 2011; Vanlauwe et al., 2015; Musinguzi et al., 2015; Pereira et al., 2015; Mwagno et al., 2016). Agriculture terraces are a strategy to reduce the soil erosion, improve the soil fertility and allow the ploughing (Cerdà et al., 2010; Li et al., 2014). Although this idea is well accepted there are few scientific evidences that demonstrate that soils in the terraced areas are more stable, fertile and sustainable that the soil in non terraced areas. In fact, the ploughing in comparison to the abandoned or not ploughed land results in the soil degradation (Lieskovský and Kenderessy, 2014; Gao et al., 2015; Parras-Alcántara et al., 2014). This is mainly due to the lack of vegetation that increase the surface runoff (Cerdà et al., 1998; Keesstra et al., 2007). And why is necessary to develop also in terraced landscapes soil erosion control strategies (Mekonnen et al., 2015a; Mekonnen et al., 2015b; Prosdocimi et al., 2016). Our objective was to assess the soil organic matter content (Walkley and Black, 1934), the soil bulk density (ring method), the aggregate stabilility (drop impact) and the water repellency (Water Drop Penetration Time test) in four study sites in the Sierra de Enguera. Two sites were terraced: one abandoned 40 years before the measurements and the other still active with olive crops. And two control sites non-terraced. We used the paired plot strategy to compare the impact of terracing and abandonment. At each site we collected randomly 50 soil samples at 0-2 cm, 4-6 and 8-10 cm depth. At each sampling point 100 WDPT measurements where carried out, and one sample for the bulk density, and one for the organic matter, and one for the soil aggregate stability were collected. The soil surface samples shown the largest differences. The

  12. Natural aggregates of the conterminous United States

    USGS Publications Warehouse

    Langer, William H.

    1988-01-01

    Crushed stone and sand and gravel are the two main sources of natural aggregates. These materials are commonly used construction materials and frequently can be interchanged with one another. They are widely used throughout the United States, with every State except two producing crushed stone. Together they amount to about half the mining volume in the United States. Approximately 96 percent of sand and gravel and 77 percent of the crushed stone produced in the United States are used in the construction industry. Natural aggregates are widely distributed throughout the United States in a variety of geologic environments. Sand and gravel deposits commonly are the results of the weathering of bedrock and subsequent transportation and deposition of the material by water or ice (glaciers). As such, they commonly occur as river or stream deposits or in glaciated areas as glaciofluvial and other deposits. Crushed stone aggregates are derived from a wide variety of parent bedrock materials. Limestone and other carbonates account for approximately three quarters of the rocks used for crushed stone, with granite and other igneous rocks making up the bulk of the remainder. Limestone deposits are widespread throughout the Central and Eastern United States and are scattered in the West. Granites are widely distributed in the Eastern and Western United States, with few exposures in the Midwest. Igneous rocks (excluding granites) are largely concentrated in the Western United States and in a few isolated localities in the East. Even though natural aggregates are widely distributed throughout the United States, they are not universally available for consumptive use. Some areas are devoid of sand and gravel, and potential sources of crushed stone may be covered with sufficient unconsolidated material to make surface mining impractical. In some areas many aggregates do not meet the physical property requirements for certain uses, or they may contain mineral constituents that react

  13. Stability enhancement and fuel economy of the 4-wheel-drive hybrid electric vehicles by optimal tyre force distribution

    NASA Astrophysics Data System (ADS)

    Goodarzi, Avesta; Mohammadi, Masoud

    2014-04-01

    In this paper, vehicle stability control and fuel economy for a 4-wheel-drive hybrid vehicle are investigated. The integrated controller is designed within three layers. The first layer determines the total yaw moment and total lateral force made by using an optimal controller method to follow the desired dynamic behaviour of a vehicle. The second layer determines optimum tyre force distribution in order to optimise tyre usage and find out how the tyres should share longitudinal and lateral forces to achieve a target vehicle response under the assumption that all four wheels can be independently steered, driven, and braked. In the third layer, the active steering, wheel slip, and electrical motor torque controllers are designed. In the front axle, internal combustion engine (ICE) is coupled to an electric motor (EM). The control strategy has to determine the power distribution between ICE and EM to minimise fuel consumption and allowing the vehicle to be charge sustaining. Finally, simulations performed in MATLAB/SIMULINK environment show that the proposed structure could enhance the vehicle stability and fuel economy in different manoeuvres.

  14. Development of the Radiation Stabilized Distributed Flux Burner - Phase III Final Report

    SciTech Connect

    J. D. Sullivan; A. Webb

    1999-12-01

    The development and demonstration of the Radiation Stabilized Burner (RSB) was completed as a project funded by the US Department of Energy Office of Industrial Technologies. The technical goals of the project were to demonstrate burner performance that would meet or exceed emissions targets of 9 ppm NOx, 50 ppm CO, and 9 ppm unburned hydrocarbons (UHC), with all values being corrected to 3 percent stack oxygen, and incorporate the burner design into a new industrial boiler configuration that would achieve ultra-low emissions while maintaining or improving thermal efficiency, operating costs, and maintenance costs relative to current generation 30 ppm low NOx burner installations. Both the ultra-low NOx RSB and the RSB boiler-burner package are now commercially available.

  15. Fault-Tolerant Self-Stabilizing Distributed Clock Synchronization Protocol for Arbitrary Digraphs

    NASA Technical Reports Server (NTRS)

    Malekpour, Mahyar R. (Inventor)

    2014-01-01

    A self-stabilizing network in the form of an arbitrary, non-partitioned digraph includes K nodes having a synchronizer executing a protocol. K-1 monitors of each node may receive a Sync message transmitted from a directly connected node. When the Sync message is received, the logical clock value for the receiving node is set to between 0 and a communication latency value (gamma) if the clock value is less than a minimum event-response delay (D). A new Sync message is also transmitted to any directly connected nodes if the clock value is greater than or equal to both D and a graph threshold (T(sub S)). When the Sync message is not received the synchronizer increments the clock value if the clock value is less than a resynchronization period (P), and resets the clock value and transmits a new Sync message to all directly connected nodes when the clock value equals or exceeds P.

  16. Dynamic stability of functionally graded cantilever cylindrical shells under distributed axial follower forces

    NASA Astrophysics Data System (ADS)

    Torki, Mohammad Ebrahim; Kazemi, Mohammad Taghi; Reddy, Junuthula N.; Haddadpoud, Hassan; Mahmoudkhani, Saeid

    2014-02-01

    In this paper, flutter of functionally graded material (FGM) cylindrical shells under distributed axial follower forces is addressed. The first-order shear deformation theory is used to model the shell, and the material properties are assumed to be graded in the thickness direction according to a power law distribution using the properties of two base material phases. The solution is obtained by using the extended Galerkin's method, which accounts for the natural boundary conditions that are not satisfied by the assumed displacement functions. The effect of changing the concentrated (Beck's) follower force into the uniform (Leipholz's) and linear (Hauger's) distributed follower loads on the critical circumferential mode number and the minimum flutter load is investigated. As expected, the flutter load increases as the follower force changes from the so-called Beck's load into the so-called Leipholz's and Hauger's loadings. The increased flutter load was calculated for homogeneous shell with different mechanical properties, and it was found that the difference in elasticity moduli bears the most significant effect on the flutter load increase in short, thick shells. Also, for an FGM shell, the increase in the flutter load was calculated directly, and it was found that it can be derived from the simple power law when the corresponding increase for the two base phases are known.

  17. Crystal aggregation in kidney stones; a polymer aggregation problem?

    NASA Astrophysics Data System (ADS)

    Wesson, J.; Beshensky, A.; Viswanathan, P.; Zachowicz, W.; Kleinman, J.

    2008-03-01

    Kidney stones most frequently form as aggregates of calcium oxalate monohydrate (COM) crystals with organic layers between them, and the organic layers contain principally proteins. The pathway leading to the formation of these crystal aggregates in affected people has not been identified, but stone forming patients are thought to have a defect in the structure or distribution of urinary proteins, which normally protect against stone formation. We have developed two polyelectrolyte models that will induce COM crystal aggregation in vitro, and both are consistent with possible urinary protein compositions. The first model was based on mixing polyanionic and polycationic proteins, in portions such that the combined protein charge is near zero. The second model was based on reducing the charge density on partially charged polyanionic proteins, specifically Tamm-Horsfall protein, the second most abundant protein in urine. Both models demonstrated polymer phase separation at solution conditions where COM crystal aggregation was observed. Correlation with data from other bulk crystallization measurements suggest that the anionic side chains form critical binding interactions with COM surfaces that are necessary along with the phase separation process to induce COM crystal aggregation.

  18. Sensitivity of the "Root Bundle Model" to root mechanical properties and root distribution: Implication for shallow landslide stability.

    NASA Astrophysics Data System (ADS)

    Schwarz, Massimiliano; Giadrossich, Filippo; Cohen, Denis

    2015-04-01

    Root reinforcement is recognized as an important factor for shallow landslides stability. Due to the complexity of root reinforcement mechanisms and the heterogeneity of the root-soil system, the estimation of parameters used in root reinforcement models is difficult, time consuming, and often highly uncertain. For practical applications, it is necessary to focus on the estimation of the most relevant parameters. The objective of the present contribution is to review the state of the art in the development of root reinforcement models and to discuss the sensitivity of the "Root Bundle Model" (RBM) when considering the variability of root mechanical properties and the heterogeneity of root distributions. The RBM is a strain-step loading fiber bundle model extended to include the mechanical and geometrical properties of roots. The model allows the calculation of the force-displacement behavior of a root bundle. In view of new results of field pullout tests performed on coarse roots of spruce (Picea abies) and considering a consistent dataset of root distribution of alpine tree species, we quantify the sensitivity of the RBM and the uncertainty associated with the most important input parameters. Preliminary results show that the extrapolation of force-diameter values from incomplete datasets (i.e., when only small roots are tested and values for coarse roots are extrapolated) may result in considerable errors. In particular, in the case of distributions with root diameters larger than 5 mm, root reinforcement tends to be dominated by coarse roots and their mechanical properties need to be quantified. In addition to the results of the model sensitivity, we present a possible best-practice method for the quantification of root reinforcement in view of its application to slope stability calculations and implementations in numerical models.

  19. Therapeutic Protein Aggregation: Mechanisms, Design, and Control

    PubMed Central

    Roberts, Christopher J.

    2014-01-01

    While it is well known that proteins are only marginally stable in their folded states, it is often less well appreciated that most proteins are inherently aggregation-prone in their unfolded or partially unfolded states, and the resulting aggregates can be extremely stable and long-lived. For therapeutic proteins, aggregates are a significant risk factor for deleterious immune responses in patients, and can form via a variety of mechanisms. Controlling aggregation using a mechanistic approach may allow improved design of therapeutic protein stability, as a complement to existing design strategies that target desired protein structures and function. Recent results highlight the importance of balancing protein environment with the inherent aggregation propensities of polypeptide chains. PMID:24908382

  20. Ash Aggregates in Proximal Settings

    NASA Astrophysics Data System (ADS)

    Porritt, L. A.; Russell, K.

    2012-12-01

    Ash aggregates are thought to have formed within and been deposited by the eruption column and plume and dilute density currents and their associated ash clouds. Moist, turbulent ash clouds are considered critical to ash aggregate formation by facilitating both collision and adhesion of particles. Consequently, they are most commonly found in distal deposits. Proximal deposits containing ash aggregates are less commonly observed but do occur. Here we describe two occurrences of vent proximal ash aggregate-rich deposits; the first within a kimberlite pipe where coated ash pellets and accretionary lapilli are found within the intra-vent sequence; and the second in a glaciovolcanic setting where cored pellets (armoured lapilli) occur within <1 km of the vent. The deposits within the A418 pipe, Diavik Diamond Mine, Canada, are the residual deposits within the conduit and vent of the volcano and are characterised by an abundance of ash aggregates. Coated ash pellets are dominant but are followed in abundance by ash pellets, accretionary lapilli and rare cored pellets. The coated ash pellets typically range from 1 - 5 mm in diameter and have core to rim ratios of approximately 10:1. The formation and preservation of these aggregates elucidates the style and nature of the explosive phase of kimberlite eruption at A418 (and other pipes?). First, these pyroclasts dictate the intensity of the kimberlite eruption; it must be energetic enough to cause intense fragmentation of the kimberlite to produce a substantial volume of very fine ash (<62 μm). Secondly, the ash aggregates indicate the involvement of moisture coupled with the presence of dilute expanded eruption clouds. The structure and distribution of these deposits throughout the kimberlite conduit demand that aggregation and deposition operate entirely within the confines of the vent; this indicates that aggregation is a rapid process. Ash aggregates within glaciovolcanic sequences are also rarely documented. The

  1. Permanence extinction and global asymptotic stability in a stage structured system with distributed delays

    NASA Astrophysics Data System (ADS)

    Liu, Shengqiang; Kouche, Mahiéddine; Tatar, Nasser-Eddine

    2005-01-01

    In this paper we consider a nonautonomous stage-structured competitive system of n-species population growth with distributed delays which takes into account the delayed feedback in both interspecific and intraspecific interactions. We obtain, by using the method of repeated replace, sufficient conditions for permanence and extinction of the species. The global attractivity of the unique positive equilibrium is proved in the autonomous case. Our results extend previous ones obtained by Liu et al. in [Nonlinear Anal. 51 (2002) 1347-1361; J. Math. Anal Appl. 274 (2002) 667-684].

  2. On the stability of pick-up ion ring distributions in the outer heliosheath

    SciTech Connect

    Summerlin, Errol J.; Viñas, Adolfo F.; Moore, Thomas E.; Christian, Eric R.; Cooper, John F. E-mail: adolfo.figueroa-vinas-1@nasa.gov E-mail: eric.r.christian@nasa.gov

    2014-10-01

    The 'secondary energetic neutral atom (ENA)' hypothesis for the ribbon feature observed by the Interstellar Boundary Explorer (IBEX) posits that the neutral component of the solar wind continues beyond the heliopause and charge exchanges with interstellar ions in the Outer Heliosheath (OHS). This creates pick-up ions that gyrate about the draped interstellar magnetic field (ISMF) lines at pitch angles near 90° on the locus where the ISMF lies tangential to the heliopause and perpendicular to the heliocentric radial direction. This location closely coincides with the location of the ribbon feature according to the prevailing inferences of the ISMF orientation and draping. The locally gyrating ions undergo additional charge exchange and escape as free-flying neutral atoms, many of which travel back toward the inner solar system and are imaged by IBEX as a ribbon tracing out the locus described above. For this mechanism to succeed, the pick-up ions must diffuse in pitch angle slowly enough to permit secondary charge exchange before their pitch angle distribution substantially broadens away from 90°. Previous work using linear Vlasov dispersion analysis of parallel propagating waves has suggested that the ring distribution in the OHS is highly unstable, which, if true, would make the secondary ENA hypothesis incapable of rendering the observed ribbon. In this paper, we extend this earlier work to more realistic ring distribution functions. We find that, at the low densities necessary to produce the observed IBEX ribbon via the secondary ENA hypothesis, growth rates are highly sensitive to the temperature of the beam and that even very modest temperatures of the ring beam corresponding to beam widths of <1° are sufficient to damp the self-generated waves associated with the ring beam. Thus, at least from the perspective of linear Vlasov dispersion analysis of parallel propagating waves, there is no reason to expect that the ring distributions necessary to produce the

  3. The global distribution, abundance, and stability of SO2 on Io

    NASA Technical Reports Server (NTRS)

    Mcewen, Alfred S.; Soderblom, Laurence A.; Johnson, Torrence V.; Matson, Dennis L.

    1988-01-01

    Voyager multispectral mosaics, earth-observed spectra, and photometric characterizations have been used to model and globally map the SO2 distribution and abundances, the bolometric hemispheric albedos, and the passive surface temperatures on Io. The SO2 is noted to be concentrated in the bright equatorial band, while being deficient in the region defined by Pele-type volcanic eruptions and the polar regions. The brightest, locally coldest areas correspond to SO2-rich regions, although many small patches occur elsewhere. These results are found to support the regional cold-trapping model for the surface and atmospheric SO2 of Fanale et al. (1982).

  4. Stability analysis for a planar parallel manipulator with the capability of self-coordinating the load distribution

    NASA Astrophysics Data System (ADS)

    Kong, Lingyu; Wang, Hao; Zhang, Pu; Zhao, Yong; Chen, Genliang; Zhao, Longhai

    2015-07-01

    Redundantly actuated parallel manipulators have the advantage of enhancing load-carrying capability over their non-redundant ones, however they also cause the problem of uneven load distribution and need a high requirement for the control system. This paper presents a 2-RPR/RP planar redundantly actuated parallel manipulator which can self-coordinate the distribution of external loads. This capability is realized by an appropriate design of the moving platform to make the manipulator stable at equilibrium position. The stability is proved by the theorem of direct Lyapunov method in classical mechanics. The numerical simulations are conducted to validate the stable capability by means of the observation of potential energies and phase planes. This paper offers an alternative way to design a redundantly actuated manipulator with the capability of self-coordinating the load distribution to actuations, such that parts of the controlling work are assigned to the manipulator itself by its own structure and only a little work remains to the control system.

  5. Reduced-Order Modeling of Aggregated Thermostatic Loads With Demand Response

    SciTech Connect

    Zhang, Wei; Lian, Jianming; Chang, Chin-Yao; Kalsi, Karanjit; Sun, Yannan

    2012-12-12

    Demand Response is playing an increasingly important role in smart grid control strategies. Modeling the behavior of populations of appliances under demand response is especially important to evaluate the effectiveness of these demand response programs. In this paper, an aggregated model is proposed for a class of Thermostatically Controlled Loads (TCLs). The model efficiently includes statistical information of the population, systematically deals with heterogeneity, and accounts for a second-order effect necessary to accurately capture the transient dynamics in the collective response. However, an accurate characterization of the collective dynamics however requires the aggregate model to have a high state space dimension. Most of the existing model reduction techniques require the stability of the underlying system which does not hold for the proposed aggregated model. In this work, a novel model reduction approach is developed for the proposed aggregated model, which can significantly reduce its complexity with small performance loss. The original and the reducedorder aggregated models are validated against simulations of thousands of detailed building models using GridLAB-D, which is a realistic open source distribution simulation software. Index Terms – demand response, aggregated model, ancillary

  6. Platelet aggregation test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003669.htm Platelet aggregation test To use the sharing features on this page, please enable JavaScript. The platelet aggregation blood test checks how well platelets , a ...

  7. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  8. Platelet aggregation test

    MedlinePlus

    The platelet aggregation blood test checks how well platelets , a part of blood, clump together and cause blood to clot. ... Decreased platelet aggregation may be due to: Autoimmune ... Fibrin degradation products Inherited platelet function defects ...

  9. Quality improvement of transgenic cloned bovine embryos using an aggregation method: Effects on cell number, cell ratio, embryo perimeter, mitochondrial distribution, and gene expression profile.

    PubMed

    Bang, J I; Jin, J I; Ghanem, N; Choi, B H; Fakruzzaman, M; Ha, A N; Lee, K L; Uhm, S J; Ko, D H; Koo, B C; Lee, J G; Kong, I K

    2015-09-01

    The production of cloned embryos using conventional methods has extremely low success rates owing to low embryo quality. To improve the quality of cloned bovine embryos expressing enhanced green fluorescent protein (EGFP), we applied an aggregation culture method. The EGFP gene was transfected into bovine fetal fibroblasts using a retroviral vector system. Somatic cell nuclear transfer was performed using these cells, and the resulting embryos were cultured in aggregates or individually. Gene expression was analyzed by a microarray, and differentially expressed genes were validated by quantitative real-time polymerase chain reaction. The total number of cells per blastocyst and the ratio of inner cell mass cells to trophectoderm cells were higher in aggregated transgenic cloned blastocysts (agBL; 368.7 ± 109.6 and 1:4.8, respectively) than in in vitro-fertilized blastocysts (ivfBL; 189.8 ± 65.8 and 1:2.6, respectively) and nonaggregated transgenic cloned blastocysts (sBL; 113.1 ± 36.3 and 1:1.5, respectively; P < 0.05 and P < 0.01, respectively). Moreover, the blastocyst perimeter was larger in the agBL group than in the ivfBL and sBL groups (1168.8 ± 200.23 vs. 887.33 ± 187.62 and 678 ± 226.1 μm; P < 0.05). In addition, mitochondrial fluorescence intensity was higher in the agBL group than in the ivfBL and sBL groups (P < 0.05). The number of apoptotic cells per blastocyst was lower in the ivfBL and agBL groups than in the sBL group (3.7 ± 2.2 and 3.4 ± 2.1 vs. 6.7 ± 6.8; P < 0.05). The genes identified in the microarray belonged to 18 categories. Expression of the Krüppel-like factor 4 gene, which is associated with cell proliferation, development, and transcription, was 7.2-fold higher in the agBL group than in the ivfBL group (P < 0.05) but did not differ between the sBL and ivfBL groups (P > 0.05). Expression of the heat shock 70-kDa protein 1A gene, which is associated with apoptosis, was 12-fold higher in the s

  10. Compost incorporation, soil aggregates and organic C sequestration in two different Tuscan soils.

    NASA Astrophysics Data System (ADS)

    Pini, Roberto; Sparvoli, Enzo; Scatena, Manuele; Pucci, Amaranta; D'Acqui, Luigi P.

    2010-05-01

    Soil amendment with compost obtained from pre-selected urban food scraps together with green manure, reduced tillage, rotation of crops and other practices are generally considered as improving soil structure by increasing the levels of nutrient elements. The addition of well composted organic residues may increase the amount of organic C entangled within mineral particles and also stabilize soil aggregates and micro-aggregates. This consequently reduces carbon dioxide emissions and mitigates temperature increases. Our data refer to two soils, a clay soil and a sandy soil, subjected to a long term compost incorporation in order to ameliorate soil fertility. We measured the dynamic of pore size distribution and total porosity evolution together with water soil aggregates stability. We also developed our own procedure to assess the stabilization and protection of organic C in soil aggregates, by analyzing the dynamics of OM dry-oxidation by LTA (Low Temperature Ashing) cold oxygen plasma. Our results confirmed the beneficial effect of the compost on soil structure of both soils and that the potential sequestration of soil organic C is related to the granulometry and mineralogical features of the two soils. We propose an original methodological approach to assess the effective C sequestration in agricultural soil.

  11. Stability of equations with a distributed delay, monotone production and nonlinear mortality

    NASA Astrophysics Data System (ADS)

    Berezansky, Leonid; Braverman, Elena

    2013-10-01

    We consider population dynamics models dN/dt = f(N(tτ)) - d(N(t)) with an increasing fecundity function f and any mortality function d which can be quadratic, as in the logistic equation, or have a different form provided that the equation has at most one positive equilibrium. Here the delay in the production term can be distributed and unbounded. It is demonstrated that the positive equilibrium is globally attractive if it exists, otherwise all positive solutions tend to zero. Moreover, we demonstrate that solutions of the equation are intrinsically non-oscillatory: once the initial function is less/greater than the equilibrium K > 0, so is the solution for any positive time value. The assumptions on f, d and the delay are rather nonrestrictive, and several examples demonstrate that none of them can be omitted.

  12. Microbial aggregates in anaerobic wastewater treatment.

    PubMed

    Kosaric, N; Blaszczyk, R

    1990-01-01

    The phenomenon aggregation of anaerobic bacteria gives an opportunity to speed up the digestion rate during methanogenesis. The aggregates are mainly composed of methanogenic bacteria which convert acetate and H2/CO2 into methane. Other bacteria are also included in the aggregates but their concentration is rather small. The aggregates may also be formed during acetogenesis or even hydrolysis but such aggregates are not stable and disrupt quickly when not fed. A two stage process seems to be suitable when high concentrated solid waste must be treated. Special conditions are necessary to promote aggregate formation from methanogenic bacteria but aggregates once formed are stable without feeding even for a few years. The structure, texture and activity of bacterial aggregates depend on several parameters: (1)--temperature and pH, (2)--wastewater composition and (3)--hydrodynamic conditions within the reactor. The common influence of all these parameters is still rather unknown but some recommendations may be given. Temperature and pH should be maintained in the range which is optimal for methanogenic bacteria e.g. a temperature between 32 and 50 degrees C and a value pH between 6.5 and 7.5. Wastewaters should contain soluble wastes and the specific loading rate should be around one kgCOD(kgVSS)-1 d-1. The concentration of the elements influences aggregate composition and probably structure and texture. At high calcium concentration a change in the colour of the granules has been observed. Research is necessary to investigate the influence of other elements and organic toxicants on maintenance of the aggregates. Hydrodynamic conditions seem to influence the stability of the granules over long time periods. At low liquid stream rates, aggregates may starve and lysis within the aggregates is possible which results in hollowing of aggregates and their floating. At high liquid stream rates the aggregates may be disrupted and washed out of the reactor as a flocculent

  13. Consequences of C-terminal domains and N-terminal signal peptide deletions on LEKTI secretion, stability, and subcellular distribution.

    PubMed

    Jayakumar, Arumugam; Kang, Ya'an; Henderson, Ying; Mitsudo, Kenji; Liu, Xiaoling; Briggs, Katrina; Wang, Mary; Frederick, Mitchell J; El-Naggar, Adel K; Bebök, Zsuzsa; Clayman, Gary L

    2005-03-01

    The secretory lympho-epithelial Kazal-type-inhibitor (LEKTI) is synthesized as a pro-LEKTI protein containing an N-terminal signal peptide and 15 potentially inhibitory domains. This inhibitor is of special interest because of its pathophysiological importance for the severe congenital disease Netherton syndrome. We showed that LEKTI is a potent inhibitor of a family of serine proteinases involved in extracellular matrix remodeling and its expression is downregulated in head and neck squamous cell carcinomas. To assess the role of C-terminal domains and N-terminal signal peptide in LEKTI secretion, we constructed deletion mutants of LEKTI, expressed them in HEK 293T cells, and analyzed their secretion behavior, stability, subcellular distribution, and proteinase inhibitory function. Pro-LEKTI is processed and secreted into the medium. On the basis of partial N-terminal sequencing and immunoblotting, the cleavage products are ordered from amino- to carboxy-terminal as follows: 37, 40, and 60kDa. Inhibitors of furin lead to enhanced secretion of unprocessed LEKTI, suggesting that processing was not required for secretion. Deletion of the N-terminal signal peptide of pro-LEKTI caused altered distribution of LEKTI from endoplasmic reticulum (ER) to cytoplasm and markedly reduced its stability, consistent with its failure to become secreted into the medium. Interestingly, when we deleted the C-terminal domains, stable partial LEKTI (LD-1-6) accumulated and still retained its association with ER but was not secreted. Recombinant LD-1-6 specifically inhibited the trypsin activity. We conclude that N-terminal signal peptide is required for LEKTI import into ER and elements present in C-terminal domains may have a role in regulating LEKTI secretion. PMID:15680911

  14. The impact of agriculture terraces on soil organic matter, aggregate stability, water repellency and bulk density. A study in abandoned and active farms in the Sierra de Enguera, Eastern Spain.

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Burguet, Maria; Keesstra, Saskia; Prosdocimi, Massimo; Di Prima, Simone; Brevik, Erik; Novara, Agata; Jordan, Antonio; Tarolli, Paolo

    2016-04-01

    Soil erosion, land degradation, lack of organic matter, erodible soils, rock outcrops… are a consequence of the human abuse and misuse of the soil resources. And this is a worldwide environmental issue (Novara et al., 2011; Vanlauwe et al., 2015; Musinguzi et al., 2015; Pereira et al., 2015; Mwagno et al., 2016). Agriculture terraces are a strategy to reduce the soil erosion, improve the soil fertility and allow the ploughing (Cerdà et al., 2010; Li et al., 2014). Although this idea is well accepted there are few scientific evidences that demonstrate that soils in the terraced areas are more stable, fertile and sustainable that the soil in non terraced areas. In fact, the ploughing in comparison to the abandoned or not ploughed land results in the soil degradation (Lieskovský and Kenderessy, 2014; Gao et al., 2015; Parras-Alcántara et al., 2014). This is mainly due to the lack of vegetation that increase the surface runoff (Cerdà et al., 1998; Keesstra et al., 2007). And why is necessary to develop also in terraced landscapes soil erosion control strategies (Mekonnen et al., 2015a; Mekonnen et al., 2015b; Prosdocimi et al., 2016). Our objective was to assess the soil organic matter content (Walkley and Black, 1934), the soil bulk density (ring method), the aggregate stabilility (drop impact) and the water repellency (Water Drop Penetration Time test) in four study sites in the Sierra de Enguera. Two sites were terraced: one abandoned 40 years before the measurements and the other still active with olive crops. And two control sites non-terraced. We used the paired plot strategy to compare the impact of terracing and abandonment. At each site we collected randomly 50 soil samples at 0-2 cm, 4-6 and 8-10 cm depth. At each sampling point 100 WDPT measurements where carried out, and one sample for the bulk density, and one for the organic matter, and one for the soil aggregate stability were collected. The soil surface samples shown the largest differences. The

  15. The global distribution, abundance, and stability of SO2 on Io

    USGS Publications Warehouse

    McEwen, A.S.; Johnson, T.V.; Matson, D.L.; Soderblom, L.A.

    1988-01-01

    Sulfur dioxide distribution and abundances, bolometric hemispheric albedos, and passive surface temperatures on Io are modeled and mapped globally from Voyager multispectral mosaics, Earth-based spectra, and photometric descriptions. Photometric models indicate global average values for regolith porosity of 75-95% and macroscopic roughness with a mean slope angle of ~30??. Abundances of SO2 suggested by observations at uv-visible wavelengths and at 4.08 ??m are partially reconciled by intimate-mixing models; 30-50% SO2 coverage of the integral disk is indicated. Three major spectral end members, with continuous mixing, are recognized from the Voyager multispectral mosaics; one of these end members is identified as SO2. Intimate-mixing models with the three spectal end members are used to produce abundance maps for the optical surface; ~30% of Io's total optical surface consists of SO2. The SO2 is concentrated in the bright equatorial band and is relatively deficient in the region of Pele-type volcanic reuptions (long 240??-360??) and the polar regions. Temperatures are computed to vary over a 40??K range, at the same illumination angle, according to variations in surface bolometric hemispheric albedo. The brightest (and locally coldest) areas correspond to areas rich in SO2 and are concentrated in an equatorial band (??30?? lat), but many small cold patches occur elsewhere. These cold patches have radiative equilibrium temperatures ???120??K at the subsolar point, resulting in SO2 saturation vapor pressures ???10-8 bar. Midlatitude areas and the region of Pele-type plume eruptions are generally warmer (due to lower albedos). These results for surface temperatures and SO2 abundances and distribution support the regional coldtrapping model for the surface and atmospheric SO2 presented by F.P. Fanale, W.B. Banerdt, L.S. Elson, T.V. Johnson, and R.W. Zurek (1982, In Satellites of Jupiter (D. Morrison, Ed.), pp. 756-781, Univ. of Arizona Press, Tucson), although the

  16. Estimating spatially distributed soil water content at small watershed scales based on decomposition of temporal anomaly and time stability analysis

    NASA Astrophysics Data System (ADS)

    Hu, W.; Si, B. C.

    2016-02-01

    Soil water content (SWC) is crucial to rainfall-runoff response at the watershed scale. A model was used to decompose the spatiotemporal SWC into a time-stable pattern (i.e., temporal mean), a space-invariant temporal anomaly, and a space-variant temporal anomaly. The space-variant temporal anomaly was further decomposed using the empirical orthogonal function (EOF) for estimating spatially distributed SWC. This model was compared to a previous model that decomposes the spatiotemporal SWC into a spatial mean and a spatial anomaly, with the latter being further decomposed using the EOF. These two models are termed the temporal anomaly (TA) model and spatial anomaly (SA) model, respectively. We aimed to test the hypothesis that underlying (i.e., time-invariant) spatial patterns exist in the space-variant temporal anomaly at the small watershed scale, and to examine the advantages of the TA model over the SA model in terms of the estimation of spatially distributed SWC. For this purpose, a data set of near surface (0-0.2 m) and root zone (0-1.0 m) SWC, at a small watershed scale in the Canadian Prairies, was analyzed. Results showed that underlying spatial patterns exist in the space-variant temporal anomaly because of the permanent controls of static factors such as depth to the CaCO3 layer and organic carbon content. Combined with time stability analysis, the TA model improved the estimation of spatially distributed SWC over the SA model, especially for dry conditions. Further application of these two models demonstrated that the TA model outperformed the SA model at a hillslope in the Chinese Loess Plateau, but the performance of these two models in the GENCAI network (˜ 250 km2) in Italy was equivalent. The TA model can be used to construct a high-resolution distribution of SWC at small watershed scales from coarse-resolution remotely sensed SWC products.

  17. Stability or variation? Patterns of lactase gene and its enhancer region distributions in Brazilian Amerindians.

    PubMed

    Friedrich, Deise C; Callegari-Jacques, Sidia M; Petzl-Erler, M Luiza; Tsuneto, Luiza; Salzano, Francisco M; Hutz, Mara H

    2012-03-01

    Lactase persistence (LP) is the phenotypic trait in which lactase secretion is maintained during adulthood. LP is due to mutations in the LCT enhancer region, located 14-kb upstream of the gene. In Europeans, the -13910*T allele is associated with LP. In Africans this allele is rare while other mutations in this same region were related to LP. The LCT is highly polymorphic in human populations, but so far Brazilian Amerindians had not been investigated for these polymorphisms or for the presence of LP mutations. We describe the genetic diversity of the LCT region and the presence of LP enhancer mutations in four native Brazilian populations (Guarani-Kaiowá, Guarani-Ñandeva, Kaingang, and Xavante). Twelve polymorphisms were genotyped by PCR-based methods. The -13910*T allele varied from 0.5% in the Xavante to 7.6% in the Guarani-Ñandeva. These frequencies probably derive from European sources and they correlate with non-native admixture proportions previously estimated for these groups. But since admixture is virtually absent in the Xavante, we suggest that the presence of the LP allele could have been determined by a de novo mutation. No other mutations in the -14 kb enhancer region were found. The LCT was highly polymorphic in the present sample showing 15 haplotypes with a heterogeneous distribution among the four Amerindian populations. This diversity could be due to drift, as indicated by the neutrality test performed. PMID:22271590

  18. Environmental stability affects phenotypic evolution in a globally distributed marine picoplankton.

    PubMed

    Schaum, C-Elisa; Rost, Björn; Collins, Sinéad

    2016-01-01

    Marine phytoplankton can evolve rapidly when confronted with aspects of climate change because of their large population sizes and fast generation times. Despite this, the importance of environment fluctuations, a key feature of climate change, has received little attention-selection experiments with marine phytoplankton are usually carried out in stable environments and use single or few representatives of a species, genus or functional group. Here we investigate whether and by how much environmental fluctuations contribute to changes in ecologically important phytoplankton traits such as C:N ratios and cell size, and test the variability of changes in these traits within the globally distributed species Ostreococcus. We have evolved 16 physiologically distinct lineages of Ostreococcus at stable high CO2 (1031±87 μatm CO2, SH) and fluctuating high CO2 (1012±244 μatm CO2, FH) for 400 generations. We find that although both fluctuation and high CO2 drive evolution, FH-evolved lineages are smaller, have reduced C:N ratios and respond more strongly to further increases in CO2 than do SH-evolved lineages. This indicates that environmental fluctuations are an important factor to consider when predicting how the characteristics of future phytoplankton populations will have an impact on biogeochemical cycles and higher trophic levels in marine food webs. PMID:26125683

  19. On stability of cooperative and hereditary systems with a distributed delay

    NASA Astrophysics Data System (ADS)

    Berezansky, Leonid; Braverman, Elena

    2015-06-01

    We consider a system \\frac{dx}{dt}=r_1(t) G_1(x) [ \\inth_1(t)t f_1(y(s))~ds R1 (t,s) - x(t) ] , \\frac{dy}{dt}=r_2(t) G_2(y) [ \\inth_2(t)t f_2(x(s))~ds R2 (t,s) - y(t)] with increasing functions f1 and f2, which has at most one positive equilibrium. Here the values of the functions ri, Gi, fi are positive for positive arguments, the delays in the cooperative term can be distributed and unbounded, both systems with concentrated delays and integro-differential systems are a particular case of the considered system. Analyzing the relation of the functions f1 and f2, we obtain several possible scenarios of the global behaviour. They include the cases when all nontrivial positive solutions tend to the same attractor which can be the positive equilibrium, the origin or infinity. Another possibility is the dependency of asymptotics on the initial conditions: either solutions with large enough initial values tend to the equilibrium, while others tend to zero, or solutions with small enough initial values tend to the equilibrium, while others infinitely grow. In some sense solutions of the equation are intrinsically non-oscillatory: if both initial functions are less/greater than the equilibrium value, so is the solution for any positive time value. The paper continues the study of equations with monotone production functions initiated in Berezansky and Braverman (2013 Nonlinearity 26 2833-49).

  20. Aggregate structure, morphology and the effect of aggregation mechanisms on viscosity at elevated protein concentrations.

    PubMed

    Barnett, Gregory V; Qi, Wei; Amin, Samiul; Neil Lewis, E; Roberts, Christopher J

    2015-12-01

    Non-native aggregation is a common issue in a number of degenerative diseases and during manufacturing of protein-based therapeutics. There is a growing interest to monitor protein stability at intermediate to high protein concentrations, which are required for therapeutic dosing of subcutaneous injections. An understanding of the impact of protein structural changes and interactions on the protein aggregation mechanisms and resulting aggregate size and morphology may lead to improved strategies to reduce aggregation and solution viscosity. This report investigates non-native aggregation of a model protein, α-chymotrypsinogen, under accelerated conditions at elevated protein concentrations. Far-UV circular dichroism and Raman scattering show structural changes during aggregation. Size exclusion chromatography and laser light scattering are used to monitor the progression of aggregate growth and monomer loss. Monomer loss is concomitant with increased β-sheet structures as monomers are added to aggregates, which illustrate a transition from a native monomeric state to an aggregate state. Aggregates grow predominantly through monomer-addition, resulting in a semi-flexible polymer morphology. Analysis of aggregation growth kinetics shows that pH strongly affects the characteristic timescales for nucleation (τn) and growth (τg), while the initial protein concentration has only minor effects on τn or τg. Low-shear viscosity measurements follow a common scaling relationship between average aggregate molecular weight (Mw(agg)) and concentration (σ), which is consistent with semi-dilute polymer-solution theory. The results establish a link between aggregate growth mechanisms, which couple Mw(agg) and σ, to increases in solution viscosity even at these intermediate protein concentrations (less than 3w/v %). PMID:26284891

  1. Blocking temperature distribution and long-term stability of spin-valve structures with Mn-based antiferromagnets

    NASA Astrophysics Data System (ADS)

    Nozières, J. P.; Jaren, S.; Zhang, Y. B.; Zeltser, A.; Pentek, K.; Speriosu, V. S.

    2000-04-01

    We have determined the blocking temperature distribution Tb(T) in spin-valve sheet films with FeMn, IrMn, PtMn, NiMn and CrPdMn antiferromagnetic layers (AFM). We find a clear dependence of Tb(T) on the field applied during the measurement, which we link to the reversal state of the pinned layer through the torque applied on the AFM. Using fields large enough to fully reverse the pinned layer, NiMn and PtMn show little or no components of the blocking temperature below 150 °C, whereas both IrMn and CrPdMn (the latter in a "synthetic" AFM design) exhibit important low-temperature trailing edges of the distribution. Accelerated annealing experiments in a low reversed field equivalent to the self-demagnetizing field in a micron-size head allows us to access the time to failure and the failure activation energy from which the expected lifetime can be assessed. We find a general correlation between the expected lifetime and the fraction of loose (e.g., unblocked) AFM spins at any given temperature. Accordingly, only NiMn and PtMn are found to exhibit a sufficient long-term stability for disk-drive operations.

  2. Molecular level insights into thermally induced α-chymotrypsinogen A amyloid aggregation mechanism and semiflexible protofibril morphology.

    PubMed

    Zhang, Aming; Jordan, Jacob L; Ivanova, Magdalena I; Weiss, William F; Roberts, Christopher J; Fernandez, Erik J

    2010-12-14

    Understanding nonnative protein aggregation is critical not only to a number of amyloidosis disorders but also for the development of effective and safe biopharmaceuticals. In a series of previous studies [Weiss et al. (2007) Biophys. J. 93, 4392-4403; Andrews et al. (2007) Biochemistry 46, 7558-7571; Andrews et al. (2008) Biochemistry 47, 2397-2403], α-chymotrypsinogen A (aCgn) and bovine granulocyte colony stimulating factor (bG-CSF) have been shown to exhibit the kinetic and morphological features of other nonnative aggregating proteins at low pH and ionic strength. In this study, we investigated the structural mechanism of aCgn aggregation. The resultant aCgn aggregates were found to be soluble and exhibited semiflexible filamentous aggregate morphology under transmission electron microscopy. In addition, the filamentous aggregates were demonstrated to possess amyloid characteristics by both Congo red binding and X-ray diffraction. Peptide level hydrogen exchange (HX) analysis suggested that a buried native β-sheet comprised of three peptide segments (39-46, 51-64, and 106-114) reorganizes into the cross-β amyloid core of aCgn aggregates and that at least ∼50% of the sequence adopts a disordered structure in the aggregates. Furthermore, the equimolar, bimodal HX labeling distribution observed for three reported peptides (65-102, 160-180, and 229-245) suggested a heterogeneous assembly of two molecular conformations in aCgn aggregates. This demonstrates that extended β-sheet interactions typical of the amyloid are sufficiently strong that a relatively small fraction of polypeptide sequence can drive formation of filamentous aggregates even under conditions favoring colloidal stability. PMID:21067192

  3. Molecular Level Insights into Thermally Induced [alpha]-Chymotrypsinogen A Amyloid Aggregation Mechanism and Semiflexible Protofibril Morphology

    SciTech Connect

    Zhang, Aming; Jordan, Jacob L.; Ivanova, Magdalena I.; Weiss, IV., William F.; Roberts, Christopher J.; Fernandez, Erik J.

    2010-12-07

    Understanding nonnative protein aggregation is critical not only to a number of amyloidosis disorders but also for the development of effective and safe biopharmaceuticals. In a series of previous studies [Weiss et al. (2007) Biophys. J. 93, 4392-4403; Andrews et al. (2007) Biochemistry 46, 7558-7571; Andrews et al. (2008) Biochemistry 47, 2397-2403], {alpha}-chymotrypsinogen A (aCgn) and bovine granulocyte colony stimulating factor (bG-CSF) have been shown to exhibit the kinetic and morphological features of other nonnative aggregating proteins at low pH and ionic strength. In this study, we investigated the structural mechanism of aCgn aggregation. The resultant aCgn aggregates were found to be soluble and exhibited semiflexible filamentous aggregate morphology under transmission electron microscopy. In addition, the filamentous aggregates were demonstrated to possess amyloid characteristics by both Congo red binding and X-ray diffraction. Peptide level hydrogen exchange (HX) analysis suggested that a buried native {beta}-sheet comprised of three peptide segments (39-46, 51-64, and 106-114) reorganizes into the cross-{beta} amyloid core of aCgn aggregates and that at least 50% of the sequence adopts a disordered structure in the aggregates. Furthermore, the equimolar, bimodal HX labeling distribution observed for three reported peptides (65-102, 160-180, and 229-245) suggested a heterogeneous assembly of two molecular conformations in aCgn aggregates. This demonstrates that extended {beta}-sheet interactions typical of the amyloid are sufficiently strong that a relatively small fraction of polypeptide sequence can drive formation of filamentous aggregates even under conditions favoring colloidal stability.

  4. SPATIAL AGGREGATION IN A FOREST FLOOR INSECT DEPENDS ON SEASONAL CONGREGATION AND SCATTERING EFFECTS OF PREDATORS

    EPA Science Inventory

    Spatial aggregations arising from gregarious behavior are common in nature and have important implications for population dynamics, community stability, and conservation. However, the translation of aggregation behaviors into emergent properties of populations and communities de...

  5. Aggregation-induced reversal of transport distances of soil organic matter: are our balances correct?

    NASA Astrophysics Data System (ADS)

    Hu, Yaxian; Kuhn, Nikolaus

    2014-05-01

    The effect of soil erosion on global carbon cycling, especially as a source or sink of green-house gases (GHGs), is the subject of intense debate. The controversy arises mostly from the lack of information on the fate of eroded soil organic carbon (SOC) as it moves from the site of erosion to the site of longer-term deposition. This requires improved understanding the transport distances of eroded SOC, which is principally related to the settling velocities of sediment fractions that carry the eroded SOC. For aggregated soils, settling velocities are affected by their actual aggregate size rather than the mineral grain size distribution. Aggregate stability is, in turn, strongly influenced by soil organic matter. This study aims at identifying the effect of aggregation on the transport distances of eroded SOC and its susceptibility to mineralization after transport and deposition. A rainfall simulation was carried out on a silty loam soil. The eroded sediments were fractionated by a settling tube apparatus into six different size classes according to their settling velocities and likely transport distances. Weight, SOC concentration and instantaneous respiration rates of the fractions of the six classes were measured. Our results show that: 1) 41% of the eroded SOC was transported with coarse aggregates that would be likely re-distributed across landscapes; 2) erosion was prone to accelerate the mineralization of eroded organic carbon immediately after erosion, compared to undisturbed aggregates; 3) erosion might make a higher contribution to atmospheric CO2 than the estimation made without considering the effects of aggregation and extra SOC mineralization during transport.

  6. [The equation for platelet aggregation rate].

    PubMed

    Vrzheshch, P V; Verkhusha, V V; Varfolomeev, S D

    1990-01-01

    A platelet aggregation model in shear flow taking into account the kinetics of intercellular fibrinogen bond formation limited by aggregated platelets rotation time was considered. For this consideration the average duration of platelets interaction in flow with shear rate value G is shown to be pi/4G. One fibrinogen bond is sufficient to form a solid aggregate between two platelets. The equation for single platelets disappearance rate concerned with intercellular fibrinogen bond formation, stochastic character of bond distribution in collided platelets and hydrodynamically controlled interaction time was obtained. The Hill's approximation for the obtained aggregation rate dependences was suggested and appropriate constants were determined. The qualitative criterion of platelets aggregating systems behavior was introduced. PMID:2245229

  7. Environmentalism and natural aggregate mining

    USGS Publications Warehouse

    Drew, L.J.; Langer, W.H.; Sachs, J.S.

    2002-01-01

    Sustaining a developed economy and expanding a developing one require the use of large volumes of natural aggregate. Almost all human activity (commercial, recreational, or leisure) is transacted in or on facilities constructed from natural aggregate. In our urban and suburban worlds, we are almost totally dependent on supplies of water collected behind dams and transported through aqueducts made from concrete. Natural aggregate is essential to the facilities that produce energy-hydroelectric dams and coal-fired powerplants. Ironically, the utility created for mankind by the use of natural aggregate is rarely compared favorably with the environmental impacts of mining it. Instead, the empty quarries and pits are seen as large negative environmental consequences. At the root of this disassociation is the philosophy of environmentalism, which flavors our perceptions of the excavation, processing, and distribution of natural aggregate. The two end-member ideas in this philosophy are ecocentrism and anthropocentrism. Ecocentrism takes the position that the natural world is a organism whose arteries are the rivers-their flow must not be altered. The soil is another vital organ and must not be covered with concrete and asphalt. The motto of the ecocentrist is "man must live more lightly on the land." The anthropocentrist wants clean water and air and an uncluttered landscape for human use. Mining is allowed and even encouraged, but dust and noise from quarry and pit operations must be minimized. The large volume of truck traffic is viewed as a real menace to human life and should be regulated and isolated. The environmental problems that the producers of natural aggregate (crushed stone and sand and gravel) face today are mostly difficult social and political concerns associated with the large holes dug in the ground and the large volume of heavy truck traffic associated with quarry and pit operations. These concerns have increased in recent years as society's demand for

  8. The aggregation behavior and interactions of yak milk protein under thermal treatment.

    PubMed

    Wang, T T; Guo, Z W; Liu, Z P; Feng, Q Y; Wang, X L; Tian, Q; Ren, F Z; Mao, X Y

    2016-08-01

    The aggregation behavior and interactions of yak milk protein were investigated after heat treatments. Skim yak milk was heated at temperatures in the range of 65 to 95°C for 10 min. The results showed that the whey proteins in yak milk were denatured after heat treatment, especially at temperatures higher than 85°C. Sodium dodecyl sulfate-PAGE analysis indicated that heat treatment induced milk protein denaturation accompanied with aggregation to a certain extent. When the heating temperature was 75 and 85°C, the aggregation behavior of yak milk proteins was almost completely due to the formation of disulfide bonds, whereas denatured α-lactalbumin and β-lactoglobulin interacted with κ-casein. When yak milk was heated at 85 and 95°C, other noncovalent interactions were found between proteins including hydrophobic interactions. The particle size distributions and microstructures demonstrated that the heat stability of yak milk proteins was significantly lowered by heat treatment. When yak milk was heated at 65 and 75°C, no obvious changes were found in the particle size distribution and microstructures in yak milk. When the temperature was 85 and 95°C, the particle size distribution shifted to larger size trend and aggregates were visible in the heated yak milk. PMID:27209140

  9. Mesoscale Simulation of Asphaltene Aggregation.

    PubMed

    Wang, Jiang; Ferguson, Andrew L

    2016-08-18

    Asphaltenes constitute a heavy aromatic crude oil fraction with a propensity to aggregate and precipitate out of solution during petroleum processing. Aggregation is thought to proceed according to the Yen-Mullins hierarchy, but the molecular mechanisms underlying mesoscopic assembly remain poorly understood. By combining coarse-grained molecular models parametrized using all-atom data with high-performance GPU hardware, we have performed molecular dynamics simulations of the aggregation of hundreds of asphaltenes over microsecond time scales. Our simulations reveal a hierarchical self-assembly mechanism consistent with the Yen-Mullins model, but the details are sensitive and depend on asphaltene chemistry and environment. At low concentrations asphaltenes exist predominantly as dispersed monomers. Upon increasing concentration, we first observe parallel stacking into 1D rod-like nanoaggregates, followed by the formation of clusters of nanoaggregates associated by offset, T-shaped, and edge-edge stacking. Asphaltenes possessing long aliphatic side chains cannot form nanoaggregate clusters due to steric repulsions between their aliphatic coronae. At very high concentrations, we observe a porous percolating network of rod-like nanoaggregates suspended in a sea of interpenetrating aliphatic side chains with a fractal dimension of ∼2. The lifetime of the rod-like aggregates is described by an exponential distribution reflecting a dynamic equilibrium between coagulation and fragmentation. PMID:27455391

  10. Local aggregation characteristics of microscale blood flows

    NASA Astrophysics Data System (ADS)

    Kaliviotis, Efstathios; Sherwood, Joseph M.; Dusting, Jonathan; Balabani, Stavroula

    2015-11-01

    Erythrocyte aggregation (EA) is an important aspect of microvascular flows affecting blood flow and viscosity. Microscale blood flows have been studied extensively in recent years using computational and microfluidic based approaches. However, the relationship between the local structural characteristics of blood and the velocity field has not been quantified. We report simultaneous measurements of the local velocity, aggregation and haematocrit distributions of human erythrocytes flowing in a microchannel. EA was induced using Dextran and flows were imaged using brightfield microscopy. Local aggregation characteristics were investigated using statistical and edge-detection image processing techniques while velocity profiles were obtained using PIV algorithms. Aggregation intensity was found to strongly correlate with local variations in velocity in both the central and wall regions of the channel. The edge detection method showed that near the side wall large aggregates are associated with high local velocities and low local shear rates. In the central region large aggregates occurred in regions of low velocity and high erythrocyte concentration. The results demonstrate the combined effect of haematocrit and velocity distributions on local aggregation characteristics.

  11. Restructuring of Dust Aggregates in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Dominik, C.; Tielens, A. G. G. M.

    1996-01-01

    We discuss the results of a recent effort to analyze the mechanical stability of dust aggregates with a detailed model of the physical properties of a contact between grains. This model contains both elastic repulsion forces and attractive van der Waals/dipole/metallic forces along with a description of the energy dissipation due to rolling, sliding, and breaking of contacts. We find that (1) aggregates formed from single sized grains via Particle-Cluster-Aggregation remain fluffy, (2) collisions with other aggregates and with large grains may lead to compaction (3) the velocities of small grains and aggregates in the early solar nebula are too small to produce marked compaction as long as the aggregates are small, and (4) internal restructuring of aggregates is a potentially large sink of energy which could enable the sticking of large bodies even at collision velocities of the order of several hundred cm/s.

  12. Effect of geometry, static stability, and mass distribution on the tumbling characteristics of generic flying-wing models

    NASA Technical Reports Server (NTRS)

    Fremaux, C. M.; Vairo, D. M.; Whipple, R. D.

    1993-01-01

    Results from an investigation to determine the low-speed tumbling characteristics of twelve generic flying-wing models are summarized. There is a concern that airplanes with flying-wing planforms could inadvertently enter an out-of-control tumbling motion under certain conditions. The objectives of this investigation were to: 1) identify the geometric and mass-related parameters that cause flying wings to be capable of sustained tumbling, 2) analyze some of the driving mechanisms that cause tumbling, and 3) determine the feasibility of using computer simulations to predict the tumbling characteristics of flying wings. Free-tumble and free-to-pitch tests were conducted with dynamically-scaled, generic flying wing models. The use of computer simulations as a predictive tool for tumbling was explored. Results indicated that center-of-gravity location, mass distribution, and geometric aspect ratio strongly affected the tumbling characteristics of the models tested and that positive static stability did not necessarily preclude tumbling. The magnitude of dynamic effects were found to be of the same order as static effects for the models undergoing autorotation-in-pitch. The simulations indicated that the dynamic terms in the equations of motion used to predict tumbling must be obtained using experimental methods that account for the large amplitude/high pitch-rate environment that characterizes tumbling.

  13. 21 CFR 1303.11 - Aggregate production quotas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Aggregate production quotas. 1303.11 Section 1303.11 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE QUOTAS Aggregate Production... manufacturing and for inventory purposes, yield and stability problems, potential disruptions to...

  14. BANK STABILIZATION, SHORELINE LAND-USE, AND THE DISTRIBUTION OF LARGE WOODY DEBRIS IN A REGULATED REACH OF THE UPPER MISSOURI RIVER, NORTH DAKOTA, USA

    EPA Science Inventory

    Large woody debris (LWD) is an important component of ecosystem function in floodplain rivers. We examined the effects on LWD distribution of shoreline land use, bank stabilization, local channel geomorphology, and distance from the dam in the Garrison Reach, a regulated reach of...

  15. CONTINUOUS MULTILIGAND DISTRIBUTION MODEL USED TO PREDICT THE STABILITY CONSTANT OF CU(II) METAL COMPLEXATION WITH HUMIC MATERIAL FROM FLUORESCENCE QUENCHING DATA

    EPA Science Inventory

    We report the use of a pH-dependent continuous multiligand distribution model to determine the stability constant between Cu(II) and dissolved humic material. luorescence quenching of the humic material by Cu(II) is used to produce spectral titration curves. he values form the ti...

  16. The Filter Imager SuFI and the Image Stabilization and Light Distribution System ISLiD of the Sunrise Balloon-Borne Observatory: Instrument Description

    NASA Astrophysics Data System (ADS)

    Gandorfer, A.; Grauf, B.; Barthol, P.; Riethmüller, T. L.; Solanki, S. K.; Chares, B.; Deutsch, W.; Ebert, S.; Feller, A.; Germerott, D.; Heerlein, K.; Heinrichs, J.; Hirche, D.; Hirzberger, J.; Kolleck, M.; Meller, R.; Müller, R.; Schäfer, R.; Tomasch, G.; Knölker, M.; Martínez Pillet, V.; Bonet, J. A.; Schmidt, W.; Berkefeld, T.; Feger, B.; Heidecke, F.; Soltau, D.; Tischenberg, A.; Fischer, A.; Title, A.; Anwand, H.; Schmidt, E.

    2011-01-01

    We describe the design of the Sunrise Filter Imager (SuFI) and the Image Stabilization and Light Distribution (ISLiD) unit onboard the Sunrise balloon borne solar observatory. This contribution provides the necessary information which is relevant to understand the instruments' working principles, the relevant technical data, and the necessary information about calibration issues directly related to the science data.

  17. Impact of Particle Aggregation on Nanoparticle Reactivity

    NASA Astrophysics Data System (ADS)

    Jassby, David

    2011-12-01

    nanoparticle that photoluminesces after exposure to UV; TiO2 and ZnO nanoparticles---photocatalytic nanoparticles that generate reactive oxygen species upon UV irradition; and, fullerene nanoparticles used in the filtration experiments, selected for their potential use, small size, and surface chemistry. Our primary methods used to characterize particle and aggregate characteristics include dynamic light scattering used to describe particle size, static light scattering used to characterize aggregate structure (fractal dimension), transmission electron microscopy used to verify primary particle sizes, and electrophoretic mobility measurements to evaluate suspension stability. The reactive property of ZnS that was measured as a function of aggregation was photoluminescence, which was measured using a spectrofluorometer. The reactive property of TiO2 and ZnO that was studied was their ability to generate hydroxyl radicals; these were measured by employing a fluorescent probe that becomes luminescent upon interaction with the hydroxyl radical. To detect the presence of fullerene nanoparticles and calculate removal efficiencies, we used total organic carbon measurements. Additionally, we used UV-vis spectroscopy to approximate the impact of particle shadowing in TiO2 and ZnO aggregates, and Fourier transformed infrared spectroscopy to determine how different electrolytes interact with fullerene surface groups. Our findings indicate that the impact of aggregation on nanoparticle reactivity is material specific. ZnS nanoparticles exhibit a 2-fold increase in band-edge photoluminescence alongside a significant decrease in defect-site photoluminescence. This is attributed to aggregate size-dependent surface tension. Additionally, we used photoluminescence measurements to develop a new method for calculating the critical coagulation concentration of a nanoparticle suspension. The ability of both TiO2 and ZnO to generate hydroxyl radicals was significantly hampered by aggregation. The

  18. Perspectives on Preference Aggregation.

    PubMed

    Regenwetter, Michel

    2009-07-01

    For centuries, the mathematical aggregation of preferences by groups, organizations, or society itself has received keen interdisciplinary attention. Extensive theoretical work in economics and political science throughout the second half of the 20th century has highlighted the idea that competing notions of rational social choice intrinsically contradict each other. This has led some researchers to consider coherent democratic decision making to be a mathematical impossibility. Recent empirical work in psychology qualifies that view. This nontechnical review sketches a quantitative research paradigm for the behavioral investigation of mathematical social choice rules on real ballots, experimental choices, or attitudinal survey data. The article poses a series of open questions. Some classical work sometimes makes assumptions about voter preferences that are descriptively invalid. Do such technical assumptions lead the theory astray? How can empirical work inform the formulation of meaningful theoretical primitives? Classical "impossibility results" leverage the fact that certain desirable mathematical properties logically cannot hold in all conceivable electorates. Do these properties nonetheless hold true in empirical distributions of preferences? Will future behavioral analyses continue to contradict the expectations of established theory? Under what conditions do competing consensus methods yield identical outcomes and why do they do so? PMID:26158988

  19. Aggregations in Flatworms.

    ERIC Educational Resources Information Center

    Liffen, C. L.; Hunter, M.

    1980-01-01

    Described is a school project to investigate aggregations in flatworms which may be influenced by light intensity, temperature, and some form of chemical stimulus released by already aggregating flatworms. Such investigations could be adopted to suit many educational levels of science laboratory activities. (DS)

  20. Classification and Characterization of Therapeutic Antibody Aggregates

    PubMed Central

    Joubert, Marisa K.; Luo, Quanzhou; Nashed-Samuel, Yasser; Wypych, Jette; Narhi, Linda O.

    2011-01-01

    A host of diverse stress techniques was applied to a monoclonal antibody (IgG2) to yield protein particles with varying attributes and morphologies. Aggregated solutions were evaluated for percent aggregation, particle counts, size distribution, morphology, changes in secondary and tertiary structure, surface hydrophobicity, metal content, and reversibility. Chemical modifications were also identified in a separate report (Luo, Q., Joubert, M. K., Stevenson, R., Narhi, L. O., and Wypych, J. (2011) J. Biol. Chem. 286, 25134–25144). Aggregates were categorized into seven discrete classes, based on the traits described. Several additional molecules (from the IgG1 and IgG2 subtypes as well as intravenous IgG) were stressed and found to be defined with the same classification system. The mechanism of protein aggregation and the type of aggregate formed depends on the nature of the stress applied. Different IgG molecules appear to aggregate by a similar mechanism under the same applied stress. Aggregates created by harsh mechanical stress showed the largest number of subvisible particles, and the class generated by thermal stress displayed the largest number of visible particles. Most classes showed a disruption of the higher order structure, with the degree of disorder depending on the stress process. Particles in all classes (except thermal stress) were at least partially reversible upon dilution in pH 5 buffer. High copper content was detected in isolated metal-catalyzed aggregates, a stress previously shown to produce immunogenic aggregates. In conclusion, protein aggregates can be a very heterogeneous population, whose qualities are the result of the type of stress that was experienced. PMID:21454532

  1. Evaluation of stability and size distribution of sunflower oil-coated micro bubbles for localized drug delivery

    PubMed Central

    2012-01-01

    Background Micro bubbles were initially introduced as contrast agents for ultrasound examinations as they are able to modify the signal-to-noise ratio in imaging, thus improving the assessment of clinical information on human tissue. Recent developments have demonstrated the feasibility of using these bubbles as drug carriers in localized delivery. In micro fluidics devices for generation of micro bubbles, the bubbles are formed at interface of liquid gas through a strangulation process. A device that uses these features can produce micro bubbles with small size dispersion in a single step. Methods A T-junction micro fluidic device constructed using 3D prototyping was made for the production of mono dispersed micro bubbles. These micro bubbles use sunflower oil as a lipid layer. Stability studies for micro bubbles with diameters different generated from a liquid phase of the same viscosity were conducted to evaluate whether micro bubbles can be used as drug carriers. The biocompatibility of coating layer, the ability to withstand environmental pressure variations combined with echogenicity, are key factors that they can safely play the role of drug transporters. Results The normal distribution curve with small dispersion of the diameter of bubbles validates the process of generating micro bubbles with low value of variation coefficient, i.e., 0.381 at 1.90%. The results also showed the feasibility of using sunflower oil as the lipid matrix with stable population of bubbles over 217 minutes for micro bubbles with an average diameter of 313.04 μm and 121 minutes for micro bubbles with an average diameter of 73.74 μm, considering bubbles with air as gaseous phase. Conclusion The results indicate that the micro fluidic device designed can be used for producing micro bubbles with low variation coefficient using sunflower oil as a coating of micro bubbles. These carriers were stable for periods of time that are long enough for clinical applications even when regular

  2. Ion chamber absorbed dose calibration coefficients, N{sub D,w}, measured at ADCLs: Distribution analysis and stability

    SciTech Connect

    Muir, B. R.

    2015-04-15

    Purpose: To analyze absorbed dose calibration coefficients, N{sub D,w}, measured at accredited dosimetry calibration laboratories (ADCLs) for client ionization chambers to study (i) variability among N{sub D,w} coefficients for chambers of the same type calibrated at each ADCL to investigate ion chamber volume fluctuations and chamber manufacturing tolerances; (ii) equivalency of ion chamber calibration coefficients measured at different ADCLs by intercomparing N{sub D,w} coefficients for chambers of the same type; and (iii) the long-term stability of N{sub D,w} coefficients for different chamber types by investigating repeated chamber calibrations. Methods: Large samples of N{sub D,w} coefficients for several chamber types measured over the time period between 1998 and 2014 were obtained from the three ADCLs operating in the United States. These are analyzed using various graphical and numerical statistical tests for the four chamber types with the largest samples of calibration coefficients to investigate (i) and (ii) above. Ratios of calibration coefficients for the same chamber, typically obtained two years apart, are calculated to investigate (iii) above and chambers with standard deviations of old/new ratios less than 0.3% meet stability requirements for accurate reference dosimetry recommended in dosimetry protocols. Results: It is found that N{sub D,w} coefficients for a given chamber type compared among different ADCLs may arise from differing probability distributions potentially due to slight differences in calibration procedures and/or the transfer of the primary standard. However, average N{sub D,w} coefficients from different ADCLs for given chamber types are very close with percent differences generally less than 0.2% for Farmer-type chambers and are well within reported uncertainties. Conclusions: The close agreement among calibrations performed at different ADCLs reaffirms the Calibration Laboratory Accreditation Subcommittee process of ensuring

  3. The Applicability of the Distribution Coefficient, KD, Based on Non-Aggregated Particulate Samples from Lakes with Low Suspended Solids Concentrations

    PubMed Central

    Gormley-Gallagher, Aine Marie; Douglas, Richard William; Rippey, Brian

    2015-01-01

    Separate phases of metal partitioning behaviour in freshwater lakes that receive varying degrees of atmospheric contamination and have low concentrations of suspended solids were investigated to determine the applicability of the distribution coefficient, KD. Concentrations of Pb, Ni, Co, Cu, Cd, Cr, Hg and Mn were determined using a combination of filtration methods, bulk sample collection and digestion and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Phytoplankton biomass, suspended solids concentrations and the organic content of the sediment were also analysed. By distinguishing between the phytoplankton and (inorganic) lake sediment, transient variations in KD were observed. Suspended solids concentrations over the 6-month sampling campaign showed no correlation with the KD (n = 15 for each metal, p > 0.05) for Mn (r2 = 0.0063), Cu (r2 = 0.0002, Cr (r2 = 0.021), Ni (r2 = 0.0023), Cd (r2 = 0.00001), Co (r2 = 0.096), Hg (r2 = 0.116) or Pb (r2 = 0.164). The results implied that colloidal matter had less opportunity to increase the dissolved (filter passing) fraction, which inhibited the spurious lowering of KD. The findings conform to the increasingly documented theory that the use of KD in modelling may mask true information on metal partitioning behaviour. The root mean square error of prediction between the directly measured total metal concentrations and those modelled based on the separate phase fractions were ± 3.40, 0.06, 0.02, 0.03, 0.44, 484.31, 80.97 and 0.1 μg/L for Pb, Cd, Mn, Cu, Hg, Ni, Cr and Co respectively. The magnitude of error suggests that the separate phase models for Mn and Cu can be used in distribution or partitioning models for these metals in lake water. PMID:26200885

  4. Characterization of Ovine Dermal Papilla Cell Aggregation

    PubMed Central

    Sari, Agnes Rosarina Prita; Rufaut, Nicholas Wolfgang; Jones, Leslie Norman; Sinclair, Rodney Daniel

    2016-01-01

    Context: The dermal papilla (DP) is a condensation of mesenchymal cells at the proximal end of the hair follicle, which determines hair shaft size and regulates matrix cell proliferation and differentiation. DP cells have the ability to regenerate new hair follicles. These cells tend to aggregate both in vitro and in vivo. This tendency is associated with the ability of papilla cells to induce hair growth. However, human papilla cells lose their hair-inducing activity in later passage number. Ovine DP cells are different from human DP cells since they do not lose their aggregative behavior or hair-inducing activity in culture. Nonetheless, our understanding of ovine DP cells is still limited. Aim: The aim of this study was to observe the expression of established DP markers in ovine cells and their association with aggregation. Subjects and Methods: Ovine DP cells from three different sheep were compared. Histochemistry, immunoflourescence, and polymerase chain reaction experiments were done to analyze the DP markers. Results: We found that ovine DP aggregates expressed all the 16 markers evaluated, including alkaline phosphatase and versican. Expression of the versican V0 and V3 isoforms, neural cell adhesion molecule, and corin was increased significantly with aggregation, while hey-1 expression was significantly decreased. Conclusions: Overall, the stable expression of numerous markers suggests that aggregating ovine DP cells have a similar phenotype to papillae in vivo. The stability of their molecular phenotype is consistent with their robust aggregative behavior and retained follicle-inducing activity after prolonged culture. Their phenotypic stability in culture contrasts with DP cells from other species, and suggests that a better understanding of ovine DP cells might provide opportunities to improve the hair-inducing activity and therapeutic potential of human cells. PMID:27625564

  5. Charged Dust Aggregate Interactions

    NASA Astrophysics Data System (ADS)

    Matthews, Lorin; Hyde, Truell

    2015-11-01

    A proper understanding of the behavior of dust particle aggregates immersed in a complex plasma first requires a knowledge of the basic properties of the system. Among the most important of these are the net electrostatic charge and higher multipole moments on the dust aggregate as well as the manner in which the aggregate interacts with the local electrostatic fields. The formation of elongated, fractal-like aggregates levitating in the sheath electric field of a weakly ionized RF generated plasma discharge has recently been observed experimentally. The resulting data has shown that as aggregates approach one another, they can both accelerate and rotate. At equilibrium, aggregates are observed to levitate with regular spacing, rotating about their long axis aligned parallel to the sheath electric field. Since gas drag tends to slow any such rotation, energy must be constantly fed into the system in order to sustain it. A numerical model designed to analyze this motion provides both the electrostatic charge and higher multipole moments of the aggregate while including the forces due to thermophoresis, neutral gas drag, and the ion wakefield. This model will be used to investigate the ambient conditions leading to the observed interactions. This research is funded by NSF Grant 1414523.

  6. Aggregation of commercial heparin samples in storage.

    PubMed

    Racey, T J; Rochon, P; Awang, D V; Neville, G A

    1987-04-01

    The size distribution of heparin aggregates in commercial heparin preparations was examined with the technique of quasi-elastic light scattering. The size distributions were initially examined to determine if any relationship existed between the physical state of the heparin preparation, its age, and its biological activity. It was found that commercial heparin samples change their aggregation state in storage. The amount of aggregation appears to be related to the amount of time in storage and to the storage history. Storage of the samples under conditions of refrigeration and handling represents the storage history that most noticeably increases the aggregation state of the heparin preparations. These aggregates, once formed, appear to be stable. The biological activity of the heparin samples (as measured by the official test) was found to still fall within the accepted limits, independent of the aggregation state of the samples. It is not known what effect, if any, a change in the physical state of the commercial preparation should have on its biological activity. PMID:3598891

  7. The Effect of Mass Distribution on the Lateral Stability and Control Characteristics of an Airplane as Determined by Tests of a Model in the Free-flight Tunnel

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Seacord, Charles L , Jr

    1943-01-01

    The effects of mass distribution on lateral stability and control characteristics of an airplane have been determined by flight tests of a model in the NACA free-flight tunnel. In the investigation, the rolling and yawing moments of inertia were increased from normal values to values up to five times normal. For each moment-of-inertia condition, combinations of dihedral and vertical-tail area representing a variety of airplane configurations were tested. The results of the flight tests of the model were correlated with calculated stability and control characteristics and, in general, good agreement was obtained.

  8. Extension of the spectral element method for stability analysis of time-periodic delay-differential equations with multiple and distributed delays

    NASA Astrophysics Data System (ADS)

    Lehotzky, David; Insperger, Tamas; Stepan, Gabor

    2016-06-01

    The spectral element method was introduced by Khasawneh and Mann (2013) for the stability analysis of time-periodic delay-differential equations (DDEs) with multiple delays. In this paper, this method is generalized for time-periodic DDEs with multiple delays and distributed delay. For this general case, an explicit formula is given for the construction of the matrix approximation of the monodromy operator. The derived formula enables the algorithmic application of the method to DDEs with general combinations of delays for arbitrary point sets and test functions. Stability analysis is demonstrated for specific case studies, and the computation code is provided for a complex example.

  9. Optical Properties and Aggregation of Graphene Nanoplatelets.

    PubMed

    Melezhyk, A V; Kotov, V A; Tkachev, A G

    2016-01-01

    In the present paper, the optical density of dispersions of randomly oriented multilayer graphene nanoplatelets (GNPs) was estimated. Calculated and experimental data were compared for aqueous GNP dispersions stabilized with various surfactants. It was shown that the sonication of an expanded graphite compound (EGC) in aqueous surfactant solutions leads to the transformation of EGC worm-like particles into weak GNP aggregates which are able to pass into solution upon dilution and agitation of the system. They may be filtered and washed out of surfactants. The concentrated GNP dispersions containing these weak aggregates can be used to synthesize different graphene-based nanostructures and obtain novel composite materials. PMID:27398570

  10. Development of a wavelength-stabilized distributed bragg reflector laser diode to the Cs-D2 line for field use in accurate geophysical measurements.

    PubMed

    Hori, Teruhito; Araya, Akito; Moriwaki, Shigenori; Mio, Norikatsu

    2007-02-01

    We have developed a wavelength-stabilized laser diode (LD) for geophysical measurement devices, which benefit from the uniformity of laser light. Regarding this purpose, a system that has such characteristics as low power consumption, sturdiness against mechanical disturbances, and a long life with long-term frequency stability is especially required. Therefore, we adopt as the light source a distributed Bragg reflector (DBR) LD because it has various advantages concerning such properties. This paper describes the durable and compact wavelength-stabilized laser system. Since our DBR-LD oscillates at 852 nm, we selected the Cs-D2 line (6 2S1/2-6 2P3/2 transition) as a frequency reference to obtain a long-term stability in wavelength. Stabilization is performed by a feedback system using a modulation transfer (MT) method, which is a kind of Doppler-free saturated absorption spectroscopy, to acquire a saturated absorption signal with a high signal-to-noise ratio. Using this system, we could continuously lock the laser frequency to the hyperfine component of the Cs-D2 line for more than one week. By an Allan standard deviation measurement, the uncertainty of the stabilized laser frequency was found to be better than 1 x 10(-10) (<40 kHz) in a Gatetime region longer than 100 s. PMID:17578154

  11. Aggregate and the environment

    USGS Publications Warehouse

    Langer, William H.; Drew, Lawrence J.; Sachs, J.S.

    2004-01-01

    This book is designed to help you understand our aggregate resources-their importance, where they come from, how they are processed for our use, the environmental concerns related to their mining and processing, how those concerns are addressed, and the policies and regulations designed to safeguard workers, neighbors, and the environment from the negative impacts of aggregate mining. We hope this understanding will help prepare you to be involved in decisions that need to be made-individually and as a society-to be good stewards of our aggregate resources and our living planet.

  12. Asphaltene Aggregation and Fouling Behavior

    NASA Astrophysics Data System (ADS)

    Derakhshesh, Marzie

    This thesis explored the properties of asphaltene nano-aggregates in crude oil and toluene based solutions and fouling at process furnace temperatures, and the links between these two phenomena. The link between stability of asphaltenes at ambient conditions and fouling at the conditions of a delayed coker furnace, at over 450 °C, was examined by blending crude oil with an aliphatic diluent in different ratios. The stability of the blends were measured using a S-value analyzer, then fouling rates were measured on electrically heated stainless steel 316 wires in an autoclave reactor. The less stable the blend, the greater the rate and extent of fouling. The most severe fouling occurred with the unstable asphaltenes. SEM imaging of the foulant illustrates very different textures, with the structure becoming more porous with lower stability. Under cross-polarized light, the coke shows the presence of mesophase in the foulant layer. These data suggest a correlation between the fouling rate at high temperature furnace conditions and the stability index of the crude oil. Three organic polysulfides were introduced to the crude oil to examine their effect on fouling. The polysulfides are able to reduce coking and carbon monoxide generation in steam crackers. The fouling results demonstrated that polysulfide with more sulfur content increased the amount of corrosion-fouling of the wire. Various additives, solvents, ultrasound, and heat were employed to attempt to completely disaggregate the asphaltene nano-aggregates in solution at room temperature. The primary analytical technique used to monitor the nano-aggregation state of the asphaltenes in solution was the UV-visible spectroscopy. The results indicate that stronger solvents, such as pyridine and quinoline, combined with ionic liquids yield a slight reduction in the apparent absorbance at longer wavelengths, indicative of a decrease in the nano-aggregate size although the magnitude of the decrease is not significant

  13. Volcanic ash aggregation in the lab - can we mimic natural processes?

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Jacob, Michael; Ayris, Paul; Cimarelli, Corrado; Dingwell, Donald B.; Guttzeit, Melanie; Hess, Kai-Uwe; Walter, Ulrich

    2015-04-01

    Explosive volcanic eruptions release large amounts of particles into the atmosphere. Volcanic ash, by definition pyroclasts smaller than 2 mm, can be distributed around the globe by prevailing winds. Ash poses hazards to aviation industry by melting in jet turbines, to human health by entering respiration systems and to society by damaging infrastructure. Under certain circumstances, ash particles can cluster together and build ash aggregates. Aggregates range in size from few mm to few cm and may exhibit complex internal stratigraphy. During growth, weight, density and aerodynamic properties change, leading to a significantly different settling behavior compared to individual ash particles. Although ash aggregation has been frequently observed in the geologic record, the physical and chemical mechanisms generating the aggregates remain poorly understood. During several field campaigns, we collected numerous ash aggregates and analyzed their textural, chemical and mechanical properties. Based on this knowledge, we have designed experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH, Germany. In this device, a continuous fluidized bed can be applied on solid particles and simulate gas-particle flow conditions as they would be expected in volcanic plumes or pyroclastic density currents. The geological record and direct observations have shown that both processes are capable of producing ash aggregates. As starting material we used Na-glass beads as an analogue and volcanic ash from Laacher See Volcano, Eifel Volcanic Field, Germany. We define parameters such as grainsize, specific surface area and concentration of the starting material, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase to influence form, size, stability and production rate of aggregates. We were able to experimentally produce round, unstructured ash pellets up to 5mm in diameter. A detailed textural description highlights

  14. Scaling of the kinetics of slow aggregation and gel formation for a fluorinated polymer colloid.

    PubMed

    Sandkühler, Peter; Sefcik, Jan; Morbidelli, Massimo

    2005-03-01

    The aggregation and gelation kinetics in moderately concentrated (0.004 aggregation was adjusted to proceed slowly enough to allow a convenient characterization of the kinetics through static and dynamic light scattering on quenched and diluted samples. A population balance model based on second-order aggregation rates is developed to compute the time evolution of the cluster mass distribution, from which we calculate the values of the average radii and structure factor measured by light scattering, so as to allow a direct comparison between measured and calculated quantities. The model suggests the introduction of a dimensionless time which allows the scaling of all the aggregation data on unique master curves defined by only two parameters: the exponent of the power-law aggregation kernel, lambda, and the aggregate fractal dimension, d(f). The predicted master curves were observed experimentally, which confirms the validity of the aggregation model and allows the unique determination of the kinetic and structural parameters of the aggregation process. The cluster growth behavior, although significantly slower than DLCA, shows power-law kinetics rather than the exponential one typical of RLCA and the cluster structure is characterized by an unexpectedly small fractal dimension, d(f) = 1.7. The occurrence of gelation has been characterized using small amplitude oscillatory shearing to monitor the time evolution of the elastic modulus. It is found that also these curves, together with the gel time value, scale with the stability ratio of primary particles for a given solid volume fraction. We further use the model to calculate the cumulative occupied volume fraction of the growing aggregates and quantify in this way the increasing space filling, which is solid volume fraction dependent. The experimentally determined dimensionless gel times, which are also solid volume

  15. Aggregation of Antibody Drug Conjugates at Room Temperature: SAXS and Light Scattering Evidence for Colloidal Instability of a Specific Subpopulation.

    PubMed

    Frka-Petesic, B; Zanchi, D; Martin, N; Carayon, S; Huille, S; Tribet, C

    2016-05-17

    Coupling a hydrophobic drug onto monoclonal antibodies via lysine residues is a common route to prepare antibody-drug conjugates (ADC), a promising class of biotherapeutics. But a few chemical modifications on protein surface often increase aggregation propensity, without a clear understanding of the aggregation mechanisms at stake (loss of colloidal stability, self-assemblies, denaturation, etc.), and the statistical nature of conjugation introduces polydispersity in the ADC population, which raises questions on whether the whole ADC population becomes unstable. To characterize the average interactions between ADC, we monitored small-angle X-ray scattering in solutions of monoclonal IgG1 human antibody drug conjugate, with average degree of conjugation of 0, 2, or 3 drug molecules per protein. To characterize stability, we studied the kinetics of aggregation at room temperature. The intrinsic Fuchs stability ratio of the ADC was estimated from the variation over time of scattered light intensity and hydrodynamic radius, in buffers of varying pH, and at diverse sucrose (0% or 10%) and NaCl (0 or 100 mM) concentrations. We show that stable ADC stock solutions became unstable upon pH shift, well below the pH of maximum average attraction between IgGs. Data indicate that aggregation can be ascribed to a fraction of ADC population usually representing less than 30 mol % of the sample. In contrast to the case of (monodisperse) monoclonal antibodies, our results suggest that a poor correlation between stability and average interaction parameters should be expected as a corollary of dispersity of ADC conjugation. In practice, the most unstable fraction of the ADC population can be removed by filtration, which affects remarkably the apparent stability of the samples. Finally, the lack of correlation between the kinetic stability and variations of the average inter-ADC interactions is tentatively attributed to the uneven nature of charge distributions and the presence of

  16. Protein Colloidal Aggregation Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    To investigate the pathways and kinetics of protein aggregation to allow accurate predictive modeling of the process and evaluation of potential inhibitors to prevalent diseases including cataract formation, chronic traumatic encephalopathy, Alzheimer's Disease, Parkinson's Disease and others.

  17. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces

    PubMed Central

    Monier, J.-M.; Lindow, S. E.

    2003-01-01

    The survival of individual Pseudomonas syringae cells was determined on bean leaf surfaces maintained under humid conditions or periodically exposed to desiccation stress. Cells of P. syringae strain B728a harboring a GFP marker gene were visualized by epifluorescence microscopy, either directly in situ or after recovery from leaves, and dead cells were identified as those that were stained with propidium iodide in such populations. Under moist, conducive conditions on plants, the proportion of total live cells was always high, irrespective of their aggregated state. In contrast, the proportion of the total cells that remained alive on leaves that were periodically exposed to desiccation stress decreased through time and was only ≈15% after 5 days. However, the fraction of cells in large aggregates that were alive on such plants in both condition was much higher than more solitary cells. Immediately after inoculation, cells were randomly distributed over the leaf surface and no aggregates were observed. However, a very aggregated pattern of colonization was apparent within 7 days, and >90% of the living cells were located in aggregates of 100 cells or more. Our results strongly suggest that, although conducive conditions favor aggregate formation, such cells are much more capable of tolerating environmental stresses, and the preferential survival of cells in aggregates promotes a highly clustered spatial distribution of bacteria on leaf surfaces. PMID:14665692

  18. In Situ Observation of Hematite Nanoparticle Aggregates Using Liquid Cell Transmission Electron Microscopy.

    PubMed

    Liu, Juan; Wang, Zhiwei; Sheng, Anxu; Liu, Feng; Qin, Fuyu; Wang, Zhong Lin

    2016-06-01

    Aggregation of nanoparticles impacts their reactivity, stability, transport, and fate in aqueous environments, but limited methods are available to characterize structural features and movement of aggregates in liquid. Here, liquid cell transmission electron microscopy (LCTEM) was utilized to directly observe the size, morphology, and motion of aggregates that were composed of 9 and 36 nm hematite nanoparticles, respectively, in water or NaCl solution. When mass concentrations were same, the aggregates of 9 nm nanoparticles were statistically more compact and slightly larger than those of 36 nm nanoparticles. Aggregates in both samples were typically nonspherical. Increasing ionic strength resulted in larger aggregates, and also enhanced the stability of aggregates under electron-beam irradiation. In water, small aggregates moved randomly and approached repeatedly to large aggregates before final attachment. In NaCl solution, small aggregates moved directly toward large aggregates and attached to the latter quickly. This observation provided a direct confirmation of the DLVO theory that the energy barrier to aggregation is higher in water than in salt solutions. This study not only presented the influences of particle size and ionic strength on aggregation state, but also demonstrated that LCTEM is a promising method to link aggregation state to dynamic processes of nanoparticles. PMID:27127831

  19. Simulations of kinetically irreversible protein aggregate structure.

    PubMed Central

    Patro, S Y; Przybycien, T M

    1994-01-01

    We have simulated the structure of kinetically irreversible protein aggregates in two-dimensional space using a lattice-based Monte-Carlo routine. Our model specifically accounts for the intermolecular interactions between hydrophobic and hydrophilic protein surfaces and a polar solvent. The simulations provide information about the aggregate density, the types of inter-monomer contacts and solvent content within the aggregates, the type and extent of solvent exposed perimeter, and the short- and long-range order all as a function of (i) the extent of monomer hydrophobic surface area and its distribution on the model protein surface and (ii) the magnitude of the hydrophobic-hydrophobic contact energy. An increase in the extent of monomer hydrophobic surface area resulted in increased aggregate densities with concomitant decreased system free energies. These effects are accompanied by increases in the number of hydrophobic-hydrophobic contacts and decreases in the solvent-exposed hydrophobic surface area of the aggregates. Grouping monomer hydrophobic surfaces in a single contiguous stretch resulted in lower aggregate densities and lower short range order. More favorable hydrophobic-hydrophobic contact energies produced structures with higher densities but the number of unfavorable protein-protein contacts was also observed to increase; greater configurational entropy produced the opposite effect. Properties predicted by our model are in good qualitative agreement with available experimental observations. Images FIGURE 6 FIGURE 13 PMID:8061184

  20. Nitrogen-promoted formation of graphite-like aggregations in SiC during neutron irradiation

    SciTech Connect

    Wang, P. F.; Ruan, Y. F.; Huang, L.; Zhu, W.

    2012-03-15

    The undoped and nitrogen-doped SiC bulk crystals irradiated with two neutron fluences were investigated by using confocal micro-Raman spectroscopy to analyze the effect of nitrogen impurity on irradiation damage. We found that the nitrogen impurity can promote the segregation of carbon atoms into graphite during heavy neutron irradiation, demonstrated by the presence of typical D and G graphite bands. Further experimental analysis indicated that the graphite-like aggregations uniformly distribute in SiC and possess much inferior thermal stability to crystalline graphite. The nucleation, namely generation of stable sp{sup 2} C=C configuration induced by nitrogen atoms, and growth during neutron irradiation can account for the formation of graphite-like aggregations.

  1. Evaluation of energies of interaction correlated with observed stabilities and rheological properties of asphalt-aggregate mixtures of western shale-oil residue as a modifier to petroleum asphalt

    SciTech Connect

    Tauer, J.E.; Ensley, E.K.; Harnsberger, P.M.; Robertson, R.E.

    1993-02-01

    The objective of this study was to perform a preliminary evaluation of improving bonding and aging characteristics using a distillation residue from the Green River Formation (western) shale oil as a modifier to a petroleum asphalt for use as a crack and joint filler material in portland cement concrete and asphaltic pavements. This study was to examine the differences in moisture damage resistance and adhesion properties, as measured by bonding energy, of shale-oil modified asphalts compared with non-modified asphalts. The shale-oil modified asphalts mechanical properties were not expected to match those of the rubberized asphalt. A commercially available rubberized asphalt crack and joint filler material was also tested only for comparison of mechanical properties. Portland cement concrete briquets prepared with an asphalt material sandwiched between two concrete wafers were tested in a stress-relaxation type of experiment to evaluate the relaxation and recovery properties of the sealant materials. Energy of interaction (bonding energy) measurements were performed on asphalt materials with portland cement concrete, two silicate aggregates, and a limestone aggregate to evaluate the compatibility of the asphalt materials with various aggregates. The results show that the shale-oil modified petroleum asphalt improved the relaxation time, percent recovery, and bonding energy compared with the petroleum asphalt.

  2. Aggregate Remote Memory Copy Interface

    Energy Science and Technology Software Center (ESTSC)

    2006-02-23

    The purpose of the Aggregate Remote Memory Copy (ARMCI) library is to provide a general- purpose, efficient, and Widely portable remote memory access (RMA) operations (one-sided communication) optimized for Contiguous and noncontiguous (strided, scatter/gather, I/O vector) data transfers. In addition, ARMCI includes a set of atomic and mutual exclusion operations. The development ARMCI is driven by the need to support the global-addres space communication model in context of distributed regular or irregular distributed data structures,more » communication libraries, and compilers. ARMCI is a standalone system that could be used to support user-level libraries and applications that use MPI or PVM.« less

  3. Long-term snow distribution observations in a mountain catchment: Assessing variability, time stability, and the representativeness of an index site

    NASA Astrophysics Data System (ADS)

    Winstral, Adam; Marks, Danny

    2014-01-01

    This study presents an analysis of snow distribution heterogeneity and the factors affecting this variability. The analysis focuses on manually sampled data from 21 snow surveys covering 11 years at the drift-dominated Reynolds Mountain East catchment (0.36 km2) in southwestern Idaho, USA. Surveys were conducted midwinter and in early spring. Interseason and intraseason trends were examined along with the time stability of distributions, goodness-of-fit to theoretical distributions, and the representativeness of an index site as a measure of basin-wide snow water equivalent. The average snow depth coefficient of variation (CV) over the entire time period was 0.71, which is in accordance with broad regional assessments. Higher wind speeds during snow events and increased melt led to increased heterogeneity and higher CVs. Forested sites produced lower CVs presumably due to moderated winds at these sites. Consistent wind directions produced accumulation patterns that were very stable from year-to-year. Many previous studies have suggested that vital subgrid snow heterogeneity in large-scale models can be approximated with parametric distributions. Gamma distributions were preferred over lognormal distributions in describing the overall distribution while in tree-covered regions with less variability there was little difference between the two. It was also found that an index site, akin to the majority of North American mountain weather observation stations, provided a reasonable approximation of catchment-averaged SWE in most years. However, the reliability of this measure decreased in years that deviated from normal patterns.

  4. Solubis: a webserver to reduce protein aggregation through mutation.

    PubMed

    Van Durme, Joost; De Baets, Greet; Van Der Kant, Rob; Ramakers, Meine; Ganesan, Ashok; Wilkinson, Hannah; Gallardo, Rodrigo; Rousseau, Frederic; Schymkowitz, Joost

    2016-08-01

    Protein aggregation is a major factor limiting the biotechnological and therapeutic application of many proteins, including enzymes and monoclonal antibodies. The molecular principles underlying aggregation are by now sufficiently understood to allow rational redesign of natural polypeptide sequences for decreased aggregation tendency, and hence potentially increased expression and solubility. Given that aggregation-prone regions (APRs) tend to contribute to the stability of the hydrophobic core or to functional sites of the protein, mutations in these regions have to be carefully selected in order not to disrupt protein structure or function. Therefore, we here provide access to an automated pipeline to identify mutations that reduce protein aggregation by reducing the intrinsic aggregation propensity of the sequence (using the TANGO algorithm), while taking care not to disrupt the thermodynamic stability of the native structure (using the empirical force-field FoldX). Moreover, by providing a plot of the intrinsic aggregation propensity score of APRs corrected by the local stability of that region in the folded structure, we allow users to prioritize those regions in the protein that are most in need of improvement through protein engineering. The method can be accessed at http://solubis.switchlab.org/. PMID:27284085

  5. From static micrographs to particle aggregation dynamics in three dimensions.

    PubMed

    Häbel, H; Särkkä, A; Rudemo, M; Hamngren Blomqvist, C; Olsson, E; Abrahamsson, C; Nordin, M

    2016-04-01

    Studies on colloidal aggregation have brought forth theories on stability of colloidal gels and models for aggregation dynamics. Still, a complete link between developed frameworks and obtained laboratory observations has to be found. In this work, aggregates of silica nanoparticles (20 nm) are studied using diffusion limited cluster aggregation (DLCA) and reaction limited cluster aggregation (RLCA) models. These processes are driven by the probability of particles to aggregate upon collision. This probability of aggregation is one in the DLCA and close to zero in the RLCA process. We show how to study the probability of aggregation from static micrographs on the example of a silica nanoparticle gel at 9 wt%. The analysis includes common summary functions from spatial statistics, namely the empty space function and Ripley's K-function, as well as two newly developed summary functions for cluster analysis based on graph theory. One of the new cluster analysis functions is related to the clustering coefficient in communication networks and the other to the size of a cluster. All four topological summary statistics are used to quantitatively compare in plots and in a least-square approach experimental data to cluster aggregation simulations with decreasing probabilities of aggregation. We study scanning transmission electron micrographs and utilize the intensity - mass thickness relation present in such images to create comparable micrographs from three-dimensional simulations. Finally, a characterization of colloidal silica aggregates and simulated structures is obtained, which allows for an evaluation of the cluster aggregation process for different aggregation scenarios. As a result, we find that the RLCA process fits the experimental data better than the DLCA process. PMID:26584453

  6. All-atom Simulation of Amyloid Aggregates

    NASA Astrophysics Data System (ADS)

    Berhanu, Workalemahu M.; Alred, Erik J.; Bernhardt, Nathan A.; Hansmann, Ulrich H. E.

    Molecular simulations are now commonly used to complement experiments in the investigation of amyloid formation and their role in human diseases. While various simulations based on enhanced sampling techniques are used in amyloid formation simulations, this article will focus on those using standard atomistic simulations to evaluate the stability of fibril models. Such studies explore the limitations that arise from the choice of force field or polymorphism; and explore the stability of in vivo and in vitro forms of Aβ fibril aggregates, and the role of heterologous seeding as a link between different amyloid diseases.

  7. Technology meets aggregate

    SciTech Connect

    Wilson, C.; Swan, C.

    2007-07-01

    New technology carried out at Tufts University and the University of Massachusetts on synthetic lightweight aggregate has created material from various qualities of fly ash from coal-fired power plants for use in different engineered applications. In pilot scale manufacturing tests an 'SLA' containing 80% fly ash and 20% mixed plastic waste from packaging was produced by 'dry blending' mixed plastic with high carbon fly ash. A trial run was completed to produce concrete masonry unit (CMU) blocks at a full-scale facility. It has been shown that SLA can be used as a partial substitution of a traditional stone aggregate in hot asphalt mix. 1 fig., 2 photos.

  8. Spatial and temporal distribution of 13C labelled plant residues in soil aggregates and Lumbricus terrestris surface casts: A combination of Transmission Electron Microscopy and Nanoscale Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Vidal, Alix; Remusat, Laurent; Watteau, Françoise; Derenne, Sylvie; Quenea, Katell

    2016-04-01

    Earthworms play a central role in litter decomposition, soil structuration and carbon cycling. They ingest both organic and mineral compounds which are mixed, complexed with mucus and dejected in form of casts at the soil surface and along burrows. Bulk isotopic or biochemical technics have often been used to study the incorporation of litter in soil and casts, but they could not reflect the complex interaction between soil, plant and microorganisms at the microscale. However, the heterogeneous distribution of organic carbon in soil structures induces contrasted microbial activity areas. Nano-scale secondary ion mass spectrometry (NanoSIMS), which is a high spatial resolution method providing elemental and isotopic maps of organic and mineral materials, has recently been applied in soil science (Herrmann et al., 2007; Vogel et al., 2014). The combination of Nano-scale secondary ion mass spectrometry (NanoSIMS) and Transmission Electron Microscopy (TEM) has proven its potential to investigate labelled residues incorporation in earthworm casts (Vidal et al., 2016). In line of this work, we studied the spatial and temporal distribution of plant residues in soil aggregates and earthworm surface casts. This study aimed to (1) identify the decomposition states of labelled plant residues incorporated at different time steps, in casts and soil, (2) identify the microorganisms implied in this decomposition (3) relate the organic matter states of decomposition with their 13C signature. A one year mesocosm experiment was set up to follow the incorporation of 13C labelled Ryegrass (Lolium multiflorum) litter in a soil in the presence of anecic earthworms (Lumbricus terrestris). Soil and surface cast samples were collected after 8 and 54 weeks, embedded in epoxy resin and cut into ultra-thin sections. Soil was fractionated and all and analyzed with TEM and NanoSIMS, obtaining secondary ion images of 12C, 16O, 12C14N, 13C14N and 28Si. The δ13C maps were obtained using the 13C14

  9. Effect of pectin methylesterase on carrot (Daucus carota) juice cloud stability.

    PubMed

    Schultz, Alison K; Anthon, Gordon E; Dungan, Stephanie R; Barrett, Diane M

    2014-02-01

    To determine the effect of residual enzyme activity on carrot juice cloud, 0 to 1 U/g pectin methylesterase (PME) was added to pasteurized carrot juice. Cloud stability and particle diameters were measured to quantify juice cloud stability and clarification for 56 days of storage. All levels of PME addition resulted in clarification; higher amounts had a modest effect in causing more rapid clarification, due to a faster increase in particle size. The cloud initially exhibited a trimodal distribution of particle sizes. For enzyme-containing samples, particles in the smallest-sized mode initially aggregated to merge with the second peak over 5-10 days. This larger population then continued to aggregate more slowly over longer times. This observation of a more rapid destabilization process initially, followed by slower subsequent changes in the cloud, was also manifested in measurements of sedimentation extent and in turbidity tests. Optical microscopy showed that aggregation created elongated, fractal particle structures over time. PMID:24401030

  10. Aggregation of heat-shock-denatured, endogenous proteins and distribution of the IbpA/B and Fda marker-proteins in Escherichia coli WT and grpE280 cells.

    PubMed

    Laskowska, Ewa; Bohdanowicz, Jerzy; Kuczyńska-Wiśnik, Dorota; Matuszewska, Ewelina; Kedzierska, Sabina; Taylor, Alina

    2004-01-01

    Submission of wild-type Escherichia coli to heat shock causes an aggregation of cellular proteins. The aggregates (S fraction) are separable from membrane fractions by ultracentrifugation in a sucrose density gradient. In contrast, no protein aggregation was detectable in an E. coli grpE280 mutant either by this technique or by electron microscopy. In search of an explanation for this observation at a molecular level, two kinds of marker proteins were used: Fda (fructose-1,6-biphosphate aldolase), the previously identified S fraction component, and IbpA/B, small heat-shock proteins abundantly associated with the S fraction proteins. Both types of marker proteins, normally never found in the outer-membrane (OM) fraction of WT cells, were present in the OM fraction from grpE cells after heat shock. This pointed to the presence of aggregates smaller than those in WT cells that cosedimented with the OM fraction. The OM fraction was enlarged in grpE cells. Although not proven directly, the presence of still smaller aggregates, not exceeding the solubility level and containing inactive Fda, was noted in the soluble CP fraction containing the cytoplasmic and periplasmic proteins. Therefore, aggregation occurred in both strains, but in a different way. The autoregulation of the heat-shock response causes a greater increase of DnaK/DnaJ and IbpAB levels in grpE cells than in WT after temperature elevation. This may explain the prevalence of the small-sized aggregates in the grpE cells. Estimation of total Fda p