Sample records for aggregate generational current

  1. Generation of the displacement current by the transformation of J-aggregates in spreading monolayers of squarylium dye

    NASA Astrophysics Data System (ADS)

    Iwamoto, Mitsumasa; Majima, Yutaka; Hirayama, Fuminori; Furuki, Makoto; Pu, Lyong Sun

    1992-07-01

    Maxwell displacement currents generated from monolayers of squarylium dye with propyl groups (SQ) and from mixed monolayers with arachidic acid were investigated during the course of monolayer compression in connection with the formation of J-aggregates in the monolayers. Abrupt changes in the generation of displacement current were observed for monolayers of SQ due to the transformation between two types of J-aggregates with different absorption spectra. In contrast, for mixed monolayers with arachidic acid which show no transition of J-aggregates, abrupt changes in the displacement current were not observed. It was concluded that displacement current measurement is effective in the detection of the transformation of the molecular arrangement in aggregates.

  2. Feeding Currents generated by Cassiopea jellyfish

    NASA Astrophysics Data System (ADS)

    Gaddam, M. G.; Santhanakrishnan, A.

    2016-02-01

    Feeding currents generated by organisms dwelling in the benthic boundary layer can enhance nutrient fluxes in coastal habitats with low-speed ambient flows. Patchy aggregations of Cassiopea medusae, commonly referred to as the "upside-down" jellyfish, are seen in sheltered marine environments such as mangrove forests and coral reefs in shallow regions saturated with sunlight. They exhibit a sessile, non-swimming lifestyle, and are oriented such that their bells are attached to the substrate and oral arms directed toward the free surface. Pulsations of their bells drive flow toward and away from the body, assisting in suspension feeding and for exchange of inorganic and organic matter across the water column. The feeding currents generated by aggregations of these medusae and subsequent effects on mixing in the water column have not been examined. We experimentally investigated currents generated by groups of Cassiopea medusae in a low-speed recirculating water tunnel. Multiple medusae grouping arrangements were tested in the tunnel based on time-lapse videos of the organisms obtained overnight in laboratory aquaria. Fluorescent dye introduced underneath the substrate was used to investigate release of porewater via bell motion. Quantitative flow visualization studies of Cassiopea currents were conducted using 2D high-speed particle image velocimetry. Vertical mixing of medusa-induced jets were observed in the presence of minimal background flow. The implications of feeding currents generated by groups of Cassiopea medusae on mixing in the water column will be presented.

  3. Generation of urban road dust from anti-skid and asphalt concrete aggregates.

    PubMed

    Tervahattu, Heikki; Kupiainen, Kaarle J; Räisänen, Mika; Mäkelä, Timo; Hillamo, Risto

    2006-04-30

    Road dust forms an important component of airborne particulate matter in urban areas. In many winter cities the use of anti-skid aggregates and studded tires enhance the generation of mineral particles. The abrasion particles dominate the PM10 during springtime when the material deposited in snow is resuspended. This paper summarizes the results from three test series performed in a test facility to assess the factors that affect the generation of abrasion components of road dust. Concentrations, mass size distribution and composition of the particles were studied. Over 90% of the particles were aluminosilicates from either anti-skid or asphalt concrete aggregates. Mineral particles were observed mainly in the PM10 fraction, the fine fraction being 12% and submicron size being 6% of PM10 mass. The PM10 concentrations increased as a function of the amount of anti-skid aggregate dispersed. The use of anti-skid aggregate increased substantially the amount of PM10 originated from the asphalt concrete. It was concluded that anti-skid aggregate grains contribute to pavement wear. The particle size distribution of the anti-skid aggregates had great impact on PM10 emissions which were additionally enhanced by studded tires, modal composition, and texture of anti-skid aggregates. The results emphasize the interaction of tires, anti-skid aggregate, and asphalt concrete pavement in the production of dust emissions. They all must be taken into account when measures to reduce road dust are considered. The winter maintenance and springtime cleaning must be performed properly with methods which are efficient in reducing PM10 dust.

  4. Generation of Aggregates of Mouse Embryonic Stem Cells that Show Symmetry Breaking, Polarization and Emergent Collective Behaviour In Vitro.

    PubMed

    Baillie-Johnson, Peter; van den Brink, Susanne Carina; Balayo, Tina; Turner, David Andrew; Martinez Arias, Alfonso

    2015-11-24

    We have developed a protocol improving current Embryoid Body (EB) culture which allows the study of self-organization, symmetry breaking, axial elongation and cell fate specification using aggregates of mouse embryonic stem cells (mESCs) in suspension culture. Small numbers of mESCs are aggregated in basal medium for 48 hr in non-tissue-culture-treated, U-bottomed 96-well plates, after which they are competent to respond to experimental signals. Following treatment, these aggregates begin to show signs of polarized gene expression and gradually alter their morphology from a spherical mass of cells to an elongated, well organized structure in the absence of external asymmetry cues. These structures are not only able to display markers of the three germ layers, but actively display gastrulation-like movements, evidenced by a directional dislodgement of individual cells from the aggregate, which crucially occurs at one region of the elongated structure. This protocol provides a detailed method for the reproducible formation of these aggregates, their stimulation with signals such as Wnt/β-Catenin activation and BMP inhibition and their analysis by single time-point or time-lapse fluorescent microscopy. In addition, we describe modifications to current whole-mount mouse embryo staining procedures for immunocytochemical analysis of specific markers within fixed aggregates. The changes in morphology, gene expression and length of the aggregates can be quantitatively measured, providing information on how signals can alter axial fates. It is envisaged that this system can be applied both to the study of early developmental events such as axial development and organization, and more broadly, the processes of self-organization and cellular decision-making. It may also provide a suitable niche for the generation of cell types present in the embryo that are unobtainable from conventional adherent culture such as spinal cord and motor neurones.

  5. Vertically migrating swimmers generate aggregation-scale eddies in a stratified column.

    PubMed

    Houghton, Isabel A; Koseff, Jeffrey R; Monismith, Stephen G; Dabiri, John O

    2018-04-01

    Biologically generated turbulence has been proposed as an important contributor to nutrient transport and ocean mixing 1-3 . However, to produce non-negligible transport and mixing, such turbulence must produce eddies at scales comparable to the length scales of stratification in the ocean. It has previously been argued that biologically generated turbulence is limited to the scale of the individual animals involved 4 , which would make turbulence created by highly abundant centimetre-scale zooplankton such as krill irrelevant to ocean mixing. Their small size notwithstanding, zooplankton form dense aggregations tens of metres in vertical extent as they undergo diurnal vertical migration over hundreds of metres 3,5,6 . This behaviour potentially introduces additional length scales-such as the scale of the aggregation-that are of relevance to animal interactions with the surrounding water column. Here we show that the collective vertical migration of centimetre-scale swimmers-as represented by the brine shrimp Artemia salina-generates aggregation-scale eddies that mix a stable density stratification, resulting in an effective turbulent diffusivity up to three orders of magnitude larger than the molecular diffusivity of salt. These observed large-scale mixing eddies are the result of flow in the wakes of the individual organisms coalescing to form a large-scale downward jet during upward swimming, even in the presence of a strong density stratification relative to typical values observed in the ocean. The results illustrate the potential for marine zooplankton to considerably alter the physical and biogeochemical structure of the water column, with potentially widespread effects owing to their high abundance in climatically important regions of the ocean 7 .

  6. Multiple generations of grain aggregation in different environments preceded solar system body formation.

    PubMed

    Ishii, Hope A; Bradley, John P; Bechtel, Hans A; Brownlee, Donald E; Bustillo, Karen C; Ciston, James; Cuzzi, Jeffrey N; Floss, Christine; Joswiak, David J

    2018-06-26

    The solar system formed from interstellar dust and gas in a molecular cloud. Astronomical observations show that typical interstellar dust consists of amorphous ( a -) silicate and organic carbon. Bona fide physical samples for laboratory studies would yield unprecedented insight about solar system formation, but they were largely destroyed. The most likely repositories of surviving presolar dust are the least altered extraterrestrial materials, interplanetary dust particles (IDPs) with probable cometary origins. Cometary IDPs contain abundant submicron a- silicate grains called GEMS (glass with embedded metal and sulfides), believed to be carbon-free. Some have detectable isotopically anomalous a- silicate components from other stars, proving they are preserved dust inherited from the interstellar medium. However, it is debated whether the majority of GEMS predate the solar system or formed in the solar nebula by condensation of high-temperature (>1,300 K) gas. Here, we map IDP compositions with single nanometer-scale resolution and find that GEMS contain organic carbon. Mapping reveals two generations of grain aggregation, the key process in growth from dust grains to planetesimals, mediated by carbon. GEMS grains, some with a- silicate subgrains mantled by organic carbon, comprise the earliest generation of aggregates. These aggregates (and other grains) are encapsulated in lower-density organic carbon matrix, indicating a second generation of aggregation. Since this organic carbon thermally decomposes above ∼450 K, GEMS cannot have accreted in the hot solar nebula, and formed, instead, in the cold presolar molecular cloud and/or outer protoplanetary disk. We suggest that GEMS are consistent with surviving interstellar dust, condensed in situ, and cycled through multiple molecular clouds. Copyright © 2018 the Author(s). Published by PNAS.

  7. Functional and structural effects of amyloid-β aggregate on Xenopus laevis oocytes.

    PubMed

    Parodi, Jorge; Ochoa-de la Paz, Lenin; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2012-10-01

    Xenopus laevis oocytes exposed to amyloid-β aggregate generated oscillatory electric activity (blips) that was recorded by two-microelectrode voltage-clamp. The cells exhibited a series of "spontaneous" blips ranging in amplitude from 3.8 ± 0.9 nA at the beginning of the recordings to 6.8 ± 1.7 nA after 15 min of exposure to 1 μM aggregate. These blips were similar in amplitude to those induced by the channel-forming antimicrobial agents amphotericin B (7.8 ± 1.2 nA) and gramicidin (6.3 ± 1.1 nA). The amyloid aggregate-induced currents were abolished when extracellular Ca(2+) was removed from the bathing solution, suggesting a central role for this cation in generating the spontaneous electric activity. The amyloid aggregate also affected the Ca(2+)-dependent Cl(-) currents of oocytes, as shown by increased amplitude of the transient-outward chloride current (T(out)) and the serum-activated, oscillatory Cl(-) currents. Electron microcopy revealed that amyloid aggregate induced the dissociation of the follicular cells that surround the oocyte, thus leading to a failure in the electro-chemical communication between these cells. This was also evidenced by the suppression of the oscillatory Ca(2+)-dependent ATP-currents, which require proper coupling between oocytes and the follicular cell layer. These observations, made using the X. laevis oocytes as a versatile experimental model, may help to understand the effects of amyloid aggregate on cellular communication.

  8. 40 CFR 279.32 - Used oil aggregation points owned by the generator.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Used oil aggregation points owned by the generator. 279.32 Section 279.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil...

  9. 40 CFR 279.32 - Used oil aggregation points owned by the generator.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Used oil aggregation points owned by the generator. 279.32 Section 279.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil...

  10. 40 CFR 279.32 - Used oil aggregation points owned by the generator.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Used oil aggregation points owned by the generator. 279.32 Section 279.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil...

  11. 40 CFR 279.32 - Used oil aggregation points owned by the generator.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Used oil aggregation points owned by the generator. 279.32 Section 279.32 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil...

  12. Lipopolysaccharide treatment reduces rat platelet aggregation independent of intracellular reactive-oxygen species generation.

    PubMed

    Lopes-Pires, M Elisa; Casarin, André L; Pereira-Cunha, Fernanda G; Lorand-Metze, Irene; Antunes, Edson; Marcondes, Sisi

    2012-01-01

    High production of reactive-oxygen species (ROS) by blood cells is involved in damage of the vascular endothelium and multiple organ dysfunction in sepsis. However, little is known about the intraplatelet ROS production in sepsis and its consequences on platelet reactivity. In this study, we evaluated whether the treatment of rats with lipopolysaccharide (LPS) affects platelet aggregation through intraplatelet ROS generation. Rats were injected with LPS (1 mg/kg, i.p.), and at 2 to 72 h thereafter, adenosine diphosphate (ADP) (3-10 µM) induced platelet aggregation was evaluated. Production of ROS in platelets was measured by flow cytometry using 2',7'-dichlorofluorescein diacetate (DCFH-DA). Treatment of rats with LPS time-dependently inhibited ADP-induced platelet aggregation within 72 h. The inhibitory effect of LPS on platelet aggregation was further increased when the platelets were incubated with polyethylene glycol-superoxide dismutase (PEG-SOD; 30 U/mL), polyethylene glycol-catalase (PEG-CAT; 1000 U/mL) or the NADPH oxidase inhibitor diphenyleneiodonium (DPI; 10 µM). The ROS production in non-stimulated platelets did not differ between control and LPS-treated rats. However, in ADP-activated platelets, generation of ROS was increased by 3.0- and 7.0-fold, as evaluated at 8 and 48 h after LPS injection, respectively. This increased ROS production was significantly reduced when platelets were incubated in vitro with DPI, PEG-SOD or PEG-CAT. In contrast, treatment of rats with N-acetylcysteine (150 mg/kg, i.p.) significantly reduced the inhibitory effect of LPS on platelet aggregation, and prevented the increased ROS production by in vivo LPS. Our results indicate that the increased intraplatelet ROS production does not contribute to the inhibitory effect of LPS on platelet aggregation; however, the maintenance of redox balance in LPS-treated rats is fundamental to restore the normal platelet response in these animals.

  13. Current responsive devices for synchronous generators

    DOEpatents

    Karlicek, R.F.

    1983-09-27

    A device for detecting current imbalance between phases of a polyphase alternating current generator. A detector responds to the maximum peak current in the generator, and detecting means generates an output for each phase proportional to the peak current of each phase. Comparing means generates an output when the maximum peak current exceeds the phase peak current. 11 figs.

  14. Current responsive devices for synchronous generators

    DOEpatents

    Karlicek, Robert F.

    1983-01-01

    A device for detecting current imbalance between phases of a polyphase alternating current generator. A detector responds to the maximum peak current in the generator, and detecting means generates an output for each phase proportional to the peak current of each phase. Comparing means generates an output when the maximum peak current exceeds the phase peak current.

  15. Red blood cell generation by three-dimensional aggregate cultivation of late erythroblasts.

    PubMed

    Lee, EunMi; Han, So Yeon; Choi, Hye Sook; Chun, Bokhwan; Hwang, Byunghee; Baek, Eun Jung

    2015-02-01

    Stem cell-derived erythroid cells hold great potential for the treatment of blood-loss anemia and for erythropoiesis research; however, cultures using conventional flat plates or bioreactors have failed to show promising results. By mimicking the in vivo bone marrow (BM) environment in which most erythroid cells are physically aggregated, we show that a three-dimensional (3D) aggregate culture system facilitates erythroid cell maturation and red blood cell (RBC) production more effectively than two-dimensional high-density cell cultivation. Late erythroblasts (polychromatic or orthochromatic erythroblasts) were differentiated from cord blood CD34(+) cells over 15 days and then allowed to form tight aggregates at a minimum density of 1×10(7) cells/mL for 2-3 days. To scale up the cell culture and to make the media supply efficient throughout the cell aggregates, several macroporous microcarriers and porous scaffolds were applied to the 3D culture system. In comparison to control culture conditions, erythroid cells in 3D aggregates were significantly more differentiated toward RBCs with significantly reduced nuclear dysplasia. When 3D culture was performed inside macroporous microcarriers, the cell culture scale was increased and cells exhibited enhanced differentiation and enucleation. Microcarriers with a pore diameter of approximately 400 μm produced more mature cells than those with a smaller pore diameter. In addition, this aggregate culture method minimized the culture space and media volume required. In conclusion, a 3D aggregate culture system can be used to generate transfusable human erythrocytes at the terminal maturation stage, mimicking the in vivo BM microenvironment. Porous structures can efficiently maximize the culture scale, enabling large-scale production of RBCs. These results enhance our understanding of the importance of physical contact among late erythroblasts for their final maturation into RBCs.

  16. Preferential Charge Generation at Aggregate Sites in Narrow Band Gap Infrared Photoresponsive Polymer Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulas, Dana B.; London, Alexander E.; Huang, Lifeng

    Infrared organic photodetector materials are investigated using transient absorption spectroscopy, demonstrating that ultrafast charge generation assisted by polymer aggregation is essential to compensate for the energy gap law, which dictates that excited state lifetimes decrease as the band gap narrows. Short sub–picosecond singlet exciton lifetimes are measured in a structurally related series of infrared–absorbing copolymers that consist of alternating cyclopentadithiophene electron–rich “push” units and strong electron–deficient “pull” units, including benzothiadiazole, benzoselenadiazole, pyridalselenadiazole, or thiadiazoloquinoxaline. While the ultrafast lifetimes of excitons localized on individual polymer chains suggest that charge carrier generation will be inefficient, high detectivity for polymer:PC 71BM infrared photodetectorsmore » is measured in the 0.6 < λ < 1.5 µm range. The photophysical processes leading to charge generation are investigated by performing a global analysis on transient absorption data of blended polymer:PC 71BM films. In these blends, charge carriers form primarily at polymer aggregate sites on the ultrafast time scale (within our instrument response), leaving quickly decaying single–chain excitons unquenched. Lastly, the results have important implications for the further development of organic infrared optoelectronic devices, where targeting processes such as excited state delocalization over aggregates may be necessary to mitigate losses to ultrafast exciton decay as materials with even lower band gaps are developed.« less

  17. Preferential Charge Generation at Aggregate Sites in Narrow Band Gap Infrared Photoresponsive Polymer Semiconductors

    DOE PAGES

    Sulas, Dana B.; London, Alexander E.; Huang, Lifeng; ...

    2018-02-13

    Infrared organic photodetector materials are investigated using transient absorption spectroscopy, demonstrating that ultrafast charge generation assisted by polymer aggregation is essential to compensate for the energy gap law, which dictates that excited state lifetimes decrease as the band gap narrows. Short sub–picosecond singlet exciton lifetimes are measured in a structurally related series of infrared–absorbing copolymers that consist of alternating cyclopentadithiophene electron–rich “push” units and strong electron–deficient “pull” units, including benzothiadiazole, benzoselenadiazole, pyridalselenadiazole, or thiadiazoloquinoxaline. While the ultrafast lifetimes of excitons localized on individual polymer chains suggest that charge carrier generation will be inefficient, high detectivity for polymer:PC 71BM infrared photodetectorsmore » is measured in the 0.6 < λ < 1.5 µm range. The photophysical processes leading to charge generation are investigated by performing a global analysis on transient absorption data of blended polymer:PC 71BM films. In these blends, charge carriers form primarily at polymer aggregate sites on the ultrafast time scale (within our instrument response), leaving quickly decaying single–chain excitons unquenched. Lastly, the results have important implications for the further development of organic infrared optoelectronic devices, where targeting processes such as excited state delocalization over aggregates may be necessary to mitigate losses to ultrafast exciton decay as materials with even lower band gaps are developed.« less

  18. Comparing Current Students to a Pre-Millennial Generation: Are They Really Different?

    ERIC Educational Resources Information Center

    Yahr, Michael A.; Schimmel, Kurt

    2013-01-01

    The Millennial generation, also known as Generation Y, has garnered much attention in the print and broadcast media and at academic conferences because of the challenges that they pose to universities and corporations. Aggregate characteristics and preferences of the Millennial generation and of Generation X, their immediate predecessors, have…

  19. Second harmonic generation from small particle aggregates

    NASA Astrophysics Data System (ADS)

    Mochan, W. Luis; Ortiz, Guillermo P.; Mendoza, Bernardo S.; Brudny, Vera L.

    2001-03-01

    Novel nanofabrication techniques are capable of producing nanoparticles with controled structures which include small clusters, self-assembled particles, quantum dots, vesicles, etc. The non-linear optical scattering of these structures are important for applications, and can be used for their physical characterization. The second harmonic (SH) field radiated by a single small spherical particle has surface and bulk, dipolar and quadrupolar contributions of similar intensities and is strongly dependent of the local environment of the particle [1], in contrast to the linear case. In this work we calculate the nonlinear scattering by particle aggregates and we investigate the effects on the SH generation of the disorder induced field fluctuations and of the localization of light. We acknowledge the partial support from DGAPA-UNAM (grant IN110999), Conacyt (31120-E and 26651-E), CIP and UBACyT. [1] Vera L. Brudny, Bernardo S. Mendoza, and W. Luis Mochán, Phys. Rev. B 62, 11152 (2000).

  20. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials

    PubMed Central

    Garza, Kristine M; Soto, Karla F; Murr, Lawrence E

    2008-01-01

    We have investigated the cytotoxicity and reactive oxygen species (ROS) generation for indoor and outdoor soots: candle, wood, diesel, tire, and natural gas burner soots – along with surrogate black carbon, various multiwall carbon nanotube aggregate materials, TiO2 (anatase) and chrysotile asbestos as reference materials. All soots were observed utilizing TEM and FESEM to be composed of aggregated, primary spherules (20–80 nm diameter) forming complex, branched fractal structures. These spherules were composed of intercalated, turbostratic arrangements of curved graphene fragments with varying concentrations of polycyclic aromatic hydrocarbon (PAH) isomers. In vitro cultures with an immortalized human lung epithelial carcinoma cell line (A549) treated with these materials showed decreased cell viability and variations in ROS production, with no correlations to PAH content. The data demonstrate that soots are cytotoxic and that cytotoxicity is not related to PAH content but is related to ROS generation, suggesting that soot induces cellular oxidative stress and that cell viability assays can be indicators of ROS production. PMID:18488419

  1. Refinement of current WisDOT HMA mixture application guidelines related to NMAS and aggregate characteristics.

    DOT National Transportation Integrated Search

    2014-01-01

    Current Wisconsin Department of Transportation (WisDOT) Specifications limit nominal maximum aggregate : size (NMAS) of hot-mix asphalt (HMA) to 12.5 mm in the surface layer and 19.0 mm in lower layers. This : potentially places unnecessary limits on...

  2. Distinct thermodynamic signatures of oligomer generation in the aggregation of the amyloid-β peptide

    NASA Astrophysics Data System (ADS)

    Cohen, Samuel I. A.; Cukalevski, Risto; Michaels, Thomas C. T.; Šarić, Andela; Törnquist, Mattias; Vendruscolo, Michele; Dobson, Christopher M.; Buell, Alexander K.; Knowles, Tuomas P. J.; Linse, Sara

    2018-05-01

    Mapping free-energy landscapes has proved to be a powerful tool for studying reaction mechanisms. Many complex biomolecular assembly processes, however, have remained challenging to access using this approach, including the aggregation of peptides and proteins into amyloid fibrils implicated in a range of disorders. Here, we generalize the strategy used to probe free-energy landscapes in protein folding to determine the activation energies and entropies that characterize each of the molecular steps in the aggregation of the amyloid-β peptide (Aβ42), which is associated with Alzheimer's disease. Our results reveal that interactions between monomeric Aβ42 and amyloid fibrils during fibril-dependent secondary nucleation fundamentally reverse the thermodynamic signature of this process relative to primary nucleation, even though both processes generate aggregates from soluble peptides. By mapping the energetic and entropic contributions along the reaction trajectories, we show that the catalytic efficiency of Aβ42 fibril surfaces results from the enthalpic stabilization of adsorbing peptides in conformations amenable to nucleation, resulting in a dramatic lowering of the activation energy for nucleation.

  3. Distinct thermodynamic signatures of oligomer generation in the aggregation of the amyloid-β peptide.

    PubMed

    Cohen, Samuel I A; Cukalevski, Risto; Michaels, Thomas C T; Šarić, Anđela; Törnquist, Mattias; Vendruscolo, Michele; Dobson, Christopher M; Buell, Alexander K; Knowles, Tuomas P J; Linse, Sara

    2018-05-01

    Mapping free-energy landscapes has proved to be a powerful tool for studying reaction mechanisms. Many complex biomolecular assembly processes, however, have remained challenging to access using this approach, including the aggregation of peptides and proteins into amyloid fibrils implicated in a range of disorders. Here, we generalize the strategy used to probe free-energy landscapes in protein folding to determine the activation energies and entropies that characterize each of the molecular steps in the aggregation of the amyloid-β peptide (Aβ42), which is associated with Alzheimer's disease. Our results reveal that interactions between monomeric Aβ42 and amyloid fibrils during fibril-dependent secondary nucleation fundamentally reverse the thermodynamic signature of this process relative to primary nucleation, even though both processes generate aggregates from soluble peptides. By mapping the energetic and entropic contributions along the reaction trajectories, we show that the catalytic efficiency of Aβ42 fibril surfaces results from the enthalpic stabilization of adsorbing peptides in conformations amenable to nucleation, resulting in a dramatic lowering of the activation energy for nucleation.

  4. Excited-state dynamics of astaxanthin aggregates

    NASA Astrophysics Data System (ADS)

    Fuciman, Marcel; Durchan, Milan; Šlouf, Václav; Keşan, Gürkan; Polívka, Tomáš

    2013-05-01

    Astaxanthin forms three types of aggregates in hydrated dimethyl sulfoxide (DMSO). In DMSO/water ratio of 1:1, a red-shifted J-aggregate with maximum at 570 nm is generated, while a ratio of 1:9 produces blue-shifted H-aggregates with peaks at 386 nm (H1) and 460 nm (H2). Monomeric astaxanthin in DMSO has an S1 lifetime of 5.3 ps, but a long-lived (33 ps) S∗ signal was also identified. Aggregation changes the S1 lifetimes to 17 ps (H1), 30 ps (H2), and 14 ps (J). Triplet state of astaxanthin, most likely generated via singlet homofission, was observed in H1 and H2 aggregates.

  5. Small file aggregation in a parallel computing system

    DOEpatents

    Faibish, Sorin; Bent, John M.; Tzelnic, Percy; Grider, Gary; Zhang, Jingwang

    2014-09-02

    Techniques are provided for small file aggregation in a parallel computing system. An exemplary method for storing a plurality of files generated by a plurality of processes in a parallel computing system comprises aggregating the plurality of files into a single aggregated file; and generating metadata for the single aggregated file. The metadata comprises an offset and a length of each of the plurality of files in the single aggregated file. The metadata can be used to unpack one or more of the files from the single aggregated file.

  6. Optimization of Gear Ratio in the Tidal Current Generation System based on Generated Energy

    NASA Astrophysics Data System (ADS)

    Naoi, Kazuhisa; Shiono, Mitsuhiro; Suzuki, Katsuyuki

    It is possible to predict generating power of the tidal current generation, because of the tidal current's periodicity. Tidal current generation is more advantageous than other renewable energy sources, when the tidal current generation system is connected to the power system and operated. In this paper, we propose a method used to optimize the gear ratio and generator capacity, that is fundamental design items in the tidal current generation system which is composed of Darrieus type water turbine and squirrel-cage induction generator coupled with gear. The proposed method is applied to the tidal current generation system including the most large-sized turbine that we have developed and studied. This paper shows optimum gear ratio and generator capacity that make generated energy maximum, and verify effectiveness of the proposed method. The paper also proposes a method of selecting maximum generating current velocity in order to reduce the generator capacity, from the viewpoint of economics.

  7. A compact submicrosecond, high current generator

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Zorin, V. B.; Zherlitsyn, A. A.

    2009-08-01

    Pulsed current generator was developed for experiments with current carrying pulsed plasma. Main parts of the generator are capacitor bank, low inductive current driving lines, and central load part. Generator consists of four identical sections, connected in parallel to one load. Capacitor bank is assembled from 24 capacitor blocks (100 kV, 80 nF), connected in parallel. It stores 9.6 kJ at 100 kV charging voltage. Each capacitor block incorporates a multigap spark switch, which is able to commute by six parallel channels. Switches operate in dry air at atmospheric pressure. The generator was tested with an inductive load and a liner load. At 17.5 nH inductive load and 100 kV of charging voltage it provides 650 kA of current amplitude with 390 ns rise time with 0.6 Ω damping resistors in discharge circuit of each capacitor block. The net generator inductance without a load was optimized to be as low as 15 nH, which results in extremely low impedance of the generator (˜0.08 Ω). It ensures effective energy coupling with a low impedance load such as Z pinch. The generator operates reliably without any adjustments in 70-100 kV range of charging voltage. Jitter in delay between output pulse and triggering pulse is less than 5 ns at 70-100 kV charging voltage. Operation and handling are very simple, because no oil or purified gases are required for the generator. The generator has dimensions 5.24×1.2×0.18 m3 and total weight about 1400 kg, thus manifesting itself as simple, robust, and cost effective apparatus.

  8. Rydberg aggregates

    NASA Astrophysics Data System (ADS)

    Wüster, S.; Rost, J.-M.

    2018-02-01

    We review Rydberg aggregates, assemblies of a few Rydberg atoms exhibiting energy transport through collective eigenstates, considering isolated atoms or assemblies embedded within clouds of cold ground-state atoms. We classify Rydberg aggregates, and provide an overview of their possible applications as quantum simulators for phenomena from chemical or biological physics. Our main focus is on flexible Rydberg aggregates, in which atomic motion is an essential feature. In these, simultaneous control over Rydberg-Rydberg interactions, external trapping and electronic energies, allows Born-Oppenheimer surfaces for the motion of the entire aggregate to be tailored as desired. This is illustrated with theory proposals towards the demonstration of joint motion and excitation transport, conical intersections and non-adiabatic effects. Additional flexibility for quantum simulations is enabled by the use of dressed dipole-dipole interactions or the embedding of the aggregate in a cold gas or Bose-Einstein condensate environment. Finally we provide some guidance regarding the parameter regimes that are most suitable for the realization of either static or flexible Rydberg aggregates based on Li or Rb atoms. The current status of experimental progress towards enabling Rydberg aggregates is also reviewed.

  9. Threshold current for fireball generation

    NASA Astrophysics Data System (ADS)

    Dijkhuis, Geert C.

    1982-05-01

    Fireball generation from a high-intensity circuit breaker arc is interpreted here as a quantum-mechanical phenomenon caused by severe cooling of electrode material evaporating from contact surfaces. According to the proposed mechanism, quantum effects appear in the arc plasma when the radius of one magnetic flux quantum inside solid electrode material has shrunk to one London penetration length. A formula derived for the threshold discharge current preceding fireball generation is found compatible with data reported by Silberg. This formula predicts linear scaling of the threshold current with the circuit breaker's electrode radius and concentration of conduction electrons.

  10. Aggregation of Culture Expanded Human Mesenchymal Stem Cells in Microcarrier-based Bioreactor.

    PubMed

    Yuan, Xuegang; Tsai, Ang-Chen; Farrance, Iain; Rowley, Jon; Ma, Teng

    2018-03-15

    Three-dimensional aggregation of human mesenchymal stem cells (hMSCs) has been used to enhance their therapeutic properties but current fabrication protocols depend on laboratory methods and are not scalable. In this study, we developed thermal responsive poly(N-isopropylacrylamide) grafted microcarriers (PNIPAM-MCs), which supported expansion and thermal detachment of hMSCs at reduced temperature (23.0 °C). hMSCs were cultured on the PNIPAM-MCs in both spinner flask (SF) and PBS Vertical-Wheel (PBS-VW) bioreactors for expansion. At room temperature, hMSCs were detached as small cell sheets, which subsequently self-assembled into 3D hMSC aggregates in PBS-VW bioreactor and remain as single cells in SF bioreactor owing to different hydrodynamic conditions. hMSC aggregates generated from the bioreactor maintained comparable immunomodulation and cytokine secretion properties compared to the ones made from the AggreWell ® . The results of the current study demonstrate the feasibility of scale-up production of hMSC aggregates in the suspension bioreactor using thermal responsive microcarriers for integrated cell expansion and 3D aggregation in a close bioreactor system and highlight the critical role of hydrodynamics in self-assembly of detached hMSC in suspension.

  11. Development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification

    NASA Astrophysics Data System (ADS)

    Astafiev, A.; Orlov, A.; Privezencev, D.

    2018-01-01

    The article is devoted to the development of technology and software for the construction of positioning and control systems in industrial plants based on aggregation to determine the current storage area using computer vision and radiofrequency identification. It describes the developed of the project of hardware for industrial products positioning system in the territory of a plant on the basis of radio-frequency grid. It describes the development of the project of hardware for industrial products positioning system in the plant on the basis of computer vision methods. It describes the development of the method of aggregation to determine the current storage area using computer vision and radiofrequency identification. Experimental studies in laboratory and production conditions have been conducted and described in the article.

  12. Boundary-layer diabatic processes, the virtual effect, and convective self-aggregation

    NASA Astrophysics Data System (ADS)

    Yang, D.

    2017-12-01

    The atmosphere can self-organize into long-lasting large-scale overturning circulations over an ocean surface with uniform temperature. This phenomenon is referred to as convective self-aggregation and has been argued to be important for tropical weather and climate systems. Here we use a 1D shallow water model and a 2D cloud-resolving model (CRM) to show that boundary-layer diabatic processes are essential for convective self-aggregation. We will show that boundary-layer radiative cooling, convective heating, and surface buoyancy flux help convection self-aggregate because they generate available potential energy (APE), which sustains the overturning circulation. We will also show that evaporative cooling in the boundary layer (cold pool) inhibits convective self-aggregation by reducing APE. Both the shallow water model and CRM results suggest that the enhanced virtual effect of water vapor can lead to convective self-aggregation, and this effect is mainly in the boundary layer. This study proposes new dynamical feedbacks for convective self-aggregation and complements current studies that focus on thermodynamic feedbacks.

  13. Associating ground magnetometer observations with current or voltage generators

    NASA Astrophysics Data System (ADS)

    Hartinger, M. D.; Xu, Z.; Clauer, C. R.; Yu, Y.; Weimer, D. R.; Kim, H.; Pilipenko, V.; Welling, D. T.; Behlke, R.; Willer, A. N.

    2017-07-01

    A circuit analogy for magnetosphere-ionosphere current systems has two extremes for drivers of ionospheric currents: ionospheric electric fields/voltages constant while current/conductivity vary—the "voltage generator"—and current constant while electric field/conductivity vary—the "current generator." Statistical studies of ground magnetometer observations associated with dayside Transient High Latitude Current Systems (THLCS) driven by similar mechanisms find contradictory results using this paradigm: some studies associate THLCS with voltage generators, others with current generators. We argue that most of this contradiction arises from two assumptions used to interpret ground magnetometer observations: (1) measurements made at fixed position relative to the THLCS field-aligned current and (2) negligible auroral precipitation contributions to ionospheric conductivity. We use observations and simulations to illustrate how these two assumptions substantially alter expectations for magnetic perturbations associated with either a current or a voltage generator. Our results demonstrate that before interpreting ground magnetometer observations of THLCS in the context of current/voltage generators, the location of a ground magnetometer station relative to the THLCS field-aligned current and the location of any auroral zone conductivity enhancements need to be taken into account.

  14. Ceramic ware waste as coarse aggregate for structural concrete production.

    PubMed

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  15. Defining and systematic analyses of aggregation indices to evaluate degree of calcium oxalate crystal aggregation

    NASA Astrophysics Data System (ADS)

    Chaiyarit, Sakdithep; Thongboonkerd, Visith

    2017-12-01

    Crystal aggregation is one of the most crucial steps in kidney stone pathogenesis. However, previous studies of crystal aggregation were rarely done and quantitative analysis of aggregation degree was handicapped by a lack of the standard measurement. We thus performed an in vitro assay to generate aggregation of calcium oxalate monohydrate (COM) crystals with various concentrations (25-800 µg/ml) in saturated aggregation buffer. The crystal aggregates were analyzed by microscopic examination, UV-visible spectrophotometry, and GraphPad Prism6 software to define a total of 12 aggregation indices (including number of aggregates, aggregated mass index, optical density, aggregation coefficient, span, number of aggregates at plateau time-point, aggregated area index, aggregated diameter index, aggregated symmetry index, time constant, half-life, and rate constant). The data showed linear correlation between crystal concentration and almost all of these indices, except only for rate constant. Among these, number of aggregates provided the greatest regression coefficient (r=0.997; p<0.001), whereas the equally second rank included aggregated mass index and optical density (r=0.993; p<0.001 and r=‑0.993; p<0.001, respectively) and the equally forth were aggregation coefficient and span (r=0.991; p<0.001 for both). These five indices are thus recommended as the most appropriate indices for quantitative analysis of COM crystal aggregation in vitro.

  16. Production efficiencies of U.S. electric generation plants: Effects of data aggregation and greenhouse gas and renewable energy policy

    NASA Astrophysics Data System (ADS)

    Lynes, Melissa Kate

    Over the last few decades there has been a shift in electricity production in the U.S. Renewable energy sources are becoming more widely used. In addition, electric generation plants that use coal inputs are more heavily regulated than a couple decades ago. This shift in electricity production was brought on by changes in federal policy -- a desire for electricity produced in the U.S. which led to policies being adopted that encourage the use of renewable energy. The change in production practices due to policies may have led to changes in the productivity of electric generation plants. Multiple studies have examined the most efficient electric generation plants using the data envelopment analysis (DEA) approach. This study builds on past research to answer three questions: 1) Does the level of aggregation of fuel input variables affect the plant efficiency scores and how does the efficiency of renewable energy input compare to nonrenewable energy inputs; 2) Are policies geared toward directly or indirectly reducing greenhouse gas emissions affecting the production efficiencies of greenhouse gas emitting electric generation plants; and 3) Do renewable energy policies and the use of intermittent energy sources (i.e. wind and solar) affect the productivity growth of electric generation plants. All three analysis, presented in three essays, use U.S. plant level data obtained from the Energy Information Administration to answer these questions. The first two essays use DEA to determine the pure technical, overall technical, and scale efficiencies of electric generation plants. The third essay uses DEA within the Malmquist index to assess the change in productivity over time. Results indicate that the level of aggregation does matter particularly for scale efficiency. This implies that valuable information is likely lost when fuel inputs are aggregated together. Policies directly focused on reducing greenhouse gas emissions may improve the production efficiencies of

  17. Antiresonance induced spin-polarized current generation

    NASA Astrophysics Data System (ADS)

    Yin, Sun; Min, Wen-Jing; Gao, Kun; Xie, Shi-Jie; Liu, De-Sheng

    2011-12-01

    According to the one-dimensional antiresonance effect (Wang X R, Wang Y and Sun Z Z 2003 Phys. Rev. B 65 193402), we propose a possible spin-polarized current generation device. Our proposed model consists of one chain and an impurity coupling to the chain. The energy level of the impurity can be occupied by an electron with a specific spin, and the electron with such a spin is blocked because of the antiresonance effect. Based on this phenomenon our model can generate the spin-polarized current flowing through the chain due to different polarization rates. On the other hand, the device can also be used to measure the generated spin accumulation. Our model is feasible with today's technology.

  18. Protein aggregate turbidity: Simulation of turbidity profiles for mixed-aggregation reactions.

    PubMed

    Hall, Damien; Zhao, Ran; Dehlsen, Ian; Bloomfield, Nathaniel; Williams, Steven R; Arisaka, Fumio; Goto, Yuji; Carver, John A

    2016-04-01

    Due to their colloidal nature, all protein aggregates scatter light in the visible wavelength region when formed in aqueous solution. This phenomenon makes solution turbidity, a quantity proportional to the relative loss in forward intensity of scattered light, a convenient method for monitoring protein aggregation in biochemical assays. Although turbidity is often taken to be a linear descriptor of the progress of aggregation reactions, this assumption is usually made without performing the necessary checks to provide it with a firm underlying basis. In this article, we outline utilitarian methods for simulating the turbidity generated by homogeneous and mixed-protein aggregation reactions containing fibrous, amorphous, and crystalline structures. The approach is based on a combination of Rayleigh-Gans-Debye theory and approximate forms of the Mie scattering equations. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  19. Cryopreservation of pluripotent stem cell aggregates in defined protein-free formulation.

    PubMed

    Sart, Sébastien; Ma, Teng; Li, Yan

    2013-01-01

    Cultivation of undifferentiated pluripotent stem cells (PSCs) as aggregates has emerged as an efficient culture configuration, enabling rapid and controlled large scale expansion. Aggregate-based PSC cryopreservation facilitates the integrated process of cell expansion and cryopreservation, but its feasibility has not been demonstrated. The goals of current study are to assess the suitability of cryopreserving intact mouse embryonic stem cell (mESC) aggregates and investigate the effects of aggregate size and the formulation of cryopreservation solution on mESC survival and recovery. The results demonstrated the size-dependent cell survival and recovery of intact aggregates. In particular, the generation of reactive oxygen species (ROS) and caspase activation were reduced for small aggregates (109 ± 55 μm) compared to medium (245 ± 77 μm) and large (365 ± 141 μm) ones, leading to the improved cell recovery. In addition, a defined protein-free formulation was tested and found to promote the aggregate survival, eliminating the cell exposure to animal serum. The cryopreserved aggregates also maintained the pluripotent markers and the differentiation capacity into three-germ layers after thawing. In summary, the cryopreservation of small PSC aggregates in a defined protein-free formulation was shown to be a suitable approach toward a fully integrated expansion and cryopreservation process at large scale. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  20. Patterns of [PSI+] aggregation allow insights into cellular organization of yeast prion aggregates

    PubMed Central

    Tyedmers, Jens

    2012-01-01

    The yeast prion phenomenon is very widespread and mounting evidence suggests that it has an impact on cellular regulatory mechanisms related to phenotypic responses to changing environments. Studying the aggregation patterns of prion amyloids during different stages of the prion life cycle is a first key step to understand major principles of how and where cells generate, organize and turn-over prion aggregates. The induction of the [PSI+] state involves the actin cytoskeleton and quality control compartments such as the Insoluble Protein Deposit (IPOD). An initially unstable transitional induction state can be visualized by overexpression of the prion determinant and displays characteristic large ring- and ribbon-shaped aggregates consisting of poorly fragmented bundles of very long prion fibrils. In the mature prion state, the aggregation pattern is characterized by highly fragmented, shorter prion fibrils that form aggregates, which can be visualized through tagging with fluorescent proteins. The number of aggregates formed varies, ranging from a single large aggregate at the IPOD to multiple smaller ones, depending on several parameters discussed. Aggregate units below the resolution of light microscopy that are detectable by fluorescence correlation spectroscopy are in equilibrium with larger aggregates in this stage and can mediate faithful inheritance of the prion state. Loss of the prion state is often characterized by reduced fragmentation of prion fibrils and fewer, larger aggregates. PMID:22449721

  1. Aggregation Trade Offs in Family Based Recommendations

    NASA Astrophysics Data System (ADS)

    Berkovsky, Shlomo; Freyne, Jill; Coombe, Mac

    Personalized information access tools are frequently based on collaborative filtering recommendation algorithms. Collaborative filtering recommender systems typically suffer from a data sparsity problem, where systems do not have sufficient user data to generate accurate and reliable predictions. Prior research suggested using group-based user data in the collaborative filtering recommendation process to generate group-based predictions and partially resolve the sparsity problem. Although group recommendations are less accurate than personalized recommendations, they are more accurate than general non-personalized recommendations, which are the natural fall back when personalized recommendations cannot be generated. In this work we present initial results of a study that exploits the browsing logs of real families of users gathered in an eHealth portal. The browsing logs allowed us to experimentally compare the accuracy of two group-based recommendation strategies: aggregated group models and aggregated predictions. Our results showed that aggregating individual models into group models resulted in more accurate predictions than aggregating individual predictions into group predictions.

  2. Mining databases for protein aggregation: a review.

    PubMed

    Tsiolaki, Paraskevi L; Nastou, Katerina C; Hamodrakas, Stavros J; Iconomidou, Vassiliki A

    2017-09-01

    Protein aggregation is an active area of research in recent decades, since it is the most common and troubling indication of protein instability. Understanding the mechanisms governing protein aggregation and amyloidogenesis is a key component to the aetiology and pathogenesis of many devastating disorders, including Alzheimer's disease or type 2 diabetes. Protein aggregation data are currently found "scattered" in an increasing number of repositories, since advances in computational biology greatly influence this field of research. This review exploits the various resources of aggregation data and attempts to distinguish and analyze the biological knowledge they contain, by introducing protein-based, fragment-based and disease-based repositories, related to aggregation. In order to gain a broad overview of the available repositories, a novel comprehensive network maps and visualizes the current association between aggregation databases and other important databases and/or tools and discusses the beneficial role of community annotation. The need for unification of aggregation databases in a common platform is also addressed.

  3. Volcanic ash aggregation in the lab - can we mimic natural processes?

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Jacob, Michael; Ayris, Paul; Cimarelli, Corrado; Dingwell, Donald B.; Guttzeit, Melanie; Hess, Kai-Uwe; Walter, Ulrich

    2015-04-01

    Explosive volcanic eruptions release large amounts of particles into the atmosphere. Volcanic ash, by definition pyroclasts smaller than 2 mm, can be distributed around the globe by prevailing winds. Ash poses hazards to aviation industry by melting in jet turbines, to human health by entering respiration systems and to society by damaging infrastructure. Under certain circumstances, ash particles can cluster together and build ash aggregates. Aggregates range in size from few mm to few cm and may exhibit complex internal stratigraphy. During growth, weight, density and aerodynamic properties change, leading to a significantly different settling behavior compared to individual ash particles. Although ash aggregation has been frequently observed in the geologic record, the physical and chemical mechanisms generating the aggregates remain poorly understood. During several field campaigns, we collected numerous ash aggregates and analyzed their textural, chemical and mechanical properties. Based on this knowledge, we have designed experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH, Germany. In this device, a continuous fluidized bed can be applied on solid particles and simulate gas-particle flow conditions as they would be expected in volcanic plumes or pyroclastic density currents. The geological record and direct observations have shown that both processes are capable of producing ash aggregates. As starting material we used Na-glass beads as an analogue and volcanic ash from Laacher See Volcano, Eifel Volcanic Field, Germany. We define parameters such as grainsize, specific surface area and concentration of the starting material, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase to influence form, size, stability and production rate of aggregates. We were able to experimentally produce round, unstructured ash pellets up to 5mm in diameter. A detailed textural description highlights

  4. On the fractal morphology of combustion-generated soot aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koylu, U.O.

    1995-12-31

    The fractal properties of soot aggregates were investigated using ex-situ and in-situ experimental methods as well as computer simulations. Ex-situ experiments involved thermophoretic sampling and analysis by transmission electron microscopy (TEM), while in-situ measurements employed angular static light scattering and data inversion based on Rayleigh-Debye-Gans (RDG) approximation. Computer simulations used a sequential algorithm which mimics mass fractal-like structures. So from a variety of hydrocarbon-fueled laminar and turbulent nonpremixed flame environments were considered in the present study. The TEM analysis of projected soot images sampled from fuel-rich conditions of buoyant and weakly-buoyant laminar flames indicated that the fractal dimension of sootmore » was relatively independent of position in flames, fuel type and flame condition. These measurements yielded an average fractal dimension of 1.8, although other structure parameters such as the primary particle diameters and number of primary particles in aggregates had wide range of values. Fractal prefactor (lacunarity) was also measured for soot sampled from the fuel-lean conditions of turbulent flames, considering the actual morphology by tilting the samples during TEM analysis. These measurements yielded a fractal dimension of 1.65 and a lacunarity of 8.5, with experimental uncertainties (95% confidence) of 0.08 and 0.5, respectively. Relationships between the actual and projected structure properties of soot were also developed by combining TEM observations with numerical simulations. Practical approximate formulae were suggested to find radius of gyration of an aggregate from its maximum dimension, and number of primary particles in an aggregate from projected area. Finally, the fractal dimension and lacunarity of soot were obtained using light scattering for the same conditions of the above TEM measurements.« less

  5. Generation of chimeric minipigs by aggregating 4- to 8-cell-stage blastomeres from somatic cell nuclear transfer with the tracing of enhanced green fluorescent protein.

    PubMed

    Ji, Huili; Long, Chuan; Feng, Chong; Shi, Ningning; Jiang, Yingdi; Zeng, Guomin; Li, Xirui; Wu, Jingjing; Lu, Lin; Lu, Shengsheng; Pan, Dengke

    2017-05-01

    Blastocyst complementation is an important technique for generating chimeric organs in organ-deficient pigs, which holds great promise for solving the problem of a shortage of organs for human transplantation procedures. Porcine chimeras have been generated using embryonic germ cells, embryonic stem cells, and induced pluripotent stem cells; however, there are no authentic pluripotent stem cells for pigs. In previous studies, blastomeres from 4- to 8-cell-stage parthenogenetic embryos were able to generate chimeric fetuses efficiently, but the resulting fetuses did not produce live-born young. Here, we used early-stage embryos from somatic cell nuclear transfer (SCNT) to generate chimeric piglets by the aggregation method. Then, the distribution of chimerism in various tissues and organs was observed through the expression of enhanced green fluorescent protein (EGFP). Initially, we determined whether 4- to 8- or 8- to 16-cell-stage embryos were more suitable to generate chimeric piglets. Chimeras were produced by aggregating two EGFP-tagged Wuzhishan minipig (WZSP) SCNT embryos and two Bama minipig (BMP) SCNT embryos. The chimeric piglets were identified by coat color and microsatellite and swine leukocyte antigen analyses. Moreover, the distribution of chimerism in various tissues and organs of the piglets was evaluated by EGFP expression. We found that more aggregated embryos were produced using 4- to 8-cell-stage embryos (157/657, 23.9%) than 8- to 16-cell-stage embryos (100/499, 20.0%). Thus, 4- to 8-cell-stage embryos were used for the generation of chimeras. The rate of blastocysts development after aggregating WZSP with BMP embryos was 50.6%. Transfer of 391 blastocysts developed from 4- to 8-cell-stage embryos to five recipients gave rise to 18 piglets, of which two (11.1%) were confirmed to be chimeric by their coat color and microsatellite examination of the skin. One of the chimeric piglets died at 35 days and was subsequently autopsied, whereas the

  6. Generation of spin currents by surface plasmon resonance

    PubMed Central

    Uchida, K.; Adachi, H.; Kikuchi, D.; Ito, S.; Qiu, Z.; Maekawa, S.; Saitoh, E.

    2015-01-01

    Surface plasmons, free-electron collective oscillations in metallic nanostructures, provide abundant routes to manipulate light–electron interactions that can localize light energy and alter electromagnetic field distributions at subwavelength scales. The research field of plasmonics thus integrates nano-photonics with electronics. In contrast, electronics is also entering a new era of spintronics, where spin currents play a central role in driving devices. However, plasmonics and spin-current physics have so far been developed independently. Here we report the generation of spin currents by surface plasmon resonance. Using Au nanoparticles embedded in Pt/BiY2Fe5O12 bilayer films, we show that, when the Au nanoparticles fulfill the surface-plasmon-resonance conditions, spin currents are generated across the Pt/BiY2Fe5O12 interface. This spin-current generation cannot be explained by conventional heating effects, requiring us to introduce nonequilibrium magnons excited by surface-plasmon-induced evanescent electromagnetic fields in BiY2Fe5O12. This plasmonic spin pumping integrates surface plasmons with spin-current physics, opening the door to plasmonic spintronics. PMID:25569821

  7. Effect of curcumin on amyloid-like aggregates generated from methionine-oxidized apolipoprotein A-I

    DOE PAGES

    Krishnamoorthy, Aparna; Tavoosi, Narjes; Chan, Gary K. L.; ...

    2018-01-10

    Curcumin is a polyphenolic phytonutrient that has antineurodegenerative properties. Here, we investigated the anti-amyloidogenic properties of curcumin. Following incubation with curcumin, intrinsic tryptophan fluorescence emission of apolipoprotein (apo) A-I was strongly quenched. At the same time, curcumin fluorescence emission was enhanced. The fluorescence emission spectra of curcumin in the presence of amyloid-like aggregates formed by methionine-oxidized (ox) apoA-I varied, depending on whether curcumin was added before, or after, aggregate formation. The impact of curcumin on the structure of the aggregating material was revealed by the lower amount of β-structure in ox-apoA-I amyloid-like aggregates formed in the presence of curcumin, comparedmore » to aggregates formed without curcumin. However, the kinetics of ox-apoA-I amyloid-like aggregate formation was not altered by the presence of curcumin. Moreover, electron microscopy analysis detected no discernable differences in amyloid morphology when ox-apoA-I amyloid-like aggregates were formed in the presence or absence of curcumin. In conclusion, curcumin interacts with apoA-I and alters the structure of ox-apoA-I amyloid-like aggregates yet does not diminish the propensity of ox-apoA-I to form aggregates.« less

  8. Effect of curcumin on amyloid-like aggregates generated from methionine-oxidized apolipoprotein A-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamoorthy, Aparna; Tavoosi, Narjes; Chan, Gary K. L.

    Curcumin is a polyphenolic phytonutrient that has antineurodegenerative properties. Here, we investigated the anti-amyloidogenic properties of curcumin. Following incubation with curcumin, intrinsic tryptophan fluorescence emission of apolipoprotein (apo) A-I was strongly quenched. At the same time, curcumin fluorescence emission was enhanced. The fluorescence emission spectra of curcumin in the presence of amyloid-like aggregates formed by methionine-oxidized (ox) apoA-I varied, depending on whether curcumin was added before, or after, aggregate formation. The impact of curcumin on the structure of the aggregating material was revealed by the lower amount of β-structure in ox-apoA-I amyloid-like aggregates formed in the presence of curcumin, comparedmore » to aggregates formed without curcumin. However, the kinetics of ox-apoA-I amyloid-like aggregate formation was not altered by the presence of curcumin. Moreover, electron microscopy analysis detected no discernable differences in amyloid morphology when ox-apoA-I amyloid-like aggregates were formed in the presence or absence of curcumin. In conclusion, curcumin interacts with apoA-I and alters the structure of ox-apoA-I amyloid-like aggregates yet does not diminish the propensity of ox-apoA-I to form aggregates.« less

  9. Effects of Wastes from the Brewing Industry in Lightweight Aggregates Manufactured with Clay for Green Roofs.

    PubMed

    Farías, Romina D; Martínez García, Carmen; Cotes Palomino, Teresa; Martínez Arellano, Myriam

    2017-05-15

    This study investigates the effects of sieved wastes generated from the brewing industry on lightweight aggregates manufactured with clay. Sludge from a wastewater treatment plant, bagasse and diatomaceous earth were used to obtain the samples. These wastes are usually dumped in landfills, but the current increase in restrictions on dumping and interest in improving the environment make our proposal for gaining value from these wastes a significant contribution. Laboratory tests show that the new aggregate has low bulk density and increased water absorption and porosity. The thermographic camera results provide evidence that new aggregates have significant insulating properties and are suitable for use on green roofs.

  10. Effects of Wastes from the Brewing Industry in Lightweight Aggregates Manufactured with Clay for Green Roofs

    PubMed Central

    Farías, Romina D.; Martínez García, Carmen; Cotes Palomino, Teresa; Martínez Arellano, Myriam

    2017-01-01

    This study investigates the effects of sieved wastes generated from the brewing industry on lightweight aggregates manufactured with clay. Sludge from a wastewater treatment plant, bagasse and diatomaceous earth were used to obtain the samples. These wastes are usually dumped in landfills, but the current increase in restrictions on dumping and interest in improving the environment make our proposal for gaining value from these wastes a significant contribution. Laboratory tests show that the new aggregate has low bulk density and increased water absorption and porosity. The thermographic camera results provide evidence that new aggregates have significant insulating properties and are suitable for use on green roofs. PMID:28772892

  11. Non-inductive current generation in fusion plasmas with turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Ethier, S.; Startsev, E.; Chen, J.; Hahm, T. S.; Yoo, M. G.

    2017-10-01

    It is found that plasma turbulence may strongly influence non-inductive current generation. This may have radical impact on various aspects of tokamak physics. Our simulation study employs a global gyrokinetic model coupling self-consistent neoclassical and turbulent dynamics with focus on electron current. Distinct phases in electron current generation are illustrated in the initial value simulation. In the early phase before turbulence develops, the electron bootstrap current is established in a time scale of a few electron collision times, which closely agrees with the neoclassical prediction. The second phase follows when turbulence begins to saturate, during which turbulent fluctuations are found to strongly affect electron current. The profile structure, amplitude and phase space structure of electron current density are all significantly modified relative to the neoclassical bootstrap current by the presence of turbulence. Both electron parallel acceleration and parallel residual stress drive are shown to play important roles in turbulence-induced current generation. The current density profile is modified in a way that correlates with the fluctuation intensity gradient through its effect on k//-symmetry breaking in fluctuation spectrum. Turbulence is shown to deduct (enhance) plasma self-generated current in low (high) collisionality regime, and the reduction of total electron current relative to the neoclassical bootstrap current increases as collisionality decreases. The implication of this result to the fully non-inductive current operation in steady state burning plasma regime should be investigated. Finally, significant non-inductive current is observed in flat pressure region, which is a nonlocal effect and results from turbulence spreading induced current diffusion. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.

  12. Generation of high-density biskyrmions by electric current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Licong; Zhang, Ying; He, Min

    Much interest has been focused on the manipulation of magnetic skyrmions, including the generation, annihilation, and motion behaviors, for potential applications in spintronics. We experimentally demonstrate that a high-density Bloch-type biskyrmion lattice in MnNiGa can be generated by applying electric current. It is revealed that the density of biskyrmions can be remarkably increased by increasing the electric current, in contrast to the scattered biskyrmions induced by a magnetic field alone. Furthermore, the transition from the ferromagnetic state to the stripe domain structure can be terminated by the electric current, leading to the biskyrmions dominated residual domain pattern. These biskyrmions inmore » such residual domain structure are extremely stable at zero magnetic and electric fields and can further evolve into the high-density biskyrmion lattice over a temperature range from 100 to 330 K. Finally, our experimental findings open up a new pathway for the generation of skyrmion lattice by electric current manipulation.« less

  13. Generation of high-density biskyrmions by electric current

    DOE PAGES

    Peng, Licong; Zhang, Ying; He, Min; ...

    2017-06-16

    Much interest has been focused on the manipulation of magnetic skyrmions, including the generation, annihilation, and motion behaviors, for potential applications in spintronics. We experimentally demonstrate that a high-density Bloch-type biskyrmion lattice in MnNiGa can be generated by applying electric current. It is revealed that the density of biskyrmions can be remarkably increased by increasing the electric current, in contrast to the scattered biskyrmions induced by a magnetic field alone. Furthermore, the transition from the ferromagnetic state to the stripe domain structure can be terminated by the electric current, leading to the biskyrmions dominated residual domain pattern. These biskyrmions inmore » such residual domain structure are extremely stable at zero magnetic and electric fields and can further evolve into the high-density biskyrmion lattice over a temperature range from 100 to 330 K. Finally, our experimental findings open up a new pathway for the generation of skyrmion lattice by electric current manipulation.« less

  14. Recombination-generation currents in degenerate semiconductors

    NASA Technical Reports Server (NTRS)

    Von Roos, O.

    1978-01-01

    The classical Shockley-Read-Hall theory of free carrier recombination and generation via traps is extended to degenerate semiconductors. A concise and simple expression is found which avoids completely the concept of a Fermi level, a concept which is alien to nonequilibrium situations. Assumptions made in deriving the recombination generation current are carefully delineated and are found to be basically identical to those made in the original theory applicable to nondegenerate semiconductors.

  15. Protein Aggregates Are Recruited to Aggresome by Histone Deacetylase 6 via Unanchored Ubiquitin C Termini*

    PubMed Central

    Ouyang, Hui; Ali, Yousuf O.; Ravichandran, Mani; Dong, Aiping; Qiu, Wei; MacKenzie, Farrell; Dhe-Paganon, Sirano; Arrowsmith, Cheryl H.; Zhai, R. Grace

    2012-01-01

    The aggresome pathway is activated when proteasomal clearance of misfolded proteins is hindered. Misfolded polyubiquitinated protein aggregates are recruited and transported to the aggresome via the microtubule network by a protein complex consisting of histone deacetylase 6 (HDAC6) and the dynein motor complex. The current model suggests that HDAC6 recognizes protein aggregates by binding directly to polyubiquitinated proteins. Here, we show that there are substantial amounts of unanchored ubiquitin in protein aggregates with solvent-accessible C termini. The ubiquitin-binding domain (ZnF-UBP) of HDAC6 binds exclusively to the unanchored C-terminal diglycine motif of ubiquitin instead of conjugated polyubiquitin. The unanchored ubiquitin C termini in the aggregates are generated in situ by aggregate-associated deubiquitinase ataxin-3. These results provide structural and mechanistic bases for the role of HDAC6 in aggresome formation and further suggest a novel ubiquitin-mediated signaling pathway, where the exposure of ubiquitin C termini within protein aggregates enables HDAC6 recognition and transport to the aggresome. PMID:22069321

  16. Protein Aggregates Are Recruited to Aggresome by Histone Deacetylase 6 via Unanchored Ubiquitin C Termini

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Hui; Ali, Yousuf O.; Ravichandran, Mani

    2012-07-11

    The aggresome pathway is activated when proteasomal clearance of misfolded proteins is hindered. Misfolded polyubiquitinated protein aggregates are recruited and transported to the aggresome via the microtubule network by a protein complex consisting of histone deacetylase 6 (HDAC6) and the dynein motor complex. The current model suggests that HDAC6 recognizes protein aggregates by binding directly to polyubiquitinated proteins. Here, we show that there are substantial amounts of unanchored ubiquitin in protein aggregates with solvent-accessible C termini. The ubiquitin-binding domain (ZnF-UBP) of HDAC6 binds exclusively to the unanchored C-terminal diglycine motif of ubiquitin instead of conjugated polyubiquitin. The unanchored ubiquitin Cmore » termini in the aggregates are generated in situ by aggregate-associated deubiquitinase ataxin-3. These results provide structural and mechanistic bases for the role of HDAC6 in aggresome formation and further suggest a novel ubiquitin-mediated signaling pathway, where the exposure of ubiquitin C termini within protein aggregates enables HDAC6 recognition and transport to the aggresome.« less

  17. Can H-aggregates serve as light-harvesting antennae? Triplet-triplet energy transfer between excited aggregates and monomer thionine in aerosol-OT solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.; Kamat, P.V.

    1999-01-07

    The cationic dye thionine undergoes slow dissolution in aerosol-OT (AOT) containing solutions of heptane and toluene. By controlling the ratio of [dye]/[AOT], it is possible to obtain varying amounts of monomer, dimer, and higher order aggregates (trimer) in dilute dye solutions. The thionine aggregates exhibit characteristic absorption maxima at 565 and 530 nm for the dimer and trimer forms, respectively. The singlet excited states of these dye aggregates are short-lived ({tau} = 40--63 ps) as they undergo efficient intersystem crossing to generate the triplet excited states. Triplet energy transfer from the excited dye aggregates to monomeric thionine molecules was observedmore » upon excitation with a 532 nm laser pulse. Pulse radiolysis experiments, in which the excited triplet states were generated indirectly, also confirm the finding that the triplet energy cascades down from excited trimer to dimer to monomeric dye. These studies demonstrate the possibility of using H-type dye aggregates as antenna molecules to harvest light energy whereby the aggregate molecules absorb light in different spectral regions and subsequently transfer energy to the monomeric dye.« less

  18. Understanding curcumin-induced modulation of protein aggregation.

    PubMed

    Ahmad, Basir; Borana, Mohanish S; Chaudhary, Ankur P

    2017-07-01

    Curcumin, a diarylheptanoid compound, found in spice turmeric is known to alter the aggregation of proteins and reduce the toxicity of the aggregates. This review looks at the molecular basis of modulating protein aggregation and toxicity of the aggregates. Foremost, we identify the interaction of curcumin and its derivatives with proteins/peptides and the effect of their interaction on the conformational stability and unfolding/folding pathway(s). The unfolding/folding processes generate partially folded/unfolded intermediate, which serve as aggregation precursor state. Secondly, we discuss the effect of curcumin binding on the kinetics parameters of the aggregation process, which give information about the mechanism of the aggregation inhibition. We describe, in addition, that curcumin can accelerate/promote fibril formation by binding to oligomeric intermediate(s) accumulated in the aggregation pathway. Finally, we discuss the correlation of curcumin-induced monomeric and/or oligomeric precursor states with aggregate structure and toxicity. On the basis of these discussions, we propose a model describing curcumin-induced inhibition/promotion of formation of amyloid-like fibrils. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Where the wild things are: Predicting hotspots of seabird aggregations in the California Current System

    USGS Publications Warehouse

    Nur, N.; Jahncke, J.; Herzog, M.P.; Howar, J.; Hyrenbach, K.D.; Zamon, J.E.; Ainley, D.G.; Wiens, J.A.; Morgan, K.; Balance, L.T.; Stralberg, D.

    2011-01-01

    Marine Protected Areas (MPAs) provide an important tool for conservation of marine ecosystems. To be most effective, these areas should be strategically located in a manner that supports ecosystem function. To inform marine spatial planning and support strategic establishment of MPAs within the California Current System, we identified areas predicted to support multispecies aggregations of seabirds ("hotspot????). We developed habitat-association models for 16 species using information from at-sea observations collected over an 11-year period (1997-2008), bathymetric data, and remotely sensed oceanographic data for an area from north of Vancouver Island, Canada, to the USA/Mexico border and seaward 600 km from the coast. This approach enabled us to predict distribution and abundance of seabirds even in areas of few or no surveys. We developed single-species predictive models using a machine-learning algorithm: bagged decision trees. Single-species predictions were then combined to identify potential hotspots of seabird aggregation, using three criteria: (1) overall abundance among species, (2) importance of specific areas ("core area????) to individual species, and (3) predicted persistence of hotspots across years. Model predictions were applied to the entire California Current for four seasons (represented by February, May, July, and October) in each of 11 years. Overall, bathymetric variables were often important predictive variables, whereas oceanographic variables derived from remotely sensed data were generally less important. Predicted hotspots often aligned with currently protected areas (e.g., National Marine Sanctuaries), but we also identified potential hotspots in Northern California/Southern Oregon (from Cape Mendocino to Heceta Bank), Southern California (adjacent to the Channel Islands), and adjacent to Vancouver Island, British Columbia, that are not currently included in protected areas. Prioritization and identification of multispecies hotspots

  20. Training Course for Power Operating Personnel. Lesson No. 6: Alternating-Current Generator Excitation.

    ERIC Educational Resources Information Center

    Department of the Interior, Denver, CO. Engineering and Research Center.

    Subjects covered in this text are controlling the hydroelectric generator, generator excitation, basic principles of direct current generation, direction of current flow, basic alternating current generator, alternating and direct current voltage outputs, converting alternating current to direct current, review of the basic generator and…

  1. Diffusion-limited aggregation in two dimensions

    NASA Astrophysics Data System (ADS)

    Hurd, Alan J.; Schaefer, Dale W.

    1985-03-01

    We have studied the aggregation of silica microspheres confined to two dimensions at an air-water interface. Under microscopic observation, both monomers and clusters are seen to aggregate by a diffusion-limited process. The clusters' fractal dimension is 1.20+/-0.15, smaller than values obtained from current models of aggregation. We propose that anisotropic repulsive interactions account for the low dimensionality by more effectively repelling particles from the side of an existing dendrite than from the end.

  2. THE DYNAMICAL GENERATION OF CURRENT SHEETS IN ASTROPHYSICAL PLASMA TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howes, Gregory G.

    2016-08-20

    Turbulence profoundly affects particle transport and plasma heating in many astrophysical plasma environments, from galaxy clusters to the solar corona and solar wind to Earth's magnetosphere. Both fluid and kinetic simulations of plasma turbulence ubiquitously generate coherent structures, in the form of current sheets, at small scales, and the locations of these current sheets appear to be associated with enhanced rates of dissipation of the turbulent energy. Therefore, illuminating the origin and nature of these current sheets is critical to identifying the dominant physical mechanisms of dissipation, a primary aim at the forefront of plasma turbulence research. Here, we presentmore » evidence from nonlinear gyrokinetic simulations that strong nonlinear interactions between counterpropagating Alfvén waves, or strong Alfvén wave collisions, are a natural mechanism for the generation of current sheets in plasma turbulence. Furthermore, we conceptually explain this current sheet development in terms of the nonlinear dynamics of Alfvén wave collisions, showing that these current sheets arise through constructive interference among the initial Alfvén waves and nonlinearly generated modes. The properties of current sheets generated by strong Alfvén wave collisions are compared to published observations of current sheets in the Earth's magnetosheath and the solar wind, and the nature of these current sheets leads to the expectation that Landau damping of the constituent Alfvén waves plays a dominant role in the damping of turbulently generated current sheets.« less

  3. Particle Formation and Aggregation of a Therapeutic Protein in Nanobubble Suspensions

    PubMed Central

    Snell, Jared R.; Zhou, Chen; Carpenter, John F.; Randolph, Theodore W.

    2016-01-01

    The generation of nanobubbles following reconstitution of lyophilized trehalose formulations has recently been reported.1 Here, we characterize particle formation and aggregation of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) in reconstituted formulations of lyophilized trehalose. Particle characterization methods including resonant mass measurement and nanoparticle tracking analysis were used to count and size particles generated upon reconstitution of lyophilized trehalose formulations. In addition, accelerated degradation studies were conducted to monitor rhIL-1ra aggregation in solutions containing various concentrations of suspended nanobubbles. Reconstitution of lyophilized trehalose formulations with solutions containing rhIL-1ra reduced nanobubble concentrations and generated negatively buoyant particles attributed to aggregated rhIL-1ra. Furthermore, levels of rhIL-1ra aggregation following incubation in aqueous solution correlated with concentrations of suspended nanobubbles. The results of this study suggest nanobubbles may be a contributor to protein aggregation and particle formation in reconstituted, lyophilized therapeutic protein formulations. PMID:27488901

  4. Nonlinear spin current generation in noncentrosymmetric spin-orbit coupled systems

    NASA Astrophysics Data System (ADS)

    Hamamoto, Keita; Ezawa, Motohiko; Kim, Kun Woo; Morimoto, Takahiro; Nagaosa, Naoto

    2017-06-01

    Spin current plays a central role in spintronics. In particular, finding more efficient ways to generate spin current has been an important issue and has been studied actively. For example, representative methods of spin-current generation include spin-polarized current injections from ferromagnetic metals, the spin Hall effect, and the spin battery. Here, we theoretically propose a mechanism of spin-current generation based on nonlinear phenomena. By using Boltzmann transport theory, we show that a simple application of the electric field E induces spin current proportional to E2 in noncentrosymmetric spin-orbit coupled systems. We demonstrate that the nonlinear spin current of the proposed mechanism is supported in the surface state of three-dimensional topological insulators and two-dimensional semiconductors with the Rashba and/or Dresselhaus interaction. In the latter case, the angular dependence of the nonlinear spin current can be manipulated by the direction of the electric field and by the ratio of the Rashba and Dresselhaus interactions. We find that the magnitude of the spin current largely exceeds those in the previous methods for a reasonable magnitude of the electric field. Furthermore, we show that application of ac electric fields (e.g., terahertz light) leads to the rectifying effect of the spin current, where dc spin current is generated. These findings will pave a route to manipulate the spin current in noncentrosymmetric crystals.

  5. Digital processing with single electrons for arbitrary waveform generation of current

    NASA Astrophysics Data System (ADS)

    Okazaki, Yuma; Nakamura, Shuji; Onomitsu, Koji; Kaneko, Nobu-Hisa

    2018-03-01

    We demonstrate arbitrary waveform generation of current using a GaAs-based single-electron pump. In our experiment, a digital processing algorithm known as delta-sigma modulation is incorporated into single-electron pumping to generate a density-modulated single-electron stream, by which we demonstrate the generation of arbitrary waveforms of current including sinusoidal, square, and triangular waves with a peak-to-peak amplitude of approximately 10 pA and an output bandwidth ranging from dc to close to 1 MHz. The developed current generator can be used as the precise and calculable current reference required for measurements of current noise in low-temperature experiments.

  6. Engineering a fibrocartilage spectrum through modulation of aggregate redifferentiation.

    PubMed

    Murphy, Meghan K; Masters, Taylor E; Hu, Jerry C; Athanasiou, Kyriacos A

    2015-01-01

    Expanded costochondral cells provide a clinically relevant cell source for engineering both fibrous and hyaline articular cartilage. Expanding chondrocytes in a monolayer results in a shift toward a proliferative, fibroblastic phenotype. Three-dimensional aggregate culture may, however, be used to recover chondrogenic matrix production. This study sought to engineer a spectrum of fibrous to hyaline neocartilage from a single cell source by varying the duration of three-dimensional culture following expansion. In third passage porcine costochondral cells, the effects of aggregate culture duration were assessed after 0, 8, 11, 14, and 21 days of aggregate culture and after 4 subsequent weeks of neocartilage formation. Varying the duration of aggregate redifferentiation generated a spectrum of fibrous to hyaline neocartilage. Within 8 days of aggregation, proliferation ceased, and collagen and glycosaminoglycan production increased, compared with monolayer cells. In self-assembled neocartilage, type II-to-I collagen ratio increased with increasing aggregate duration, yet glycosaminoglycan content varied minimally. Notably, 14 days of aggregate redifferentiation increased collagen content by 25%, tensile modulus by over 110%, and compressive moduli by over 50%, compared with tissue formed in the absence of redifferentiation. A spectrum of fibrous to hyaline cartilage was generated using a single, clinically relevant cell source, improving the translational potential of engineered cartilage.

  7. Engineering a Fibrocartilage Spectrum Through Modulation of Aggregate Redifferentiation

    PubMed Central

    Murphy, Meghan K.; Masters, Taylor E.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2015-01-01

    Expanded costochondral cells provide a clinically relevant cell source for engineering both fibrous and hyaline articular cartilage. Expanding chondrocytes in monolayer results in a shift toward a proliferative, fibroblastic phenotype. Three-dimensional aggregate culture may, however, be used to recover chondrogenic matrix production. This study sought to engineer a spectrum of fibrous to hyaline neocartilage from a single cell source by varying the duration of three-dimensional culture following expansion. In third passage porcine costochondral cells, the effects of aggregate culture duration were assessed after 0, 8, 11, 14, and 21 days of aggregate culture and after 4 subsequent weeks of neocartilage formation. Varying the duration of aggregate redifferentiation generated a spectrum of fibrous to hyaline neocartilage. Within 8 days of aggregation, proliferation ceased, and collagen and glycosaminoglycan production increased, compared with monolayer cells. In self-assembled neocartilage, type II to I collagen ratio increased with increasing aggregate duration, yet glycosaminoglycan content varied minimally. Notably, 14 days of aggregate redifferentiation increased collagen content by 25%, tensile modulus by over 110%, and compressive moduli by over 50%, compared with tissue formed in the absence of redifferentiation. A spectrum of fibrous to hyaline cartilage was generated using a single, clinically relevant cell source, improving the translational potential of engineered cartilage. PMID:24380383

  8. Lowering of acoustic droplet vaporization threshold via aggregation

    NASA Astrophysics Data System (ADS)

    Guo, Shifang; Shi, Aiwei; Xu, Shanshan; Du, Xuan; Wang, Xin; Zong, Yujin; Bouakaz, Ayache; Wan, Mingxi

    2017-12-01

    Acoustically sensitive emulsion nanodroplets composed of perfluorocarbon have shown great potential for advanced medical diagnosis and therapy but are limited by the required high acoustic droplet vaporization (ADV) threshold for clinical applications. This study investigates the use of an ultrasonic standing wave to lower the ADV threshold while maintaining the generated bubble size in the required size range, ensuring the generation of inertial cavitation and corresponding physical effects. The results showed that disperse nanodroplets were manipulated to form micron-sized aggregations, and the required ADV threshold was significantly lowered, while a similar size range of the microbubbles generated by disperse nanodroplets was maintained. The threshold could be further regulated by adjusting the aggregation size via controlling the concentration of the disperse nanodroplets. Furthermore, the internal pressures in the aggregations with different sizes were calculated to determine their ADV thresholds theoretically, which were shown to be in good agreement with the experimental results.

  9. Robustness of the Process of Nucleoid Exclusion of Protein Aggregates in Escherichia coli

    PubMed Central

    Neeli-Venkata, Ramakanth; Martikainen, Antti; Gupta, Abhishekh; Gonçalves, Nadia; Fonseca, Jose

    2016-01-01

    ABSTRACT Escherichia coli segregates protein aggregates to the poles by nucleoid exclusion. Combined with cell divisions, this generates heterogeneous aggregate distributions in subsequent cell generations. We studied the robustness of this process with differing medium richness and antibiotics stress, which affect nucleoid size, using multimodal, time-lapse microscopy of live cells expressing both a fluorescently tagged chaperone (IbpA), which identifies in vivo the location of aggregates, and HupA-mCherry, a fluorescent variant of a nucleoid-associated protein. We find that the relative sizes of the nucleoid's major and minor axes change widely, in a positively correlated fashion, with medium richness and antibiotic stress. The aggregate's distribution along the major cell axis also changes between conditions and in agreement with the nucleoid exclusion phenomenon. Consequently, the fraction of aggregates at the midcell region prior to cell division differs between conditions, which will affect the degree of asymmetries in the partitioning of aggregates between cells of future generations. Finally, from the location of the peak of anisotropy in the aggregate displacement distribution, the nucleoid relative size, and the spatiotemporal aggregate distribution, we find that the exclusion of detectable aggregates from midcell is most pronounced in cells with mid-sized nucleoids, which are most common under optimal conditions. We conclude that the aggregate management mechanisms of E. coli are significantly robust but are not immune to stresses due to the tangible effect that these have on nucleoid size. IMPORTANCE Escherichia coli segregates protein aggregates to the poles by nucleoid exclusion. From live single-cell microscopy studies of the robustness of this process to various stresses known to affect nucleoid size, we find that nucleoid size and aggregate preferential locations change concordantly between conditions. Also, the degree of influence of the nucleoid

  10. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    NASA Astrophysics Data System (ADS)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  11. Learning about individuals' health from aggregate data.

    PubMed

    Colbaugh, Rich; Glass, Kristin

    2017-07-01

    There is growing awareness that user-generated social media content contains valuable health-related information and is more convenient to collect than typical health data. For example, Twitter has been employed to predict aggregate-level outcomes, such as regional rates of diabetes and child poverty, and to identify individual cases of depression and food poisoning. Models which make aggregate-level inferences can be induced from aggregate data, and consequently are straightforward to build. In contrast, learning models that produce individual-level (IL) predictions, which are more informative, usually requires a large number of difficult-to-acquire labeled IL examples. This paper presents a new machine learning method which achieves the best of both worlds, enabling IL models to be learned from aggregate labels. The algorithm makes predictions by combining unsupervised feature extraction, aggregate-based modeling, and optimal integration of aggregate-level and IL information. Two case studies illustrate how to learn health-relevant IL prediction models using only aggregate labels, and show that these models perform as well as state-of-the-art models trained on hundreds or thousands of labeled individuals.

  12. Implementation of AIMS in measuring aggregate resistance to polishing, abrasion, and breakage.

    DOT National Transportation Integrated Search

    2014-05-01

    The feasibility of using the Micro-Deval apparatus along with the second-generation Aggregate Imaging System : (AIMS) to develop a procedure for measuring aggregate polishing resistance, and to measure aggregate shape : properties was investigated. E...

  13. Solar power generation system for reducing leakage current

    NASA Astrophysics Data System (ADS)

    Wu, Jinn-Chang; Jou, Hurng-Liahng; Hung, Chih-Yi

    2018-04-01

    This paper proposes a transformer-less multi-level solar power generation system. This solar power generation system is composed of a solar cell array, a boost power converter, an isolation switch set and a full-bridge inverter. A unipolar pulse-width modulation (PWM) strategy is used in the full-bridge inverter to attenuate the output ripple current. Circuit isolation is accomplished by integrating the isolation switch set between the solar cell array and the utility, to suppress the leakage current. The isolation switch set also determines the DC bus voltage for the full-bridge inverter connecting to the solar cell array or the output of the boost power converter. Accordingly, the proposed transformer-less multi-level solar power generation system generates a five-level voltage, and the partial power of the solar cell array is also converted to AC power using only the full-bridge inverter, so the power efficiency is increased. A prototype is developed to validate the performance of the proposed transformer-less multi-level solar power generation system.

  14. Particle Formation and Aggregation of a Therapeutic Protein in Nanobubble Suspensions.

    PubMed

    Snell, Jared R; Zhou, Chen; Carpenter, John F; Randolph, Theodore W

    2016-10-01

    The generation of nanobubbles following reconstitution of lyophilized trehalose formulations has recently been reported. Here, we characterize particle formation and aggregation of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) in reconstituted formulations of lyophilized trehalose. Particle characterization methods including resonant mass measurement and nanoparticle tracking analysis were used to count and size particles generated upon reconstitution of lyophilized trehalose formulations. In addition, accelerated degradation studies were conducted to monitor rhIL-1ra aggregation in solutions containing various concentrations of suspended nanobubbles. Reconstitution of lyophilized trehalose formulations with solutions containing rhIL-1ra reduced nanobubble concentrations and generated negatively buoyant particles attributed to aggregated rhIL-1ra. Furthermore, levels of rhIL-1ra aggregation following incubation in aqueous solution correlated with concentrations of suspended nanobubbles. The results of this study suggest that nanobubbles may be a contributor to protein aggregation and particle formation in reconstituted, lyophilized therapeutic protein formulations. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Nanominerals, fullerene aggregates, and hazardous elements in coal and coal combustion-generated aerosols: An environmental and toxicological assessment.

    PubMed

    Saikia, Jyotilima; Narzary, Bardwi; Roy, Sonali; Bordoloi, Manobjyoti; Saikia, Prasenjit; Saikia, Binoy K

    2016-12-01

    Studies on coal-derived nanoparticles as well as nano-minerals are important in the context of the human health and the environment. The coal combustion-generated aerosols also affect human health and environmental quality aspects in any coal-fired station. In this study, the feed coals and their combustion-generated aerosols from coal-fired boilers of two tea industry facilities were investigated for the presence of nanoparticles/nano minerals, fullerene aggregates, and potentially hazardous elements (PHEs). The samples were characterized by using X-ray diffraction (XRD), Time-of-flight secondary ion mass spectroscopy (TOF-SIMS), High resolution-transmission electron microscopy/energy dispersive spectroscopy (HR-TEM/EDS) and Ultra Violet-visible spectroscopy (UV-Vis) to know their extent of environmental risks to the human health when present in coals and aerosols. The feed coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals occur in lesser quantities. The PM samples contain potentially hazardous elements (PHEs) like As, Pb, Cd and Hg. Enrichment factor of the trace elements in particulate matters (PMs) was calculated to determine their sources. The aerosol samples were also found to contain nanomaterials and ultrafine particles. The fullerene aggregates along with potentially hazardous elements were also detected in the aerosol samples. The cytotoxicity studies on the coal combustion-generated PM samples show their potential risk to the human health. This detailed investigation on the inter-relationship between the feed coals and their aerosol chemistry will be useful for understanding the extent of environmental hazards and related human health risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Experimental volcanic ash aggregation: Internal structuring of accretionary lapilli and the role of liquid bonding

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Dingwell, Donald B.

    2016-01-01

    Explosive volcanic eruptions can release vast quantities of pyroclastic material into Earth's atmosphere, including volcanic ash, particles with diameters less than two millimeters. Ash particles can cluster together to form aggregates, in some cases reaching up to several centimeters in size. Aggregation alters ash transport and settling behavior compared to un-aggregated particles, influencing ash distribution and deposit stratigraphy. Accretionary lapilli, the most commonly preserved type of aggregates within the geologic record, can exhibit complex internal stratigraphy. The processes involved in the formation and preservation of these aggregates remain poorly constrained quantitatively. In this study, we simulate the variable gas-particle flow conditions which may be encountered within eruption plumes and pyroclastic density currents via laboratory experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. In this apparatus, solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (particle concentration, air flow rate, gas temperature, humidity, liquid composition). Experiments were conducted with soda-lime glass beads and natural volcanic ash particles under a range of experimental conditions. Both glass beads and volcanic ash exhibited the capacity for aggregation, but stable aggregates could only be produced when materials were coated with high but volcanically-relevant concentrations of NaCl. The growth and structure of aggregates was dependent on the initial granulometry, while the rate of aggregate formation increased exponentially with increasing relative humidity (12-45% RH), before overwetting promoted mud droplet formation. Notably, by use of a broad granulometry, we generated spherical, internally structured aggregates similar to some accretionary pellets found in volcanic deposits. Adaptation of a powder-technology model offers an explanation for the origin of natural accretionary

  17. Effects of aggregate angularity on mix design characteristics and pavement performance.

    DOT National Transportation Integrated Search

    2009-12-01

    This research targeted two primary purposes: to estimate current aggregate angularity test methods and to evaluate current : aggregate angularity requirements in the Nebraska asphalt mixture/pavement specification. To meet the first research : object...

  18. Thermoelectric Generation Of Current - Theoretical And Experimental Analysis

    NASA Astrophysics Data System (ADS)

    Ruciński, Adam; Rusowicz, Artur

    2017-12-01

    This paper provides some information about thermoelectric technology. Some new materials with improved figures of merit are presented. These materials in Peltier modules make it possible to generate electric current thanks to a temperature difference. The paper indicates possible applications of thermoelectric modules as interesting tools for using various waste heat sources. Some zero-dimensional equations describing the conditions of electric power generation are given. Also, operating parameters of Peltier modules, such as voltage and electric current, are analyzed. The paper shows chosen characteristics of power generation parameters. Then, an experimental stand for ongoing research and experimental measurements are described. The authors consider the resistance of a receiver placed in the electric circuit with thermoelectric elements. Finally, both the analysis of experimental results and conclusions drawn from theoretical findings are presented. Voltage generation of about 1.5 to 2.5 V for the temperature difference from 65 to 85 K was observed when a bismuth telluride thermoelectric couple (traditionally used in cooling technology) was used.

  19. Gas metal arc welding fume generation using pulsed current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castner, H.R.

    1994-12-31

    This paper describes a study of the effects of pulsed welding current on the amount of welding fume and ozone produced during gas metal arc welding (GMAW) using a range of welding procedures and pulse parameters. The results reported in this paper show that pulsed current can reduce GMAW fumes compared to steady current. This research also shows that welding parameters need to be properly controlled if pulsed current is to be used to reduce welding fumes. Fume and ozone generation rates were measured during this study for GMAW of mild steel using copper-coated ER70S-3 electrode wire and 95%Ar-5%CO{sub 2}more » and 85%Ar-15%CO{sub 2} shielding gases. Welds were made with both steady current and pulsed current over a wide range of welding parameters. Fume generation rates for steady current were found to be typically between 0.2 g/min and 0.8 g/min which agrees with other researchers. No significant difference was found in the chemical composition of welding fumes from pulsed current compared to the composition of fumes generated by steady current. New technology that can reduce arc welding fumes is of significant interest to a wide range of companies that use arc welding processes and this research should assist these users in evaluating the potential for the application of this technology to their own operations.« less

  20. Experimental investigation of powerful pulse current generators based on capacitive storage and explosive magnetic generators

    NASA Astrophysics Data System (ADS)

    Shurupov, A. V.; Zavalova, V. E.; Kozlov, A. V.; Shurupov, M. A.; Povareshkin, M. N.; Kozlov, A. A.; Shurupova, N. P.

    2018-01-01

    Experimental models of microsecond duration powerful generators of current pulses on the basis of explosive magnetic generators and voltage impulse generator have been developed for the electromagnetic pulse effects on energy facilities to verify their stability. Exacerbation of voltage pulse carried out through the use of electro explosive current interrupter made of copper wires with diameters of 80 and 120 μm. Experimental results of these models investigation are represented. Voltage fronts about 100 ns and the electric field strength of 800 kV/m are registered.

  1. Protein Aggregation and Its Impact on Product Quality

    PubMed Central

    Roberts, Christopher J.

    2014-01-01

    Protein pharmaceutical products are typically active as folded monomers that are composed of one or more protein chains, such as the heavy and light chains in monoclonal antibodies that are a mainstay of current drug pipelines. There are numerous possible aggregated states for a given protein, some of which are potentially useful, while most of which are considered deleterious from the perspective of pharmaceutical product quality and performance. This review provides an overview of how and why different aggregated states of proteins occur, how this potentially impacts product quality and performance, fundamental approaches to control aggregate formation, and the practical approaches that are currently used in the pharmaceutical industry. PMID:25173826

  2. Protein aggregation and neurodegeneration in prototypical neurodegenerative diseases: Examples of amyloidopathies, tauopathies and synucleinopathies.

    PubMed

    Bourdenx, Mathieu; Koulakiotis, Nikolaos Stavros; Sanoudou, Despina; Bezard, Erwan; Dehay, Benjamin; Tsarbopoulos, Anthony

    2017-08-01

    Alzheimer's and Parkinson's diseases are the most prevalent neurodegenerative diseases that generate important health-related direct and indirect socio-economic costs. They are characterized by severe neuronal losses in several disease-specific brain regions associated with deposits of aggregated proteins. In Alzheimer's disease, β-amyloid peptide-containing plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein tau are the two main neuropathological lesions, while Parkinson's disease is defined by the presence of Lewy Bodies that are intraneuronal proteinaceous cytoplasmic inclusions. α-Synuclein has been identified as a major protein component of Lewy Bodies and heavily implicated in the pathogenesis of Parkinson's disease. In the past few years, evidence has emerged to explain how these aggregate-prone proteins can undergo spontaneous self-aggregation, propagate from cell to cell, and mediate neurotoxicity. Current research now indicates that oligomeric forms are probably the toxic species. This article discusses recent progress in the understanding of the pathogenesis of these diseases, with a focus on the underlying mechanisms of protein aggregation, and emphasizes the pathophysiological molecular mechanisms leading to cellular toxicity. Finally, we present the putative direct link between β-amyloid peptide and tau in causing toxicity in Alzheimer's disease as well as α-synuclein in Parkinson's disease, along with some of the most promising therapeutic strategies currently in development for those incurable neurodegenerative disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Magnetic droplet solitons generated by pure spin currents

    NASA Astrophysics Data System (ADS)

    Divinskiy, B.; Urazhdin, S.; Demidov, V. E.; Kozhanov, A.; Nosov, A. P.; Rinkevich, A. B.; Demokritov, S. O.

    2017-12-01

    Magnetic droplets are dynamical solitons that can be generated by locally suppressing the dynamical damping in magnetic films with perpendicular anisotropy. To date, droplets have been observed only in nanocontact spin-torque oscillators operated by spin-polarized electrical currents. Here, we experimentally demonstrate that magnetic droplets can be nucleated and sustained by pure spin currents in nanoconstriction-based spin Hall devices. Micromagnetic simulations support our interpretation of the data, and indicate that in addition to the stationary droplets, propagating solitons can be also generated in the studied system, which can be utilized for the information transmission in spintronic applications.

  4. Internal current generation in respiration chambers

    NASA Astrophysics Data System (ADS)

    Saborowski, R.; Buchholz, F.

    1998-06-01

    A technical device generating a constant and directed current within a sealed respiration chamber is described. It does not involve any external pumps or tubing. This system is easy to handle, and improved the maintenance of rheotactic pelagic species like the Northern krill ( Meganyctiphanes norvegica, Crustacea) or small fishes ( Gasterosteus aculeatus) under experimental conditions.

  5. Oil-derived marine aggregates - hot spots of polysaccharide degradation by specialized bacterial communities

    NASA Astrophysics Data System (ADS)

    Arnosti, Carol; Ziervogel, Kai; Yang, Tingting; Teske, Andreas

    2016-07-01

    Aggregates generated in the laboratory from incubations of seawater and surface-water oil collected in the initial phase of the Deepwater Horizon oil spill resemble the oil-aggregates observed in situ. Here, we investigated the enzyme activities and microbial community composition of laboratory generated oil-aggregates, focusing on the abilities of these communities to degrade polysaccharides, which are major components of marine organic matter and are abundant constituents of exopolymeric substances (EPS) generated by oil-associated bacteria in response to the presence of oil. The patterns of polysaccharide-hydrolyzing enzyme activities in oil aggregates were very different from those in the water surrounding the aggregates after formation, and in the surface water that did not contain the oil. Specific oil aggregate-associated hydrolysis rates were also considerably higher than in the water surrounding the aggregates. The differences in initial hydrolysis profiles, and in evolution of these profiles with time, points to specialized metabolic abilities among the oil-aggregate communities compared to oil-water and ambient water communities. The composition of the oil-aggregate community indicates a multifunctional microbial assemblage containing primary oil-degrading and exopolysaccharide-producing members of the Gammaproteobacteria, and diverse members of the Alphaproteobacteria, Bacteroidetes and Planktomycetales that most likely participate in the breakdown of oil-derived bacterial biopolymers. Formation and aging of oil-aggregates encourages the growth and transformation of microbial communities that are specialized in degradation of petroleum, as well as their secondary degradation products.

  6. Assessing cryogenic testing of aggregates for concrete pavements

    DOT National Transportation Integrated Search

    1995-02-01

    Damage to concrete pavements caused by freeze-thaw deterioration of concrete aggregate remains a serious problem. Current tests for determining an aggregate's freeze-thaw durability can take up to 70 days to perform and results from these tests don't...

  7. The Tethered Balloon Current Generator - A space shuttle-tethered subsatellite for plasma studies and power generation

    NASA Technical Reports Server (NTRS)

    Williamson, P. R.; Banks, P. M.

    1976-01-01

    The objectives of the Tethered Balloon Current Generator experiment are to: (1) generate relatively large regions of thermalized, field-aligned currents, (2) produce controlled-amplitude Alfven waves, (3) study current-driven electrostatic plasma instabilities, and (4) generate substantial amounts of power or propulsion through the MHD interaction. A large balloon (a diameter of about 30 m) will be deployed with a conducting surface above the space shuttle at a distance of about 10 km. For a generally eastward directed orbit at an altitude near 400 km, the balloon, connected to the shuttle by a conducting wire, will be positive with respect to the shuttle, enabling it to collect electrons. At the same time, the shuttle will collect positive ions and, upon command, emit an electron beam to vary current flow in the system.

  8. Statistical, economic and other tools for assessing natural aggregate

    USGS Publications Warehouse

    Bliss, J.D.; Moyle, P.R.; Bolm, K.S.

    2003-01-01

    Quantitative aggregate resource assessment provides resource estimates useful for explorationists, land managers and those who make decisions about land allocation, which may have long-term implications concerning cost and the availability of aggregate resources. Aggregate assessment needs to be systematic and consistent, yet flexible enough to allow updating without invalidating other parts of the assessment. Evaluators need to use standard or consistent aggregate classification and statistic distributions or, in other words, models with geological, geotechnical and economic variables or interrelationships between these variables. These models can be used with subjective estimates, if needed, to estimate how much aggregate may be present in a region or country using distributions generated by Monte Carlo computer simulations.

  9. Stem Cells in Aggregate Form to Enhance Chondrogenesis in Hydrogels

    PubMed Central

    Sridharan, BanuPriya; Lin, Staphany M.; Hwu, Alexander T.; Laflin, Amy D.; Detamore, Michael S.

    2015-01-01

    There are a variety of exciting hydrogel technologies being explored for cartilage regenerative medicine. Our overall goal is to explore whether using stem cells in an aggregate form may be advantageous in these applications. 3D stem cell aggregates hold great promise as they may recapitulate the in vivo skeletal tissue condensation, a property that is not typically observed in 2D culture. We considered two different stem cell sources, human umbilical cord Wharton’s jelly cells (hWJCs, currently being used in clinical trials) and rat bone marrow-derived mesenchymal stem cells (rBMSCs). The objective of the current study was to compare the influence of cell phenotype, aggregate size, and aggregate number on chondrogenic differentiation in a generic hydrogel (agarose) platform. Despite being differing cell sources, both rBMSC and hWJC aggregates were consistent in outperforming cell suspension control groups in biosynthesis and chondrogenesis. Higher cell density impacted biosynthesis favorably, and the number of aggregates positively influenced chondrogenesis. Therefore, we recommend that investigators employing hydrogels consider using cells in an aggregate form for enhanced chondrogenic performance. PMID:26719986

  10. Active matter model of Myxococcus xanthus aggregation

    NASA Astrophysics Data System (ADS)

    Patch, Adam; Bahar, Fatmagul; Liu, Guannan; Thutupalli, Shashi; Welch, Roy; Yllanes, David; Shaevitz, Joshua; Marchetti, M. Cristina

    Myxococcus xanthus is a soil-dwelling bacterium that exhibits several fascinating collective behaviors including streaming, swarming, and generation of fruiting bodies. A striking feature of M. xanthus is that it periodically reverses its motility direction. The first stage of fruiting body formation is characterized by the aggregation of cells on a surface into round mesoscopic structures. Experiments have shown that this aggregation relies heavily on regulation of the reversal rate and local mechanical interactions, suggesting motility-induced phase separation may play an important role. We have adapted self-propelled particle models to include cell reversal and motility suppression resulting from sporulation observed in aggregates. Using 2D molecular dynamics simulations, we map the phase behavior in the space of Péclet number and local density and examine the kinetics of aggregation for comparison to experiments.

  11. Theoretical deposition of carcinogenic particle aggregates in the upper respiratory tract.

    PubMed

    Sturm, Robert

    2013-10-01

    Numerous particles suspended in the atmosphere are composed of smaller particular components that form aggregates with highly irregular shape. Such aggregates, among which dusts and soot are the most prominent examples, may be taken up into the respiratory tract and, in the worst case, initiate a malignant transformation of lung cells. Particle aggregates were theoretically modelled by using small spheres with equal diameters (1 nm) and arranging them randomly. This procedure resulted in the generation of various aggregate shapes (chain-like, loose, compact), for which essential parameters such as dynamic shape factors, χ, and aerodynamic diameters, dae , were computed. Deposition of aggregates consisting of 10, 50, 100, and 1,000 nano-spheres was simulated for the uppermost parts of the human respiratory system (extrathoracic region and airway generation 0 to 4), thereby distinguishing between sitting and light-work breathing as well as between nasal and oral inhalation. Based upon the modelling results, aggregate deposition in the human respiratory system can be described as a function of (I) aerodynamic diameter; (II) inhaled particle position within the airway system; and (III) breathing conditions. Therefore, highest deposition values were obtained for nano-scale aggregates (<10 nm), whereas larger aggregates exhibited slightly to significantly reduced deposition probabilities. Extrathoracic regions and uppermost bronchi (generations 0 to 1) were marked by most effective particle capture. Any increase of inhaled air volumes and reduction of breathing times resulted in an enhancement of deposition probabilities of larger particles. Based on the results derived from this study it may be concluded that small particle aggregates are accumulated in the uppermost compartments of the human respiratory tract, where they may unfold their unwholesome potential. In the case of carcinogenic particles being stored in epithelial cells for a longer time span, malignant

  12. Experimental aggregation of volcanic ash: the role of liquid bonding

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Kueppers, U.; Jacob, M.; Ayris, P. M.; Dingwell, D. B.

    2015-12-01

    Explosive volcanic eruptions may release vast quantities of ash. Because of its size, it has the greatest dispersal potential and can be distributed globally. Ash may pose severe risks for 1) air traffic, 2) human and animal health, 3) agriculture and 4) infrastructure. Such ash particles can however cluster and form ash aggregates that range in size from millimeters to centimeters. During their growth, weight and aerodynamic properties change. This leads to significantly changed transport and settling behavior. The physico-chemical processes involved in aggregation are quantitatively poorly constrained. We have performed laboratory ash aggregation experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. Solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (e.g., air flow rate, gas temperature, humidity, liquid composition). In this manner we simulate the variable gas-particle flow conditions expected in eruption plumes and pyroclastic density currents. We have used 1) soda-lime glass beads as an analogue material and 2) natural volcanic ash from Laacher See Volcano (Germany). In order to influence form, size, stability and the production rate of aggregates, a range of experimental conditions (e.g., particle concentration, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase) have been employed. We have successfully reproduced several features of natural ash aggregates, including round, internally structured ash pellets up to 3 mm in diameter. These experimental results help to constrain the boundary conditions required for the generation of spherical, internally-structured ash aggregates that survive deposition and are preserved in the volcanological record. These results should also serve as input parameters for models of ash transport and ash mass distribution.

  13. Lysosomal membrane permeability stimulates protein aggregate formation in neurons of a lysosomal disease.

    PubMed

    Micsenyi, Matthew C; Sikora, Jakub; Stephney, Gloria; Dobrenis, Kostantin; Walkley, Steven U

    2013-06-26

    Protein aggregates are a common pathological feature of neurodegenerative diseases and several lysosomal diseases, but it is currently unclear what aggregates represent for pathogenesis. Here we report the accumulation of intraneuronal aggregates containing the macroautophagy adapter proteins p62 and NBR1 in the neurodegenerative lysosomal disease late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). CLN2 disease is caused by a deficiency in the lysosomal enzyme tripeptidyl peptidase I, which results in aberrant lysosomal storage of catabolites, including the subunit c of mitochondrial ATP synthase (SCMAS). In an effort to define the role of aggregates in CLN2, we evaluated p62 and NBR1 accumulation in the CNS of Cln2(-/-) mice. Although increases in p62 and NBR1 often suggest compromised degradative mechanisms, we found normal ubiquitin-proteasome system function and only modest inefficiency in macroautophagy late in disease. Importantly, we identified that SCMAS colocalizes with p62 in extra-lysosomal aggregates in Cln2(-/-) neurons in vivo. This finding is consistent with SCMAS being released from lysosomes, an event known as lysosomal membrane permeability (LMP). We predicted that LMP and storage release from lysosomes results in the sequestration of this material as cytosolic aggregates by p62 and NBR1. Notably, LMP induction in primary neuronal cultures generates p62-positive aggregates and promotes p62 localization to lysosomal membranes, supporting our in vivo findings. We conclude that LMP is a previously unrecognized pathogenic event in CLN2 disease that stimulates cytosolic aggregate formation. Furthermore, we offer a novel role for p62 in response to LMP that may be relevant for other diseases exhibiting p62 accumulation.

  14. Lysosomal Membrane Permeability Stimulates Protein Aggregate Formation in Neurons of a Lysosomal Disease

    PubMed Central

    Micsenyi, Matthew C.; Sikora, Jakub; Stephney, Gloria; Dobrenis, Kostantin

    2013-01-01

    Protein aggregates are a common pathological feature of neurodegenerative diseases and several lysosomal diseases, but it is currently unclear what aggregates represent for pathogenesis. Here we report the accumulation of intraneuronal aggregates containing the macroautophagy adapter proteins p62 and NBR1 in the neurodegenerative lysosomal disease late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). CLN2 disease is caused by a deficiency in the lysosomal enzyme tripeptidyl peptidase I, which results in aberrant lysosomal storage of catabolites, including the subunit c of mitochondrial ATP synthase (SCMAS). In an effort to define the role of aggregates in CLN2, we evaluated p62 and NBR1 accumulation in the CNS of Cln2−/− mice. Although increases in p62 and NBR1 often suggest compromised degradative mechanisms, we found normal ubiquitin–proteasome system function and only modest inefficiency in macroautophagy late in disease. Importantly, we identified that SCMAS colocalizes with p62 in extra-lysosomal aggregates in Cln2−/− neurons in vivo. This finding is consistent with SCMAS being released from lysosomes, an event known as lysosomal membrane permeability (LMP). We predicted that LMP and storage release from lysosomes results in the sequestration of this material as cytosolic aggregates by p62 and NBR1. Notably, LMP induction in primary neuronal cultures generates p62-positive aggregates and promotes p62 localization to lysosomal membranes, supporting our in vivo findings. We conclude that LMP is a previously unrecognized pathogenic event in CLN2 disease that stimulates cytosolic aggregate formation. Furthermore, we offer a novel role for p62 in response to LMP that may be relevant for other diseases exhibiting p62 accumulation. PMID:23804102

  15. Aggregated particles caused by instrument artifact

    NASA Astrophysics Data System (ADS)

    Pierce, Ashley M.; Loría-Salazar, S. Marcela; Arnott, W. Patrick; Edwards, Grant C.; Miller, Matthieu B.; Gustin, Mae S.

    2018-04-01

    Previous studies have indicated that superaggregates, clusters of aggregates of soot primary particles, can be formed in large-scale turbulent fires. Due to lower effective densities, higher porosity, and lower aerodynamic diameters, superaggregates may pass through inlets designed to remove particles < 2.5 µm in aerodynamic diameter (PM2.5). Ambient particulate matter samples were collected at Peavine Peak, NV, USA (2515 m) northwest of Reno, NV, USA from June to November 2014. The Teledyne Advanced Pollution Instrumentation (TAPI) 602 BetaPlus particulate monitor was used to collect PM2.5 on two filter types. During this time, aggregated particles > 2.5 µm in aerodynamic diameter were collected on 36 out of 158 sample days. On preliminary analysis, it was thought that these aggregated particles were superaggregates, depositing past PM10 (particles < 10 µm in aerodynamic diameter) pre-impactors and PM2.5 cyclones. However, further analysis revealed that these aggregated particles were dissimilar to superaggregates observed in previous studies, both in morphology and in elemental composition. To determine if the aggregated particles were superaggregates or an instrument artifact, samples were investigated for the presence of certain elements, the occurrence of fires, high relative humidity and wind speeds, as well as the use of generators on site. Samples with aggregated particles, referred to as aggregates, were analyzed using a scanning electron microscope for size and shape and energy dispersive X-ray spectroscopy was used for elemental analysis. It was determined, based on the high amounts of aluminum present in the aggregate samples, that a sampling artifact associated with the sample inlet and prolonged, high wind events was the probable reason for the observed aggregates.

  16. Role of Multicellular Aggregates in Biofilm Formation

    PubMed Central

    Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin; Rodesney, Chris; Roberts, Aled E. L.; Irie, Yasuhiko; Jensen, Peter Ø.; Diggle, Stephen P.; Allen, Rosalind J.

    2016-01-01

    ABSTRACT In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation. PMID:27006463

  17. Oxidative stress and protein aggregation during biological aging.

    PubMed

    Squier, T C

    2001-09-01

    Biological aging is a fundamental process that represents the major risk factor with respect to the development of cancer, neurodegenerative, and cardiovascular diseases in vertebrates. It is, therefore, evident that the molecular mechanisms of aging are fundamental to understand many disease processes. In this regard, the oxidation and nitration of intracellular proteins and the formation of protein aggregates have been suggested to underlie the loss of cellular function and the reduced ability of senescent animals to withstand physiological stresses. Since oxidatively modified proteins are thermodynamically unstable and assume partially unfolded tertiary structures that readily form aggregates, it is likely that oxidized proteins are intermediates in the formation of amyloid fibrils. It is, therefore, of interest to identify oxidatively sensitive protein targets that may play a protective role through their ability to down-regulate energy metabolism and the consequent generation of reactive oxygen species (ROS). In this respect, the maintenance of cellular calcium gradients represents a major energetic expense, which links alterations in intracellular calcium levels to ATP utilization and the associated generation of ROS through respiratory control mechanisms. The selective oxidation or nitration of the calcium regulatory proteins calmodulin and Ca-ATPase that occurs in vivo during aging and under conditions of oxidative stress may represent an adaptive response to oxidative stress that functions to down-regulate energy metabolism and the associated generation of ROS. Since these calcium regulatory proteins are also preferentially oxidized or nitrated under in vitro conditions, these results suggest an enhanced sensitivity of these critical calcium regulatory proteins, which modulate signal transduction processes and intracellular energy metabolism, to conditions of oxidative stress. Thus, the selective oxidation of critical signal transduction proteins probably

  18. Empirical study of fuzzy compatibility measures and aggregation operators

    NASA Astrophysics Data System (ADS)

    Cross, Valerie V.; Sudkamp, Thomas A.

    1992-02-01

    Two fundamental requirements for the generation of support using incomplete and imprecise information are the ability to measure the compatibility of discriminatory information with domain knowledge and the ability to fuse information obtained from disparate sources. A generic architecture utilizing the generalized fuzzy relational database model has been developed to empirically investigate the support generation capabilities of various compatibility measures and aggregation operators. This paper examines the effectiveness of combinations of compatibility measures from the set-theoretic, geometric distance, and logic- based classes paired with t-norm and generalized mean families of aggregation operators.

  19. A model for bacterial colonization of sinking aggregates.

    PubMed

    Bearon, R N

    2007-01-01

    Sinking aggregates provide important nutrient-rich environments for marine bacteria. Quantifying the rate at which motile bacteria colonize such aggregations is important in understanding the microbial loop in the pelagic food web. In this paper, a simple analytical model is presented to predict the rate at which bacteria undergoing a random walk encounter a sinking aggregate. The model incorporates the flow field generated by the sinking aggregate, the swimming behavior of the bacteria, and the interaction of the flow with the swimming behavior. An expression for the encounter rate is computed in the limit of large Péclet number when the random walk can be approximated by a diffusion process. Comparison with an individual-based numerical simulation is also given.

  20. Environmentally-mediated ash aggregate formation: example from Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Ayris, Paul M.; Bernard, Benjamin; Delmelle, Pierre; Douillet, Guilhem A.; Lavallée, Yan; Mueller, Sebastian B.; Dingwell, Donald B.; Dobson, Kate J.

    2016-04-01

    Volcanic ash is generated during explosive eruptions through an array of different processes; it can be produced in large quantities and can, in some circumstances, have the potential for far-reaching impacts beyond the flanks of the volcano. Aggregation of ash particles can significantly impact the dispersal within the atmosphere, and its subsequent deposition into terrestrial or aquatic environments. However, our understanding of the complex interplay of the boundary conditions which permit aggregation to occur remain incomplete. Tungurahua volcano, Ecuador, has been intermittently active since 1999. In August 2006, a series of pyroclastic density currents (PDC) were generated during a series of dry, Vulcanian explosions and travelled down the western and northern flanks of the volcano. In some locations, the related PDC deposits temporarily dammed the Chambo river, and the residual heat within those deposits produced vigorous steam plumes. During several field campaigns (2009-2015), we mapped, sampled, and analysed the related deposits. At the base of the Rea ravine, a large delta fan of PDC deposits had dammed the river over a length of several hundred metres. In several outcrops adjacent to the river and in small erosional gullies we found a peculiar stratigraphic layer (up to ten centimetres thick) at the top of the PDC deposits. As this layer is capped by a thin fall unit of coarse ash that we also find elsewhere at the top of the August 2006 deposits, the primary nature is without doubt. In this unit, we observed abundant ash aggregates up to eight millimetres in diameter within a poorly sorted, ash-depleted lapilli tuff, primarily comprised of rounded pumiceous and scoriaceous clasts of similar size. Leaching experiments have shown that these aggregates contain several hundred ppm of soluble sulphate and chloride salts. Recent laboratory experiments (Mueller et al. 2015) have suggested that in order for accretionary lapilli to be preserved within ash

  1. Charging of Aggregate Grains in Astrophysical Environments

    NASA Astrophysics Data System (ADS)

    Ma, Qianyu; Matthews, Lorin S.; Land, Victor; Hyde, Truell W.

    2013-02-01

    The charging of dust grains in astrophysical environments has been investigated with the assumption that these grains are homogeneous spheres. However, there is evidence which suggests that many grains in astrophysical environments are irregularly shaped aggregates. Recent studies have shown that aggregates acquire higher charge-to-mass ratios due to their complex structures, which in turn may alter their subsequent dynamics and evolution. In this paper, the charging of aggregates is examined including secondary electron emission and photoemission in addition to primary plasma currents. The results show that the equilibrium charge on aggregates can differ markedly from spherical grains with the same mass, but that the charge can be estimated for a given environment based on structural characteristics of the grain. The "small particle effect" due to secondary electron emission is also important for de terming the charge of micron-sized aggregates consisting of nano-sized particles.

  2. Convection-driven aggregation of micron sized capsules

    NASA Astrophysics Data System (ADS)

    Shklyaev, Oleg; Shum, Henry; Balazs, Anna

    Collective dynamics of microcapsules often serve as a model for understanding behavior observed in colonies of biological cells. Using computer simulations, we explore the capability of chemically generated convection to assemble microcapsules into a colony with neighbors close enough to facilitate chemical communication. The microcapsules are assumed to carry a supply of chemical fuel. When this fuel, leaking out of the capsules, reacts at enzyme-covered sites of the chamber, the reaction generates fluid density variations driving flows. These flows carry the microcapsules, which tend to aggregate into colonies on and near the enzyme-covered sites. This aggregation continues until the reagent has been depleted and convection stops. We show that capsule colonies of predesigned shapes can be assembled by patterning the enzyme-covered surface.

  3. Generation of Currents in Weakly Ionized Plasmas through a Collisional Dynamo

    NASA Astrophysics Data System (ADS)

    Dimant, Yakov; Oppenheim, Meers; Fletcher, Alex

    2016-10-01

    Intense electric currents called electrojets occur in weakly ionized magnetized plasmas. An example occurs in the Earth's ionosphere near the magnetic equator where neutral winds drive the plasma across the geomagnetic field. Similar processes take place in the Solar chromosphere and MHD generators. We argue that not all convective neutral flows generate electrojets and it introduces the corresponding universal criterion for the current formation, ∇ × (U-> × B->) ≠ ∂ B-> / ∂ t , where U-> is the neutral flow velocity, B-> is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ̂ . For many systems, the displacement current, ∂ B-> / ∂ t , is negligible, making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates electrojets plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law. Work supported by NSF/DOE Grant PHY-1500439.

  4. Using Human iPSC-Derived Neurons to Model TAU Aggregation

    PubMed Central

    Verheyen, An; Diels, Annick; Dijkmans, Joyce; Oyelami, Tutu; Meneghello, Giulia; Mertens, Liesbeth; Versweyveld, Sofie; Borgers, Marianne; Buist, Arjan; Peeters, Pieter; Cik, Miroslav

    2015-01-01

    Alzheimer’s disease and frontotemporal dementia are amongst the most common forms of dementia characterized by the formation and deposition of abnormal TAU in the brain. In order to develop a translational human TAU aggregation model suitable for screening, we transduced TAU harboring the pro-aggregating P301L mutation into control hiPSC-derived neural progenitor cells followed by differentiation into cortical neurons. TAU aggregation and phosphorylation was quantified using AlphaLISA technology. Although no spontaneous aggregation was observed upon expressing TAU-P301L in neurons, seeding with preformed aggregates consisting of the TAU-microtubule binding repeat domain triggered robust TAU aggregation and hyperphosphorylation already after 2 weeks, without affecting general cell health. To validate our model, activity of two autophagy inducers was tested. Both rapamycin and trehalose significantly reduced TAU aggregation levels suggesting that iPSC-derived neurons allow for the generation of a biologically relevant human Tauopathy model, highly suitable to screen for compounds that modulate TAU aggregation. PMID:26720731

  5. Generation of region 1 current by magnetospheric pressure gradients

    NASA Technical Reports Server (NTRS)

    Yang, Y. S.; Spiro, R. W.; Wolf, R. A.

    1994-01-01

    The Rice Convection Model (RCM) is used to illustrate theoretical possibilities for generating region 1 Birkeland currents by pressure gradients on closed field lines in the Earth's magnetosphere. Inertial effects and viscous forces are neglected. The RCM is applied to idealized cases, to emphasize the basic physical ideas rather than realistic representation of the actual magnetosphere. Ionospheric conductance is taken to be uniform, and the simplest possible representations of the magnetospheric plasma are used. Three basic cases are considered: (1) the case of pure northward Interplanetary Magnetic Field (IMF), with cusp merging assumed to create new closed field lines near the nose of the magnetosphere, following the suggestion by Song and Russell (1992); (2) the case where Dungey-type reconnection occurs at the nose, but magnetosheath plasma somehow enters closed field lines on the dawnside and duskside of the merging region, causing a pressure-driven low-latitude boundary layer; and (3) the case where Dungey-type reconnection occurs at the nose, but region 1 currents flow on sunward drifting plasma sheet field lines. In case 1, currents of region 1 sense are generated by pressure gradients, but those currents do not supply the power for ionospheric convection. Results for case 2 suggest that pressure gradients at the inner edge of the low-latitude boundary layer might generate a large fraction of the region 1 Birkeland currents that drive magnetospheric convection. Results for case 3 indicate that pressure gradients in the plasma sheet could provide part of the region 1 current.

  6. Fluorescent transgenic mice suitable for multi-color aggregation chimera studies.

    PubMed

    Ohtsuka, Masato; Miura, Hiromi; Gurumurthy, Channabasavaiah B; Kimura, Minoru; Inoko, Hidetoshi; Yoshimura, Shinichi; Sato, Masahiro

    2012-11-01

    We recently reported a novel method of mouse transgenesis called Pronuclear Injection-based Targeted Transgenisis (PITT) using which a series of fluorescent transgenic (Tg) mice lines were generated. These lines, unlike those generated using conventional random integration methods, express the transgenes faithfully and reproducibly generation after generation. Because of this superior nature, these lines are ideal for the generation of multi-colored aggregation chimeras that can be used to study cell-cell interactions and lineage analyses in living embryos/organs, where the transgenes can be detected and the clonal origin of a given cell population easily traced by its distinct fluorescence. In this study, to verify if Tg fluorescent mice generated through PITT were suitable for such applications, we sought to generate chimeric blastocysts and chimeric-Tg mice by aggregating two- or three-colored 8-cell embryos. Our analyses using these models led to the following observations. First, we noticed that cell mixing was infrequent during the stages of morula to early blastocyst. Second, chimeric fetuses obtained after aggregation of the two-colored 8-cell embryos exhibited uniform cell mixing. And third, in the organs of adult chimeric mice, the mode of cell distribution could be either clonal or polyclonal, as previously pointed out by others. Implications of our novel and improved Tg-chimeric mice approach for clonal cell lineage and developmental studies are discussed.

  7. Physio-chemical reactions in recycle aggregate concrete.

    PubMed

    Tam, Vivian W Y; Gao, X F; Tam, C M; Ng, K M

    2009-04-30

    Concrete waste constitutes the major proportion of construction waste at about 50% of the total waste generated. An effective way to reduce concrete waste is to reuse it as recycled aggregate (RA) for the production of recycled aggregate concrete (RAC). This paper studies the physio-chemical reactions of cement paste around aggregate for normal aggregate concrete (NAC) and RAC mixed with normal mixing approach (NMA) and two-stage mixing approach (TSMA) by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Four kinds of physio-chemical reactions have been recorded from the concrete samples, including the dehydration of C(3)S(2)H(3), iron-substituted ettringite, dehydroxylation of CH and development of C(6)S(3)H at about 90 degrees C, 135 degrees C, 441 degrees C and 570 degrees C, respectively. From the DSC results, it is confirmed that the concrete samples with RA substitution have generated less amount of strength enhancement chemical products when compared to those without RA substitution. However, the results from the TSMA are found improving the RAC quality. The pre-mix procedure of the TSMA can effectively develop some strength enhancing chemical products including, C(3)S(2)H(3), ettringite, CH and C(6)S(3)H, which shows that RAC made from the TSMA can improve the hydration processes.

  8. Classification and Characterization of Therapeutic Antibody Aggregates

    PubMed Central

    Joubert, Marisa K.; Luo, Quanzhou; Nashed-Samuel, Yasser; Wypych, Jette; Narhi, Linda O.

    2011-01-01

    A host of diverse stress techniques was applied to a monoclonal antibody (IgG2) to yield protein particles with varying attributes and morphologies. Aggregated solutions were evaluated for percent aggregation, particle counts, size distribution, morphology, changes in secondary and tertiary structure, surface hydrophobicity, metal content, and reversibility. Chemical modifications were also identified in a separate report (Luo, Q., Joubert, M. K., Stevenson, R., Narhi, L. O., and Wypych, J. (2011) J. Biol. Chem. 286, 25134–25144). Aggregates were categorized into seven discrete classes, based on the traits described. Several additional molecules (from the IgG1 and IgG2 subtypes as well as intravenous IgG) were stressed and found to be defined with the same classification system. The mechanism of protein aggregation and the type of aggregate formed depends on the nature of the stress applied. Different IgG molecules appear to aggregate by a similar mechanism under the same applied stress. Aggregates created by harsh mechanical stress showed the largest number of subvisible particles, and the class generated by thermal stress displayed the largest number of visible particles. Most classes showed a disruption of the higher order structure, with the degree of disorder depending on the stress process. Particles in all classes (except thermal stress) were at least partially reversible upon dilution in pH 5 buffer. High copper content was detected in isolated metal-catalyzed aggregates, a stress previously shown to produce immunogenic aggregates. In conclusion, protein aggregates can be a very heterogeneous population, whose qualities are the result of the type of stress that was experienced. PMID:21454532

  9. Hall current effects in the Lewis magnetohydrodynamic generator

    NASA Technical Reports Server (NTRS)

    Nichols, L. D.; Sovie, R. J.

    1972-01-01

    Data obtained in a magnetohydrodynamic generator are compared with theoretical values calculated by using the Dzung theory. The generator was operated with cesium-seeded argon as the working fluid. The gas temperature varied from 1800 to 2100 K, the gas pressure from 19 to 22 N/sq cm, the Mach number from 0.3 to 0.5, and the magnetic field strength from 0.2 to 1.6 T. The analysis indicates that there is incomplete seed vaporization and that Hall current shorting paths (through the working fluid to ground at both the entrance and exit of the channel) limit generator performance.

  10. Configuration and Generation of Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Chu, Xiangning

    The substorm current wedge (SCW), a core element of substorm dynamics coupling the magnetotail to the ionosphere, is crucial in understanding substorms. It has been suggested that the field-aligned currents (FACs) in the SCW are caused by either pressure gradients or flow vortices, or both. Our understanding of FAC generations is based predominately on numerical simulations, because it has not been possible to organize spacecraft observations in a coordinate system determined by the SCW. This dissertation develops an empirical inversion model of the current wedge and inverts midlatitude magnetometer data to obtain the parameters of the current wedge for three solar cycles. This database enables statistical data analysis of spacecraft plasma and magnetic field observations relative to the SCW coordinate. In chapter 2, a new midlatitude positive bay (MPB) index is developed and calculated for three solar cycles of data. The MPB index is processed to determine the substorm onset time, which is shown to correspond to the auroral breakup onset with at most 1-2 minutes difference. Substorm occurrence rate is found to depend on solar wind speed while substorm duration is rather constant, suggesting that substorm process has an intrinsic pattern independent of external driving. In chapter 3, an SCW inversion technique is developed to determine the strength and locations of the FACs in an SCW. The inversion parameters for FAC strength and location, and ring current strength are validated by comparison with other measurements. In chapter 4, the connection between earthward flows and auroral poleward expansion is examined using improved mapping, obtained from a newly-developed dynamic magnetospheric model by superimposing a standard magnetospheric field model with substorm current wedge obtained from the inversion technique. It is shown that the ionospheric projection of flows observed at a fixed point in the equatorial plane map to the bright aurora as it expands poleward

  11. Impact of Cavitation, High Shear Stress and Air/Liquid Interfaces on Protein Aggregation.

    PubMed

    Duerkop, Mark; Berger, Eva; Dürauer, Astrid; Jungbauer, Alois

    2018-03-25

    The reported impact of shear stress on protein aggregation has been contradictory. At high shear rates, the occurrence of cavitation or entrapment of air is reasonable and their effects possibly misattributed to shear stress. Nine different proteins (α-lactalbumin, two antibodies, fibroblast growth factor 2, granulocyte colony stimulating factor [GCSF], green fluorescence protein [GFP], hemoglobin, human serum albumin, and lysozyme) are tested for their aggregation behavior on vapor/liquid interfaces generated by cavitation and compared it to the isolated effects of high shear stress and air/liquid interfaces generated by foaming. Cavitation induced the aggregation of GCSF by +68.9%, hemoglobin +4%, and human serum albumin +2.9%, compared to a control, whereas the other proteins do not aggregate. The protein aggregation behaviors of the different proteins at air/liquid interfaces are similar to cavitation, but the effect is more pronounced. Air-liquid interface induced the aggregation of GCSF by +94.5%, hemoglobin +35.5%, and human serum albumin (HSA) +31.1%. The results indicate that the sensitivity of a certain protein toward cavitation is very similar to air/liquid-induced aggregation. Hence, hydroxyl radicals cannot be seen as the driving force for protein aggregation when cavitation occurs. Further, high shear rates of up to 10 8  s -1 do not affect any of the tested proteins. Therefore, also within this study generated extremely high isolated shear rates cannot be considered to harm structural integrity when processing proteins. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Structural Characterization of IgG1 mAb Aggregates and Particles Generated under Various Stress Conditions

    PubMed Central

    Telikepalli, Srivalli N.; Kumru, Ozan S.; Kalonia, Cavan; Esfandiary, Reza; Joshi, Sangeeta B.; Middaugh, C. Russell; Volkin, David B.

    2014-01-01

    IgG1 mAb solutions were prepared with and without sodium chloride and subjected to different environmental stresses. Formation of aggregates and particles of varying size was monitored by a combination of size exclusion chromatography (SEC), Nanosight Tracking Analysis (NTA), Micro-flow Imaging (MFI), turbidity, and visual assessments. Stirring and heating induced the highest concentration of particles. In general, the presence of NaCl enhanced this effect. The morphology of the particles formed from mAb samples exposed to different stresses was analyzed from TEM and MFI images. Shaking samples without NaCl generated the most fibrillar particles, while stirring created largely spherical particles. The composition of the particles was evaluated for covalent cross-linking by SDS-PAGE, overall secondary structure by FTIR microscopy, and surface apolarity by extrinsic fluorescence spectroscopy. Freeze-thaw and shaking led to particles containing protein with native-like secondary structure. Heating and stirring produced IgG1 containing aggregates and particles with some non-native disulfide crosslinks, varying levels of intermolecular beta sheet content, and increased surface hydrophobicity. These results highlight the importance of evaluating protein particle morphology and composition, in addition to particle number and size distributions, to better understand the effect of solution conditions and environmental stresses on the formation of protein particles in mAb solutions. PMID:24452866

  13. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions.

    PubMed

    Telikepalli, Srivalli N; Kumru, Ozan S; Kalonia, Cavan; Esfandiary, Reza; Joshi, Sangeeta B; Middaugh, C Russell; Volkin, David B

    2014-03-01

    IgG1 mAb solutions were prepared with and without sodium chloride and subjected to different environmental stresses. Formation of aggregates and particles of varying size was monitored by a combination of size-exclusion chromatography, Nanoparticle Tracking Analysis, Micro-flow Imaging (MFI), turbidity, and visual assessments. Stirring and heating induced the highest concentration of particles. In general, the presence of NaCl enhanced this effect. The morphology of the particles formed from mAb samples exposed to different stresses was analyzed from transmission electron microscopy and MFI images. Shaking samples without NaCl generated the most fibrillar particles, whereas stirring created largely spherical particles. The composition of the particles was evaluated for covalent cross-linking by SDS-PAGE, overall secondary structure by FTIR microscopy, and surface apolarity by extrinsic fluorescence spectroscopy. Freeze-thaw and shaking led to particles containing protein with native-like secondary structure. Heating and stirring produced IgG1-containing aggregates and particles with some non-native disulfide cross-links, varying levels of intermolecular beta sheet content, and increased surface hydrophobicity. These results highlight the importance of evaluating protein particle morphology and composition, in addition to particle number and size distributions, to better understand the effect of solution conditions and environmental stresses on the formation of protein particles in mAb solutions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Analysis of non-destructive current simulators of flux compression generators.

    PubMed

    O'Connor, K A; Curry, R D

    2014-06-01

    Development and evaluation of power conditioning systems and high power microwave components often used with flux compression generators (FCGs) requires repeated testing and characterization. In an effort to minimize the cost and time required for testing with explosive generators, non-destructive simulators of an FCG's output current have been developed. Flux compression generators and simulators of FCGs are unique pulsed power sources in that the current waveform exhibits a quasi-exponential increasing rate at which the current rises. Accurately reproducing the quasi-exponential current waveform of a FCG can be important in designing electroexplosive opening switches and other power conditioning components that are dependent on the integral of current action and the rate of energy dissipation. Three versions of FCG simulators have been developed that include an inductive network with decreasing impedance in time. A primary difference between these simulators is the voltage source driving them. It is shown that a capacitor-inductor-capacitor network driving a constant or decreasing inductive load can produce the desired high-order derivatives of the load current to replicate a quasi-exponential waveform. The operation of the FCG simulators is reviewed and described mathematically for the first time to aid in the design of new simulators. Experimental and calculated results of two recent simulators are reported with recommendations for future designs.

  15. An algebra for spatio-temporal information generation

    NASA Astrophysics Data System (ADS)

    Pebesma, Edzer; Scheider, Simon; Gräler, Benedikt; Stasch, Christoph; Hinz, Matthias

    2016-04-01

    When we accept the premises of James Frew's laws of metadata (Frew's first law: scientists don't write metadata; Frew's second law: any scientist can be forced to write bad metadata), but also assume that scientists try to maximise the impact of their research findings, can we develop our information infrastructures such that useful metadata is generated automatically? Currently, sharing of data and software to completely reproduce research findings is becoming standard, e.g. in the Journal of Statistical Software [1]. The reproduction (e.g. R) scripts however convey correct syntax, but still limited semantics. We propose [2] a new, platform-neutral way to algebraically describe how data is generated, e.g. by observation, and how data is derived, e.g. by processing observations. It starts with forming functions composed of four reference system types (space, time, quality, entity), which express for instance continuity of objects over time, and continuity of fields over space and time. Data, which is discrete by definition, is generated by evaluating such functions at discrete space and time instances, or by evaluating a convolution (aggregation) over them. Derived data is obtained by inputting data to data derivation functions, which for instance interpolate, estimate, aggregate, or convert fields into objects and vice versa. As opposed to the traditional when, where and what semantics of data sets, our algebra focuses on describing how a data set was generated. We argue that it can be used to discover data sets that were derived from a particular source x, or derived by a particular procedure y. It may also form the basis for inferring meaningfulness of derivation procedures [3]. Current research focuses on automatically generating provenance documentation from R scripts. [1] http://www.jstatsoft.org/ (open access) [2] http://www.meaningfulspatialstatistics.org has the full paper (in review) [3] Stasch, C., S. Scheider, E. Pebesma, W. Kuhn, 2014. Meaningful

  16. Traffic Flow Management Using Aggregate Flow Models and the Development of Disaggregation Methods

    NASA Technical Reports Server (NTRS)

    Sun, Dengfeng; Sridhar, Banavar; Grabbe, Shon

    2010-01-01

    A linear time-varying aggregate traffic flow model can be used to develop Traffic Flow Management (tfm) strategies based on optimization algorithms. However, there are no methods available in the literature to translate these aggregate solutions into actions involving individual aircraft. This paper describes and implements a computationally efficient disaggregation algorithm, which converts an aggregate (flow-based) solution to a flight-specific control action. Numerical results generated by the optimization method and the disaggregation algorithm are presented and illustrated by applying them to generate TFM schedules for a typical day in the U.S. National Airspace System. The results show that the disaggregation algorithm generates control actions for individual flights while keeping the air traffic behavior very close to the optimal solution.

  17. Role of Carbonyl Modifications on Aging-Associated Protein Aggregation

    PubMed Central

    Tanase, Maya; Urbanska, Aleksandra M.; Zolla, Valerio; Clement, Cristina C.; Huang, Liling; Morozova, Kateryna; Follo, Carlo; Goldberg, Michael; Roda, Barbara; Reschiglian, Pierluigi; Santambrogio, Laura

    2016-01-01

    Protein aggregation is a common biological phenomenon, observed in different physiological and pathological conditions. Decreased protein solubility and a tendency to aggregate is also observed during physiological aging but the causes are currently unknown. Herein we performed a biophysical separation of aging-related high molecular weight aggregates, isolated from the bone marrow and splenic cells of aging mice and followed by biochemical and mass spectrometric analysis. The analysis indicated that compared to younger mice an increase in protein post-translational carbonylation was observed. The causative role of these modifications in inducing protein misfolding and aggregation was determined by inducing carbonyl stress in young mice, which recapitulated the increased protein aggregation observed in old mice. Altogether our analysis indicates that oxidative stress-related post-translational modifications accumulate in the aging proteome and are responsible for increased protein aggregation and altered cell proteostasis. PMID:26776680

  18. Nuclear aggregates of polyamines in a radiation-induced DNA damage model.

    PubMed

    Iacomino, Giuseppe; Picariello, Gianluca; Stillitano, Ilaria; D'Agostino, Luciano

    2014-02-01

    Polyamines (PA) are believed to protect DNA minimizing the effect of radiation damage either by inducing DNA compaction and aggregation or acting as scavengers of free radicals. Using an in vitro pDNA double strand breakage assay based on gel electrophoretic mobility, we compared the protective capability of PA against γ-radiation with that of compounds generated by the supramolecular self-assembly of nuclear polyamines and phosphates, named Nuclear Aggregates of Polyamines (NAPs). Both unassembled PA and in vitro produced NAPs (ivNAPs) were ineffective in conferring pDNA protection at the sub-mM concentration. Single PA showed an appreciable protective effect only at high (mM) concentrations. However, concentrations of spermine (4+) within a critical range (0.481 mM) induced pDNA precipitation, an event that was not observed with NAPs-pDNA interaction. We conclude that the interaction of individual PA is ineffective to assure DNA protection, simultaneously preserving the flexibility and charge density of the double strand. Furthermore, data obtained by testing polyamine and ivNAPS with the current radiation-induced DNA damage model support the concept that PA-phosphate aggregates are the only forms through which PA interact with DNA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Probability density function characterization for aggregated large-scale wind power based on Weibull mixtures

    DOE PAGES

    Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; ...

    2016-02-02

    Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less

  20. Strong coupling-like phenomenon in single metallic nanoparticle embedded in molecular J-aggregates

    NASA Astrophysics Data System (ADS)

    Feng, Xin; Wang, Chen; Ma, Hongjing; Chen, Yuanyuan; Duan, Gaoyan; Zhang, Pengfei; Song, Gang

    2018-02-01

    Strong coupling-like phenomenon between plasmonic cavities and emitters provides a new way to realize the quantum-like effect controlling at microscale/nanoscale. We investigate the strong coupling-like phenomenon in the structure of single metallic nanoparticle embedded in molecular J-aggregates by the classical simulation method and show that the size of the metallic nanoparticle and the oscillator strength of molecular J-aggregates impact the strong coupling-like phenomenon. The strong coupling-like phenomenon is induced by the interactions between two dipoles formed by the metallic nanoparticle and molecular J-aggregates or the interactions between the dipole generated from molecular J-aggregates and the quadrupole generated from the metallic nanoparticle. The strong coupling-like phenomenon appears evidently with the increase in oscillator strength of molecular J-aggregates. The detuning energy linearly decreases with the increase in radius of the metallic nanoparticle. Our structure has potential applications in quantum networks, quantum key distributions and so on.

  1. Radiative properties of flame-generated soot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koeylue, U.O.; Faeth, G.M.

    1993-05-01

    Approximate methods for estimating the optical properties of flame-generated soot aggregates were evaluated using existing computer simulations and measurements in the visible and near-infrared portions of the spectrum. The following approximate methods were evaluated for both individual aggregates and polydisperse aggregate populations: the Rayleigh scattering approximation, Mie scattering for an equivalent sphere, and Rayleigh-Debye-Gans (R-D-G) scattering for both given and fractal aggregates. Results of computer simulations involved both prescribed aggregate geometry and numerically generated aggregates by cluster-cluster aggregation; multiple scattering was considered exactly using the mean-field approximation, and ignored using the R-D-G approximation. Measurements involved the angular scattering properties ofmore » soot in the postflame regions of both premixed and nonpremixed flames. The results show that available computer simulations and measurements of soot aggregate optical properties are not adequate to provide a definitive evaluation of the approximate prediction methods. 40 refs., 7 figs., 1 tab.« less

  2. Antiplatelet Aggregation Activity of Walnut Hull Extract via Suppression of Reactive Oxygen Species Generation and Caspase Activation.

    PubMed

    Meshkini, Azadeh; Tahmasbi, Masoumeh

    2017-06-01

    Walnut hull (wal hull) is an agricultural by-product that is widely used in traditional medicine for alleviating pain and treating skin diseases, however, recently it has gained much attention in modern pharmacology due to its antioxidant properties. The current study was aimed to determine the total phenolic, flavonoid, and tannin content of Persian wal hull extract and evaluate its biological effects on platelet function. Experimental data showed that acetone extract of wal hulls has a high content of polyphenolic compounds and antioxidant properties. The analytical study of crude extract by gas chromatography-mass spectrometry demonstrated different types of high- and low-molecular-weight compounds that are basically and biologically important. Moreover, an in vitro study revealed that wal hull extract at a concentration of 50 μg/mL inhibited thrombin-induced platelet aggregation and protein secretion by 50%, without any cytotoxic effects on platelets. The examined extract suppressed reactive oxygen species generation and also caspase activation in thrombin-stimulated platelets. Identically, N-acetylcysteine inhibited the increase of reactive oxygen species level induced by thrombin in platelets, and supported a link between cellular redox status and caspase activation in activated platelets. Presumably, the antiplatelet activity of wal hull extract is related to its polyphenolic compounds and their antioxidant properties. Therefore, wal hulls can be considered as a candidate for thrombotic disorders. Copyright © 2017. Published by Elsevier B.V.

  3. Flower-shaped ZnO nanocrystallite aggregates synthesized through a template-free aqueous solution method for dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Wei-Chen, E-mail: changpeter@iner.gov.tw; Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, 1000 Wenhua Rd., Chiaan Village, Lungtan, Taoyuan 325, Taiwan; Chen, Hung-Shuo

    Hierarchically structured flower-shaped aggregates composed of ZnO nanocrystals were synthesized through a template-free aqueous solution method. The synthesized nanocrystallite aggregates were demonstrated to be promising photoanode materials for dye-sensitized solar cells (DSSCs). Compared with commercially available ZnO nanoparticles (ZnONPs), the flower-like aggregates (ZnONFs), each having an overall dimension of 400–600 nm, exhibited similar dye loading but higher light-scattering ability, which led to a substantial increase in the light-harvesting efficiency of resulting cells. The unique morphology of ZnONFs also boosted the absorbed photon-to-electric current generation efficiency. Consequently, DSSCs constructed from ZnONFs showed significantly improved photocurrent and achieved an overall conversion efficiency ofmore » 4.42%, which was 47% higher than that attained by ZnONP-based cells.« less

  4. Stability of volcanic ash aggregates and break-up processes.

    PubMed

    Mueller, Sebastian B; Kueppers, Ulrich; Ametsbichler, Jonathan; Cimarelli, Corrado; Merrison, Jonathan P; Poret, Matthieu; Wadsworth, Fabian B; Dingwell, Donald B

    2017-08-07

    Numerical modeling of ash plume dispersal is an important tool for forecasting and mitigating potential hazards from volcanic ash erupted during explosive volcanism. Recent tephra dispersal models have been expanded to account for dynamic ash aggregation processes. However, there are very few studies on rates of disaggregation during transport. It follows that current models regard ash aggregation as irrevocable and may therefore overestimate aggregation-enhanced sedimentation. In this experimental study, we use industrial granulation techniques to artificially produce aggregates. We subject these to impact tests and evaluate their resistance to break-up processes. We find a dependence of aggregate stability on primary particle size distribution and solid particle binder concentration. We posit that our findings could be combined with eruption source parameters and implemented in future tephra dispersal models.

  5. Preconditioned wire array Z-pinches driven by a double pulse current generator

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Lu, Yihan; Sun, Fengju; Li, Xingwen; Jiang, Xiaofeng; Wang, Zhiguo; Zhang, Daoyuan; Qiu, Aici; Lebedev, Sergey

    2018-07-01

    Suppression of the core-corona structure and wire ablation in wire array Z-pinches is investigated using a novel double pulse current generator ‘Qin-1’ facility. The ‘Qin-1’ facility allows coupling a ∼10 kA 20 ns prepulse generator with a ∼0.8 MA 160 ns main current generator. The tailored prepulse current preheats wires to a gaseous state and the time interval between the prepulse and the main current pulse allows formation of a more uniform mass distribution for the implosion. The implosion of a gasified two aluminum-wire array showed no ablation phase and allowed all array mass to participate in the implosion. The initial perturbations formed from the inhomogeneous ablation were suppressed, however, the magneto Rayleigh–Taylor (MRT) instability during the implosion was still significant and further researches on the generation and development of the MRT instabilities of this gasified wire array are needed.

  6. Hot moments in spawning aggregations: implications for ecosystem-scale nutrient cycling

    NASA Astrophysics Data System (ADS)

    Archer, Stephanie K.; Allgeier, Jacob E.; Semmens, Brice X.; Heppell, Scott A.; Pattengill-Semmens, Christy V.; Rosemond, Amy D.; Bush, Phillippe G.; McCoy, Croy M.; Johnson, Bradley C.; Layman, Craig A.

    2015-03-01

    Biogeochemical hot moments occur when a temporary increase in availability of one or more limiting reactants results in elevated rates of biogeochemical reactions. Many marine fish form transient spawning aggregations, temporarily increasing their local abundance and thus nutrients supplied via excretion at the aggregation site. In this way, nutrients released by aggregating fish could create a biogeochemical hot moment. Using a combination of empirical and modeling approaches, we estimate nitrogen and phosphorus supplied by aggregating Nassau grouper ( Epinephelus striatus). Data suggest aggregating grouper supply up to an order-of-magnitude more nitrogen and phosphorus than daily consumer-derived nutrient supply on coral reefs without aggregating fish. Comparing current and historic aggregation-level excretion estimates shows that overfishing reduced nutrients supplied by aggregating fish by up to 87 %. Our study illustrates a previously unrecognized ecosystem viewpoint regarding fish spawning aggregations and provides an additional perspective on the repercussions of their overexploitation.

  7. Generation of coronal electric currents due to convective motions on the photosphere

    NASA Astrophysics Data System (ADS)

    Sakurai, T.; Levine, R. H.

    1981-09-01

    Generation of electric currents in a magnetized plasma overlying a dense convective layer is studied, assuming that the magnetic field perturbation is small and satisfies the force-free equation. Currents are produced by rotational motions on the boundary in the case of a uniform equilibrium field. In a simple two-dimensional bipolar configuration, however, both irrotational and incompressible motions give rise to currents, and the current density has a peak at the magnetic neutral line. Scaling laws for the current density as well as for the stored magnetic energy are derived, and the possibility of heating the solar corona through the dissipation of coronal currents generated in this way is discussed.

  8. Generation of coronal electric currents due to convective motions on the photosphere

    NASA Technical Reports Server (NTRS)

    Sakurai, T.; Levine, R. H.

    1981-01-01

    Generation of electric currents in a magnetized plasma overlying a dense convective layer is studied, assuming that the magnetic field perturbation is small and satisfies the force-free equation. Currents are produced by rotational motions on the boundary in the case of a uniform equilibrium field. In a simple two-dimensional bipolar configuration, however, both irrotational and incompressible motions give rise to currents, and the current density has a peak at the magnetic neutral line. Scaling laws for the current density as well as for the stored magnetic energy are derived, and the possibility of heating the solar corona through the dissipation of coronal currents generated in this way is discussed.

  9. α-Synuclein aggregation, seeding and inhibition by scyllo-inositol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibrahim, Tarek; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M4N 3M5, ON; McLaurin, JoAnne, E-mail: jmclaurin@sri.utoronto.ca

    2016-01-15

    Recent literature demonstrates the accelerated aggregation of α-synuclein, a protein implicated in the pathogenesis of Parkinson's disease (PD), by the presence of preformed fibrillar conformers in vitro. Furthermore, these preformed fibrillar seeds are suggested to accelerate pathological induction in vivo when injected into the brains of mice. Variation in the results of in vivo studies is proposed to be caused by α-synuclein conformational variants. To investigate the impact of amino acid sequence on seeding efficiency, human and mouse α-synuclein seeds, which vary at 7 amino acid residues, were generated and cross-seeding kinetics studied. Using transmission electron microscopy (TEM), we confirmed that mouse α-synucleinmore » aggregated more rapidly than human α-synuclein. Subsequently, we determined that seeding of human and mouse α-synuclein was more rapid in the presence of seeds generated from the same species. In addition, an established amyloid inhibitor, scyllo-inositol, was examined for potential inhibitory effects on α-synuclein aggregation. TEM analysis of protein:inhibitor assays demonstrated that scyllo-inositol inhibits the aggregation of α-synuclein, suggesting the therapeutic potential of the small molecule in PD. - Highlights: • Mouse α-syn fibrillizes in a significantly shorter timeframe than human α-syn. • Seeding of monomers is more efficient when seeds originate from the same species. • scyllo-Inositol has anti-aggregation effects on mouse and human α-syn.« less

  10. Tethered by Self-Generated Flow: Mucus String Augmented Feeding Current Generation in Larval Oysters

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Wheeler, J.; Anderson, E.

    2016-02-01

    Marine zooplankton live in a nutritionally dilute environment. To survive, they must process an enormous volume of water relative to their own body volume for food. To achieve this, many zooplankters including copepods, invertebrate larvae, and protists create a feeding current to concentrate and transport food items to their food gathering structures. To enhance the efficiency of the feeding current, these zooplankters often rely on certain "tethering" mechanisms to retard their translational motion for producing a strong feeding current. The tethering force may include excess weight due to gravity, force from attachment to solid surfaces, and drag experienced by strategically placed morphological structures. Larval oysters are known from previous studies to release mucus strings during feeding, presumably for supplying a tethering force to enhance their feeding-current efficiency. But the underlying mechanism is unclear. In this study, we used a high-speed microscale imaging system (HSMIS) to observe the behavior of freely swimming and feeding larval oysters. We also used HSMIS to measure larval imposed feeding currents via a micro-particle image velocimetry (µPIV) technique. HSMIS allows observations along a vertically oriented focal plane in a relatively large water vessel with unprecedented spatial and temporal resolutions. Our high-speed videos show that a feeding larval oyster continuously released a long mucus string into its feeding current that flows downward; the feeding current subsequently dragged the mucus string downward. Analysis of our µPIV data combined with a hydrodynamic model further suggests that the drag force experienced by the mucus string in the feeding current contributes significantly to the tethering force required to generate the feeding current. Thus, mucus strings in larval oysters act as "anchors" in larval self-generated flow to actively tether the feeding larvae.

  11. A Fragment-Based Method of Creating Small-Molecule Libraries to Target the Aggregation of Intrinsically Disordered Proteins.

    PubMed

    Joshi, Priyanka; Chia, Sean; Habchi, Johnny; Knowles, Tuomas P J; Dobson, Christopher M; Vendruscolo, Michele

    2016-03-14

    The aggregation process of intrinsically disordered proteins (IDPs) has been associated with a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Currently, however, no drug in clinical use targets IDP aggregation. To facilitate drug discovery programs in this important and challenging area, we describe a fragment-based approach of generating small-molecule libraries that target specific IDPs. The method is based on the use of molecular fragments extracted from compounds reported in the literature to inhibit of the aggregation of IDPs. These fragments are used to screen existing large generic libraries of small molecules to form smaller libraries specific for given IDPs. We illustrate this approach by describing three distinct small-molecule libraries to target, Aβ, tau, and α-synuclein, which are three IDPs implicated in Alzheimer's and Parkinson's diseases. The strategy described here offers novel opportunities for the identification of effective molecular scaffolds for drug discovery for neurodegenerative disorders and to provide insights into the mechanism of small-molecule binding to IDPs.

  12. An overview of aggregate resources in the United States

    USGS Publications Warehouse

    Langer, William H.; Scott, P.W.; Bristow, C.M.

    2002-01-01

    In 2000 the USA produced about 2.7 billion tonnes of aggregate worth about $13.7 billion. Both crushed stone and sand and gravel are produced in virtually every State, although limited quantities are available in the Gulf Coastal Plain, the Colorado Plateau , the Wyoming Basin and the Great Plains. Prices vary depending on the product and location. Most aggregates are transported by road, and minor amounts by railroad, barge on navigable inland channels, and through the Great Lake ports. Imports and exports of aggregates are very minor. A major amount f crushed stone aggregates is consumed by concrete aggregate. Recycled aggregates account for about 8% of total demand, although the amount recycled is thought to be increasing. Current issues facing the inductry unclude the differences in quality specifications between States, adjusting to the increasing concern for the impact of aggregate mining on the environmentm, health issues from particulate matter and crystalline silica, and the complexity of obtaining permits for extraction. Redcustion in the number od companies extracting aggregrates is likely to occur through acquisitions.

  13. Solvents induced ZnO nanoparticles aggregation associated with their interfacial effect on organic solar cells.

    PubMed

    Li, Pandeng; Jiu, Tonggang; Tang, Gang; Wang, Guojie; Li, Jun; Li, Xiaofang; Fang, Junfeng

    2014-10-22

    ZnO nanofilm as a cathode buffer layer has surface defects due to the aggregations of ZnO nanoparticles, leading to poor device performance of organic solar cells. In this paper, we report the ZnO nanoparticles aggregations in solution can be controlled by adjusting the solvents ratios (chloroform vs methanol). These aggregations could influence the morphology of ZnO film. Therefore, compact and homogeneous ZnO film can be obtained to help achieve a preferable power conversion efficiency of 8.54% in inverted organic solar cells. This improvement is attributed to the decreased leakage current and the increased electron-collecting efficiency as well as the improved interface contact with the active layer. In addition, we find the enhanced maximum exciton generation rate and exciton dissociation probability lead to the improvement of device performance due to the preferable ZnO dispersion. Compared to other methods of ZnO nanofilm fabrication, it is the more convenient, moderate, and effective to get a preferable ZnO buffer layer for high-efficiency organic solar cells.

  14. Research notes : aggregate into the future.

    DOT National Transportation Integrated Search

    2000-03-01

    Research staff is conducting an inventory of ODOT owned and leased quarry sites to estimate current aggregate resources. The research team is using Global Positioning System coordinates to locate and catalog sites. The study will identify sites with ...

  15. A Secure-Enhanced Data Aggregation Based on ECC in Wireless Sensor Networks

    PubMed Central

    Zhou, Qiang; Yang, Geng; He, Liwen

    2014-01-01

    Data aggregation is an important technique for reducing the energy consumption of sensor nodes in wireless sensor networks (WSNs). However, compromised aggregators may forge false values as the aggregated results of their child nodes in order to conduct stealthy attacks or steal other nodes' privacy. This paper proposes a Secure-Enhanced Data Aggregation based on Elliptic Curve Cryptography (SEDA-ECC). The design of SEDA-ECC is based on the principles of privacy homomorphic encryption (PH) and divide-and-conquer. An aggregation tree disjoint method is first adopted to divide the tree into three subtrees of similar sizes, and a PH-based aggregation is performed in each subtree to generate an aggregated subtree result. Then the forged result can be identified by the base station (BS) by comparing the aggregated count value. Finally, the aggregated result can be calculated by the BS according to the remaining results that have not been forged. Extensive analysis and simulations show that SEDA-ECC can achieve the highest security level on the aggregated result with appropriate energy consumption compared with other asymmetric schemes. PMID:24732099

  16. A novel weight determination method for time series data aggregation

    NASA Astrophysics Data System (ADS)

    Xu, Paiheng; Zhang, Rong; Deng, Yong

    2017-09-01

    Aggregation in time series is of great importance in time series smoothing, predicting and other time series analysis process, which makes it crucial to address the weights in times series correctly and reasonably. In this paper, a novel method to obtain the weights in time series is proposed, in which we adopt induced ordered weighted aggregation (IOWA) operator and visibility graph averaging (VGA) operator and linearly combine the weights separately generated by the two operator. The IOWA operator is introduced to the weight determination of time series, through which the time decay factor is taken into consideration. The VGA operator is able to generate weights with respect to the degree distribution in the visibility graph constructed from the corresponding time series, which reflects the relative importance of vertices in time series. The proposed method is applied to two practical datasets to illustrate its merits. The aggregation of Construction Cost Index (CCI) demonstrates the ability of proposed method to smooth time series, while the aggregation of The Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) illustrate how proposed method maintain the variation tendency of original data.

  17. Aggregate formation affects ultrasonic disruption of microalgal cells.

    PubMed

    Wang, Wei; Lee, Duu-Jong; Lai, Juin-Yih

    2015-12-01

    Ultrasonication is a cell disruption process of low energy efficiency. This study dosed K(+), Ca(2+) and Al(3+) to Chlorella vulgaris cultured in Bold's Basal Medium at 25°C and measured the degree of cell disruption under ultrasonication. Adding these metal ions yielded less negatively charged surfaces of cells, while with the latter two ions large and compact cell aggregates were formed. The degree of cell disruption followed: control=K(+)>Ca(2+)>Al(3+) samples. Surface charges of cells and microbubbles have minimal effects on the microbubble number in the proximity of the microalgal cells. Conversely, cell aggregates with large size and compact interior resist cell disruption under ultrasonication. Staining tests revealed high diffusional resistance of stains over the aggregate interior. Microbubbles may not be effective generated and collapsed inside the compact aggregates, hence leading to low cell disruption efficiencies. Effective coagulation/flocculation in cell harvesting may lead to adverse effect on subsequent cell disruption efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Generation of Murine Cardiac Pacemaker Cell Aggregates Based on ES-Cell-Programming in Combination with Myh6-Promoter-Selection

    PubMed Central

    Rimmbach, Christian; Jung, Julia J.; David, Robert

    2015-01-01

    Treatment of the “sick sinus syndrome” is based on artificial pacemakers. These bear hazards such as battery failure and infections. Moreover, they lack hormone responsiveness and the overall procedure is cost-intensive. “Biological pacemakers” generated from PSCs may become an alternative, yet the typical content of pacemaker cells in Embryoid Bodies (EBs) is extremely low. The described protocol combines “forward programming” of murine PSCs via the sinus node inducer TBX3 with Myh6-promoter based antibiotic selection. This yields cardiomyocyte aggregates consistent of >80% physiologically functional pacemaker cells. These “induced-sinoatrial-bodies” (“iSABs”) are spontaneously contracting at yet unreached frequencies (400-500 bpm) corresponding to nodal cells isolated from mouse hearts and are able to pace murine myocardium ex vivo. Using the described protocol highly pure sinus nodal single cells can be generated which e.g. can be used for in vitro drug testing. Furthermore, the iSABs generated according to this protocol may become a crucial step towards heart tissue engineering. PMID:25742394

  19. Calcium oxalate monohydrate aggregation induced by aggregation of desialylated Tamm-Horsfall protein

    PubMed Central

    Viswanathan, Pragasam; Rimer, Jeffrey D.; Kolbach, Ann M.; Kleinman, Jack G.

    2011-01-01

    Tamm-Horsfall protein (THP) is thought to protect against calcium oxalate monohydrate (COM) stone formation by inhibiting COM aggregation. Several studies reported that stone formers produce THP with reduced levels of glycosylation, particularly sialic acid levels, which leads to reduced negative charge. In this study, normal THP was treated with neuraminidase to remove sialic acid residues, confirmed by an isoelectric point shift to higher pH. COM aggregation assays revealed that desialylated THP (ds-THP) promoted COM aggregation, while normal THP inhibited aggregation. The appearance of protein aggregates in solutions at ds-THP concentrations ≥1 µg/mL in 150 mM NaCl correlated with COM aggregation promotion, implying that ds-THP aggregation induced COM aggregation. The aggregation-promoting effect of the ds-THP was independent of pH above its isoelectric point, but was substantially reduced at low ionic strength, where protein aggregation was much reduced. COM aggregation promotion was maximized at a ds-THP to COM mass ratio of ~0.025, which can be explained by a model wherein partial COM surface coverage by ds-THP aggregates promotes crystal aggregation by bridging opposing COM surfaces, whereas higher surface coverage leads to repulsion between adsorbed ds-THP aggregates. Thus, desialylation of THP apparently abrogates a normal defensive action of THP by inducing protein aggregation, and subsequently COM aggregation, a condition that favors kidney stone formation. PMID:21229239

  20. Exploiting Identical Generators in Unit Commitment

    DOE PAGES

    Knueven, Ben; Ostrowski, Jim; Watson, Jean -Paul

    2017-12-14

    Here, we present sufficient conditions under which thermal generators can be aggregated in mixed-integer linear programming (MILP) formulations of the unit commitment (UC) problem, while maintaining feasibility and optimality for the original disaggregated problem. Aggregating thermal generators with identical characteristics (e.g., minimum/maximum power output, minimum up/down-time, and cost curves) into a single unit reduces redundancy in the search space induced by both exact symmetry (permutations of generator schedules) and certain classes of mutually non-dominated solutions. We study the impact of aggregation on two large-scale UC instances, one from the academic literature and another based on real-world operator data. Our computationalmore » tests demonstrate that when present, identical generators can negatively affect the performance of modern MILP solvers on UC formulations. Further, we show that our reformation of the UC MILP through aggregation is an effective method for mitigating this source of computational difficulty.« less

  1. Exploiting Identical Generators in Unit Commitment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knueven, Ben; Ostrowski, Jim; Watson, Jean -Paul

    Here, we present sufficient conditions under which thermal generators can be aggregated in mixed-integer linear programming (MILP) formulations of the unit commitment (UC) problem, while maintaining feasibility and optimality for the original disaggregated problem. Aggregating thermal generators with identical characteristics (e.g., minimum/maximum power output, minimum up/down-time, and cost curves) into a single unit reduces redundancy in the search space induced by both exact symmetry (permutations of generator schedules) and certain classes of mutually non-dominated solutions. We study the impact of aggregation on two large-scale UC instances, one from the academic literature and another based on real-world operator data. Our computationalmore » tests demonstrate that when present, identical generators can negatively affect the performance of modern MILP solvers on UC formulations. Further, we show that our reformation of the UC MILP through aggregation is an effective method for mitigating this source of computational difficulty.« less

  2. Micro-deval coarse aggregate test evaluation

    DOT National Transportation Integrated Search

    2001-05-01

    Studded tire use in Oregon results in millions of dollars of pavement damage annually. Accurate tests are needed to qualify durable aggregate for pavements to resist studded tire damage. ODOT currently uses the Los Angeles abrasion test as one of the...

  3. Organic carbon, water repellency and soil stability to slaking at aggregate and intra-aggregate scales

    NASA Astrophysics Data System (ADS)

    Jordán López, Antonio; García-Moreno, Jorge; Gordillo-Rivero, Ángel J.; Zavala, Lorena M.; Cerdà, Artemi; Alanís, Nancy; Jiménez-Compán, Elizabeth

    2015-04-01

    Water repellency (WR) is a property of some soils that inhibits or delays water infiltration between a few seconds and days or weeks. Inhibited or delayed infiltration contributes to ponding and increases runoff flow generation, often increasing soil erosion risk. In water-repellent soils, water infiltrates preferentially through cracks or macropores, causing irregular soil wetting patterns, the development of preferential flow paths and accelerated leaching of nutrients. Although low inputs of hydrophobic organic substances and high mineralization rates lead to low degrees of WR in cropped soils, it has been reported that conservative agricultural practices may induce soil WR. Although there are many studies at catchment, slope or plot scales very few studies have been carried out at particle or aggregate scale. Intra-aggregate heterogeneity of physical, biological and chemical properties conditions the transport of substances, microbial activity and biochemical processes, including changes in the amount, distribution and chemical properties of organic matter. Some authors have reported positive relationships between soil WR and aggregate stability, since it may delay the entry of water into aggregates, increase structural stability and contribute to reduce soil erosion risk. Organic C (OC) content, aggregate stability and WR are therefore strongly related parameters. In the case of agricultural soils, where both the type of management as crops can influence all these parameters, it is important to evaluate the interactions among them and their consequences. Studies focused on the intra-aggregate distribution of OC and WR are necessary to shed light on the soil processes at a detailed scale. It is extremely important to understand how the spatial distribution of OC in soil aggregates can protect against rapid water entry and help stabilize larger structural units or lead to preferential flow. The objectives of this research are to study [i] the OC content and the

  4. Generating Within-Plant Spatial Distributions of an Insect Herbivore Based on Aggregation Patterns and Per-Node Infestation Probabilities.

    PubMed

    Rincon, Diego F; Hoy, Casey W; Cañas, Luis A

    2015-04-01

    Most predator-prey models extrapolate functional responses from small-scale experiments assuming spatially uniform within-plant predator-prey interactions. However, some predators focus their search in certain plant regions, and herbivores tend to select leaves to balance their nutrient uptake and exposure to plant defenses. Individual-based models that account for heterogeneous within-plant predator-prey interactions can be used to scale-up functional responses, but they would require the generation of explicit prey spatial distributions within-plant architecture models. The silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), is a significant pest of tomato crops worldwide that exhibits highly aggregated populations at several spatial scales, including within the plant. As part of an analytical framework to understand predator-silverleaf whitefly interactions, the objective of this research was to develop an algorithm to generate explicit spatial counts of silverleaf whitefly nymphs within tomato plants. The algorithm requires the plant size and the number of silverleaf whitefly individuals to distribute as inputs, and includes models that describe infestation probabilities per leaf nodal position and the aggregation pattern of the silverleaf whitefly within tomato plants and leaves. The output is a simulated number of silverleaf whitefly individuals for each leaf and leaflet on one or more plants. Parameter estimation was performed using nymph counts per leaflet censused from 30 artificially infested tomato plants. Validation revealed a substantial agreement between algorithm outputs and independent data that included the distribution of counts of both eggs and nymphs. This algorithm can be used in simulation models that explore the effect of local heterogeneity on whitefly-predator dynamics. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions

  5. Oxygen suppresses light-driven anodic current generation by a mixed phototrophic culture.

    PubMed

    Darus, Libertus; Ledezma, Pablo; Keller, Jürg; Freguia, Stefano

    2014-12-02

    This paper describes the detrimental effect of photosynthetically evolved oxygen on anodic current generation in the presence of riboflavin upon illumination of a mixed phototrophic culture enriched from a freshwater pond at +0.6 V vs standard hydrogen electrode. In the presence of riboflavin, the phototrophic biomass in the anodic compartment produced an electrical current in response to light/dark cycles (12 h/12 h) over 12 months of operation, generating a maximum current density of 17.5 mA x m(-2) during the dark phase, whereas a much lower current of approximately 2 mA x m(-2) was generated during illumination. We found that the low current generation under light exposure was caused by high rates of reoxidation of reduced riboflavin by oxygen produced during photosynthesis. Quantification of biomass by fluorescence in situ hybridization images suggested that green algae were predominant in both the anode-based biofilm (55.1%) and the anolyte suspension (87.9%) with the remaining biovolume accounted for by bacteria. Genus-level sequencing analysis revealed that bacteria were dominated by cyanobacterium Leptolyngbia (∼35%), while the prevailing algae were Dictyosphaerium, Coelastrum, and Auxenochlorella. This study offers a key comprehension of mediator sensitivity to reoxidation by dissolved oxygen for improvement of microbial solar cell performance.

  6. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Scandrol

    2003-10-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregatesmore » that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.« less

  7. Effect of Time Dependent Bending of Current Sheets in Response to Generation of Plasma Jets and Reverse Currents

    NASA Astrophysics Data System (ADS)

    Frank, Anna

    Magnetic reconnection is a basis for many impulsive phenomena in space and laboratory plasmas accompanied by effective transformation of magnetic energy. Reconnection processes usually occur in relatively thin current sheets (CSs), which separate magnetic fields of different or opposite directions. We report on recent observations of time dependent bending of CSs, which results from plasma dynamics inside the sheet. The experiments are carried out with the CS-3D laboratory device (Institute of General Physics RAS, Moscow) [1]. The CS magnetic structure with an X line provides excitation of the Hall currents and plasma acceleration from the X line to both side edges [2]. In the presence of the guide field By the Hall currents give rise to bending of the sheet: the peripheral regions located away from the X line are deflected from CS middle plane (z=0) in the opposite directions ±z [3]. We have revealed generation of reverse currents jy near the CS edges, i.e. the currents flowing in the opposite direction to the main current in the sheet [4]. There are strong grounds to believe that reverse currents are generated by the outflow plasma jets [5], accelerated inside the sheet and penetrated into the regions with strong normal magnetic field component Bz [4]. An impressive effect of sudden change in the sign of the CS bend has been disclosed recently, when analyzing distributions of plasma density [6] and current away from the X line, in the presence of the guide field By. The CS configuration suddenly becomes opposite from that observed at the initial stage, and this effect correlates well with generation of reverse currents. Consequently this effect can be related to excitation of the reverse Hall currents owing to generation of reverse currents jy in the CS. Hence it may be concluded that CSs may exhibit time dependent vertical z-displacements, and the sheet geometry depends on excitation of the Hall currents, acceleration of plasma jets and generation of reverse

  8. Production of lightweight aggregates from washing aggregate sludge and fly ash

    NASA Astrophysics Data System (ADS)

    González-Corrochano, Beatriz; Alonso-Azcárate, Jacinto; Rodas, Magdalena

    2010-05-01

    Increasing generation of wastes is one of the main environmental problems in industrialised countries. Heat treatment at high temperatures can convert some types of wastes into ceramic products with a wide range of microstructural features and properties (Bethanis et al., 2004). A lightweight aggregate (LWA) is a granular material with a bulk density (bd) not exceeding 1.20 g/cm3 or with a particle density not exceeding 2.00 g/cm3 (UNE-EN-13055-1, 2003). They have become a focus of interest because the low particle density and the low bulk density entail a decrease in the load transmitted to the ground, and less work and effort are required to transport them (De' Gennaro et al., 2004). The benefits associated with these low densities, which are due to the formation of voids and pores, are very good thermal and acoustic insulation and materials with a good resistance to fire (Benbow, 1987; Fakhfakh et al., 2007). The objective was to recycle fly ash, used motor oil from cars and mineral wastes from washing aggregate sludge, in order to obtain a usable material such as lightweight aggregates, and also to ensure that they are of good quality for different applications. Raw materials have been physically, chemically and mineralogically characterized. On the basis of the results obtained, they were mixed, milled to a grain size of less than 200 μm (Yasuda, 1991), formed into pellets, pre-heated for 5 min and sintered in a rotary kiln at 1150°C, 1175°C, 1200°C and 1225°C for 10 and 15 min at each temperature (Theating). Effects of raw material characteristics, heating temperature and dwell time on the following LWAs properties were determined: loss on ignition (LOI), bloating index (BI), loose bulk density (bd), apparent and dry particle density (ad, dd), voids (H), water absorption (WA24h) and compressive strength (S). The products obtained were lightweight aggregates in accordance with norm UNE-EN-13055-1 (bd ≤1.20 g/cm3 or particle density ≤2.00 g/cm3). LWAs

  9. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    NASA Astrophysics Data System (ADS)

    Bouda, N. R.; Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-01

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/-20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG1) and MOSFET circuits (HCMFG2) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  10. Protein aggregation and particle formation in prefilled glass syringes.

    PubMed

    Gerhardt, Alana; Mcgraw, Nicole R; Schwartz, Daniel K; Bee, Jared S; Carpenter, John F; Randolph, Theodore W

    2014-06-01

    The stability of therapeutic proteins formulated in prefilled syringes (PFS) may be negatively impacted by the exposure of protein molecules to silicone oil-water interfaces and air-water interfaces. In addition, agitation, such as that experienced during transportation, may increase the detrimental effects (i.e., protein aggregation and particle formation) of protein interactions with interfaces. In this study, surfactant-free formulations containing either a monoclonal antibody or lysozyme were incubated in PFS, where they were exposed to silicone oil-water interfaces (siliconized syringe walls), air-water interfaces (air bubbles), and agitation stress (occurring during end-over-end rotation). Using flow microscopy, particles (≥2 μm diameter) were detected under all conditions. The highest particle concentrations were found in agitated, siliconized syringes containing an air bubble. The particles formed in this condition consisted of silicone oil droplets and aggregated protein, as well as agglomerates of protein aggregates and silicone oil. We propose an interfacial mechanism of particle generation in PFS in which capillary forces at the three-phase (silicone oil-water-air) contact line remove silicone oil and gelled protein aggregates from the interface and transport them into the bulk. This mechanism explains the synergistic effects of silicone oil-water interfaces, air-water interfaces, and agitation in the generation of particles in protein formulations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Molecular mechanisms of platelet activation and aggregation induced by breast cancer cells.

    PubMed

    Zarà, Marta; Canobbio, Ilaria; Visconte, Caterina; Canino, Jessica; Torti, Mauro; Guidetti, Gianni Francesco

    2018-08-01

    Tumor cell-induced platelet aggregation represents a critical process both for successful metastatic spread of the tumor and for the development of thrombotic complications in cancer patients. To get further insights into this process, we investigated and compared the molecular mechanisms of platelet aggregation induced by two different breast cancer cell lines (MDA-MB-231 and MCF7) and a colorectal cancer cell line (Caco-2). All the three types of cancer cells were able to induce comparable platelet aggregation, which, however, was observed exclusively in the presence of CaCl 2 and autologous plasma. Aggregation was supported both by fibrinogen binding to integrin αIIbβ3 as well as by fibrin formation, and was completely prevented by the serine protease inhibitor PPACK. Platelet aggregation was preceded by generation of low amounts of thrombin, possibly through tumor cells-expressed tissue factor, and was supported by platelet activation, as revealed by stimulation of phospholipase C, intracellular Ca 2+ increase and activation of Rap1b GTPase. Pharmacological inhibition of phospholipase C, but not of phosphatidylinositol 3-kinase or Src family kinases prevented tumor cell-induced platelet aggregation. Tumor cells also induced dense granule secretion, and the stimulation of the P2Y12 receptor by released ADP was found to be necessary for complete platelet aggregation. By contrast, prevention of thromboxane A 2 synthesis by aspirin did not alter the ability of all the cancer cell lines analyzed to induce platelet aggregation. These results indicate that tumor cell-induced platelet aggregation is not related to the type of the cancer cells or to their metastatic potential, and is triggered by platelet activation and secretion driven by the generation of small amount of thrombin from plasma and supported by the positive feedback signaling through secreted ADP. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Comparative environmental assessment of natural and recycled aggregate concrete.

    PubMed

    Marinković, S; Radonjanin, V; Malešev, M; Ignjatović, I

    2010-11-01

    Constant and rapid increase in construction and demolition (C&D) waste generation and consumption of natural aggregate for concrete production became one of the biggest environmental problems in the construction industry. Recycling of C&D waste represents one way to convert a waste product into a resource but the environment benefits through energy consumption, emissions and fallouts reductions are not certain. The main purpose of this study is to determine the potentials of recycled aggregate concrete (concrete made with recycled concrete aggregate) for structural applications and to compare the environmental impact of the production of two types of ready-mixed concrete: natural aggregate concrete (NAC) made entirely with river aggregate and recycled aggregate concrete (RAC) made with natural fine and recycled coarse aggregate. Based on the analysis of up-to-date experimental evidence, including own tests results, it is concluded that utilization of RAC for low-to-middle strength structural concrete and non-aggressive exposure conditions is technically feasible. The Life Cycle Assessment (LCA) is performed for raw material extraction and material production part of the concrete life cycle including transport. Assessment is based on local LCI data and on typical conditions in Serbia. Results of this specific case study show that impacts of aggregate and cement production phases are slightly larger for RAC than for NAC but the total environmental impacts depend on the natural and recycled aggregates transport distances and on transport types. Limit natural aggregate transport distances above which the environmental impacts of RAC can be equal or even lower than the impacts of NAC are calculated for the specific case study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Application of imaging techniques to evaluate polishing characteristics of aggregates : final report.

    DOT National Transportation Integrated Search

    2016-12-01

    Previous research conducted at the University of Florida (UF) to investigate the use of the Aggregate Image Measurement System (AIMS) and Micro-Deval (MD) to evaluate frictional performance of aggregates concluded that the current AIMS system cannot ...

  14. Utilization of lignite power generation residues for the production of lightweight aggregates.

    PubMed

    Anagnostopoulos, Iason M; Stivanakis, Victor E

    2009-04-15

    A novel process is proposed for the utilization of lignite combustion solid residues in the production of inflammable lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering, and carbon contained in BA was used as the process fuel. The main residues bottom ash (BA) and fly ash (FA) from Megalopolis power plant were characterized, mixed in different proportions and treated through pelletization and sintering process. Sintering benefits from combustion of BA carbon content and the product is a hardened porous cake. The energy required for achievement of high temperatures, in the range of 1250 degrees C, was offered by carbon combustion and CO(2) evolution is responsible for porous structure formation. Selected physical properties of sintered material relevant to use as lightweight aggregates were determined, including bulk density, porosity and water absorption. Bulk density varies from 0.83 to 0.91 g/cm(3), porosity varies from 60% to 64% and water absorption varies from 66% to 80%. LWA formed is used for the production of lightweight aggregate concrete (LWAC). Thermal conductivity coefficient varies from 0.25 to 0.37 W/mK (lower than maximum limit 0.43 W/mK) and compressive strength varies from 19 to 23 MPa (higher than minimum limit 17 MPa). The results indicate that sintering of lignite combustion residues is an efficient method of utilization of carbon containing BA and production of LWA for structural and insulating purposes. Carbon content of BA is a key factor in LWA production. Finally, this research work comprises the first proposed application for utilization of BA in Greece.

  15. Metabolic states following accumulation of intracellular aggregates: implications for neurodegenerative diseases.

    PubMed

    Vazquez, Alexei

    2013-01-01

    The formation of intracellular aggregates is a common etiology of several neurodegenerative diseases. Mitochondrial defects and oxidative stress has been pointed as the major mechanistic links between the accumulation of intracellular aggregates and cell death. In this work we propose a "metabolic cell death by overcrowding" as an alternative hypothesis. Using a model of neuron metabolism, we predict that as the concentration of protein aggregates increases the neurons transit through three different metabolic phases. The first phase (0-6 mM) corresponds with the normal neuron state, where the neuronal activity is sustained by the oxidative phosphorylation of lactate. The second phase (6-8.6 mM) is characterized by a mixed utilization of lactate and glucose as energy substrates and a switch from ammonia uptake to ammonia release by neurons. In the third phase (8.6-9.3 mM) neurons are predicted to support their energy demands from glycolysis and an alternative pathway for energy generation, involving reactions from serine synthesis, one carbon metabolism and the glycine cleavage system. The model also predicts a decrease in the maximum neuronal capacity for energy generation with increasing the concentration of protein aggregates. Ultimately this maximum capacity becomes zero when the protein aggregates reach a concentration of about 9.3 mM, predicting the cessation of neuronal activity.

  16. COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy Scandrol

    2003-04-01

    Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregatesmore » that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.« less

  17. Exploring the early steps of amyloid peptide aggregation by computers.

    PubMed

    Mousseau, Normand; Derreumaux, Philippe

    2005-11-01

    The assembly of normally soluble proteins into amyloid fibrils is a hallmark of neurodegenerative diseases. Because protein aggregation is very complex, involving a variety of oligomeric metastable intermediates, the detailed aggregation paths and structural characterization of the intermediates remain to be determined. Yet, there is strong evidence that these oligomers, which form early in the process of fibrillogenesis, are cytotoxic. In this paper, we review our current understanding of the underlying factors that promote the aggregation of peptides into amyloid fibrils. We focus here on the structural and dynamic aspects of the aggregation as observed in state-of-the-art computer simulations of amyloid-forming peptides with an emphasis on the activation-relaxation technique.

  18. Detection and characterization of red blood cell (RBC) aggregation with photoacoustics

    NASA Astrophysics Data System (ADS)

    Hysi, Eno; Saha, Ratan K.; Rui, Min; Kolios, Michael C.

    2012-02-01

    Red blood cells (RBCs) aggregate in the presence of increased plasma fibrinogen and low shear forces during blood flow. RBC aggregation has been observed in deep vein thrombosis, sepsis and diabetes. We propose using photoacoustics (PA) as a non-invasive imaging modality to detect RBC aggregation. The theoretical and experimental feasibility of PA for detecting and characterizing aggregation was assessed. A simulation study was performed to generate PA signals from non-aggregated and aggregated RBCs using a frequency domain approach and to study the PA signals' dependence on hematocrit and aggregate size. The effect of the finite bandwidth nature of transducers on the PA power spectra was also investigated. Experimental confirmation of theoretical results was conducted using porcine RBC samples exposed to 1064 nm optical wavelength using the Imagio Small Animal PA imaging system (Seno Medical Instruments, Inc., San Antonio, TX). Aggregation was induced with Dextran-70 (Sigma-Aldrich, St. Louis, MO) and the effect of hematocrit and aggregation level was investigated. The theoretical and experimental PA signal amplitude increased linearly with increasing hematocrit. The theoretical dominant frequency content of PA signals shifted towards lower frequencies (<30 MHz) and 9 dB enhancements in spectral power were observed as the size of aggregates increased compared to non-aggregating RBCs. Calibration of the PA spectra with the transducer response obtained from a 200 nm gold film was performed to remove system dependencies. Analysis of the spectral parameters from the calibrated spectra suggested that PA can assess the degree of aggregation at multiple hematocrit and aggregation levels.

  19. Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles

    EPA Science Inventory

    Aggregation of fullerene nanoparticles (nC60) is a fundamental process influencing its environmental fate and transport, and toxicity. Using time-resolved dynamic light scattering we systematically investigated aggregation kinetics of nC60 generated from extended mixing in water ...

  20. Bed bug aggregation pheromone finally identified.

    PubMed

    Gries, Regine; Britton, Robert; Holmes, Michael; Zhai, Huimin; Draper, Jason; Gries, Gerhard

    2015-01-19

    Bed bugs have become a global epidemic and current detection tools are poorly suited for routine surveillance. Despite intense research on bed bug aggregation behavior and the aggregation pheromone, which could be used as a chemical lure, the complete composition of this pheromone has thus far proven elusive. Here, we report that the bed bug aggregation pheromone comprises five volatile components (dimethyl disulfide, dimethyl trisulfide, (E)-2-hexenal, (E)-2-octenal, 2-hexanone), which attract bed bugs to safe shelters, and one less-volatile component (histamine), which causes their arrestment upon contact. In infested premises, a blend of all six components is highly effective at luring bed bugs into traps. The trapping of juvenile and adult bed bugs, with or without recent blood meals, provides strong evidence that this unique pheromone bait could become an effective and inexpensive tool for bed bug detection and potentially their control. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouda, N. R., E-mail: nybouda@iastate.edu; Pritchard, J.; Weber, R. J.

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as ±1200 A can be generated with inputs of +/−20 V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG{sub 1}) and MOSFET circuits (HCMFG{sub 2}) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  2. Spin-polarized currents generated by magnetic Fe atomic chains.

    PubMed

    Lin, Zheng-Zhe; Chen, Xi

    2014-06-13

    Fe-based devices are widely used in spintronics because of high spin-polarization and magnetism. In this work, freestanding Fe atomic chains, the thinnest wires, were used to generate spin-polarized currents due to the spin-polarized energy bands. By ab initio calculations, the zigzag structure was found to be more stable than the wide-angle zigzag structure and had a higher ratio of spin-up and spin-down currents. By our theoretical prediction, Fe atomic chains have a sufficiently long thermal lifetime only at T ≦̸ 150 K, while C atomic chains are very stable even at T = 1000 K. This means that the spintronic devices based on Fe chains could work only at low temperatures. A system constructed by a short Fe chain sandwiched between two graphene electrodes could be used as a spin-polarized current generator, while a C chain could not be used in this way. The present work may be instructive and meaningful to further practical applications based on recent technical developments on the preparation of metal atomic chains (Proc. Natl. Acad. Sci. USA 107 9055 (2010)).

  3. Generation and detection of dissipationless spin current in a MgO/Si bilayer

    NASA Astrophysics Data System (ADS)

    Lou, Paul C.; Kumar, Sandeep

    2018-04-01

    Spintronics is an analogue to electronics where the spin of the electron rather than its charge is functionally controlled for devices. The generation and detection of spin current without ferromagnetic or exotic/scarce materials are two of the biggest challenges for spintronics devices. In this study, we report a solution to the two problems of spin current generation and detection in Si. Using non-local measurement, we experimentally demonstrate the generation of helical dissipationless spin current using the spin-Hall effect. Contrary to the theoretical prediction, we observe the spin-Hall effect in both n-doped and p-doped Si. The helical spin current is attributed to the site-inversion asymmetry of the diamond cubic lattice of Si and structure inversion asymmetry in a MgO/Si bilayer. The spin to charge conversion in Si is insignificant due to weak spin-orbit coupling. For the efficient detection of spin current, we report spin to charge conversion at the MgO (1 nm)/Si (2 µm) (p-doped and n-doped) thin film interface due to Rashba spin-orbit coupling. We detected the spin current at a distance of  >100 µm, which is an order of magnitude larger than the longest spin diffusion length measured using spin injection techniques. The existence of spin current in Si is verified from the coercivity reduction in a Co/Pd multilayer due to spin-orbit torque generated by spin current from Si.

  4. Aggregate formation and suspension culture of human pluripotent stem cells and differentiated progeny.

    PubMed

    Hookway, Tracy A; Butts, Jessica C; Lee, Emily; Tang, Hengli; McDevitt, Todd C

    2016-05-15

    Culture of human pluripotent stem cells (hPSC) as in vitro multicellular aggregates has been increasingly used as a method to model early embryonic development. Three-dimensional assemblies of hPSCs facilitate interactions between cells and their microenvironment to promote morphogenesis, analogous to the multicellular organization that accompanies embryogenesis. In this paper, we describe a method for reproducibly generating and maintaining populations of homogeneous three-dimensional hPSC aggregates using forced aggregation and rotary orbital suspension culture. We propose solutions to several challenges associated with the consistent formation and extended culture of cell spheroids generated from hPSCs and their differentiated progeny. Further, we provide examples to demonstrate how aggregation can be used as a tool to select specific subpopulations of cells to create homotypic spheroids, or as a means to introduce multiple cell types to create heterotypic tissue constructs. Finally, we demonstrate that the aggregation and rotary suspension method can be used to support culture and maintenance of hPSC-derived cell populations representing each of the three germ layers, underscoring the utility of this platform for culturing many different cell types. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Lanosterol reverses protein aggregation in cataracts.

    PubMed

    Zhao, Ling; Chen, Xiang-Jun; Zhu, Jie; Xi, Yi-Bo; Yang, Xu; Hu, Li-Dan; Ouyang, Hong; Patel, Sherrina H; Jin, Xin; Lin, Danni; Wu, Frances; Flagg, Ken; Cai, Huimin; Li, Gen; Cao, Guiqun; Lin, Ying; Chen, Daniel; Wen, Cindy; Chung, Christopher; Wang, Yandong; Qiu, Austin; Yeh, Emily; Wang, Wenqiu; Hu, Xun; Grob, Seanna; Abagyan, Ruben; Su, Zhiguang; Tjondro, Harry Christianto; Zhao, Xi-Juan; Luo, Hongrong; Hou, Rui; Jefferson, J; Perry, P; Gao, Weiwei; Kozak, Igor; Granet, David; Li, Yingrui; Sun, Xiaodong; Wang, Jun; Zhang, Liangfang; Liu, Yizhi; Yan, Yong-Bin; Zhang, Kang

    2015-07-30

    The human lens is comprised largely of crystallin proteins assembled into a highly ordered, interactive macro-structure essential for lens transparency and refractive index. Any disruption of intra- or inter-protein interactions will alter this delicate structure, exposing hydrophobic surfaces, with consequent protein aggregation and cataract formation. Cataracts are the most common cause of blindness worldwide, affecting tens of millions of people, and currently the only treatment is surgical removal of cataractous lenses. The precise mechanisms by which lens proteins both prevent aggregation and maintain lens transparency are largely unknown. Lanosterol is an amphipathic molecule enriched in the lens. It is synthesized by lanosterol synthase (LSS) in a key cyclization reaction of a cholesterol synthesis pathway. Here we identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts. Both of these mutations affect highly conserved amino acid residues and impair key catalytic functions of LSS. Engineered expression of wild-type, but not mutant, LSS prevents intracellular protein aggregation of various cataract-causing mutant crystallins. Treatment by lanosterol, but not cholesterol, significantly decreased preformed protein aggregates both in vitro and in cell-transfection experiments. We further show that lanosterol treatment could reduce cataract severity and increase transparency in dissected rabbit cataractous lenses in vitro and cataract severity in vivo in dogs. Our study identifies lanosterol as a key molecule in the prevention of lens protein aggregation and points to a novel strategy for cataract prevention and treatment.

  6. Azaphilones inhibit tau aggregation and dissolve tau aggregates in vitro.

    PubMed

    Paranjape, Smita R; Riley, Andrew P; Somoza, Amber D; Oakley, C Elizabeth; Wang, Clay C C; Prisinzano, Thomas E; Oakley, Berl R; Gamblin, T Chris

    2015-05-20

    The aggregation of the microtubule-associated protein tau is a seminal event in many neurodegenerative diseases, including Alzheimer's disease. The inhibition or reversal of tau aggregation is therefore a potential therapeutic strategy for these diseases. Fungal natural products have proven to be a rich source of useful compounds having wide varieties of biological activities. We have previously screened Aspergillus nidulans secondary metabolites for their ability to inhibit tau aggregation in vitro using an arachidonic acid polymerization protocol. One aggregation inhibitor identified was asperbenzaldehyde, an intermediate in azaphilone biosynthesis. We therefore tested 11 azaphilone derivatives to determine their tau assembly inhibition properties in vitro. All compounds tested inhibited tau filament assembly to some extent, and four of the 11 compounds had the advantageous property of disassembling preformed tau aggregates in a dose-dependent fashion. The addition of these compounds to the tau aggregates reduced both the total length and number of tau polymers. The most potent compounds were tested in in vitro reactions to determine whether they interfere with tau's normal function of stabilizing microtubules (MTs). We found that they did not completely inhibit MT assembly in the presence of tau. These derivatives are very promising lead compounds for tau aggregation inhibitors and, more excitingly, for compounds that can disassemble pre-existing tau filaments. They also represent a new class of anti-tau aggregation compounds with a novel structural scaffold.

  7. A rationally designed six-residue swap generates comparability in the aggregation behavior of α-synuclein and β-synuclein.

    PubMed

    Roodveldt, Cintia; Andersson, August; De Genst, Erwin J; Labrador-Garrido, Adahir; Buell, Alexander K; Dobson, Christopher M; Tartaglia, Gian Gaetano; Vendruscolo, Michele

    2012-11-06

    The aggregation process of α-synuclein, a protein closely associated with Parkinson's disease, is highly sensitive to sequence variations. It is therefore of great importance to understand the factors that define the aggregation propensity of specific mutational variants as well as their toxic behavior in the cellular environment. In this context, we investigated the extent to which the aggregation behavior of α-synuclein can be altered to resemble that of β-synuclein, an aggregation-resistant homologue of α-synuclein not associated with disease, by swapping residues between the two proteins. Because of the vast number of possible swaps, we have applied a rational design procedure to single out a mutational variant, called α2β, in which two short stretches of the sequence in the NAC region have been replaced in α-synuclein from β-synuclein. We find not only that the aggregation rate of α2β is close to that of β-synuclein, being much lower than that of α-synuclein, but also that α2β effectively changes the cellular toxicity of α-synuclein to a value similar to that of β-synuclein upon exposure of SH-SY5Y cells to preformed oligomers. Remarkably, control experiments on the corresponding mutational variant of β-synuclein, called β2α, confirmed that the mutations that we have identified also shift the aggregation behavior of this protein toward that of α-synuclein. These results demonstrate that it is becoming possible to control in quantitative detail the sequence code that defines the aggregation behavior and toxicity of α-synuclein.

  8. Privacy-preserving data aggregation protocols for wireless sensor networks: a survey.

    PubMed

    Bista, Rabindra; Chang, Jae-Woo

    2010-01-01

    Many wireless sensor network (WSN) applications require privacy-preserving aggregation of sensor data during transmission from the source nodes to the sink node. In this paper, we explore several existing privacy-preserving data aggregation (PPDA) protocols for WSNs in order to provide some insights on their current status. For this, we evaluate the PPDA protocols on the basis of such metrics as communication and computation costs in order to demonstrate their potential for supporting privacy-preserving data aggregation in WSNs. In addition, based on the existing research, we enumerate some important future research directions in the field of privacy-preserving data aggregation for WSNs.

  9. Spin current and second harmonic generation in non-collinear magnetic systems: the hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Karashtin, E. A.; Fraerman, A. A.

    2018-04-01

    We report a theoretical study of the second harmonic generation in a noncollinearly magnetized conductive medium with equilibrium spin current. The hydrodynamic model is used to unravel the mechanism of a novel effect of the double frequency signal generation that is attributed to the spin current. According to our calculations, this second harmonic response appears due to the ‘non-adiabatic’ spin polarization of the conduction electrons induced by the oscillations in the non-uniform magnetization forced by the electric field of the electromagnetic wave. Together with the linear velocity response this leads to the generation of the double frequency spin current. This spin current is converted to the electric current via the inverse spin Hall effect, and the double-frequency electric current emits the second harmonic radiation. Possible experiment for detection of the new second harmonic effect is proposed.

  10. Applicability of recycled aggregates in concrete piles for soft soil improvement.

    PubMed

    Medeiros-Junior, Ronaldo A; Balestra, Carlos Et; Lima, Maryangela G

    2017-01-01

    The expressive generation of construction and demolition waste is stimulating several studies for reusing this material. The improvement of soft soils by concrete compaction piles has been widely applied for 40 years in some Brazilian cities. This technique is used to improve the bearing capacity of soft soils, allowing executing shallow foundations instead of deep foundations. The compaction piles use a high volume of material. This article explored the possibility of using recycled aggregates from construction waste to replace the natural aggregates in order to improve the bearing capacity of the soft soil, regarding its compressive strength. Construction wastes from different stages of a construction were used in order to make samples of concrete with recycled aggregates. The strength of concretes with natural aggregates was compared with the strength of concretes with recycled (fine and coarse) aggregates. Results show that all samples met the minimum compressive strength specified for compaction piles used to improve the bearing capacity of soft soils. The concrete with recycled aggregate from the structural stage had even higher resistances than the concrete with natural aggregates. This behaviour was attributed to the large amount of cementitious materials in the composition of this type of concrete. It was also observed that concrete with recycled fine aggregate has a superior resistance to concrete with recycled coarse aggregate.

  11. Computational study of aggregation mechanism in human lysozyme[D67H

    PubMed Central

    Patel, Dharmeshkumar

    2017-01-01

    Aggregation of proteins is an undesired phenomena that affects both human health and bioengineered products such as therapeutic proteins. Finding preventative measures could be facilitated by a molecular-level understanding of dimer formation, which is the first step in aggregation. Here we present a molecular dynamics (MD) study of dimer formation propensity in human lysozyme and its D67H variant. Because the latter protein aggregates while the former does not, they offer an ideal system for testing the feasibility of the proposed MD approach which comprises three stages: i) partially unfolded conformers involved in dimer formation are generated via high-temperature MD simulations, ii) potential dimer structures are searched using docking and refined with MD, iii) free energy calculations are performed to find the most stable dimer structure. Our results provide a detailed explanation for how a single mutation (D67H) turns human lysozyme from non-aggregating to an aggregating protein. Conversely, the proposed method can be used to identify the residues causing aggregation in a protein, which can be mutated to prevent it. PMID:28467454

  12. Submerged electricity generation plane with marine current-driven motors

    DOEpatents

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

    2014-07-01

    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  13. Chiral current generation in QED by longitudinal photons

    NASA Astrophysics Data System (ADS)

    Acosta Avalo, J. L.; Pérez Rojas, H.

    2016-08-01

    We report the generation of a pseudovector electric current having imbalanced chirality in an electron-positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler-Bell-Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone). In the static limit, an electric pseudovector current is obtained in the lowest Landau level.

  14. Third generation EGFR TKIs: current data and future directions.

    PubMed

    Tan, Chee-Seng; Kumarakulasinghe, Nesaretnam Barr; Huang, Yi-Qing; Ang, Yvonne Li En; Choo, Joan Rou-En; Goh, Boon-Cher; Soo, Ross A

    2018-02-19

    Acquired T790 M mutation is the commonest cause of resistance for advanced non-small cell lung cancer (NSCLC) epidermal growth factor receptor (EGFR) mutant patients who had progressed after first line EGFR TKI (tyrosine kinase inhibitor). Several third generation EGFR TKIs which are EGFR mutant selective and wild-type (WT) sparing were developed to treat these patients with T790 M acquired resistant mutation. Osimertinib is one of the third generation EGFR TKIs and is currently the most advanced in clinical development. Unfortunately, despite good initial response, patients who was treated with third generation EGFR TKI would develop acquired resistance and several mechanisms had been identified and the commonest being C797S mutation at exon 20. Several novel treatment options were being developed for patients who had progressed on third generation EGFR TKI but they are still in the early phase of development. Osimertinib under FLAURA study had been shown to have better progression-free survival over first generation EGFR TKI in the first line setting and likely will become the new standard of care.

  15. Marine Synechococcus Aggregation

    NASA Astrophysics Data System (ADS)

    Neuer, S.; Deng, W.; Cruz, B. N.; Monks, L.

    2016-02-01

    Cyanobacteria are considered to play an important role in the oceanic biological carbon pump, especially in oligotrophic regions. But as single cells are too small to sink, their carbon export has to be mediated by aggregate formation and possible consumption by zooplankton producing sinking fecal pellets. Here we report results on the aggregation of the ubiquitous marine pico-cyanobacterium Synechococcus as a model organism. We first investigated the mechanism behind such aggregation by studying the potential role of transparent exopolymeric particles (TEP) and the effects of nutrient (nitrogen or phosphorus) limitation on the TEP production and aggregate formation of these pico-cyanobacteria. We further studied the aggregation and subsequent settling in roller tanks and investigated the effects of the clays kaolinite and bentonite in a series of concentrations. Our results show that despite of the lowered growth rates, Synechococcus in nutrient limited cultures had larger cell-normalized TEP production, formed a greater volume of aggregates, and resulted in higher settling velocities compared to results from replete cultures. In addition, we found that despite their small size and lack of natural ballasting minerals, Synechococcus cells could still form aggregates and sink at measureable velocities in seawater. Clay minerals increased the number and reduced the size of aggregates, and their ballasting effects increased the sinking velocity and carbon export potential of aggregates. In comparison with the Synechococcus, we will also present results of the aggregation of the pico-cyanobacterium Prochlorococcus in roller tanks. These results contribute to our understanding in the physiology of marine Synechococcus as well as their role in the ecology and biogeochemistry in oligotrophic oceans.

  16. Forced and natural convection in aggregate-laden nanofluids

    NASA Astrophysics Data System (ADS)

    Thajudeen, Thaseem; Hogan, Christopher J.

    2011-12-01

    A number of experimental and theoretical studies of convective heat transfer in nanofluids (liquid suspensions of nanoparticles, typically with features below 100 nm in size) reveal contrasting results; nanoparticles can either enhance or reduce the convective heat transfer coefficient. These disparate conclusions regarding the influence of nanoparticles on convective heat transfer may arise due to the aggregation of nanoparticles, which is often not considered in studies of nanofluids. Here, we examine theoretically forced and natural convective heat transfer of aggregate-laden nanofluids using Monte Carlo-based models to determine how the aggregate morphology influences the convective heat transfer coefficient. Specifically, in this study, it is first shown that standard heat transfer correlations should apply to nanofluids, and the main influence of the nanoparticles is to alter suspension thermal conductivity, dynamic viscosity, density, specific heat, and thermal expansion coefficient. Aggregated particles in suspension are modeled as quasi-fractal aggregates composed of individual primary particles described by the primary particle radius, number of primary particles, fractal (Hausdorff) dimension, pre-exponential factor, and degree of coalescence between primary particles. A sequential algorithm is used to computationally generate aggregates with prescribed morphological descriptors. Four types of aggregates are considered; spanning the range of aggregate morphologies observed in nanofluids. For each morphological type, the influences of aggregates on nanofluid dynamic viscosity and thermal conductivity are determined via first passage-based Brownian dynamics calculations. It is found that depending on both the material properties of the nanoparticles as well as the nanoparticle morphology, the addition of nanoparticles to a suspension can either increase or decrease both the forced and natural convective heat transfer coefficients, with both a 51% increase

  17. Axial current generation by P-odd domains in QCD matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iatrakis, Ioannis; Yin, Yi; Lin, Shu

    2015-06-23

    The dynamics of topological domains which break parity (P) and charge-parity (CP) symmetry of QCD are studied. We derive in a general setting that those local domains will generate an axial current and quantify the strength of the induced axial current. Thus, our findings are verified in a top-down holographic model. The relation between the real time dynamics of those local domains and the chiral magnetic field is also elucidated. We finally argue that such an induced axial current would be phenomenologically important in a heavy-ion collisions experiment.

  18. Leakage Currents and Gas Generation in Advanced Wet Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2015-01-01

    Currently, military grade, established reliability wet tantalum capacitors are among the most reliable parts used for space applications. This has been achieved over the years by extensive testing and improvements in design and materials. However, a rapid insertion of new types of advanced, high volumetric efficiency capacitors in space systems without proper testing and analysis of degradation mechanisms might increase risks of failures. The specifics of leakage currents in wet electrolytic capacitors is that the conduction process is associated with electrolysis of electrolyte and gas generation resulting in building up of internal gas pressure in the parts. The risk associated with excessive leakage currents and increased pressure is greater for high value advanced wet tantalum capacitors, but it has not been properly evaluated yet. In this work, in Part I, leakages currents in various types of tantalum capacitors have been analyzed in a wide range of voltages, temperatures, and time under bias. Gas generation and the level of internal pressure have been calculated in Part II for different case sizes and different hermeticity leak rates to assess maximal allowable leakage currents. Effects related to electrolyte penetration to the glass seal area have been studied and the possibility of failures analyzed in Part III. Recommendations for screening and qualification to reduce risks of failures have been suggested.

  19. Bulk electron spin polarization generated by the spin Hall current

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.

    2006-07-01

    It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  20. Effects of current on droplet generation and arc plasma in gas metal arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, J.; Tsai, H. L.

    2006-09-01

    In gas metal arc welding (GMAW), a technology using pulsed currents has been employed to achieve the one-droplet-per-pulse (ODPP) metal transfer mode with the advantages of low average currents, a stable and controllable droplet generation, and reduced spatter. In this paper, a comprehensive model was developed to study the effects of different current profiles on the droplet formation, plasma generation, metal transfer, and weld pool dynamics in GMAW. Five types of welding currents were studied, including two constant currents and three wave form currents. In each type, the transient temperature and velocity distributions of the arc plasma and the moltenmore » metal, and the shapes of the droplet and the weld pool were calculated. The results showed that a higher current generates smaller droplets, higher droplet frequency, and higher electromagnetic force that becomes the dominant factor detaching the droplet from the electrode tip. The model has demonstrated that a stable ODPP metal transfer mode can be achieved by choosing a current with proper wave form for given welding conditions.« less

  1. Meson exchange current (MEC) models in neutrino interaction generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katori, Teppei

    2015-05-15

    Understanding of the so-called 2 particle-2 hole (2p-2h) effect is an urgent program in neutrino interaction physics for current and future oscillation experiments. Such processes are believed to be responsible for the event excesses observed by recent neutrino experiments. The 2p-2h effect is dominated by the meson exchange current (MEC), and is accompanied by a 2-nucleon emission from the primary vertex, instead of a single nucleon emission from the charged-current quasi-elastic (CCQE) interaction. Current and future high resolution experiments can potentially nail down this effect. For this reason, there are world wide efforts to model and implement this process inmore » neutrino interaction simulations. In these proceedings, I would like to describe how this channel is modeled in neutrino interaction generators.« less

  2. On the radiative properties of soot aggregates part 1: Necking and overlapping

    NASA Astrophysics Data System (ADS)

    Yon, J.; Bescond, A.; Liu, F.

    2015-09-01

    There is a strong interest in accurately modelling the radiative properties of soot aggregates (also known as black carbon particles) emitted from combustion systems and fires to gain improved understanding of the role of black carbon to global warming. This study conducted a systematic investigation of the effects of overlapping and necking between neighbouring primary particles on the radiative properties of soot aggregates using the discrete dipole approximation. The degrees of overlapping and necking are quantified by the overlapping and necking parameters. Realistic soot aggregates were generated numerically by constructing overlapping and necking to fractal aggregates formed by point-touch primary particles simulated using a diffusion-limited cluster aggregation algorithm. Radiative properties (differential scattering, absorption, total scattering, specific extinction, asymmetry factor and single scattering albedo) were calculated using the experimentally measured soot refractive index over the spectral range of 266-1064 nm for 9 combinations of the overlapping and necking parameters. Overlapping and necking affect significantly the absorption and scattering properties of soot aggregates, especially in the near UV spectrum due to the enhanced multiple scattering effects within an aggregate. By using correctly modified aggregate properties (fractal dimension, prefactor, primary particle radius, and the number of primary particle) and by accounting for the effects of multiple scattering, the simple Rayleigh-Debye-Gans theory for fractal aggregates can reproduce reasonably accurate radiative properties of realistic soot aggregates.

  3. INSTRUMENTATION AND TECHNIQUES. A SELF-CONTAINED, REGULATED, BURST-FIRING CONSTANT-CURRENT AC SHOCK GENERATOR

    EPA Science Inventory

    A line- and load-regulated constant-current ac shock generator has been designed for animal behavior experiments. The self-contained unit has four operating modes, amplitude adjustment, and a leakage current detection circuit. A unique feature of this generator is that the good l...

  4. Nature of the optical band shapes in polymethine dyes and H-aggregates: dozy chaos and excitons. Comparison with dimers, H*- and J-aggregates.

    PubMed

    Egorov, Vladimir V

    2017-05-01

    Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E.

  5. Nature of the optical band shapes in polymethine dyes and H-aggregates: dozy chaos and excitons. Comparison with dimers, H*- and J-aggregates

    PubMed Central

    2017-01-01

    Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E. PMID:28572984

  6. Nature of the optical band shapes in polymethine dyes and H-aggregates: dozy chaos and excitons. Comparison with dimers, H*- and J-aggregates

    NASA Astrophysics Data System (ADS)

    Egorov, Vladimir V.

    2017-05-01

    Results on the theoretical explanation of the shape of optical bands in polymethine dyes, their dimers and aggregates are summarized. The theoretical dependence of the shape of optical bands for the dye monomers in the vinylogous series in line with a change in the solvent polarity is considered. A simple physical (analytical) model of the shape of optical absorption bands in H-aggregates of polymethine dyes is developed based on taking the dozy-chaos dynamics of the transient state and the Frenkel exciton effect in the theory of molecular quantum transitions into account. As an example, the details of the experimental shape of one of the known H-bands are well reproduced by this analytical model under the assumption that the main optical chromophore of H-aggregates is a tetramer resulting from the two most probable processes of inelastic binary collisions in sequence: first, monomers between themselves, and then, between the resulting dimers. The obtained results indicate that in contrast with the compact structure of J-aggregates (brickwork structure), the structure of H-aggregates is not the compact pack-of-cards structure, as stated in the literature, but a loose alternate structure. Based on this theoretical model, a simple general (analytical) method for treating the more complex shapes of optical bands in polymethine dyes in comparison with the H-band under consideration is proposed. This method mirrors the physical process of molecular aggregates forming in liquid solutions: aggregates are generated in the most probable processes of inelastic multiple binary collisions between polymethine species generally differing in complexity. The results obtained are given against a background of the theoretical results on the shape of optical bands in polymethine dyes and their aggregates (dimers, H*- and J-aggregates) previously obtained by V.V.E.

  7. Compensation for Harmonic Currents and Reactive Power in Wind Power Generation System using PWM Inverter

    NASA Astrophysics Data System (ADS)

    Shinohara, Katsuji; Shinhatsubo, Kurato; Iimori, Kenichi; Yamamoto, Kichiro; Saruban, Takamichi; Yamaemori, Takahiro

    In recent year, consciousness of environmental problems is enhancing, and the price of the electric power purchased by an electric power company is established expensive for the power plant utilizing the natural energy. So, the introduction of the wind power generation is promoted in Japan. Generally, squirrel-cage induction machines are widely used as a generator in wind power generation system because of its small size, lightweight and low-cost. However, the induction machines do not have a source of excitation. Thus, it causes the inrush currents and the instantaneous voltage drop when the generator is directly connected to a power grid. To reduce the inrush currents, an AC power regulator is used. Wind power generations are frequently connected to and disconnected from the power grid. However, when the inrush currents are reduced, harmonic currents are caused by phase control of the AC power regulator. And the phase control of AC power regulator cannot control the power factor. Therefore, we propose the use of the AC power regulator to compensate for the harmonic currents and reactive power in the wind power generation system, and demonstrate the validity of its system by simulated and experimental results.

  8. Degradation of surfactant-associated protein B (SP-B) during in vitro conversion of large to small surfactant aggregates.

    PubMed Central

    Veldhuizen, R A; Inchley, K; Hearn, S A; Lewis, J F; Possmayer, F

    1993-01-01

    Pulmonary surfactant obtained from lung lavages can be separated by differential centrifugation into two distinct subfractions known as large surfactant aggregates and small surfactant aggregates. The large-aggregate fraction is the precursor of the small-aggregate fraction. The ratio of the small non-surface-active to large surface-active surfactant aggregates increases after birth and in several types of lung injury. We have utilized an in vitro system, surface area cycling, to study the conversion of large into small aggregates. Small aggregates generated by surface area cycling were separated from large aggregates by centrifugation at 40,000 g for 15 min rather than by the normal sucrose gradient centrifugation. This new separation method was validated by morphological studies. Surface-tension-reducing activity of total surfactant extracts, as measured with a pulsating-bubble surfactometer, was impaired after surface area cycling. This impairment was related to the generation of small aggregates. Immunoblot analysis of large and small aggregates separated by sucrose gradient centrifugation revealed the presence of detectable amounts of surfactant-associated protein B (SP-B) in large aggregates but not in small aggregates. SP-A was detectable in both large and small aggregates. PAGE of cycled and non-cycled surfactant showed a reduction in SP-B after surface area cycling. We conclude that SP-B is degraded during the formation of small aggregates in vitro and that a change in surface area appears to be necessary for exposing SP-B to protease activity. Images Figure 2 Figure 5 Figure 6 Figure 7 PMID:8216208

  9. GEOMETRIC CROSS SECTIONS OF DUST AGGREGATES AND A COMPRESSION MODEL FOR AGGREGATE COLLISIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suyama, Toru; Wada, Koji; Tanaka, Hidekazu

    2012-07-10

    Geometric cross sections of dust aggregates determine their coupling with disk gas, which governs their motions in protoplanetary disks. Collisional outcomes also depend on geometric cross sections of initial aggregates. In a previous paper, we performed three-dimensional N-body simulations of sequential collisions of aggregates composed of a number of sub-micron-sized icy particles and examined radii of gyration (and bulk densities) of the obtained aggregates. We showed that collisional compression of aggregates is not efficient and that aggregates remain fluffy. In the present study, we examine geometric cross sections of the aggregates. Their cross sections decrease due to compression as wellmore » as to their gyration radii. It is found that a relation between the cross section and the gyration radius proposed by Okuzumi et al. is valid for the compressed aggregates. We also refine the compression model proposed in our previous paper. The refined model enables us to calculate the evolution of both gyration radii and cross sections of growing aggregates and reproduces well our numerical results of sequential aggregate collisions. The refined model can describe non-equal-mass collisions as well as equal-mass cases. Although we do not take into account oblique collisions in the present study, oblique collisions would further hinder compression of aggregates.« less

  10. Cellulose Aggregation under Hydrothermal Pretreatment Conditions.

    PubMed

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Kovalenko, Andriy; Skaf, Munir S

    2016-08-08

    Cellulose, the most abundant biopolymer on Earth, represents a resource for sustainable production of biofuels. Thermochemical treatments make lignocellulosic biomaterials more amenable to depolymerization by exposing cellulose microfibrils to enzymatic or chemical attacks. In such treatments, the solvent plays fundamental roles in biomass modification, but the molecular events underlying these changes are still poorly understood. Here, the 3D-RISM-KH molecular theory of solvation has been employed to analyze the role of water in cellulose aggregation under different thermodynamic conditions. The results show that, under ambient conditions, highly structured hydration shells around cellulose create repulsive forces that protect cellulose microfibrils from aggregating. Under hydrothermal pretreatment conditions, however, the hydration shells lose structure, and cellulose aggregation is favored. These effects are largely due to a decrease in cellulose-water interactions relative to those at ambient conditions, so that cellulose-cellulose attractive interactions become prevalent. Our results provide an explanation to the observed increase in the lateral size of cellulose crystallites when biomass is subject to pretreatments and deepen the current understanding of the mechanisms of biomass modification.

  11. Simulated wind-generated inertial oscillations compared to current measurements in the northern North Sea

    NASA Astrophysics Data System (ADS)

    Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag

    2018-06-01

    Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.

  12. Simulated wind-generated inertial oscillations compared to current measurements in the northern North Sea

    NASA Astrophysics Data System (ADS)

    Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag

    2018-04-01

    Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.

  13. Sustainable aggregates production : green applications for aggregate by-products.

    DOT National Transportation Integrated Search

    2015-06-01

    Increased emphasis in the construction industry on sustainability and recycling requires production of : aggregate gradations with lower dust (cleaner aggregates) and smaller maximum sizeshence, increased : amount of quarry by-products (QBs). QBs ...

  14. Exploiting current-generation graphics hardware for synthetic-scene generation

    NASA Astrophysics Data System (ADS)

    Tanner, Michael A.; Keen, Wayne A.

    2010-04-01

    Increasing seeker frame rate and pixel count, as well as the demand for higher levels of scene fidelity, have driven scene generation software for hardware-in-the-loop (HWIL) and software-in-the-loop (SWIL) testing to higher levels of parallelization. Because modern PC graphics cards provide multiple computational cores (240 shader cores for a current NVIDIA Corporation GeForce and Quadro cards), implementation of phenomenology codes on graphics processing units (GPUs) offers significant potential for simultaneous enhancement of simulation frame rate and fidelity. To take advantage of this potential requires algorithm implementation that is structured to minimize data transfers between the central processing unit (CPU) and the GPU. In this paper, preliminary methodologies developed at the Kinetic Hardware In-The-Loop Simulator (KHILS) will be presented. Included in this paper will be various language tradeoffs between conventional shader programming, Compute Unified Device Architecture (CUDA) and Open Computing Language (OpenCL), including performance trades and possible pathways for future tool development.

  15. Thermodynamics of Protein Aggregation

    NASA Astrophysics Data System (ADS)

    Osborne, Kenneth L.; Barz, Bogdan; Bachmann, Michael; Strodel, Birgit

    Amyloid protein aggregation characterizes many neurodegenerative disorders, including Alzheimer's, Parkinson's, and Creutz- feldt-Jakob disease. Evidence suggests that amyloid aggregates may share similar aggregation pathways, implying simulation of full-length amyloid proteins is not necessary for understanding amyloid formation. In this study we simulate GNNQQNY, the N-terminal prion-determining domain of the yeast protein Sup35 to investigate the thermodynamics of structural transitions during aggregation. We use a coarse-grained model with replica-exchange molecular dynamics to investigate the association of 3-, 6-, and 12-chain GNNQQNY systems and we determine the aggregation pathway by studying aggregation states of GN- NQQNY. We find that the aggregation of the hydrophilic GNNQQNY sequence is mainly driven by H-bond formation, leading to the formation of /3-sheets from the very beginning of the assembly process. Condensation (aggregation) and ordering take place simultaneously, which is underpinned by the occurrence of a single heat capacity peak only.

  16. Neuroforecasting Aggregate Choice

    PubMed Central

    Knutson, Brian; Genevsky, Alexander

    2018-01-01

    Advances in brain-imaging design and analysis have allowed investigators to use neural activity to predict individual choice, while emerging Internet markets have opened up new opportunities for forecasting aggregate choice. Here, we review emerging research that bridges these levels of analysis by attempting to use group neural activity to forecast aggregate choice. A survey of initial findings suggests that components of group neural activity might forecast aggregate choice, in some cases even beyond traditional behavioral measures. In addition to demonstrating the plausibility of neuroforecasting, these findings raise the possibility that not all neural processes that predict individual choice forecast aggregate choice to the same degree. We propose that although integrative choice components may confer more consistency within individuals, affective choice components may generalize more broadly across individuals to forecast aggregate choice. PMID:29706726

  17. Compact submicrosecond, high current generator for wire explosion experiments

    NASA Astrophysics Data System (ADS)

    Aranchuk, L. E.; Chuvatin, A. S.; Larour, J.

    2004-01-01

    The PIAF generator was designed for low total energy and high energy density experiments with liners, X-pinch or fiber Z-pinch loads. These studies are of interest for such applications as surface and material science, microscopy of biological specimens, lithography of x-ray sensitive resists, and x-ray backlighting of pulsed-power plasmas. The generator is based on an RLC circuit that includes six NWL 180 nF-50 kV capacitors that store up to 1.3 kJ. The capacitors are connected in parallel to a single multispark switch designed to operate at atmospheric pressure. The switch allows reaching a time delay between the trigger pulse and the current pulse of less than 80 ns and has jitter of 6 ns. The total inductance without a load compartment was optimized to be as low as 16 nH, which leads to extremely low impedance of ˜0.12 Ω. A 40 kV initial voltage provides 250 kA maximum current in a 6 nH inductive load with a 180 ns current rise time. PIAF has dimensions of 660×660×490 mm and weight of less than 100 kg, thus manifesting itself as robust, simple to operate, and cost effective. A description of the PIAF generator and the initial experimental results on PIAF with an X-pinch type load are reported. The generator was demonstrated to operate successfully with an X-pinch type load. The experiments first started with investigation of the previously unexplored X-pinch conduction time range, 100 ns-1 μs. A single short radiation pulse was obtained that came from a small, point-like plasma. The following x-ray source characteristics were achieved: typical hot spot size of 50-100 μm, radiation pulse duration of 1.5-2 ns, and radiation yield of about 250-500 mJ in the softer spectral range (hν⩾700 eV) and 50-100 mJ in the harder one (hν⩾1 keV). These results provide the potential for further application of this source, such as use as a backlight diagnostic tool.

  18. Implication of alcohol consumption on aggregate wellbeing.

    PubMed

    Parackal, Mathew; Parackal, Sherly

    2017-07-01

    The effects of drinking alcohol extend beyond the individuals concerned to the wider community. While there is recognition of such a global implication, currently no study has quantified the impact of alcohol consumption on aggregate wellbeing. This study aims to address this gap and attempts to investigate the impact of various levels of alcohol consumption on aggregate happiness. The study was carried out on a random selection of participants ( n = 1,817) drawn from the 3Di consumer panel, comprising over 170,000 New Zealanders aged 18 and above. Using a subjective happiness scale (SHS) in conjunction with the Alcohol Use Disorders Identification Test (AUDIT), investigation was carried out to find whether drinking behaviour affected aggregate happiness. SHS and AUDIT scores were negatively correlated and the strength of the correlation increased with the intensity of problematic drinking. Regression analysis showed that the beta coefficient was positive for the low-risk (.074) and negative for the high-risk (-.081) category, suggesting approaches to intervene with the growing problem of alcohol consumption in modern societies. Measurements of happiness can explain the global implication of alcohol in wellbeing terms. The findings of this study indicated that low-risk drinkers affected aggregate happiness positively, whereas high-risk drinkers affected aggregate happiness negatively. While the latter observation is not new, the former raises the need to promote moderation in drinking alcohol for the common good of everyone.

  19. Structural characterization of astaxanthin aggregates as revealed by analysis and simulation of optical spectra

    NASA Astrophysics Data System (ADS)

    Lu, Liping; Hu, Taoping; Xu, Zhigang

    2017-10-01

    Carotenoids can self-assemble in hydrated polar solvents to form J- or H-type aggregates, inducing dramatic changes in photophysical properties. Here, we measured absorption and emission spectra of astaxanthin in ethanol-water solution using ultraviolet-visible and fluorescence spectrometers. Two types of aggregates were distinguished in mixed solution at different water contents by absorption spectra. After addition of water, all probed samples immediately formed H-aggregates with maximum blue shift of 31 nm. In addition, J-aggregate was formed in 1:3 ethanol-water solution measured after an hour. Based on Frenkel exciton model, we calculated linear absorption and emission spectra of these aggregates to describe aggregate structures in solution. For astaxanthin, experimental results agreed well with the fitted spectra of H-aggregate models, which consisted of tightly packed stacks of individual molecules, including hexamers, trimers, and dimers. Transition moment of single astaxanthin in ethanol was obtained by Gaussian 09 program package to estimate the distance between molecules in aggregates. Intermolecular distance of astaxanthin aggregates ranges from 0.45 nm to 0.9 nm. Fluorescence analysis showed that between subbands, strong exciton coupling induced rapid relaxation of H-aggregates. This coupling generated larger Stokes shift than monomers and J-aggregates.

  20. Mechanism of Small Current Generation under Impulse Voltage Applications in Vacuum

    NASA Astrophysics Data System (ADS)

    Aoki, Keita; Yasukawa, Hideaki; Kojima, Hiroki; Homma, Mitsutaka; Shioiri, Tetsu; Okubo, Hitoshi

    Small discharge not to accompany breakdown can occur under high electric field in vacuum, however the mechanism is not well clarified. We have found that the current of small discharge decreases with repeated voltage applications, and leads to electrode conditioning effect of raising withstand voltage. The inception of the current is delayed with the decrease of current, and the inception time and waveform change by gap length. On the other hand, under low vacuum condition, the current increases and reaches saturation with repeated voltage applications. From these discussions, we concluded that the generating process of small current depended on the adsorption and absorption gas of electrodes.

  1. An LJ Round Table with the Aggregators.

    ERIC Educational Resources Information Center

    Albanese, Andrew Richard

    2002-01-01

    Discusses the growing trend in aggregated article databases and includes individual views from a panel discussion. Highlights include publisher's embargoes of current content; views of academic libraries and of vendors; full-text issues; the Tasini v. New York Times Supreme Court case; consortial buying; and future possibilities. (LRW)

  2. Generation of field-aligned currents and Alfven waves by 3D magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Z.W.; Lee, L.C.; Otto, A.

    1995-07-01

    The authors have carried out a three-dimensional compressible MHD simulation to study the generation of field-aligned currents (FAC`s) and Alfven waves by magnetic reconnection for locally antiparallel magnetic fields across the current sheet. Reconnection is triggered by a localized resistivity. The results indicate that both FAC`s and Alfven waves are generated by the three-dimensional reconnection process. Two pairs of FAC`s are generated on each side of current sheet. The polarities of the resulting FAC pair in the leading bulge region are opposite to those of a FAC pair in the trailing quasi-steady region. It is further found that a largemore » portion of the FAC`s ({approximately}40%) is located in the closed field line region. They examine the Walen relation between FAC and parallel vorticity and find that Alfven waves are generated and propagate away from the reconnection site. They discuss the relevance of the results to the observed Region 1 FAC`s at noon. 15 refs., 4 figs.« less

  3. Integration of Vibrio vulnificus into Marine Aggregates and Its Subsequent Uptake by Crassostrea virginica Oysters

    PubMed Central

    Froelich, Brett; Ayrapetyan, Mesrop

    2013-01-01

    Marine aggregates are naturally forming conglomerations of larvacean houses, phytoplankton, microbes, and inorganics adhered together by exocellular polymers. In this study, we show in vitro that the bacterial pathogen Vibrio vulnificus can be concentrated into laboratory-generated aggregates from surrounding water. We further show that environmental (E-genotype) strains exhibit significantly more integration into these aggregates than clinical (C-genotype) strains. Experiments where marine aggregates with attached V. vulnificus cells were fed to oysters (Crassostrea virginica) resulted in greater uptake of both C and E types than nonaggregated controls. When C- and E-genotype strains were cocultured in competitive experiments, the aggregated E-genotype strains exhibited significantly greater uptake by oyster than the C-genotype strains. PMID:23263962

  4. Long-term micro-Deval durability of andesite aggregate

    NASA Astrophysics Data System (ADS)

    Czinder, Balázs; Török, Ákos

    2017-04-01

    Micro-Deval tests have been intensively used for analysing aggregate durability. The tests procedure described in details in the European Norm (EN 1097-1:2011). The current research intends to evaluate the long term durability of andesite aggregate by using extended micro-Deval tests. Andesite aggregate from Recsk (Hungary) was used for the tests. The tested andesite is a massive porphyritic biotite amphibol andesite that was formed during Eocene volcanism and forms a part of Mátra Mountains volcanic complex in NE Hungary. The aggregates were crushed and screened. Size fractions of 10.0/14.0 mm representing minimum and maximum grain sizes were used in the tests. 500 g of aggregate specimens were loaded in the steel drum and 2500 ml of water was added besides the 5000 g of steel balls into the device. The steel balls have a diameter of 10 mm according to EN. The test material - in the first stage - was subjected to 12,000 revolutions in the drum. This number is suggested by the EN. The micro-Deval coefficient was calculated after this first stage. Further wear of the andesitic material was tested by using additional revolutions. The increase in revolutions of the drum was in 12,000 rotation steps, reached 48,000 revolutions as a maximum. The tests were aimed to model the wear of aggregate on a longer term. It was also used to assess the durability of the aggregate when it is applied in engineering structures. The micro-Deval test results suggest that additional revolutions caused additional loss in material, i.e. increase in micro-Deval coefficient. A correlation is suggested between the revolution and andesite wear.

  5. [27- Hydroxycholesterol reverses estradiol induced inhibition of platelet aggregation in postmenopausal women].

    PubMed

    Rocha, Gladys; Sierralta, Walter; Valladares, Luis

    2016-11-01

    The decline of estrogen levels increases cardiovascular risk in women. Platelets express estrogen receptors and 17β-estradiol- (E2) can produce a protective effect on thrombus formation. The hydroxylation of cholesterol generates several sterols and 27-hydroxycholesterol (27HC) predominates in circulation. To evaluate the effect of 27HC as an endogenous antagonist of the anti-aggregating properties of E2 in platelets of postmenopausal women. Platelet function of postmenopausal women was evaluated ex-vivo. Platelets pre-incubated with 27HC in the presence or absence of E2, were stimulated with collagen. Aggregation was evaluated using turbidimetry using a Chrono-log aggregometer. Collagen-stimulated platelet aggregation was significantly inhibited by E2. The inhibitory effect of E2 on collagen-stimulated platelet aggregation was significantly reversed in the presence of 27HC. The suppressive effect of E2 on platelet aggregation is inhibited by 27HC, which could contribute to increase cardiovascular risk in postmenopausal women.

  6. Micro-Deval coarse aggregate test evaluation : final report.

    DOT National Transportation Integrated Search

    2001-05-01

    Studded tire use in Oregon results in millions of dollars of pavement damage annually. Accurate tests are needed to qualify durable aggregate for pavements to resist studded tire damage. ODOT currently uses the Los Angeles abrasion test as one of the...

  7. Effect of temperature tuning on the aerosol acoustic aggregation process.

    PubMed

    Qiao, Zhenghui; Dong, Wei; Huang, Yaji; Naso, Vincenzo

    2018-05-01

    Diesel exhaust aerosols (DEAs) can absorb and accumulate toxic metal particulates and bacteria suspended in the atmospheric environment, which impact human health and the environment. The use of acoustic standing waves (ASWs) to aggregate DEA is currently considered to be an efficient particle removal method; however, study of the effect of different temperatures on the acoustic aggregation process is scarce. To explore the method and technology to regulate and optimize the aerosol aggregation process through temperature tuning, an acoustic apparatus integrated with a temperature regulation function was constructed. Using this apparatus, the effect of different characteristic temperatures (CTs) on the aerosol aggregation process was investigated experimentally in the ASW environment. Under constant conditions of acoustic frequency 1.286kHz, voltage amplitude 17V and input electric power 16.7W, the study concentrated on temperature effects on the aggregation process in the CT range of 58-72°C. The DEA opacity was used. The results demonstrate that the aggregation process is quite sensitive to the CT, and that the optimal DEA aggregation can be achieved at 66°C. The aggregated particles of 68.17μm are composed of small nanoparticles of 13.34-62.15nm. At CTs higher and lower than 66°C, the apparatus in non-resonance mode reduces the DEA aggregation level. For other instruments, the method for obtaining the optimum temperature for acoustic agglomeration is universal. This preliminary demonstration shows that the use of acoustic technology to regulate the aerosol aggregation process through tuning the operating temperature is feasible and convenient. Copyright © 2017. Published by Elsevier B.V.

  8. Generation of electric fields and currents by neutral flows in weakly ionized plasmas through collisional dynamos

    NASA Astrophysics Data System (ADS)

    Dimant, Y. S.; Oppenheim, M. M.; Fletcher, A. C.

    2016-08-01

    In weakly ionized plasmas neutral flows drag plasma across magnetic field lines generating intense electric fields and currents. An example occurs in the Earth's ionosphere near the geomagnetic equator. Similar processes take place in the Solar chromosphere and magnetohydrodynamic generators. This paper argues that not all convective neutral flows generate electric fields and currents and it introduces the corresponding universal criterion for their formation, ∇×(U ×B )≠∂B /∂t , where U is the neutral flow velocity, B is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σ ̂ . For many systems, the displacement current, ∂B /∂t , is negligible making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates E-fields and currents plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law.

  9. Fatigue reduction during aggregated and distributed sequential stimulation.

    PubMed

    Bergquist, Austin J; Babbar, Vishvek; Ali, Saima; Popovic, Milos R; Masani, Kei

    2017-08-01

    Transcutaneous neuromuscular electrical stimulation (NMES) can generate muscle contractions for rehabilitation and exercise. However, NMES-evoked contractions are limited by fatigue when they are delivered "conventionally" (CONV) using a single active electrode. Researchers have developed "sequential" (SEQ) stimulation, involving rotation of pulses between multiple "aggregated" (AGGR-SEQ) or "distributed" (DISTR-SEQ) active electrodes, to reduce fatigue (torque-decline) by reducing motor unit discharge rates. The primary objective was to compare fatigue-related outcomes, "potentiation," "variability," and "efficiency" between CONV, AGGR-SEQ, and DISTR-SEQ stimulation of knee extensors in healthy participants. Torque and current were recorded during testing with fatiguing trains using each NMES type under isometric and isokinetic (180°/s) conditions. Compared with CONV stimulation, SEQ techniques reduced fatigue-related outcomes, increased potentiation, did not affect variability, and reduced efficiency. SEQ techniques hold promise for reducing fatigue during NMES-based rehabilitation and exercise; however, optimization is required to improve efficiency. Muscle Nerve 56: 271-281, 2017. © 2016 Wiley Periodicals, Inc.

  10. Non-Arrhenius protein aggregation.

    PubMed

    Wang, Wei; Roberts, Christopher J

    2013-07-01

    Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.

  11. Parallel stochastic simulation of macroscopic calcium currents.

    PubMed

    González-Vélez, Virginia; González-Vélez, Horacio

    2007-06-01

    This work introduces MACACO, a macroscopic calcium currents simulator. It provides a parameter-sweep framework which computes macroscopic Ca(2+) currents from the individual aggregation of unitary currents, using a stochastic model for L-type Ca(2+) channels. MACACO uses a simplified 3-state Markov model to simulate the response of each Ca(2+) channel to different voltage inputs to the cell. In order to provide an accurate systematic view for the stochastic nature of the calcium channels, MACACO is composed of an experiment generator, a central simulation engine and a post-processing script component. Due to the computational complexity of the problem and the dimensions of the parameter space, the MACACO simulation engine employs a grid-enabled task farm. Having been designed as a computational biology tool, MACACO heavily borrows from the way cell physiologists conduct and report their experimental work.

  12. Control of binder viscosity and hygroscopicity on particle aggregation efficiency

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Delmelle, Pierre; Dingwell, Donald B.

    2016-04-01

    In the course of explosive volcanic eruptions, large amounts of ash are released into the atmosphere and may subsequently pose a threat to infrastructure, such as aviation industry. Ash plume forecasting is therefore a crucial tool for volcanic hazard mitigation but may be significantly affected by aggregation, altering the aerodynamic properties of particles. Models struggle with the implementation of aggregation since external conditions promoting aggregation have not been completely understood; in a previous study we have shown the rapid generation of ash aggregates through liquid bonding via the use of fluidization bed technology and further defined humidity and temperature ranges necessary to trigger aggregation. Salt (NaCl) was required for the recovery of stable aggregates, acting as a cementation agent and granting aggregate cohesion. A numerical model was used to explain the physics behind particle aggregation mechanisms and further predicted a dependency of aggregation efficiency on liquid binder viscosity. In this study we proof the effect of viscosity on particle aggregation. HCl and H2SO4 solutions were diluted to various concentrations resulting in viscosities between 1 and 2 mPas. Phonolitic and rhyolitic ash samples as well as soda-lime glass beads (serving as analogue material) were fluidized in the ProCell Lab® of Glatt Ingenieurtechnik GmbH and treated with the acids via a bottom-spray technique. Chemically driven interaction between acid liquids and surfaces of the three used materials led to crystal precipitation. Salt crystals (e.g. NaCl) have been confirmed through scanning electron microscopy (SEM) and leachate analysis. Both volcanic ash samples as well as the glass beads showed a clear dependency of aggregation efficiency on viscosity of the sprayed HCl solution. Spraying H2SO4 provoked a collapse of the fluidized bed and no aggregation has been observed. This is accounted by the high hygroscopicity of H2SO4. Dissolving CaCl2 (known to be

  13. Interactions between commercial fishing and walleye pollock aggregations

    NASA Astrophysics Data System (ADS)

    Stienessen, Sarah; Wilson, Chris D.; Hallowed, Anne B.

    2002-05-01

    Scientists with the Alaska Fisheries Science Center are conducting a multiyear field experiment off the eastern side of Kodiak Island in the Gulf of Alaska to determine whether commercial fishing activities significantly affect the distribution and abundance of walleye pollock (Theragra chalcogramma), an important prey species of endangered Steller sea lions (Eumetopias jubatus). In support of this activity, spatio-temporal patterns were described for pollock aggregations. Acoustic-trawl surveys were conducted in two adjacent submarine troughs in August 2001. One trough served as a control site where fishing was prohibited and the other as a treatment site where fishing was allowed. Software, which included patch recognition algorithms, was used to extract acoustic data and generate patch size and shape-related variables to analyze fish aggregations. Important patch related descriptors included skewness, kurtosis, length, height, and density. Estimates of patch fractal dimensions, which relate school perimeter to school area, were less for juvenile than for adult aggregations, indicating a more complex school shape for adults. Comparisons of other patch descriptors were made between troughs and in the presence and absence of the fishery to determine whether trends in pollock aggregation dynamics were a result of the fishery or of naturally occurring events.

  14. Modeling the reversible kinetics of neutrophil aggregation under hydrodynamic shear.

    PubMed Central

    Neelamegham, S; Taylor, A D; Hellums, J D; Dembo, M; Smith, C W; Simon, S I

    1997-01-01

    Neutrophil emigration into inflamed tissue is mediated by beta 2-integrin and L-selectin adhesion receptors. Homotypic neutrophil aggregation is also dependent on these molecules, and it provides a model system in which to study adhesion dynamics. In the current study we formulated a mathematical model for cellular aggregation in a linear shear field based on Smoluchowski's two-body collision theory. Neutrophil suspensions activated with chemotactic stimulus and sheared in a cone-plate viscometer rapidly aggregate. Over a range of shear rates (400-800 s-1), approximately 90% of the single cells were recruited into aggregates ranging from doublets to groupings larger than sextuplets. The adhesion efficiency fit to these kinetics reached maximum levels of > 70%. Formed aggregates remained intact and resistant to shear up to 120 s, at which time they spontaneously dissociated back to singlets. The rate of cell disaggregation was linearly proportional to the applied shear rate, and it was approximately 60% lower for doublets as compared to larger aggregates. By accounting for the time-dependent changes in adhesion efficiency, disaggregation rate, and the effects of aggregate geometry, we succeeded in predicting the reversible kinetics of aggregation over a wide range of shear rates and cell concentrations. The combination of viscometry with flow cytometry and mathematical analysis as presented here represents a novel approach to differentiating between the effects of hydrodynamics and the intrinsic biological processes that control cell adhesion. Images FIGURE 3 FIGURE 5 PMID:9083659

  15. Fractality à la carte: a general particle aggregation model.

    PubMed

    Nicolás-Carlock, J R; Carrillo-Estrada, J L; Dossetti, V

    2016-01-19

    In nature, fractal structures emerge in a wide variety of systems as a local optimization of entropic and energetic distributions. The fractality of these systems determines many of their physical, chemical and/or biological properties. Thus, to comprehend the mechanisms that originate and control the fractality is highly relevant in many areas of science and technology. In studying clusters grown by aggregation phenomena, simple models have contributed to unveil some of the basic elements that give origin to fractality, however, the specific contribution from each of these elements to fractality has remained hidden in the complex dynamics. Here, we propose a simple and versatile model of particle aggregation that is, on the one hand, able to reveal the specific entropic and energetic contributions to the clusters' fractality and morphology, and, on the other, capable to generate an ample assortment of rich natural-looking aggregates with any prescribed fractal dimension.

  16. Effect of aggregate graining compositions on skid resistance of Exposed Aggregate Concrete pavement

    NASA Astrophysics Data System (ADS)

    Wasilewska, Marta; Gardziejczyk, Wladysław; Gierasimiuk, Pawel

    2018-05-01

    The paper presents the evaluation of skid resistance of EAC (Exposed Aggregate Concrete) pavements which differ in aggregate graining compositions. The tests were carried out on concrete mixes with a maximum aggregate size of 8 mm. Three types of coarse aggregates were selected depending on their resistance to polishing which was determined on the basis of the PSV (Polished Stone Value). Basalt (PSV 48), gabbro (PSV 50) and trachybasalt (PSV 52) aggregates were chosen. For each type of aggregate three graining compositions were designed, which differed in the content of coarse aggregate > 4mm. Their content for each series was as follows: A - 38%, B - 50% and C - 68%. Evaluation of the skid resistance has been performed using the FAP (Friction After Polishing) test equipment also known as the Wehner/Schulze machine. Laboratory method enables to compare the skid resistance of different types of wearing course under specified conditions simulating polishing processes. In addition, macrotexture measurements were made on the surface of each specimen using the Elatexure laser profile. Analysis of variance showed that at significance level α = 0.05, aggregate graining compositions as well as the PSV have a significant influence on the obtained values of the friction coefficient μm of the tested EAC pavements. The highest values of the μm have been obtained for EAC with the lowest amount of coarse aggregates (compositions A). In these cases the resistance to polishing of the aggregate does not significantly affect the friction coefficients. This is related to the large areas of cement mortar between the exposed coarse grains. Based on the analysis of microscope images, it was observed that the coarse aggregates were not sufficiently exposed. It has been proved that PSV significantly affected the coefficient of friction in the case of compositions B and C. This is caused by large areas of exposed coarse aggregate. The best parameters were achieved for the EAC pavements

  17. Evaluation of Canadian unconfined aggregate freeze-thaw tests for identifying nondurable aggregates.

    DOT National Transportation Integrated Search

    2012-06-01

    Concrete is the most widely used material in construction. Aggregates contribute 60% to 75% of the total volume : of concrete. The aggregates play a key role in concrete durability. The U.S. Midwest has many aggregates that can : show distress in the...

  18. Are hot charge transfer states the primary cause of efficient free-charge generation in polymer:fullerene organic photovoltaic devices? A kinetic Monte Carlo study.

    PubMed

    Jones, Matthew L; Dyer, Reesha; Clarke, Nigel; Groves, Chris

    2014-10-14

    Kinetic Monte Carlo simulations are used to examine the effect of high-energy, 'hot' delocalised charge transfer (HCT) states for donor:acceptor and mixed:aggregate blends, the latter relating to polymer:fullerene photovoltaic devices. Increased fullerene aggregation is shown to enhance charge generation and short-circuit device current - largely due to the increased production of HCT states at the aggregate interface. However, the instances where HCT states are predicted to give internal quantum efficiencies in the region of 50% do not correspond to HCT delocalisation or electron mobility measured in experiments. These data therefore suggest that HCT states are not the primary cause of high quantum efficiencies in some polymer:fullerene OPVs. Instead it is argued that HCT states are responsible for the fast charge generation seen in spectroscopy, but that regional variation in energy levels are the cause of long-term, efficient free-charge generation.

  19. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels.

    PubMed

    Boland, Thomas; Mironov, Vladimir; Gutowska, Anna; Roth, Elisabeth A; Markwald, Roger R

    2003-06-01

    We recently developed a cell printer (Wilson and Boland, 2003) that enables us to place cells in positions that mimic their respective positions in organs. However, this technology was limited to the printing of two-dimensional (2D) tissue constructs. Here we describe the use of thermosensitive gels to generate sequential layers for cell printing. The ability to drop cells on previously printed successive layers provides a real opportunity for the realization of three-dimensional (3D) organ printing. Organ printing will allow us to print complex 3D organs with computer-controlled, exact placing of different cell types, by a process that can be completed in several minutes. To demonstrate the feasibility of this novel technology, we showed that cell aggregates can be placed in the sequential layers of 3D gels close enough for fusion to occur. We estimated the optimum minimal thickness of the gel that can be reproducibly generated by dropping the liquid at room temperature onto a heated substrate. Then we generated cell aggregates with the corresponding (to the minimal thickness of the gel) size to ensure a direct contact between printed cell aggregates during sequential printing cycles. Finally, we demonstrated that these closely-placed cell aggregates could fuse in two types of thermosensitive 3D gels. Taken together, these data strongly support the feasibility of the proposed novel organ-printing technology. Copyright 2003 Wiley-Liss, Inc.

  20. Amyloid-like aggregates formation by bovine apo-carbonic anhydrase in various alcohols: A comparative study.

    PubMed

    Es-Haghi, Ali; Ebrahim-Habibi, Azadeh; Sabbaghian, Marjan; Nemat-Gorgani, Mohsen

    2016-11-01

    Peptides and proteins convert from their native states to amyloid fibrillar aggregates in a number of pathological conditions. Characterizing these species could provide useful information on their pathogenicity and the key factors involved in their generation. In this study, we have observed the ability of the model protein apo-bovine carbonic anhydrase (apo-BCA) to form amyloid-like aggregates in the presence of halogenated and non-halogenated alcohols. Far-UV circular dichroism, ThT fluorescence, atomic force microscopy and dynamic light scattering were used to characterize these structures. The concentration required for effective protein aggregation varied between the solvents, with non-halogenated alcohols acting in a wider range. These aggregates show amyloid-like structures as determined by specific techniques used for characterizing amyloid structures. Oligomers were obtained with various size distributions, but fibrillar structures were not observed. Use of halogenated alcohols resulted into smaller hydrodynamic radii, and most stable oligomers were formed in hexafluoropropan-2-ol (HFIP). At optimal concentrations used to generate these structures, the non-halogenated alcohols showed higher hydrophobicity, which may be related to the lower stability of the generated oligomers. These oligomers have the potential to be used as models in the search for effective treatments in proteinopathies. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Recycled Coarse Aggregate Produced by Pulsed Discharge in Water

    NASA Astrophysics Data System (ADS)

    Namihira, Takao; Shigeishi, Mitsuhiro; Nakashima, Kazuyuki; Murakami, Akira; Kuroki, Kaori; Kiyan, Tsuyoshi; Tomoda, Yuichi; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori; Ohtsu, Masayasu

    In Japan, the recycling ratio of concrete scraps has been kept over 98 % after the Law for the Recycling of Construction Materials was enforced in 2000. In the present, most of concrete scraps were recycled as the Lower Subbase Course Material. On the other hand, it is predicted to be difficult to keep this higher recycling ratio in the near future because concrete scraps increase rapidly and would reach to over 3 times of present situation in 2010. In addition, the demand of concrete scraps as the Lower Subbase Course Material has been decreased. Therefore, new way to reuse concrete scraps must be developed. Concrete scraps normally consist of 70 % of coarse aggregate, 19 % of water and 11 % of cement. To obtain the higher recycling ratio, the higher recycling ratio of coarse aggregate is desired. In this paper, a new method for recycling coarse aggregate from concrete scraps has been developed and demonstrated. The system includes a Marx generator and a point to hemisphere mesh electrode immersed in water. In the demonstration, the test piece of concrete scrap was located between the electrodes and was treated by the pulsed discharge. After discharge treatment of test piece, the recycling coarse aggregates were evaluated under JIS and TS and had enough quality for utilization as the coarse aggregate.

  2. Theoretical analysis of shock induced depolarization and current generation in ferroelectrics

    NASA Astrophysics Data System (ADS)

    Agrawal, Vinamra; Bhattacharya, Kaushik

    Ferroelectric generators are used to generate large magnitude current pulse by impacting a polarized ferroelectric material. The impact causes depolarization of the material and at high impact speeds, dielectric breakdown. Depending on the loading conditions and the electromechanical boundary conditions, the current or voltage profiles obtained vary. In this study, we explore the large deformation dynamic response of a ferroelectric material. Using the Maxwell's equations, conservation laws and the second law of thermodynamics, we derive the governing equations for the phase boundary propagation as well as the driving force acting on it. We allow for the phase boundary to contain surface charges which introduces the contribution of curvature of phase boundary in the governing equations and the driving force. This type of analysis accounts for the dielectric breakdown and resulting conduction in the material. Next, we implement the equations derived to solve a one dimensional impact problem on a ferroelectric material under different electrical boundary conditions. The constitutive law is chosen to be piecewise quadratic in polarization and quadratic in the strain. We solve for the current profile generated in short circuit case and for voltage profile in open circuited case. This work was made possible by the financial support of the US Air Force Office of Scientific Research through the Center of Excellence in High Rate Deformation Physics of Heterogeneous Materials (Grant: FA 9550-12-1-0091).

  3. Amyloid-beta aggregation: selective inhibition of aggregation in mixtures of amyloid with different chain lengths.

    PubMed Central

    Snyder, S W; Ladror, U S; Wade, W S; Wang, G T; Barrett, L W; Matayoshi, E D; Huffaker, H J; Krafft, G A; Holzman, T F

    1994-01-01

    One of the clinical manifestations of Alzheimer's disease is the deposition of the 39-43 residue amyloid-beta (A beta) peptide in aggregated fibrils in senile plaques. Characterization of the aggregation behavior of A beta is one of the critical issues in understanding the role of A beta in the disease process. Using solution hydrodynamics, A beta was observed to form three types of species in phosphate-buffered saline: insoluble aggregates with sedimentation coefficients of approximately 50,000 S and molecular masses of approximately 10(9) Da, "soluble aggregates" with sedimentation coefficients of approximately 30 S and masses of approximately 10(6) Da, and monomer. When starting from monomer, the aggregation kinetics of A beta 1-40 (A beta 40) and A beta 1-42 (A beta 42), alone and in combination, reveal large differences in the tendency of these peptides to aggregate as a function of pH and other solution conditions. At pH 4.1 and 7.0-7.4, aggregation is significantly slower than at pH 5 and 6. Under all conditions, aggregation of the longer A beta 42 was more rapid than A beta 40. Oxidation of Met-35 to the sulfoxide in A beta 40 enhances the aggregation rate over that of the nonoxidized peptide. Aggregation was found to be dependent upon temperature and to be strongly dependent on peptide concentration and ionic strength, indicating that aggregation is driven by a hydrophobic effect. When A beta 40 and A beta 42 are mixed together, A beta 40 retards the aggregation of A beta 42 in a concentration-dependent manner. Shorter fragments have a decreasing ability to interfere with A beta 42 aggregation. Conversely, the rate of aggregation of A beta 40 can be significantly enhanced by seeding slow aggregating solutions with preformed aggregates of A beta 42. Taken together, the inhibition of A beta 42 aggregation by A beta 40, the seeding of A beta 40 aggregation by A beta 42 aggregates, and the chemical oxidation of A beta 40 suggest that the relative abundance and

  4. Alfvenic Generation of Field-Aligned Currents and Displacement Currents in the M-I Coupling System and the Formation of Discrete Auroral Arcs

    NASA Astrophysics Data System (ADS)

    Song, Y.; Lysak, R. L.

    2016-12-01

    In previous theories (e.g., Hasegawa and Sato, 1979; Sato and Iijima, 1979; Vasyliunas, 1984), field-aligned current (FAC) generation is derived from current continuity assumption plus the force balance between the Lorentz force and other forces in the MHD momentum equation. These theories suggest that the FAC is generated by other forces, such as the inertia and/or pressure gradients. In fact, the FAC cannot be generated by these forces. From Maxwell's equations, FAC generation is associated with enhanced sheared magnetic fields and free magnetic energy where a dynamo action and Alfven waves are needed to generate and transport free magnetic energy. It is obvious that the mechanism of FAC generation cannot be given by analyzing a local force balance. We propose that FACs are generated by Alfvenic interactions in the M-I coupling driven system. From a full set of the dynamical equations, we have found that the generation of the total FAC (J||total ) is associated with spatial gradients of the parallel vorticity, where J||total=J||+J||D, and J||D=(1/4∏)(∂E||/∂t) is the displacement current, which describes E|| generation (Song and Lysak, 2006). The J||total generation is a dynamo process associated with the increase of the azimuthal magnetic flux caused by the axial torque acting on FAC flux tubes. Although the magnitude of the J||D is often very small relative to J||, neglecting this term, we cannot find the mechanism of the E|| generation. When the plasma density is low J||D becomes important relative to the current. We will demonstrate how the generation of E|| and the formation of auroral arcs can redistribute perpendicular mechanical and magnetic stresses which can cause a sudden and violent tail energy release and enhance the total FAC leading to the substorm auroral poleward expansion. We will also show how the nonlinear interaction of incident and reflected Alfven wave packets in the auroral acceleration region can produce quasi-stationary non

  5. System and method for generating current by selective electron heating

    DOEpatents

    Fisch, Nathaniel J.; Boozer, Allen H.

    1984-01-01

    A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of high-frequency waves into the plasma by means of waveguides. The wave frequency and polarization are chosen such that when the waveguides are tilted in a predetermined fashion, the wave energy is absorbed preferentially by electrons traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

  6. On the radiative properties of soot aggregates - Part 2: Effects of coating

    NASA Astrophysics Data System (ADS)

    Liu, Fengshan; Yon, Jérôme; Bescond, Alexandre

    2016-03-01

    The effects of weakly absorbing material coating on soot have attracted considerable research attention in recent years due to the significant influence of such coating on soot radiative properties and the large differences predicted by different numerical models. Soot aggregates were first numerically generated using the diffusion limited cluster aggregation algorithm to produce fractal aggregates formed by log-normally distributed polydisperse spherical primary particles in point-touch. These aggregates were then processed by adding a certain amount of primary particle overlapping and necking to simulate the soot morphology observed from transmission electron microscopy images. After this process, a layer of WAM coating of different thicknesses was added to these more realistic soot aggregates. The radiative properties of these coated soot aggregates over the spectral range of 266-1064 nm were calculated by the discrete dipole approximation (DDA) using the spectrally dependent refractive index of soot for four aggregates containing Np=1, 20, 51 and 96 primary particles. The considered coating thicknesses range from 0% (no coating) up to 100% coating in terms of the primary particle diameter. Coating enhances both the particle absorption and scattering cross sections, with much stronger enhancement to the scattering one, as well as the asymmetry factor and the single scattering albedo. The absorption enhancement is stronger in the UV than in the visible and the near infrared. The simple corrections to the Rayleigh-Debye-Gans fractal aggregates theory for uncoated soot aggregates are found not working for coated soot aggregates. The core-shell model significantly overestimates the absorption enhancement by coating in the visible and the near infrared compared to the DDA results of the coated soot particle. Treating an externally coated soot aggregate as an aggregate formed by individually coated primary particles significantly underestimates the absorption

  7. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    NASA Astrophysics Data System (ADS)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond

  8. Interfacial waves generated by gravity currents in two-layer fluid.

    NASA Astrophysics Data System (ADS)

    O'Leary, A.; Parker, D.; Peakall, J.; Ross, A.; Knippertz, P.; Marsham, J.

    2012-04-01

    The mesoscale convective systems of the West African Monsoon have a huge energetic impact on the surrounding environment. Energy is radiated away from these systems by internal waves formed by the vigorous movements of air mass at their core, propagating over long range in the existence of a suitable waveguide. Gravity currents formed by convective downdrafts are an exceedlingly common phenomenon around the monsoon, covering significant distances on the continental scale. The initiation of solitary waves and bores by gravity currents incident on a marine or nocturnal inversion is well documented, the Morning Glory of Northern Australia being a well known and spectacular example. The interior of the African continent exhibits a further mechanism for the propagation of wave energy, with the environment of the Sahara often characterised by a deep convective boundary layer topped by a well mixed residual layer. This suggests a simple laboratory analogy for the idealised study of deep moist convection at the edge of the monsoon; that of a gravity current generated by lock release into a two layer fluid. This work looks specifically at the waves generated on the interface, especially with regard to their amplitude and propagation speed relative to the current. A series of simple experiments have been performed in the laboratory and combined with data from previous work. In addition to improving the basic dynamical understanding of the idealised problem the aim of these experiments is to examine whether there exist regions in the bulk parameter space in which waves are generated that are fast and of large amplitude. That is, were this an appropriate analog for the atmosphere, under which conditions are waves produced that would favour the initiation of subsequent convection? Ultimately this work aims to bring together research from fluid dynamics, field observations and numerical modelling to explore the phenomena of the convective environment of the Sahel. This

  9. Lobe-cleft instability in the buoyant gravity current generated by estuarine outflow

    NASA Astrophysics Data System (ADS)

    Horner-Devine, Alexander R.; Chickadel, C. Chris

    2017-05-01

    Gravity currents represent a broad class of geophysical flows including turbidity currents, powder avalanches, pyroclastic flows, sea breeze fronts, haboobs, and river plumes. A defining feature in many gravity currents is the formation of three-dimensional lobes and clefts along the front and researchers have sought to understand these ubiquitous geophysical structures for decades. The prevailing explanation is based largely on early laboratory and numerical model experiments at much smaller scales, which concluded that lobes and clefts are generated due to hydrostatic instability exclusively in currents propagating over a nonslip boundary. Recent studies suggest that frontal dynamics change as the flow scale increases, but no measurements have been made that sufficiently resolve the flow structure in full-scale geophysical flows. Here we use thermal infrared and acoustic imaging of a river plume to reveal the three-dimensional structure of lobes and clefts formed in a geophysical gravity current front. The observed lobes and clefts are generated at the front in the absence of a nonslip boundary, contradicting the prevailing explanation. The observed flow structure is consistent with an alternative formation mechanism, which predicts that the lobe scale is inherited from subsurface vortex structures.

  10. Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow.

    PubMed

    Bayliss, R A; Forest, C B; Nornberg, M D; Spence, E J; Terry, P W

    2007-02-01

    The role of turbulence in current generation and self-excitation of magnetic fields has been studied in the geometry of a mechanically driven, spherical dynamo experiment, using a three-dimensional numerical computation. A simple impeller model drives a flow that can generate a growing magnetic field, depending on the magnetic Reynolds number Rm=micro0sigmaVa and the fluid Reynolds number Re=Vanu of the flow. For Re<420, the flow is laminar and the dynamo transition is governed by a threshold of Rmcrit=100, above which a growing magnetic eigenmode is observed that is primarily a dipole field transverse to the axis of symmetry of the flow. In saturation, the Lorentz force slows the flow such that the magnetic eigenmode becomes marginally stable. For Re>420 and Rm approximately 100 the flow becomes turbulent and the dynamo eigenmode is suppressed. The mechanism of suppression is a combination of a time varying large-scale field and the presence of fluctuation driven currents (such as those predicted by the mean-field theory), which effectively enhance the magnetic diffusivity. For higher Rm, a dynamo reappears; however, the structure of the magnetic field is often different from the laminar dynamo. It is dominated by a dipolar magnetic field aligned with the axis of symmetry of the mean-flow, which is apparently generated by fluctuation-driven currents. The magnitude and structure of the fluctuation-driven currents have been studied by applying a weak, axisymmetric seed magnetic field to laminar and turbulent flows. An Ohm's law analysis of the axisymmetric currents allows the fluctuation-driven currents to be identified. The magnetic fields generated by the fluctuations are significant: a dipole moment aligned with the symmetry axis of the mean-flow is generated similar to those observed in the experiment, and both toroidal and poloidal flux expulsion are observed.

  11. Curcumin Attenuates Amyloid-β Aggregate Toxicity and Modulates Amyloid-β Aggregation Pathway.

    PubMed

    Thapa, Arjun; Jett, Stephen D; Chi, Eva Y

    2016-01-20

    The abnormal misfolding and aggregation of amyloid-β (Aβ) peptides into β-sheet enriched insoluble deposits initiates a cascade of events leading to pathological processes and culminating in cognitive decline in Alzheimer's disease (AD). In particular, soluble oligomeric/prefibrillar Aβ have been shown to be potent neurotoxins. The naturally occurring polyphenol curcumin has been shown to exert a neuroprotective effect against age-related neurodegenerative diseases such as AD. However, its protective mechanism remains unclear. In this study, we investigated the effects of curcumin on the aggregation of Aβ40 as well as Aβ40 aggregate induced neurotoxicity. Our results show that the curcumin does not inhibit Aβ fibril formation, but rather enriches the population of "off-pathway" soluble oligomers and prefibrillar aggregates that were nontoxic. Curcumin also exerted a nonspecific neuroprotective effect, reducing toxicities induced by a range of Aβ conformers, including monomeric, oligomeric, prefibrillar, and fibrillar Aβ. The neuroprotective effect is possibly membrane-mediated, as curcumin reduced the extent of cell membrane permeabilization induced by Aβ aggregates. Taken together, our study shows that curcumin exerts its neuroprotective effect against Aβ induced toxicity through at least two concerted pathways, modifying the Aβ aggregation pathway toward the formation of nontoxic aggregates and ameliorating Aβ-induced toxicity possibly through a nonspecific pathway.

  12. Computer Cataloging of Electronic Journals in Unstable Aggregator Databases: The Hong Kong Baptist University Library Experience.

    ERIC Educational Resources Information Center

    Li, Yiu-On; Leung, Shirley W.

    2001-01-01

    Discussion of aggregator databases focuses on a project at the Hong Kong Baptist University library to integrate full-text electronic journal titles from three unstable aggregator databases into its online public access catalog (OPAC). Explains the development of the electronic journal computer program (EJCOP) to generate MARC records for…

  13. Large-scale microfluidics providing high-resolution and high-throughput screening of Caenorhabditis elegans poly-glutamine aggregation model

    NASA Astrophysics Data System (ADS)

    Mondal, Sudip; Hegarty, Evan; Martin, Chris; Gökçe, Sertan Kutal; Ghorashian, Navid; Ben-Yakar, Adela

    2016-10-01

    Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ~4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ~100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ~1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.

  14. Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation.

    PubMed

    Kim, Kwon-Ho; Kumar, Brijesh; Lee, Keun Young; Park, Hyun-Kyu; Lee, Ju-Hyuck; Lee, Hyun Hwi; Jun, Hoin; Lee, Dongyun; Kim, Sang-Woo

    2013-01-01

    Direct current (DC) piezoelectric power generator is promising for the miniaturization of a power package and self-powering of nanorobots and body-implanted devices. Hence, we report the first use of two-dimensional (2D) zinc oxide (ZnO) nanostructure and an anionic nanoclay layer to generate piezoelectric DC output power. The device, made from 2D nanosheets and an anionic nanoclay layer heterojunction, has potential to be the smallest size power package, and could be used to charge wireless nano/micro scale systems without the use of rectifier circuits to convert alternating current into DC to store the generated power. The combined effect of buckling behaviour of the ZnO nanosheets, a self-formed anionic nanoclay layer, and coupled semiconducting and piezoelectric properties of ZnO nanosheets contributes to efficient DC power generation. The networked ZnO nanosheets proved to be structurally stable under huge external mechanical loads.

  15. In silico engineering of aggregation-prone recombinant proteins for substrate recognition by the chaperonin GroEL.

    PubMed

    Kumar, Vipul; Punetha, Ankita; Sundar, Durai; Chaudhuri, Tapan K

    2012-01-01

    Molecular chaperones appear to have been evolved to facilitate protein folding in the cell through entrapment of folding intermediates on the interior of a large cavity formed between GroEL and its co-chaperonin GroES. They bind newly synthesized or non-native polypeptides through hydrophobic interactions and prevent their aggregation. Some proteins do not interact with GroEL, hence even though they are aggregation prone, cannot be assisted by GroEL for their folding. In this study, we have attempted to engineer these non-substrate proteins to convert them as the substrate for GroEL, without compromising on their function. We have used a computational biology approach to generate mutants of the selected proteins by selectively mutating residues in the hydrophobic patch, similar to GroES mobile loop region that are responsible for interaction with GroEL, and compared with the wild counterparts for calculation of their instability and aggregation propensities. The energies of the newly designed mutants were computed through molecular dynamics simulations. We observed increased aggregation propensity of some of the mutants formed after replacing charged amino acid residues with hydrophobic ones in the well defined hydrophobic patch, raising the possibility of their binding ability to GroEL. The newly generated mutants may provide potential substrates for Chaperonin GroEL, which can be experimentally generated and tested for their tendency of aggregation, interactions with GroEL and the possibility of chaperone-assisted folding to produce functional proteins.

  16. Isolated terawatt attosecond hard X-ray pulse generated from single current spike.

    PubMed

    Shim, Chi Hyun; Parc, Yong Woon; Kumar, Sandeep; Ko, In Soo; Kim, Dong Eon

    2018-05-10

    Isolated terawatt (TW) attosecond (as) hard X-ray pulse is greatly desired for four-dimensional investigations of natural phenomena with picometer spatial and attosecond temporal resolutions. Since the demand for such sources is continuously increasing, the possibility of generating such pulse by a single current spike without the use of optical or electron delay units in an undulator line is addressed. The conditions of a current spike (width and height) and a modulation laser pulse (wavelength and power) is also discussed. We demonstrate that an isolated TW-level as a hard X-ray can be produced by a properly chosen single current spike in an electron bunch with simulation results. By using realistic specifications of an electron bunch of the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL), we show that an isolated, >1.0 TW and ~36 as X-ray pulse at 12.4 keV can be generated in an optimized-tapered undulator line. This result opens a new vista for current XFEL operation: the attosecond XFEL.

  17. Spike train generation and current-to-frequency conversion in silicon diodes

    NASA Technical Reports Server (NTRS)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A device physics model is developed to analyze spontaneous neuron-like spike train generation in current driven silicon p(+)-n-n(+) devices in cryogenic environments. The model is shown to explain the very high dynamic range (0 to the 7th) current-to-frequency conversion and experimental features of the spike train frequency as a function of input current. The devices are interesting components for implementation of parallel asynchronous processing adjacent to cryogenically cooled focal planes because of their extremely low current and power requirements, their electronic simplicity, and their pulse coding capability, and could be used to form the hardware basis for neural networks which employ biologically plausible means of information coding.

  18. Proteins aggregation and human diseases

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  19. Motionally-induced electromagnetic fields generated by idealized ocean currents

    NASA Astrophysics Data System (ADS)

    Tyler, R. H.; Mysak, L. A.

    Using the induction equation, we investigate the generation of electromagnetic fields by the motional electromagnetic induction due to ocean currents. In this paper, solutions are presented for a linear induction equation for the magnetic flux density vector which contains prescribed time-independent ocean current and conductivity fields. Once the magnetic flux density is known, the electric field and electric current density are easily obtained by differentiation. Solutions are given for several examples of idealized flow which include: 1) Vertically and horizontally sheared plane-parallel flow with depth-dependent conductivity; 2) A simple Stommel circulation gyre; and 3) Symmetric gyres. The results indicate that typical ocean current features induce magnetic fields with magnitudes reaching 100's of nT within the water and about 1-10 outside of the water. For the case of a field of gyres, the ocean-induced magnetic fields decay away from the ocean on spatial scales set by the horizontal scale of the ocean feature. At the altitudes of magnetic field satellite surveys, ocean-induced magnetic fields may retain values of a few nT, which are strong enough to be detected. Thus it is concluded that satellite observations of the earth's main magnetic field and, in particular, the observed temporal variations, could be affected by the ocean circulation. Summary and discussion In Section 3, we found exact solutions to the induction equation for idealized flows. The results gave magnitudes of about tens to hundreds of nT for the magnetic fields bH, about 10-5 V/m for the electric fields E, and about 10-5 A/m2 for the electric current density J induced by the ocean currents. These figures are in general agreement with the calculations of Lilley et al. (1993). In Section 4.2 we obtained solutions for the magnetic field above the ocean surface for the case of a Stommel gyre and a field of symmetric gyres. It was found in the last case that ocean gyres with a total transport

  20. Thermoregulation in larval aggregations of carrion-feeding blow flies (Diptera: Calliphoridae)

    USGS Publications Warehouse

    Slone, D.H.; Gruner, Susan V.

    2007-01-01

    The growth and development of carrion-feeding calliphorid (Diptera Calliphoridae) larvae, or maggots, is of great interest to forensic sciences, especially for estimation of a postmortem interval (PMI). The development rate of calliphorid larvae is influenced by the temperature of their immediate environment. Heat generation in larval feeding aggregations (=maggot masses) is a well-known phenomenon, but it has not been quantitatively described. Calculated development rates that do not include internally generated temperatures will result in overestimation of PMI. Over a period of 2.5 yr, 80 pig, Sus scrofa L., carcasses were placed out at study sites in north central Florida and northwestern Indiana. Once larval aggregations started to form, multiple internal and external temperatures, and weather observations were taken daily or every few days between 1400 and 1800 hours until pupation of the larvae. Volume of each aggregation was determined by measuring surface area and average depth. Live and preserved samples of larvae were taken for species identification. The four most common species collected were Lucilia coeruleiviridis (=Phaenicia) (Macquart) (77%), Cochliomyia macellaria (F.) (8.3%), Chrysomya rufifaces (Macquart) (7.7%), and Phormia regina (Meigen) (5.5%). Statistical analyses showed that 1) volume of a larval mass had a strong influence on its temperature, 2) internal temperatures of masses on the ground were influenced by soil temperature and mass volume, 3) internal temperatures of masses smaller than 20 cm3 were influenced by ambient air temperature and mass volume, and 4) masses larger than 20 cm3 on the carcass had strongly regulated internal temperatures determined only by the volume of the mass, with larger volumes associated with higher temperatures. Nonsignificant factors included presence of rain or clouds, shape of the aggregation, weight of the carcass, species composition of the aggregation, time since death, or season.

  1. Design of a Torque Current Generator for Strapdown Gyroscopes. Ph.D. Thesis; [and performance prediction

    NASA Technical Reports Server (NTRS)

    Mcknight, R. D.; Blalock, T. V.; Kennedy, E. J.

    1974-01-01

    The design, analysis, and experimental evaluation of an optimum performance torque current generator for use with strapdown gyroscopes, is presented. Among the criteria used to evaluate the design were the following: (1) steady-state accuracy; (2) margins of stability against self-oscillation; (3) temperature variations; (4) aging; (5) static errors drift errors, and transient errors, (6) classical frequency and time domain characteristics; and (7) the equivalent noise at the input of the comparater operational amplifier. The DC feedback loop of the torque current generator was approximated as a second-order system. Stability calculations for gain margins are discussed. Circuit diagrams are shown and block diagrams showing the implementation of the torque current generator are discussed.

  2. Effects of maximum aggregate size on UPV of brick aggregate concrete.

    PubMed

    Mohammed, Tarek Uddin; Mahmood, Aziz Hasan

    2016-07-01

    Investigation was carried out to study the effects of maximum aggregate size (MAS) (12.5mm, 19.0mm, 25.0mm, 37.5mm, and 50.0mm) on ultrasonic pulse velocity (UPV) of concrete. For investigation, first class bricks were collected and broken to make coarse aggregate. The aggregates were tested for specific gravity, absorption capacity, unit weight, and abrasion resistance. Cylindrical concrete specimens were made with different sand to aggregate volume ratio (s/a) (0.40 and 0.45), W/C ratio (0.45, 0.50, and 0.55), and cement content (375kg/m(3) and 400kg/m(3)). The specimens were tested for compressive strength and Young's modulus. UPV through wet specimen was measured using Portable Ultrasonic Non-destructive Digital Indicating Tester (PUNDIT). Results indicate that the pulse velocity through concrete increases with an increase in MAS. Relationships between UPV and compressive strength; and UPV and Young's modulus of concrete are proposed for different maximum sizes of brick aggregate. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Memantine inhibits β-amyloid aggregation and disassembles preformed β-amyloid aggregates.

    PubMed

    Takahashi-Ito, Kaori; Makino, Mitsuhiro; Okado, Keiko; Tomita, Taisuke

    2017-11-04

    Memantine, an uncompetitive glutamatergic N-methyl-d-aspartate (NMDA) receptor antagonist, is widely used as a medication for the treatment of Alzheimer's disease (AD). We previously reported that chronic treatment of AD with memantine reduces the amount of insoluble β-amyloid (Aβ) and soluble Aβ oligomers in animal models of AD. The mechanisms by which memantine reduces Aβ levels in the brain were evaluated by determining the effect of memantine on Aβ aggregation using thioflavin T and transmission electron microscopy. Memantine inhibited the formation of Aβ(1-42) aggregates in a concentration-dependent manner, whereas amantadine, a structurally similar compound, did not affect Aβ aggregation at the same concentrations. Furthermore, memantine inhibited the formation of different types of Aβ aggregates, including Aβs carrying familial AD mutations, and disaggregated preformed Aβ(1-42) fibrils. These results suggest that the inhibition of Aβ aggregation and induction of Aβ disaggregation may be involved in the mechanisms by which memantine reduces Aβ deposition in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. An approach for the estimation of the aggregated photovoltaic power generated in several European countries from meteorological data

    NASA Astrophysics Data System (ADS)

    Saint-Drenan, Yves-Marie; Wald, Lucien; Ranchin, Thierry; Dubus, Laurent; Troccoli, Alberto

    2018-05-01

    Classical approaches to the calculation of the photovoltaic (PV) power generated in a region from meteorological data require the knowledge of the detailed characteristics of the plants, which are most often not publicly available. An approach is proposed with the objective to obtain the best possible assessment of power generated in any region without having to collect detailed information on PV plants. The proposed approach is based on a model of PV plant coupled with a statistical distribution of the prominent characteristics of the configuration of the plant and is tested over Europe. The generated PV power is first calculated for each of the plant configurations frequently found in a given region and then aggregated taking into account the probability of occurrence of each configuration. A statistical distribution has been constructed from detailed information obtained for several thousands of PV plants representing approximately 2 % of the total number of PV plants in Germany and was then adapted to other European countries by taking into account changes in the optimal PV tilt angle as a function of the latitude and meteorological conditions. The model has been run with bias-adjusted ERA-interim data as meteorological inputs. The results have been compared to estimates of the total PV power generated in two countries: France and Germany, as provided by the corresponding transmission system operators. Relative RMSE of 4.2 and 3.8 % and relative biases of -2.4 and 0.1 % were found with three-hourly data for France and Germany. A validation against estimates of the country-wide PV-power generation provided by the ENTSO-E for 16 European countries has also been conducted. This evaluation is made difficult by the uncertainty on the installed capacity corresponding to the ENTSO-E data but it nevertheless allows demonstrating that the model output and TSO data are highly correlated in most countries. Given the simplicity of the proposed approach these results are

  5. Oil-Price Shocks: Beyond Standard Aggregate Demand/Aggregate Supply Analysis.

    ERIC Educational Resources Information Center

    Elwood, S. Kirk

    2001-01-01

    Explores the problems of portraying oil-price shocks using the aggregate demand/aggregate supply model. Presents a simple modification of the model that differentiates between production and absorption of goods, which enables it to better reflect the effects of oil-price shocks on open economies. (RLH)

  6. Metal concentrations in aggregate interiors, exteriors, whole aggregates, and bulk of Costa Rican soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcke, W.; Kretzschmar, S.; Bundt, M.

    1999-10-01

    In many temperate soils the preferential weathering and leaching of aggregate surfaces and the nonaggregated material between aggregates depletes geogenic metals. It also shifts metals from strongly to more weakly bound metal forms. Deposited metals are sorbed preferentially on aggregate surfaces and between aggregates. The authors examined whether preferential desilication under tropical climate causes an enrichment in the aggregate exteriors in oxidic forms of metals. They also studied where deposited metals are bound in these soils. Aggregates (2--20 mm) were selected manually from the A horizons of eight Oxisols, six Andisols, two Mollisols, and two Inceptisols in Costa Rica. Allmore » samples were fractionated into interior and exterior portions and treated with a seven-step sequence to extract Al, Cd, Cu, Fe, Mn, Pb, and Zn. Total concentrations of all metals except Zn were higher in the aggregate exteriors than in the interiors. The average Cd and Pb concentrations in easily extractable fractions were significantly higher in the aggregate exteriors. There were no significant differences in metal partitioning between interiors and exteriors except for Pb, which had higher proportions in extractable forms with NH{sub 2}OH {center{underscore}dot} HCl {gt} NH{sub 4} - acetate, pH 6.0 {gt} EDTA in the exteriors. There were few significant differences in metal concentrations and partitioning between bulk soil and whole aggregates. The results may be explained by (i) preferential desilication of the aggregate exteriors and (ii) preferential sorption of deposited heavy metals mainly in easily extractable forms.« less

  7. Aggregate driver model to enable predictable behaviour

    NASA Astrophysics Data System (ADS)

    Chowdhury, A.; Chakravarty, T.; Banerjee, T.; Balamuralidhar, P.

    2015-09-01

    The categorization of driving styles, particularly in terms of aggressiveness and skill is an emerging area of interest under the broader theme of intelligent transportation. There are two possible discriminatory techniques that can be applied for such categorization; a microscale (event based) model and a macro-scale (aggregate) model. It is believed that an aggregate model will reveal many interesting aspects of human-machine interaction; for example, we may be able to understand the propensities of individuals to carry out a given task over longer periods of time. A useful driver model may include the adaptive capability of the human driver, aggregated as the individual propensity to control speed/acceleration. Towards that objective, we carried out experiments by deploying smartphone based application to be used for data collection by a group of drivers. Data is primarily being collected from GPS measurements including position & speed on a second-by-second basis, for a number of trips over a two months period. Analysing the data set, aggregate models for individual drivers were created and their natural aggressiveness were deduced. In this paper, we present the initial results for 12 drivers. It is shown that the higher order moments of the acceleration profile is an important parameter and identifier of journey quality. It is also observed that the Kurtosis of the acceleration profiles stores major information about the driving styles. Such an observation leads to two different ranking systems based on acceleration data. Such driving behaviour models can be integrated with vehicle and road model and used to generate behavioural model for real traffic scenario.

  8. SOD1 aggregation in astrocytes following ischemia/reperfusion injury: a role of NO-mediated S-nitrosylation of protein disulfide isomerase (PDI).

    PubMed

    Chen, Xueping; Guan, Teng; Li, Chen; Shang, Huifang; Cui, Liying; Li, Xin-Min; Kong, Jiming

    2012-10-12

    Ubiquitinated-protein aggregates are implicated in cerebral ischemia/reperfusion injury. The very presence of these ubiquitinated-protein aggregates is abnormal and seems to be disease-related. However, it is not clear what leads to aggregate formation and whether the aggregations represent a reaction to aggregate-mediated neurodegeneration. To study the nitrosative stress-induced protein aggregation in cerebral ischemia/reperfusion injury, we used primary astrocyte cultures as a cell model, and systematically examined their iNOS expression and consequent NO generation following oxygen glucose deprivation and reperfusion. The expression of protein disulfide isomerase (PDI) and copper-zinc superoxide dismutase (SOD1) were also examined, and the biochemical interaction between PDI and SOD1 was determined by immunoprecipitation. In addition, the levels of S-nitrosylated PDI in cultured astrocytes after oxygen glucose deprivation and reperfusion treatment were measured using the biotin-switch assay. The formation of ubiquitinated-protein aggregates was detected by immunoblot and immunofluorescence staining. Our data showed that the up-regulation of iNOS expression after oxygen glucose deprivation and reperfusion treatment led to excessive NO generation. Up-regulation of PDI and SOD1 was also identified in cultured astrocytes following oxygen glucose deprivation and reperfusion, and these two proteins were found to bind to each other. Furthermore, the increased nitrosative stress due to ischemia/reperfusion injury was highly associated with NO-induced S-nitrosylation of PDI, and this S-nitrosylation of PDI was correlated with the formation of ubiquitinated-protein aggregates; the levels of S-nitrosylated PDI increased in parallel with the formation of aggregates. When NO generation was pharmacologically inhibited by iNOS specific inhibitor 1400W, S-nitrosylation of PDI was significantly blocked. In addition, the formation of ubiquitinated-protein aggregates in cultured

  9. Forecasting Pell Program Applications Using Structural Aggregate Models.

    ERIC Educational Resources Information Center

    Cavin, Edward S.

    1995-01-01

    Demand for Pell Grant financial aid has become difficult to predict when using the current microsimulation model. This paper proposes an alternative model that uses aggregate data (based on individuals' microlevel decisions and macrodata on family incomes, college costs, and opportunity wages) and avoids some limitations of simple linear models.…

  10. Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells

    PubMed Central

    Hu, Hua; Vervaeke, Koen; Storm, Johan F

    2002-01-01

    Coherent network oscillations in the brain are correlated with different behavioural states. Intrinsic resonance properties of neurons provide a basis for such oscillations. In the hippocampus, CA1 pyramidal neurons show resonance at theta (θ) frequencies (2-7 Hz). To study the mechanisms underlying θ-resonance, we performed whole-cell recordings from CA1 pyramidal cells (n = 73) in rat hippocampal slices. Oscillating current injections at different frequencies (ZAP protocol), revealed clear resonance with peak impedance at 2-5 Hz at ≈33 °C (increasing to ≈7 Hz at ≈38 °C). The θ-resonance showed a U-shaped voltage dependence, being strong at subthreshold, depolarized (≈-60 mV) and hyperpolarized (≈-80 mV) potentials, but weaker near the resting potential (-72 mV). Voltage clamp experiments revealed three non-inactivating currents operating in the subthresold voltage range: (1) M-current (IM), which activated positive to -65 mV and was blocked by the M/KCNQ channel blocker XE991 (10 μm); (2) h-current (Ih), which activated negative to -65 mV and was blocked by the h/HCN channel blocker ZD7288 (10 μm); and (3) a persistent Na+ current (INaP), which activated positive to -65 mV and was blocked by tetrodotoxin (TTX, 1 μm). In current clamp, XE991 or TTX suppressed the resonance at depolarized, but not hyperpolarized membrane potentials, whereas ZD7288 abolished the resonance only at hyperpolarized potentials. We conclude that these cells show two forms of θ-resonance: ‘M-resonance’ generated by the M-current and persistent Na+ current in depolarized cells, and ‘H-resonance’ generated by the h-current in hyperpolarized cells. Computer simulations supported this interpretation. These results suggest a novel function for M/KCNQ channels in the brain: to facilitate neuronal resonance and network oscillations in cortical neurons, thus providing a basis for an oscillation-based neural code. PMID:12482886

  11. Deposition or not? The fate of volcanic ash after aggregation processes

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Wadsworth, Fabian B.; Ayris, Paul M.; Casas, Ana S.; Cimarelli, Corrado; Ametsbichler, Jonathan; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B.

    2017-04-01

    In the course of explosive volcanic eruptions, large amounts of ash are released into the atmosphere and may subsequently pose a threat to infrastructure, such as aviation industry. Ash plume forecasting is therefore a crucial tool for volcanic hazard mitigation but may be significantly affected by aggregation, altering the aerodynamic properties of particles. Models struggle with the implementation of aggregation since external conditions promoting aggregation have not been completely understood; in a previous study we have shown the rapid generation of ash aggregates through liquid bonding via the use of fluidization bed technology and further defined humidity and temperature ranges necessary to trigger aggregation. Salt (NaCl) was required for the recovery of stable aggregates, acting as a cementation agent and granting aggregate cohesion. A numerical model was used to explain the physics behind particle aggregation mechanisms and further predicted a dependency of aggregation efficiency on liquid binder viscosity. In this study we proof the effect of viscosity on particle aggregation. HCl and H2SO4 solutions were diluted to various concentrations resulting in viscosities between 1 and 2 mPas. Phonolitic and rhyolitic ash samples as well as soda-lime glass beads (serving as analogue material) were fluidized in the ProCell Lab® of Glatt Ingenieurtechnik GmbH and treated with the acids via a bottom-spray technique. Chemically driven interaction between acid liquids and surfaces of the three used materials led to crystal precipitation. Salt crystals (e.g. NaCl) have been confirmed through scanning electron microscopy (SEM) and leachate analysis. Both volcanic ash samples as well as the glass beads showed a clear dependency of aggregation efficiency on viscosity of the sprayed HCl solution. Spraying H2SO4 provoked a collapse of the fluidized bed and no aggregation has been observed. This is accounted by the high hygroscopicity of H2SO4. Dissolving CaCl2 (known to be

  12. Automation of aggregate characterization using laser profiling and digital image analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungkwan

    2002-08-01

    Particle morphological properties such as size, shape, angularity, and texture are key properties that are frequently used to characterize aggregates. The characteristics of aggregates are crucial to the strength, durability, and serviceability of the structure in which they are used. Thus, it is important to select aggregates that have proper characteristics for each specific application. Use of improper aggregate can cause rapid deterioration or even failure of the structure. The current standard aggregate test methods are generally labor-intensive, time-consuming, and subject to human errors. Moreover, important properties of aggregates may not be captured by the standard methods due to a lack of an objective way of quantifying critical aggregate properties. Increased quality expectations of products along with recent technological advances in information technology are motivating new developments to provide fast and accurate aggregate characterization. The resulting information can enable a real time quality control of aggregate production as well as lead to better design and construction methods of portland cement concrete and hot mix asphalt. This dissertation presents a system to measure various morphological characteristics of construction aggregates effectively. Automatic measurement of various particle properties is of great interest because it has the potential to solve such problems in manual measurements as subjectivity, labor intensity, and slow speed. The main efforts of this research are placed on three-dimensional (3D) laser profiling, particle segmentation algorithms, particle measurement algorithms, and generalized particle descriptors. First, true 3D data of aggregate particles obtained by laser profiling are transformed into digital images. Second, a segmentation algorithm and a particle measurement algorithm are developed to separate particles and process each particle data individually with the aid of various kinds of digital image

  13. Mechanical Signature of Heat Generated in a Current-Driven Ferromagnetic Resonance System

    NASA Astrophysics Data System (ADS)

    Cho, Sung Un; Jo, Myunglae; Park, Seondo; Lee, Jae-Hyun; Yang, Chanuk; Kang, Seokwon; Park, Yun Daniel

    2017-07-01

    In a current-driven ferromagnetic resonance (FMR) system, heat generated by time-dependent magnetoresistance effects, caused by magnetization precession, cannot be overlooked. Here, we describe the generated heat by magnetization motion under electric current in a freestanding nanoelectromechanical resonator fashioned from a permalloy (Py )/Pt bilayer. By piezoresistive transduction of Pt, the mechanical mode is electrically detected at room temperature and the internal heat in Py excluding thermoelectric effects is quantified as a shift of the mechanical resonance. We find that the measured spectral shifts correspond to the FMR, which is further verified from the spin-torque FMR measurement. Furthermore, the angular dependence of the mechanical reaction on an applied magnetic field reveals that the full accounting of FMR heat dissipation requires the time-dependent magnetoresistance effect.

  14. High Aggregate Stability Coefficients Can Be Obtained for Unstable Traits.

    ERIC Educational Resources Information Center

    Day, H. D.; Marshall, Dave

    In the light of research by Epstein (1979) (which reported that error of measurement in the analysis of behavior stability may be reduced by examining the behavior of aggregate stability coefficients computed for measurements with known stability characteristics), this study examines stability coefficients for computer-generated data sets…

  15. Leaching assessment of concrete made of recycled coarse aggregate: physical and environmental characterisation of aggregates and hardened concrete.

    PubMed

    Galvín, A P; Agrela, F; Ayuso, J; Beltrán, M G; Barbudo, A

    2014-09-01

    Each year, millions of tonnes of waste are generated worldwide, partially through the construction and demolition of buildings. Recycling the resulting waste could reduce the amount of materials that need to be manufactured. Accordingly, the present work has analysed the potential reuse of construction waste in concrete manufacturing by replacing the natural aggregate with recycled concrete coarse aggregate. However, incorporating alternative materials in concrete manufacturing may increase the pollutant potential of the product, presenting an environmental risk via ground water contamination. The present work has tested two types of concrete batches that were manufactured with different replacement percentages. The experimental procedure analyses not only the effect of the portion of recycled aggregate on the physical properties of concrete but also on the leaching behaviour as indicative of the contamination degree. Thus, parameters such as slump, density, porosity and absorption of hardened concrete, were studied. Leaching behaviour was evaluated based on the availability test performed to three aggregates (raw materials of the concrete batches) and on the diffusion test performed to all concrete. From an environmental point of view, the question of whether the cumulative amount of heavy metals that are released by diffusion reaches the availability threshold was answered. The analysis of concentration levels allowed the establishment of different groups of metals according to the observed behaviour, the analysis of the role of pH and the identification of the main release mechanisms. Finally, through a statistical analysis, physical parameters and diffusion data were interrelated. It allowed estimating the relevance of porosity, density and absorption of hardened concrete on diffusion release of the metals in study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Aggregation of carbon dioxide sequestration storage assessment units

    USGS Publications Warehouse

    Blondes, Madalyn S.; Schuenemeyer, John H.; Olea, Ricardo A.; Drew, Lawrence J.

    2013-01-01

    The U.S. Geological Survey is currently conducting a national assessment of carbon dioxide (CO2) storage resources, mandated by the Energy Independence and Security Act of 2007. Pre-emission capture and storage of CO2 in subsurface saline formations is one potential method to reduce greenhouse gas emissions and the negative impact of global climate change. Like many large-scale resource assessments, the area under investigation is split into smaller, more manageable storage assessment units (SAUs), which must be aggregated with correctly propagated uncertainty to the basin, regional, and national scales. The aggregation methodology requires two types of data: marginal probability distributions of storage resource for each SAU, and a correlation matrix obtained by expert elicitation describing interdependencies between pairs of SAUs. Dependencies arise because geologic analogs, assessment methods, and assessors often overlap. The correlation matrix is used to induce rank correlation, using a Cholesky decomposition, among the empirical marginal distributions representing individually assessed SAUs. This manuscript presents a probabilistic aggregation method tailored to the correlations and dependencies inherent to a CO2 storage assessment. Aggregation results must be presented at the basin, regional, and national scales. A single stage approach, in which one large correlation matrix is defined and subsets are used for different scales, is compared to a multiple stage approach, in which new correlation matrices are created to aggregate intermediate results. Although the single-stage approach requires determination of significantly more correlation coefficients, it captures geologic dependencies among similar units in different basins and it is less sensitive to fluctuations in low correlation coefficients than the multiple stage approach. Thus, subsets of one single-stage correlation matrix are used to aggregate to basin, regional, and national scales.

  17. Mechanisms of Soil Aggregation: a biophysical modeling framework

    NASA Astrophysics Data System (ADS)

    Ghezzehei, T. A.; Or, D.

    2016-12-01

    Soil aggregation is one of the main crosscutting concepts in all sub-disciplines and applications of soil science from agriculture to climate regulation. The concept generally refers to adhesion of primary soil particles into distinct units that remain stable when subjected to disruptive forces. It is one of the most sensitive soil qualities that readily respond to disturbances such as cultivation, fire, drought, flooding, and changes in vegetation. These changes are commonly quantified and incorporated in soil models indirectly as alterations in carbon content and type, bulk density, aeration, permeability, as well as water retention characteristics. Soil aggregation that is primarily controlled by organic matter generally exhibits hierarchical organization of soil constituents into stable units that range in size from a few microns to centimeters. However, this conceptual model of soil aggregation as the key unifying mechanism remains poorly quantified and is rarely included in predictive soil models. Here we provide a biophysical framework for quantitative and predictive modeling of soil aggregation and its attendant soil characteristics. The framework treats aggregates as hotspots of biological, chemical and physical processes centered around roots and root residue. We keep track of the life cycle of an individual aggregate from it genesis in the rhizosphere, fueled by rhizodeposition and mediated by vigorous microbial activity, until its disappearance when the root-derived resources are depleted. The framework synthesizes current understanding of microbial life in porous media; water holding and soil binding capacity of biopolymers; and environmental controls on soil organic matter dynamics. The framework paves a way for integration of processes that are presently modeled as disparate or poorly coupled processes, including storage and protection of carbon, microbial activity, greenhouse gas fluxes, movement and storage of water, resistance of soils against

  18. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates.

    PubMed

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.

  19. Regulated aggregative multicellularity in a close unicellular relative of metazoa

    PubMed Central

    Sebé-Pedrós, Arnau; Irimia, Manuel; del Campo, Javier; Parra-Acero, Helena; Russ, Carsten; Nusbaum, Chad; Blencowe, Benjamin J; Ruiz-Trillo, Iñaki

    2013-01-01

    The evolution of metazoans from their unicellular ancestors was one of the most important events in the history of life. However, the cellular and genetic changes that ultimately led to the evolution of multicellularity are not known. In this study, we describe an aggregative multicellular stage in the protist Capsaspora owczarzaki, a close unicellular relative of metazoans. Remarkably, transition to the aggregative stage is associated with significant upregulation of orthologs of genes known to establish multicellularity and tissue architecture in metazoans. We further observe transitions in regulated alternative splicing during the C. owczarzaki life cycle, including the deployment of an exon network associated with signaling, a feature of splicing regulation so far only observed in metazoans. Our results reveal the existence of a highly regulated aggregative stage in C. owczarzaki and further suggest that features of aggregative behavior in an ancestral protist may had been co-opted to develop some multicellular properties currently seen in metazoans. DOI: http://dx.doi.org/10.7554/eLife.01287.001 PMID:24368732

  20. Specification aggregate quarry expansion: a case study demonstrating sustainable management of natural aggregate resources

    USGS Publications Warehouse

    Langer, William H.; Tucker, M.L.

    2003-01-01

    Many countries, provinces, territories, or states in the European Union, Australia, Canada, the United States, and elsewhere have begun implementing sustainability programs, but most of those programs stop short of sustainable management of aggregate resources. Sustainable practices do not always have to be conducted under the title of sustainability. This case study describes how Lafarge, a large multinational construction materials supplier, implemented the principles of sustainability even though there was an absence of existing local government policies or procedures addressing sustainable resource management. Jefferson County, Colorado, USA, is one of three counties in the six-county Denver, Colorado, region that has potentially available sources of crushed stone. Crushed stone comprises 30 percent of the aggregate produced in the area and plays a major role in regional aggregate resource needs. Jefferson County is home to four of the five crushed stone operations in the Denver region. Lafarge operates one of those four quarries. Lafarge recently proposed to expand its reserves by exchanging company-owned land for existing dedicated open space land adjacent to their quarry but owned by Jefferson County. A similar proposal submitted about 10 years earlier had been denied. Contrary to the earlier proposal, which was predicated on public relations, the new proposal was predicated on public trust. Although not explicitly managed under the moniker of sustainability, Lafarge used basic management principles that embody the tenets of sustainability. To achieve the goals of sustainable aggregate management where no governmental policies existed, Lafarge not only assumed their role of being a responsible corporate and environmental member of the community, but also assumed the role of facilitator to encourage and enable other stakeholders to responsibly resolve legitimate concerns regarding the Lafarge quarry proposal. Lafarge successfully presented an enlightened

  1. Correlation between audible noise and corona current generated by AC corona discharge in time and frequency domains

    NASA Astrophysics Data System (ADS)

    Li, Xuebao; Wang, Jing; Li, Yinfei; Zhang, Qian; Lu, Tiebing; Cui, Xiang

    2018-06-01

    Corona-generated audible noise is induced by the collisions between space charges and air molecules. It has been proven that there is a close correlation between audible noise and corona current from DC corona discharge. Analysis on the correlation between audible noise and corona current can promote the cognition of the generation mechanism of corona discharge. In this paper, time-domain waveforms of AC corona-generated audible noise and corona current are measured simultaneously. The one-to-one relationship between sound pressure pulses and corona current pulses can be found and is used to remove the interferences from background noise. After the interferences are removed, the linear correlated relationships between sound pressure pulse amplitude and corona current pulse amplitude are obtained through statistical analysis. Besides, frequency components at the harmonics of power frequency (50 Hz) can be found both in the frequency spectrums of audible noise and corona current through frequency analysis. Furthermore, the self-correlation relationships between harmonic components below 400 Hz with the 50 Hz component are analyzed for audible noise and corona current and corresponding empirical formulas are proposed to calculate the harmonic components based on the 50 Hz component. Finally, based on the AC corona discharge process and generation mechanism of audible noise and corona current, the correlation between audible noise and corona current in time domain and frequency domain are interpreted qualitatively. Besides, with the aid of analytical expressions of periodic square waves, sound pressure pulses, and corona current pulses, the modulation effects from the AC voltage on the pulse trains are used to interpret the generation of the harmonic components of audible noise and corona current.

  2. Precise Two-Photon Photodynamic Therapy using an Efficient Photosensitizer with Aggregation-Induced Emission Characteristics.

    PubMed

    Gu, Bobo; Wu, Wenbo; Xu, Gaixia; Feng, Guangxue; Yin, Feng; Chong, Peter Han Joo; Qu, Junle; Yong, Ken-Tye; Liu, Bin

    2017-07-01

    Two-photon photodynamic therapy (PDT) is able to offer precise 3D manipulation of treatment volumes, providing a target level that is unattainable with current therapeutic techniques. The advancement of this technique is greatly hampered by the availability of photosensitizers with large two-photon absorption (TPA) cross section, high reactive-oxygen-species (ROS) generation efficiency, and bright two-photon fluorescence. Here, an effective photosensitizer with aggregation-induced emission (AIE) characteristics is synthesized, characterized, and encapsulated into an amphiphilic block copolymer to form organic dots for two-photon PDT applications. The AIE dots possess large TPA cross section, high ROS generation efficiency, and excellent photostability and biocompatibility, which overcomes the limitations of many conventional two-photon photosensitizers. Outstanding therapeutic performance of the AIE dots in two-photon PDT is demonstrated using in vitro cancer cell ablation and in vivo brain-blood-vessel closure as examples. This shows therapy precision up to 5 µm under two-photon excitation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A phase field approach for multicellular aggregate fusion in biofabrication.

    PubMed

    Yang, Xiaofeng; Sun, Yi; Wang, Qi

    2013-07-01

    We present a modeling and computational approach to study fusion of multicellular aggregates during tissue and organ fabrication, which forms the foundation for the scaffold-less biofabrication of tissues and organs known as bioprinting. It is known as the phase field method, where multicellular aggregates are modeled as mixtures of multiphase complex fluids whose phase mixing or separation is governed by interphase force interactions, mimicking the cell-cell interaction in the multicellular aggregates, and intermediate range interaction mediated by the surrounding hydrogel. The material transport in the mixture is dictated by hydrodynamics as well as forces due to the interphase interactions. In a multicellular aggregate system with fixed number of cells and fixed amount of the hydrogel medium, the effect of cell differentiation, proliferation, and death are neglected in the current model, which can be readily included in the model, and the interaction between different components is dictated by the interaction energy between cell and cell as well as between cell and medium particles, respectively. The modeling approach is applicable to transient simulations of fusion of cellular aggregate systems at the time and length scale appropriate to biofabrication. Numerical experiments are presented to demonstrate fusion and cell sorting during tissue and organ maturation processes in biofabrication.

  4. A TRMM/GPM retrieval of the total mean generator current for the global electric circuit

    NASA Astrophysics Data System (ADS)

    Peterson, Michael; Deierling, Wiebke; Liu, Chuntao; Mach, Douglas; Kalb, Christina

    2017-09-01

    A specialized satellite version of the passive microwave electric field retrieval algorithm (Peterson et al., 2015) is applied to observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) satellites to estimate the generator current for the Global Electric Circuit (GEC) and compute its temporal variability. By integrating retrieved Wilson currents from electrified clouds across the globe, we estimate a total mean current of between 1.4 kA (assuming the 7% fraction of electrified clouds producing downward currents measured by the ER-2 is representative) to 1.6 kA (assuming all electrified clouds contribute to the GEC). These current estimates come from all types of convective weather without preference, including Electrified Shower Clouds (ESCs). The diurnal distribution of the retrieved generator current is in excellent agreement with the Carnegie curve (RMS difference: 1.7%). The temporal variability of the total mean generator current ranges from 110% on semi-annual timescales (29% on an annual timescale) to 7.5% on decadal timescales with notable responses to the Madden-Julian Oscillation and El Nino Southern Oscillation. The geographical distribution of current includes significant contributions from oceanic regions in addition to the land-based tropical chimneys. The relative importance of the Americas and Asia chimneys compared to Africa is consistent with the best modern ground-based observations and further highlights the importance of ESCs for the GEC.

  5. Unbundling in Current Broadband and Next-Generation Ultra-Broadband Access Networks

    NASA Astrophysics Data System (ADS)

    Gaudino, Roberto; Giuliano, Romeo; Mazzenga, Franco; Valcarenghi, Luca; Vatalaro, Francesco

    2014-05-01

    This article overviews the methods that are currently under investigation for implementing multi-operator open-access/shared-access techniques in next-generation access ultra-broadband architectures, starting from the traditional "unbundling-of-the-local-loop" techniques implemented in legacy twisted-pair digital subscriber line access networks. A straightforward replication of these copper-based unbundling-of-the-local-loop techniques is usually not feasible on next-generation access networks, including fiber-to-the-home point-to-multipoint passive optical networks. To investigate this issue, the article first gives a concise description of traditional copper-based unbundling-of-the-local-loop solutions, then focalizes on both next-generation access hybrid fiber-copper digital subscriber line fiber-to-the-cabinet scenarios and on fiber to the home by accounting for the mix of regulatory and technological reasons driving the next-generation access migration path, focusing mostly on the European situation.

  6. Edge instability in a chiral stripe domain under an electric current and skyrmion generation

    DOE PAGES

    Lin, Shi -Zeng

    2016-07-05

    Motivated by the recent experimental observations on the skyrmion creation by cutting chiral stripe domains under a current drive [Jiang et al., Science 349, 283 (2015)], we study the mechanism of skyrmion generation by simulating the dynamics of stripe domains. Our theory for skyrmion generation is based on the fact that there are two half skyrmions attached to the ends of a stripe domain. These half skyrmions move due to the coupling between the skyrmion topological charge and current. As a consequence, the stripe domain is bent or stretched depending on the direction of motion of the half skyrmions. Formore » a large current, skyrmions are created by chopping the stripe domains via strong bending or stretching. Our theory provides an explanation to the experiments and is supported by the new experiments. Moreover, we predict that skyrmions can also be generated using a Bloch stripe domain under a spin transfer torque which can be realized in B20 compounds.« less

  7. Edge instability in a chiral stripe domain under an electric current and skyrmion generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shi -Zeng

    Motivated by the recent experimental observations on the skyrmion creation by cutting chiral stripe domains under a current drive [Jiang et al., Science 349, 283 (2015)], we study the mechanism of skyrmion generation by simulating the dynamics of stripe domains. Our theory for skyrmion generation is based on the fact that there are two half skyrmions attached to the ends of a stripe domain. These half skyrmions move due to the coupling between the skyrmion topological charge and current. As a consequence, the stripe domain is bent or stretched depending on the direction of motion of the half skyrmions. Formore » a large current, skyrmions are created by chopping the stripe domains via strong bending or stretching. Our theory provides an explanation to the experiments and is supported by the new experiments. Moreover, we predict that skyrmions can also be generated using a Bloch stripe domain under a spin transfer torque which can be realized in B20 compounds.« less

  8. Aggregation and breakup of colloidal particle aggregates in shear flow, studied with video microscopy.

    PubMed

    Tolpekin, V A; Duits, M H G; van den Ende, D; Mellema, J

    2004-03-30

    We used video microscopy to study the behavior of aggregating suspensions in shear flow. Suspensions consisted of 920 nm diameter silica spheres, dispersed in a methanol/bromoform solvent, to which poly(ethylene glycol) (M = 35.000 g) was added to effect weak particle aggregation. With our solvent mixture, the refractive index of the particles could be closely matched, to allow microscopic observations up to 80 microm deep into the suspension. Also the mass density is nearly equal to that of the particles, thus allowing long observation times without problems due to aggregate sedimentation. Particles were visualized via fluorescent molecules incorporated into their cores. Using a fast confocal scanning laser microscope made it possible to characterize the (flowing) aggregates via their contour-area distributions as observed in the focal plane. The aggregation process was monitored from the initial state (just after adding the polymer), until a steady state was reached. The particle volume fraction was chosen at 0.001, to obtain a characteristic aggregation time of a few hundred seconds. On variation of polymer concentration, cP (2.2-12.0 g/L), and shear rate, gamma (3-6/s), it was observed that the volume-averaged size, Dv, in the steady state became larger with polymer concentration and smaller with shear rate. This demonstrates that the aggregate size is set by a competition between cohesive forces caused by the polymer and rupture forces caused by the flow. Also aggregate size distributions were be measured (semiquantitatively). Together with a description for the internal aggregate structure they allowed a modeling of the complete aggregation curve, from t = 0 up to the steady state. A satisfactory description could be obtained by describing the aggregates as fractal objects, with Df = 2.0, as measured from CSLM images after stopping the flow. In this modeling, the fitted characteristic breakup time was found to increase with cP.

  9. Current forgings and their properties for steam generator of nuclear plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukada, Hisashi; Suzuki, Komei; Kusuhashi, Mikio

    1997-12-31

    Current steel forgings for steam generator (SG) of PWR plant are reviewed in the aspect of design and material improvement. The following three items are introduced. The use of integral type steel forgings for the fabrication of steam generator enhances the structural integrity and makes easier fabrication and inspection including in-service inspection. The following examples of current integral type forgings developed by the Japan Steel Works, Ltd. (JSW) are introduced: (1) primary head integrated with nozzles, manways and supports; (2) steam drum head integrated with nozzle and handhole; (3) conical shell integrated with cylindrical sections and handholes. In order tomore » decrease the weight of steam generator, the high strength materials such as SA508, Cl.3a steel have been adopted in some cases. The properties of this steel are introduced and the chemistry and heat treatment condition are discussed. As one of the methods to minimize the macro- and micro-segregations, the use of vacuum carbon deoxidation (VCD), i.e. deoxidization of steel by gaseous CO reaction, with addition of Al for grain refining was investigated. The properties of SA508, Cl.3 steels with Low Si content are compared with those of conventional one.« less

  10. Surface properties of heat-induced soluble soy protein aggregates of different molecular masses.

    PubMed

    Guo, Fengxian; Xiong, Youling L; Qin, Fang; Jian, Huajun; Huang, Xiaolin; Chen, Jie

    2015-02-01

    Suspensions (2% and 5%, w/v) of soy protein isolate (SPI) were heated at 80, 90, or 100 °C for different time periods to produce soluble aggregates of different molecular sizes to investigate the relationship between particle size and surface properties (emulsions and foams). Soluble aggregates generated in these model systems were characterized by gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Heat treatment increased surface hydrophobicity, induced SPI aggregation via hydrophobic interaction and disulfide bonds, and formed soluble aggregates of different sizes. Heating of 5% SPI always promoted large-size aggregate (LA; >1000 kDa) formation irrespective of temperature, whereas the aggregate size distribution in 2% SPI was temperature dependent: the LA fraction progressively rose with temperature (80→90→100 °C), corresponding to the attenuation of medium-size aggregates (MA; 670 to 1000 kDa) initially abundant at 80 °C. Heated SPI with abundant LA (>50%) promoted foam stability. LA also exhibited excellent emulsifying activity and stabilized emulsions by promoting the formation of small oil droplets covered with a thick interfacial protein layer. However, despite a similar influence on emulsion stability, MA enhanced foaming capacity but were less capable of stabilizing emulsions than LA. The functionality variation between heated SPI samples is clearly related to the distribution of aggregates that differ in molecular size and surface activity. The findings may encourage further research to develop functional SPI aggregates for various commercial applications. © 2015 Institute of Food Technologists®

  11. Spatiotemporal & Ecological Processes Associated With Goliath Grouper Aggregations in Southeastern Florida

    NASA Astrophysics Data System (ADS)

    Binder, B. M.; Boswell, K. M.

    2016-02-01

    The formation of Fish Spawning Aggregations (FSAs) is vital to the life history of many reef fishes, representing the only reproductive opportunity for many species. Unfortunately FSAs present a lucrative target for exploitation which has led to cases of decline and regional extirpation. However, the integration of stakeholders into the design of fisheries management strategies has led to the protection of several species throughout the Greater Caribbean; including the goliath grouper, which has shown evidence of recovery since the moratorium on harvest in 1990. Since the closure, user based and researcher driven initiatives have investigated the recovery, biology, and life history of goliath grouper, but fine scale spatiotemporal and community level aspects of aggregation formation have not been specifically addressed. Thus, we developed a novel two-tiered survey approach using scientific echosounders and diver visual surveys to characterize the spatiotemporal aspects of goliath grouper aggregations, along with the community response to aggregations at six aggregation sites near Jupiter, Florida. Acoustic transects and diver surveys were performed near peak lunar phases throughout the spawning season to quantify fluctuations in goliath grouper density and abundance during the season; and to characterize changes in local community structure in response to aggregation formation. The results from this study are being used to inform the development of resource management plans in South Florida; and addressing these questions will generate a framework to apply a novel research technique in other regions where knowledge of reproductive behavior is absent from the peer-reviewed literature.

  12. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates

    PubMed Central

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B.

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA. PMID:26161440

  13. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations

    PubMed Central

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T.; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P.; Rötter, Reimund P.; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028

  14. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.

    PubMed

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.

  15. Methods of predicting aggregate voids.

    DOT National Transportation Integrated Search

    2013-03-01

    Percent voids in combined aggregates vary significantly. Simplified methods of predicting aggregate : voids were studied to determine the feasibility of a range of gradations using aggregates available in Kansas. : The 0.45 Power Curve Void Predictio...

  16. Blended aggregate study : final report.

    DOT National Transportation Integrated Search

    1980-03-01

    Louisiana produces no naturally occurring skid resistant aggregate and, therefore, must import these aggregates at great expense. : In an effort to extend the yield of these aggregates, a laboratory investigation was initiated to determine the feasib...

  17. Mini Solar and Sea Current Power Generation System

    NASA Astrophysics Data System (ADS)

    Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu

    2017-07-01

    The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.

  18. Valorization of lignite combustion residues and ferroalumina in the production of aggregates.

    PubMed

    Anagnostopoulos, I M; Stivanakis, V E; Angelopoulos, G N; Papamantellos, D C

    2010-02-15

    The present research study investigates the synergy of industrial solid by-products from lignite combustion (fly ash and bottom ash) and aluminum production (ferroalumina) in the production of lightweight aggregates (LWA). The process consists of two stages, pelletization and sintering. Bottom ash (BA) is used as the principal raw material in mixtures while ferroalumina (FAL) is added in lower percentages (5-30 wt%). BA carbon content is used as the fuel of sintering process in high temperatures, around 1250 degrees C, and gas generation is responsible for porous structure formation. Physical properties such as porosity, water absorption and bulk density, of sintering products are measured. Increase of FAL percentage in sintering mixtures results in decrease of porosity from 61% to 35% and of water absorption from 61% to 21% and in increase of bulk density from 1.02 g/cm(3) to 1.80 g/cm(3) of the produced aggregates. Aggregates produced by FAL addition up to 20 wt% are characterized as LWA. Aggregates formed are used in the production of concrete specimens. Compressive strength of concrete increases by increasing FAL addition in aggregates from 5 wt% to 15 wt% (highest strength value), while decrease by increasing FAL addition from 20 wt% to 30 wt%. FAL addition in lignite ashes sintering mixtures (up to 15 wt%) is considered as an important parameter for enhancing aggregates strength.

  19. Utilising Fine and Coarse Recycled Aggregates from the Gulf Region in Concrete

    NASA Astrophysics Data System (ADS)

    Jones, M. Rod; Halliday, Judith E.; Csetenyi, Laszlo; Zheng, Li; Strompinis, N.

    This paper explores the feasibility in utilising materials generated from C&DW to produce a `green' concrete. The two materials that are considered here are, (i) up-sizing silt-size material generated from recycled aggregates to produce a synthetic silt-sand and (ii) processed recycled coarse aggregates (RA) sourced from a Gulf Region landfill site. The work has demonstrated that there is potential for utilising silt wastes into foamed concrete, which can then be crushed to a sand-sized material suitable for use in concrete, however the porous nature of the material has highlighted that the water demand of this RA is high. RAs were characterised to BS EN 12620 and found suitable for use in concrete. The effect of RA on concrete properties is minimal when used up to 35% replacement levels, provided that they are pre-soaked.

  20. Laboratory Study of Water Surface Roughness Generation by Wave-Current Interaction

    NASA Technical Reports Server (NTRS)

    Klinke, Jochen

    2000-01-01

    Within the framework of this project, the blocking of waves by inhomogeneous currents was studied. A laboratory experiment was conducted in collaboration with Steven R. Long at the linear wave tank of the NASA Air-Sea Interaction Facility, Wallops Island, VA during May 1999. Mechanically-generated waves were blocked approximately 3m upstream from the wave paddle by an opposing current. A false bottom was used to obtain a spatially varying flow field in the measurement section of the wave tank. We used an imaging slope gauge, which was mounted directly underneath the sloping section of the false tank bottom to observe the wave field. For a given current speed, the amplitude and the frequency of the waves was adjusted so that the blocking occurred within the observed footprint. Image sequences of up to 600 images at up 100 Hz sampling rate were recorded for an area of approximately 25cm x 25cm. Unlike previous measurements with wave wire gauges, the captured image sequences show the generation of the capillary waves at the blocking point and give detailed insight into the spatial and temporal evolution of the blocking process. The image data were used to study the wave-current interaction for currents from 5 to 25 cm/s and waves with frequencies between 1 and 3 Hz. First the images were calibrated with regard to size and slope. Then standard Fourier techniques as well the empirical mode decomposition method developed by Dr. Norden Huang and Dr. Steven R. Long were employed to quantify the wave number downshift from the gravity to the capillary regime.

  1. Soil aggregation and aggregate-associated carbon under four typical halophyte communities in an arid area.

    PubMed

    Yang, Haichang; Wang, Jingya; Zhang, Fenghua

    2016-12-01

    The soil microbial biomass carbon (MBC) is considered as a sensitive index of soil carbon ecosystem. The distribution of aggregate-associated MBC determines the capacity of the soil to store soil organic carbon (SOC). We compared soil aggregate-associated SOC and aggregate-associated MBC under four halophyte communities: Karelinia caspia (Pall.) Less. (Abbr. K. caspia), Bassia dasyphylla (Fisch. et C. A. Mey.) Kuntze. (Abbr. B. dasyphylla), Haloxylon ammodendron (C. A. Mey.) Bunge. (Abbr. H. ammodendron), and Tamarix ramosissima Lour (Abbr. T. ramosissima) on an alluvial fan in the Manasi River Basin, Xinjiang, China. The specific objectives of the study were to determine which aggregate size fraction was the most important for MBC and SOC retention in these soils of four halophyte communities. The results showed that the 0.053-0.25 mm fraction contained 47 to 75 % of the total soil mass. The amount of soil in the 0.053-0.25 mm fraction was significantly greater than that in the >0.25 and the <0.053 mm fractions. The >0.25 and the <0.053 mm fractions contained 7.8 to 43.0 % of the soil mass. Aggregate-associated SOC concentrations ranged from 1.70 to 13.68 g kg -1 , and the aggregate-associated SOC were the highest under the H. ammodendron and T. ramosissima communities. The aggregate-associated MBC ranged from 55.26 to 217.11 g kg -1 , and the aggregate-associated MBC were higher under the K. caspia and B. dasyphylla communities. The aggregate-associated SOC concentrations were significantly higher in the >0.25 and the <0.053 mm fractions than in the 0.053-0.25 mm fraction. The aggregate-associated MBC in the 20-40 cm depth was consistent with its law. However, in the 0-20 cm depth, the aggregate-associated MBC concentrations were significantly higher in the >0.25 mm fraction than the other two aggregate fractions, and there were no significant differences in 0.25-0.053 or <0.053 mm fraction. Correlation analyses showed that the aggregate

  2. Effect of thermionic cathode heating current self-magnetic field on gaseous plasma generator characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatin, I. V., E-mail: lopatin@opee.hcei.tsc.ru; Akhmadeev, Yu. H.; Koval, N. N.

    2015-10-15

    The performance capabilities of the PINK, a plasma generator with a thermionic cathode mounted in the cavity of a hollow cathode, depending for its operation on a non-self-sustained low-pressure gas discharge have been investigated. It has been shown that when a single-filament tungsten cathode 2 mm in diameter is used and the peak filament current is equal to or higher than 100 A, the self-magnetic field of the filament current significantly affects the discharge current and voltage waveforms. This effect is due to changes in the time and space distributions of the emission current density from the hot cathode. Whenmore » the electron mean free path is close to the characteristic dimensions of the thermionic cathode, the synthesized plasma density distribution is nonuniform and the cathode is etched nonuniformly. The cathode lifetime in this case is 8–12 h. Using a cathode consisting of several parallel-connected tungsten filaments ∼0.8 mm in diameter moderates the effect of the self-magnetic field of the filament current and nearly doubles the cathode lifetime. The use of this type of cathode together with a discharge igniting electrode reduces the minimum operating pressure in the plasma generator to about one third of that required for the generator operation with a single-filament cathode (to 0.04 Pa)« less

  3. Kinetics of Aggregation with Choice

    DOE PAGES

    Ben-Naim, Eli; Krapivsky, Paul

    2016-12-01

    Here we generalize the ordinary aggregation process to allow for choice. In ordinary aggregation, two random clusters merge and form a larger aggregate. In our implementation of choice, a target cluster and two candidate clusters are randomly selected and the target cluster merges with the larger of the two candidate clusters.We study the long-time asymptotic behavior and find that as in ordinary aggregation, the size density adheres to the standard scaling form. However, aggregation with choice exhibits a number of different features. First, the density of the smallest clusters exhibits anomalous scaling. Second, both the small-size and the large-size tailsmore » of the density are overpopulated, at the expense of the density of moderate-size clusters. Finally, we also study the complementary case where the smaller candidate cluster participates in the aggregation process and find an abundance of moderate clusters at the expense of small and large clusters. Additionally, we investigate aggregation processes with choice among multiple candidate clusters and a symmetric implementation where the choice is between two pairs of clusters.« less

  4. Modeling Multivalent Ligand-Receptor Interactions with Steric Constraints on Configurations of Cell-Surface Receptor Aggregates

    PubMed Central

    Monine, Michael I.; Posner, Richard G.; Savage, Paul B.; Faeder, James R.; Hlavacek, William S.

    2010-01-01

    Abstract We use flow cytometry to characterize equilibrium binding of a fluorophore-labeled trivalent model antigen to bivalent IgE-FcεRI complexes on RBL cells. We find that flow cytometric measurements are consistent with an equilibrium model for ligand-receptor binding in which binding sites are assumed to be equivalent and ligand-induced receptor aggregates are assumed to be acyclic. However, this model predicts extensive receptor aggregation at antigen concentrations that yield strong cellular secretory responses, which is inconsistent with the expectation that large receptor aggregates should inhibit such responses. To investigate possible explanations for this discrepancy, we evaluate four rule-based models for interaction of a trivalent ligand with a bivalent cell-surface receptor that relax simplifying assumptions of the equilibrium model. These models are simulated using a rule-based kinetic Monte Carlo approach to investigate the kinetics of ligand-induced receptor aggregation and to study how the kinetics and equilibria of ligand-receptor interaction are affected by steric constraints on receptor aggregate configurations and by the formation of cyclic receptor aggregates. The results suggest that formation of linear chains of cyclic receptor dimers may be important for generating secretory signals. Steric effects that limit receptor aggregation and transient formation of small receptor aggregates may also be important. PMID:20085718

  5. Geologic and societal factors affecting the international oceanic transport of aggregate

    USGS Publications Warehouse

    Langer, W.H.

    1995-01-01

    Crushed stone and sand and gravel are the two main sources of natural aggregate, and together comprise approximately half the volume and tonnage of mined material in the United States. Natural aggregate is a bulky, heavy material without special or unique properties, and it is commonly used near its source of production to minimize haulage cost. However, remoteness is no longer an absolute disqualifier for the production of aggregate. Today interstate aggregate routinely is shipped hundreds of kilometers by rail and barge. In addition, during 1992, the United States imported 1,317,000 metric tons of aggregate from Canada and 1,531,000 metric tons from Mexico. A number of ports on the Atlantic Coast and Gulf Coast of the United States receive imports of crushed stone from foreign sources for transport to various parts of the eastern United States. These areas either lack adequate supplies of aggregate or are augmenting their supplies because they have difficulties meeting current demand. These difficulties may include poor stone quality, environmental permitting problems, or transportation. Certain societal and geologic conditions of New York City and Philadelphia along the Atlantic Coast, and Tampa and New Orleans along the Gulf Coast, are discussed to demonstrate the different combinations of issues that contribute to the economic viability of importing crushed stone. ?? 1995 Oxford University Press.

  6. The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm

    NASA Astrophysics Data System (ADS)

    Zhao, Xinying; Hu, Yihua; Gu, Youlin; Li, Le

    2015-10-01

    Microorganism aggregated particle swarm, which is quite an important composition of complex media environment, can be developed as a new kind of infrared functional materials. Current researches mainly focus on the optical properties of single microorganism particle. As for the swarm, especially the microorganism aggregated particle swarm, a more accurate simulation model should be proposed to calculate its extinction effect. At the same time, certain parameters deserve to be discussed, which helps to better develop the microorganism aggregated particle swarm as a new kind of infrared functional materials. In this paper, take Aspergillus Niger spore as an example. On the one hand, a new calculation model is established. Firstly, the cluster-cluster aggregation (CCA) model is used to simulate the structure of Aspergillus Niger spore aggregated particle. Secondly, the single scattering extinction parameters for Aspergillus Niger spore aggregated particle are calculated by using the discrete dipole approximation (DDA) method. Thirdly, the transmittance of Aspergillus Niger spore aggregated particle swarm is simulated by using Monte Carlo method. On the other hand, based on the model proposed above, what influences can wavelength causes has been studied, including the spectral distribution of scattering intensity of Aspergillus Niger spore aggregated particle and the infrared spectral transmittance of the aggregated particle swarm within the range of 8-14μm incident infrared wavelengths. Numerical results indicate that the scattering intensity of Aspergillus Niger spore aggregated particle reduces with the increase of incident wavelengths at each scattering angle. Scattering energy mainly concentrates on the scattering angle between 0-40°, forward scattering has an obvious effect. In addition, the infrared transmittance of Aspergillus Niger spore aggregated particle swarm goes up with the increase of incident wavelengths. However, some turning points of the trend are

  7. Parameterizing Aggregation Rates: Results of cold temperature ice-ash hydrometeor experiments

    NASA Astrophysics Data System (ADS)

    Courtland, L. M.; Dufek, J.; Mendez, J. S.; McAdams, J.

    2014-12-01

    Recent advances in the study of tephra aggregation have indicated that (i) far-field effects of tephra sedimentation are not adequately resolved without accounting for aggregation processes that preferentially remove the fine ash fraction of volcanic ejecta from the atmosphere as constituent pieces of larger particles, and (ii) the environmental conditions (e.g. humidity, temperature) prevalent in volcanic plumes may significantly alter the types of aggregation processes at work in different regions of the volcanic plume. The current research extends these findings to explore the role of ice-ash hydrometeor aggregation in various plume environments. Laboratory experiments utilizing an ice nucleation chamber allow us to parameterize tephra aggregation rates under the cold (0 to -50 C) conditions prevalent in the upper regions of volcanic plumes. We consider the interaction of ice-coated tephra of variable thickness grown in a controlled environment. The ice-ash hydrometers interact collisionally and the interaction is recorded by a number of instruments, including high speed video to determine if aggregation occurs. The electric charge on individual particles is examined before and after collision to examine the role of electrostatics in the aggregation process and to examine the charge exchange process. We are able to examine how sticking efficiency is related to both the relative abundance of ice on a particle as well as to the magnitude of the charge carried by the hydrometeor. We here present preliminary results of these experiments, the first to constrain aggregation efficiency of ice-ash hydrometeors, a parameter that will allow tephra dispersion models to use near-real-time meteorological data to better forecast particle residence time in the atmosphere.

  8. Induced nanoparticle aggregation for short nucleic acid quantification by depletion isotachophoresis.

    PubMed

    Marczak, Steven; Senapati, Satyajyoti; Slouka, Zdenek; Chang, Hsueh-Chia

    2016-12-15

    A rapid (<20min) gel-membrane biochip platform for the detection and quantification of short nucleic acids is presented based on a sandwich assay with probe-functionalized gold nanoparticles and their separation into concentrated bands by depletion-generated gel isotachophoresis. The platform sequentially exploits the enrichment and depletion phenomena of an ion-selective cation-exchange membrane created under an applied electric field. Enrichment is used to concentrate the nanoparticles and targets at a localized position at the gel-membrane interface for rapid hybridization. The depletion generates an isotachophoretic zone without the need for different conductivity buffers, and is used to separate linked nanoparticles from isolated ones in the gel medium and then by field-enhanced aggregation of only the linked particles at the depletion front. The selective field-induced aggregation of the linked nanoparticles during the subsequent depletion step produces two lateral-flow like bands within 1cm for easy visualization and quantification as the aggregates have negligible electrophoretic mobility in the gel and the isolated nanoparticles are isotachophoretically packed against the migrating depletion front. The detection limit for 69-base single-stranded DNA targets is 10 pM (about 10 million copies for our sample volume) with high selectivity against nontargets and a three decade linear range for quantification. The selectivity and signal intensity are maintained in heterogeneous mixtures where the nontargets outnumber the targets 10,000 to 1. The selective field-induced aggregation of DNA-linked nanoparticles at the ion depletion front is attributed to their trailing position at the isotachophoretic front with a large field gradient. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol

    NASA Astrophysics Data System (ADS)

    Zhang, Shulan; Wang, Renjie; Yang, Xueyun; Sun, Benhua; Li, Qinghui

    2016-12-01

    Soil aggregation was studied in a 21-year experiment conducted on an Anthrosol. The soil management regimes consisted of cropland abandonment, bare fallow without vegetation and cropping system. The cropping system was combined with the following nutrient management treatments: control (CONTROL, no nutrient input); nitrogen, phosphorus and potassium (NPK); straw plus NPK (SNPK); and manure (M) plus NPK (MNPK). Compared with the CONTROL treatment, the abandonment treatment significantly increased the formation of large soil macroaggregates (>2 mm) and consequently improved the stability of aggregates in the surface soil layer due to enhancement of hyphal length and of soil organic matter content. However, in response to long-term bare fallow treatment aggregate stability was low, as were the levels of aggregating agents. Long term fertilization significantly redistributed macroaggregates; this could be mainly ascribed to soil organic matter contributing to the formation of 0.5-2 mm classes of aggregates and a decrease in the formation of the >2 mm class of aggregates, especially in the MNPK treatment. Overall, hyphae represented a major aggregating agent in both of the systems tested, while soil organic compounds played significantly different roles in stabilizing aggregates in Anthrosol when the cropping system and the soil management regimes were compared.

  10. Soil aggregation and aggregating agents as affected by long term contrasting management of an Anthrosol

    PubMed Central

    Zhang, Shulan; Wang, Renjie; Yang, Xueyun; Sun, Benhua; Li, Qinghui

    2016-01-01

    Soil aggregation was studied in a 21-year experiment conducted on an Anthrosol. The soil management regimes consisted of cropland abandonment, bare fallow without vegetation and cropping system. The cropping system was combined with the following nutrient management treatments: control (CONTROL, no nutrient input); nitrogen, phosphorus and potassium (NPK); straw plus NPK (SNPK); and manure (M) plus NPK (MNPK). Compared with the CONTROL treatment, the abandonment treatment significantly increased the formation of large soil macroaggregates (>2 mm) and consequently improved the stability of aggregates in the surface soil layer due to enhancement of hyphal length and of soil organic matter content. However, in response to long-term bare fallow treatment aggregate stability was low, as were the levels of aggregating agents. Long term fertilization significantly redistributed macroaggregates; this could be mainly ascribed to soil organic matter contributing to the formation of 0.5–2 mm classes of aggregates and a decrease in the formation of the >2 mm class of aggregates, especially in the MNPK treatment. Overall, hyphae represented a major aggregating agent in both of the systems tested, while soil organic compounds played significantly different roles in stabilizing aggregates in Anthrosol when the cropping system and the soil management regimes were compared. PMID:27958366

  11. Optical characterization limits of nanoparticle aggregates at different wavelengths using approximate Bayesian computation

    NASA Astrophysics Data System (ADS)

    Eriçok, Ozan Burak; Ertürk, Hakan

    2018-07-01

    Optical characterization of nanoparticle aggregates is a complex inverse problem that can be solved by deterministic or statistical methods. Previous studies showed that there exists a different lower size limit of reliable characterization, corresponding to the wavelength of light source used. In this study, these characterization limits are determined considering a light source wavelength range changing from ultraviolet to near infrared (266-1064 nm) relying on numerical light scattering experiments. Two different measurement ensembles are considered. Collection of well separated aggregates made up of same sized particles and that of having particle size distribution. Filippov's cluster-cluster algorithm is used to generate the aggregates and the light scattering behavior is calculated by discrete dipole approximation. A likelihood-free Approximate Bayesian Computation, relying on Adaptive Population Monte Carlo method, is used for characterization. It is found that when the wavelength range of 266-1064 nm is used, successful characterization limit changes from 21-62 nm effective radius for monodisperse and polydisperse soot aggregates.

  12. A study of the aggregation of cyclodextrins: Determination of the critical aggregation concentration, size of aggregates and thermodynamics using isodesmic and K2-K models.

    PubMed

    Do, Thao Thi; Van Hooghten, Rob; Van den Mooter, Guy

    2017-04-15

    The aggregation of three different cyclodextrins (CDs): 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD) and sulfobutylether-β-cyclodextrin (SBE-β-CD) was studied. The critical aggregation concentration (cac) of these three CDs is quite similar and is situated at ca. 2% (m/v). There was only a small difference in the cac values determined by DLS and 1 H NMR. DLS measurements revealed that CDs in solution have three size populations wherein one of them is that of a single CD molecule. The size of aggregates determined by TEM appears to be similar to the size of the aggregates in the second size distribution determined by DLS. Isodesmic and K 2 -K self-assembly models were used for studying the aggregation process of HP-β-CD, HP-γ-CD and SBE-β-CD. The results showed that the aggregation process of these CDs is a cooperative one, where the first step of aggregation is less favorable than the next steps. The determined thermodynamic parameters showed that the aggregation process of all three CDs is spontaneous and exothermic and it is driven by an increase of the entropy of the environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Electric current generation in photorefractive bismuth silicon oxide without application of external electric field

    NASA Astrophysics Data System (ADS)

    Buchhave, Preben; Kukhtarev, Nickolai; Kukhtareva, Tatiana; Edwards, Matthew E.; Reagan, Michael A.; Lyuksyutov, Sergei F.

    2003-10-01

    A holographic radial diffraction grating (HRDG) is an efficient optical element for splitting single laser beam on three 0, -1st, and +1st- diffraction order beams. The rotation of the grating at certain velocity allows a window for quality control over the frequency detuning between -1st, and +1st diffracted beams. The running interference fringes produced by the beams and projected on photorefractive crystal induce running holographic gratings in the crystal. This simple configuration is an effective tool for the study of such phenomena as space charge waves [1], domains motion [2], and electric current generation [3]. Specifics of photorefractive mechanism in cubic photorefractive crystals (BSO, BTO) normally require a use of external electric field to produce reasonable degree of refractive index modulation to observe associated with it phenomena. In this work we provide a direct experimental observation of the electric current generated in photorefractive BSO using running grating technique without an applied electric field. Moving interference fringes modulate a photoconductivity and an electric field in photorefractive crystal thus creating the photo electro-motive force (emf) and the current. The magnitude of the current varies between 1 and 10 nA depending on the rotation speed of HRDG. The peculiarities of the current behavior include a backward current flow, and current oscillations. The holographic current generated through this technique can find applications in non-destructive testing for ultra-sensitive vibrometry, materials characterization, and for motion sensors. References [1] S.F. Lyuksyutov, P. Buchhave, and M.V. Vasnetsov, Physical Review Letters, 79, No.1, 67-70 (1997) [2] P. Buchhave, S. Lyuksyutov, M. Vasnetsov, and C. Heyde, Journal Optical Society of America B, 13, No.11 2595-2602 (1996) [3] M. Vasnetsov, P. Buchhave, and S. Lyuksyutov Optics Communications, 137, 181-191 (1997)

  14. Demonstration of flexible multicasting and aggregation functionality for TWDM-PON

    NASA Astrophysics Data System (ADS)

    Chen, Yuanxiang; Li, Juhao; Zhu, Paikun; Zhu, Jinglong; Tian, Yu; Wu, Zhongying; Peng, Huangfa; Xu, Yongchi; Chen, Jingbiao; He, Yongqi; Chen, Zhangyuan

    2017-06-01

    The time- and wavelength-division multiplexed passive optical network (TWDM-PON) has been recognized as an attractive solution to provide broadband access for the next-generation networks. In this paper, we propose flexible service multicasting and aggregation functionality for TWDM-PON utilizing multiple-pump four-wave-mixing (FWM) and cyclic arrayed waveguide grating (AWG). With the proposed scheme, multiple TWDM-PON links share a single optical line terminal (OLT), which can greatly reduce the network deployment expense and achieve efficient network resource utilization by load balancing among different optical distribution networks (ODNs). The proposed scheme is compatible with existing TDM-PON infrastructure with fixed-wavelength OLT transmitter, thus smooth service upgrade can be achieved. Utilizing the proposed scheme, we demonstrate a proof-of-concept experiment with 10-Gb/s OOK and 10-Gb/s QPSK orthogonal frequency division multiplexing (OFDM) signal multicasting and aggregating to seven PON links. Compared with back-to-back (BTB) channel, the newly generated multicasting OOK signal and OFDM signal have power penalty of 1.6 dB and 2 dB at the BER of 10-3, respectively. For the aggregation of multiple channels, no obvious power penalty is observed. What is more, to verify the flexibility of the proposed scheme, we reconfigure the wavelength selective switch (WSS) and adjust the number of pumps to realize flexible multicasting functionality. One to three, one to seven, one to thirteen and one to twenty-one multicasting are achieved without modifying OLT structure.

  15. Utilization of fly ash as partial sand replacement in oil palm shell lightweight aggregate concrete

    NASA Astrophysics Data System (ADS)

    Nazrin Akmal, A. Z. Muhammad; Muthusamy, K.; Mat Yahaya, F.; Hanafi, H. Mohd; Nur Azzimah, Z.

    2017-11-01

    Realization on the increasing demand for river sand supply in construction sector has inspired the current research to find alternative material to reduce the use of natural sand in oil palm shell lightweight aggregate concrete (OPS LWAC) production. The existence of fly ash, a by-product generated from coal power plant, which pose negative impact to the environment when it is disposed as waste, were used in this research. The effect of fly ash content as partial sand replacement towards workability and compressive strength of OPS lightweight aggregate concrete were investigated. Four concrete mixes containing various percentage of fly ash that are 0%, 10%, 20% and 30% by weight of sand were used in the experimental work. All mixes were cast in form of cubes before subjected to water curing until the testing age. Compressive strength test were conducted at 1, 3, 7 and 28 days. The finding shows that the workability of the OPS LWAC decreases when more fly ash are used as sand replacement. It was found that adding of 10% fly ash as sand replacement content resulted in better compressive strength of OPS LWAC, which is higher than the control mix.

  16. The Feasibility of Palm Kernel Shell as a Replacement for Coarse Aggregate in Lightweight Concrete

    NASA Astrophysics Data System (ADS)

    Itam, Zarina; Beddu, Salmia; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Issa Ayash, Usama

    2016-03-01

    Implementing sustainable materials into the construction industry is fast becoming a trend nowadays. Palm Kernel Shell is a by-product of Malaysia’s palm oil industry, generating waste as much as 4 million tons per annum. As a means of producing a sustainable, environmental-friendly, and affordable alternative in the lightweight concrete industry, the exploration of the potential of Palm Kernel Shell to be used as an aggregate replacement was conducted which may give a positive impact to the Malaysian construction industry as well as worldwide concrete usage. This research investigates the feasibility of PKS as an aggregate replacement in lightweight concrete in terms of compressive strength, slump test, water absorption, and density. Results indicate that by using PKS for aggregate replacement, it increases the water absorption but decreases the concrete workability and strength. Results however, fall into the range acceptable for lightweight aggregates, hence it can be concluded that there is potential to use PKS as aggregate replacement for lightweight concrete.

  17. Murine aggregation chimeras and wholemount imaging in airway stem cell biology.

    PubMed

    Rosewell, Ian R; Giangreco, Adam

    2012-01-01

    Local tissue stem cells are known to exist in mammalian lungs but their role in epithelial maintenance remains unclear. We therefore developed murine aggregation chimera and wholemount imaging techniques to assess the contribution of these cells to lung homeostasis and repair. In this chapter we provide further details regarding the generation of murine aggregation chimera mice and their subsequent use in wholemount lung imaging. We also describe methods related to the interpretation of this data that allows for quantitative assessment of airway stem cell activation versus quiescence. Using these techniques, it is possible to compare the growth and differentiation capacity of various lung epithelial cells in normal, repairing, and diseased states.

  18. Lithologic characterization of active ITD aggregate sources and implications for aggregate quality.

    DOT National Transportation Integrated Search

    2014-03-01

    Aggregate from 40 material sources across Idaho were sampled and the lithologies identified quantitatively. Aggregate compositions are compared with commercial AASHTO T 303 and ASTM C1293 results and the geologic map of Idaho to identify those rock t...

  19. Aggregation and disaggregation kinetics of human blood platelets: Part II. Shear-induced platelet aggregation.

    PubMed Central

    Huang, P Y; Hellums, J D

    1993-01-01

    A population balance equation (PBE) mathematical model for analyzing platelet aggregation kinetics was developed in Part I (Huang, P. Y., and J. D. Hellums. 1993. Biophys. J. 65: 334-343) of a set of three papers. In this paper, Part II, platelet aggregation and related reactions are studied in the uniform, known shear stress field of a rotational viscometer, and interpreted by means of the model. Experimental determinations are made of the platelet-aggregate particle size distributions as they evolve in time under the aggregating influence of shear stress. The PBE model is shown to give good agreement with experimental determinations when either a reversible (aggregation and disaggregation) or an irreversible (no disaggregation) form of the model is used. This finding suggests that for the experimental conditions studied disaggregation processes are of only secondary importance. During shear-induced platelet aggregation, only a small fraction of platelet collisions result in the binding together of the involved platelets. The modified collision efficiency is approximately zero for shear rates below 3000 s-1. It increases with shear rates above 3000 s-1 to about 0.01 for a shear rate of 8000 s-1. Addition of platelet chemical agonists yields order of magnitude increases in collision efficiency. The collision efficiency for shear-induced platelet aggregation is about an order of magnitude less at 37 degrees C than at 24 degrees C. The PBE model gives a much more accurate representation of aggregation kinetics than an earlier model based on a monodispersed particle size distribution. PMID:8369442

  20. The role of spatial aggregation in forensic entomology.

    PubMed

    Fiene, Justin G; Sword, Gregory A; Van Laerhoven, Sherah L; Tarone, Aaron M

    2014-01-01

    A central concept in forensic entomology is that arthropod succession on carrion is predictable and can be used to estimate the postmortem interval (PMI) of human remains. However, most studies have reported significant variation in successional patterns, particularly among replicate carcasses, which has complicated estimates of PMIs. Several forensic entomology researchers have proposed that further integration of ecological and evolutionary theory in forensic entomology could help advance the application of succession data for producing PMI estimates. The purpose of this essay is to draw attention to the role of spatial aggregation of arthropods among carrion resources as a potentially important aspect to consider for understanding and predicting the assembly of arthropods on carrion over time. We review ecological literature related to spatial aggregation of arthropods among patchy and ephemeral resources, such as carrion, and when possible integrate these results with published forensic literature. We show that spatial aggregation of arthropods across resources is commonly reported and has been used to provide fundamental insight for understanding regional and local patterns of arthropod diversity and coexistence. Moreover, two suggestions are made for conducting future research. First, because intraspecific aggregation affects species frequency distributions across carcasses, data from replicate carcasses should not be combined, but rather statistically quantified to generate occurrence probabilities. Second, we identify a need for studies that tease apart the degree to which community assembly on carrion is spatially versus temporally structured, which will aid in developing mechanistic hypotheses on the ecological factors shaping community assembly on carcasses.

  1. Generation of High Resolution Land Surface Parameters in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Coleman, A. M.; Wigmosta, M. S.; Leung, L.; Huang, M.; Li, H.

    2010-12-01

    The Community Land Model (CLM) is the land surface model used for the Community Atmosphere Model (CAM) and the Community Climate System Model (CCSM). It examines the physical, chemical, and biological processes across a variety of spatial and temporal scales. Currently, efforts are being made to improve the spatial resolution of the CLM, in part, to represent finer scale hydrologic characteristics. Current land surface parameters of CLM4.0, in particular plant functional types (PFT) and leaf area index (LAI), are generated from MODIS and calculated at a 0.05 degree resolution. These MODIS-derived land surface parameters have also been aggregated to coarser resolutions (e.g., 0.5, 1.0 degrees). To evaluate the response of CLM across various spatial scales, higher spatial resolution land surface parameters need to be generated. In this study we examine the use of Landsat TM/ETM+ imagery and data fusion techniques for generating land surface parameters at a 1km resolution within the Pacific Northwest United States. . Land cover types and PFTs are classified based on Landsat multi-season spectral information, DEM, National Land Cover Database (NLCD) and the USDA-NASS Crop Data Layer (CDL). For each PFT, relationships between MOD15A2 high quality LAI values, Landsat-based vegetation indices, climate variables, terrain, and laser-altimeter derived vegetation height are used to generate monthly LAI values at a 30m resolution. The high-resolution PFT and LAI data are aggregated to create a 1km model grid resolution. An evaluation and comparison of CLM land surface response at both fine and moderate scale is presented.

  2. Size-dependent enrichment of waste slag aggregate fragments abraded from asphalt concrete.

    PubMed

    Takahashi, Fumitake; Shimaoka, Takayuki; Gardner, Kevin; Kida, Akiko

    2011-10-30

    Authors consider the environmental prospects of using melted waste slag as the aggregate for asphalt pavement. In particular, the enrichment of slag-derived fragments in fine abrasion dust particles originated from slag asphalt concrete and its size dependency were concerned. A series of surface abrasion tests for asphalt concrete specimens, containing only natural aggregates as reference or 30 wt% of substituted slag aggregates, were performed. Although two of three slag-asphalt concretes generated 1.5-3.0 times larger amount of abrasion dust than the reference asphalt concrete did, it could not be explained only by abrasion resistance of slag. The enrichment of slag-derived fragments in abrasion dust, estimated on the basis of the peak intensity of quartz and heavy metal concentrations, had size dependency for all slag-asphalt concretes. Slag-derived fragments were enriched in abrasion dust particles with diameters of 150-1000 μm. Enrichment factors were 1.4-2.1. In contrast, there was no enrichment in abrasion dust particles with diameter less than 75 μm. This suggests that prior airborne-size fragmentation of substituted slag aggregates does not need to be considered for tested slag aggregates when environmental risks of abrasion dust of slag-asphalt pavement are assessed. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Model for amorphous aggregation processes

    NASA Astrophysics Data System (ADS)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  4. Asymmetric reproductive character displacement in male aggregation behaviour

    PubMed Central

    Pfennig, Karin S.; Stewart, Alyssa B.

    2011-01-01

    Reproductive character displacement—the evolution of traits that minimize reproductive interactions between species—can promote striking divergence in male signals or female mate preferences between populations that do and do not occur with heterospecifics. However, reproductive character displacement can affect other aspects of mating behaviour. Indeed, avoidance of heterospecific interactions might contribute to spatial (or temporal) aggregation of conspecifics. We examined this possibility in two species of hybridizing spadefoot toad (genus Spea). We found that in Spea bombifrons sympatric males were more likely than allopatric males to associate with calling males. Moreover, contrary to allopatric males, sympatric S. bombifrons males preferentially associated with conspecific male calls. By contrast, Spea multiplicata showed no differences between sympatry and allopatry in likelihood to associate with calling males. Further, sympatric and allopatric males did not differ in preference for conspecifics. However, allopatric S. multiplicata were more variable than sympatric males in their responses. Thus, in S. multiplicata, character displacement may have refined pre-existing aggregation behaviour. Our results suggest that heterospecific interactions can foster aggregative behaviour that might ultimately contribute to clustering of conspecifics. Such clustering can generate spatial or temporal segregation of reproductive activities among species and ultimately promote reproductive isolation. PMID:21177683

  5. Heating of Porous Icy Dust Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirono, Sin-iti

    At the beginning of planetary formation, highly porous dust aggregates are formed through coagulation of dust grains. Outside the snowline, the main component of an aggregate is H{sub 2}O ice. Because H{sub 2}O ice is formed in amorphous form, its thermal conductivity is extremely small. Therefore, the thermal conductivity of an icy dust aggregate is low. There is a possibility of heating inside an aggregate owing to the decay of radionuclides. It is shown that the temperature increases substantially inside an aggregate, leading to crystallization of amorphous ice. During the crystallization, the temperature further increases sufficiently to continue sintering. Themore » mechanical properties of icy dust aggregates change, and the collisional evolution of dust aggregates is affected by the sintering.« less

  6. Fractal aggregates in tennis ball systems

    NASA Astrophysics Data System (ADS)

    Sabin, J.; Bandín, M.; Prieto, G.; Sarmiento, F.

    2009-09-01

    We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the images of the cluster of balls, following Forrest and Witten's pioneering studies on the aggregation of smoke particles, to estimate their fractal dimension.

  7. Protein aggregation and prionopathies.

    PubMed

    Renner, M; Melki, R

    2014-06-01

    Prion protein and prion-like proteins share a number of characteristics. From the molecular point of view, they are constitutive proteins that aggregate following conformational changes into insoluble particles. These particles escape the cellular clearance machinery and amplify by recruiting the soluble for of their constituting proteins. The resulting protein aggregates are responsible for a number of neurodegenerative diseases such as Creutzfeldt-Jacob, Alzheimer, Parkinson and Huntington diseases. In addition, there are increasing evidences supporting the inter-cellular trafficking of these aggregates, meaning that they are "transmissible" between cells. There are also evidences that brain homogenates from individuals developing Alzheimer and Parkinson diseases propagate the disease in recipient model animals in a manner similar to brain extracts of patients developing Creutzfeldt-Jacob's disease. Thus, the propagation of protein aggregates from cell to cell may be a generic phenomenon that contributes to the evolution of neurodegenerative diseases, which has important consequences on human health issues. Moreover, although the distribution of protein aggregates is characteristic for each disease, new evidences indicate the possibility of overlaps and crosstalk between the different disorders. Despite the increasing evidences that support prion or prion-like propagation of protein aggregates, there are many unanswered questions regarding the mechanisms of toxicity and this is a field of intensive research nowadays. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Microbial aggregates in anaerobic wastewater treatment.

    PubMed

    Kosaric, N; Blaszczyk, R

    1990-01-01

    The phenomenon aggregation of anaerobic bacteria gives an opportunity to speed up the digestion rate during methanogenesis. The aggregates are mainly composed of methanogenic bacteria which convert acetate and H2/CO2 into methane. Other bacteria are also included in the aggregates but their concentration is rather small. The aggregates may also be formed during acetogenesis or even hydrolysis but such aggregates are not stable and disrupt quickly when not fed. A two stage process seems to be suitable when high concentrated solid waste must be treated. Special conditions are necessary to promote aggregate formation from methanogenic bacteria but aggregates once formed are stable without feeding even for a few years. The structure, texture and activity of bacterial aggregates depend on several parameters: (1)--temperature and pH, (2)--wastewater composition and (3)--hydrodynamic conditions within the reactor. The common influence of all these parameters is still rather unknown but some recommendations may be given. Temperature and pH should be maintained in the range which is optimal for methanogenic bacteria e.g. a temperature between 32 and 50 degrees C and a value pH between 6.5 and 7.5. Wastewaters should contain soluble wastes and the specific loading rate should be around one kgCOD(kgVSS)-1 d-1. The concentration of the elements influences aggregate composition and probably structure and texture. At high calcium concentration a change in the colour of the granules has been observed. Research is necessary to investigate the influence of other elements and organic toxicants on maintenance of the aggregates. Hydrodynamic conditions seem to influence the stability of the granules over long time periods. At low liquid stream rates, aggregates may starve and lysis within the aggregates is possible which results in hollowing of aggregates and their floating. At high liquid stream rates the aggregates may be disrupted and washed out of the reactor as a flocculent

  9. On the ability of PAMAM dendrimers and dendrimer/DNA aggregates to penetrate POPC model biomembranes.

    PubMed

    Ainalem, Marie-Louise; Campbell, Richard A; Khalid, Syma; Gillams, Richard J; Rennie, Adrian R; Nylander, Tommy

    2010-06-03

    Poly(amido amine) (PAMAM) dendrimers have previously been shown, as cationic condensing agents of DNA, to have high potential for nonviral gene delivery. This study addresses two key issues for gene delivery: the interaction of the biomembrane with (i) the condensing agent (the cationic PAMAM dendrimer) and (ii) the corresponding dendrimer/DNA aggregate. Using in situ null ellipsometry and neutron reflection, parallel experiments were carried out involving dendrimers of generations 2 (G2), 4 (G4), and 6 (G6). The study demonstrates that free dendrimers of all three generations were able to traverse supported palmitoyloleoylphosphatidylcholine (POPC) bilayers deposited on silica surfaces. The model biomembranes were elevated from the solid surfaces upon dendrimer penetration, which offers a promising new way to generate more realistic model biomembranes where the contact with the supporting surface is reduced and where aqueous cavities are present beneath the bilayer. The largest dendrimer (G6) induced partial bilayer destruction directly upon penetration, whereas the smaller dendrimers (G2 and G4) leave the bilayer intact, so we propose that lower generation dendrimers have greater potential as transfection mediators. In addition to the experimental observations, coarse-grained simulations on the interaction between generation 3 (G3) dendrimers and POPC bilayers were performed in the absence and presence of a bilayer-supporting negatively charged surface that emulates the support. The simulations demonstrate that G3 is transported across free-standing POPC bilayers by direct penetration and not by endocytosis. The penetrability was, however, reduced in the presence of a surface, indicating that the membrane transport observed experimentally was not driven solely by the surface. The experimental reflection techniques were also applied to dendrimer/DNA aggregates of charge ratio = 0.5, and while G2/DNA and G4/DNA aggregates interact with POPC bilayers, G6/DNA

  10. Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng

    2018-04-01

    In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute

  11. Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions.

    PubMed

    Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng

    2018-04-20

    In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute

  12. Spatial Modeling of Iron Transformations Within Artificial Soil Aggregates

    NASA Astrophysics Data System (ADS)

    Kausch, M.; Meile, C.; Pallud, C.

    2008-12-01

    Structured soils exhibit significant variations in transport characteristics at the aggregate scale. Preferential flow occurs through macropores while predominantly diffusive exchange takes place in intra-aggregate micropores. Such environments characterized by mass transfer limitations are conducive to the formation of small-scale chemical gradients and promote strong spatial variation in processes controlling the fate of redox-sensitive elements such as Fe. In this study, we present a reactive transport model used to spatially resolve iron bioreductive processes occurring within a spherical aggregate at the interface between advective and diffusive domains. The model is derived from current conceptual models of iron(hydr)oxide (HFO) transformations and constrained by literature and experimental data. Data were obtained from flow-through experiments on artificial soil aggregates inoculated with Shewanella putrefaciens strain CN32, and include the temporal evolution of the bulk solution composition, as well as spatial information on the final solid phase distribution within aggregates. With all iron initially in the form of ferrihydrite, spatially heterogeneous formation of goethite/lepidocrocite, magnetite and siderite was observed during the course of the experiments. These transformations were reproduced by the model, which ascribes a central role to divalent iron as a driver of HFO transformations and master variable in the rate laws of the considered reaction network. The predicted dissolved iron breakthrough curves also match the experimental ones closely. Thus, the computed chemical concentration fields help identify factors governing the observed trends in the solid phase distribution patterns inside the aggregate. Building on a mechanistic description of transformation reactions, fluid flow and solute transport, the model was able to describe the observations and hence illustrates the importance of small-scale gradients and dynamics of bioreductive

  13. Role of streams in myxobacteria aggregate formation

    NASA Astrophysics Data System (ADS)

    Kiskowski, Maria A.; Jiang, Yi; Alber, Mark S.

    2004-10-01

    Cell contact, movement and directionality are important factors in biological development (morphogenesis), and myxobacteria are a model system for studying cell-cell interaction and cell organization preceding differentiation. When starved, thousands of myxobacteria cells align, stream and form aggregates which later develop into round, non-motile spores. Canonically, cell aggregation has been attributed to attractive chemotaxis, a long range interaction, but there is growing evidence that myxobacteria organization depends on contact-mediated cell-cell communication. We present a discrete stochastic model based on contact-mediated signaling that suggests an explanation for the initialization of early aggregates, aggregation dynamics and final aggregate distribution. Our model qualitatively reproduces the unique structures of myxobacteria aggregates and detailed stages which occur during myxobacteria aggregation: first, aggregates initialize in random positions and cells join aggregates by random walk; second, cells redistribute by moving within transient streams connecting aggregates. Streams play a critical role in final aggregate size distribution by redistributing cells among fewer, larger aggregates. The mechanism by which streams redistribute cells depends on aggregate sizes and is enhanced by noise. Our model predicts that with increased internal noise, more streams would form and streams would last longer. Simulation results suggest a series of new experiments.

  14. The roles of prostaglandin endoperoxides, thromboxane A2 and adenosine diphosphate in collagen-induced aggregation in man and the rat.

    PubMed Central

    Emms, H.; Lewis, G. P.

    1986-01-01

    The effects of aspirin, carboxyheptylimidazole (CHI) and creatine phosphate/creatine phosphokinase (CP/CPK) on platelet aggregation and thromboxane B2 (TxB2) formation induced by collagen have been examined in vitro. Platelets from two species, man and the rat, have been used. In man, aspirin and CHI abolished TxB2 production but only partially inhibited aggregation. CP/CPK partially inhibited aggregation and TxB2 formation. In the rat, aspirin and CHI abolished TxB2 formation but had no effect on aggregation. CP/CPK completely inhibited aggregation and partially inhibited TxB2 generation. In man, collagen-induced aggregation is largely dependent on ADP and to a lesser extent on arachidonate metabolites whereas, in the rat, ADP alone mediates aggregation induced by this agonist. The results with CP/CPK suggest that TxB2 formation is dependent either on the prior release of platelet ADP or on aggregation itself rather than being responsible for the aggregation response. PMID:3082399

  15. Aggregative stability of fungicidal nanomodifier based on zinc hydrosilicates

    NASA Astrophysics Data System (ADS)

    Grishina, Anna; Korolev, Evgeniy

    2018-03-01

    Currently, there is a strong need of high performance multi functional materials in high-rise construction. Obviously, such materials should be characterized by high strength; but for interior rooms biosafety is important as well. The promising direction to obtain both high strength and maintain biosafety in buildings and structures is to manage the structure of mineral binders by means of fungicidal nanomodifier based on zinc hydrosilicates. In the present work the aggregative stability of colloidal solutions of zinc hydrosilicates after one year of storage was studied. It has been established that the concentration of iron (III) hydroxide used to prepare the precursor of zinc hydrosilicates has a significant effect on the long-term aggregative stability: as the concentration of iron (III) hydroxide increases, the resistance of the fungicidal nanomodifier increases. It was found that, despite the minimal concentration of nano-sized zinc hydrosilicates (0.028%), the colloidal solution possesses a low long-term aggregative stability; while in the initial period (not less than 14 days) the colloidal solution of the nanomodifier is aggregatively stable. It is shown that when the ratio in the colloidal solution of the amount of the substance CH3COOH / SiO2 = 0.43 is reached, an increase in the polymerization rate is observed, which is the main cause of low aggregative stability. Colloidal solutions containing zinc hydrosilicates synthesized at a concentration of iron (III) hydroxide used to produce a precursor equal to 0.7% have a long-term aggregative stability and do not significantly change the reduced particle. Such compositions are to be expediently used for the nanomodifying of building composites in order to control their structure formation and to create conditions that impede the development of various mycelial fungi.

  16. Impact of Aggregates Size and Fibers on basic Mechanical Properties of Asphalt Emulsion—Cement Concrete

    NASA Astrophysics Data System (ADS)

    Fu, Jun; Liu, Zhihong; Liu, Jie

    2018-01-01

    Asphalt Emulsion—Cement Concrete (AECC) is currently considered as a typical semi-flexibility material. One of the disadvantages of this material is brittle fracture and lacking ductility. This study aims at accelerating the basic mechanical properties of AECC using fibers and different aggregates size. The mix of AECC was introduced and the different content of fibers and aggregates size were studied. The results showed that the smaller aggregates size could improve the young’s modulus and compressive strength as well as fiber. The modulus-compressive strength ratio of fiber reinforced AECC is always below 500.

  17. Aggregate breakdown of nanoparticulate titania

    NASA Astrophysics Data System (ADS)

    Venugopal, Navin

    Six nanosized titanium dioxide powders synthesized from a sulfate process were investigated. The targeted end-use of this powder was for a de-NOx catalyst honeycomb monolith. Alteration of synthesis parameters had resulted principally in differences in soluble ion level and specific surface area of the powders. The goal of this investigation was to understand the role of synthesis parameters in the aggregation behavior of these powders. Investigation via scanning electron microscopy of the powders revealed three different aggregation iterations at specific length scales. Secondary and higher order aggregate strength was investigated via oscillatory stress rheometry as a means of simulating shear conditions encountered during extrusion. G' and G'' were measured as a function of the applied oscillatory stress. Oscillatory rheometry indicated a strong variation as a function of the sulfate level of the particles in the viscoelastic yield strengths. Powder yield stresses ranged from 3.0 Pa to 24.0 Pa of oscillatory stress. Compaction curves to 750 MPa found strong similarities in extrapolated yield point of stage I and II compaction for each of the powders (at approximately 500 MPa) suggesting that the variation in sulfate was greatest above the primary aggregate level. Scanning electron microscopy of samples at different states of shear in oscillatory rheometry confirmed the variation in the linear elastic region and the viscous flow regime. A technique of this investigation was to approach aggregation via a novel perspective: aggregates are distinguished as being loose open structures that are highly disordered and stochastic in nature. The methodology used was to investigate the shear stresses required to rupture the various aggregation stages encountered and investigate the attempt to realign the now free-flowing constituents comprising the aggregate into a denser configuration. Mercury porosimetry was utilized to measure the pore size of the compact resulting from

  18. Bead-Level Characterization of Early-Stage Amyloid β42 Aggregates: Nuclei and Ionic Concentration Effects.

    PubMed

    Hu, Dingkun; Zhao, Wei; Zhu, Yong; Ai, Hongqi; Kang, Baotao

    2017-11-16

    A growing body of evidence shows that soluble β-amyloid (Aβ) aggregates, oligomers, and even protofibrils, may be more neurotoxic than fibrils. Here, we employ a coarse grain model to investigate the aggregation of 75mer Aβ 42 oligomers and the salt effect, the cornerstone of fibril evolution. We find that the oligomer morphologies generated by seventy-five monomers or mixed by both fifty monomers and five preset pentameric nuclei are different (spherical vs. bar-/disk-shaped) and are characterize by a full of coil content (former) and >70 % β-turn content (latter), indicating a novel role of the nuclei played in the early aggregation stage. The aggregation for the former oligomer adopts a master-nucleus mechanism, whereas for the latter combination of monomers and pentamers a multi-nuclei one is found. The random salt ions will distribute around the aggregates to form several ion shells as the aggregation develops. A unique two-fold gap between the shells is observed in the system containing 100 mm NaCl, endowing the physiological salt concentration with special implications. Meanwhile, an accurate ion-solute cutoff distance (0.66 nm) is predicted, and recommended to apply to many other aggregated biomolecular systems. The present distribution scenario of ions can be generalized to other aggregated systems, although it is strictly dependent on the identity of a specific aggregate, such as its charge and composition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Platelet aggregation inhibitors, vitamin K antagonists and risk of subarachnoid hemorrhage.

    PubMed

    Risselada, R; Straatman, H; van Kooten, F; Dippel, D W J; van der Lugt, A; Niessen, W J; Firouzian, A; Herings, R M C; Sturkenboom, M C J M

    2011-03-01

    Use of platelet aggregation inhibitors and vitamin K antagonists has been associated with an increased risk of intracranial hemorrhage (ICH). Whether the use of these antithrombotic drugs is associated with an increased risk of subarachnoid hemorrhage (SAH) remains unclear, especially as confounding by indication might play a role. The aim of the present study was to investigate whether use of platelet aggregation inhibitors or vitamin K antagonists increase the risk of SAH. We applied population-based case-control, case-crossover and case-time-control designs to estimate the risk of SAH while addressing issues both of confounding by indication and time varying exposure within the PHARMO Record Linkage System database. This system includes drug dispensing records from community pharmacies and hospital discharge records of more than 3 million community-dwelling inhabitants in the Netherlands. Patients were considered a case if they were hospitalized for a first SAH (ICD-9-CM code 430) in the period between 1st January 1998 and 31st December 2006. Controls were selected from the source population, matched on age, gender and date of hospitalization. Conditional logistic regression was used to estimate multivariable adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for the risk of SAH during use of platelet aggregation inhibitors or vitamin K antagonists. In the case-crossover and case-time-control designs we selected 11 control periods preceding the index date in successive steps of 1 month in the past. In all, 1004 cases of SAH were identified. In the case-control analysis the adjusted OR for the risk of SAH in current use of platelet aggregation inhibitors was 1.32 (95% CI: 1.02-1.70) and in current use of vitamin K antagonists 1.29 (95% CI: 0.89-1.87) compared with no use. In the case-crossover analysis the ORs for the risk of SAH in current use of platelet aggregation inhibitors and vitamin K antagonists were 1.04 (95% CI: 0.56-1.94) and 2.46 (95% CI

  20. GENERAL: Kinetic Behaviors of Catalysis-Driven Growth of Three-Species Aggregates on Base of Exchange-Driven Aggregations

    NASA Astrophysics Data System (ADS)

    Sun, Yun-Fei; Chen, Dan; Lin, Zhen-Quan; Ke, Jian-Hong

    2009-06-01

    We propose a solvable aggregation model to mimic the evolution of population A, asset B, and the quantifiable resource C in a society. In this system, the population and asset aggregates themselves grow through self-exchanges with the rate kernels K1(k, j) = K1kj and K2(k, j) = K2kj, respectively. The actions of the population and asset aggregations on the aggregation evolution of resource aggregates are described by the population-catalyzed monomer death of resource aggregates and asset-catalyzed monomer birth of resource aggregates with the rate kernels J1(k, j) = J1k and J2(k, j) = J2k, respectively. Meanwhile, the asset and resource aggregates conjunctly catalyze the monomer birth of population aggregates with the rate kernel I1(k, i, j) = I1kiμjη, and population and resource aggregates conjunctly catalyze the monomer birth of asset aggregates with the rate kernel I2(k, i, j) = I2kivjη. The kinetic behaviors of species A, B, and C are investigated by means of the mean-field rate equation approach. The effects of the population-catalyzed death and asset-catalyzed birth on the evolution of resource aggregates based on the self-exchanges of population and asset appear in effective forms. The coefficients of the effective population-catalyzed death and the asset-catalyzed birth are expressed as J1e = J1/K1 and J2e = J2/K2, respectively. The aggregate size distribution of C species is found to be crucially dominated by the competition between the effective death and the effective birth. It satisfies the conventional scaling form, generalized scaling form, and modified scaling form in the cases of J1e < J2e, J1e = J2e, and J1e > J2e, respectively. Meanwhile, we also find the aggregate size distributions of populations and assets both fall into two distinct categories for different parameters μ, ν, and η: (i) When μ = ν = η = 0 and μ = ν = 0, η = 1, the population and asset aggregates obey the generalized scaling forms; and (ii) When μ = ν = 1, η = 0

  1. Fractal Aggregates in Tennis Ball Systems

    ERIC Educational Resources Information Center

    Sabin, J.; Bandin, M.; Prieto, G.; Sarmiento, F.

    2009-01-01

    We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the…

  2. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milton Wu; Paul Yuran

    2006-12-31

    Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Usingmore » 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is continuing to work to improve

  3. Sequestration of synaptic proteins by alpha-synuclein aggregates leading to neurotoxicity is inhibited by small peptide

    PubMed Central

    Choi, Mal-Gi; Kim, Mi Jin; Kim, Do-Geun; Yu, Ri; Jang, You-Na

    2018-01-01

    α-Synuclein (α-syn) is a major component of Lewy bodies found in synucleinopathies including Parkinson’s disease (PD) and Dementia with Lewy Bodies (DLB). Under the pathological conditions, α-syn tends to generate a diverse form of aggregates showing toxicity to neuronal cells and able to transmit across cells. However, mechanisms by which α-syn aggregates affect cytotoxicity in neurons have not been fully elucidated. Here we report that α-syn aggregates preferentially sequester specific synaptic proteins such as vesicle-associated membrane protein 2 (VAMP2) and synaptosomal-associated protein 25 (SNAP25) through direct binding which is resistant to SDS. The sequestration effect of α-syn aggregates was shown in a cell-free system, cultured primary neurons, and PD mouse model. Furthermore, we identified a specific blocking peptide derived from VAMP2 which partially inhibited the sequestration by α-syn aggregates and contributed to reduced neurotoxicity. These results provide a mechanism of neurotoxicity mediated by α-syn aggregates and suggest that the blocking peptide interfering with the pathological role of α-syn aggregates could be useful for designing a potential therapeutic drug for the treatment of PD. PMID:29608598

  4. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab.

    PubMed

    Courtois, Fabienne; Agrawal, Neeraj J; Lauer, Timothy M; Trout, Bernhardt L

    2016-01-01

    The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions.

  5. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab

    PubMed Central

    Courtois, Fabienne; Agrawal, Neeraj J; Lauer, Timothy M; Trout, Bernhardt L

    2016-01-01

    The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions. PMID:26514585

  6. A comparative study on the aggregating effects of guanidine thiocyanate, guanidine hydrochloride and urea on lysozyme aggregation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emadi, Saeed, E-mail: emadi@iasbs.ac.ir; Behzadi, Maliheh

    Highlights: • Lysozyme aggregated in guanidine thiocyanate (1.0 and 2.0 M). • Lysozyme aggregated in guanidine hydrochloride (4 and 5 M). • Lysozyme did not aggregated at any concentration (0.5–5 M) of urea. • Unfolding pathway is more important than unfolding per se in aggregation. - Abstract: Protein aggregation and its subsequent deposition in different tissues culminate in a diverse range of diseases collectively known as amyloidoses. Aggregation of hen or human lysozyme depends on certain conditions, namely acidic pH or the presence of additives. In the present study, the effects on the aggregation of hen egg-white lysozyme via incubationmore » in concentrated solutions of three different chaotropic agents namely guanidine thiocyanate, guanidine hydrochloride and urea were investigated. Here we used three different methods for the detection of the aggregates, thioflavin T fluorescence, circular dichroism spectroscopy and atomic force microscopy. Our results showed that upon incubation with different concentrations (0.5, 1.0, 2.0, 3.0, 4.0, 5.0 M) of the chemical denaturants, lysozyme was aggregated at low concentrations of guanidine thiocyanate (1.0 and 2.0 M) and at high concentrations of guanidine hydrochloride (4 and 5 M), although no fibril formation was detected. In the case of urea, no aggregation was observed at any concentration.« less

  7. Reconstitution of Biological Molecular generators of electric current. Bacteriorhodopsin.

    PubMed

    Drachev, L A; Frolov, V N; Kaulen, A D; Liberman, E A; Ostroumov, S A; Plakunova, V G; Semenov, A Y; Skulachev, V P

    1976-11-25

    1. Photoinduced generation of electric current by bacteriorhodopsin, incorporated into the planar phospholipid membrane, has been directly measured with conventional electrometer techniques. 2. Two methods for bacteriorhodopsin incorporation have been developed: (a) formation of planar membrane from a mixture of decane solution of phospholipids and of the fraction of violet fragments of the Halobacterium halobium membrane (bacteriorhodopsin sheets), and (b) adhesion of bacteriorhodopsin-containing reconstituted spherical membranes (proteoliposomes) to the planar membrane in the presence of Ca2+ or some other cations. In both cases, illumination was found to induce electric current generation directed across the planar membrane, an effect which was measured by macroelectrodes immersed into electrolyte solutions on both sides of the membrane. 3. The maximal values of the transmembrane electric potential were of about 150 mV at a current of about 10(-11) A. The electromotive force measured by means of counterbalancing the photoeffect by an external battery, was found to reach the value of 300 mV. 4. The action spectrum of the photoeffect coincides with the bacteriorhodopsin absorption spectrum (maximum about 570 nm). 5. Both components of the electrochemical potential of H+ ions (electric potential and delta pH) across the planar membrane affect the bacteriorhodopsin photoelectric response in a fashion which could be expected if bacteriorhodopsin were a light-dependent electrogenic proton pump. 6. La3+ ions were shown to inhibit operation of those bacteriorhodopsin which pump out H+ ions from the La3+-containing compartment. 7. The photoeffect, mediated by proteoliposomes associated with thick planar membrane, is decreased by gramicidin A at concentrations which do not influence the planar membrane resistance in the light. On the contrary, a protonophorous uncoupler, trichlorocarbonylcyanidephenylhydrazone, decreases the photoeffect only if it is added at a

  8. Molecular aggregation of humic substances

    USGS Publications Warehouse

    Wershaw, R. L.

    1999-01-01

    Humic substances (HS) form molecular aggregates in solution and on mineral surfaces. Elucidation of the mechanism of formation of these aggregates is important for an understanding of the interactions of HS in soils arid natural waters. The HS are formed mainly by enzymatic depolymerization and oxidation of plant biopolymers. These reactions transform the aromatic and lipid plant components into amphiphilic molecules, that is, molecules that consist of separate hydrophobic (nonpolar) and hydrophilic (polar) parts. The nonpolar parts of the molecules are composed of relatively unaltered segments of plant polymers and the polar parts of carboxylic acid groups. These amphiphiles form membrane-like aggregates on mineral surfaces and micelle-like aggregates in solution. The exterior surfaces of these aggregates are hydrophilic, and the interiors constitute separate hydrophobic liquid-like phases.

  9. Application of active quenching of second generation wire for current limiting

    DOE PAGES

    Solovyov, Vyacheslav F.; Li, Qiang

    2015-10-19

    Superconducting fault current limiters (SFCL's) are increasingly implemented in the power grid as a protection of substation equipment from fault currents. Resistive SFCL's are compact and light, however they are passively triggered and thus may not be sufficiently sensitive to respond to faults in the distribution grid. Here, we explore the prospect of adding an active management feature to a traditional resistive SFCL. A flexible radio-frequency coil, which is an integral part of the switching structure, acts as a triggering device. We show that the application of a short, 10 ms, burst of ac magnetic field during the fault triggersmore » a uniform quench of the wire and significantly reduces the reaction time of the wire at low currents. The ac field burst generates a high density of normal zones, which merge into a continuous resistive region at a rate much faster than that of sparse normal zones created by the transport current alone.« less

  10. Phthalocyanines as Molecular Scaffolds to Block Disease-Associated Protein Aggregation.

    PubMed

    Valiente-Gabioud, Ariel A; Miotto, Marco C; Chesta, María E; Lombardo, Verónica; Binolfi, Andres; Fernández, Claudio O

    2016-05-17

    The aggregation of proteins into toxic conformations plays a critical role in the development of different neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Creutzfled-Jakob's disease (CJD). These disorders share a common pathological mechanism that involves the formation of aggregated protein species including toxic oligomers and amyloid fibrils. The aggregation of alpha-synuclein (αS) in PD and the amyloid beta peptide (Aβ) and tau protein in AD results in neuronal death and disease onset. In the case of CJD, the misfolding of the physiological prion protein (PrP) induces a chain reaction that results in accumulation of particles that elicit brain damage. Currently, there is no preventive therapy for these diseases and the available therapeutic approaches are based on the treatment of the symptoms rather than the underlying causes of the disease. Accordingly, the aggregation pathway of these proteins represents a useful target for therapeutic intervention. Therefore, understanding the mechanism of amyloid formation and its inhibition is of high clinical importance. The design of small molecules that efficiently inhibit the aggregation process and/or neutralize its associated toxicity constitutes a promising tool for the development of therapeutic strategies against these disorders. In this accounts, we discuss current knowledge on the anti-amyloid activity of phthalocyanines and their potential use as drug candidates in neurodegeneration. These tetrapyrrolic compounds modulate the amyloid assembly of αS, tau, Aβ, and the PrP in vitro, and protect cells from the toxic effects of amyloid aggregates. In addition, in scrapie-infected mice, these compounds showed important prophylactic antiscrapie properties. The structural basis for the inhibitory effect of phthalocyanines on amyloid filament assembly relies on specific π-π interactions between the aromatic ring system of these molecules and aromatic residues in the

  11. Shape and Size of Microfine Aggregates: X-ray Microcomputed Tomgraphy vs. Laser Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdogan,S.; Garboczi, E.; Fowler, D.

    Microfine rock aggregates, formed naturally or in a crushing process, pass a No. 200 ASTM sieve, so have at least two orthogonal principal dimensions less than 75 {mu}m, the sieve opening size. In this paper, for the first time, we capture true 3-D shape and size data of several different types of microfine aggregates, using X-ray microcomputed tomography ({mu}CT) with a voxel size of 2 {mu}m. This information is used to generate shape analyses of various kinds. Particle size distributions are also generated from the {mu}CT data and quantitatively compared to the results of laser diffraction, which is the leadingmore » method for measuring particle size distributions of sub-millimeter size particles. By taking into account the actual particle shape, the differences between {mu}CT and laser diffraction can be qualitatively explained.« less

  12. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia.

    PubMed

    Wang, Chencai; Hsu, Chao-Hsiung; Li, Zhao; Hwang, Lian-Pin; Lin, Ying-Chih; Chou, Pi-Tai; Lin, Yung-Ya

    2017-01-01

    Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite Fe 3 O 4 and cobalt ferrite CoFe 2 O 4 magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10-20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%-25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal

  13. Holographic Characterization of Colloidal Fractal Aggregates

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Cheong, Fook Chiong; Ruffner, David B.; Zhong, Xiao; Ward, Michael D.; Grier, David G.

    In-line holographic microscopy images of micrometer-scale fractal aggregates can be interpreted with the Lorenz-Mie theory of light scattering and an effective-sphere model to obtain each aggregate's size and the population-averaged fractal dimension. We demonstrate this technique experimentally using model fractal clusters of polystyrene nanoparticles and fractal protein aggregates composed of bovine serum albumin and bovine pancreas insulin. This technique can characterize several thousand aggregates in ten minutes and naturally distinguishes aggregates from contaminants such as silicone oil droplets. Work supported by the SBIR program of the NSF.

  14. Formation and structure of stable aggregates in binary diffusion-limited cluster-cluster aggregation processes

    NASA Astrophysics Data System (ADS)

    López-López, J. M.; Moncho-Jordá, A.; Schmitt, A.; Hidalgo-Álvarez, R.

    2005-09-01

    Binary diffusion-limited cluster-cluster aggregation processes are studied as a function of the relative concentration of the two species. Both, short and long time behaviors are investigated by means of three-dimensional off-lattice Brownian Dynamics simulations. At short aggregation times, the validity of the Hogg-Healy-Fuerstenau approximation is shown. At long times, a single large cluster containing all initial particles is found to be formed when the relative concentration of the minority particles lies above a critical value. Below that value, stable aggregates remain in the system. These stable aggregates are composed by a few minority particles that are highly covered by majority ones. Our off-lattice simulations reveal a value of approximately 0.15 for the critical relative concentration. A qualitative explanation scheme for the formation and growth of the stable aggregates is developed. The simulations also explain the phenomenon of monomer discrimination that was observed recently in single cluster light scattering experiments.

  15. Observing Convective Aggregation

    NASA Astrophysics Data System (ADS)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  16. Shaken, but not stirred: how vortical flow drives small-scale aggregations of gyrotactic phytoplankton

    NASA Astrophysics Data System (ADS)

    Barry, Michael; Durham, William; Climent, Eric; Stocker, Roman

    2011-11-01

    Coastal ocean observations reveal that motile phytoplankton form aggregations at the Kolmogorov scale (mm-cm), whereas non-motile cells do not. We propose a new mechanism for the formation of this small-scale patchiness based on the interplay of turbulence and gyrotactic motility. Counterintuitively, turbulence does not stir a plankton suspension to homogeneity but drives aggregations instead. Through controlled laboratory experiments we show that the alga Heterosigma akashiwo rapidly forms aggregations in a cavity-driven vortical flow that approximates Kolmogorov eddies. Gyrotactic motility is found to be the key ingredient for aggregation, as non-motile cells remain randomly distributed. Observations are in remarkable agreement with a 3D model, and the validity of this mechanism for generating patchiness has been extended to realistic turbulent flows using Direct Numerical Simulations. Because small-scale patchiness influences rates of predation, sexual reproduction, infection, and nutrient competition, this result indicates that gyrotactic motility can profoundly affect phytoplankton ecology.

  17. What favors convective aggregation and why?

    NASA Astrophysics Data System (ADS)

    Muller, Caroline; Bony, Sandrine

    2015-07-01

    The organization of convection is ubiquitous, but its physical understanding remains limited. One particular type of organization is the spatial self-aggregation of convection, taking the form of cloud clusters, or tropical cyclones in the presence of rotation. We show that several physical processes can give rise to self-aggregation and highlight the key features responsible for it, using idealized simulations. Longwave radiative feedbacks yield a "radiative aggregation." In that case, sufficient spatial variability of radiative cooling rates yields a low-level circulation, which induces the upgradient energy transport and radiative-convective instability. Not only do vertically integrated radiative budgets matter but the vertical profile of cooling is also crucial. Convective aggregation is facilitated when downdrafts below clouds are weak ("moisture-memory aggregation"), and this is sufficient to trigger aggregation in the absence of longwave radiative feedbacks. These results shed some light on the sensitivity of self-aggregation to various parameters, including resolution or domain size.

  18. Lightweight aggregate abrasion study.

    DOT National Transportation Integrated Search

    1963-02-01

    The rapid increase in the use of lightweight aggregates in structural concrete has created a number of problems for the Materials Engineer in evaluating this type aggregate. Exhaustive studies are being made of a number of properties of lightweight a...

  19. Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer)

    PubMed Central

    2015-01-01

    The cercal system of crickets detects low-frequency air currents produced by approaching predators and self-generated air currents during singing, which may provide sensory feedback to the singing motor network. We analyzed the effect of cercal stimulation on singing motor pattern generation to reveal the response of a singing interneuron to predator-like signals and to elucidate the possible role of self-generated air currents during singing. In fictive singing males, we recorded an interneuron of the singing network while applying air currents to the cerci; additionally, we analyzed the effect of abolishing the cercal system in freely singing males. In fictively singing crickets, the effect of short air stimuli is either to terminate prematurely or to lengthen the interchirp interval, depending on their phase in the chirp cycle. Within our stimulation paradigm, air stimuli of different velocities and durations always elicited an inhibitory postsynaptic potential in the singing interneuron. Current injection in the singing interneuron elicited singing motor activity, even during the air current-evoked inhibitory input from the cercal pathway. The disruptive effects of air stimuli on the fictive singing pattern and the inhibitory response of the singing interneuron point toward the cercal system being involved in initiating avoidance responses in singing crickets, according to the established role of cerci in a predator escape pathway. After abolishing the activity of the cercal system, the timing of natural singing activity was not significantly altered. Our study provides no evidence that self-generated cercal sensory activity has a feedback function for singing motor pattern generation. PMID:26334014

  20. A Method of Data Aggregation for Wearable Sensor Systems

    PubMed Central

    Shen, Bo; Fu, Jun-Song

    2016-01-01

    Data aggregation has been considered as an effective way to decrease the data to be transferred in sensor networks. Particularly for wearable sensor systems, smaller battery has less energy, which makes energy conservation in data transmission more important. Nevertheless, wearable sensor systems usually have features like frequently dynamic changes of topologies and data over a large range, of which current aggregating methods can’t adapt to the demand. In this paper, we study the system composed of many wearable devices with sensors, such as the network of a tactical unit, and introduce an energy consumption-balanced method of data aggregation, named LDA-RT. In the proposed method, we develop a query algorithm based on the idea of ‘happened-before’ to construct a dynamic and energy-balancing routing tree. We also present a distributed data aggregating and sorting algorithm to execute top-k query and decrease the data that must be transferred among wearable devices. Combining these algorithms, LDA-RT tries to balance the energy consumptions for prolonging the lifetime of wearable sensor systems. Results of evaluation indicate that LDA-RT performs well in constructing routing trees and energy balances. It also outperforms the filter-based top-k monitoring approach in energy consumption, load balance, and the network’s lifetime, especially for highly dynamic data sources. PMID:27347953

  1. Aggregate-level lead exposure, gun violence, homicide, and rape.

    PubMed

    Boutwell, Brian B; Nelson, Erik J; Qian, Zhengmin; Vaughn, Michael G; Wright, John P; Beaver, Kevin M; Barnes, J C; Petkovsek, Melissa; Lewis, Roger; Schootman, Mario; Rosenfeld, Richard

    2017-01-01

    An increasing body of research has linked the geographic distribution of lead with various indicators of criminal and antisocial behavior. The current study, using data from an ongoing project related to lead exposure in St. Louis City, MO, analyzed the association between aggregate blood lead levels and specific indicators violent crime within the city. Ecological study. St. Louis, Missouri. Blood lead levels. Official reports of violent crimes were categorized as 1) crimes involving a firearm (yes/no), 2) assault crimes (with or without a firearm), 3) robbery crimes (with or without a firearm), 4) homicides and 5) rape. With the exception of rape, aggregate blood-lead levels were statistically significant predictors of violent crime at the census tract level. The risk ratios for each of the outcome measures were as follows: firearm crimes 1.03 (1.03-1.04), assault crimes 1.03 (1.02-1.03), robbery crimes 1.03 (1.02-1.04), homicide 1.03 (1.01, 1.04), and rape 1.01 (0.99-1.03). Extending prior research in St. Louis, results suggest that aggregated lead exposure at the census tract level predicted crime outcomes, even after accounting for important sociological variables. Moving forward, a more developed understanding of aggregate level crime may necessitate a shift toward studying the synergy between sociological and biological risk factors such as lead exposure.

  2. Bouncing behavior of microscopic dust aggregates

    NASA Astrophysics Data System (ADS)

    Seizinger, A.; Kley, W.

    2013-03-01

    Context. Bouncing collisions of dust aggregates within the protoplanetary disk may have a significant impact on the growth process of planetesimals. Yet, the conditions that result in bouncing are not very well understood. Existing simulations studying the bouncing behavior used aggregates with an artificial, very regular internal structure. Aims: Here, we study the bouncing behavior of sub-mm dust aggregates that are constructed applying different sample preparation methods. We analyze how the internal structure of the aggregate alters the collisional outcome and we determine the influence of aggregate size, porosity, collision velocity, and impact parameter. Methods: We use molecular dynamics simulations where the individual aggregates are treated as spheres that are made up of several hundred thousand individual monomers. The simulations are run on graphic cards (GPUs). Results: Statistical bulk properties and thus bouncing behavior of sub-mm dust aggregates depend heavily on the preparation method. In particular, there is no unique relation between the average volume filling factor and the coordination number of the aggregate. Realistic aggregates bounce only if their volume filling factor exceeds 0.5 and collision velocities are below 0.1 ms-1. Conclusions: For dust particles in the protoplanetary nebula we suggest that the bouncing barrier may not be such a strong handicap in the growth phase of dust agglomerates, at least in the size range of ≈100 μm.

  3. Curcumin inhibits aggregation of alpha-synuclein.

    PubMed

    Pandey, Neeraj; Strider, Jeffrey; Nolan, William C; Yan, Sherry X; Galvin, James E

    2008-04-01

    Aggregation of amyloid-beta protein (Abeta) is a key pathogenic event in Alzheimer's disease (AD). Curcumin, a constituent of the Indian spice Turmeric is structurally similar to Congo Red and has been demonstrated to bind Abeta amyloid and prevent further oligomerization of Abeta monomers onto growing amyloid beta-sheets. Reasoning that oligomerization kinetics and mechanism of amyloid formation are similar in Parkinson's disease (PD) and AD, we investigated the effect of curcumin on alpha-synuclein (AS) protein aggregation. In vitro model of AS aggregation was developed by treatment of purified AS protein (wild-type) with 1 mM Fe3+ (Fenton reaction). It was observed that the addition of curcumin inhibited aggregation in a dose-dependent manner and increased AS solubility. The aggregation-inhibiting effect of curcumin was next investigated in cell culture utilizing catecholaminergic SH-SY5Y cell line. A model system was developed in which the red fluorescent protein (DsRed2) was fused with A53T mutant of AS and its aggregation examined under different concentrations of curcumin. To estimate aggregation in an unbiased manner, a protocol was developed in which the images were captured automatically through a high-throughput cell-based screening microscope. The obtained images were processed automatically for aggregates within a defined dimension of 1-6 microm. Greater than 32% decrease in mutant alpha-synuclein aggregation was observed within 48 h subsequent to curcumin addition. Our data suggest that curcumin inhibits AS oligomerization into higher molecular weight aggregates and therefore should be further explored as a potential therapeutic compound for PD and related disorders.

  4. System and method for generating current by selective minority species heating

    DOEpatents

    Fisch, Nathaniel J.

    1983-01-01

    A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of low-frequency waves into the plasma by means of phased antenna arrays or phased waveguide arrays. The plasma is prepared with a minority ion species of different charge state and different gyrofrequency from the majority ion species. The wave frequency and wave phasing are chosen such that the wave energy is absorbed preferentially by minority species ions traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

  5. Transient interaction model of electromagnetic field generated by lightning current pulses and human body

    NASA Astrophysics Data System (ADS)

    Iváncsy, T.; Kiss, I.; Szücs, L.; Tamus, Z. Á.

    2015-10-01

    The lightning current generates time-varying magnetic field near the down- conductor and the down-conductors are mounted on the wall of the buildings where residential places might be situated. It is well known that the rapidly changing magnetic fields can generate dangerous eddy currents in the human body.The higher duration and gradient of the magnetic field can cause potentially life threatening cardiac stimulation. The coupling mechanism between the electromagnetic field and the human body is based on a well-known physical phenomena (e.g. Faradays law of induction). However, the calculation of the induced current is very complicated because the shape of the organs is complex and the determination of the material properties of living tissues is difficult, as well. Our previous study revealed that the cardiac stimulation is independent of the rising time of the lightning current and only the peak of the current counts. In this study, the authors introduce an improved model of the interaction of electromagnetic fields of lighting current near down-conductor and human body. Our previous models are based on the quasi stationer field calculations, the new improved model is a transient model. This is because the magnetic field around the down-conductor and in the human body can be determined more precisely, therefore the dangerous currents in the body can be estimated.

  6. Amyloid-beta aggregates formed at polar-nonpolar interfaces differ from amyloid-beta protofibrils produced in aqueous buffers.

    PubMed

    Nichols, Michael R; Moss, Melissa A; Reed, Dana Kim; Hoh, Jan H; Rosenberry, Terrone L

    2005-07-01

    The deposition of aggregated amyloid-beta (Abeta) peptides in the brain as senile plaques is a pathological hallmark of Alzheimer's disease (AD). Several lines of evidence indicate that fibrillar and, in particular, soluble aggregates of these 40- and 42-residue peptides are important in the etiology of AD. Recent studies also stress that amyloid aggregates are polymorphic and that a single polypeptide can fold into multiple amyloid conformations. Here we review our recent reports that Abeta(1-40) in vitro can form soluble aggregates with predominant beta-structures that differ in stability and morphology. One class of aggregates involved soluble Abeta protofibrils, prepared by vigorous overnight agitation of monomeric Abeta(1-40) in low ionic strength buffers. These aggregates were quite stable and disaggregated to only a limited extent on dilution. A second class of soluble Abeta aggregates was generated at polar-nonpolar interfaces. Aggregation in a two-phase system of buffer over chloroform occurred more rapidly than in buffer alone. In buffered 2% hexafluoroisopropanol (HFIP), microdroplets of HFIP were formed and the half-time for aggregation was less than 10 minutes. Like Abeta protofibrils, these interfacial aggregates showed increased thioflavin T fluorescence and were rich in beta-structure by circular dichroism. However, electron microscopy and atomic force microscopy revealed very different morphologies. The HFIP aggregates formed initial globular clusters that progressed over several days to soluble fibrous aggregates. When diluted out of HFIP these aggregates initially were very unstable and disaggregated completely within 2 minutes. However, their stability increased as they progressed to fibers. It is important to determine whether similar interfacial Abeta aggregates are produced in vivo.

  7. Aggregating post-publication peer reviews and ratings

    PubMed Central

    Florian, Răzvan V.

    2012-01-01

    Allocating funding for research often entails the review of the publications authored by a scientist or a group of scientists. For practical reasons, in many cases this review cannot be performed by a sufficient number of specialists in the core domain of the reviewed publications. In the meanwhile, each scientist reads thoroughly, on average, about 88 scientific articles per year, and the evaluative information that scientists can provide about these articles is currently lost. I suggest that aggregating in an online database reviews or ratings on the publications that scientists read anyhow can provide important information that can revolutionize the evaluation processes that support funding decisions. I also suggest that such aggregation of reviews can be encouraged by a system that would provide a publicly available review portfolio for each scientist, without prejudicing the anonymity of reviews. I provide some quantitative estimates on the number and distribution of reviews and ratings that can be obtained. PMID:22661941

  8. The aggregation paths and products of Aβ42 dimers are distinct from Aβ42 monomer

    PubMed Central

    O'Malley, Tiernan T.; Witbold, William M.; Linse, Sara; Walsh, Dominic M.

    2017-01-01

    Extracts of Alzheimer's disease (AD) brain that contain what appear to be SDS-stable amyloid β-protein (Aβ) dimers potently block LTP and impair memory consolidation. Brain-derived dimers can be physically separated from Aβ monomer, consist primarily of Aβ42 and resist denaturation by powerful chaotropic agents. In nature, covalently cross-linked Aβ dimers could be generated in only one of two different ways - either by the formation of a dityrosine (DiY) or an isopeptide ε-(γ-glutamyl)-lysine (Q-K) bond. We enzymatically cross-linked recombinant Aβ42 monomer to produce DiY and Q-K dimers and then applied a range of biophysical methods to study their aggregation. Both Q-K and DiY dimers aggregate to form soluble assemblies distinct from the fibrillar aggregates formed by Aβ monomer. These results suggest that Aβ dimers allow the formation of soluble aggregates akin to those in aqueous extracts of AD brain. Thus it seems that Aβ dimers may play an important role in determining the formation of soluble rather than insoluble aggregates. PMID:27750419

  9. Digital Signal Processing and Generation for a DC Current Transformer for Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorzetti, Silvia

    2013-01-01

    The thesis topic, digital signal processing and generation for a DC current transformer, focuses on the most fundamental beam diagnostics in the field of particle accelerators, the measurement of the beam intensity, or beam current. The technology of a DC current transformer (DCCT) is well known, and used in many areas, including particle accelerator beam instrumentation, as non-invasive (shunt-free) method to monitor the DC current in a conducting wire, or in our case, the current of charged particles travelling inside an evacuated metal pipe. So far, custom and commercial DCCTs are entirely based on analog technologies and signal processing, whichmore » makes them inflexible, sensitive to component aging, and difficult to maintain and calibrate.« less

  10. Heterogeneous Cadherin Expression and Multicellular Aggregate Dynamics in Ovarian Cancer Dissemination.

    PubMed

    Klymenko, Yuliya; Johnson, Jeffrey; Bos, Brandi; Lombard, Rachel; Campbell, Leigh; Loughran, Elizabeth; Stack, M Sharon

    2017-07-01

    Epithelial ovarian carcinoma spreads via shedding of cells and multicellular aggregates (MCAs) from the primary tumor into peritoneal cavity, with subsequent intraperitoneal tumor cell:mesothelial cell adhesion as a key early event in metastatic seeding. Evaluation of human tumor extracts and tissues confirms that well-differentiated ovarian tumors express abundant E-cadherin (Ecad), whereas advanced lesions exhibit upregulated N-cadherin (Ncad). Two expression patterns are observed: "mixed cadherin," in which distinct cells within the same tumor express either E- or Ncad, and "hybrid cadherin," wherein single tumor cell(s) simultaneously expresses both cadherins. We demonstrate striking cadherin-dependent differences in cell-cell interactions, MCA formation, and aggregate ultrastructure. Mesenchymal-type Ncad+ cells formed stable, highly cohesive solid spheroids, whereas Ecad+ epithelial-type cells generated loosely adhesive cell clusters covered by uniform microvilli. Generation of "mixed cadherin" MCAs using fluorescently tagged cell populations revealed preferential sorting into cadherin-dependent clusters, whereas mixing of cell lines with common cadherin profiles generated homogeneous aggregates. Recapitulation of the "hybrid cadherin" Ecad+/Ncad+ phenotype, via insertion of the CDH2 gene into Ecad+ cells, resulted in the ability to form heterogeneous clusters with Ncad+ cells, significantly enhanced adhesion to organotypic mesomimetic cultures and peritoneal explants, and increased both migration and matrix invasion. Alternatively, insertion of CDH1 gene into Ncad+ cells greatly reduced cell-to-collagen, cell-to-mesothelium, and cell-to-peritoneum adhesion. Acquisition of the hybrid cadherin phenotype resulted in altered MCA surface morphology with increased surface projections and increased cell proliferation. Overall, these findings support the hypothesis that MCA cadherin composition impacts intraperitoneal cell and MCA dynamics and thereby affects

  11. Nanoscale stiffness of individual dendritic molecules and their aggregates

    NASA Astrophysics Data System (ADS)

    Tsukruk, Vladimir V.; Shulha, Hennady; Zhai, Xiaowen

    2003-02-01

    We demonstrate that carefully designed micromapping of the surface stiffness with nanoscale resolution could reveal quantitative data on the elastic properties of compliant, dendritic organic molecules with nanoparticulate dimensions below 3 nm. Much higher elastic modulus was observed for individual, fourth generation dendritic molecules due to their more shape persistent conformation. Large, reversible, elastic deformation is a distinct characteristic of the nanomechanical response observed for individual dendritic molecules. Such a "rubbery" response could be an indication of spatial constraints imposed on vitrification of dendritic molecules tethered to the functionalized interface. Surprisingly, an increased stiffness was also found for the third generation dendritic molecules within long aggregates.

  12. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Razin, S.; Sidorov, A.; Maslennikova, A.; Volovecky, A.; Kalvas, T.; Koivisto, H.; Tarvainen, O.

    2014-12-01

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D-D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm2 is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·1010 cm-2/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  13. Exponential current pulse generation for efficient very high-impedance multisite stimulation.

    PubMed

    Ethier, S; Sawan, M

    2011-02-01

    We describe in this paper an intracortical current-pulse generator for high-impedance microstimulation. This dual-chip system features a stimuli generator and a high-voltage electrode driver. The stimuli generator produces flexible rising exponential pulses in addition to standard rectangular stimuli. This novel stimulation waveform is expected to provide superior energy efficiency for action potential triggering while releasing less toxic reduced ions in the cortical tissues. The proposed fully integrated electrode driver is used as the output stage where high-voltage supplies are generated on-chip to significantly increase the voltage compliance for stimulation through high-impedance electrode-tissue interfaces. The stimuli generator has been implemented in 0.18-μm CMOS technology while a 0.8-μm CMOS/DMOS process has been used to integrate the high-voltage output stage. Experimental results show that the rectangular pulses cover a range of 1.6 to 167.2 μA with a DNL and an INL of 0.098 and 0.163 least-significant bit, respectively. The maximal dynamic range of the generated exponential reaches 34.36 dB at full scale within an error of ± 0.5 dB while all of its parameters (amplitude, duration, and time constant) are independently programmable over wide ranges. This chip consumes a maximum of 88.3 μ W in the exponential mode. High-voltage supplies of 8.95 and -8.46 V are generated by the output stage, boosting the voltage swing up to 13.6 V for a load as high as 100 kΩ.

  14. State-of-the-Art Fluorescence Fluctuation-Based Spectroscopic Techniques for the Study of Protein Aggregation

    PubMed Central

    Kinjo, Masataka

    2018-01-01

    Neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, are devastating proteinopathies with misfolded protein aggregates accumulating in neuronal cells. Inclusion bodies of protein aggregates are frequently observed in the neuronal cells of patients. Investigation of the underlying causes of neurodegeneration requires the establishment and selection of appropriate methodologies for detailed investigation of the state and conformation of protein aggregates. In the current review, we present an overview of the principles and application of several methodologies used for the elucidation of protein aggregation, specifically ones based on determination of fluctuations of fluorescence. The discussed methods include fluorescence correlation spectroscopy (FCS), imaging FCS, image correlation spectroscopy (ICS), photobleaching ICS (pbICS), number and brightness (N&B) analysis, super-resolution optical fluctuation imaging (SOFI), and transient state (TRAST) monitoring spectroscopy. Some of these methodologies are classical protein aggregation analyses, while others are not yet widely used. Collectively, the methods presented here should help the future development of research not only into protein aggregation but also neurodegenerative diseases. PMID:29570669

  15. The ups and downs of coral reef fishes: the genetic characteristics of a formerly severely overfished but currently recovering Nassau grouper fish spawning aggregation

    NASA Astrophysics Data System (ADS)

    Bernard, A. M.; Feldheim, K. A.; Nemeth, R.; Kadison, E.; Blondeau, J.; Semmens, B. X.; Shivji, M. S.

    2016-03-01

    The Nassau grouper ( Epinephelus striatus) has sustained large declines across its distribution, including extirpation of many of its fish spawning aggregations (FSAs). Within US Virgin Islands (USVI) waters, Nassau grouper FSAs were overfished until their disappearance in the 1970s and 1980s. In the early 2000s, however, Nassau grouper were found gathering at Grammanik Bank, USVI, a mesophotic coral reef adjacent to one of the extinct aggregation sites, and regulatory protective measures were implemented to protect this fledgling FSA. The population genetic dynamics of this rapid FSA deterioration followed by protection-facilitated, incipient recovery are unknown. We addressed two objectives: (1) we explored which factors (i.e., local vs. external recruitment) might be key in shaping the USVI FSA recovery; and (2) we examined the consequences of severe past overfishing on this FSA's current genetic status. We genotyped individuals (15 microsatellites) from the USVI FSA comprising three successive spawning years (2008-2010), as well as individuals from a much larger, presumably less impacted, Nassau grouper FSA in the Cayman Islands, to assess their comparative population dynamics. No population structure was detected between the USVI and Cayman FSAs ( F ST = -0.0004); however, a temporally waning, genetic bottleneck signal was detected in the USVI FSA. Parentage analysis failed to identify any parent-offspring matches between USVI FSA adults and nearby juveniles, and relatedness analysis showed low levels of genetic relatedness among USVI FSA individuals. Genetic diversity across USVI FSA temporal collections was relatively high, and no marked differences were found between the USVI and Cayman FSAs. These collective results suggest that external recruitment is an important driver of the USVI FSA recovery. Furthermore, despite an apparent genetic bottleneck, the genetic diversity of USVI Nassau grouper has not been severely compromised. Our findings also provide a

  16. The role of perceived parenting in familial aggregation of anxiety disorders in children.

    PubMed

    van Gastel, W; Legerstee, J S; Ferdinand, R F

    2009-01-01

    This study was designed to explore the role of perceived parenting style in the familial aggregation of anxiety disorders. We examined the association between parental and child anxiety diagnoses, and tested whether this association was partly due to a perceived parenting style. The study was conducted in a clinical sample as well as in a control sample. Parental lifetime and current anxiety diagnoses were significantly associated with child anxiety diagnoses. When maternal and paternal lifetime and current anxiety diagnoses were entered as separate predictors, only maternal current anxiety diagnoses appeared to be significant. Perceived parenting style was assessed with the dimensions "overprotection," "emotional warmth," "rejection," and "anxious rearing." Results indicated that only maternal and paternal 'overprotection' was significantly but negatively associated with child anxiety. However, further analyses showed that 'overprotection' did not have a significant mediating role in the familial aggregation of anxiety disorders.

  17. Applications of aggregation theory to sustainability assessment

    DOE PAGES

    Pollesch, N.; Dale, V. H.

    2015-04-01

    In order to aid in transition towards operations that promote sustainability goals, researchers and stakeholders use sustainability assessments. Although assessments take various forms, many utilize diverse sets of indicators that can number anywhere from two to over 2000. Indices, composite indicators, or aggregate values are used to simplify high dimensional and complex data sets and to clarify assessment results. Although the choice of aggregation function is a key component in the development of the assessment, there are few examples to be found in literature to guide appropriate aggregation function selection. This paper develops a connection between the mathematical study ofmore » aggregation functions and sustainability assessment in order to aid in providing criteria for aggregation function selection. Relevant mathematical properties of aggregation functions are presented and interpreted. Lastly, we provide cases of these properties and their relation to previous sustainability assessment research. Examples show that mathematical aggregation properties can be used to address the topics of compensatory behavior and weak versus strong sustainability, aggregation of data under varying units of measurements, multiple site multiple indicator aggregation, and the determination of error bounds in aggregate output for normalized and non-normalized indicator measures.« less

  18. Early aggregation studies of diabetic amyloid in solution

    NASA Astrophysics Data System (ADS)

    Singh, Sadanand; de Pablo, Juan

    2011-03-01

    Islet amyloid polypeptide (IAPP, also known as amylin) is responsible for pancreatic amyloid deposits in type II diabetes. The deposits, as well as intermediates in their assembly, are cytotoxic to pancreatic β -cells and contribute to the loss of β -cell mass associated with type II diabetes. To better understand the mechanism and cause of such aggregation, molecular simulations with explicit solvent models were used to compare monomer structure and early aggregation mechanism. Using free-energy maps generated~through~a variety of novel, enhanced sampling free-energy calculation techniques, we have found that, in water, the peptide adopts three major structures. One has a small α -helix at the N-terminus and a small β -hairpin at the other end. The second and the most stable one, is a complete β -hairpin, and the third is a random coil structure. Transition Path Sampling simulations along with reaction coordinate analysis reveal that the peptide follows a ``zipping mechanism'' in folding from α -helical to β -hairpin state. From studies of the dimerization of monomers in water, we have found that the early aggregation proceeds by conversion of all α -helical configurations to β -hairpins, and by two β -hairpins coming together to form a parallel β -sheet. Several aspects of the proposed mechanism have been verified by concerted 2D IR experimental measurements, thereby adding credence to the validity of our predictions.

  19. Familial aggregation analysis of gene expressions

    PubMed Central

    Rao, Shao-Qi; Xu, Liang-De; Zhang, Guang-Mei; Li, Xia; Li, Lin; Shen, Gong-Qing; Jiang, Yang; Yang, Yue-Ying; Gong, Bin-Sheng; Jiang, Wei; Zhang, Fan; Xiao, Yun; Wang, Qing K

    2007-01-01

    Traditional studies of familial aggregation are aimed at defining the genetic (and non-genetic) causes of a disease from physiological or clinical traits. However, there has been little attempt to use genome-wide gene expressions, the direct phenotypic measures of genes, as the traits to investigate several extended issues regarding the distributions of familially aggregated genes on chromosomes or in functions. In this study we conducted a genome-wide familial aggregation analysis by using the in vitro cell gene expressions of 3300 human autosome genes (Problem 1 data provided to Genetic Analysis Workshop 15) in order to answer three basic genetics questions. First, we investigated how gene expressions aggregate among different types (degrees) of relative pairs. Second, we conducted a bioinformatics analysis of highly familially aggregated genes to see how they are distributed on chromosomes. Third, we performed a gene ontology enrichment test of familially aggregated genes to find evidence to support their functional consensus. The results indicated that 1) gene expressions did aggregate in families, especially between sibs. Of 3300 human genes analyzed, there were a total of 1105 genes with one or more significant (empirical p < 0.05) familial correlation; 2) there were several genomic hot spots where highly familially aggregated genes (e.g., the chromosome 6 HLA genes cluster) were clustered; 3) as we expected, gene ontology enrichment tests revealed that the 1105 genes were aggregating not only in families but also in functional categories. PMID:18466548

  20. Evaluation of cement and fly ash treated recycled asphalt pavement and aggregates for base construction.

    DOT National Transportation Integrated Search

    2011-12-01

    Many entities currently use recycled asphalt pavement (RAP) and other aggregates as base material, temporary haul roads, : and, in the case of RAP, hot mix asphalt construction. Several states currently allow the use of RAP combined with cement : for...

  1. Discrete stochastic charging of aggregate grains

    NASA Astrophysics Data System (ADS)

    Matthews, Lorin S.; Shotorban, Babak; Hyde, Truell W.

    2018-05-01

    Dust particles immersed in a plasma environment become charged through the collection of electrons and ions at random times, causing the dust charge to fluctuate about an equilibrium value. Small grains (with radii less than 1 μm) or grains in a tenuous plasma environment are sensitive to single additions of electrons or ions. Here we present a numerical model that allows examination of discrete stochastic charge fluctuations on the surface of aggregate grains and determines the effect of these fluctuations on the dynamics of grain aggregation. We show that the mean and standard deviation of charge on aggregate grains follow the same trends as those predicted for spheres having an equivalent radius, though aggregates exhibit larger variations from the predicted values. In some plasma environments, these charge fluctuations occur on timescales which are relevant for dynamics of aggregate growth. Coupled dynamics and charging models show that charge fluctuations tend to produce aggregates which are much more linear or filamentary than aggregates formed in an environment where the charge is stationary.

  2. Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes.

    PubMed

    Castillo, Virginia; Graña-Montes, Ricardo; Sabate, Raimon; Ventura, Salvador

    2011-06-01

    In the cell, protein folding into stable globular conformations is in competition with aggregation into non-functional and usually toxic structures, since the biophysical properties that promote folding also tend to favor intermolecular contacts, leading to the formation of β-sheet-enriched insoluble assemblies. The formation of protein deposits is linked to at least 20 different human disorders, ranging from dementia to diabetes. Furthermore, protein deposition inside cells represents a major obstacle for the biotechnological production of polypeptides. Importantly, the aggregation behavior of polypeptides appears to be strongly influenced by the intrinsic properties encoded in their sequences and specifically by the presence of selective short regions with high aggregation propensity. This allows computational methods to be used to analyze the aggregation properties of proteins without the previous requirement for structural information. Applications range from the identification of individual amyloidogenic regions in disease-linked polypeptides to the analysis of the aggregation properties of complete proteomes. Herein, we review these theoretical approaches and illustrate how they have become important and useful tools in understanding the molecular mechanisms underlying protein aggregation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Properties of Concrete Paving Blocks and Hollow Tiles with Recycled Aggregate from Construction and Demolition Wastes.

    PubMed

    Rodríguez, Carlos; Miñano, Isabel; Aguilar, Miguel Ángel; Ortega, José Marcos; Parra, Carlos; Sánchez, Isidro

    2017-11-30

    In recent years there has been an increasing tendency to recycle the wastes generated by building companies in the construction industry, demolition wastes being the most important in terms of volume. The aim of this work is to study the possibility of using recycled aggregates from construction and demolition wastes in the preparation of precast non-structural concretes. To that purpose, two different percentages (15% and 30%) of natural aggregates were substituted by recycled aggregates in the manufacture of paving blocks and hollow tiles. Dosages used by the company have not been changed by the introduction of recycled aggregate. Precast elements have been tested by means of compressive and flexural strength, water absorption, density, abrasion, and slipping resistance. The results obtained show the possibility of using these wastes at an industrial scale, satisfying the requirements of the Spanish standards for these elements.

  4. Morphological Evolution of Nanocluster Aggregates and Single Crystals in Alkaline Zinc Electrodeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, D; Turney, DE; Anantharaman, B

    2014-04-24

    The morphology of Zn electrodeposits is studied on carbon-coated transmission electron microscopy grids. At low over-potentials (eta = -50 mV), the morphology develops by aggregation at two distinct length scales: similar to 5 nm diameter monocrystalline nanoclusters form similar to 50 nm diameter polycrystalline aggregates, and the aggregates form a branched network. Epitaxial (00 (0) over bar2) growth above an overpotential of vertical bar eta(c)vertical bar > 125 mV leads to the formation of hexagonal single crystals up to 2 mu m in diameter. Potentiostatic current transients were used to calculate the nucleation rate from Scharifker et al.'s model. Themore » exp(eta) dependence of the nucleation rates indicates that atomistic nucleation theory explains the nucleation process better than Volmer-Weber theory. A kinetic model is provided using the rate equations of vapor solidification to simulate the evolution of the different morphologies. On solving these equations, we show that aggregation is attributed to cluster impingement and cluster diffusion while single-crystal formation is attributed to direct attachment.« less

  5. Modeling of chemical inhibition from amyloid protein aggregation kinetics.

    PubMed

    Vázquez, José Antonio

    2014-02-27

    The process of amyloid proteins aggregation causes several human neuropathologies. In some cases, e.g. fibrillar deposits of insulin, the problems are generated in the processes of production and purification of protein and in the pump devices or injectable preparations for diabetics. Experimental kinetics and adequate modelling of chemical inhibition from amyloid aggregation are of practical importance in order to study the viable processing, formulation and storage as well as to predict and optimize the best conditions to reduce the effect of protein nucleation. In this manuscript, experimental data of insulin, Aβ42 amyloid protein and apomyoglobin fibrillation from recent bibliography were selected to evaluate the capability of a bivariate sigmoid equation to model them. The mathematical functions (logistic combined with Weibull equation) were used in reparameterized form and the effect of inhibitor concentrations on kinetic parameters from logistic equation were perfectly defined and explained. The surfaces of data were accurately described by proposed model and the presented analysis characterized the inhibitory influence on the protein aggregation by several chemicals. Discrimination between true and apparent inhibitors was also confirmed by the bivariate equation. EGCG for insulin (working at pH = 7.4/T = 37°C) and taiwaniaflavone for Aβ42 were the compounds studied that shown the greatest inhibition capacity. An accurate, simple and effective model to investigate the inhibition of chemicals on amyloid protein aggregation has been developed. The equation could be useful for the clear quantification of inhibitor potential of chemicals and rigorous comparison among them.

  6. Agent Based Simulation Design for Aggregation and Disaggregation

    DTIC Science & Technology

    2011-12-01

    of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB... PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18...theo- retical analysis) finding conditions under which aggregation equations might be reasonably valid (requires theo- retical analysis

  7. An Aggregate of Four Anthrax Cases during the Dry Summer of 2011 in Epirus, Greece.

    PubMed

    Gaitanis, Georgios; Lolis, Christos J; Tsartsarakis, Antonios; Kalogeropoulos, Chris; Leveidiotou-Stefanou, Stamatina; Bartzokas, Aristidis; Bassukas, Ioannis D

    2016-01-01

    Human anthrax is currently a sporadic disease in Europe, without significant regional clustering. To report an unexpected aggregate of anthrax cases and correlate local climatic factors with yearly anthrax admissions. Clinical description of a geographical-temporal anthrax aggregate, correlation of disease admissions with local weather data in the period 2001-2014 and literature reports of anthrax clusters from Europe in the last 20 years. We identified 5 cases, all cutaneous: an unexpected aggregate of 4 cases in mid-summer 2011 (including a probable human-to-human transmission) and a sporadic case in August 2005, all in relatively dry periods (p < 0.05). Remarkably, 3/6 reports of human anthrax aggregates from Europe were observed in Balkan Peninsula countries in the year 2011. In the light of the predicted climatic change, unexpected anthrax aggregates during dry periods in southern Europe underscore the risk of future anthrax re-emergence on this continent. © 2015 S. Karger AG, Basel.

  8. Transportation and utilization of aggregates for road construction

    NASA Astrophysics Data System (ADS)

    Fladvad, Marit; Wigum, Børge Johannes; Aurstad, Joralf

    2017-04-01

    Road construction relies on non-renewable aggregate resources as the main construction material. Sources for high-quality aggregate resources are scattered, and requirements for aggregate quality can cause long transport distances between quarry and road construction site. In European countries, the average aggregate consumption per capita is 5 tonnes per year (European Aggregates Association, 2016), while the corresponding figure for Norway is 11 tonnes (Neeb, 2015). Half the Norwegian aggregate production (sand, gravel and crushed rock) is used for road construction. In Norway, aggregate resources have been considered abundant. However, stricter requirement for aggregate quality, and increased concern for sustainability and environmental issues have spurred focus on reduction of transport lengths through better utilization of local aggregate materials. In this research project, information about pavement design and aggregate quality requirements were gathered from a questionnaire sent to selected experts from the World Road Organization (PIARC), European Committee for Standardization (CEN), and Nordic Road Association (NVF). The gathered data was compared to identify differences and similarities for aggregate use in the participating countries. Further, the data was compared to known data from Norway regarding: - amount of aggregates required for a road structure - aggregate transport lengths and related costs A total of 18 countries participated in the survey, represented by either road authorities, research institutions, or contractors. There are large variations in practice for aggregate use among the represented countries, and the selection of countries is sufficient to illustrate a variety in pavement designs, aggregate sizes, and quality requirements for road construction. There are considerable differences in both pavement thickness and aggregate sizes used in the studied countries. Total thicknesses for pavement structures varies from 220 mm to 2400 mm

  9. Reusing recycled aggregates in structural concrete

    NASA Astrophysics Data System (ADS)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  10. ELECTRIC CHARGING OF DUST AGGREGATES AND ITS EFFECT ON DUST COAGULATION IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuzumi, Satoshi

    2009-06-20

    Mutual sticking of dust aggregates is the first step toward planetesimal formation in protoplanetary disks. In spite that the electric charging of dust particles is well recognized in some contexts, it has been largely ignored in the current modeling of dust coagulation. In this study, we present a general analysis of the dust charge state in protoplanetary disks, and then demonstrate how the electric charging could dramatically change the currently accepted scenario of dust coagulation. First, we describe a new semianalytical method to calculate the dust charge state and gas ionization state self-consistently. This method is far more efficient thanmore » previous numerical methods, and provides a general and clear description of the charge state of a gas-dust mixture. Second, we apply this analysis to compute the collisional cross section of growing aggregates taking their charging into account. As an illustrative example, we focus on early evolutionary stages where the dust has been thought to grow into fractal (D {approx} 2) aggregates with a quasi-monodisperse (i.e., narrow) size distribution. We find that, for a wide range of model parameters, the fractal growth is strongly inhibited by the electric repulsion between colliding aggregates and eventually 'freezes out' on its way to the subsequent growth stage involving collisional compression. Strong disk turbulence would help the aggregates to overcome this growth barrier, but then it would cause catastrophic collisional fragmentation in later growth stages. These facts suggest that the combination of electric repulsion and collisional fragmentation would impose a serious limitation on dust growth in protoplanetary disks. We propose a possible scenario of dust evolution after the freezeout. Finally, we point out that the fractal growth of dust aggregates tends to maintain a low ionization degree and, as a result, a large magnetorotationally stable region in the disk.« less

  11. Polyglutamine aggregation in Huntington and related diseases.

    PubMed

    Polling, Saskia; Hill, Andrew F; Hatters, Danny M

    2012-01-01

    Polyglutamine (polyQ)-expansions in different proteins cause nine neurodegenerative diseases. While polyQ aggregation is a key pathological hallmark of these diseases, how aggregation relates to pathogenesis remains contentious. In this chapter, we review what is known about the aggregation process and how cells respond and interact with the polyQ-expanded proteins. We cover detailed biophysical and structural studies to uncover the intrinsic features of polyQ aggregates and concomitant effects in the cellular environment. We also examine the functional consequences ofpolyQ aggregation and how cells may attempt to intervene and guide the aggregation process.

  12. Amyloid-beta protofibrils differ from amyloid-beta aggregates induced in dilute hexafluoroisopropanol in stability and morphology.

    PubMed

    Nichols, Michael R; Moss, Melissa A; Reed, Dana Kim; Cratic-McDaniel, Stephanie; Hoh, Jan H; Rosenberry, Terrone L

    2005-01-28

    The brains of Alzheimer's disease (AD) patients contain large numbers of amyloid plaques that are rich in fibrils composed of 40- and 42-residue amyloid-beta (Abeta) peptides. Several lines of evidence indicate that fibrillar Abeta and especially soluble Abeta aggregates are important in the etiology of AD. Recent reports also stress that amyloid aggregates are polymorphic and that a single polypeptide can fold into multiple amyloid conformations. Here we demonstrate that Abeta-(1-40) can form soluble aggregates with predominant beta-structures that differ in stability and morphology. One class of aggregates involved soluble Abeta protofibrils, prepared by vigorous overnight agitation of monomeric Abeta-(1-40) at low ionic strength. Dilution of these aggregation reactions induced disaggregation to monomers as measured by size exclusion chromatography. Protofibril concentrations monitored by thioflavin T fluorescence decreased in at least two kinetic phases, with initial disaggregation (rate constant approximately 1 h(-1)) followed by a much slower secondary phase. Incubation of the reactions without agitation resulted in less disaggregation at slower rates, indicating that the protofibrils became progressively more stable over time. In fact, protofibrils isolated by size exclusion chromatography were completely stable and gave no disaggregation. A second class of soluble Abeta aggregates was generated rapidly (<10 min) in buffered 2% hexafluoroisopropanol (HFIP). These aggregates showed increased thioflavin T fluorescence and were rich in beta-structure by circular dichroism. Electron microscopy and atomic force microscopy revealed initial globular clusters that progressed over several days to soluble fibrous aggregates. When diluted out of HFIP, these aggregates initially were very unstable and disaggregated completely within 2 min. However, their stability increased as they progressed to fibers. Relative to Abeta protofibrils, the HFIP-induced aggregates seeded

  13. Neisseria gonorrhoeae Aggregation Reduces Its Ceftriaxone Susceptibility.

    PubMed

    Wang, Liang-Chun; Litwin, Madeline; Sahiholnasab, Zahraossadat; Song, Wenxia; Stein, Daniel C

    2018-06-15

    Antibiotic resistance in Neisseria gonorrhoeae (GC) has become an emerging threat worldwide and heightens the need for monitoring treatment failures. N. gonorrhoeae , a gram-negative bacterium responsible for gonorrhea, infects humans exclusively and can form aggregates during infection. While minimal inhibitory concentration (MIC) tests are often used for determining antibiotic resistance development and treatment, the knowledge of the true MIC in individual patients and how it relates to this laboratory measure is not known. We examined the effect of aggregation on GC antibiotic susceptibility and the relationship between bacterial aggregate size and their antibiotic susceptibility. Aggregated GC have a higher survival rate when treated with ceftriaxone than non-aggregated GC, with bacteria in the core of the aggregates surviving the treatment. GC lacking opacity-associated protein or pili, or expressing a truncated lipooligosaccharide, three surface molecules that mediate GC-GC interactions, reduce both aggregation and ceftriaxone survival. This study demonstrates that the aggregation of N. gonorrhoeae can reduce the susceptibility to antibiotics, and suggests that antibiotic utilization can select for GC surface molecules that promote aggregation which in turn drive pathogen evolution. Inhibiting aggregation may be a potential way of increasing the efficacy of ceftriaxone treatment, consequently reducing treatment failure.

  14. Electric Currents Generated by Gabbro during Dynamic Uniaxial Loading

    NASA Astrophysics Data System (ADS)

    Jones, H. H.; Lau, B. W.; Takeuchi, A. T.; Freund, F. T.

    2006-12-01

    Igneous rocks, when subjected to deviatory stress, turn into a battery. Dynamically stressed rocks can generate large currents. We report on gabbro (Shanxi, China). We use steel pistons to load ~10 cm3 in the center of 30 x 30 x 0.9 cm3 tiles, from 0 to 60 MPa, 1/3 failure strength. Instantly upon loading, a current begins to flow, increasing rapidly to 200-300 pA. One part of the current is carried by electrons, which flow from the stressed rock into the steel pistons and through the external circuit to the edges of the tile. The other part is carried by holes, which flow inside the rock, from the stressed to the unstressed rock and the edges of the tile. At the edges the two charge carriers meet, thereby closing the circuit. Changing the stress rates from 0.0002 to 100 MPa/sec causes the steady currents to increase from ~30,000 A/km3 to ~50,000 A/km3 and an initial spike to develop reaching 300,000 A/km3 at the highest stress rate. Both, electrons and holes, are associated with oxygen anions that changed their valence from 2- to 1- (peroxy). An O- among O2- represents a defect electron in the O2- sublattice, known as positive hole or p-hole for short. In unstressed rocks the O- exist in an electrically inactive form as O- pairs, chemically equivalent to peroxy links, O3X-OO-XO3 with X = Si4+, Al3+ etc. Stresses cause the peroxy links to break, allowing electrons from neighboring O2- to jump in and p-holes to jump out. The p-holes can spread through unstressed rocks using energy levels in the valence band. Sustained large battery currents can flow, for instance in the aftermath of an impact, when the holes can close the circuit by linking up with the electrons. If the circuit is not closed, no battery currents flow.

  15. Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS2 multilayers

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Goswami, Ankur; Jiang, Keren; Khan, Faheem; Kim, Seokbeom; McGee, Ryan; Li, Zhi; Hu, Zhiyu; Lee, Jungchul; Thundat, Thomas

    2018-02-01

    The direct conversion of mechanical energy into electricity by nanomaterial-based devices offers potential for green energy harvesting1-3. A conventional triboelectric nanogenerator converts frictional energy into electricity by producing alternating current (a.c.) triboelectricity. However, this approach is limited by low current density and the need for rectification2. Here, we show that continuous direct-current (d.c.) with a maximum density of 106 A m-2 can be directly generated by a sliding Schottky nanocontact without the application of an external voltage. We demonstrate this by sliding a conductive-atomic force microscope tip on a thin film of molybdenum disulfide (MoS2). Finite element simulation reveals that the anomalously high current density can be attributed to the non-equilibrium carrier transport phenomenon enhanced by the strong local electrical field (105-106 V m-2) at the conductive nanoscale tip4. We hypothesize that the charge transport may be induced by electronic excitation under friction, and the nanoscale current-voltage spectra analysis indicates that the rectifying Schottky barrier at the tip-sample interface plays a critical role in efficient d.c. energy harvesting. This concept is scalable when combined with microfabricated or contact surface modified electrodes, which makes it promising for efficient d.c. triboelectricity generation.

  16. Evolution of mixed surfactant aggregates in solutions and at solid/solution interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Rui

    Surfactant systems have been widely used in such as enhanced oil recovery, waste treatment and metallurgy, etc., in order to solve the problem of global energy crisis, to remove the pollutants and to generate novel energy resources. Almost all surfactant systems are invariably mixtures due to beneficial and economic considerations. The sizes and shapes of aggregates in solutions and at solid/solution interfaces become important, since the nanostructures of mixed aggregates determine solution and adsorption properties. A major hurdle in science is the lack of information on the type of complexes and aggregates formed by mixtures and the lack of techniques for deriving such information. Using techniques such as analytical ultracentrifuge, small angle neutron scattering, surface tension, fluorescence, cryo-TEM, light scattering and ultrafiltration, the nanostructures of aggregates of sugar based n-dodecyl-beta-D-maltoside (DM) and nonionic pentaethyleneglycol monododecyl ether or nonyl phenol ethoxylated decyl ether (NP-10) and their mixtures have been investigated to prove the hypothesis that the aggregation behavior is linked to packing of the surfactant governed by the molecular interactions as well as the molecular structures. The results from both sedimentation velocity and sedimentation equilibrium experiments suggest coexistence of two types of micelles in nonyl phenol ethoxylated decyl ether solutions and its mixtures with n-dodecyl-beta-D-maltoside while only one micellar species is present in n-dodecyl-beta-D-maltoside solutions, in good agreement with those from small angle neutron scattering, cryo-TEM, light scattering and ultrafiltration. Type I micelles were primary micelles at cmc while type II micelles were elongated micelles. On the other hand, the nanostructures of mixed surface aggregates have been quantitatively predicted for the first time using a modified packing index. As a continuation of the Somasundaran-Fuersteneau adsorption model, a

  17. Rigid aggregates: theory and applications

    NASA Astrophysics Data System (ADS)

    Richardson, D. C.

    2005-08-01

    Numerical models employing ``perfect'' self-gravitating rubble piles that consist of monodisperse rigid spheres with configurable contact dissipation have been used to explore collisional and rotational disruption of gravitational aggregates. Applications of these simple models include numerical simulations of planetesimal evolution, asteroid family formation, tidal disruption, and binary asteroid formation. These studies may be limited by the idealized nature of the rubble pile model, since perfect identical spheres stack and shear in a very specific, possibly over-idealized way. To investigate how constituent properties affect the overall characteristics of a gravitational aggregate, particularly its failure modes, we have generalized our numerical code to model colliding, self-gravitating, rigid aggregates made up of variable-size spheres. Euler's equation of rigid-body motion in the presence of external torques are implemented, along with a self-consistent prescription for handling non-central impacts. Simple rules for sticking and breaking are also included. Preliminary results will be presented showing the failure modes of gravitational aggregates made up of smaller, rigid, non-idealized components. Applications of this new capability include more realistic aggregate models, convenient modeling of arbitrary rigid shapes for studies of the stability of orbiting companions (replacing one or both bodies with rigid aggregates eliminates expensive interparticle collisions while preserving the shape, spin, and gravity field of the bodies), and sticky particle aggregation in dense planetary rings. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. NAG511722 issued through the Office of Space Science and by the National Science Foundation under Grant No. AST0307549.

  18. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Shimazaki, Y.; Yamamoto, M.; Borzenets, I. V.; Watanabe, K.; Taniguchi, T.; Tarucha, S.

    2015-12-01

    The field of `Valleytronics’ has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents. Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical, magnetic and electrical control of the valley degree of freedom. Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current.

  19. Flow Partitioning in Fully Saturated Soil Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Richmond, Marshall C.; Scheibe, Timothy D.

    2014-03-30

    Microbes play an important role in facilitating organic matter decomposition in soils, which is a major component of the global carbon cycle. Microbial dynamics are intimately coupled to environmental transport processes, which control access to labile organic matter and other nutrients that are needed for the growth and maintenance of microorganisms. Transport of soluble nutrients in the soil system is arguably most strongly impacted by preferential flow pathways in the soil. Since the physical structure of soils can be characterized as being formed from constituent micro aggregates which contain internal porosity, one pressing question is the partitioning of the flowmore » among the “inter-aggregate” and “intra-aggregate” pores and how this may impact overall solute transport within heterogeneous soil structures. The answer to this question is particularly important in evaluating assumptions to be used in developing upscaled simulations based on highly-resolved mechanistic models. We constructed a number of diverse multi-aggregate structures with different packing ratios by stacking micro-aggregates containing internal pores and varying the size and shape of inter-aggregate pore spacing between them. We then performed pore-scale flow simulations using computational fluid dynamics methods to determine the flow patterns in these aggregate-of-aggregates structures and computed the partitioning of the flow through intra- and inter-aggregate pores as a function of the spacing between the aggregates. The results of these numerical experiments demonstrate that soluble nutrients are largely transported via flows through inter-aggregate pores. Although this result is consistent with intuition, we have also been able to quantify the relative flow capacity of the two domains under various conditions. For example, in our simulations, the flow capacity through the aggregates (intra-aggregate flow) was less than 2% of the total flow when the spacing between the

  20. Reliability model generator

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C. (Inventor); McMann, Catherine M. (Inventor)

    1991-01-01

    An improved method and system for automatically generating reliability models for use with a reliability evaluation tool is described. The reliability model generator of the present invention includes means for storing a plurality of low level reliability models which represent the reliability characteristics for low level system components. In addition, the present invention includes means for defining the interconnection of the low level reliability models via a system architecture description. In accordance with the principles of the present invention, a reliability model for the entire system is automatically generated by aggregating the low level reliability models based on the system architecture description.

  1. Development of ODOT guidelines for the use of geogrids in aggregate bases.

    DOT National Transportation Integrated Search

    2012-11-01

    A primary objective of the current study was to help ODOT expand its selection of approved : geogrid products for base reinforcement applications by producing measured data on selected : geogrids and a dense-graded base aggregate commonly used in ODO...

  2. Aggregation-induced chemical reactions: acid dissociation in growing water clusters.

    PubMed

    Forbert, Harald; Masia, Marco; Kaczmarek-Kedziera, Anna; Nair, Nisanth N; Marx, Dominik

    2011-03-23

    Understanding chemical reactivity at ultracold conditions, thus enabling molecular syntheses via interstellar and atmospheric processes, is a key issue in cryochemistry. In particular, acid dissociation and proton transfer reactions are ubiquitous in aqueous microsolvation environments. Here, the full dissociation of a HCl molecule upon stepwise solvation by a small number of water molecules at low temperatures, as relevant to helium nanodroplet isolation (HENDI) spectroscopy, is analyzed in mechanistic detail. It is found that upon successive aggregation of HCl with H(2)O molecules, a series of cyclic heteromolecular structures, up to and including HCl(H(2)O)(3), are initially obtained before a precursor state for dissociation, HCl(H(2)O)(3)···H(2)O, is observed upon addition of a fourth water molecule. The latter partially aggregated structure can be viewed as an "activated species", which readily leads to dissociation of HCl and to the formation of a solvent-shared ion pair, H(3)O(+)(H(2)O)(3)Cl(-). Overall, the process is mostly downhill in potential energy, and, in addition, small remaining barriers are overcome by using kinetic energy released as a result of forming hydrogen bonds due to aggregation. The associated barrier is not ruled by thermal equilibrium but is generated by athermal non-equilibrium dynamics. These "aggregation-induced chemical reactions" are expected to be of broad relevance to chemistry at ultralow temperature much beyond HENDI spectroscopy.

  3. Optimization and influence of parameter affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate: using full factorial design approach

    NASA Astrophysics Data System (ADS)

    Krishnan, Thulasirajan; Purushothaman, Revathi

    2017-07-01

    There are several parameters that influence the properties of geopolymer concrete, which contains recycled concrete aggregate as the coarse aggregate. In the present study, the vital parameters affecting the compressive strength of geopolymer concrete containing recycled concrete aggregate are analyzedby varying four parameters with two levels using full factorial design in statistical software Minitab® 17. The objective of the present work is to gain an idea on the optimization, main parameter effects, their interactions and the predicted response of the model generated using factorial design. The parameters such as molarity of sodium hydroxide (8M and 12M), curing time (6hrs and 24 hrs), curing temperature (60°C and 90°C) and percentage of recycled concrete aggregate (0% and 100%) are considered. The results show that the curing time, molarity of sodium hydroxide and curing temperature were the orderly significant parameters and the percentage of Recycled concrete aggregate (RCA) was statistically insignificant in the production of geopolymer concrete. Thus, it may be noticeable that the RCA content had negligible effect on the compressive strength of geopolymer concrete. The expected responses from the generated model showed a satisfactory and rational agreement to the experimental data with the R2 value of 97.70%. Thus, geopolymer concrete comprising recycled concrete aggregate can solve the major social and environmental concerns such as the depletion of the naturally available aggregate sources and disposal of construction and demolition waste into the landfill.

  4. Aggregate-level lead exposure, gun violence, homicide, and rape

    PubMed Central

    Nelson, Erik J.; Qian, Zhengmin; Vaughn, Michael G.; Wright, John P.; Beaver, Kevin M.; Barnes, J. C.; Petkovsek, Melissa; Lewis, Roger; Schootman, Mario; Rosenfeld, Richard

    2017-01-01

    Context An increasing body of research has linked the geographic distribution of lead with various indicators of criminal and antisocial behavior. Objective The current study, using data from an ongoing project related to lead exposure in St. Louis City, MO, analyzed the association between aggregate blood lead levels and specific indicators violent crime within the city. Design Ecological study. Setting St. Louis, Missouri. Exposure measure Blood lead levels. Main outcome measure Official reports of violent crimes were categorized as 1) crimes involving a firearm (yes/no), 2) assault crimes (with or without a firearm), 3) robbery crimes (with or without a firearm), 4) homicides and 5) rape. Results With the exception of rape, aggregate blood-lead levels were statistically significant predictors of violent crime at the census tract level. The risk ratios for each of the outcome measures were as follows: firearm crimes 1.03 (1.03–1.04), assault crimes 1.03 (1.02–1.03), robbery crimes 1.03 (1.02–1.04), homicide 1.03 (1.01, 1.04), and rape 1.01 (0.99–1.03). Conclusions Extending prior research in St. Louis, results suggest that aggregated lead exposure at the census tract level predicted crime outcomes, even after accounting for important sociological variables. Moving forward, a more developed understanding of aggregate level crime may necessitate a shift toward studying the synergy between sociological and biological risk factors such as lead exposure. PMID:29176826

  5. Waves and aggregation patterns in myxobacteria

    NASA Astrophysics Data System (ADS)

    Igoshin, Oleg A.; Welch, Roy; Kaiser, Dale; Oster, George

    2004-03-01

    Under starvation conditions, a population of myxobacteria aggregates to build a fruiting body whose shape is species-specific and within which the cells sporulate. Early in this process, cells often pass through a "ripple phase" characterized by traveling linear, concentric, and spiral waves. These waves are different from the waves observed during slime mold aggregation that depend on diffusible morphogens, because myxobacteria communicate by direct contact. The difference is most dramatic when waves collide: rather than annihilating one another, myxobacterial waves appear to pass through one another unchanged. Under certain conditions, the spacing and location of the nascent fruiting bodies is determined by the wavelength and pattern of the waves. Later in fruiting body development, waves are replaced by streams of cells that circulate around small initial aggregates enlarging and rounding them. Still later, pairs of motile aggregates coalesce to form larger aggregates that develop into fruiting bodies. Here we present a mathematical model that quantitatively explains these wave and aggregation phenomena.

  6. Structure-based inhibitors of tau aggregation

    NASA Astrophysics Data System (ADS)

    Seidler, P. M.; Boyer, D. R.; Rodriguez, J. A.; Sawaya, M. R.; Cascio, D.; Murray, K.; Gonen, T.; Eisenberg, D. S.

    2018-02-01

    Aggregated tau protein is associated with over 20 neurological disorders, which include Alzheimer's disease. Previous work has shown that tau's sequence segments VQIINK and VQIVYK drive its aggregation, but inhibitors based on the structure of the VQIVYK segment only partially inhibit full-length tau aggregation and are ineffective at inhibiting seeding by full-length fibrils. Here we show that the VQIINK segment is the more powerful driver of tau aggregation. Two structures of this segment determined by the cryo-electron microscopy method micro-electron diffraction explain its dominant influence on tau aggregation. Of practical significance, the structures lead to the design of inhibitors that not only inhibit tau aggregation but also inhibit the ability of exogenous full-length tau fibrils to seed intracellular tau in HEK293 biosensor cells into amyloid. We also raise the possibility that the two VQIINK structures represent amyloid polymorphs of tau that may account for a subset of prion-like strains of tau.

  7. Macrophage triggering by aggregated immunoglobulins. II. Comparison of IgE and IgG aggregates or immune complexes.

    PubMed Central

    Pestel, J; Dessaint, J P; Joseph, M; Bazin, H; Capron, A

    1984-01-01

    Macrophages incubated with complexed or aggregated IgE released beta-glucuronidase (beta-G) within 30 min. In contrast in the presence of aggregated or complexed IgG, macrophages liberated equivalent amount of beta-G only after 6 h incubation. In addition the rapid macrophage stimulation induced by aggregated IgE was also followed by a faster 3H-glucosamine incorporation when compared to the delayed activation caused by aggregated IgG. However, macrophages stimulated either by IgG or by IgE oligomers produced the same percentage of plasminogen activator at 24 h. In contrast, while the interaction between macrophages and aggregated IgE was only followed by a peak of cyclic GMP and a beta-G release during the first 30 min of incubation, the interaction between macrophages and IgG oligomers was accompanied by a simultaneous increase of cyclic GMP and AMP nucleotides and by an absence of beta-G exocytosis. Moreover, the beta-G release induced by aggregated IgE was increased when macrophages were preincubated with aggregated IgG. This additive effect was not observed in the reverse situation. Finally macrophages activated by IgG oligomers were demonstrated to exert a cytotoxic effect on tumour cells and to kill schistosomula in the presence of a low level of complement. Taken together these results underline the peculiar ability of aggregated or complexed IgE to trigger rapidly the macrophage activation compared to aggregated IgG and can explain the important role of complexed IgE in some macrophage dependent cytotoxicity mechanisms (i.e. in parasitic diseases). PMID:6088135

  8. Growth and field emission properties of globe-like diamond microcrystalline-aggregate

    NASA Astrophysics Data System (ADS)

    Gao, Jin-hai; Zhang, Lan; Zhao, Limin; Hao, Haoshan

    2009-02-01

    The globe-like diamond microcrystalline-aggregates were fabricated by microwave plasma chemical vapor deposition (MPCVD) method. The ceramic with a Ti mental layer was used as substrate. The fabricated diamond was evaluated by Raman scattering spectroscopy, X-ray diffraction spectrum (XRD), and scanning electron microscope (SEM). The field emission properties were tested by using a diode structure in a vacuum. A phosphor-coated indium tin oxide (ITO) anode was used for observing and characterizing the field emission. It was found that the globe-like diamond microcrystalline-aggregates exhibited good electron emission properties. The turn-on field was only 0.55 V/μm, and emission current density as high as 11 mA/cm 2 was obtained under an applied field of 2.9 V/μm for the first operation. The growth mechanism and field emission properties of the globe-like diamond microcrystalline-aggregates are discussed relating to microstructure and electrical conductivity.

  9. Molecular and Clinical Aspects of Protein Aggregation Assays in Neurodegenerative Diseases.

    PubMed

    Villar-Piqué, Anna; Schmitz, Matthias; Candelise, Niccolò; Ventura, Salvador; Llorens, Franc; Zerr, Inga

    2018-02-10

    The presence of protein deposits is a common pathological hallmark in patients suffering from neurodegenerative conditions and other proteinopathies. Deciphering the molecular basis of protein misfolding and aggregation is a crucial step towards the full comprehension of the factors that trigger the onset of these diseases and for the development of efficient therapeutical strategies. In this regard, in vitro aggregation assays for misfolded proteins offer an excellent tool to study pathological processes of protein deposition under controlled conditions, where confounders can be easily discriminated. These methods are generally cost-effective and have been proved useful in many fields, including drug discovery and clinical diagnostics. Here, we review the bases of in vitro aggregation and seeding assays, recapitulate their main applications and offer a critical evaluation of their limitations. Comprehending the molecular mechanisms behind these assays and combining them with in vivo or cell-based experiments will maximize their potential and allow the necessary improvement to overcome some of the current drawbacks.

  10. Natural aggregates of the conterminous United States

    USGS Publications Warehouse

    Langer, William H.

    1988-01-01

    Crushed stone and sand and gravel are the two main sources of natural aggregates. These materials are commonly used construction materials and frequently can be interchanged with one another. They are widely used throughout the United States, with every State except two producing crushed stone. Together they amount to about half the mining volume in the United States. Approximately 96 percent of sand and gravel and 77 percent of the crushed stone produced in the United States are used in the construction industry. Natural aggregates are widely distributed throughout the United States in a variety of geologic environments. Sand and gravel deposits commonly are the results of the weathering of bedrock and subsequent transportation and deposition of the material by water or ice (glaciers). As such, they commonly occur as river or stream deposits or in glaciated areas as glaciofluvial and other deposits. Crushed stone aggregates are derived from a wide variety of parent bedrock materials. Limestone and other carbonates account for approximately three quarters of the rocks used for crushed stone, with granite and other igneous rocks making up the bulk of the remainder. Limestone deposits are widespread throughout the Central and Eastern United States and are scattered in the West. Granites are widely distributed in the Eastern and Western United States, with few exposures in the Midwest. Igneous rocks (excluding granites) are largely concentrated in the Western United States and in a few isolated localities in the East. Even though natural aggregates are widely distributed throughout the United States, they are not universally available for consumptive use. Some areas are devoid of sand and gravel, and potential sources of crushed stone may be covered with sufficient unconsolidated material to make surface mining impractical. In some areas many aggregates do not meet the physical property requirements for certain uses, or they may contain mineral constituents that react

  11. Effect of Soil Water Content on the Distribution of Diuron into Organomineral Aggregates of Highly Weathered Tropical Soils.

    PubMed

    Regitano, Jussara B; Rocha, Wadson S D; Bonfleur, Eloana J; Milori, Debora; Alleoni, Luís R F

    2016-05-25

    We evaluated the effects of soil water content on the retention of diuron and its residual distribution into organomineral aggregates in four Brazilian oxisols. (14)C-Diuron was incubated for days at 25, 50, and 75% of maximum water-holding capacity for each soil. After 42 days, the physical fractionation method was used to obtain >150, 53-150, 20-53, 2-20, and <2 μm aggregate sizes. Diuron retention increased with increasing soil water content for all soils. At lower soil water content, diuron's retention was higher in the sandier soil. It was mostly retained in the fine (<20 μm) aggregates of sandier soil, and for clayed soils, retention was higher in the coarse aggregates (>53 μm). The sorption coefficients (Kd and Koc) generated by batch studies should be carefully used because they do not provide information about aggregation and diffusion effects on pesticides soil sorption.

  12. 24 CFR 58.32 - Project aggregation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Project aggregation. 58.32 Section... Environmental Review Process: Documentation, Range of Activities, Project Aggregation and Classification § 58.32 Project aggregation. (a) A responsible entity must group together and evaluate as a single project all...

  13. 24 CFR 58.32 - Project aggregation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Project aggregation. 58.32 Section... Environmental Review Process: Documentation, Range of Activities, Project Aggregation and Classification § 58.32 Project aggregation. (a) A responsible entity must group together and evaluate as a single project all...

  14. 24 CFR 58.32 - Project aggregation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Project aggregation. 58.32 Section... Environmental Review Process: Documentation, Range of Activities, Project Aggregation and Classification § 58.32 Project aggregation. (a) A responsible entity must group together and evaluate as a single project all...

  15. 24 CFR 58.32 - Project aggregation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Project aggregation. 58.32 Section... Environmental Review Process: Documentation, Range of Activities, Project Aggregation and Classification § 58.32 Project aggregation. (a) A responsible entity must group together and evaluate as a single project all...

  16. Macroeconomic susceptibility, inflation, and aggregate supply

    NASA Astrophysics Data System (ADS)

    Hawkins, Raymond J.

    2017-03-01

    We unify aggregate-supply dynamics as a time-dependent susceptibility-mediated relationship between inflation and aggregate economic output. In addition to representing well various observations of inflation-output dynamics this parsimonious formalism provides a straightforward derivation of popular representations of aggregate-supply dynamics and a natural basis for economic-agent expectations as an element of inflation formation. Our formalism also illuminates questions of causality and time-correlation that challenge central banks for whom aggregate-supply dynamics is a key constraint in their goal of achieving macroeconomic stability.

  17. Aggregation server for grid-integrated vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempton, Willett

    2015-05-26

    Methods, systems, and apparatus for aggregating electric power flow between an electric grid and electric vehicles are disclosed. An apparatus for aggregating power flow may include a memory and a processor coupled to the memory to receive electric vehicle equipment (EVE) attributes from a plurality of EVEs, aggregate EVE attributes, predict total available capacity based on the EVE attributes, and dispatch at least a portion of the total available capacity to the grid. Power flow may be aggregated by receiving EVE operational parameters from each EVE, aggregating the received EVE operational parameters, predicting total available capacity based on the aggregatedmore » EVE operational parameters, and dispatching at least a portion of the total available capacity to the grid.« less

  18. Cost-Efficient and Multi-Functional Secure Aggregation in Large Scale Distributed Application

    PubMed Central

    Zhang, Ping; Li, Wenjun; Sun, Hua

    2016-01-01

    Secure aggregation is an essential component of modern distributed applications and data mining platforms. Aggregated statistical results are typically adopted in constructing a data cube for data analysis at multiple abstraction levels in data warehouse platforms. Generating different types of statistical results efficiently at the same time (or referred to as enabling multi-functional support) is a fundamental requirement in practice. However, most of the existing schemes support a very limited number of statistics. Securely obtaining typical statistical results simultaneously in the distribution system, without recovering the original data, is still an open problem. In this paper, we present SEDAR, which is a SEcure Data Aggregation scheme under the Range segmentation model. Range segmentation model is proposed to reduce the communication cost by capturing the data characteristics, and different range uses different aggregation strategy. For raw data in the dominant range, SEDAR encodes them into well defined vectors to provide value-preservation and order-preservation, and thus provides the basis for multi-functional aggregation. A homomorphic encryption scheme is used to achieve data privacy. We also present two enhanced versions. The first one is a Random based SEDAR (REDAR), and the second is a Compression based SEDAR (CEDAR). Both of them can significantly reduce communication cost with the trade-off lower security and lower accuracy, respectively. Experimental evaluations, based on six different scenes of real data, show that all of them have an excellent performance on cost and accuracy. PMID:27551747

  19. Cost-Efficient and Multi-Functional Secure Aggregation in Large Scale Distributed Application.

    PubMed

    Zhang, Ping; Li, Wenjun; Sun, Hua

    2016-01-01

    Secure aggregation is an essential component of modern distributed applications and data mining platforms. Aggregated statistical results are typically adopted in constructing a data cube for data analysis at multiple abstraction levels in data warehouse platforms. Generating different types of statistical results efficiently at the same time (or referred to as enabling multi-functional support) is a fundamental requirement in practice. However, most of the existing schemes support a very limited number of statistics. Securely obtaining typical statistical results simultaneously in the distribution system, without recovering the original data, is still an open problem. In this paper, we present SEDAR, which is a SEcure Data Aggregation scheme under the Range segmentation model. Range segmentation model is proposed to reduce the communication cost by capturing the data characteristics, and different range uses different aggregation strategy. For raw data in the dominant range, SEDAR encodes them into well defined vectors to provide value-preservation and order-preservation, and thus provides the basis for multi-functional aggregation. A homomorphic encryption scheme is used to achieve data privacy. We also present two enhanced versions. The first one is a Random based SEDAR (REDAR), and the second is a Compression based SEDAR (CEDAR). Both of them can significantly reduce communication cost with the trade-off lower security and lower accuracy, respectively. Experimental evaluations, based on six different scenes of real data, show that all of them have an excellent performance on cost and accuracy.

  20. Aggregation in particle rich environments: a textural study of examples from volcanic eruptions, meteorite impacts, and fluidized bed processing

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Huber, Matthew S.; Hess, Kai-Uwe; Poesges, Gisela; Ruthensteiner, Bernhard; Dingwell, Donald B.

    2018-04-01

    Aggregation is a common process occurring in many diverse particulate gas mixtures (e.g. those derived from explosive volcanic eruptions, meteorite impact events, and fluid bed processing). It results from the collision and sticking of particles suspended in turbulent gas/air. To date, there is no generalized model of the underlying physical processes. Here, we investigate aggregates from 18 natural deposits (16 volcanic deposits and two meteorite impact deposits) as well as aggregates produced experimentally via fluidized bed techniques. All aggregates were analyzed for their size, internal structuring, and constituent particle size distribution. Commonalities and differences between the aggregate types are then used to infer salient features of the aggregation process. Average core to rim ratios of internally structured aggregates (accretionary lapilli) is found to be similar for artificial and volcanic aggregates but up to an order of magnitude different than impact-related aggregates. Rim structures of artificial and volcanic aggregates appear to be physically similar (single, sub-spherical, regularly-shaped rims) whereas impact-related aggregates more often show multiple or irregularly shaped rims. The particle size distributions (PSDs) of all three aggregate types are similar (< 200 μm). This proves that in all three environments, aggregation occurs under broadly similar conditions despite the significant differences in source conditions (particle volume fraction, particle size distribution, particle composition, temperature), residence times, plume conditions (e.g., humidity and temperature), and dynamics of fallout and deposition. Impact-generated and volcanic aggregates share many similarities, and in some cases may be indistinguishable without their stratigraphic context.

  1. Aggregation in particle rich environments: a textural study of examples from volcanic eruptions, meteorite impacts, and fluidized bed processing.

    PubMed

    Mueller, Sebastian B; Kueppers, Ulrich; Huber, Matthew S; Hess, Kai-Uwe; Poesges, Gisela; Ruthensteiner, Bernhard; Dingwell, Donald B

    2018-01-01

    Aggregation is a common process occurring in many diverse particulate gas mixtures (e.g. those derived from explosive volcanic eruptions, meteorite impact events, and fluid bed processing). It results from the collision and sticking of particles suspended in turbulent gas/air. To date, there is no generalized model of the underlying physical processes. Here, we investigate aggregates from 18 natural deposits (16 volcanic deposits and two meteorite impact deposits) as well as aggregates produced experimentally via fluidized bed techniques. All aggregates were analyzed for their size, internal structuring, and constituent particle size distribution. Commonalities and differences between the aggregate types are then used to infer salient features of the aggregation process. Average core to rim ratios of internally structured aggregates (accretionary lapilli) is found to be similar for artificial and volcanic aggregates but up to an order of magnitude different than impact-related aggregates. Rim structures of artificial and volcanic aggregates appear to be physically similar (single, sub-spherical, regularly-shaped rims) whereas impact-related aggregates more often show multiple or irregularly shaped rims. The particle size distributions (PSDs) of all three aggregate types are similar (< 200 μm). This proves that in all three environments, aggregation occurs under broadly similar conditions despite the significant differences in source conditions (particle volume fraction, particle size distribution, particle composition, temperature), residence times, plume conditions (e.g., humidity and temperature), and dynamics of fallout and deposition. Impact-generated and volcanic aggregates share many similarities, and in some cases may be indistinguishable without their stratigraphic context.

  2. Seasonal variability of soil aggregate stability

    NASA Astrophysics Data System (ADS)

    Rohoskova, M.; Kodesova, R.; Jirku, V.; Zigova, A.; Kozak, J.

    2009-04-01

    Seasonal variability of soil properties measured in surface horizons of three soil types (Haplic Luvisol, Greyic Phaeozem, Haplic Cambisol) was studied in years 2007 and 2008. Undisturbed and disturbed soil samples were taken every month to evaluate field water content, bulk density, porosity, ration of gravitational and capillary pores, pHKCl and pHH2O, organic matter content and its quality, aggregate stability using WSA index. In addition, micromorphological features of soil aggregates were studied in thin soil sections that were made from undisturbed large soil aggregates. Results showed that soil aggregate stability depended on stage of the root zone development, soil management and climatic conditions. Larger aggregate stabilities and also larger ranges of measure values were obtained in the year 2007 then those measured in 2008. This was probably caused by lower precipitations and consequently lower soil water contents observed in 2007 than those measured in 2008. The highest aggregate stability was measured at the end of April in the years 2007 and 2008 in Haplic Luvisol and Greyic Phaeozem, and at the end of June in the year 2007 and at the beginning of June in 2008 in Haplic Cambisol. In all cases aggregate stability increased during the root growth and then gradually decreased due to summer rainfall events. Aggregate stability reflected aggregate structure and soil pore system development, which was documented on micromorphological images and evaluated using the ration of gravitational and capillary pores measured on the undisturbed sol samples. Acknowledgement: Authors acknowledge the financial support of the Grant Agency of the Czech Republic grant No. 526/08/0434, and the Ministry of Education, Youth and Sports grant No. MSM 6046070901.

  3. Current noise generated by spin imbalance in presence of spin relaxation

    NASA Astrophysics Data System (ADS)

    Khrapai, V. S.; Nagaev, K. E.

    2017-01-01

    We calculate current (shot) noise in a metallic diffusive conductor generated by spin imbalance in the absence of a net electric current. This situation is modeled in an idealized three-terminal setup with two biased ferromagnetic leads (F-leads) and one normal lead (N-lead). Parallel magnetization of the F-leads gives rise to spin-imbalance and finite shot noise at the N-lead. Finite spin relaxation results in an increase in the shot noise, which depends on the ratio of the length of the conductor ( L) and the spin relaxation length ( l s). For L >> l s the shot noise increases by a factor of two and coincides with the case of the antiparallel magnetization of the F-leads.

  4. Small-scale early aggregation of green tide macroalgae observed on the Subei Bank, Yellow Sea.

    PubMed

    Hu, Song; Yang, Hong; Zhang, Jianheng; Chen, Changsheng; He, Peimin

    2014-04-15

    Massive green algae blooms became an environmental disaster in the Yellow Sea from 2008 to 2013. Recent studies suggested that recurrences of early aggregates of macroalgae were found over the Subei Bank, a unique shallow radial sand ridge system off the Jiangsu coast, China. Yearly field surveys have been carried out over this bank during the past five years (2009-2013), with an aim at identifying and qualifying the physical-biological mechanism for the early aggregation of algae. Data synthesis showed that early aggregation of macroalgae usually occurred from April-May as small-scale patches either over the intertidal mudflat of the Subei Bank or along local isobaths in the northern coastal area north of the bank. Both hydrographic and current measurements were performed by tracking a narrow patchy area of floating macroalgae (nearly 4 km in length and 5-10 m in width) on April 26, 2013, and the results showed that the algae aggregation was mainly caused by tide-induced convergence. This convergence was produced by the local geometrically controlled interaction of tidal currents with mudflats, which is believed to be a key physical mechanism for the early development of algal blooms in addition to marine ecosystem responses and human aquaculture activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Properties of Concrete Paving Blocks and Hollow Tiles with Recycled Aggregate from Construction and Demolition Wastes

    PubMed Central

    Rodríguez, Carlos; Miñano, Isabel; Aguilar, Miguel Ángel; Parra, Carlos

    2017-01-01

    In recent years there has been an increasing tendency to recycle the wastes generated by building companies in the construction industry, demolition wastes being the most important in terms of volume. The aim of this work is to study the possibility of using recycled aggregates from construction and demolition wastes in the preparation of precast non-structural concretes. To that purpose, two different percentages (15% and 30%) of natural aggregates were substituted by recycled aggregates in the manufacture of paving blocks and hollow tiles. Dosages used by the company have not been changed by the introduction of recycled aggregate. Precast elements have been tested by means of compressive and flexural strength, water absorption, density, abrasion, and slipping resistance. The results obtained show the possibility of using these wastes at an industrial scale, satisfying the requirements of the Spanish standards for these elements. PMID:29189745

  6. Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo.

    PubMed

    Chhatbar, Pratik Y; Kautz, Steven A; Takacs, Istvan; Rowland, Nathan C; Revuelta, Gonzalo J; George, Mark S; Bikson, Marom; Feng, Wuwei

    2018-03-13

    Transcranial direct current stimulation (tDCS) is a promising brain modulation technique for several disease conditions. With this technique, some portion of the current penetrates through the scalp to the cortex and modulates cortical excitability, but a recent human cadaver study questions the amount. This insufficient intracerebral penetration of currents may partially explain the inconsistent and mixed results in tDCS studies to date. Experimental validation of a transcranial alternating current stimulation-generated electric field (EF) in vivo has been performed on the cortical (using electrocorticography, ECoG, electrodes), subcortical (using stereo electroencephalography, SEEG, electrodes) and deeper thalamic/subthalamic levels (using DBS electrodes). However, tDCS-generated EF measurements have never been attempted. We aimed to demonstrate that tDCS generates biologically relevant EF as deep as the subthalamic level in vivo. Patients with movement disorders who have implanted deep brain stimulation (DBS) electrodes serve as a natural experimental model for thalamic/subthalamic recordings of tDCS-generated EF. We measured voltage changes from DBS electrodes and body resistance from tDCS electrodes in three subjects while applying direct current to the scalp at 2 mA and 4 mA over two tDCS montages. Voltage changes at the level of deep nuclei changed proportionally with the level of applied current and varied with different tDCS montages. Our findings suggest that scalp-applied tDCS generates biologically relevant EF. Incorporation of these experimental results may improve finite element analysis (FEA)-based models. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Aggregate R-R-V Analysis

    EPA Pesticide Factsheets

    The excel file contains time series data of flow rates, concentrations of alachlor , atrazine, ammonia, total phosphorus, and total suspended solids observed in two watersheds in Indiana from 2002 to 2007. The aggregate time series data corresponding or representative to all these parameters was obtained using a specialized, data-driven technique. The aggregate data is hypothesized in the published paper to represent the overall health of both watersheds with respect to various potential water quality impairments. The time series data for each of the individual water quality parameters were used to compute corresponding risk measures (Rel, Res, and Vul) that are reported in Table 4 and 5. The aggregation of the risk measures, which is computed from the aggregate time series and water quality standards in Table 1, is also reported in Table 4 and 5 of the published paper. Values under column heading uncertainty reports uncertainties associated with reconstruction of missing records of the water quality parameters. Long-term records of the water quality parameters were reconstructed in order to estimate the (R-R-V) and corresponding aggregate risk measures. This dataset is associated with the following publication:Hoque, Y., S. Tripathi, M. Hantush , and R. Govindaraju. Aggregate Measures of Watershed Health from Reconstructed Water Quality Data with Uncertainty. Ed Gregorich JOURNAL OF ENVIRONMENTAL QUALITY. American Society of Agronomy, MADISON, WI,

  8. Reuse of industrial sludge as construction aggregates.

    PubMed

    Tay, J H; Show, K Y; Hong, S Y

    2001-01-01

    Industrial wastewater sludge and dredged marine clay are high volume wastes that needed enormous space at landfill disposal sites. Due to the limitation of land space, there is an urgent need for alternative disposal methods for these two wastes. This study investigates the possibility of using the industrial sludge in combination with marine clay as construction aggregates. Different proportions of sludge and clay were made into round and angular aggregates. It was found that certain mix proportions could provide aggregates of adequate strength, comparable to that of conventional aggregates. Concrete samples cast from the sludge-clay aggregates yield compressive strengths in the range of 31.0 to 39.0 N/mm2. The results showed that the round aggregates of 100% sludge and the crush aggregates of sludge with up to 20% clay produced concrete of compressive strengths which are superior to that of 38.0 N/mm2 for conventional aggregate. The study indicates that the conversion of high volume wastes into construction materials is a potential option for waste management.

  9. Aggregated Computational Toxicology Online Resource

    EPA Pesticide Factsheets

    Aggregated Computational Toxicology Online Resource (AcTOR) is EPA's online aggregator of all the public sources of chemical toxicity data. ACToR aggregates data from over 1,000 public sources on over 500,000 chemicals and is searchable by chemical name, other identifiers and by chemical structure. It can be used to query a specific chemical and find all publicly available hazard, exposure and risk assessment data. It also provides access to EPA's ToxCast, ToxRefDB, DSSTox, Dashboard and DSSTox data.

  10. Lightweight alumina refractory aggregate. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swansiger, T.G.; Pearson, A.

    1996-07-16

    Objective was to develop a lightweight, high alumina refractory aggregate for use in various high performance insulating (low thermal conductivity) refractory applications (e.g., in the aluminium, glass, cement, and iron and steel industries). A new aggregate process was developed through bench and pilot-scale experiments involving extrusion of a blend of calcined and activated alumina powders and organic extrusion aids and binders. The aggregate, with a bulk density approaching 2.5 g/cc, exhibited reduced thermal conductivity and adequate fired strength compared to dense tabular aggregate. Refractory manufacturers were moderately enthusiastic over the results. Alcoa prepared an economic analysis for producing lightweight aggregate,more » based on a retrofit of this process into existing Alcoa production facilities. However, a new, competing lightweight aggregate material was developed by another company; this material (Plasmal{trademark})had a significantly more favorable cost base than the Alcoa/DOE material, due to cheap raw materials and fewer processing steps. In late 1995, Alcoa became a distributor of Plasmal. Alcoa estimated that {ge}75% of the market originally envisioned for the Alcoa/DOE aggregate would be taken by Plasmal. Hence, it was decided to terminate the contract without the full- scale demonstration.« less

  11. Inducing protein aggregation by extensional flow

    PubMed Central

    Dobson, John; Kumar, Amit; Willis, Leon F.; Tuma, Roman; Higazi, Daniel R.; Turner, Richard; Lowe, David C.; Ashcroft, Alison E.; Radford, Sheena E.; Kapur, Nikil

    2017-01-01

    Relative to other extrinsic factors, the effects of hydrodynamic flow fields on protein stability and conformation remain poorly understood. Flow-induced protein remodeling and/or aggregation is observed both in Nature and during the large-scale industrial manufacture of proteins. Despite its ubiquity, the relationships between the type and magnitude of hydrodynamic flow, a protein’s structure and stability, and the resultant aggregation propensity are unclear. Here, we assess the effects of a defined and quantified flow field dominated by extensional flow on the aggregation of BSA, β2-microglobulin (β2m), granulocyte colony stimulating factor (G-CSF), and three monoclonal antibodies (mAbs). We show that the device induces protein aggregation after exposure to an extensional flow field for 0.36–1.8 ms, at concentrations as low as 0.5 mg mL−1. In addition, we reveal that the extent of aggregation depends on the applied strain rate and the concentration, structural scaffold, and sequence of the protein. Finally we demonstrate the in situ labeling of a buried cysteine residue in BSA during extensional stress. Together, these data indicate that an extensional flow readily unfolds thermodynamically and kinetically stable proteins, exposing previously sequestered sequences whose aggregation propensity determines the probability and extent of aggregation. PMID:28416674

  12. Locally available aggregate and sediment production

    Treesearch

    Randy B. Foltz; Mark Truebe

    2003-01-01

    Selection of suitable locally available materials to build strong and durable roads with aggregate surfaces is desired to minimize road construction and maintenance costs and to minimize the detrimental effects of sedimentation. Eighteen aggregates were selected from local sources in Idaho, Oregon, South Dakota, and Washington State. Aggregate was placed in shallow...

  13. Contrasting self-aggregation over land and ocean surfaces

    NASA Astrophysics Data System (ADS)

    Inda Diaz, H. A.; O'Brien, T. A.

    2017-12-01

    The spontaneous organization of convection into clusters, or self-aggregation, demonstrably changes the nature and statistics of precipitation. While there has been much recent progress in this area, the processes that control self-aggregation are still poorly understood. Most of the work to date has focused on self-aggregation over ocean-like surfaces, but it is particularly pressing to understand what controls convective aggregation over land, since the associated change in precipitation statistics—between non-aggregated and aggregated convection—could have huge impacts on society and infrastructure. Radiative-convective equilibrium (RCE), has been extensively used as an idealized framework to study the tropical atmosphere. Self-aggregation manifests in numerous numerical models of RCE, nevertheless, there is still a lack of understanding in how it relates to convective organization in the observed world. Numerous studies have examined self-aggregation using idealized Cloud Resolving Models (CRMs) and General Circulation Models over the ocean, however very little work has been done on RCE and self-aggregation over land. Idealized models of RCE over ocean have shown that aggregation is sensitive to sea surface temperature (SST), more intense precipitation occurs in aggregated systems, and a variety of feedbacks—such as surface flux, cloud radiative, and upgradient moisture transport— contribute to the maintenance of aggregation, however it is not clear if these results apply over land. Progress in this area could help relate understanding of self-aggregation in idealized simulations to observations. In order to explore the behavior of self-aggregation over land, we use a CRM to simulate idealized RCE over land. In particular, we examine the aggregation of convection and how it compares with aggregation over ocean. Based on previous studies, where a variety of different CRMs exhibit a SST threshold below which self-aggregation does not occur, we hypothesize

  14. Two dimensional distribution measurement of electric current generated in a polymer electrolyte fuel cell using 49 NMR surface coils.

    PubMed

    Ogawa, Kuniyasu; Sasaki, Tatsuyoshi; Yoneda, Shigeki; Tsujinaka, Kumiko; Asai, Ritsuko

    2018-05-17

    In order to increase the current density generated in a PEFC (polymer electrolyte fuel cell), a method for measuring the spatial distribution of both the current and the water content of the MEA (membrane electrode assembly) is necessary. Based on the frequency shifts of NMR (nuclear magnetic resonance) signals acquired from the water contained in the MEA using 49 NMR coils in a 7 × 7 arrangement inserted in the PEFC, a method for measuring the two-dimensional spatial distribution of electric current generated in a unit cell with a power generation area of 140 mm × 160 mm was devised. We also developed an inverse analysis method to determine the two-dimensional electric current distribution that can be applied to actual PEFC connections. Two analytical techniques, namely coarse graining of segments and stepwise search, were used to shorten the calculation time required for inverse analysis of the electric current map. Using this method and techniques, spatial distributions of electric current and water content in the MEA were obtained when the PEFC generated electric power at 100 A. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. An Experimental Study on the Darrieus-Savonius Turbine for the Tidal Current Power Generation

    NASA Astrophysics Data System (ADS)

    Kyozuka, Yusaku

    The Darrieus turbine is popular for tidal current power generation in Japan. It is simple in structure with straight wings rotating around a vertical axis, so that it has no directionality against the motion of tidal flow which changes its direction twice a day. However, there is one defect in the Darrieus turbine; its small starting torque. Once it stops, a Darrieus turbine is hard to re-start until a fairly fast current is exerted on it. To improve the starting torque of the Darrieus turbine used for tidal power generation, a hybrid turbine, composed of a Darrieus turbine and a Savonius rotor is proposed. Hydrodynamic characteristics of a semi-circular section used for the Savonius bucket were measured in a wind tunnel. The torque of a two bucket Savonius rotor was measured in a circulating water channel, where four different configurations of the bucket were compared. A combined Darrieus and Savonius turbine was tested in the circulating water channel, where the effect of the attaching angle between Darrieus wing and Savonius rotor was studied. Finally, power generation experiments using a 48 pole electric generator were conducted in a towing tank and the power coefficients were compared with the results of experiments obtained in the circulating water channel.

  16. Microwave-induced formation of oligomeric amyloid aggregates.

    PubMed

    Lee, Wonseok; Choi, Yeseong; Lee, Sang Won; Kim, Insu; Lee, Dongtak; Hong, Yoochan; Lee, Gyudo; Yoon, Dae Sung

    2018-08-24

    Amyloid aggregates have emerged as a significant hallmark of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Although it has been recently reported that microwave heating induces amyloid aggregation compared with conventional heating methods, the mechanism of amyloid aggregate induction has remained unclear. In this study, we investigated the formation of oligomeric amyloid aggregates (OAAs) by microwave irradiation at microscale volumes of solution. Microwave irradiation of protein monomer solution triggered rapid formation of OAAs within 7 min. We characterized the formation of OAAs using atomic force microscopy, thioflavin T fluorescent assay and circular dichroism. In the microwave system, we also investigated the inhibitory effect on the formation of amyloid aggregates by L-ascorbic acid as well as enhanced amyloid aggregation by silver nanomaterials such as nanoparticles and nanowires. We believe that microwave technology has the potential to facilitate the study of amyloid aggregation in the presence of chemical agents or nanomaterials.

  17. The Optimum Production Method for Quality Improvement of Recycled Aggregates Using Sulfuric Acid and the Abrasion Method.

    PubMed

    Kim, Haseog; Park, Sangki; Kim, Hayong

    2016-07-29

    There has been increased deconstruction and demolition of reinforced concrete structures due to the aging of the structures and redevelopment of urban areas resulting in the generation of massive amounts of construction. The production volume of waste concrete is projected to increase rapidly over 100 million tons by 2020. However, due to the high cement paste content, recycled aggregates have low density and high absorption ratio. They are mostly used for land reclamation purposes with low added value instead of multiple approaches. This study was performed to determine an effective method to remove cement paste from recycled aggregates by using the abrasion and substituting the process water with acidic water. The aim of this study is to analyze the quality of the recycled fine aggregates produced by a complex method and investigate the optimum manufacturing conditions for recycled fine aggregates based on the design of experiment. The experimental parameters considered were water ratio, coarse aggregate ratio, and abrasion time and, as a result of the experiment, data concerning the properties of recycled sand were obtained. It was found that high-quality recycled fine aggregates can be obtained with 8.57 min of abrasion-crusher time and a recycled coarse aggregate ratio of over 1.5.

  18. Aggregate consumer exposure to UV filter ethylhexyl methoxycinnamate via personal care products.

    PubMed

    Manová, Eva; von Goetz, Natalie; Hungerbuehler, Konrad

    2015-01-01

    Ultraviolet (UV) filters are substances designed to protect our skin from UV-induced damage and can be found in many categories of personal care products (PCPs). The potential endocrine-disrupting effects attributed to UV filter ethylhexyl methoxycinnamate (EHMC) are being debated. We evaluated the aggregate exposure of the Swiss-German population (N=1196; ages ≤1-97years) to EHMC via the use of PCPs; thus we provide the first comprehensive information about the current EHMC exposure sources and aggregate exposure levels. In our probabilistic modeling method performed at an individual level, PCP use data obtained by a postal questionnaire were linked to concentration data on EHMC gained from chemical analyses of PCPs used by the questionnaire respondents. The modeled median and 99.9th percentile of the internal aggregate exposure for the general population were 0.012 and 0.873mgday(-1)kg(-1) and 0.008 and 0.122mgday(-1)kg(-1) for the summer/autumn and winter/spring period, respectively. The major contributors to internal aggregate exposure were sunscreen products in summer/autumn (females: 64%; males: 85%; children aged ≤12years 93%). In winter/spring, lip care dominated for females (30%) and sunscreen for males (38%) and children aged ≤12years (50%). Overall, the internal aggregate exposure estimates for the studied population are shown to be below the Derived No Effect Level (DNEL) for EHMC i.e., the level of exposure above which humans should not be exposed; however, when an intense short-term exposure via sunscreen is accounted for during a sunbathing day, at the high-end percentiles (99.9th) the predicted aggregate exposure exceeds the DNEL for thyroid-disrupting effects such as for children aged ≤4years, who might be particularly susceptible to endocrine disrupting events. It is nevertheless critical to acknowledge that quantitative data on transdermal penetration of EHMC from PCPs are currently insufficient. Since long-term effects of endocrine

  19. pH-responsive modulation of insulin aggregation and structural transformation of the aggregates.

    PubMed

    Smirnova, Ekaterina; Safenkova, Irina; Stein-Margolina, Vita; Shubin, Vladimir; Polshakov, Vladimir; Gurvits, Bella

    2015-02-01

    Over the past two decades, much information has appeared on electrostatically driven molecular mechanisms of protein self-assembly and formation of aggregates of different morphology, varying from soluble amorphous structures to highly-ordered amyloid-like fibrils. Protein aggregation represents a special tool in biomedicine and biotechnology to produce biological materials for a wide range of applications. This has awakened interest in identification of pH-triggered regulators of transformation of aggregation-prone proteins into structures of higher order. The objective of the present study is to elucidate the effects of low-molecular-weight biogenic agents on aggregation and formation of supramolecular structures of human recombinant insulin, as a model therapeutic protein. Using dynamic light scattering, turbidimetry, circular dichroism, fluorescence spectroscopy, atomic force microscopy, transmission electron microscopy, and nuclear magnetic resonance, we have demonstrated that the amino acid l-arginine (Arg) has the striking potential to influence insulin aggregation propensity. It was shown that modification of the net charge of insulin induced by changes in the pH level of the incubation medium results in dramatic changes in the interaction of the protein with Arg. We have revealed the dual effects of Arg, highly dependent on the pH level of the solution - suppression or acceleration of the aggregation of insulin at pH 7.0 or 8.0, respectively. These effects can be regulated by manipulating the pH of the environment. The results of this study may be of interest for development of appropriate drug formulations and for the more general insight into the functioning of insulin in living systems, as the protein is known to release by exocytosis from pancreatic beta cells in a pH-dependent manner. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  20. Extracorporeal human bone-like tissue generation

    PubMed Central

    Rosenberg, N.; Rosenberg, O.

    2012-01-01

    Objectives The need for bone tissue supplementation exists in a wide range of clinical conditions involving surgical reconstruction in limbs, the spine and skull. The bone supplementation materials currently used include autografts, allografts and inorganic matrix components; but these pose potentially serious side-effects. In particular the availability of the autografts is usually limited and their harvesting causes surgical morbidity. Therefore for the purpose of supplementation of autologous bone graft, we have developed a method for autologous extracorporeal bone generation. Methods Human osteoblast-like cells were seeded on porous granules of tricalcium phosphate and incubated in osteogenic media while exposed to mechanical stimulation by vibration in the infrasonic range of frequencies. The generated tissue was examined microscopically following haematoxylin eosin, trichrome and immunohistochemical staining. Results Following 14 days of incubation the generated tissue showed histological characteristics of bone-like material due to the characteristic eosinophilic staining, a positive staining for collagen trichrome and a positive specific staining for osteocalcin and collagen 1. Macroscopically, this tissue appeared in aggregates of between 0.5 cm and 2 cm. Conclusions We present evidence that the interaction of the cellular, inorganic and mechanical components in vitro can rapidly generate three-dimensional bone-like tissue that might be used as an autologous bone graft. PMID:23610651

  1. Light-induced aggregation of microbial exopolymeric substances.

    PubMed

    Sun, Luni; Xu, Chen; Zhang, Saijin; Lin, Peng; Schwehr, Kathleen A; Quigg, Antonietta; Chiu, Meng-Hsuen; Chin, Wei-Chun; Santschi, Peter H

    2017-08-01

    Sunlight can inhibit or disrupt the aggregation process of marine colloids via cleavage of high molecular weight compounds into smaller, less stable fragments. In contrast, some biomolecules, such as proteins excreted from bacteria can form aggregates via cross-linking due to photo-oxidation. To examine whether light-induced aggregation can occur in the marine environment, we conducted irradiation experiments on a well-characterized protein-containing exopolymeric substance (EPS) from the marine bacterium Sagitulla stellata. Our results show that after 1 h sunlight irradiation, the turbidity level of soluble EPS was 60% higher than in the dark control. Flow cytometry also confirmed that more particles of larger sized were formed by sunlight. In addition, we determined a higher mass of aggregates collected on filter in the irradiated samples. This suggests light can induce aggregation of this bacterial EPS. Reactive oxygen species hydroxyl radical and peroxide played critical roles in the photo-oxidation process, and salts assisted the aggregation process. The observation that Sagitulla stellata EPS with relatively high protein content promoted aggregation, was in contrast to the case where no significant differences were found in the aggregation of a non-protein containing phytoplankton EPS between the dark and light conditions. This, together with the evidence that protein-to-carbohydrate ratio of aggregates formed under light condition is significantly higher than that formed under dark condition suggest that proteins are likely the important component for aggregate formation. Light-induced aggregation provides new insights into polymer assembly, marine snow formation, and the fate/transport of organic carbon and nitrogen in the ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cholesterol impairment contributes to neuroserpin aggregation

    NASA Astrophysics Data System (ADS)

    Giampietro, Costanza; Lionetti, Maria Chiara; Costantini, Giulio; Mutti, Federico; Zapperi, Stefano; La Porta, Caterina A. M.

    2017-03-01

    Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer’s and Parkinson’s diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation.

  3. Thermal spin current generation and spin transport in Pt/magnetic-insulator/Py heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Tzu; Safranski, Christopher; Krivorotov, Ilya; Sun, Jonathan

    Magnetic insulators can transmit spin current via magnon propagation while blocking charge current. Furthermore, under Joule heating, magnon flow as a result of the spin Seeback effect can generate additional spin current. Incorporating magnetic insulators in a spin-orbit torque magnetoresistive memory device can potentially yield high switching efficiencies. Here we report the DC magneto-transport studies of these two effects in Pt/magnetic-insulator/Py heterostructures, using ferrimagnetic CoFexOy (CFO) and antiferromagnet NiO as the model magnetic insulators. We observe the presence and absence of the inverse spin-Hall signals from the thermal spin current in Pt/CFO/Py and Pt/NiO/Py structures. These results are consistent with our spin-torque FMR linewidths in comparison. We will also report investigations into the magnetic field-angle dependence of these observations.

  4. Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate

    NASA Astrophysics Data System (ADS)

    Zheng, Chaocan; Lou, Cong; Du, Geng; Li, Xiaozhen; Liu, Zhiwu; Li, Liqin

    2018-06-01

    This paper presents an experimental investigation on the effect of the replacement of natural coarse aggregate (NCA) with either recycled concrete aggregate (RCA) or recycled clay brick aggregate (RBA) on the compressive strengths of the hardened concrete. Two grades (C25 and C50) of concrete were investigated, which were achieved by using different water-to-cement ratios. In each grade concrete five different replacement rates, 0%, 25%, 50%, 75% and 100% were considered. In order to improve the performance of the recycled aggregates in the concrete mixes, the RCA and RBA were carefully sieved by using the optimal degradation. In this way the largest reduction in the 28-day compressive strength was found to be only 7.2% and 9.6% for C25 and C50 recycled concrete when the NCA was replaced 100% by RCA, and 11% and 13% for C25 and C50 recycled concrete when the NCA was replaced 100% by RBA. In general, the concrete with RCA has better performance than the concrete with RBA. The comparison of the present experimental results with those reported in literature for hardened concrete with either RCA or RBA demonstrates the effectiveness in improving the compressive strength by using the optimal gradation of recycled aggregates.

  5. Chemically Functionalized Conjugated Oligoelectrolyte Nanoparticles for Enhancement of Current Generation in Microbial Fuel Cells.

    PubMed

    Zhao, Cui-e; Chen, Jia; Ding, Yuanzhao; Wang, Victor Bochuan; Bao, Biqing; Kjelleberg, Staffan; Cao, Bin; Loo, Say Chye Joachim; Wang, Lianhui; Huang, Wei; Zhang, Qichun

    2015-07-08

    Water-soluble conjugated oligoelectrolyte nanoparticles (COE NPs), consisting of a cage-like polyhedral oligomeric silsesquioxanes (POSS) core equipped at each end with pendant groups (oligo(p-phenylenevinylene) electrolyte, OPVE), have been designed and demonstrated as an efficient strategy in increasing the current generation in Escherichia coli microbial fuel cells (MFCs). The as-prepared COE NPs take advantage of the structure of POSS and the optical properties of the pendant groups, OPVE. Confocal laser scanning microscopy showed strong photoluminescence of the stained cells, indicating spontaneous accumulation of COE NPs within cell membranes. Moreover, the electrochemical performance of the COE NPs is superior to that of an established membrane intercommunicating COE, DSSN+ in increasing current generation, suggesting that these COE NPs thus hold great potential to boost the performance of MFCs.

  6. Experimental research of different plasma cathodes for generation of high-current electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafir, G.; Kreif, M.; Gleizer, J. Z.

    2015-11-21

    The results of experimental studies of different types of cathodes—carbon-epoxy rods, carbon-epoxy capillary, edged graphite, and metal-dielectric—under the application of high-voltage pulses with an amplitude of several hundreds of kV and pulse duration of several nanoseconds are presented. The best diode performance was achieved with the edged graphite and carbon-epoxy-based cathodes characterized by uniform and fast (<1 ns) formation of explosive emission plasma spots and quasi-constant diode impedance. This result was achieved for both annular cathodes in a strong magnetic field and planar cathodes of a similar diameter (∼2 cm) with no external magnetic field. The cathodes based on carbon-epoxy rods andmore » carbon-epoxy capillaries operating with an average current density up to 1 kA/cm{sup 2} showed insignificant erosion along 10{sup 6} pulses of the generator and the generated electron beam current showed excellent reproducibility in terms of the amplitude and waveform.« less

  7. Does thermophoresis reduce aggregate stability?

    NASA Astrophysics Data System (ADS)

    Sachs, Eyal; Sarah, Pariente

    2017-04-01

    Thermophoresis is mass flow driven by a thermal gradient. As a result of Seebeck effect and Soret effect, colloids can move from the hot to the cold region or vice versa, depending on the electrolyte composition and on the particle size. This migration of colloids can weaken aggregates. The effect of raindrop temperatures on runoff generation and erosion on clayey soil was investigated in sprinkling experiments with a laboratory rotating disk rain simulator. The experiments were applied to Rhodoxeralt (Terra Rossa) soil with two pre-prepared moisture contents: hygroscopic and field capacity. For each moisture content three rainfall temperatures were applied: 2, 20, and 35°C. Erosion was generally lower in the pre-wetted soil than in the dry soil (12.5 and 24.4 g m-2 per 40 mm of rain,respectively). Whereas there was no significant effect of raindrop temperature on the dry soil the soil that was pre-moistened to field capacity was affected by rainwater temperature: runoff and erosion were high when the temperature difference between rainfall and soil surface was high, sediment yields were 13.9, 5.2, and 18.3 g m-2 per 40 mm of rain, for rain temperature of 2, 20, and 35 °C, respectively. It is reasonable to conclude that thermophoresis caused by thermal gradients within the soil solution reduces the stability of aggregates and then increase the soil losses.

  8. Pullout resistance of mechanically stabilized earth wall steel strip reinforcement in uniform aggregate.

    DOT National Transportation Integrated Search

    2015-11-01

    A wide range of reinforcement-backfill combinations have been used in mechanically stabilized earth (MSE) walls. Steel : strips are one type of reinforcement used to stabilize aggregate backfill through anchorage. In the current MSE wall design, pull...

  9. Induction of the Immunoproteasome Subunit Lmp7 Links Proteostasis and Immunity in α-Synuclein Aggregation Disorders.

    PubMed

    Ugras, Scott; Daniels, Malcolm J; Fazelinia, Hossein; Gould, Neal S; Yocum, Anastasia K; Luk, Kelvin C; Luna, Esteban; Ding, Hua; McKennan, Chris; Seeholzer, Steven; Martinez, Dan; Evans, Perry; Brown, Daniel; Duda, John E; Ischiropoulos, Harry

    2018-05-01

    Accumulation of aggregated α-synuclein into Lewy bodies is thought to contribute to the onset and progression of dopaminergic neuron degeneration in Parkinson's disease (PD) and related disorders. Although protein aggregation is associated with perturbation of proteostasis, how α-synuclein aggregation affects the brain proteome and signaling remains uncertain. In a mouse model of α-synuclein aggregation, 6% of 6215 proteins and 1.6% of 8183 phosphopeptides changed in abundance, indicating conservation of proteostasis and phosphorylation signaling. The proteomic analysis confirmed changes in abundance of proteins that regulate dopamine synthesis and transport, synaptic activity and integrity, and unearthed changes in mRNA binding, processing and protein translation. Phosphorylation signaling changes centered on axonal and synaptic cytoskeletal organization and structural integrity. Proteostatic responses included a significant increase in the levels of Lmp7, a component of the immunoproteasome. Increased Lmp7 levels and activity were also quantified in postmortem human brains with PD and dementia with Lewy bodies. Functionally, the immunoproteasome degrades α-synuclein aggregates and generates potentially antigenic peptides. Expression and activity of the immunoproteasome may represent testable targets to induce adaptive responses that maintain proteome integrity and modulate immune responses in protein aggregation disorders. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Boundaries of intergrowths between mineral individuals: A zone of secondary mineral formation in aggregates

    NASA Astrophysics Data System (ADS)

    Brodskaya, R. L.; Bil'Skaya, I. V.; Lyakhnitskaya, V. D.; Markovsky, B. A.; Sidorov, E. G.

    2007-12-01

    Intergrowth boundaries between mineral individuals in dunite of the Gal’moenan massif in Koryakia was studied in terms of crystal morphology, crystal optics, and ontogenesis. The results obtained allowed us to trace the staged formation of olivine and chromite and four generations of these minerals. Micro-and nanotopography of boundary surfaces between intergrown mineral individuals of different generations was examined with optic, electron, and atomic force microscopes. The boundaries between mineral individuals of different generations are distinguished by their microsculpture for both olivine and chromite grains. Both minerals demonstrate a compositional trend toward refinement from older to younger generations. The decrease in the iron mole fraction in olivine and chromite is accompanied by the crystallization of magnetite along weakened zones in olivine of the first generation and as outer rims around the chromite grains of the second generation observable under optic and electronic microscopes. The subsequent refinement of chromite results in the release of PGE from its lattice, as established by atomic power microscopy. The newly formed PGM are localized at the boundaries between mineral individuals and, thus, mark a special stage in the ontogenetic evolution of mineral aggregates. Further recrystallization is expressed in the spatial redistribution of grain boundaries and the formation of monomineralic intergrowth boundaries, i.e., the glomerogranular structure of rock and substructures of PGM, chromite, and olivine grains as intermediate types of organization of the granular assemblies in the form of reticulate, chain, and cellular structures and substructures of aggregates.

  11. Aggregate Load Controllers and Associated Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chassin, David P.

    Aggregate load controllers and associated methods are described. According to one aspect, a method of operating an aggregate load controller includes using an aggregate load controller having an initial state, applying a stimulus to a plurality of thermostatic controllers which are configured to control a plurality of respective thermostatic loads which receive electrical energy from an electrical utility to operate in a plurality of different operational modes, accessing data regarding a response of the thermostatic loads as a result of the applied stimulus, using the data regarding the response, determining a value of at least one design parameter of themore » aggregate load controller, and using the determined value of the at least one design parameter, configuring the aggregate load controller to control amounts of the electrical energy which are utilized by the thermostatic loads.« less

  12. Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.

    PubMed

    Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani

    2017-10-14

    Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.

  13. Simulation of Ionic Aggregation and Ion Dynamics in Model Ionomers

    NASA Astrophysics Data System (ADS)

    Frischknecht, Amalie L.

    2012-02-01

    Ionomers, polymers containing a small fraction of covalently bound ionic groups, are of interest as possible electrolytes in batteries. A single-ion conducting polymer electrolyte would be safer and have higher efficiency than the currently-used liquid electrolytes. However, to date ionomeric materials do not have sufficiently high conductivities for practical application. This is most likely because the ions tend to form aggregates, leading to slow ion transport. A key question is therefore how molecular structure affects the ionic aggregation and ion dynamics. To probe these structure-property relationships, we have performed molecular simulations of a set of recently synthesized poly(ethylene-co-acrylic acid) copolymers and ionomers, with a focus on the morphology of the ionic aggregates. The ionomers have a precise, constant spacing of charged groups, making them ideal for direct comparisons with simulations. Ab initio calculations give insight into the expected coordination of cations with fragments of the ionomers. All-atom molecular dynamics (MD) simulations of the ionomer melt show aggregation of the ionic groups into extended string-like clusters. An extensive set of coarse-grained molecular dynamics simulations extend the results to longer times and larger length scales. The structure factors calculated from the MD simulations compare favorably with x-ray scattering data. Furthermore, the simulations give a detailed picture of the sizes, shapes, and composition of the ionic aggregates, and how they depend on polymer architecture. Implications for ion transport will be discussed. [Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Opportunistic tri-band carrier aggregation in licensed spectrum for multi-operator 5G hetnet

    NASA Astrophysics Data System (ADS)

    Maksymuk, Taras; Kyryk, Maryan; Klymash, Mykhailo; Jo, Minho; Romaniuk, Ryszard; Kotyra, Andrzej; Zhanpeisova, Aizhan; Kozbekova, Ainur

    2017-08-01

    Increasing capacity of mobile networks is a real challenge due to rapid increasing of traffic demands and spectrum scarcity. Carrier aggregation technology is aimed to increase the user data rate by combining the throughput of few spectrum bands, even if they are not physically collocated. Utilization of unlicensed Wi-Fi 5 GHz band for mobile transmission opens new perspectives for carrier aggregation due to vast amount of spectrum range, which can be available for aggregation to supplement data rates for end users. There are many solutions proposed to enable mobile data transmission in unlicensed band without disturbing interference for the existing Wi-Fi users. The paper presents a new approach for opportunistic carrier aggregation in licensed and unlicensed band for multi-operator 5G network. It allows multiple network operators to utilize unlicensed spectrum opportunistically if it is not currently used by Wi-Fi or other mobile network operators. Performance of the proposed approach has been simulated in case of two competing operators. Simulation results reveal that applying the proposed method ensures achieving satisfactory performance of carrier aggregation for the case of two network operators.

  15. Dispersion of ferrofluid aggregates in steady flows

    NASA Astrophysics Data System (ADS)

    Williams, Alicia M.; Vlachos, Pavlos P.

    2011-12-01

    Using focused shadowgraphs, we investigate steady flows of a magnetically non-susceptible fluid interacting with ferrofluid aggregates comprised of superparamagnetic nanoparticles. The ferrofluid aggregate is retained at a specific site within the flow channel using two different applied magnetic fields. The bulk flow induces shear stresses on the aggregate, which give rise to the development of interfacial disturbances, leading to Kelvin-Helmholtz (K-H) instabilities and shedding of ferrofluid structures. Herein, the effects of bulk Reynolds number, ranging from 100 to 1000, and maximum applied magnetic fields of 1.2 × 105 and 2.4 × 105 A/m are investigated in the context of their impact on dispersion or removal of material from the core aggregate. The aggregate interaction with steady bulk flow reveals three regimes of aggregate dynamics over the span of Reynolds numbers studied: stable, transitional, and shedding. The first regime is characterized by slight aggregate stretching for low Reynolds numbers, with full aggregate retention. As the Reynolds number increases, the aggregate is in-transition between stable and shedding states. This second regime is characterized by significant initial stretching that gives way to small amplitude Kelvin-Helmholtz waves. Higher Reynolds numbers result in ferrofluid shedding, with Strouhal numbers initially between 0.2 and 0.3, wherein large vortical structures are shed from the main aggregate accompanied by precipitous decay of the accumulated ferrofluid aggregate. These behaviors are apparent for both magnetic field strengths, although the transitional Reynolds numbers are different between the cases, as are the characteristic shedding frequencies relative to the same Reynolds number. In the final step of this study, relevant parameters were extracted from the time series dispersion data to comprehensively quantify aggregate mechanics. The aggregate half-life is found to decrease as a function of the Reynolds number

  16. ML 3.0 smoothed aggregation user's guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sala, Marzio; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

    2004-05-01

    ML is a multigrid preconditioning package intended to solve linear systems of equations Az = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. ML should be used on large sparse linear systems arising from partial differential equation (PDE) discretizations. While technically any linear system can be considered, ML should be used on linear systems that correspond to things that work well with multigrid methods (e.g. elliptic PDEs). ML can be used as a stand-alone package ormore » to generate preconditioners for a traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with the AZTEC 2.1 and AZTECOO iterative package [15]. However, other solvers can be used by supplying a few functions. This document describes one specific algebraic multigrid approach: smoothed aggregation. This approach is used within several specialized multigrid methods: one for the eddy current formulation for Maxwell's equations, and a multilevel and domain decomposition method for symmetric and non-symmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dynamics problems). Other methods exist within ML but are not described in this document. Examples are given illustrating the problem definition and exercising multigrid options.« less

  17. ML 3.1 smoothed aggregation user's guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sala, Marzio; Hu, Jonathan Joseph; Tuminaro, Raymond Stephen

    2004-10-01

    ML is a multigrid preconditioning package intended to solve linear systems of equations Ax = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. ML should be used on large sparse linear systems arising from partial differential equation (PDE) discretizations. While technically any linear system can be considered, ML should be used on linear systems that correspond to things that work well with multigrid methods (e.g. elliptic PDEs). ML can be used as a stand-alone package ormore » to generate preconditioners for a traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with the Aztec 2.1 and AztecOO iterative package [16]. However, other solvers can be used by supplying a few functions. This document describes one specific algebraic multigrid approach: smoothed aggregation. This approach is used within several specialized multigrid methods: one for the eddy current formulation for Maxwell's equations, and a multilevel and domain decomposition method for symmetric and nonsymmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dynamics problems). Other methods exist within ML but are not described in this document. Examples are given illustrating the problem definition and exercising multigrid options.« less

  18. Aggregation in concentrated protein solutions: Insights from rheology, neutron scattering and molecular simulations

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica

    Aggregation of therapeutic proteins is currently one of the major challenges in the bio-pharmaceutical industry, because aggregates could induce immunogenic responses and compromise the quality of the product. Current scientific efforts, both in industry and academia, are focused on developing rational approaches to screen different drug candidates and predict their stability under different conditions. Moreover, aggregation is promoted in highly concentrated protein solutions, which are typically required for subcutaneous injection. In order to gain further understanding about the mechanisms that lead to aggregation, an approach that combined rheology, neutron scattering, and molecular simulations was undertaken. Two model systems were studied in this work: Bovine Serum Albumin in surfactant-free Phosphate Buffered Saline at pH = 7.4 at concentrations from 11 mg/mL up to ˜519 mg/mL, and a monoclonal antibody in 20 mM Histidine/Histidine Hydrochloride at pH = 6.0 with 60 mg/mL trehalose and 0.2 mg/mL polysorbate-80 at concentrations from 53 mg/mL up to ˜220 mg/mL. The antibody used here has three mutations in the CH2 domain, which result in lower stability upon incubation at 40 °C with respect to the wild-type protein, based on size-exclusion chromatography assays. This temperature is below 49 °C, where unfolding of the least stable, CH2 domain occurs, according to differential scanning calorimetry. This dissertation focuses on identifying the role of aggregation on the viscosity of protein solutions. The protein solutions of this work show an increase in the low shear viscosity in the absence of surfactants, because proteins adsorb at the air/water interface forming a viscoelastic film that affects the measured rheology. Stable surfactant-laden protein solutions behave as simple Newtonian fluids. However, the surfactant-laden antibody solution also shows an increase in the low shear viscosity from bulk aggregation, after prolonged incubation at 40 °C. Small

  19. 31 CFR 1024.313 - Aggregation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT NETWORK, DEPARTMENT OF THE TREASURY RULES FOR MUTUAL FUNDS Reports Required To Be Made By Mutual Funds § 1024.313 Aggregation. Refer to § 1010.313 of this chapter for reports of transactions in currency aggregation requirements for mutual funds. ...

  20. Rofecoxib does not compromise platelet aggregation during anesthesia and surgery.

    PubMed

    Silverman, David G; Halaszynski, Thomas; Sinatra, Raymond; Luther, Martha; Rinder, Christine S

    2003-12-01

    This study was undertaken because, although there is evidence that cyclooxygenase type 2 (COX)-2 inhibitors do not compromise platelets in healthy volunteers, many clinicians remain hesitant to administer them perioperatively without definitive evidence of intact platelet function during anesthesia and surgery. In 20 patients scheduled for lower abdominal and pelvic surgery, 5 mL of blood were obtained for baseline platelet aggregometry. One hour prior to surgery, patients received an oral solution of either rofecoxib (ROF) 50 mg or placebo (PLAC) by randomized, double-blinded assignment. Approximately one hour after onset of anesthesia, an intraoperative blood sample was obtained. Baseline and postdrug samples were centrifuged to generate platelet-rich plasma, which was challenged with adenosine diphosphate (ADP) and arachidonic acid (AA). Aggregometry was performed with and without incubation with aspirin. The data in each subject were normalized to baseline aggregation in response to AA alone and ADP alone. Intergroup differences were assessed using paired t test; P < 0.05 was considered significant. Consistent with known effects of anesthesia on platelet function, both groups had approximately 25% intraoperative declines in aggregation in response to ADP (P = NS for PLAC vs ROF) and even greater declines in response to AA (P = NS for PLAC vs ROF). Aspirin eliminated aggregation in response to AA in both groups (P = NS), and it caused similar declines in PLAC and ROF groups during exposure to ADP (P = NS). This study provides strong evidence that ROF does not compromise platelet aggregation during anesthesia and surgery; nor does it interfere with the platelet inhibitory effect of aspirin.

  1. Methods of predicting aggregate voids : [technical summary].

    DOT National Transportation Integrated Search

    2013-03-01

    Percent voids in combined aggregates vary significantly. Simplified methods of predicting aggregate voids were studied to determine the feasibility of a range of gradations using aggregates available in Kansas. : The 0.45 Power Curve Void Prediction ...

  2. Self-aggregation and coaggregation of the p53 core fragment with its aggregation gatekeeper variant.

    PubMed

    Lei, Jiangtao; Qi, Ruxi; Wei, Guanghong; Nussinov, Ruth; Ma, Buyong

    2016-03-21

    Recent studies suggested that p53 aggregation can lead to loss-of-function (LoF), dominant-negative (DN) and gain-of-function (GoF) effects, with adverse cancer consequences. The p53 aggregation-nucleating (251)ILTIITL(257) fragment is a key segment in wild-type p53 aggregation; however, an I254R mutation can prevent it. It was suggested that self-assembly of wild-type p53 and its cross-interaction with mutants differ from the classical amyloid nucleation-growth mechanism. Here, using replica exchange molecular dynamics (REMD) simulations, we studied the cross-interactions of this p53 core fragment and its aggregation rescue I254R mutant. We found that the core fragment displays strong aggregation propensity, whereas the gatekeeper I254R mutant tends to be disordered, consistent with experiments. Our cross-interaction results reveal that the wild-type p53 fragment promotes β-sheet formation of the I254R mutant by shifting the disordered mutant peptides into aggregating states. As a result, the system has similar oligomeric structures, inter-peptide interactions and free energy landscape as the wild type fragment does, revealing a prion-like process. We also found that in the cross-interaction system, the wild-type species has higher tendency to interact with the mutant than with itself. This phenomenon illustrates synergistic effects between the p53 (251)ILTIITL(257) fragment and the mutant resembling prion cross-species propagation, cautioning against exploiting it in drug discovery.

  3. Disease-Associated Mutant Ubiquitin Causes Proteasomal Impairment and Enhances the Toxicity of Protein Aggregates

    PubMed Central

    Tank, Elizabeth M. H.; True, Heather L.

    2009-01-01

    Protein homeostasis is critical for cellular survival and its dysregulation has been implicated in Alzheimer's disease (AD) and other neurodegenerative disorders. Despite the growing appreciation of the pathogenic mechanisms involved in familial forms of AD, much less is known about the sporadic cases. Aggregates found in both familial and sporadic AD often include proteins other than those typically associated with the disease. One such protein is a mutant form of ubiquitin, UBB+1, a frameshift product generated by molecular misreading of a wild-type ubiquitin gene. UBB+1 has been associated with multiple disorders. UBB+1 cannot function as a ubiquitin molecule, and it is itself a substrate for degradation by the ubiquitin/proteasome system (UPS). Accumulation of UBB+1 impairs the proteasome system and enhances toxic protein aggregation, ultimately resulting in cell death. Here, we describe a novel model system to investigate how UBB+1 impairs UPS function and whether it plays a causal role in protein aggregation. We expressed a protein analogous to UBB+1 in yeast (Ubext) and demonstrated that it caused UPS impairment. Blocking ubiquitination of Ubext or weakening its interactions with other ubiquitin-processing proteins reduced the UPS impairment. Expression of Ubext altered the conjugation of wild-type ubiquitin to a UPS substrate. The expression of Ubext markedly enhanced cellular susceptibility to toxic protein aggregates but, surprisingly, did not induce or alter nontoxic protein aggregates in yeast. Taken together, these results suggest that Ubext interacts with more than one protein to elicit impairment of the UPS and affect protein aggregate toxicity. Furthermore, we suggest a model whereby chronic UPS impairment could inflict deleterious consequences on proper protein aggregate sequestration. PMID:19214209

  4. Software for the grouped optimal aggregation technique

    NASA Technical Reports Server (NTRS)

    Brown, P. M.; Shaw, G. W. (Principal Investigator)

    1982-01-01

    The grouped optimal aggregation technique produces minimum variance, unbiased estimates of acreage and production for countries, zones (states), or any designated collection of acreage strata. It uses yield predictions, historical acreage information, and direct acreage estimate from satellite data. The acreage strata are grouped in such a way that the ratio model over historical acreage provides a smaller variance than if the model were applied to each individual stratum. An optimal weighting matrix based on historical acreages, provides the link between incomplete direct acreage estimates and the total, current acreage estimate.

  5. Island size distribution with hindered aggregation

    NASA Astrophysics Data System (ADS)

    González, Diego Luis; Camargo, Manuel; Sánchez, Julián A.

    2018-05-01

    We study the effect of hindered aggregation on the island formation processes for a one-dimensional model of epitaxial growth with arbitrary nucleus size i . In the proposed model, the attachment of monomers to islands is hindered by an aggregation barrier, ɛa, which decreases the hopping rate of monomers to the islands. As ɛa increases, the system exhibits a crossover between two different regimes; namely, from diffusion-limited aggregation to attachment-limited aggregation. The island size distribution, P (s ) , is calculated for different values of ɛa by a self-consistent approach involving the nucleation and aggregation capture kernels. The results given by the analytical model are compared with those from kinetic Monte Carlo simulations, finding a close agreement between both sets of data for all considered values of i and ɛa. As the aggregation barrier increases, the spatial effect of fluctuations on the density of monomers can be neglected and P (s ) smoothly approximates to the limit distribution P (s ) =δs ,i +1 . In the crossover regime the system features a complex and rich behavior, which can be explained in terms of the characteristic timescales of different microscopic processes.

  6. Numerical simulation of large-scale field-aligned current generation from finite-amplitude magnetosonic waves

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.

    1994-01-01

    A two-dimensional numerical simulation of finite-amplitude magnetohydrodynamic (MHD) magnetosonic waves is performed under a finite-velocity background convection condition. Isothermal cases are considered for simplicity. External dissipation is introduced by assuming that the field-aligned currents are generated in proportion to the accumulated charges. The simulation results are as follows: Paired field-aligned currents are found from the simulated waves. The flow directions of these field-aligned currents depend on the angle between the background convection and the wave normal, and hence two pairs of field-aligned currents are found from a bowed wave if we look at the overall structure. The majority of these field-aligned currents are closed within each pair rather than between two wings. These features are not observed under slow background convection. The result could be applied to the cusp current system and the substorm current system.

  7. Exobiological implications of dust aggregation in planetary atmospheres: An experiment for the gas-grain simulation facility

    NASA Technical Reports Server (NTRS)

    Huntington, J. L.; Schwartz, D. E.; Marshall, J. R.

    1991-01-01

    The Gas-Grain Simulation Facility (GGSF) will provide a microgravity environment where undesirable environmental effects are reduced, and thus, experiments involving interactions between small particles and grains can be more suitably performed. Slated for flight aboard the Shuttle in 1992, the ESA glovebox will serve as a scientific and technological testbed for GGSF exobiology experiments as well as generating some basic scientific data. Initial glovebox experiments will test a method of generating a stable, mono-dispersed cloud of fine particles using a vibrating sprinkler system. In the absence of gravity and atmospheric turbulence, it will be possible to determine the influence of interparticle forces in controlling the rate and mode of aggregation. The experimental chamber can be purged of suspended matter to enable multiple repetitions of the experiments. Of particular interest will be the number of particles per unit volume of the chamber, because it is suspected that aggregation will occur extremely rapidly if the number exceeds a critical value. All aggregation events will be recorded on high-resolution video film. Changes in the experimental procedure as a result of surprise events will be accompanied by real-time interaction with the mission specialist during the Shuttle flight.

  8. Steam generator degradation: Current mitigation strategies for controlling corrosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millett, P.

    1997-02-01

    Steam Generator degradation has caused substantial losses of power generation, resulted in large repair and maintenance costs, and contributed to significant personnel radiation exposures in Pressurized Water Reactors (PWRs) operating throughout the world. EPRI has just published the revised Steam Generator Reference Book, which reviews all of the major forms of SG degradation. This paper discusses the types of SG degradation that have been experienced with emphasis on the mitigation strategies that have been developed and implemented in the field. SG degradation is presented from a world wide perspective as all countries operating PWRs have been effected to one degreemore » or another. The paper is written from a US. perspective where the utility industry is currently undergoing tremendous change as a result of deregulation of the electricity marketplace. Competitive pressures are causing utilities to strive to reduce Operations and Maintenance (O&M) and capital costs. SG corrosion is a major contributor to the O&M costs of PWR plants, and therefore US utilities are evaluating and implementing the most cost effective solutions to their corrosion problems. Mitigation strategies developed over the past few years reflect a trend towards plant specific solutions to SG corrosion problems. Since SG degradation is in most cases an economic problem and not a safety problem, utilities can focus their mitigation strategies on their unique financial situation. Accordingly, the focus of R&D has shifted from the development of more expensive, prescriptive solutions (e.g. reduced impurity limits) to corrosion problems to providing the utilities with a number of cost effective mitigation options (e.g. molar ratio control, boric acid treatment).« less

  9. Aggregation of LoD 1 building models as an optimization problem

    NASA Astrophysics Data System (ADS)

    Guercke, R.; Götzelmann, T.; Brenner, C.; Sester, M.

    3D city models offered by digital map providers typically consist of several thousands or even millions of individual buildings. Those buildings are usually generated in an automated fashion from high resolution cadastral and remote sensing data and can be very detailed. However, not in every application such a high degree of detail is desirable. One way to remove complexity is to aggregate individual buildings, simplify the ground plan and assign an appropriate average building height. This task is computationally complex because it includes the combinatorial optimization problem of determining which subset of the original set of buildings should best be aggregated to meet the demands of an application. In this article, we introduce approaches to express different aspects of the aggregation of LoD 1 building models in the form of Mixed Integer Programming (MIP) problems. The advantage of this approach is that for linear (and some quadratic) MIP problems, sophisticated software exists to find exact solutions (global optima) with reasonable effort. We also propose two different heuristic approaches based on the region growing strategy and evaluate their potential for optimization by comparing their performance to a MIP-based approach.

  10. Mechanical Dissociation of Platelet Aggregates in Blood Stream

    NASA Astrophysics Data System (ADS)

    Hoore, Masoud; Fedosov, Dmitry A.; Gompper, Gerhard; Complex; Biological Fluids Group Team

    2017-11-01

    von Willebrand factor (VWF) and platelet aggregation is a key phenomenon in blood clotting. These aggregates form critically in high shear rates and dissolve reversibly in low shear rates. The emergence of a critical shear rate, beyond which aggregates form and below which they dissolve, has an interesting impact on aggregation in blood flow. As red blood cells (RBCs) migrate to the center of the vessel in blood flow, a RBC free layer (RBC-FL) is left close to the walls into which the platelets and VWFs are pushed back from the bulk flow. This margination process provides maximal VWF-platelet aggregation probability in the RBC-FL. Using mesoscale hydrodynamic simulations of aggregate dynamics in blood flow, it is shown that the aggregates form and grow in RBC-FL wherein shear rate is high for VWF stretching. By growing, the aggregates penetrate to the bulk flow and get under order of magnitude lower shear rates. Consequently, they dissolve and get back into the RBC-FL. This mechanical limitation for aggregates prohibits undesired thrombosis and vessel blockage by aggregates, while letting the VWFs and platelets to aggregate close to the walls where they are actually needed. The support by the DFG Research Unit FOR 1543 SHENC and CPU time Grant by the Julich Supercomputing Center are acknowledged.

  11. Evaluation of cement and fly ash treated recycled asphalt pavement and aggregates for base construction : tech summary.

    DOT National Transportation Integrated Search

    2011-12-01

    INTRODUCTION: Many entities currently use recycled asphalt pavement (RAP) and other aggregates as base materials, temporary haul roads, and, in the case of RAP, hot mix asphalt construction. Several : states currently allow the use of RAP combined wi...

  12. Effects of Humic Acid and Sunlight on the Generation and Aggregation State of Aqu/C60 Nanoparticles

    EPA Science Inventory

    Aqueous suspensions of nanoscale C60 aggregates (aqu/C60) were produced by stirring in water with Suwanee River Humic Acid (humic acid) and water from Call’s Creek, a small stream near Athens, GA. Time course experiments were conducted to determine the effects of sunlight and sol...

  13. Modeling Plankton Aggregation and Transport by Nonlinear Internal Waves Propagating Onshore.

    NASA Astrophysics Data System (ADS)

    Garwood, J. C.; Musgrave, R. C.; Franks, P. J. S.

    2016-02-01

    Many coastal benthic species have planktonic larval forms. These larvae must return to suitable adult habitat to allow recruitment to the breeding population. To a large extent these larvae are at the mercy of the ambient currents. However, simple vertical swimming behaviors may significantly enhance onshore or offshore transport of these organisms in certain coastal flows. Here we use models to investigate the interaction of nonlinear internal waves (NLIW) and swimming behaviors in determining plankton aggregation and cross-shelf transport. In a 2D, non-hydrostatic MITgcm with particle tracking, NLIW are generated and propagate onshore into a region of sloping bottom topography. Lagrangian and swimming particles representing plankton are introduced in the flow field to quantify transport and dispersion. Characteristics of the environment (bottom slope and stratification), as well as of the particles (source, depth, and swimming vs. passive) were varied to identify scenarios that would maximize transport or accumulation. Our results will be used to design experiments using swarms of autonomous buoyancy-controlled drifters to quantify transport and accumulation in the field.

  14. Efficient clustering aggregation based on data fragments.

    PubMed

    Wu, Ou; Hu, Weiming; Maybank, Stephen J; Zhu, Mingliang; Li, Bing

    2012-06-01

    Clustering aggregation, known as clustering ensembles, has emerged as a powerful technique for combining different clustering results to obtain a single better clustering. Existing clustering aggregation algorithms are applied directly to data points, in what is referred to as the point-based approach. The algorithms are inefficient if the number of data points is large. We define an efficient approach for clustering aggregation based on data fragments. In this fragment-based approach, a data fragment is any subset of the data that is not split by any of the clustering results. To establish the theoretical bases of the proposed approach, we prove that clustering aggregation can be performed directly on data fragments under two widely used goodness measures for clustering aggregation taken from the literature. Three new clustering aggregation algorithms are described. The experimental results obtained using several public data sets show that the new algorithms have lower computational complexity than three well-known existing point-based clustering aggregation algorithms (Agglomerative, Furthest, and LocalSearch); nevertheless, the new algorithms do not sacrifice the accuracy.

  15. Aggregate-mediated charge transport in ionomeric electrolytes

    NASA Astrophysics Data System (ADS)

    Lu, Keran; Maranas, Janna; Milner, Scott

    Polymers such PEO can conduct ions, and have been studied as possible replacements for organic liquid electrolytes in rechargeable metal-ion batteries. More generally, fast room-temperature ionic conduction has been reported for a variety of materials, from liquids to crystalline solids. Unfortunately, polymer electrolytes generally have limited conductivity; these polymers are too viscous to have fast ion diffusion like liquids, and too unstructured to promote cooperative transport like crystalline solids. Ionomers are polymer electrolytes in which ionic groups are covalently bound to the polymer backbone, neutralized by free counterions. These materials also conduct ions, and can exhibit strong ionic aggregation. Using coarse-grained molecular dynamics, we explore the forces driving ionic aggregation, and describe the role ion aggregates have in mediating charge transport. The aggregates are string-like such that ions typically have two neighbors. We find ion aggregates self-assemble like worm-like micelles. Excess charge, or free ions, occasionally coordinate with aggregates and are transported along the chain in a Grotthuss-like mechanism. We propose that controlling ionomer aggregate structure through materials design can enhance cooperative ion transport.

  16. Aggregation-induced emission spectral shift as a measure of local concentration of a pH-activatable rhodamine-based smart probe

    NASA Astrophysics Data System (ADS)

    Arsov, Zoran; Urbančič, Iztok; Štrancar, Janez

    2018-02-01

    Generating activatable probes that report about molecular vicinity through contact-based mechanisms such as aggregation can be very convenient. Specifically, such probes change a particular spectral property only at the intended biologically relevant target. Xanthene derivatives, for example rhodamines, are able to form aggregates. It is typical to examine aggregation by absorption spectroscopy but for microscopy applications utilizing fluorescent probes it is very important to perform characterization by measuring fluorescence spectra. First we show that excitation spectra of aqueous solutions of rhodamine 6G can be very informative about the aggregation features. Next we establish the dependence of the fluorescence emission spectral maximum shift on the dimer concentration. The obtained information helped us confirm the possibility of aggregation of a recently designed and synthesized rhodamine 6G-based pH-activatable fluorescent probe and to study its pH and concentration dependence. The size of the aggregation-induced emission spectral shift at specific position on the sample can be measured by fluorescence microspectroscopy, which at particular pH allows estimation of the local concentration of the observed probe at microscopic level. Therefore, we show that besides aggregation-caused quenching and aggregation-induced emission also aggregation-induced emission spectral shift can be a useful photophysical phenomenon.

  17. An Experimental Study of Mortars with Recycled Ceramic Aggregates: Deduction and Prediction of the Stress-Strain.

    PubMed

    Cabrera-Covarrubias, Francisca Guadalupe; Gómez-Soberón, José Manuel; Almaral-Sánchez, Jorge Luis; Arredondo-Rea, Susana Paola; Gómez-Soberón, María Consolación; Corral-Higuera, Ramón

    2016-12-21

    The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε); therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%), such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content) are those of: σ (elastic ranges and failure maximum), ε (elastic ranges and failure maximum), and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications.

  18. An Experimental Study of Mortars with Recycled Ceramic Aggregates: Deduction and Prediction of the Stress-Strain

    PubMed Central

    Cabrera-Covarrubias, Francisca Guadalupe; Gómez-Soberón, José Manuel; Almaral-Sánchez, Jorge Luis; Arredondo-Rea, Susana Paola; Gómez-Soberón, María Consolación; Corral-Higuera, Ramón

    2016-01-01

    The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε); therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%), such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content) are those of: σ (elastic ranges and failure maximum), ε (elastic ranges and failure maximum), and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications. PMID:28774151

  19. Evaluation of ASR potential in Wyoming aggregates.

    DOT National Transportation Integrated Search

    2013-10-01

    A comprehensive study was performed to evaluate the ASR reactivity of eight Wyoming aggregates. State-of-the-art and standardized test : methods were performed and results were used to evaluate these aggregate sources. Of the eight aggregates: four a...

  20. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    DOE PAGES

    Gao, Lan; Ji, Hantao; Fiksel, Gennady; ...

    2016-04-15

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ~ 1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ~ 3 x 10 16 W/cm 2. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ~ 40-50 T magnetic fields at the center of the coil ~ 3-4 ns after laser irradiation. In conclusion, themore » experiments provide significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.« less

  1. Coupling of aggregation and immunogenicity in biotherapeutics: T- and B-cell immune epitopes may contain aggregation-prone regions.

    PubMed

    Kumar, Sandeep; Singh, Satish K; Wang, Xiaoling; Rup, Bonita; Gill, Davinder

    2011-05-01

    Biotherapeutics, including recombinant or plasma-derived human proteins and antibody-based molecules, have emerged as an important class of pharmaceuticals. Aggregation and immunogenicity are among the major bottlenecks during discovery and development of biotherapeutics. Computational tools that can predict aggregation prone regions as well as T- and B-cell immune epitopes from protein sequence and structure have become available recently. Here, we describe a potential coupling between aggregation and immunogenicity: T-cell and B-cell immune epitopes in therapeutic proteins may contain aggregation-prone regions. The details of biological mechanisms behind this observation remain to be understood. However, our observation opens up an exciting potential for rational design of de-immunized novel, as well as follow on biotherapeutics with reduced aggregation propensity.

  2. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia

    PubMed Central

    Wang, Chencai; Hsu, Chao-Hsiung; Li, Zhao; Hwang, Lian-Pin; Lin, Ying-Chih; Chou, Pi-Tai; Lin, Yung-Ya

    2017-01-01

    Magnetic resonance (MR) nano-theranostic hyperthermia uses magnetic nanoparticles to target and accumulate at the lesions and generate heat to kill lesion cells directly through hyperthermia or indirectly through thermal activation and control releasing of drugs. Preclinical and translational applications of MR nano-theranostic hyperthermia are currently limited by a few major theoretical difficulties and experimental challenges in in vivo conditions. For example, conventional models for estimating the heat generated and the optimal magnetic nanoparticle sizes for hyperthermia do not accurately reproduce reported in vivo experimental results. In this work, a revised cluster-based model was proposed to predict the specific loss power (SLP) by explicitly considering magnetic nanoparticle aggregation in in vivo conditions. By comparing with the reported experimental results of magnetite Fe3O4 and cobalt ferrite CoFe2O4 magnetic nanoparticles, it is shown that the revised cluster-based model provides a more accurate prediction of the experimental values than the conventional models that assume magnetic nanoparticles act as single units. It also provides a clear physical picture: the aggregation of magnetic nanoparticles increases the cluster magnetic anisotropy while reducing both the cluster domain magnetization and the average magnetic moment, which, in turn, shift the predicted SLP toward a smaller magnetic nanoparticle diameter with lower peak values. As a result, the heating efficiency and the SLP values are decreased. The improvement in the prediction accuracy in in vivo conditions is particularly pronounced when the magnetic nanoparticle diameter is in the range of ~10–20 nm. This happens to be an important size range for MR cancer nano-theranostics, as it exhibits the highest efficacy against both primary and metastatic tumors in vivo. Our studies show that a relatively 20%–25% smaller magnetic nanoparticle diameter should be chosen to reach the maximal

  3. A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network

    PubMed Central

    Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue

    2016-01-01

    Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency. PMID:26907272

  4. A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network.

    PubMed

    Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue

    2016-02-19

    Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency.

  5. Industry contributions to aggregate workplace injury and illness rate trends: 1992-2008.

    PubMed

    Ruser, John W

    2014-10-01

    Aggregate workplace injury and illness rates have generally declined over the past quarter century. Assessing which industries contributed to these declines is hampered by industry coding changes that broke time series data. Ratios were estimated to convert older incidence rate data to current industry codes and to create long industry time series from data of the BLS Survey of Occupational Injuries and Illnesses. These data were used to assess contributions to aggregate trends from within-industry incidence rate trends and across-industry hours shifts. Hours shifts toward safer industries do not explain aggregate incidence rate declines. Rather declines resulted from within-industry declines. The top 20 contributors out of 307 industries account for 40 percent of the decline and include both goods-producing and service-providing industries. These data help focus future research on industries responsible for rate declines and factors hypothesized as contributing to declines. © Published 2014 by Wiley Periodicals, Inc.

  6. Identification of aggregates for Tennessee bituminous surface courses

    NASA Astrophysics Data System (ADS)

    Sauter, Heather Jean

    Tennessee road construction is a major venue for federal and state spending. Tax dollars each year go to the maintenance and construction of roads. One aspect of highway construction that affects the public is the safety of its state roads. There are many factors that affect the safety of a given road. One factor that was focused on in this research was the polish resistance capabilities of aggregates. Several pre-evaluation methods have been used in the laboratory to predict what will happen in a field situation. A new pre-evaluation method was invented that utilized AASHTO T 304 procedure upscaled to accommodate surface bituminous aggregates. This new method, called the Tennessee Terminal Textural Condition Method (T3CM), was approved by Tennessee Department of Transportation to be used as a pre-evaluation method on bituminous surface courses. It was proven to be operator insensitive, repeatable, and an accurate indication of particle shape and texture. Further research was needed to correlate pre-evaluation methods to the current field method, ASTM E 274-85 Locked Wheel Skid Trailer. In this research, twenty-five in-place bituminous projects and eight source evaluations were investigated. The information gathered would further validate the T3CM and find the pre-evaluation method that best predicted the field method. In addition, new sources of aggregates for bituminous surface courses were revealed. The results of this research have shown T3CM to be highly repeatable with an overall coefficient of variation of 0.26% for an eight sample repeatability test. It was the best correlated pre-evaluation method with the locked wheel skid trailer method giving an R2 value of 0.3946 and a Pearson coefficient of 0.710. Being able to predict field performance of aggregates prior to construction is a powerful tool capable of saving time, money, labor, and possibly lives.

  7. Development of new test procedures for measuring fine and coarse aggregates specific gravity.

    DOT National Transportation Integrated Search

    2009-09-01

    The objective of the research is to develop and evaluate new test methods at determining the specific gravity and absorption of both fine and coarse aggregates. Current methods at determining the specific gravity and absorption of fine and coarse agg...

  8. 31 CFR 1026.313 - Aggregation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... IN COMMODITIES Reports Required To Be Made by Futures Commission Merchants and Introducing Brokers in Commodities § 1026.313 Aggregation. Refer to § 1010.313 of this chapter for reports of transactions in currency aggregation requirements for futures commission merchants and introducing brokers in commodities...

  9. Detection and Characterization of Aggregates, Prefibrillar Amyloidogenic Oligomers, and Protofibrils Using Fluorescence Spectroscopy

    PubMed Central

    Lindgren, Mikael; Sörgjerd, Karin; Hammarström, Per

    2005-01-01

    Transthyretin (TTR) is a protein linked to a number of different amyloid diseases including senile systemic amyloidosis and familial amyloidotic polyneuropathy. The transient nature of oligomeric intermediates of misfolded TTR that later mature into fibrillar aggregates makes them hard to study, and methods to study these species are sparse. In this work we explore a novel pathway for generation of prefibrillar aggregates of TTR, which provides important insight into TTR misfolding. Prefibrillar amyloidogenic oligomers and protofibrils of misfolded TTR were generated in vitro through induction of the molten globule type A-state from acid unfolded TTR through the addition of NaCl. The aggregation process produced fairly monodisperse oligomers (300–500 kD) within 2 h that matured after 20 h into larger spherical clusters (30–50 nm in diameter) and protofibrils as shown by transmission electron microscopy. Further maturation of the aggregates showed shrinkage of the spheres as the fibrils grew in length, suggesting a conformational change of the spheres into more rigid structures. The structural and physicochemical characteristics of the aggregates were investigated using fluorescence, circular dichroism, chemical cross-linking, and transmission electron microscopy. The fluorescent dyes 1-anilinonaphthalene-8-sulfonate (ANS), 4-4-bis-1-phenylamino-8-naphthalene sulfonate (Bis-ANS), 4-(dicyanovinyl)-julolidine (DCVJ), and thioflavin T (ThT) were employed in both static and kinetic assays to characterize these oligomeric and protofibrillar states using both steady-state and time-resolved fluorescence techniques. DCVJ, a molecular rotor, was employed for the first time for studies of an amyloidogenic process and is shown useful for detection of the early steps of the oligomerization process. DCVJ bound to the early prefibrillar oligomers (300–500 kD) with an apparent dissociation constant of 1.6 μM, which was slightly better than for ThT (6.8 μM). Time

  10. Drug-Free Platelets Can Act as Seeds for Aggregate Formation During Antiplatelet Therapy

    PubMed Central

    Hoefer, Thomas; Armstrong, Paul C.; Finsterbusch, Michaela; Chan, Melissa V.; Kirkby, Nicholas S.

    2015-01-01

    Objective— Reduced antiplatelet drug efficacy occurs in conditions of increased platelet turnover, associated with increased proportions of drug-free, that is, uninhibited, platelets. Here, we detail mechanisms by which drug-free platelets promote platelet aggregation in the face of standard antiplatelet therapy. Approach and Results— To model standard antiplatelet therapy, platelets were treated in vitro with aspirin, the P2Y12 receptor blocker prasugrel active metabolite, or aspirin plus prasugrel active metabolite. Different proportions of uninhibited platelets were then introduced. Light transmission aggregometry analysis demonstrated clear positive associations between proportions of drug-free platelets and percentage platelet aggregation in response to a range of platelet agonists. Using differential platelet labeling coupled with advanced flow cytometry and confocal imaging we found aggregates formed in mixtures of aspirin-inhibited platelets together with drug-free platelets were characterized by intermingled platelet populations. This distribution is in accordance with the ability of drug-free platelets to generate thromboxane A2 and so drive secondary platelet activation. Conversely, aggregates formed in mixtures of prasugrel active metabolite–inhibited or aspirin plus prasugrel active metabolite–inhibited platelets together with drug-free platelets were characterized by distinct cores of drug-free platelets. This distribution is consistent with the ability of drug-free platelets to respond to the secondary activator ADP. Conclusions— These experiments are the first to image the interactions of inhibited and uninhibited platelets in the formation of platelet aggregates. They demonstrate that a general population of platelets can contain subpopulations that respond strikingly differently to overall stimulation of the population and so act as the seed for platelet aggregation. PMID:26272940

  11. The cell aggregating propensity of probiotic actinobacterial isolates: isolation and characterization of the aggregation inducing peptide pheromone.

    PubMed

    Muthu Selvam, Ramu; Vinothini, Gopal; Palliyarai Thaiyammal, Sethuramalingam; Latha, Selvanathan; Chinnathambi, Arunachalam; Dhanasekaran, Dharumadurai; Padmanabhan, Parasuraman; Ali Alharbi, Sulaiman; Archunan, Govindaraju

    2016-01-01

    The auto-aggregating ability of a probiotic is a prerequisite for colonization and protection of the gastrointestinal tract, whereas co-aggregation provides a close interaction with pathogenic bacteria. Peptide pheromone mediated signaling has been studied in several systems. However, it has not yet been explored in prokaryotes, especially actinobacteria. Hence, in the present study, the diffusible aggregation promoting factor was purified from the culture supernatant of a potent actinobacterial probiont and characterized using 20 different actinobacterial cultures isolated from the gut region of chicken and goat. The results showed that the pheromone-like compound induces the aggregation propensity of treated isolates. The factor was found to be a heat stable, acidic pH resistant, low molecular weight peptide which enhances the biofilm forming ability of other actinobacterial isolates. The aggregation promoting factor represents a bacterial sex factor (pheromone) and its characterization confirms its usage in the probiotic formulation.

  12. The current-induced heat generation in a spin-flip quantum dot sandwiched between a ferromagnetic and a superconducting electrode

    NASA Astrophysics Data System (ADS)

    Jiang, Feng; Yan, Yonghong; Wang, Shikuan; Yan, Yijing

    2017-12-01

    Using non-equilibrium Green's functions' theory based on extended Nambu representation and small polaron transformation, we studied the current-induced heat generation in a spin-flip quantum dot sandwiched between a ferromagnetic and a superconducting electrode. We focused on moderate dot-leads coupling and relative small phonon energy, and derived the detailed expression of heat generation. The numerical results show (i) the heat generation decreases with polarization degree increasing, (ii) the intradot spin-flip can have a great effect on the heat generation at both zero temperature and finite temperature and (iii) at finite temperature an optimal workspace of keeping spin current and tuning heat generation by modulating the spin-flip intensity can be found.

  13. Optimization on Fc for Improvement of Stability and Aggregation Resistance.

    PubMed

    Chen, Xiaobo; Zeng, Fang; Huang, Tao; Cheng, Liang; Liu, Huan; Gong, Rui

    2016-01-01

    Fc-based therapeutics including therapeutic full-size monoclonal antibodies (mAbs) and Fcfusion proteins represent fastest-growing market in biopharmaceutical industrial. However, one major challenge during development of Fc-based therapeutics is how to maintain their efficacy in clinic use. Many factors may lead to failure in final marketing. For example, the stability and aggregation resistance might not be high enough for bearing the disadvantages during fermentation, purification, formulation, storage, shipment and other steps in manufacture and sale. Low stability and high aggregation tendency lead to decreased bioactivity and increased risk of immunogenicity resulting in serious side effect. Because Fc is one of the major parts in monoclonal antibodies and Fc-fusion proteins, engineering of Fc to increase its stability and reduce or eliminate aggregation due to incorrect association are of great importance and could further extend the potential of Fc-based therapeutics. Lots of studies focus on Fc optimization for better physical and chemical characteristics and function by structured-based computer-aid rational design, high-throughput screening expression system selection and other methods. The identification of optimized Fc mutants increases the clinic potential of currently existed therapeutics mAbs and Fc-fusion proteins, and accelerates the development of new Fc-based therapeutics. Here we provide an overview of the related field, and discuss recent advances and future directions in optimization of Fc-based therapeutics with modified stability and aggregation resistance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Tailoring the antibody response to aggregated Aß using novel Alzheimer-vaccines.

    PubMed

    Mandler, Markus; Santic, Radmila; Gruber, Petra; Cinar, Yeliz; Pichler, Dagmar; Funke, Susanne Aileen; Willbold, Dieter; Schneeberger, Achim; Schmidt, Walter; Mattner, Frank

    2015-01-01

    Recent evidence suggests Alzheimer-Disease (AD) to be driven by aggregated Aß. Capitalizing on the mechanism of molecular mimicry and applying several selection layers, we screened peptide libraries for moieties inducing antibodies selectively reacting with Aß-aggregates. The technology identified a pool of peptide candidates; two, AFFITOPES AD01 and AD02, were assessed as vaccination antigens and compared to Aβ1-6, the targeted epitope. When conjugated to Keyhole Limpet Hemocyanin (KLH) and adjuvanted with aluminum, all three peptides induced Aß-targeting antibodies (Abs). In contrast to Aß1-6, AD01- or AD02-induced Abs were characterized by selectivity for aggregated forms of Aß and absence of reactivity with related molecules such as Amyloid Precursor Protein (APP)/ secreted APP-alpha (sAPPa). Administration of AFFITOPE-vaccines to APP-transgenic mice was found to reduce their cerebral amyloid burden, the associated neuropathological alterations and to improve their cognitive functions. Thus, the AFFITOME-technology delivers vaccines capable of inducing a distinct Ab response. Their features may be beneficial to AD-patients, a hypothesis currently tested within a phase-II-study.

  15. Tailoring the Antibody Response to Aggregated Aß Using Novel Alzheimer-Vaccines

    PubMed Central

    Gruber, Petra; Cinar, Yeliz; Pichler, Dagmar; Funke, Susanne Aileen; Willbold, Dieter; Schneeberger, Achim; Schmidt, Walter; Mattner, Frank

    2015-01-01

    Recent evidence suggests Alzheimer-Disease (AD) to be driven by aggregated Aß. Capitalizing on the mechanism of molecular mimicry and applying several selection layers, we screened peptide libraries for moieties inducing antibodies selectively reacting with Aß-aggregates. The technology identified a pool of peptide candidates; two, AFFITOPES AD01 and AD02, were assessed as vaccination antigens and compared to Aβ1-6, the targeted epitope. When conjugated to Keyhole Limpet Hemocyanin (KLH) and adjuvanted with aluminum, all three peptides induced Aß-targeting antibodies (Abs). In contrast to Aß1-6, AD01- or AD02-induced Abs were characterized by selectivity for aggregated forms of Aß and absence of reactivity with related molecules such as Amyloid Precursor Protein (APP)/ secreted APP-alpha (sAPPa). Administration of AFFITOPE-vaccines to APP-transgenic mice was found to reduce their cerebral amyloid burden, the associated neuropathological alterations and to improve their cognitive functions. Thus, the AFFITOME-technology delivers vaccines capable of inducing a distinct Ab response. Their features may be beneficial to AD-patients, a hypothesis currently tested within a phase-II-study. PMID:25611858

  16. 21 CFR 864.5700 - Automated platelet aggregation system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... addition of an aggregating reagent to a platelet-rich plasma. (b) Classification. Class II (performance... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated platelet aggregation system. 864.5700... § 864.5700 Automated platelet aggregation system. (a) Identification. An automated platelet aggregation...

  17. 21 CFR 864.5700 - Automated platelet aggregation system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... addition of an aggregating reagent to a platelet-rich plasma. (b) Classification. Class II (performance... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated platelet aggregation system. 864.5700... § 864.5700 Automated platelet aggregation system. (a) Identification. An automated platelet aggregation...

  18. 21 CFR 864.5700 - Automated platelet aggregation system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... addition of an aggregating reagent to a platelet-rich plasma. (b) Classification. Class II (performance... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated platelet aggregation system. 864.5700... § 864.5700 Automated platelet aggregation system. (a) Identification. An automated platelet aggregation...

  19. 21 CFR 864.5700 - Automated platelet aggregation system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... addition of an aggregating reagent to a platelet-rich plasma. (b) Classification. Class II (performance... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated platelet aggregation system. 864.5700... § 864.5700 Automated platelet aggregation system. (a) Identification. An automated platelet aggregation...

  20. 21 CFR 864.5700 - Automated platelet aggregation system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... addition of an aggregating reagent to a platelet-rich plasma. (b) Classification. Class II (performance... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated platelet aggregation system. 864.5700... § 864.5700 Automated platelet aggregation system. (a) Identification. An automated platelet aggregation...

  1. Generation and Propagation of Nonlinear Internal Waves in Sheared Currents Over the Washington Continental Shelf

    NASA Astrophysics Data System (ADS)

    Hamann, Madeleine M.; Alford, Matthew H.; Mickett, John B.

    2018-04-01

    The generation, propagation, and dissipation of nonlinear internal waves (NLIW) in sheared background currents is examined using 7 days of shipboard microstructure surveys and two moorings on the continental shelf offshore of Washington state. Surveys near the hypothesized generation region show semi-diurnal (D2) energy flux is onshore and that the ratio of energy flux to group speed times energy (F/cgE) increases sharply at the shelf break, suggesting that the incident D2 internal tide is partially reflected and partially transmitted. NLIW appear at an inshore mooring at the leading edge of the onshore phase of the baroclinic tide, consistent with nonlinear transformation of the shoaling internal tide as their generation mechanism. Of the D2 energy flux observed at the eastern extent of the generation region (133 ± 18 Wm-1), approximately 30% goes into the NLIW observed inshore (36 ± 11 Wm-1). Inshore of the moorings, 7 waves are tracked into shallow (30-40 m) water, where a vertically sheared, southward current becomes strong. As train-like waves propagate onshore, wave amplitudes of 25-30 m and energies of 5 MJ decrease to 12 m and 10 kJ, respectively. The observed direction of propagation rotates from 30° N of E to ˜30° S of E in the strongly sheared region. Linear ray tracing using the Taylor-Goldstein equation to incorporate parallel shear effects accounts for only a small portion of the observed rotation, suggesting that three-dimensionality of the wave crests and the background currents is important here.

  2. Neutron generator for BNCT based on high current ECR ion source with gyrotron plasma heating.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Razin, S; Sidorov, A; Maslennikova, A; Volovecky, A; Kalvas, T; Koivisto, H; Tarvainen, O

    2015-12-01

    BNCT development nowadays is constrained by a progress in neutron sources design. Creation of a cheap and compact intense neutron source would significantly simplify trial treatments avoiding use of expensive and complicated nuclear reactors and accelerators. D-D or D-T neutron generator is one of alternative types of such sources for. A so-called high current quasi-gasdynamic ECR ion source with plasma heating by millimeter wave gyrotron radiation is suggested to be used in a scheme of D-D neutron generator in the present work. Ion source of that type was developed in the Institute of Applied Physics of Russian Academy of Sciences (Nizhny Novgorod, Russia). It can produce deuteron ion beams with current density up to 700-800 mA/cm(2). Generation of the neutron flux with density at the level of 7-8·10(10) s(-1) cm(-2) at the target surface could be obtained in case of TiD2 target bombardment with deuteron beam accelerated to 100 keV. Estimations show that it is enough for formation of epithermal neutron flux with density higher than 10(9) s(-1) cm(-2) suitable for BNCT. Important advantage of described approach is absence of Tritium in the scheme. First experiments performed in pulsed regime with 300 mA, 45 kV deuteron beam directed to D2O target demonstrated 10(9) s(-1) neutron flux. This value corresponds to theoretical estimations and proofs prospects of neutron generator development based on high current quasi-gasdynamic ECR ion source. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Does bathymetry drive coastal whale shark (Rhincodon typus) aggregations?

    PubMed Central

    Stewart, Bryce D.; McClean, Colin J.; Hancock, James; Rees, Richard

    2018-01-01

    Background The whale shark (Rhincodon typus) is known to aggregate in a number of coastal locations globally, however what causes these aggregations to form where they do is largely unknown. This study examines whether bathymetry is an important driver of coastal aggregation locations for R. typus through bathymetry’s effect on primary productivity and prey availability. This is a global study taking into account all coastal areas within R. typus’ range. Methods R. typus aggregation locations were identified through an extensive literature review. Global bathymetric data were compared at R. typus aggregation locations and a large random selection of non-aggregation areas. Generalised linear models were used to assess which bathymetric characteristic had the biggest influence on aggregation presence. Results Aggregation sites were significantly shallower than non-aggregation sites and in closer proximity to deep water (the mesopelagic zone) by two orders of magnitude. Slope at aggregation sites was significantly steeper than non-aggregation sites. These three bathymetric variables were shown to have the biggest association with aggregation sites, with up to 88% of deviation explained by the GLMs. Discussion The three key bathymetric characteristics similar at the aggregation sites are known to induce upwelling events, increase primary productivity and consequently attract numerous other filter feeding species. The location of aggregation sites in these key areas can be attributed to this increased prey availability, thought to be the main reason R. typus aggregations occur, extensively outlined in the literature. The proximity of aggregations to shallow areas such as reefs could also be an important factor why whale sharks thermoregulate after deep dives to feed. These findings increase our understanding of whale shark behaviour and may help guide the identification and conservation of further aggregation sites.

  4. Multiscale simulation of red blood cell aggregation

    NASA Astrophysics Data System (ADS)

    Bagchi, P.; Popel, A. S.

    2004-11-01

    In humans and other mammals, aggregation of red blood cells (RBC) is a major determinant to blood viscosity in microcirculation under physiological and pathological conditions. Elevated levels of aggregation are often related to cardiovascular diseases, bacterial infection, diabetes, and obesity. Aggregation is a multiscale phenomenon that is governed by the molecular bond formation between adjacent cells, morphological and rheological properties of the cells, and the motion of the extra-cellular fluid in which the cells circulate. We have developed a simulation technique using front tracking methods for multiple fluids that includes the multiscale characteristics of aggregation. We will report the first-ever direct computer simulation of aggregation of deformable cells in shear flows. We will present results on the effect of shear rate, strength of the cross-bridging bonds, and the cell rheological properties on the rolling motion, deformation and subsequent breakage of an aggregate.

  5. Aggregation of recombinant human botulinum protein antigen serotype C in varying solution conditions: implications of conformational stability for aggregation kinetics.

    PubMed

    Bai, Shujun; Manning, Mark Cornell; Randolph, Theodore W; Carpenter, John F

    2011-03-01

    Solution conditions greatly affect the aggregation rate of a protein. Elucidating these influences provides insight into the critical factors governing aggregation. In this study, recombinant human botulinum protein antigen serotype C [rBoNTC (H(c))] was employed as a model protein. rBoNTC (H(c)) aggregated irreversibly during incubation at 42°C. The aggregation rate was studied as a function of solution conditions, including varying the pH from 3.5 to 8.0 and with or without 150 mM NaCl, 7.5% (w/v) trehalose, and 0.5 M urea. Some solution conditions retarded rBoNTC (H(c)) aggregation, whereas others accelerated aggregation, particularly acidic pH and addition of NaCl or urea. To better understand the mechanism by which these solution conditions influenced aggregation rates, the structure of rBoNTC (H(c)) was characterized using circular dichroism, fluorescence, and ultraviolet absorbance spectroscopies. Conformational stability was assessed from equilibrium urea-induced unfolding studies and by using differential scanning calorimetry (DSC). The activation energy of the aggregation reaction (E(a)) was estimated from an analysis of the heating-rate dependence of the thermal transition observed during DSC heating scans. Overall, for rBoNTC (H(c)), an inverse correlation was found between conformational stability and aggregation rate, as well as between the kinetic barrier to unfolding (i.e., E(a)) and aggregation rate. Copyright © 2010 Wiley-Liss, Inc.

  6. Transmit-receive eddy current probes for defect detection and sizing in steam generator tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obrutsky, L.S.; Cecco, V.S.; Sullivan, S.P.

    1997-02-01

    Inspection of steam generator tubes in aging Nuclear Generating Stations is increasingly important. Defect detection and sizing, especially in defect prone areas such as the tubesheet, support plates and U-bend regions, are required to assess the fitness-for-service of the steam generators. Information about defect morphology is required to address operational integrity issues, i.e., risk of tube rupture, number of tubes at risk, consequential leakage. A major challenge continues to be the detection and sizing of circumferential cracks. Utilities around the world have experienced this type of tube failure. Conventional in-service inspection, performed with eddy current bobbin probes, is ineffectual inmore » detecting circumferential cracks in tubing. It has been demonstrated in CANDU steam generators, with deformation, magnetite and copper deposits that multi-channel probes with transmit-receive eddy current coils are superior to those using surface impedance coils. Transmit-receive probes have strong directional properties, permitting probe optimization according to crack orientation. They are less sensitive to lift-off noise and magnetite deposits and possess good discrimination to internal defects. A single pass C3 array transmit-receive probe developed by AECL can detect and size circumferential stress corrosion cracks as shallow as 40% through-wall. Since its first trial in 1992, it has been used routinely for steam generator in-service inspection of four CANDU plants, preventing unscheduled shutdowns due to leaking steam generator tubes. More recently, a need has surfaced for simultaneous detection of both circumferential and axial cracks. The C5 probe was designed to address this concern. It combines transmit-receive array probe technology for equal sensitivity to axial and circumferential cracks with a bobbin probe for historical reference. This paper will discuss the operating principles of transmit-receive probes, along with inspection results.« less

  7. Evaluating platelet aggregation dynamics from laser speckle fluctuations.

    PubMed

    Hajjarian, Zeinab; Tshikudi, Diane M; Nadkarni, Seemantini K

    2017-07-01

    Platelets are key to maintaining hemostasis and impaired platelet aggregation could lead to hemorrhage or thrombosis. We report a new approach that exploits laser speckle intensity fluctuations, emanated from a drop of platelet-rich-plasma (PRP), to profile aggregation. Speckle fluctuation rate is quantified by the speckle intensity autocorrelation, g 2 (t) , from which the aggregate size is deduced. We first apply this approach to evaluate polystyrene bead aggregation, triggered by salt. Next, we assess dose-dependent platelet aggregation and inhibition in human PRP spiked with adenosine diphosphate and clopidogrel. Additional spatio-temporal speckle analyses yield 2-dimensional maps of particle displacements to visualize platelet aggregate foci within minutes and quantify aggregation dynamics. These findings demonstrate the unique opportunity for assessing platelet health within minutes for diagnosing bleeding disorders and monitoring anti-platelet therapies.

  8. Persistent homology analysis of ion aggregations and hydrogen-bonding networks.

    PubMed

    Xia, Kelin

    2018-05-16

    Despite the great advancement of experimental tools and theoretical models, a quantitative characterization of the microscopic structures of ion aggregates and their associated water hydrogen-bonding networks still remains a challenging problem. In this paper, a newly-invented mathematical method called persistent homology is introduced, for the first time, to quantitatively analyze the intrinsic topological properties of ion aggregation systems and hydrogen-bonding networks. The two most distinguishable properties of persistent homology analysis of assembly systems are as follows. First, it does not require a predefined bond length to construct the ion or hydrogen-bonding network. Persistent homology results are determined by the morphological structure of the data only. Second, it can directly measure the size of circles or holes in ion aggregates and hydrogen-bonding networks. To validate our model, we consider two well-studied systems, i.e., NaCl and KSCN solutions, generated from molecular dynamics simulations. They are believed to represent two morphological types of aggregation, i.e., local clusters and extended ion networks. It has been found that the two aggregation types have distinguishable topological features and can be characterized by our topological model very well. Further, we construct two types of networks, i.e., O-networks and H2O-networks, for analyzing the topological properties of hydrogen-bonding networks. It is found that for both models, KSCN systems demonstrate much more dramatic variations in their local circle structures with a concentration increase. A consistent increase of large-sized local circle structures is observed and the sizes of these circles become more and more diverse. In contrast, NaCl systems show no obvious increase of large-sized circles. Instead a consistent decline of the average size of the circle structures is observed and the sizes of these circles become more and more uniform with a concentration increase. As far

  9. Aggregation Strength Tuning in Difluorobenzoxadiazole-Based Polymeric Semiconductors for High-Performance Thick-Film Polymer Solar Cells.

    PubMed

    Chen, Peng; Shi, Shengbin; Wang, Hang; Qiu, Fanglong; Wang, Yuxi; Tang, Yumin; Feng, Jian-Rui; Guo, Han; Cheng, Xing; Guo, Xugang

    2018-06-27

    High-performance polymer solar cells (PSCs) with thick active layers are essential for large-scale production. Polymer semiconductors exhibiting a temperature-dependent aggregation property offer great advantages toward this purpose. In this study, three difluorobenzoxadiazole (ffBX)-based donor polymers, PffBX-T, PffBX-TT, and PffBX-DTT, were synthesized, which contain thiophene (T), thieno[3,2- b]thiophene (TT), and dithieno[3,2- b:2',3'- d]thiophene (DTT) as the π-spacers, respectively. Temperature-dependent absorption spectra reveal that the aggregation strength increases in the order of PffBX-T, PffBX-TT, and PffBX-DTT as the π-spacer becomes larger. PffBX-TT with the intermediate aggregation strength enables well-controlled disorder-order transition in the casting process of blend film, thus leading to the best film morphology and the highest performance in PSCs. Thick-film PSCs with an average power conversion efficiency (PCE) of 8.91% and the maximum value of 9.10% are achieved using PffBX-TT:PC 71 BM active layer with a thickness of 250 nm. The neat film of PffBX-TT also shows a high hole mobility of 1.09 cm 2 V -1 s -1 in organic thin-film transistors. When PffBX-DTT and PffBX-T are incorporated into PSCs utilizing PC 71 BM acceptor, the average PCE decreases to 6.54 and 1.33%, respectively. The performance drop mainly comes from reduced short-circuit current, as a result of nonoptimal blend film morphology caused by a less well-controlled film formation process. A similar trend was also observed in nonfullerene type thick-film PSCs using IT-4F as the electron acceptor. These results show the significance of polymer aggregation strength tuning toward optimal bulk heterojunction film morphology using ffBX-based polymer model system. The study demonstrates that adjusting π-spacer is an effective method, in combination with other important approaches such as alkyl chain optimization, to generate high-performance thick-film PSCs which are critical for

  10. Competitive aggregation dynamics using phase wave signals.

    PubMed

    Sakaguchi, Hidetsugu; Maeyama, Satomi

    2014-10-21

    Coupled equations of the phase equation and the equation of cell concentration n are proposed for competitive aggregation dynamics of slime mold in two dimensions. Phase waves are used as tactic signals of aggregation in this model. Several aggregation clusters are formed initially, and target patterns appear around the localized aggregation clusters. Owing to the competition among target patterns, the number of the localized aggregation clusters decreases, and finally one dominant localized pattern survives. If the phase equation is replaced with the complex Ginzburg-Landau equation, several spiral patterns appear, and n is localized near the center of the spiral patterns. After the competition among spiral patterns, one dominant spiral survives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Quality Assessment of Mixed and Ceramic Recycled Aggregates from Construction and Demolition Wastes in the Concrete Manufacture According to the Spanish Standard.

    PubMed

    Rodríguez-Robles, Desirée; García-González, Julia; Juan-Valdés, Andrés; Morán-Del Pozo, Julia Mª; Guerra-Romero, Manuel I

    2014-08-13

    Construction and demolition waste (CDW) constitutes an increasingly significant problem in society due to the volume generated, rendering sustainable management and disposal problematic. The aim of this study is to identify a possible reuse option in the concrete manufacturing for recycled aggregates with a significant ceramic content: mixed recycled aggregates (MixRA) and ceramic recycled aggregates (CerRA). In order to do so, several tests are conducted in accordance with the Spanish Code on Structural Concrete (EHE-08) to determine the composition in weight and physic-mechanical characteristics (particle size distributions, fine content, sand equivalent, density, water absorption, flakiness index, and resistance to fragmentation) of the samples for the partial inclusion of the recycled aggregates in concrete mixes. The results of these tests clearly support the hypothesis that this type of material may be suitable for such partial replacements if simple pretreatment is carried out. Furthermore, this measure of reuse is in line with European, national, and regional policies on sustainable development, and presents a solution to the environmental problem caused by the generation of CDW.

  12. Experimental investigation of large-scale vortices in a freely spreading gravity current

    NASA Astrophysics Data System (ADS)

    Yuan, Yeping; Horner-Devine, Alexander R.

    2017-10-01

    A series of laboratory experiments are presented to compare the dynamics of constant-source buoyant gravity currents propagating into laterally confined (channelized) and unconfined (spreading) environments. The plan-form structure of the spreading current and the vertical density and velocity structures on the interface are quantified using the optical thickness method and a combined particle image velocimetry and planar laser-induced fluorescence method, respectively. With lateral boundaries, the buoyant current thickness is approximately constant and Kelvin-Helmholtz instabilities are generated within the shear layer. The buoyant current structure is significantly different in the spreading case. As the current spreads laterally, nonlinear large-scale vortex structures are observed at the interface, which maintain a coherent shape as they propagate away from the source. These structures are continuously generated near the river mouth, have amplitudes close to the buoyant layer thickness, and propagate offshore at speeds approximately equal to the internal wave speed. The observed depth and propagation speed of the instabilities match well with the fastest growing mode predicted by linear stability analysis, but with a shorter wavelength. The spreading flows have much higher vorticity, which is aggregated within the large-scale structures. Secondary instabilities are generated on the leading edge of the braids between the large-scale vortex structures and ultimately break and mix on the lee side of the structures. Analysis of the vortex dynamics shows that lateral stretching intensifies the vorticity in the spreading currents, contributing to higher vorticity within the large-scale structures in the buoyant plume. The large-scale instabilities and vortex structures observed in the present study provide new insights into the origin of internal frontal structures frequently observed in coastal river plumes.

  13. Thermal aggregation of glycated bovine serum albumin.

    PubMed

    Rondeau, Philippe; Navarra, Giovanna; Cacciabaudo, Francesco; Leone, Maurizio; Bourdon, Emmanuel; Militello, Valeria

    2010-04-01

    Aggregation and glycation processes in proteins have a particular interest in medicine fields and in food technology. Serum albumins are model proteins which are able to self-assembly in aggregates and also sensitive to a non-enzymatic glycation in cases of diabetes. In this work, we firstly reported a study on the glycation and oxidation effects on the structure of bovine serum albumin (BSA). The experimental approach is based on the study of conformational changes of BSA at secondary and tertiary structures by FTIR absorption and fluorescence spectroscopy, respectively. Secondly, we analysed the thermal aggregation process on BSA glycated with different glucose concentrations. Additional information on the aggregation kinetics are obtained by light scattering measurements. The results show that glycation process affects the native structure of BSA. Then, the partial unfolding of the tertiary structure which accompanies the aggregation process is similar both in native and glycated BSA. In particular, the formation of aggregates is progressively inhibited with growing concentration of glucose incubated with BSA. These results bring new insights on how aggregation process is affected by modification of BSA induced by glycation. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Sequence dependent aggregation of peptides and fibril formation

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Ba; Le, Duy-Manh; Hoang, Trinh X.

    2017-09-01

    Deciphering the links between amino acid sequence and amyloid fibril formation is key for understanding protein misfolding diseases. Here we use Monte Carlo simulations to study the aggregation of short peptides in a coarse-grained model with hydrophobic-polar (HP) amino acid sequences and correlated side chain orientations for hydrophobic contacts. A significant heterogeneity is observed in the aggregate structures and in the thermodynamics of aggregation for systems of different HP sequences and different numbers of peptides. Fibril-like ordered aggregates are found for several sequences that contain the common HPH pattern, while other sequences may form helix bundles or disordered aggregates. A wide variation of the aggregation transition temperatures among sequences, even among those of the same hydrophobic fraction, indicates that not all sequences undergo aggregation at a presumable physiological temperature. The transition is found to be the most cooperative for sequences forming fibril-like structures. For a fibril-prone sequence, it is shown that fibril formation follows the nucleation and growth mechanism. Interestingly, a binary mixture of peptides of an aggregation-prone and a non-aggregation-prone sequence shows the association and conversion of the latter to the fibrillar structure. Our study highlights the role of a sequence in selecting fibril-like aggregates and also the impact of a structural template on fibril formation by peptides of unrelated sequences.

  15. Catastrophic Disruption of Asteroids: First Simulations with Explicit Formation of Spinning Rigid and Semi-rigid Aggregates

    NASA Astrophysics Data System (ADS)

    Michel, Patrick; Richardson, D. C.

    2007-10-01

    We have made major improvements in simulations of asteroid disruption by computing explicitly aggregate formations during the gravitational reaccumulation of small fragments, allowing us to obtain information on their spin and shape. First results will be presented taking as examples asteroid families that we reproduced successfully with previous less sophisticated simulations. In the last years, we have simulated successfully the formation of asteroid families using a SPH hydrocode to compute the fragmentation following the impact of a projectile on the parent body, and the N-body code pkdgrav to compute the mutual interactions of the fragments. We found that fragments generated by the disruption of a km-size asteroid can have large enough masses to be attracted by each other during their ejection. Consequently, many reaccumulations take place. Eventually most large fragments correspond to gravitational aggregates formed by reaccumulation of smaller ones. Moreover, formation of satellites occurs around the largest and other big remnants. In these previous simulations, when fragments reaccumulate, they merge into a single sphere whose mass is the sum of their masses. Thus, no information is obtained on the actual shape of the aggregates, their spin, ... For the first time, we have now simulated the disruption of a family parent body by computing explicitly the formation of aggregates, along with the above-mentioned properties. Once formed these aggregates can interact and/or collide with each other and break up during their evolution. We will present these first simulations and their possible implications on properties of asteroids generated by disruption. Results can for instance be compared with data provided by the Japanese space mission Hayabusa of the asteroid Itokawa, a body now understood to be a reaccumulated fragment from a larger parent body. Acknowledgments: PM and DCR acknowledge supports from the French Programme National de Planétologie and grants

  16. Cellular Strategies for Regulating Functional and Nonfunctional Protein Aggregation

    PubMed Central

    Gsponer, Jörg; Babu, M. Madan

    2012-01-01

    Summary Growing evidence suggests that aggregation-prone proteins are both harmful and functional for a cell. How do cellular systems balance the detrimental and beneficial effect of protein aggregation? We reveal that aggregation-prone proteins are subject to differential transcriptional, translational, and degradation control compared to nonaggregation-prone proteins, which leads to their decreased synthesis, low abundance, and high turnover. Genetic modulators that enhance the aggregation phenotype are enriched in genes that influence expression homeostasis. Moreover, genes encoding aggregation-prone proteins are more likely to be harmful when overexpressed. The trends are evolutionarily conserved and suggest a strategy whereby cellular mechanisms specifically modulate the availability of aggregation-prone proteins to (1) keep concentrations below the critical ones required for aggregation and (2) shift the equilibrium between the monomeric and oligomeric/aggregate form, as explained by Le Chatelier’s principle. This strategy may prevent formation of undesirable aggregates and keep functional assemblies/aggregates under control. PMID:23168257

  17. Biological framework for soil aggregation: Implications for ecological functions.

    NASA Astrophysics Data System (ADS)

    Ghezzehei, Teamrat; Or, Dani

    2016-04-01

    Soil aggregation is heuristically understood as agglomeration of primary particles bound together by biotic and abiotic cementing agents. The organization of aggregates is believed to be hierarchical in nature; whereby primary particles bond together to form secondary particles and subsequently merge to form larger aggregates. Soil aggregates are not permanent structures, they continuously change in response to internal and external forces and other drivers, including moisture, capillary pressure, temperature, biological activity, and human disturbances. Soil aggregation processes and the resulting functionality span multiple spatial and temporal scales. The intertwined biological and physical nature of soil aggregation, and the time scales involved precluded a universally applicable and quantifiable framework for characterizing the nature and function of soil aggregation. We introduce a biophysical framework of soil aggregation that considers the various modes and factors of the genesis, maturation and degradation of soil aggregates including wetting/drying cycles, soil mechanical processes, biological activity and the nature of primary soil particles. The framework attempts to disentangle mechanical (compaction and soil fragmentation) from in-situ biophysical aggregation and provides a consistent description of aggregate size, hierarchical organization, and life time. It also enables quantitative description of biotic and abiotic functions of soil aggregates including diffusion and storage of mass and energy as well as role of aggregates as hot spots of nutrient accumulation, biodiversity, and biogeochemical cycles.

  18. Effects of environmental factors on MSP21-25 aggregation indicate the roles of hydrophobic and electrostatic interactions in the aggregation process.

    PubMed

    Zhang, Xuecheng; Dong, Yuanqiu; Yu, Jigang; Tu, Xiaoming

    2014-01-01

    Merozoite surface protein 2 (MSP2), one of the most abundant proteins on the merozoite surface of Plasmodium falciparum, is recognized to be important for the parasite's invasion into the host cell and is thus a promising malaria vaccine candidate. However, mediated mainly by its conserved N-terminal 25 residues (MSP21-25), MSP2 readily forms amyloid fibril-like aggregates under physiological conditions in vitro, which impairs its potential as a vaccine component. In addition, there is evidence that MSP2 exists in aggregated forms on the merozoite surface in vivo. To elucidate the aggregation mechanism of MSP21-25 and thereby understand the behavior of MSP2 in vivo and find ways to avoid the aggregation of relevant vaccine in vitro, we investigated the effects of agitation, pH, salts, 1-anilinonaphthalene-8-sulfonic acid (ANS), trimethylamine N-oxide dihydrate (TMAO), urea, and sub-micellar sodium dodecyl sulfate (SDS) on the aggregation kinetics of MSP21-25 using thioflavin T (ThT) fluorescence. The results showed that MSP21-25 aggregation was accelerated by agitation, while repressed by acidic pHs. The salts promoted the aggregation in an anion nature-dependent pattern. Hydrophobic surface-binding agent ANS and detergent urea repressed MSP21-25 aggregation, in contrast to hydrophobic interaction strengthener TMAO, which enhanced the aggregation. Notably, sub-micellar SDS, contrary to its micellar form, promoted MSP21-25 aggregation significantly. Our data indicated that hydrophobic interactions are the predominant driving force of the nucleation of MSP21-25 aggregation, while the elongation is controlled mainly by electrostatic interactions. A kinetic model of MSP21-25 aggregation and its implication were also discussed.

  19. Uncovering the mechanism of aggregation of human transthyretin

    DOE PAGES

    Saelices, Lorena; Johnson, Lisa M.; Liang, Wilson Y.; ...

    2015-10-12

    The tetrameric thyroxine transport protein transthyretin (TTR) forms amyloid fibrils upon dissociation and monomer unfolding. The aggregation of transthyretin has been reported as the cause of the life-threatening transthyretin amyloidosis. The standard treatment of familial cases of TTR amyloidosis has been liver transplantation. Although aggregation-preventing strategies involving ligands are known, understanding the mechanism of TTR aggregation can lead to additional inhibition approaches. Several models of TTR amyloid fibrils have been proposed, but the segments that drive aggregation of the protein have remained unknown. Here we identify β-strands F and H as necessary for TTR aggregation. Based on the crystal structuresmore » of these segments, we designed two non-natural peptide inhibitors that block aggregation. Lastly, this work provides the first characterization of peptide inhibitors for TTR aggregation, establishing a novel therapeutic strategy.« less

  20. Evaluating platelet aggregation dynamics from laser speckle fluctuations

    PubMed Central

    Hajjarian, Zeinab; Tshikudi, Diane M.; Nadkarni, Seemantini K.

    2017-01-01

    Platelets are key to maintaining hemostasis and impaired platelet aggregation could lead to hemorrhage or thrombosis. We report a new approach that exploits laser speckle intensity fluctuations, emanated from a drop of platelet-rich-plasma (PRP), to profile aggregation. Speckle fluctuation rate is quantified by the speckle intensity autocorrelation, g2(t), from which the aggregate size is deduced. We first apply this approach to evaluate polystyrene bead aggregation, triggered by salt. Next, we assess dose-dependent platelet aggregation and inhibition in human PRP spiked with adenosine diphosphate and clopidogrel. Additional spatio-temporal speckle analyses yield 2-dimensional maps of particle displacements to visualize platelet aggregate foci within minutes and quantify aggregation dynamics. These findings demonstrate the unique opportunity for assessing platelet health within minutes for diagnosing bleeding disorders and monitoring anti-platelet therapies. PMID:28717586