Sample records for aggregation oxidative stress

  1. Oxidative stress and protein aggregation during biological aging.

    PubMed

    Squier, T C

    2001-09-01

    Biological aging is a fundamental process that represents the major risk factor with respect to the development of cancer, neurodegenerative, and cardiovascular diseases in vertebrates. It is, therefore, evident that the molecular mechanisms of aging are fundamental to understand many disease processes. In this regard, the oxidation and nitration of intracellular proteins and the formation of protein aggregates have been suggested to underlie the loss of cellular function and the reduced ability of senescent animals to withstand physiological stresses. Since oxidatively modified proteins are thermodynamically unstable and assume partially unfolded tertiary structures that readily form aggregates, it is likely that oxidized proteins are intermediates in the formation of amyloid fibrils. It is, therefore, of interest to identify oxidatively sensitive protein targets that may play a protective role through their ability to down-regulate energy metabolism and the consequent generation of reactive oxygen species (ROS). In this respect, the maintenance of cellular calcium gradients represents a major energetic expense, which links alterations in intracellular calcium levels to ATP utilization and the associated generation of ROS through respiratory control mechanisms. The selective oxidation or nitration of the calcium regulatory proteins calmodulin and Ca-ATPase that occurs in vivo during aging and under conditions of oxidative stress may represent an adaptive response to oxidative stress that functions to down-regulate energy metabolism and the associated generation of ROS. Since these calcium regulatory proteins are also preferentially oxidized or nitrated under in vitro conditions, these results suggest an enhanced sensitivity of these critical calcium regulatory proteins, which modulate signal transduction processes and intracellular energy metabolism, to conditions of oxidative stress. Thus, the selective oxidation of critical signal transduction proteins probably

  2. Glyceraldehyde-3-phosphate dehydrogenase aggregation inhibitor peptide: A potential therapeutic strategy against oxidative stress-induced cell death.

    PubMed

    Itakura, Masanori; Nakajima, Hidemitsu; Semi, Yuko; Higashida, Shusaku; Azuma, Yasu-Taka; Takeuchi, Tadayoshi

    2015-11-13

    The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has multiple functions, including mediating oxidative stress-induced neuronal cell death. This process is associated with disulfide-bonded GAPDH aggregation. Some reports suggest a link between GAPDH and the pathogenesis of several oxidative stress-related diseases. However, the pathological significance of GAPDH aggregation in disease pathogenesis remains unclear due to the lack of an effective GAPDH aggregation inhibitor. In this study, we identified a GAPDH aggregation inhibitor (GAI) peptide and evaluated its biological profile. The decapeptide GAI specifically inhibited GAPDH aggregation in a concentration-dependent manner. Additionally, the GAI peptide did not affect GAPDH glycolytic activity or cell viability. The GAI peptide also exerted a protective effect against oxidative stress-induced cell death in SH-SY5Y cells. This peptide could potentially serve as a tool to investigate GAPDH aggregation-related neurodegenerative and neuropsychiatric disorders and as a possible therapy for diseases associated with oxidative stress-induced cell death. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Aggregation Causes Mitochondrial Dysfunction during Oxidative Stress-induced Cell Death*

    PubMed Central

    Itakura, Masanori; Kubo, Takeya; Kaneshige, Akihiro; Harada, Naoki; Izawa, Takeshi; Azuma, Yasu-Taka; Kuwamura, Mitsuru; Yamaji, Ryouichi; Takeuchi, Tadayoshi

    2017-01-01

    Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that also mediates cell death under oxidative stress. We reported previously that the active-site cysteine (Cys-152) of GAPDH plays an essential role in oxidative stress-induced aggregation of GAPDH associated with cell death, and a C152A-GAPDH mutant rescues nitric oxide (NO)-induced cell death by interfering with the aggregation of wild type (WT)-GAPDH. However, the detailed mechanism underlying GAPDH aggregate-induced cell death remains elusive. Here we report that NO-induced GAPDH aggregation specifically causes mitochondrial dysfunction. First, we observed a correlation between NO-induced GAPDH aggregation and mitochondrial dysfunction, when GAPDH aggregation occurred at mitochondria in SH-SY5Y cells. In isolated mitochondria, aggregates of WT-GAPDH directly induced mitochondrial swelling and depolarization, whereas mixtures containing aggregates of C152A-GAPDH reduced mitochondrial dysfunction. Additionally, treatment with cyclosporin A improved WT-GAPDH aggregate-induced swelling and depolarization. In doxycycline-inducible SH-SY5Y cells, overexpression of WT-GAPDH augmented NO-induced mitochondrial dysfunction and increased mitochondrial GAPDH aggregation, whereas induced overexpression of C152A-GAPDH significantly suppressed mitochondrial impairment. Further, NO-induced cytochrome c release into the cytosol and nuclear translocation of apoptosis-inducing factor from mitochondria were both augmented in cells overexpressing WT-GAPDH but ameliorated in C152A-GAPDH-overexpressing cells. Interestingly, GAPDH aggregates induced necrotic cell death via a permeability transition pore (PTP) opening. The expression of either WT- or C152A-GAPDH did not affect other cell death pathways associated with protein aggregation, such as proteasome inhibition, gene expression induced by endoplasmic reticulum stress, or autophagy. Collectively, these results suggest that NO-induced GAPDH

  4. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injurymore » associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.« less

  5. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    PubMed Central

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2015-01-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. PMID:24398106

  6. Effects of Pedogenic Fe Oxides on Soil Aggregate-Associated Carbon

    NASA Astrophysics Data System (ADS)

    Asefaw Berhe, A.; Jin, L.

    2017-12-01

    Carbon sequestration is intimately related to the soil structure, mainly soil aggregate dynamics. Carbon storage in soil aggregates has been recognized as an important carbon stabilization mechanism in soils. Organic matter and pedogenic Fe oxides are major binding agents that facilitate soil aggregate formation and stability. However, few studies have investigated how different forms of pedogenic Fe oxides can affect soil carbon distribution in different aggregate-size fractions. We investigated sequentially extracted pedogenic Fe oxides (in the order of organically complexed Fe extracted with sodium pyrophosphate, poorly-crystalline Fe oxides extracted with hydroxylamine hydrochloride, and crystalline Fe oxides extracted with dithionite hydrochloride) and determined the amount and nature of C in macroaggregates (2-0.25mm), microaggregates (0.25-0.053mm), and two silt and clay fractions (0.053-0.02mm, and <0.02mm) in Musick soil from Sierra Nevada mountain in California. We also determined how pedogenic Fe oxides affect soil carbon distribution along soil depth gradients. Findings of our study revealed that the proportion of organic matter complexed Fe decreased, but the proportion of crystalline Fe increased with increasing soil depths. Poorly crystalline Fe oxides (e.g. ferrihydrite) was identified as a major Fe oxide in surface soil, whereas crystalline Fe oxides (e.g. goethite) were found in deeper soil layers. These results suggest that high concentration of organic matter in surface soil suppressed Fe crystallization. Calcium cation was closely related to the pyrophosphate extractable Fe and C, which indicates that calcium may be a major cation that contribute to the organic matter complexed Fe and C pool. Increasing concentrations of extractable Fe and C with decreasing aggregate size fractions also suggests that Fe oxides play an important role in formation and stability of silt and clay fractions, and leading to further stabilization of carbon in soil

  7. Effects of acute and chronic psychological stress on platelet aggregation in mice.

    PubMed

    Matsuhisa, Fumikazu; Kitamura, Nobuo; Satoh, Eiki

    2014-03-01

    Although psychological stress has long been known to alter cardiovascular function, there have been few studies on the effect of psychological stress on platelets, which play a pivotal role in cardiovascular disease. In the present study, we investigated the effects of acute and chronic psychological stress on the aggregation of platelets and platelet cytosolic free calcium concentration ([Ca(2+)]i). Mice were subjected to both transportation stress (exposure to novel environment, psychological stress) and restraint stress (psychological stress) for 2 h (acute stress) or 3 weeks (2 h/day) (chronic stress). In addition, adrenalectomized mice were subjected to similar chronic stress (both transportation and restraint stress for 3 weeks). The aggregation of platelets from mice and [Ca(2+)]i was determined by light transmission assay and fura-2 fluorescence assay, respectively. Although acute stress had no effect on agonist-induced platelet aggregation, chronic stress enhanced the ability of the platelet agonists thrombin and ADP to stimulate platelet aggregation. However, chronic stress failed to enhance agonist-induced increase in [Ca(2+)]i. Adrenalectomy blocked chronic stress-induced enhancement of platelet aggregation. These results suggest that chronic, but not acute, psychological stress enhances agonist-stimulated platelet aggregation independently of [Ca(2+)]i increase, and the enhancement may be mediated by stress hormones secreted from the adrenal glands.

  8. Aggregation protects flexible-shelled reptile eggs from severe hydric stress.

    PubMed

    Marco, Adolfo; Díaz-Paniagua, Carmen

    2008-03-01

    Many reptiles lay eggs with flexible shells that can progressively lose water until lethal dehydration under dry soil conditions. The number of eggs that develop together may influence the water exchange in the nest. We hypothesise that egg aggregation could reduce water lost under dry conditions. We exposed aggregated and isolated eggs to severe hydric stress followed by a period of rehydration. Hydric stress caused a general loss of water in common chameleon eggs. Initial egg mass did not affect survival but eggs that had lost more water had higher mortality and produced smaller hatchlings. Mass loss was higher and even lethal for isolated Chamaeleo chameleon eggs. However, aggregated eggs lost less water and most survived this period. After hydric stress, all surviving eggs gained mass via water absorption, and aggregation negatively affected water uptake. Isolated eggs hatched at smaller sizes than aggregated eggs. Aggregation also favoured hatching synchrony. Large clutches may favour hatching success of terrestrial flexible-shelled eggs incubated under severe drought conditions.

  9. Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein

    PubMed Central

    Wolschner, Christina; Giese, Armin; Kretzschmar, Hans A.; Huber, Robert; Moroder, Luis; Budisa, Nediljko

    2009-01-01

    Prion disease is characterized by the α→β structural conversion of the cellular prion protein (PrPC) into the misfolded and aggregated “scrapie” (PrPSc) isoform. It has been speculated that methionine (Met) oxidation in PrPC may have a special role in this process, but has not been detailed and assigned individually to the 9 Met residues of full-length, recombinant human PrPC [rhPrPC(23-231)]. To better understand this oxidative event in PrP aggregation, the extent of periodate-induced Met oxidation was monitored by electrospray ionization-MS and correlated with aggregation propensity. Also, the Met residues were replaced with isosteric and chemically stable, nonoxidizable analogs, i.e., with the more hydrophobic norleucine (Nle) and the highly hydrophilic methoxinine (Mox). The Nle-rhPrPC variant is an α-helix rich protein (like Met-rhPrPC) resistant to oxidation that lacks the in vitro aggregation properties of the parent protein. Conversely, the Mox-rhPrPC variant is a β-sheet rich protein that features strong proaggregation behavior. In contrast to the parent Met-rhPrPC, the Nle/Mox-containing variants are not sensitive to periodate-induced in vitro aggregation. The experimental results fully support a direct correlation of the α→β secondary structure conversion in rhPrPC with the conformational preferences of Met/Nle/Mox residues. Accordingly, sporadic prion and other neurodegenerative diseases, as well as various aging processes, might also be caused by oxidative stress leading to Met oxidation. PMID:19416900

  10. Increasing correlations between personality traits and cortisol stress responses obtained by data aggregation.

    PubMed

    Pruessner, J C; Gaab, J; Hellhammer, D H; Lintz, D; Schommer, N; Kirschbaum, C

    1997-11-01

    Attempts to link personality traits and cortisol stress responses have often been inconclusive. The aim of this paper was to investigate this association by aggregating cortisol stress responses. Therefore, 20 healthy men were exposed to a task consisting of public speaking and mental arithmetics in front of an audience on five days. Six cortisol levels were measured in relation to the stressful task obtained at 10-min intervals on each day. Psychological assessment included the Questionnaire for Competence and Control (FKK) and the Giessen-Test (G-T). These questionnaires focus on assessing personality traits, i.e. locus of control and self-concept. Areas under the response curve (AUC) of the six cortisol samples were computed to obtain an index of the individual's cortisol stress response on each day. Since novelty is a random situational factor likely to mask individual differences in the stress response, the AUC cortisol stress responses of days two to five were consecutively aggregated, excluding the first day. Scales of the two questionnaires employed did not correlate with the AUC cortisol stress response of the first stress trial. The correlation pattern of the AUC cortisol measures of days two to five with the questionnaire scales was inconclusive. However, significant correlations emerged with an increasing number of cortisol stress responses aggregated. Correlations between the measure of social dominance and aggregated AUC cortisol stress responses rose from r = -.47 on day two of the experimental session to r = -.70 after aggregating days two to five. Similarly, measures of locus of control and cortisol stress responses became increasingly correlated with aggregation of several stress exposures. These data provide preliminary evidence for a relationship between questionnaire scales aiming at assessing personality traits and cortisol stress responses uncovered by repeated stress exposure and data aggregation. While novelty may mask the impact of

  11. Differential stress response of Saccharomyces hybrids revealed by monitoring Hsp104 aggregation and disaggregation.

    PubMed

    Kempf, Claudia; Lengeler, Klaus; Wendland, Jürgen

    2017-07-01

    Proteotoxic stress may occur upon exposure of yeast cells to different stress conditions. The induction of stress response mechanisms is important for cells to adapt to changes in the environment and ensure survival. For example, during exposure to elevated temperatures the expression of heat shock proteins such as Hsp104 is induced in yeast. Hsp104 extracts misfolded proteins from aggregates to promote their refolding. We used an Hsp104-GFP reporter to analyze the stress profiles of Saccharomyces species hybrids. To this end a haploid S. cerevisiae strain, harboring a chromosomal HSP104-GFP under control of its endogenous promoter, was mated with stable haploids of S. bayanus, S. cariocanus, S. kudriavzevii, S. mikatae, S. paradoxus and S. uvarum. Stress response behaviors in these hybrids were followed over time by monitoring the appearance and dissolution of Hsp104-GFP foci upon heat shock. General stress tolerance of these hybrids was related to the growth rate detected during exposure to e.g. ethanol and oxidizing agents. We observed that hybrids were generally more resistant to high temperature and ethanol stress compared to their parental strains. Amongst the hybrids differential responses regarding the appearance of Hsp104-foci and the time required for dissolving these aggregates were observed. The S. cerevisiae/S. paradoxus hybrid, combining the two most closely related strains, performed best under these conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues.

    PubMed

    Zhu, Feng; Li, Yubing; Xue, Shengguo; Hartley, William; Wu, Hao

    2016-05-01

    In order to successfully establish vegetation on bauxite residue, properties such as aggregate structure and stability require improvement. Spontaneous plant colonization on the deposits in Central China over the last 20 years has revealed that natural processes may improve the physical condition of bauxite residues. Samples from three different stacking ages were selected to determine aggregate formation and stability and its relationship with iron-aluminium oxides and organic carbon. The residue aggregate particles became coarser in both dry and wet sieving processes. The mean weight diameter (MWD) and geometry mean diameter (GMD) increased significantly, and the proportion of aggregate destruction (PAD) decreased. Natural stacking processes could increase aggregate stability and erosion resistant of bauxite residues. Free iron oxides and amorphous aluminium oxides were the major forms in bauxite residues, but there was no significant correlation between the iron-aluminium oxides and aggregate stability. Aromatic-C, alkanes-C, aliphatic-C and alkenes-C were the major functional groups present in the residues. With increasing stacking age, total organic carbon content and aggregate-associated organic carbon both increased. Alkanes-C, aliphatic-C and alkenes-C increased and were mainly distributed in macro-aggregates, whereas aromatic-C was mainly distributed in <0.05-mm aggregates. Organic carbon stability in micro-aggregates was higher than that in macro-aggregates and became more stable. Organic carbon contents in total residues, and within different aggregate sizes, were all negatively correlated with PAD. It indicated that organic materials had a more significant effect on macro-aggregate stability and the effects of iron-aluminium oxides maybe more important for stability of micro-aggregates.

  13. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.

    PubMed

    Liu, Shaobin; Zeng, Tingying Helen; Hofmann, Mario; Burcombe, Ehdi; Wei, Jun; Jiang, Rongrong; Kong, Jing; Chen, Yuan

    2011-09-27

    Health and environmental impacts of graphene-based materials need to be thoroughly evaluated before their potential applications. Graphene has strong cytotoxicity toward bacteria. To better understand its antimicrobial mechanism, we compared the antibacterial activity of four types of graphene-based materials (graphite (Gt), graphite oxide (GtO), graphene oxide (GO), and reduced graphene oxide (rGO)) toward a bacterial model-Escherichia coli. Under similar concentration and incubation conditions, GO dispersion shows the highest antibacterial activity, sequentially followed by rGO, Gt, and GtO. Scanning electron microscope (SEM) and dynamic light scattering analyses show that GO aggregates have the smallest average size among the four types of materials. SEM images display that the direct contacts with graphene nanosheets disrupt cell membrane. No superoxide anion (O(2)(•-)) induced reactive oxygen species (ROS) production is detected. However, the four types of materials can oxidize glutathione, which serves as redox state mediator in bacteria. Conductive rGO and Gt have higher oxidation capacities than insulating GO and GtO. Results suggest that antimicrobial actions are contributed by both membrane and oxidation stress. We propose that a three-step antimicrobial mechanism, previously used for carbon nanotubes, is applicable to graphene-based materials. It includes initial cell deposition on graphene-based materials, membrane stress caused by direct contact with sharp nanosheets, and the ensuing superoxide anion-independent oxidation. We envision that physicochemical properties of graphene-based materials, such as density of functional groups, size, and conductivity, can be precisely tailored to either reducing their health and environmental risks or increasing their application potentials. © 2011 American Chemical Society

  14. Oxidative Stress, Nitric Oxide, and Diabetes

    PubMed Central

    Pitocco, Dario; Zaccardi, Francesco; Di Stasio, Enrico; Romitelli, Federica; Santini, Stefano A.; Zuppi, Cecilia; Ghirlanda, Giovanni

    2010-01-01

    In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the “final common pathway”, through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients. PMID:20703435

  15. Oxidation of an Exposed Methionine Instigates the Aggregation of Glyceraldehyde-3-phosphate Dehydrogenase*

    PubMed Central

    Samson, Andre L.; Knaupp, Anja S.; Kass, Itamar; Kleifeld, Oded; Marijanovic, Emilia M.; Hughes, Victoria A.; Lupton, Chris J.; Buckle, Ashley M.; Bottomley, Stephen P.; Medcalf, Robert L.

    2014-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous and abundant protein that participates in cellular energy production. GAPDH normally exists in a soluble form; however, following necrosis, GAPDH and numerous other intracellular proteins convert into an insoluble disulfide-cross-linked state via the process of “nucleocytoplasmic coagulation.” Here, free radical-induced aggregation of GAPDH was studied as an in vitro model of nucleocytoplasmic coagulation. Despite the fact that disulfide cross-linking is a prominent feature of GAPDH aggregation, our data show that it is not a primary rate-determining step. To identify the true instigating event of GAPDH misfolding, we mapped the post-translational modifications that arise during its aggregation. Solvent accessibility and energy calculations of the mapped modifications within the context of the high resolution native GAPDH structure suggested that oxidation of methionine 46 may instigate aggregation. We confirmed this by mutating methionine 46 to leucine, which rendered GAPDH highly resistant to free radical-induced aggregation. Molecular dynamics simulations suggest that oxidation of methionine 46 triggers a local increase in the conformational plasticity of GAPDH that likely promotes further oxidation and eventual aggregation. Hence, methionine 46 represents a “linchpin” whereby its oxidation is a primary event permissive for the subsequent misfolding, aggregation, and disulfide cross-linking of GAPDH. A critical role for linchpin residues in nucleocytoplasmic coagulation and other forms of free radical-induced protein misfolding should now be investigated. Furthermore, because disulfide-cross-linked aggregates of GAPDH arise in many disorders and because methionine 46 is irrelevant to native GAPDH function, mutation of methionine 46 in models of disease should allow the unequivocal assessment of whether GAPDH aggregation influences disease progression. PMID:25086035

  16. Measurement of the temperature-dependent threshold shear-stress of red blood cell aggregation.

    PubMed

    Lim, Hyun-Jung; Nam, Jeong-Hun; Lee, Yong-Jin; Shin, Sehyun

    2009-09-01

    Red blood cell (RBC) aggregation is becoming an important hemorheological parameter, which typically exhibits temperature dependence. Quite recently, a critical shear-stress was proposed as a new dimensional index to represent the aggregative and disaggregative behaviors of RBCs. The present study investigated the effect of the temperature on the critical shear-stress that is required to keep RBC aggregates dispersed. The critical shear-stress was measured at various temperatures (4, 10, 20, 30, and 37 degrees C) through the use of a transient microfluidic aggregometry. The critical shear-stress significantly increased as the blood temperature lowered, which accorded with the increase in the low-shear blood viscosity with the lowering of the temperature. Furthermore, the critical shear-stress also showed good agreement with the threshold shear-stress, as measured in a rotational Couette flow. These findings assist in rheologically validating the critical shear-stress, as defined in the microfluidic aggregometry.

  17. Population Structure of Manganese-Oxidizing Bacteria in Stratified Soils and Properties of Manganese Oxide Aggregates under Manganese–Complex Medium Enrichment

    PubMed Central

    Zhang, Zhongming; Chen, Hong; Liu, Jin; Ali, Muhammad; Liu, Fan; Li, Lin

    2013-01-01

    Manganese-oxidizing bacteria in the aquatic environment have been comprehensively investigated. However, little information is available about the distribution and biogeochemical significance of these bacteria in terrestrial soil environments. In this study, stratified soils were initially examined to investigate the community structure and diversity of manganese-oxidizing bacteria. Total 344 culturable bacterial isolates from all substrata exhibited Mn(II)-oxidizing activities at the range of 1 µM to 240 µM of the equivalent MnO2. The high Mn(II)-oxidizing isolates (>50 mM MnO2) were identified as the species of phyla Actinobacteria, Firmicutes and Proteobacteria. Seven novel Mn(II)-oxidizing bacterial genera (species), namely, Escherichia, Agromyces, Cellulomonas, Cupriavidus, Microbacterium, Ralstonia, and Variovorax, were revealed via comparative phylogenetic analysis. Moreover, an increase in the diversity of soil bacterial community was observed after the combined enrichment of Mn(II) and carbon-rich complex. The phylogenetic classification of the enriched bacteria represented by predominant denaturing gradient gel electrophoresis bands, was apparently similar to culturable Mn(II)-oxidizing bacteria. The experiments were further undertaken to investigate the properties of the Mn oxide aggregates formed by the bacterial isolates with high Mn(II)-oxidizing activity. Results showed that these bacteria were closely encrusted with their Mn oxides and formed regular microspherical aggregates under prolonged Mn(II) and carbon-rich medium enrichment for three weeks. The biotic oxidation of Mn(II) to Mn(III/IV) by these isolates was confirmed by kinetic examinations. X-ray diffraction assays showed the characteristic peaks of several Mn oxides and rhodochrosite from these aggregates. Leucoberbelin blue tests also verified the Mn(II)-oxidizing activity of these aggregates. These results demonstrated that Mn oxides were formed at certain amounts under the enrichment

  18. Stress distribution during cold compression of a quartz aggregate using synchrotron X-ray diffraction: Observed yielding, damage, and grain crushing: STRESS DISTRIBUTION OF QUARTZ AGGREGATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, C. S. N.; Weidner, D. J.; Li, L.

    We report new experimental results that quantify the stress distribution within a quartz aggregate during pore collapse and grain crushing. The samples were probed with synchrotron X-ray diffraction as they were compressed in a multianvil deformation apparatus at room temperature from low pressure (tens of megapascal) to pressures of a few gigapascal. In such a material, stress is likely to concentrate at grain-to-grain contacts and vanish where grains are bounded by open porosity. Therefore, internal stress is likely to vary significantly from point to point in such an aggregate, and hence, it is important to understand both the heterogeneity andmore » anisotropy of such variation with respect to the externally applied stress. In our quartz aggregate (grain size of ~4 μm), the measured diffraction peaks broaden asymmetrically at low pressure (tens of megapascal), suggesting that open pores are still a dominant characteristic of grain boundaries. In contrast, a reference sample of novaculite (a highly dense quartz polycrystal, grain size of ~6–9 μm) showed virtually no peak broadening with increasing pressure. In the quartz aggregate, we observed significant deviation in the pressure-volume curves in the range of P = 400–600 MPa. We suggest that this marks the onset of grain crushing (generally denoted as P* in the rock mechanic literature), which is commonly reported to occur in sandstones at pressures of this order, in general agreement with a Hertzian analysis of fracturing at grain contacts.« less

  19. Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation.

    PubMed

    Xu, Peng-Xin; Wang, Shao-Wei; Yu, Xiao-Lin; Su, Ya-Jing; Wang, Teng; Zhou, Wei-Wei; Zhang, He; Wang, Yu-Jiong; Liu, Rui-Tian

    2014-05-01

    Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles in the brain. Aβ aggregation is closely associated with neurotoxicity, oxidative stress, and neuronal inflammation. The soluble Aβ oligomers are believed to be the most neurotoxic form among all forms of Aβ aggregates. We have previously reported a polyphenol compound rutin that could inhibit Aβ aggregation and cytotoxicity, attenuate oxidative stress, and decrease the production of nitric oxide and proinflammatory cytokines in vitro. In the current study, we investigated the effect of rutin on APPswe/PS1dE9 transgenic mice. Results demonstrated that orally administered rutin significantly attenuated memory deficits in AD transgenic mice, decreased oligomeric Aβ level, increased super oxide dismutase (SOD) activity and glutathione (GSH)/glutathione disulfide (GSSG) ratio, reduced GSSG and malondialdehyde (MDA) levels, downregulated microgliosis and astrocytosis, and decreased interleukin (IL)-1β and IL-6 levels in the brain. These results indicated that rutin is a promising agent for AD treatment because of its antioxidant, anti-inflammatory, and reducing Aβ oligomer activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Relationship between high on aspirin platelet reactivity and oxidative stress in coronary artery by-pass grafted patients.

    PubMed

    Kuliczkowski, Wiktor; Golanski, Ryszard; Bijak, Michal; Boryczka, Katarzyna; Kaczmarski, Jacek; Watala, Cezary; Golanski, Jacek

    2016-03-01

    The aim of the study was to assess the responsiveness of blood platelets to acetylsalicylic acid (ASA) in patients following coronary artery bypass grafting (CABG) surgery with relation to oxidative and antioxidative plasma status. The study included 37 patients treated with the CABG procedure. During the first 24 h after CABG patients were given 300 mg of ASA with the following dose of 150 mg daily. The blood was collected before the procedure and 10 days after. Whole blood platelet aggregation induced with arachidonic acid, collagen and adenosine diphosphate (ADP) was performed together with whole blood generation of thromboxane B2 (TxB2). Oxidative stress was measured before and 10 days after CABG with total oxidative plasma status (TOS) and total antioxidative status of the plasma (TAS). TOS/TAS index was calculated. We observed a significant increase in the TOS and TOS/TAS index and ADP-induced aggregation 10 days after CABG in comparison with its level before operation. There was a significant decrease in the arachidonic acid-induced aggregation and serum TxB2 level. Patients with ADP-induced and collagen-induced aggregation in the upper quartile had significantly higher TOS and TOS/TAS index before (ADP) and after the operation (ADP and collagen). There were 19 patients (51%) with high on aspirin platelet reactivity after CABG who had also higher TOS and TOS/TAS index and lower TAS value in comparison with aspirin responders. Despite ASA use, increased oxidative stress after CABG can overcome its antiplatelet effect and increase platelet activation through other pathways.

  1. Experimental Study on Stress Monitoring of Sand-Filled Steel Tube during Impact Using Piezoceramic Smart Aggregates.

    PubMed

    Du, Guofeng; Zhang, Juan; Zhang, Jicheng; Song, Gangbing

    2017-08-22

    The filling of thin-walled steel tubes with quartz sand can help to prevent the premature buckling of the steel tube at a low cost. During an impact, the internal stress of the quartz sand-filled steel tube column is subjected to not only axial force but also lateral confining force, resulting in complicated internal stress. A suitable sensor for monitoring the internal stress of such a structure under an impact is important for structural health monitoring. In this paper, piezoceramic Smart Aggregates (SAs) are embedded into a quartz Sand-Filled Steel Tube Column (SFSTC) to monitor the internal structural stress during impacts. The piezoceramic smart aggregates are first calibrated by an impact hammer. Tests are conducted to study the feasibility of monitoring the internal stress of a structure. The results reflect that the calibration value of the piezoceramic smart aggregate sensitivity test is in good agreement with the theoretical value, and the output voltage value of the piezoceramic smart aggregate has a good linear relationship with external forces. Impact tests are conducted on the sand-filled steel tube with embedded piezoceramic smart aggregates. By analyzing the output signal of the piezoceramic smart aggregates, the internal stress state of the structure can be obtained. Experimental results demonstrated that, under the action of impact loads, the piezoceramic smart aggregates monitor the compressive stress at different locations in the steel tube, which verifies the feasibility of using piezoceramic smart aggregate to monitor the internal stress of a structure.

  2. Does oxidative stress shorten telomeres?

    PubMed

    Boonekamp, Jelle J; Bauch, Christina; Mulder, Ellis; Verhulst, Simon

    2017-05-01

    Oxidative stress shortens telomeres in cell culture, but whether oxidative stress explains variation in telomere shortening in vivo at physiological oxidative stress levels is not well known. We therefore tested for correlations between six oxidative stress markers and telomere attrition in nestling birds (jackdaws Corvus monedula ) that show a high rate of telomere attrition in early life. Telomere attrition was measured between ages 5 and 30 days, and was highly variable (average telomere loss: 323 bp, CV = 45%). Oxidative stress markers were measured in blood at age 20 days and included markers of oxidative damage (TBARS, dROMs and GSSG) and markers of antioxidant protection (GSH, redox state, uric acid). Variation in telomere attrition was not significantly related to these oxidative stress markers (| r | ≤ 0.08, n = 87). This finding raises the question whether oxidative stress accelerates telomere attrition in vivo The accumulation of telomere attrition over time depends both on the number of cell divisions and on the number of base pairs lost per DNA replication and, based on our findings, we suggest that in a growing animal cell proliferation, dynamics may be more important for explaining variation in telomere attrition than oxidative stress. © 2017 The Author(s).

  3. [Increasing oxidative stress in aging].

    PubMed

    Shimosawa, Tatsuo

    2005-06-01

    The balance between reactive oxigen species (ROS) production and degradation is important in defining oxidative stress. In aging process, ROS production increases and degradation is impaired and thus oxidative stress is accumulated. Oxidative stress damages organs both directly and indirectly. Protein, lipid, as well as DNA are directly react with ROS, more over, ROS interact with intracellular signaling system. It is reported that several transcription factors such as NF-kappaB, AP-1 and ASK-1 and also it interferes MAPK activity. Besides these signaling, we recently showed that insulin resistance is induced by accumulated oxidative stress in aged mice. Adrenomedullin deficient mice accumulate higher oxidative stress and insulin resistance developed in aging. Oxidative stress in aging relates not only direct organ damage but also induce risk factors for vascular damage such as metabolic syndrome.

  4. Chlamydia pneumoniae and oxidative stress in cardiovascular disease: state of the art and prevention strategies.

    PubMed

    Di Pietro, Marisa; Filardo, Simone; De Santis, Fiorenzo; Mastromarino, Paola; Sessa, Rosa

    2014-12-30

    Chlamydia pneumoniae, a pathogenic bacteria responsible for respiratory tract infections, is known as the most implicated infectious agent in atherosclerotic cardiovascular diseases (CVDs). Accumulating evidence suggests that C. pneumoniae-induced oxidative stress may play a critical role in the pathogenesis of CVDs. Indeed, the overproduction of reactive oxygen species (ROS) within macrophages, endothelial cells, platelets and vascular smooth muscle cells (VSMCs) after C. pneumoniae exposure, has been shown to cause low density lipoprotein oxidation, foam cell formation, endothelial dysfunction, platelet adhesion and aggregation, and VSMC proliferation and migration, all responsible for the typical pathological changes of atherosclerotic plaque. The aim of this review is to improve our insight into C. pneumoniae-induced oxidative stress in order to suggest potential strategies for CVD prevention. Several antioxidants, acting on multi-enzymatic targets related to ROS production induced by C. pneumoniae, have been discussed. A future strategy for the prevention of C. pneumoniae-associated CVDs will be to target chlamydial HSP60, involved in oxidative stress.

  5. Chlamydia pneumoniae and Oxidative Stress in Cardiovascular Disease: State of the Art and Prevention Strategies

    PubMed Central

    Di Pietro, Marisa; Filardo, Simone; De Santis, Fiorenzo; Mastromarino, Paola; Sessa, Rosa

    2014-01-01

    Chlamydia pneumoniae, a pathogenic bacteria responsible for respiratory tract infections, is known as the most implicated infectious agent in atherosclerotic cardiovascular diseases (CVDs). Accumulating evidence suggests that C. pneumoniae-induced oxidative stress may play a critical role in the pathogenesis of CVDs. Indeed, the overproduction of reactive oxygen species (ROS) within macrophages, endothelial cells, platelets and vascular smooth muscle cells (VSMCs) after C. pneumoniae exposure, has been shown to cause low density lipoprotein oxidation, foam cell formation, endothelial dysfunction, platelet adhesion and aggregation, and VSMC proliferation and migration, all responsible for the typical pathological changes of atherosclerotic plaque. The aim of this review is to improve our insight into C. pneumoniae-induced oxidative stress in order to suggest potential strategies for CVD prevention. Several antioxidants, acting on multi-enzymatic targets related to ROS production induced by C. pneumoniae, have been discussed. A future strategy for the prevention of C. pneumoniae-associated CVDs will be to target chlamydial HSP60, involved in oxidative stress. PMID:25561227

  6. Protein carbonylation, protein aggregation and neuronal cell death in a murine model of multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Dasgupta, Anushka

    Many studies have suggested that oxidative stress plays an important role in the pathophysiology of both multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Yet, the mechanism by which oxidative stress leads to tissue damage in these disorders is unclear. Recent work from our laboratory has revealed that protein carbonylation, a major oxidative modification caused by severe and/or chronic oxidative stress conditions, is elevated in MS and EAE. Furthermore, protein carbonylation has been shown to alter protein structure leading to misfolding/aggregation. These findings prompted me to hypothesize that carbonylated proteins, formed as a consequence of oxidative stress and/or decreased proteasomal activity, promote protein aggregation to mediate neuronal apoptosis in vitro and in EAE. To test this novel hypothesis, I first characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of myelin-oligodendrocyte glycoprotein (MOG)35-55 peptide-induced EAE in C57BL/6 mice [Chapter 2]. The results show that carbonylated proteins accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. I discovered not only that there is a temporal correlation between protein carbonylation and apoptosis but also that carbonyl levels are significantly higher in apoptotic cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are also present during the course of EAE, which seems to be due to reduced autophagy. In chapter 3, I show that when gluthathione levels are reduced to those in EAE spinal cord, both neuron-like PC12 (nPC12) cells and primary neuronal cultures accumulate carbonylated proteins and undergo cell death (both by necrosis and apoptosis). Immunocytochemical and biochemical studies also revealed a temporal

  7. Role of Carbonyl Modifications on Aging-Associated Protein Aggregation

    PubMed Central

    Tanase, Maya; Urbanska, Aleksandra M.; Zolla, Valerio; Clement, Cristina C.; Huang, Liling; Morozova, Kateryna; Follo, Carlo; Goldberg, Michael; Roda, Barbara; Reschiglian, Pierluigi; Santambrogio, Laura

    2016-01-01

    Protein aggregation is a common biological phenomenon, observed in different physiological and pathological conditions. Decreased protein solubility and a tendency to aggregate is also observed during physiological aging but the causes are currently unknown. Herein we performed a biophysical separation of aging-related high molecular weight aggregates, isolated from the bone marrow and splenic cells of aging mice and followed by biochemical and mass spectrometric analysis. The analysis indicated that compared to younger mice an increase in protein post-translational carbonylation was observed. The causative role of these modifications in inducing protein misfolding and aggregation was determined by inducing carbonyl stress in young mice, which recapitulated the increased protein aggregation observed in old mice. Altogether our analysis indicates that oxidative stress-related post-translational modifications accumulate in the aging proteome and are responsible for increased protein aggregation and altered cell proteostasis. PMID:26776680

  8. Oxidative stress during extracorporeal circulation.

    PubMed

    McDonald, Charles Ian; Fraser, John Francis; Coombes, Jeff S; Fung, Yoke Lin

    2014-12-01

    There is an increased oxidative stress response in patients having cardiac surgery, haemodialysis or extracorporeal membrane oxygenation that is related to poorer outcomes and increased mortality. Exposure of the patients' blood to the artificial surfaces of these extracorporeal devices, coupled with inflammatory responses, hyperoxia and the pathophysiological aspects of the underlying illness itself, all contribute to this oxidative stress response. Oxidative stress occurs when there is a disruption of redox signalling and loss of control of redox balance. Ongoing oxidative stress occurring during extracorporeal circulation (ECC) results in damage to lipids, proteins and DNA and contributes to morbidity and mortality. This review discusses reactive species generation and the potential clinical consequences of oxidative stress during ECC as well as provides an overview of some current antioxidant compounds that are available to potentially mitigate the oxidative stress response. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  9. Good Stress, Bad Stress and Oxidative Stress: Insights from Anticipatory Cortisol Reactivity

    PubMed Central

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M.; Dhabhar, Firdaus S.; Su, Yali; Epel, Elissa

    2014-01-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F2α (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-OxoG) and 8-hydroxy-2′-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as “peak” cortisol reactivity, while the increase from 0 to 15 min was defined as “anticipatory” cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (p<.01). A moderated mediation model was tested, in which it was hypothesized that heightened anticipatory cortisol reactivity would mediate the relationship between perceived stress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-OxoG and IsoP (but not

  10. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    PubMed

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F(2α) (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-oxoG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as "peak" cortisol reactivity, while the increase from 0 to 15 min was defined as "anticipatory" cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (p<.01). A moderated mediation model was tested, in which it was hypothesized that heightened anticipatory cortisol reactivity would mediate the relationship between perceived stress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-oxoG and IsoP (but not 8-OHd

  11. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    PubMed Central

    Busch, Andrea W.U.; Montgomery, Beronda L.

    2015-01-01

    Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. PMID:25618582

  12. [Oxidative stress in platelets at an oncopathology].

    PubMed

    Gorozhanskaya, E G; Sviridova, S P; Baykova, V N; Zubrikhina, G N; Dobrovolskaya, M M; Sitov, A V

    2015-01-01

    To determine the biochemical disorders in the blood coagulation mechanism associated with oxidative stress parameters of the antioxidant status were examined in platelets of 57 colorectal cancer patients, (including 21 patients before and after surgery), and 40 healthy individuals. We determined the total content of nitric oxide (NOx), levels of superoxide dismutase (Cu/ZnSOD), glutathione and malondialdehyde (MDA). Before treatment, we observed the changes in the antioxidant defense system of platelets, which did not depend on the prevalence of malignancy: elevated levels of SOD by 16% (p<0.05), reduced glutathione and MDA in 5.2 and 1.7 times, respectively. NOx levels did not differ from the norm. Significant shifts were found in the postoperative period: they consisted of the increase in the generation of NOx both on the third, and on the 10-th day after surgery. These changes reflect apparently platelet response to the inflammatory process associated with the surgical trauma and confirm the role of NOx as a mediator of inflammation. The content of SOD after surgery was significantly reduced, but return to a baseline on the 10-th day. Despite the significant increase in the number of platelets, no correlations of the studied parameters and their aggregation ability were found.The findings suggest that metabolic disorders in vascular-platelet hemostasis are associated with oxidative stress, which provides a basis for further study of the relationship of cancer to thrombosis.

  13. Impact of Cavitation, High Shear Stress and Air/Liquid Interfaces on Protein Aggregation.

    PubMed

    Duerkop, Mark; Berger, Eva; Dürauer, Astrid; Jungbauer, Alois

    2018-03-25

    The reported impact of shear stress on protein aggregation has been contradictory. At high shear rates, the occurrence of cavitation or entrapment of air is reasonable and their effects possibly misattributed to shear stress. Nine different proteins (α-lactalbumin, two antibodies, fibroblast growth factor 2, granulocyte colony stimulating factor [GCSF], green fluorescence protein [GFP], hemoglobin, human serum albumin, and lysozyme) are tested for their aggregation behavior on vapor/liquid interfaces generated by cavitation and compared it to the isolated effects of high shear stress and air/liquid interfaces generated by foaming. Cavitation induced the aggregation of GCSF by +68.9%, hemoglobin +4%, and human serum albumin +2.9%, compared to a control, whereas the other proteins do not aggregate. The protein aggregation behaviors of the different proteins at air/liquid interfaces are similar to cavitation, but the effect is more pronounced. Air-liquid interface induced the aggregation of GCSF by +94.5%, hemoglobin +35.5%, and human serum albumin (HSA) +31.1%. The results indicate that the sensitivity of a certain protein toward cavitation is very similar to air/liquid-induced aggregation. Hence, hydroxyl radicals cannot be seen as the driving force for protein aggregation when cavitation occurs. Further, high shear rates of up to 10 8  s -1 do not affect any of the tested proteins. Therefore, also within this study generated extremely high isolated shear rates cannot be considered to harm structural integrity when processing proteins. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Artemin protects cells and proteins against oxidative and salt stress.

    PubMed

    Takalloo, Zeinab; Sajedi, Reza H; Hosseinkhani, Saman; Moazzenzade, Taghi

    2017-02-01

    Artemin is an abundant thermostable protein in Artemia encysted embryos under environmental stresses. It is confirmed that high regulatory expression of artemin is relevant to stress resistance in this crustacean. Here, the protective role of artemin from Artemia urmiana has been investigated on survival of bacterial cells under salt and oxidative shocks. Also, for continuous monitoring of the effect of artemin in prevention of proteins aggregation/inactivation, co-expression of artemin and luciferase (as an intracellular reporter) in bacterial cells was performed. According to the results, residual activity of luciferase in artemin expressing E. coli cells exposing to different concentrations of H 2 O 2 and NaCl was significantly higher than non-expressing cells. The luciferase activity was rapidly lost in control cells under salt treatments while in co-transformed cells, the activity was considerably retained at higher salt concentrations. Also, analysis from cell viability assays showed that artemin-expressing cells exhibited more resistance to both stress conditions. In the present study, we document for the first time that artemin can protect proteins and bacterial cells against oxidative and salt stress conditions. These results can declare the resistance property of this crustacean against harsh environmental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL.

    PubMed

    Plaisance, Valérie; Brajkovic, Saška; Tenenbaum, Mathie; Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment.

  16. Alpha-crystallin-mediated protection of lens cells against heat and oxidative stress-induced cell death.

    PubMed

    Christopher, Karen L; Pedler, Michelle G; Shieh, Biehuoy; Ammar, David A; Petrash, J Mark; Mueller, Niklaus H

    2014-02-01

    In addition to their key role as structural lens proteins, α-crystallins also appear to confer protection against many eye diseases, including cataract, retinitis pigmentosa, and macular degeneration. Exogenous recombinant α-crystallin proteins were examined for their ability to prevent cell death induced by heat or oxidative stress in a human lens epithelial cell line (HLE-B3). Wild type αA- or αB-crystallin (WT-αA and WT-αB) and αA- or αB-crystallins, modified by the addition of a cell penetration peptide (CPP) designed to enhance the uptake of proteins into cells (gC-αB, TAT-αB, gC-αA), were produced by recombinant methods. In vitro chaperone-like assays were used to assay the ability of α-crystallins to protect client proteins from chemical or heat induced aggregation. In vivo viability assays were performed in HLE-B3 to determine whether pre-treatment with α-crystallins reduced death after exposure to oxidative or heat stress. Most of the five recombinant α-crystallin proteins tested conferred some in vitro protection from protein aggregation, with the greatest effect seen with WT-αB and gC-αB. All α-crystallins displayed significant protection to oxidative stress induced cell death, while only the αB-crystallins reduced cell death induced by thermal stress. Our findings indicate that the addition of the gC tag enhanced the protective effect of αB-crystallin against oxidative but not thermally-induced cell death. In conclusion, modifications that increase the uptake of α-crystallin proteins into cells, without destroying their chaperone-like activity and anti-apoptotic functions, create the potential to use these proteins therapeutically. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress

    NASA Astrophysics Data System (ADS)

    Leitman, Julia; Ulrich Hartl, F.; Lederkremer, Gerardo Z.

    2013-11-01

    In Huntington’s disease, as in other neurodegenerative diseases, it was initially thought that insoluble protein aggregates are the toxic species. However, growing evidence implicates soluble oligomeric polyglutamine-expanded huntingtin in cytotoxicity. Here we show that pathogenic huntingtin inhibits endoplasmic reticulum (ER)-associated degradation and induces ER stress before its aggregation into visible inclusions. All three branches of the unfolded protein response are activated. ER stress can be compensated by overexpression of p97/VCP, suggesting its sequestration by pathogenic huntingtin as a main cause. Stress correlates with the presence of huntingtin oligomers and is independent of continual huntingtin synthesis. Stress levels, measured in striatal neurons, are stabilized but only slowly subside on huntingtin aggregation into inclusions. Our results can be explained by the constant conversion of huntingtin monomers to toxic oligomers; large aggregates sequester the former, precluding further conversion, whereas pre-existing toxic oligomers are only gradually depleted.

  18. Oxidative stress adaptation with acute, chronic, and repeated stress.

    PubMed

    Pickering, Andrew M; Vojtovich, Lesya; Tower, John; A Davies, Kelvin J

    2013-02-01

    Oxidative stress adaptation, or hormesis, is an important mechanism by which cells and organisms respond to, and cope with, environmental and physiological shifts in the level of oxidative stress. Most studies of oxidative stress adaption have been limited to adaptation induced by acute stress. In contrast, many if not most environmental and physiological stresses are either repeated or chronic. In this study we find that both cultured mammalian cells and the fruit fly Drosophila melanogaster are capable of adapting to chronic or repeated stress by upregulating protective systems, such as their proteasomal proteolytic capacity to remove oxidized proteins. Repeated stress adaptation resulted in significant extension of adaptive responses. Repeated stresses must occur at sufficiently long intervals, however (12-h or more for MEF cells and 7 days or more for flies), for adaptation to be successful, and the levels of both repeated and chronic stress must be lower than is optimal for adaptation to acute stress. Regrettably, regimens of adaptation to both repeated and chronic stress that were successful for short-term survival in Drosophila nevertheless also caused significant reductions in life span for the flies. Thus, although both repeated and chronic stress can be tolerated, they may result in a shorter life. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Mitochondrial enzymes are protected from stress-induced aggregation by mitochondrial chaperones and the Pim1/LON protease

    PubMed Central

    Bender, Tom; Lewrenz, Ilka; Franken, Sebastian; Baitzel, Catherina; Voos, Wolfgang

    2011-01-01

    Proteins in a natural environment are constantly challenged by stress conditions, causing their destabilization, unfolding, and, ultimately, aggregation. Protein aggregation has been associated with a wide variety of pathological conditions, especially neurodegenerative disorders, stressing the importance of adequate cellular protein quality control measures to counteract aggregate formation. To secure protein homeostasis, mitochondria contain an elaborate protein quality control system, consisting of chaperones and ATP-dependent proteases. To determine the effects of protein aggregation on the functional integrity of mitochondria, we set out to identify aggregation-prone endogenous mitochondrial proteins. We could show that major metabolic pathways in mitochondria were affected by the aggregation of key enzyme components, which were largely inactivated after heat stress. Furthermore, treatment with elevated levels of reactive oxygen species strongly influenced the aggregation behavior, in particular in combination with elevated temperatures. Using specific chaperone mutant strains, we showed a protective effect of the mitochondrial Hsp70 and Hsp60 chaperone systems. Moreover, accumulation of aggregated polypeptides was strongly decreased by the AAA-protease Pim1/LON. We therefore propose that the proteolytic breakdown of aggregation-prone polypeptides represents a major protective strategy to prevent the in vivo formation of aggregates in mitochondria. PMID:21209324

  20. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W. B.; Kabia, Omaru M.; Do, Dung T.; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M.; Ghandi, Sonia; Bohndiek, Sarah E.; Snaddon, Thomas N.; Lee, Steven F.

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H2O2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H2O2. We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H2O2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  1. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species.

    PubMed

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W B; Kabia, Omaru M; Do, Dung T; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M; Ghandi, Sonia; Bohndiek, Sarah E; Snaddon, Thomas N; Lee, Steven F

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H 2 O 2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H 2 O 2 . We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H 2 O 2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  2. Effects of recombinant protein misfolding and aggregation on bacterial membranes.

    PubMed

    Ami, D; Natalello, A; Schultz, T; Gatti-Lafranconi, P; Lotti, M; Doglia, S M; de Marco, A

    2009-02-01

    The expression of recombinant proteins is known to induce a metabolic rearrangement in the host cell. We used aggregation-sensitive model systems to study the effects elicited in Escherichia coli cells by the aggregation of recombinant glutathione-S-transferase and its fusion with the green fluorescent protein that, according to the expression conditions, accumulate intracellularly as soluble protein, or soluble and insoluble aggregates. We show that the folding state of the recombinant protein and the complexity of the intracellular aggregates critically affect the cell response. Specifically, protein misfolding and aggregation induce changes in specific host proteins involved in lipid metabolism and oxidative stress, a reduction in the membrane permeability, as well as a rearrangement of its lipid composition. The temporal evolution of the host cell response and that of the aggregation process pointed out that the misfolded protein and soluble aggregates are responsible for the membrane modifications and the changes in the host protein levels. Interestingly, native recombinant protein and large insoluble aggregates do not seem to activate stress markers and membrane rearrangements.

  3. Perceived stress, recurrent pain, and aggregate salivary cortisol measures in mid-adolescent girls and boys.

    PubMed

    Lindfors, Petra; Folkesson Hellstadius, Lisa; Östberg, Viveca

    2017-02-01

    Measures of perceived stress have been criticized for theoretical inconsistency. However, the validated pressure activation stress scale has been suggested as a theoretically sound alternative. But it is unclear how pressure and activation stress relate to objective and subjective measures including commonly used aggregate cortisol measures and health complaints respectively. Specifically, this study aimed at investigating how pressure and activation stress were related to aggregate salivary cortisol measures and recurrent pain in mid-adolescent girls and boys. Mid-adolescents (119 girls and 56 boys) provided self-reports in questionnaires on activation and pressure stress and recurrent pain (headache, stomach ache, neck/shoulder and back pain). Additionally, adolescents sampled saliva during an ordinary school day: (1) immediately at awakening; (2) 30 minutes after waking up; (3) 60 minutes after waking up, and (4) at 8 p.m. These samples were analyzed for cortisol. Hierarchical regressions showed no statistically significant associations between activation and pressure stress and cortisol, neither for girls nor for boys. However, activation and pressure stress were significantly associated with recurrent pain but only for girls. The findings may relate to subjective and objective measures reflecting distinct aspects of stress-related functioning. However, the study participants included mid-adolescents whose bodily systems are flexible and still relatively unaffected by the strain of their daily stress perceptions. To conclude, the non-significant relationships between activation and pressure stress and commonly used aggregate measures of cortisol adds to the understanding of how perceived stress may relate to physiological functioning in the daily life of adolescents when using such aggregate measures. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  4. Oxidative stress in Alzheimer disease

    PubMed Central

    Durany, Nuria

    2009-01-01

    Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production. PMID:19372765

  5. Oxidative stress in Alzheimer disease.

    PubMed

    Gella, Alejandro; Durany, Nuria

    2009-01-01

    Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production.

  6. [Oxidative stress and infectious pathology].

    PubMed

    Romero Alvira, D; Guerrero Navarro, L; Gotor Lázaro, M A; Roche Collado, E

    1995-03-01

    Pathogenic organism can be considered as pro-oxidant agents because they produce cell death and tissue damage. In addition organism can be eliminated by specific cell defense mechanism which utilize in part, reactive oxygen radicals formed by oxidative stress responses. The cause of the necessarily defense process results in cell damage thereby leading to development of inflammation, a characteristic oxidative stress situation. This fact shows the duality of oxidative stress in infections and inflammation: oxygen free radicals protect against microorganism attack and can produce tissue damage during this protection to trigger inflammation. Iron, a transition metal which participates generating oxygen free radicals, displays also this duality in infection. We suggest also that different infectious pathologies, such as sickle cell anemia/malaria and AIDS, may display in part this duality. In addition, it should be noted that oxidative damage observed in infectious diseases is mostly due the inflammatory response than to the oxidative potential of the pathogenic agent, this last point is exemplified in cases of respiratory distress and in glomerulonephritis. This review analyzes these controversial facts of infectious pathology in relation with oxidative stress.

  7. Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors.

    PubMed

    Jiang, Danlie; Hu, Xialin; Wang, Rui; Yin, Daqiang

    2015-03-01

    Oxidations of nanoscale zero-valent iron (nZVI) under aerobic (dissolved oxygen≈8mgL(-1)) and anaerobic (dissolved oxygen <3mgL(-1)) conditions were simulated, and their influences on aggregation behaviors of nZVI were investigated. The two oxidation products were noted as HO-nZVI (nZVI oxidized in highly oxygenated water) and LO-nZVI (nZVI oxidized in lowly oxygenated water) respectively. The metallic iron of the oxidized nZVI was almost exhausted (Fe(0)≈8±5%), thus magnetization mainly depended on magnetite content. Since sufficient dissolved oxygen led to the much less magnetite (∼15%) in HO-nZVI than that in LO-nZVI (>90%), HO-nZVI was far less magnetic (Ms=88kAm(-1)) than LO-nZVI (Ms=365kAm(-1)). Consequently, HO-nZVI formed small agglomerates (228±10nm), while LO-nZVI tended to form chain-like aggregations (>1μm) which precipitated rapidly. Based on the EDLVO theory, we suggested that dissolved oxygen level determined aggregation morphologies by controlling the degree of oxidation and the magnitude of magnetization. Then the chain-like alignment of LO-nZVI would promote further aggregation, but the agglomerate morphology of HO-nZVI would eliminate magnetic forces and inhibit the aggregation while HO-nZVI remained magnetic. Our results indicated the fine colloidal stability of HO-nZVI, which might lead to the great mobility in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Selective aggregation of the splicing factor Hsh155 suppresses splicing upon genotoxic stress.

    PubMed

    Mathew, Veena; Tam, Annie S; Milbury, Karissa L; Hofmann, Analise K; Hughes, Christopher S; Morin, Gregg B; Loewen, Christopher J R; Stirling, Peter C

    2017-12-04

    Upon genotoxic stress, dynamic relocalization events control DNA repair as well as alterations of the transcriptome and proteome, enabling stress recovery. How these events may influence one another is only partly known. Beginning with a cytological screen of genome stability proteins, we find that the splicing factor Hsh155 disassembles from its partners and localizes to both intranuclear and cytoplasmic protein quality control (PQC) aggregates under alkylation stress. Aggregate sequestration of Hsh155 occurs at nuclear and then cytoplasmic sites in a manner that is regulated by molecular chaperones and requires TORC1 activity signaling through the Sfp1 transcription factor. This dynamic behavior is associated with intron retention in ribosomal protein gene transcripts, a decrease in splicing efficiency, and more rapid recovery from stress. Collectively, our analyses suggest a model in which some proteins evicted from chromatin and undergoing transcriptional remodeling during stress are targeted to PQC sites to influence gene expression changes and facilitate stress recovery. © 2017 Mathew et al.

  9. Role of oxidative stress and nitric oxide in atherothrombosis

    PubMed Central

    Lubos, Edith; Handy, Diane E.; Loscalzo, Joseph

    2008-01-01

    During the last decade basic and clinical research has highlighted the central role of reactive oxygen species (ROS) in cardiovascular disease. Enhanced production or attenuated degradation of ROS leads to oxidative stress, a process that affects endothelial and vascular function, and contributes to vascular disease. Nitric oxide (NO), a product of the normal endothelium, is a principal determinant of normal endothelial and vascular function. In states of inflammation, NO production by the vasculature increases considerably and, in conjunction with other ROS, contributes to oxidative stress. This review examines the role of oxidative stress and NO in mechanisms of endothelial and vascular dysfunction with an emphasis on atherothrombosis. PMID:18508590

  10. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species

    PubMed Central

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W. B.; Kabia, Omaru M.; Do, Dung T.; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M.; Ghandi, Sonia; Bohndiek, Sarah E.; Snaddon, Thomas N.

    2018-01-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H2O2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H2O2. We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H2O2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease. PMID:29515860

  11. Effect of acid on the aggregation of poly(ethylene xide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers.

    PubMed

    Yang, Bin; Guo, Chen; Chen, Shu; Ma, Junhe; Wang, Jing; Liang, Xiangfeng; Zheng, Lily; Liu, Huizhou

    2006-11-23

    The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.

  12. Nutrients and Oxidative Stress: Friend or Foe?

    PubMed Central

    Tan, Bee Ling; Liew, Winnie-Pui-Pui

    2018-01-01

    There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF-κB-) mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD), and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs). Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders. PMID:29643982

  13. Nutrients and Oxidative Stress: Friend or Foe?

    PubMed

    Tan, Bee Ling; Norhaizan, Mohd Esa; Liew, Winnie-Pui-Pui

    2018-01-01

    There are different types of nutritionally mediated oxidative stress sources that trigger inflammation. Much information indicates that high intakes of macronutrients can promote oxidative stress and subsequently contribute to inflammation via nuclear factor-kappa B- (NF- κ B-) mediated cell signaling pathways. Dietary carbohydrates, animal-based proteins, and fats are important to highlight here because they may contribute to the long-term consequences of nutritionally mediated inflammation. Oxidative stress is a central player of metabolic ailments associated with high-carbohydrate and animal-based protein diets and excessive fat consumption. Obesity has become an epidemic and represents the major risk factor for several chronic diseases, including diabetes, cardiovascular disease (CVD), and cancer. However, the molecular mechanisms of nutritionally mediated oxidative stress are complex and poorly understood. Therefore, this review aimed to explore how dietary choices exacerbate or dampen the oxidative stress and inflammation. We also discussed the implications of oxidative stress in the adipocyte and glucose metabolism and obesity-associated noncommunicable diseases (NCDs). Taken together, a better understanding of the role of oxidative stress in obesity and the development of obesity-related NCDs would provide a useful approach. This is because oxidative stress can be mediated by both extrinsic and intrinsic factors, hence providing a plausible means for the prevention of metabolic disorders.

  14. Oxidation stress evolution and relaxation of oxide film/metal substrate system

    NASA Astrophysics Data System (ADS)

    Dong, Xuelin; Feng, Xue; Hwang, Keh-Chih

    2012-07-01

    Stresses in the oxide film/metal substrate system are crucial to the reliability of the system at high temperature. Two models for predicting the stress evolution during isothermal oxidation are proposed. The deformation of the system is depicted by the curvature for single surface oxidation. The creep strain of the oxide and metal, and the lateral growth strain of the oxide are considered. The proposed models are compared with the experimental results in literature, which demonstrates that the elastic model only considering for elastic strain gives an overestimated stress in magnitude, but the creep model is consistent with the experimental data and captures the stress relaxation phenomenon during oxidation. The effects of the parameter for the lateral growth strain rate are also analyzed.

  15. Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhaoming; Pan, Haihua; Zhu, Genxing

    2016-07-19

    Assembly of nanoparticles building blocks during single crystal growth is widely observed in both natural and synthetic environments. Although this form of non-classical crystallization is generally described by oriented attachment, random aggregation of building blocks leading to single crystal products is also observed, but the mechanism of crystallographic realignment is unknown. We herein reveal that random attachment during aggregation-based growth initially produces a non-oriented growth front. Subsequent evolution of the orientation is driven by the inherent surface stress applied by the disordered surface layer and results in single crystal formation via grain boundary migration. This mechanism is corroborated by measurementsmore » of orientation rate vs external stress, demonstrating a predictive relationship between the two. These findings advance our understanding of aggregation-based growth of natural minerals by nanocrystals, and suggest an approach to material synthesis that takes advantage of stress induced co-alignment.« less

  16. Nutrigenetics and modulation of oxidative stress.

    PubMed

    Da Costa, Laura A; Badawi, Alaa; El-Sohemy, Ahmed

    2012-01-01

    Oxidative stress develops as a result of an imbalance between the production and accumulation of reactive species and the body's ability to manage them using exogenous and endogenous antioxidants. Exogenous antioxidants obtained from the diet, including vitamin C, vitamin E, and carotenoids, have important roles in preventing and reducing oxidative stress. Individual genetic variation affecting proteins involved in the uptake, utilization and metabolism of these antioxidants may alter their serum levels, exposure to target cells and subsequent contribution to the extent of oxidative stress. Endogenous antioxidants include the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, paraoxanase, and glutathione S-transferase. These enzymes metabolize reactive species and their by-products, reducing oxidative stress. Variation in the genes coding these enzymes may impact their enzymatic antioxidant activity and, thus, the levels of reactive species, oxidative stress, and risk of disease development. Oxidative stress may contribute to the development of chronic disease, including osteoporosis, type 2 diabetes, neurodegenerative diseases, cardiovascular disease, and cancer. Indeed, polymorphisms in most of the genes that code for antioxidant enzymes have been associated with several types of cancer, although inconsistent findings between studies have been reported. These inconsistencies may, in part, be explained by interactions with the environment, such as modification by diet. In this review, we highlight some of the recent studies in the field of nutrigenetics, which have examined interactions between diet, genetic variation in antioxidant enzymes, and oxidative stress. Copyright © 2012 S. Karger AG, Basel.

  17. Açaí (Euterpe oleracea Mart.) Modulates Oxidative Stress Resistance in Caenorhabditis elegans by Direct and Indirect Mechanisms

    PubMed Central

    Bonomo, Larissa de Freitas; Silva, David Nunes; Boasquivis, Patrícia Ferreira; Paiva, Franciny Aparecida; Guerra, Joyce Ferreira da Costa; Martins, Talita Alves Faria; de Jesus Torres, Álvaro Gustavo; de Paula, Igor Thadeu Borges Raposo; Caneschi, Washington Luiz; Jacolot, Philippe; Grossin, Nicolas; Tessier, Frederic J.; Boulanger, Eric; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia; de Paula Oliveira, Riva

    2014-01-01

    Açaí (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Despite its claimed pharmacological and nutraceutical value, studies regarding the effects of açaí in vivo are limited. In this study, we use the Caenorhabditis elegans model to evaluate the in vivo antioxidant properties of açaí on an organismal level and to examine its mechanism of action. Supplementation with açaí aqueous extract (AAE) increased both oxidative and osmotic stress resistance independently of any effect on reproduction and development. AAE suppressed bacterial growth, but this antimicrobial property did not influence stress resistance. AAE-increased stress resistance was correlated with reduced ROS production, the prevention of sulfhydryl (SH) level reduction and gcs-1 activation under oxidative stress conditions. Our mechanistic studies indicated that AAE promotes oxidative stress resistance by acting through DAF-16 and the osmotic stress response pathway OSR-1/UNC-43/SEK-1. Finally, AAE increased polyglutamine protein aggregation and decreased proteasome activity. Our findings suggest that natural compounds available in AAE can improve the antioxidant status of a whole organism under certain conditions by direct and indirect mechanisms. PMID:24594796

  18. Açaí (Euterpe oleracea Mart.) modulates oxidative stress resistance in Caenorhabditis elegans by direct and indirect mechanisms.

    PubMed

    Bonomo, Larissa de Freitas; Silva, David Nunes; Boasquivis, Patrícia Ferreira; Paiva, Franciny Aparecida; Guerra, Joyce Ferreira da Costa; Martins, Talita Alves Faria; de Jesus Torres, Álvaro Gustavo; de Paula, Igor Thadeu Borges Raposo; Caneschi, Washington Luiz; Jacolot, Philippe; Grossin, Nicolas; Tessier, Frederic J; Boulanger, Eric; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia; Oliveira, Riva de Paula

    2014-01-01

    Açaí (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Despite its claimed pharmacological and nutraceutical value, studies regarding the effects of açaí in vivo are limited. In this study, we use the Caenorhabditis elegans model to evaluate the in vivo antioxidant properties of açaí on an organismal level and to examine its mechanism of action. Supplementation with açaí aqueous extract (AAE) increased both oxidative and osmotic stress resistance independently of any effect on reproduction and development. AAE suppressed bacterial growth, but this antimicrobial property did not influence stress resistance. AAE-increased stress resistance was correlated with reduced ROS production, the prevention of sulfhydryl (SH) level reduction and gcs-1 activation under oxidative stress conditions. Our mechanistic studies indicated that AAE promotes oxidative stress resistance by acting through DAF-16 and the osmotic stress response pathway OSR-1/UNC-43/SEK-1. Finally, AAE increased polyglutamine protein aggregation and decreased proteasome activity. Our findings suggest that natural compounds available in AAE can improve the antioxidant status of a whole organism under certain conditions by direct and indirect mechanisms.

  19. Oxidative Stress Related Diseases in Newborns

    PubMed Central

    Aykac, Kubra

    2016-01-01

    We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions. Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases. PMID:27403229

  20. Reproductive Benefit of Oxidative Damage: An Oxidative Stress “Malevolence”?

    PubMed Central

    Poljsak, B.; Milisav, I.; Lampe, T.; Ostan, I.

    2011-01-01

    High levels of reactive oxygen species (ROS) compared to antioxidant defenses are considered to play a major role in diverse chronic age-related diseases and aging. Here we present an attempt to synthesize information about proximate oxidative processes in aging (relevant to free radical or oxidative damage hypotheses of aging) with an evolutionary scenario (credited here to Dawkins hypotheses) involving tradeoffs between the costs and benefits of oxidative stress to reproducing organisms. Oxidative stress may be considered a biological imperfection; therefore, the Dawkins' theory of imperfect adaptation of beings to environment was applied to the role of oxidative stress in processes like famine and infectious diseases and their consequences at the molecular level such as mutations and cell signaling. Arguments are presented that oxidative damage is not necessarily an evolutionary mistake but may be beneficial for reproduction; this may prevail over its harmfulness to health and longevity in evolution. Thus, Dawkins' principle of biological “malevolence” may be an additional biological paradigm for explaining the consequences of oxidative stress. PMID:21969876

  1. Role of oxidative stress in epileptic seizures

    PubMed Central

    Shin, Eun-Joo; Jeong, Ji Hoon; Chung, Yoon Hee; Kim, Won-Ki; Ko, Kwang-Ho; Bach, Jae-Hyung; Hong, Jau-Shyong; Yoneda, Yukio; Kim, Hyoung-Chun

    2013-01-01

    Oxidative stress resulting from excessive free-radical release is likely implicated in the initiation and progression of epilepsy. Therefore, antioxidant therapies aimed at reducing oxidative stress have received considerable attention in epilepsy treatment. However, much evidence suggests that oxidative stress does not always have the same pattern in all seizures models. Thus, this review provides an overview aimed at achieving a better understanding of this issue. We summarize work regarding seizure models (i.e., genetically epilepsy-prone rats, kainic acid, pilocarpine, pentylenetetrazol, and trimethyltin), oxidative stress as an etiologic factor in epileptic seizures (i.e., impairment of antioxidant systems, mitochondrial dysfunction, involvement of redox-active metals, arachidonic acid pathway activation, and aging), and antioxidant strategies for seizure treatment. Combined, this review highlights pharmacological mechanisms associated with oxidative stress in epileptic seizures and the potential for neuroprotection in epilepsy that targets oxidative stress and is supported by effective antioxidant treatment. PMID:21672578

  2. SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson's disease.

    PubMed

    Singh, Preeti; Hanson, Peter S; Morris, Christopher M

    2017-06-02

    Sirtuins (SIRTs) are NAD + dependent lysine deacetylases which are conserved from bacteria to humans and have been associated with longevity and lifespan extension. SIRT1, the best studied mammalian SIRT is involved in many physiological and pathological processes and changes in SIRT1 have been implicated in neurodegenerative disorders, with SIRT1 having a suggested protective role in Parkinson's disease. In this study, we determined the effect of SIRT1 on cell survival and α-synuclein aggregate formation in SH-SY5Y cells following oxidative stress. Over-expression of SIRT1 protected SH-SY5Y cells from toxin induced cell death and the protection conferred by SIRT1 was partially independent of its deacetylase activity, which was associated with the repression of NF-кB and cPARP expression. SIRT1 reduced the formation of α-synuclein aggregates but showed minimal co-localisation with α-synuclein. In post-mortem brain tissue obtained from patients with Parkinson's disease, Parkinson's disease with dementia, dementia with Lewy bodies and Alzheimer's disease, the activity of SIRT1 was observed to be down-regulated. These findings suggests a negative effect of oxidative stress in neurodegenerative disorders and possibly explain the reduced activity of SIRT1 in neurodegenerative disorders. Our study shows that SIRT1 is a pro-survival protein that is downregulated under cellular stress.

  3. Effects of solution conditions on methionine oxidation in albinterferon alfa-2b and the role of oxidation in its conformation and aggregation.

    PubMed

    Chou, Danny K; Krishnamurthy, Rajesh; Manning, Mark Cornell; Randolph, Theodore W; Carpenter, John F

    2013-02-01

    Physical and chemical degradation of therapeutic proteins can occur simultaneously. In this study, our first objective was to investigate how solution conditions that impact conformational stability of albinterferon alfa-2b, a recombinant fusion protein, modulate rates of methionine (Met) oxidation. Another objective of this work was to determine whether oxidation affects conformation and rate of aggregation of the protein. The protein was subjected to oxidation in solutions of varying pH, ionic strength, and excipients by the addition of 0.02% tertiary-butyl hydroperoxide (TBHP). The rate of formation of Met-sulfoxide species was monitored by reversed-phase high-performance liquid chromatography and compared across solution conditions. Albinterferon alfa-2b exhibited susceptibility to Met oxidation during exposure to TBHP that was highly dependent on solution parameters, but there was not a clear correlation between oxidation rate and protein conformational stability. Met oxidation resulted in significant perturbation of both secondary and tertiary structure of albinterferon alfa-2b as shown by both far-ultraviolet (UV) and near-UV circular dichroism. Moreover, oxidation of the protein caused a noticeable reduction in the protein's resistance to thermal denaturation. Surprisingly, despite its negative effect on solution structure and conformational stability, oxidation actually reduced the protein's aggregation rate during agitation at room temperature as well as during quiescent incubation at 40°C. Oxidation of the protein resulted in improved colloidal stability of the protein, which is manifested by a more positive B(22) value in the oxidized protein. Thus, the reduced aggregation rate after oxidation suggests that increased colloidal stability of oxidized albinterferon alfa-2b counteracted oxidation-induced decreases in conformational stability. Copyright © 2012 Wiley Periodicals, Inc.

  4. Oxidative stress and the ageing endocrine system.

    PubMed

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  5. Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB.

    PubMed

    Malki, Abderrahim; Le, Hai-Tuong; Milles, Sigrid; Kern, Renée; Caldas, Teresa; Abdallah, Jad; Richarme, Gilbert

    2008-05-16

    The acid stress chaperones HdeA and HdeB of Escherichia coli prevent the aggregation of periplasmic proteins at acidic pH. We show in this report that they also form mixed aggregates with proteins that have failed to be solubilized at acidic pH and allow their subsequent solubilization at neutral pH. HdeA, HdeB, and HdeA and HdeB together display an increasing efficiency for the solubilization of protein aggregates at pH 3. They are less efficient for the solubilization of aggregates at pH 2, whereas HdeB is the most efficient. Increasing amounts of periplasmic proteins draw increasing amounts of chaperone into pellets, suggesting that chaperones co-aggregate with their substrate proteins. We observed a decrease in the size of protein aggregates in the presence of HdeA and HdeB, from very high molecular mass aggregates to 100-5000-kDa species. Moreover, a marked decrease in the exposed hydrophobicity of aggregated proteins in the presence of HdeA and HdeB was revealed by 1,1'-bis(4-anilino)naphtalene-5,5'-disulfonic acid binding experiments. In vivo, during the recovery at neutral pH of acid stressed bacterial cells, HdeA and HdeB allow the solubilization and renaturation of protein aggregates, including those formed by the maltose receptor MalE, the oligopeptide receptor OppA, and the histidine receptor HisJ. Thus, HdeA and HdeB not only help to maintain proteins in a soluble state during acid treatment, as previously reported, but also assist, both in vitro and in vivo, in the solubilization at neutral pH of mixed protein-chaperone aggregates formed at acidic pH, by decreasing the size of protein aggregates and the exposed hydrophobicity of aggregated proteins.

  6. Oxidative stress, thiols, and redox profiles.

    PubMed

    Harris, Craig; Hansen, Jason M

    2012-01-01

    Oxidative stress has been recognized as a contributing factor in the toxicity of a large number of developmental toxicants. Traditional definitions of oxidative stress state that a shift in the balance between reduced and oxidized biomolecules within cells, in favor of the latter, result in changes that are deleterious to vital cell functions and can culminate in malformations and death. The glutathione (GSH)/glutathione disulfide (GSSG) redox couple has been the traditional marker of choice for characterization of oxidative stress because of its high concentrations and direct roles as antioxidant and cellular protectant. Steady state depletion of GSH through conjugation, oxidation, or export has often been reported as the sole criteria for invoking oxidative stress and a myriad of associated deleterious consequences. Numerous other, mostly qualitative, observations have also been reported to suggest oxidative stress has occurred but it is not always clear how well they reflect the state of a cell or its functions. Our emerging understanding of redox signaling and the roles of reactive oxygen species (ROS), thiols, oxidant molecules, and cellular antioxidants, all acting as second messengers, has prompted a redefinition of oxidative stress based on changes in the real posttranslational protein thiol modifications that are central to redox regulation and control. Thiol-based redox couples such as GSH/GSSG, cysteine/cystine (cys/cySS), thioredoxin-reduced/thioredoxin-oxidized (TRX(red)/TRX(ox)) form independent signaling nodes that selectively regulate developmental events and are closely linked to changes in intracellular redox potentials. Accurate assessment of the consequences of increased free radicals in developing conceptuses should best be made using a battery of measurements including the quantitative assessment of intracellular redox potential, ROS, redox status of biomolecules, and induced changes in specific redox signaling nodes. Methods are presented for

  7. Classification of oxidative stress based on its intensity

    PubMed Central

    Lushchak, Volodymyr I.

    2014-01-01

    In living organisms production of reactive oxygen species (ROS) is counterbalanced by their elimination and/or prevention of formation which in concert can typically maintain a steady-state (stationary) ROS level. However, this balance may be disturbed and lead to elevated ROS levels called oxidative stress. To our best knowledge, there is no broadly acceptable system of classification of oxidative stress based on its intensity due to which proposed here system may be helpful for interpretation of experimental data. Oxidative stress field is the hot topic in biology and, to date, many details related to ROS-induced damage to cellular components, ROS-based signaling, cellular responses and adaptation have been disclosed. However, it is common situation when researchers experience substantial difficulties in the correct interpretation of oxidative stress development especially when there is a need to characterize its intensity. Careful selection of specific biomarkers (ROS-modified targets) and some system may be helpful here. A classification of oxidative stress based on its intensity is proposed here. According to this classification there are four zones of function in the relationship between “Dose/concentration of inducer” and the measured “Endpoint”: I – basal oxidative stress (BOS); II – low intensity oxidative stress (LOS); III – intermediate intensity oxidative stress (IOS); IV – high intensity oxidative stress (HOS). The proposed classification will be helpful to describe experimental data where oxidative stress is induced and systematize it based on its intensity, but further studies will be in need to clear discriminate between stress of different intensity. PMID:26417312

  8. Soil aggregate stratification of nematodes and ammonia oxidizers affects nitrification in an acid soil.

    PubMed

    Jiang, Yuji; Jin, Chen; Sun, Bo

    2014-10-01

    Nitrification plays a central role in global nitrogen cycle, which is affected by interaction between soil microfauna and microorganisms. The impact of synchronized changes in nematodes and ammonia oxidizers within aggregate fractions on nitrification was investigated in an acid soil under 10-year manure application. Nematodes, ammonia oxidizers and potential nitrification activity (PNA) were examined in three soil aggregate fractions under four fertilization regimes. Pyrosequencing data revealed that the dominant bacterial amoA operational taxonomic units (OTUs) were related to Nitrosospira species, while archaeal OTUs were affiliated with Nitrososphaera and Nitrosotalea species. PNA was more strongly correlated with ammonia-oxidizing bacteria (AOB) abundance than ammonia-oxidizing archaea (AOA) abundance, although AOA were dominant in the acid soil. Plant parasites had a negative effect on AOB abundance; however, bacterivores stimulated AOB abundance and contributed more to PNA than plant parasites. Aggregate fractions exerted significant impacts on AOA abundance and AOB community composition. Total carbon content strongly affected the abundance and composition of AOA community, while soil pH primarily affected that of AOB community. Soil variables explained 62.7% and 58.1% variations, and nematode variables explained 11.7% and 19.5% variations in the AOA and AOB community composition respectively. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Oxidative Stress and Antioxidant System in Periodontitis

    PubMed Central

    Wang, Yue; Andrukhov, Oleh; Rausch-Fan, Xiaohui

    2017-01-01

    Periodontitis is a common inflammatory disease, which is initiated by bacterial infection and subsequently progressed by aberrant host response. It can result in the destruction of teeth supporting tissues and have an influence on systemic health. When periodontitis occurs, reactive oxygen species, which are overproduced mostly by hyperactive neutrophils, could not be balanced by antioxidant defense system and cause tissues damage. This is characterized by increased metabolites of lipid peroxidation, DNA damage and protein damage. Local and systemic activities of antioxidants can also be influenced by periodontitis. Total antioxidant capacity, total oxidant status and oxidative stress index have been used to evaluate the oxidative stress associated with periodontitis. Studies have confirmed that inflammatory response in periodontitis is associated with an increased local and systemic oxidative stress and compromised antioxidant capacity. Our review focuses on increased oxidative stress in periodontal disease, specifically, on the relationship between the local and systemic biomarkers of oxidative stress and periodontitis and their association with the pathogenesis of periodontitis. Also, the relationship between periodontitis and systemic inflammation, and the effects of periodontal therapy on oxidative stress parameters will be discussed. PMID:29180965

  10. SOD1 oxidation and formation of soluble aggregates in yeast: Relevance to sporadic ALS development

    PubMed Central

    Martins, Dorival; English, Ann M.

    2014-01-01

    Misfolding and aggregation of copper–zinc superoxide dismutase (Sod1) are observed in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Mutations in Sod1 lead to familial ALS (FALS), which is a late-onset disease. Since oxidative damage to proteins increases with age, it had been proposed that oxidation of Sod1 mutants may trigger their misfolding and aggregation in FALS. However, over 90% of ALS cases are sporadic (SALS) with no obvious genetic component. We hypothesized that oxidation could also trigger the misfolding and aggregation of wild-type Sod1 and sought to confirm this in a cellular environment. Using quiescent, stationary-phase yeast cells as a model for non-dividing motor neurons, we probed for post-translational modification (PTM) and aggregation of wild-type Sod1 extracted from these cells. By size-exclusion chromatography (SEC), we isolated two populations of Sod1 from yeast: a low-molecular weight (LMW) fraction that is catalytically active and a catalytically inactive, high-molecular weight (HMW) fraction. High-resolution mass spectrometric analysis revealed that LMW Sod1 displays no PTMs but HMW Sod1 is oxidized at Cys146 and His71, two critical residues for the stability and folding of the enzyme. HMW Sod1 is also oxidized at His120, a copper ligand, which will promote loss of this catalytic metal cofactor essential for SOD activity. Monitoring the fluorescence of a Sod1-green-fluorescent-protein fusion (Sod1-GFP) extracted from yeast chromosomally expressing this fusion, we find that HMW Sod1-GFP levels increase up to 40-fold in old cells. Thus, we speculate that increased misfolding and inclusion into soluble aggregates is a consequence of elevated oxidative modifications of wild-type Sod1 as cells age. Our observations argue that oxidative damage to wild-type Sod1 initiates the protein misfolding mechanisms that give rise to SALS. PMID:24936435

  11. Matrix-assisted laser-induced gas-phase aggregation of C 60 oxides

    NASA Astrophysics Data System (ADS)

    Barrow, Mark P.; Tower, Nicole J.; Taylor *, , Roger; Drewello, Thomas

    1998-08-01

    Matrix-assisted laser desorption/ionisation of C 60 oxides, in conjunction with reflectron time-of-flight mass spectrometry, leads to an unprecedented gas-phase aggregation resulting in the formation of C 120O n- ·. products. The analysis of the product distribution obtained for oxides of varying oxygen content strongly suggests that the structures of these species are closely related to oxo-bridged isolated fullerene cages rather than to species featuring a fused giant fullerene core.

  12. Oxidative Stress Resistance in Deinococcus radiodurans†

    PubMed Central

    Slade, Dea; Radman, Miroslav

    2011-01-01

    Summary: Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health. PMID:21372322

  13. Oxidative Stress in BPH.

    PubMed

    Savas, M; Verit, A; Ciftci, H; Yeni, E; Aktan, E; Topal, U; Erel, O

    2009-01-01

    In the present study, we investigated the relationship between potency of oxidative stress and BPH and this may assist to contribute to the realistic explanation of the ethiopathogenesis of BPH. Seventy four newly diagnosed men with BPH (mean age: 54+/-11.2), who had not undergone any previous treatment for BPH, and 62 healthy volunteers (mean age: 55+/-14) were enrolled in the present study. To determine the antioxidative status of plasma, total antioxidant capacity (TAC) was calculated, and to determine the oxidative status of plasma (TOS) total peroxide levels were measured. The ratio of TAC to total peroxide was accepted as an indicator of oxidative stress (OSI). Data are presented as mean SD +/- unless specified. Student t-test and correlation analyses were used to evaluate the statistical significance differences in the median values recorded for all parameters between BPH and control group. Plasma TAC TOS were found in patients and controls (1.70 +/- 0.32, 1.68 +/- 0.19 micromol Trolox Equiv./L), (12.48 +/- 1.98, 12.40 +/- 1.14 micromol / L) respectively. OSI was calculated as 7.57 +/- 1.91, 7.48 +/- 1.33, respectively. Plasma TAC, TOS and OSI levels were not found to be significantly difference between patients and control subjects (p>0.05, p>0.05, p>0.05). The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis.

  14. Imaging of Oxidative Stress in Prostate Cancer

    DTIC Science & Technology

    2013-10-01

    transformative imaging agent. 15. SUBJECT TERMS Positron Emission Tomography, Oxidative Stress, Hydrogen Peroxide, 18F, 124I, Prostate...AD_________________ Award Number: W81XWH-12-1-0029 TITLE: Imaging of Oxidative Stress in...27September2012-26September2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Imaging of Oxidative Stress in Prostate Cancer 5b. GRANT NUMBER

  15. Clinical Perspective of Oxidative Stress in Sporadic ALS

    PubMed Central

    D’Amico, Emanuele; Factor-Litvak, Pam; Santella, Regina M.; Mitsumoto, Hiroshi

    2013-01-01

    Sporadic amyotrophic lateral sclerosis (sALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/anti-oxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine, are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly support the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis. PMID:23797033

  16. Oxidative Stress in Aging Human Skin

    PubMed Central

    Rinnerthaler, Mark; Bischof, Johannes; Streubel, Maria Karolin; Trost, Andrea; Richter, Klaus

    2015-01-01

    Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis. PMID:25906193

  17. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  18. Dye-sensitized solar cell employing zinc oxide aggregates grown in the presence of lithium

    DOEpatents

    Zhang, Qifeng; Cao, Guozhong

    2013-10-15

    Provided are a novel ZnO dye-sensitized solar cell and method of fabricating the same. In one embodiment, deliberately added lithium ions are used to mediate the growth of ZnO aggregates. The use of lithium provides ZnO aggregates that have advantageous microstructure, morphology, crystallinity, and operational characteristics. Employing lithium during aggregate synthesis results in a polydisperse collection of ZnO aggregates favorable for porosity and light scattering. The resulting nanocrystallites forming the aggregates have improved crystallinity and more favorable facets for dye molecule absorption. The lithium synthesis improves the surface stability of ZnO in acidic dyes. The procedures developed and disclosed herein also help ensure the formation of an aggregate film that has a high homogeneity of thickness, a high packing density, a high specific surface area, and good electrical contact between the film and the fluorine-doped tin oxide electrode and among the aggregate particles.

  19. Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment.

    EPA Science Inventory

    In this study, we investigate the role of simulated sunlight on the physicochemical properties, aggregation, and deposition of graphene oxide (GO) in aquatic environments. Results show that light exposure under varied environmental conditions significantly impacts the physicochem...

  20. Cardiopulmonary Bypass and Oxidative Stress

    PubMed Central

    Zakkar, Mustafa; Guida, Gustavo; Suleiman, M-Saadeh; Angelini, Gianni D.

    2015-01-01

    The development of the cardiopulmonary bypass (CPB) revolutionized cardiac surgery and contributed immensely to improved patients outcomes. CPB is associated with the activation of different coagulation, proinflammatory, survival cascades and altered redox state. Haemolysis, ischaemia, and perfusion injury and neutrophils activation during CPB play a pivotal role in oxidative stress and the associated activation of proinflammatory and proapoptotic signalling pathways which can affect the function and recovery of multiple organs such as the myocardium, lungs, and kidneys and influence clinical outcomes. The administration of agents with antioxidant properties during surgery either intravenously or in the cardioplegia solution may reduce ROS burst and oxidative stress during CPB. Alternatively, the use of modified circuits such as minibypass can modify both proinflammatory responses and oxidative stress. PMID:25722792

  1. "Cumulative Stress": The Effects of Maternal and Neonatal Oxidative Stress and Oxidative Stress-Inducible Genes on Programming of Atopy.

    PubMed

    Manti, Sara; Marseglia, Lucia; D'Angelo, Gabriella; Cuppari, Caterina; Cusumano, Erika; Arrigo, Teresa; Gitto, Eloisa; Salpietro, Carmelo

    2016-01-01

    Although extensive epidemiological and laboratory studies have been performed to identify the environmental and immunological causes of atopy, genetic predisposition seems to be the biggest risk factor for allergic diseases. The onset of atopic diseases may be the result of heritable changes of gene expression, without any alteration in DNA sequences occurring in response to early environmental stimuli. Findings suggest that the establishment of a peculiar epigenetic pattern may also be generated by oxidative stress (OS) and perpetuated by the activation of OS-related genes. Analyzing the role of maternal and neonatal oxidative stress and oxidative stress-inducible genes, the purpose of this review was to summarize what is known about the relationship between maternal and neonatal OS-related genes and the development of atopic diseases.

  2. Oxidative stress, redox stress or redox success?

    PubMed

    Gutteridge, John M C; Halliwell, Barry

    2018-05-09

    The first life forms evolved in a highly reducing environment. This reduced state is still carried by cells today, which makes the concept of "reductive stress" somewhat redundant. When oxygen became abundant on the Earth, due to the evolution of photosynthesis, life forms had to adapt or become extinct. Living organisms did adapt, proliferated and an explosion of new life forms resulted, using reactive oxygen species (ROS) to drive their evolution. Adaptation to oxygen and its reduction intermediates necessitated the simultaneous evolution of select antioxidant defences, carefully regulated to allow ROS to perform their major roles. Clearly this "oxidative stress" did not cause a major problem to the evolution of complex life forms. Why not? Iron and oxygen share a close relationship in aerobic evolution. Iron is used in proteins to transport oxygen, promote electron transfers, and catalyse chemical reactions. In all of these functions, iron is carefully sequestered within proteins and restricted from reacting with ROS, this sequestration being one of our major antioxidant defences. Iron was abundant to life forms before the appearance of oxygen. However, oxygen caused its oxidative precipitation from solution and thereby decreased its bioavailability and thus the risk of iron-dependent oxidative damage. Micro-organisms had to adapt and develop strategies involving siderophores to acquire iron from the environment and eventually their host. This battle for iron between bacteria and animal hosts continues today, and is a much greater daily threat to our survival than "oxidative stress" and "redox stress". Copyright © 2018. Published by Elsevier Inc.

  3. Oxidative Stress and Neurodegenerative Disorders

    PubMed Central

    Li, Jie; O, Wuliji; Li, Wei; Jiang, Zhi-Gang; Ghanbari, Hossein A.

    2013-01-01

    Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs. PMID:24351827

  4. Stress remagnetization in pyrrhotite-calcite synthetic aggregates

    NASA Astrophysics Data System (ADS)

    Robion, Philippe; Borradaile, Graham J.

    2001-01-01

    Stress-induced remagnetization has been applied to multidomain pyrrhotite-calcite synthetic aggregates in a triaxial rig. Experimental deformation used 150MPa confining pressure, a constant strain rate of 10-5 s-1 and applied differential stresses of up to 70MPa. New components of magnetization, parallel to the direction of the pressure vessel field, were added to the pre-deformational magnetization. The intensity of remagnetization (M'-M0) increases with the intensity of the applied differential stress and affects the coercivity fraction below 15mT. Bulk shortening is less than 8 per cent, thus grain rotation cannot explain selective remagnetization of the low-coercivity fraction. Remagnetization is thus attributed to deformational viscous remanent magnetization (DVRM). It is observed that high-coercivity (>15mT) grains do not remagnetize. There is, however, slight progressive rotation of pre-deformational magnetization with increasing strain up to 8 per cent of bulk shortening. The lack of piezoremanent magnetization in the high-coercivity range may be due to defects introduced in pyrrhotite during sample preparation. Experiments using synthetic pyrrhotite, expected to show low dislocation densities, would be necessary to test this effect.

  5. Chlorogenic acid attenuates hydrogen peroxide-induced oxidative stress in lens epithelial cells

    PubMed Central

    Song, Jike; Guo, Dadong; Bi, Hongsheng

    2018-01-01

    Oxidative stress has an important role in the degradation, oxidation, cross-linking and aggregation of lens proteins, and can trigger lens epithelial cell apoptosis. To investigate the protective effect of chlorogenic acid (CGA) against hydrogen peroxide (H2O2)-induced oxidative stress, human lens epithelial cells (hLECs) were exposed to various concentrations of H2O2 in the presence and absence of CGA. Using MTT assay, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and ELISA techniques, cell viability, and protein/mRNA levels of BCL2 apoptosis regulator (Bcl-2) and BCL2 associated X apoptosis regulator (Bax) were investigated. Additionally, the levels of intracellular reactive oxygen species (ROS) and apoptosis within cells were measured using flow cytometry to determine the protective effect of CGA on H2O2-induced oxidative stress. Furthermore, the protective effect of CGA on H2O2-induced apoptosis was also examined using rabbit lenses ex vivo. The results indicated that CGA reduced H2O2-induced cytotoxicity in a dose-dependent manner. Flow cytometry analysis demonstrated that simultaneous exposure of hLECs to H2O2 and CGA significantly decreased apoptosis and the levels of ROS. RT-qPCR analysis revealed a decrease in Bcl-2 and an increase in Bax in hLECs following exposure to H2O2 for 24 h, regardless of CGA presence. Furthermore, ELISA results indicate that CGA increased Bcl-2 expression and decreased Bax expression following treatment with H2O2 for 24 h and the Bax/Bcl-2 ratio was significantly decreased by CGA treatment. Lens organ culture experiments indicated a dose-dependent decrease in H2O2-induced lens opacity following CGA treatment. These results suggest that CGA suppresses hLECs apoptosis and prevents lens opacity induced by H2O2 via Bax/Bcl-2 signaling pathway. CGA may provide effective defenses against oxidative stress and, thus, haσ potential as treatment for a variety of diseases in clinical practice. PMID:29207051

  6. Biomarkers of oxidative stress in pre-eclampsia.

    PubMed

    Poston, Lucilla; Chappell, Lucy; Seed, Paul; Shennan, Andrew

    2011-01-01

    Pre-eclampsia is associated with oxidative stress, confirmed by measurement of biomarkers and relevant antioxidant enzymes in the placenta and maternal circulation. Studies in vitro have described the pathways by which placental ischaemia can lead to oxidative stress as well as endoplasmic reticulum stress, which is coupled to synthesis of reactive oxygen species. However, clinical trials of antioxidants vitamins C and E, with an associated increase of plasma vitamins C and E concentrations have shown no benefit in prevention of the disorder, which may infer lack of a mechanistic role. Before oxidative stress is dismissed as an irrelevant accompaniment to pre-eclampsia further studies of proven biomarkers of oxidative stress are required to determine whether vitamins C and E supplementation leads to evidence of reversal of oxidative processes and tissue damage. If not, alternative antioxidant strategies may be worthy of consideration. Copyright © 2010 Society of Egyptian Anesthesiologists. Published by Elsevier B.V. All rights reserved.

  7. Evaluation of Oxidative Stress in Bipolar Disorder in terms of Total Oxidant Status, Total Antioxidant Status, and Oxidative Stress Index

    PubMed Central

    CİNGİ YİRÜN, Merve; ÜNAL, Kübranur; ALTUNSOY ŞEN, Neslihan; YİRÜN, Onur; AYDEMİR, Çiğdem; GÖKA, Erol

    2016-01-01

    Introduction Bipolar disorder is one of the most debilitating psychiatric disorders characterized by disruptive episodes of mania/hypomania and depression. Considering the complex role of biological and environmental factors in the etiology of affective disorders, recent studies have focused on oxidative stress, which may damage nerve cell components and take part in pathophysiology. The aim of the present study was to contribute to the data about oxidative stress in bipolar disorder by detecting the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels of manic episode (ME) and euthymic (EU) patients and by comparing these results with those of healthy controls (HCs). Methods The study population consisted of 28 EU outpatients meeting the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for bipolar disorder I and 23 inpatients who were currently hospitalized in a psychiatry ward with the diagnosis of the bipolar disorder ME according to the DSM-5 criteria. Forty-three healthy subjects were included in the study as the control group (HC). Serum TAS, TOS, and OSI levels of all the participants were determined. Results Statistical analysis of serum TAS, TOS, and OSI levels did not show any significant differences between the ME patients, EU patients, and HCs. Comparison between the bipolar disorder patients (ME+EU) and HC also did not reveal any statistically significant difference between these two groups in terms of serum TAS, TOS, and OSI levels. Conclusion To date, studies on oxidative stress in bipolar disorder have led to controversial results. In the present study, no statistically significant difference was detected between the oxidative parameters of bipolar disorder patients and HCs. In order to comprehensively evaluate oxidative stress in bipolar disorder, further studies are needed. PMID:28373794

  8. Evaluation of Oxidative Stress in Bipolar Disorder in terms of Total Oxidant Status, Total Antioxidant Status, and Oxidative Stress Index.

    PubMed

    Cingi Yirün, Merve; Ünal, Kübranur; Altunsoy Şen, Neslihan; Yirün, Onur; Aydemir, Çiğdem; Göka, Erol

    2016-09-01

    Bipolar disorder is one of the most debilitating psychiatric disorders characterized by disruptive episodes of mania/hypomania and depression. Considering the complex role of biological and environmental factors in the etiology of affective disorders, recent studies have focused on oxidative stress, which may damage nerve cell components and take part in pathophysiology. The aim of the present study was to contribute to the data about oxidative stress in bipolar disorder by detecting the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels of manic episode (ME) and euthymic (EU) patients and by comparing these results with those of healthy controls (HCs). The study population consisted of 28 EU outpatients meeting the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for bipolar disorder I and 23 inpatients who were currently hospitalized in a psychiatry ward with the diagnosis of the bipolar disorder ME according to the DSM-5 criteria. Forty-three healthy subjects were included in the study as the control group (HC). Serum TAS, TOS, and OSI levels of all the participants were determined. Statistical analysis of serum TAS, TOS, and OSI levels did not show any significant differences between the ME patients, EU patients, and HCs. Comparison between the bipolar disorder patients (ME+EU) and HC also did not reveal any statistically significant difference between these two groups in terms of serum TAS, TOS, and OSI levels. To date, studies on oxidative stress in bipolar disorder have led to controversial results. In the present study, no statistically significant difference was detected between the oxidative parameters of bipolar disorder patients and HCs. In order to comprehensively evaluate oxidative stress in bipolar disorder, further studies are needed.

  9. Opposed Effects of Dityrosine Formation in Soluble and Aggregated α-Synuclein on Fibril Growth.

    PubMed

    Wördehoff, Michael M; Shaykhalishahi, Hamed; Groß, Luca; Gremer, Lothar; Stoldt, Matthias; Buell, Alexander K; Willbold, Dieter; Hoyer, Wolfgang

    2017-10-13

    Parkinson's disease is the second most common neurodegenerative disease. It is characterized by aggregation of the protein α-synuclein (α-syn) in Lewy bodies, mitochondrial dysfunction, and increased oxidative stress in the substantia nigra. Oxidative stress leads to several modifications of biomolecules including dityrosine (DiY) crosslinking in proteins, which has recently been detected in α-syn in Lewy bodies from Parkinson's disease patients. Here we report that α-syn is highly susceptible to ultraviolet-induced DiY formation. We investigated DiY formation of α-syn and nine tyrosine-to-alanine mutants and monitored its effect on α-syn fibril formation in vitro. Ultraviolet irradiation of intrinsically disordered α-syn generates DiY-modified monomers and dimers, which inhibit fibril formation of unmodified α-syn by interfering with fibril elongation. The inhibition depends on both the DiY group and its integration into α-syn. When preformed α-syn fibrils are crosslinked by DiY formation, they gain increased resistance to denaturation. DiY-stabilized α-syn fibrils retain their high seeding efficiency even after being exposed to denaturant concentrations that completely depolymerize non-crosslinked seeds. Oxidative stress-associated DiY crosslinking of α-syn therefore entails two opposing effects: (i) inhibition of aggregation by DiY-modified monomers and dimers, and (ii) stabilization of fibrillar aggregates against potential degradation mechanisms, which can lead to promotion of aggregation, especially in the presence of secondary nucleation. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  10. CVD and Oxidative Stress

    PubMed Central

    Cervantes Gracia, Karla; Llanas-Cornejo, Daniel; Husi, Holger

    2017-01-01

    Nowadays, it is known that oxidative stress plays at least two roles within the cell, the generation of cellular damage and the involvement in several signaling pathways in its balanced normal state. So far, a substantial amount of time and effort has been expended in the search for a clear link between cardiovascular disease (CVD) and the effects of oxidative stress. Here, we present an overview of the different sources and types of reactive oxygen species in CVD, highlight the relationship between CVD and oxidative stress and discuss the most prominent molecules that play an important role in CVD pathophysiology. Details are given regarding common pharmacological treatments used for cardiovascular distress and how some of them are acting upon ROS-related pathways and molecules. Novel therapies, recently proposed ROS biomarkers, as well as future challenges in the field are addressed. It is apparent that the search for a better understanding of how ROS are contributing to the pathophysiology of CVD is far from over, and new approaches and more suitable biomarkers are needed for the latter to be accomplished. PMID:28230726

  11. Space flight and oxidative stress

    NASA Technical Reports Server (NTRS)

    Stein, T. P.

    2002-01-01

    Space flight is associated with an increase in oxidative stress after return to 1g. The effect is more pronounced after long-duration space flight. The effects lasts for several weeks after landing. In humans there is increased lipid peroxidation in erythrocyte membranes, reduction in some blood antioxidants, and increased urinary excretion of 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine. Isoprostane 8-iso-prostaglandin F(2alpha) and 8-oxo-7,8 dihydro-2 deoxyguanosine are markers for oxidative damage to lipids and DNA, respectively. The changes have been attributed to a combination of the energy deficiency that occurs during flight and substrate competition for amino acids occurring between repleting muscle and other tissues during the recovery phase. The observations in humans have been complemented by rodent studies. Most rodent studies showed increased production of lipid peroxidation products postflight and decreased antioxidant enzyme activity postflight. The rodent observations were attributed to the stress associated with reentry into Earth's gravity. Decreasing the imbalance between the production of endogenous oxidant defenses and oxidant production by increasing the supply of dietary antioxidants may lessen the severity of the postflight increase in oxidative stress.

  12. Effects of oxidative modification on thermal aggregation and gel properties of soy protein by malondialdehyde.

    PubMed

    Wu, Wei; Hua, Yufei; Lin, Qinlu

    2014-03-01

    Malondialdehyde (MDA) was selected as a representative of lipid peroxidation products to investigate the effects of oxidative modification on thermal aggregation and gel properties of soy protein by lipid peroxidation products. Incubation of soy protein with increasing concentration of MDA resulted in gradual decrease of particle size and content of thermal aggregates during heat denaturation. Oxidative modification by MDA resulted in a decrease in water holding capacity, gel hardness, and gel strength of soy protein gel. An increase in coarseness and interstice of MDA modified protein gel network was accompanied by uneven distribution of interstice as MDA concentration increased. The results showed that degree of thermal aggregation of MDA-modified soy protein gradually decreased as MDA concentration increased, which contributed to a decrease in water holding capacity, gel hardness, and gel strength of MDA-modified soy protein gel.

  13. Free radicals, reactive oxygen species, oxidative stress and its classification.

    PubMed

    Lushchak, Volodymyr I

    2014-12-05

    Reactive oxygen species (ROS) initially considered as only damaging agents in living organisms further were found to play positive roles also. This paper describes ROS homeostasis, principles of their investigation and technical approaches to investigate ROS-related processes. Especial attention is paid to complications related to experimental documentation of these processes, their diversity, spatiotemporal distribution, relationships with physiological state of the organisms. Imbalance between ROS generation and elimination in favor of the first with certain consequences for cell physiology has been called "oxidative stress". Although almost 30years passed since the first definition of oxidative stress was introduced by Helmut Sies, to date we have no accepted classification of oxidative stress. In order to fill up this gape here classification of oxidative stress based on its intensity is proposed. Due to that oxidative stress may be classified as basal oxidative stress (BOS), low intensity oxidative stress (LOS), intermediate intensity oxidative stress (IOS), and high intensity oxidative stress (HOS). Another classification of potential interest may differentiate three categories such as mild oxidative stress (MOS), temperate oxidative stress (TOS), and finally severe (strong) oxidative stress (SOS). Perspective directions of investigations in the field include development of sophisticated classification of oxidative stresses, accurate identification of cellular ROS targets and their arranged responses to ROS influence, real in situ functions and operation of so-called "antioxidants", intracellular spatiotemporal distribution and effects of ROS, deciphering of molecular mechanisms responsible for cellular response to ROS attacks, and ROS involvement in realization of normal cellular functions in cellular homeostasis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Oxidative stress and psychological functioning among medical students

    PubMed Central

    Srivastava, Rani; Batra, Jyoti

    2014-01-01

    Background: Oxidative stress has gained attention recently in behavioral medicine and has been reported to be associated with various psychological disturbances and their prognoses. Objectives: Study aims to evaluate the oxidative stress (malonylaldehyde (MDA) levels) and its relation with psychological factors (dimensions of personality, levels of anxiety, stress, and depression) among medical/paramedical students of 1st and 3rd year). Materials and Methods: A total of 150 students; 75 from 1st year (2010–2011) and75 from 3rd year (2009–2010); of medical and paramedical background were assessed on level of MDA (oxidative stress) and personality variables, that is, level of anxiety, stress, and depression. These psychological variables were correlated with the level of their oxidative stress. Results: Findings revealed that both groups are influenced by oxidative stress and their psychological variables are also compatible in order to confirm their vulnerabilities to stress. Conclusions: Stress in 3rd year students was significantly higher and it was noted that it adversely affects the psychological parameters. Hence, special attention on mental health aspect in these students may be given. PMID:25788802

  15. Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease

    PubMed Central

    Sung, Chih-Chien; Hsu, Yu-Chuan; Lin, Yuh-Feng

    2013-01-01

    Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies. PMID:24058721

  16. Reduced resistance to oxidative stress during reproduction as a cost of early-life stress.

    PubMed

    Zimmer, Cédric; Spencer, Karen A

    2015-05-01

    Stress exposure during early-life development can have long-term consequences for a variety of biological functions including oxidative stress. The link between early-life stress and oxidative balance is beginning to be explored and previous studies have focused on this link in adult non-breeding or immature individuals. However, as oxidative stress is considered as the main physiological mechanism underlying the trade-off between self-maintenance and investment in reproduction, it is necessary to look at the consequences of early-life stress on oxidative status during reproduction. Here, we investigated the effects of exposure to pre- and/or post-natal stress on oxidative balance during reproduction under benign or stressful environmental conditions in an avian model species, the Japanese quail. We determined total antioxidant status (TAS), total oxidant status (TOS) and resistance to a free-radical attack in individual exposed to pre-natal stress, post-natal stress or both and in control individuals exposed to none of the stressors. TAS levels decreased over time in all females that reproduced under stressful conditions. TOS decreased between the beginning and the end of reproductive period in pre-natal control females. In all females, resistance to a free-radical attack decreased over the reproductive event but this decrease was more pronounced in females from a pre-natal stress development. Our results suggest that pre-natal stress may be associated with a higher cost of reproduction in terms of oxidative stress. These results also confirm that early-life stress can be associated with both benefits and costs depending of the life-history stage or environmental context. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Measurement of exercise-induced oxidative stress in lymphocytes.

    PubMed

    Turner, James E; Bosch, Jos A; Aldred, Sarah

    2011-10-01

    Vigorous exercise is associated with oxidative stress, a state that involves modifications to bodily molecules due to release of pro-oxidant species. Assessment of such modifications provides non-specific measures of oxidative stress in human tissues and blood, including circulating lymphocytes. Lymphocytes are a very heterogeneous group of white blood cells, consisting of subtypes that have different functions in immunity. Importantly, exercise drastically changes the lymphocyte composition in blood by increasing the numbers of some subsets, while leaving other cells unaffected. This fact may imply that observed changes in oxidative stress markers are confounded by changes in lymphocyte composition. For example, lymphocyte subsets may differ in exposure to oxidative stress because of subset differences in cell division and the acquisition of cytotoxic effector functions. The aim of the present review is to raise awareness of interpretational issues related to the assessment of oxidative stress in lymphocytes with exercise and to address the relevance of lymphocyte subset phenotyping in these contexts.

  18. Protective effects of decursin and decursinol angelate against amyloid β-protein-induced oxidative stress in the PC12 cell line: the role of Nrf2 and antioxidant enzymes.

    PubMed

    Li, Li; Li, Wei; Jung, Sang-Won; Lee, Yong-Woo; Kim, Yong-Ho

    2011-01-01

    The protective effects of decursin (D) and decursinol angelate (DA) purified from Angelica gigas Nakai on amyloid β-protein (Aβ)-induced neurotoxicity and the underlying mechanisms were investigated. Aβ plays a major role in the pathogenesis of Alzheimer's disease (AD) by eliciting oxidative stress. It significantly increased cytotoxicity and lipid peroxidation, but decreased glutathione contents and antioxidant enzyme activities. All of these results were markedly reversed by pretreatment with D or DA. Nuclear transcription factor Nrf2, which regulates the expression of antioxidant enzymes, was significantly increased by D or DA pretreatment. Furthermore, D and DA suppressed Aβ aggregation. These results suggest that D and DA increase cellular resistance to Aβ-induced oxidative injury in the rat pheochromocytoma (PC12) cells, presumably through not only the induction of Nrf2 and related antioxidant enzymes, but also the anti-aggregation of Aβ. Thus D and DA have therapeutic potential in treating AD and other oxidative stress-related diseases.

  19. Genetics of Oxidative Stress in Obesity

    PubMed Central

    Rupérez, Azahara I.; Gil, Angel; Aguilera, Concepción M.

    2014-01-01

    Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs) in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications. PMID:24562334

  20. Genetics of oxidative stress in obesity.

    PubMed

    Rupérez, Azahara I; Gil, Angel; Aguilera, Concepción M

    2014-02-20

    Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs) in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.

  1. Mechanism of Oxidative Stress in Neurodegeneration

    PubMed Central

    Gandhi, Sonia; Abramov, Andrey Y.

    2012-01-01

    Biological tissues require oxygen to meet their energetic demands. However, the consumption of oxygen also results in the generation of free radicals that may have damaging effects on cells. The brain is particularly vulnerable to the effects of reactive oxygen species due to its high demand for oxygen, and its abundance of highly peroxidisable substrates. Oxidative stress is caused by an imbalance in the redox state of the cell, either by overproduction of reactive oxygen species, or by dysfunction of the antioxidant systems. Oxidative stress has been detected in a range of neurodegenerative disease, and emerging evidence from in vitro and in vivo disease models suggests that oxidative stress may play a role in disease pathogenesis. However, the promise of antioxidants as novel therapies for neurodegenerative diseases has not been borne out in clinical studies. In this review, we critically assess the hypothesis that oxidative stress is a crucial player in common neurodegenerative disease and discuss the source of free radicals in such diseases. Furthermore, we examine the issues surrounding the failure to translate this hypothesis into an effective clinical treatment. PMID:22685618

  2. Plant-Adapted Escherichia coli Show Increased Lettuce Colonizing Ability, Resistance to Oxidative Stress and Chemotactic Response

    PubMed Central

    Dublan, Maria de los Angeles; Ortiz-Marquez, Juan Cesar Federico; Lett, Lina; Curatti, Leonardo

    2014-01-01

    Background Escherichia coli is a widespread gut commensal and often a versatile pathogen of public health concern. E. coli are also frequently found in different environments and/or alternative secondary hosts, such as plant tissues. The lifestyle of E. coli in plants is poorly understood and has potential implications for food safety. Methods/Principal Findings This work shows that a human commensal strain of E. coli K12 readily colonizes lettuce seedlings and produces large microcolony-like cell aggregates in leaves, especially in young leaves, in proximity to the vascular tissue. Our observations strongly suggest that those cell aggregates arise from multiplication of single bacterial cells that reach those spots. We showed that E. coli isolated from colonized leaves progressively colonize lettuce seedlings to higher titers, suggesting a fast adaptation process. E. coli cells isolated from leaves presented a dramatic rise in tolerance to oxidative stress and became more chemotactic responsive towards lettuce leaf extracts. Mutant strains impaired in their chemotactic response were less efficient lettuce colonizers than the chemotactic isogenic strain. However, acclimation to oxidative stress and/or minimal medium alone failed to prime E. coli cells for enhanced lettuce colonization efficiency. Conclusion/Significance These findings help to understand the physiological adaptation during the alternative lifestyle of E. coli in/on plant tissues. PMID:25313845

  3. Dietary Modulation of Oxidative Stress in Alzheimer's Disease.

    PubMed

    Thapa, Arjun; Carroll, Nick J

    2017-07-21

    Cells generate unpaired electrons, typically via oxygen- or nitrogen-based by-products during normal cellular respiration and under stressed situations. These pro-oxidant molecules are highly unstable and may oxidize surrounding cellular macromolecules. Under normal conditions, the reactive oxygen or nitrogen species can be beneficial to cell survival and function by destroying and degrading pathogens or antigens. However, excessive generation and accumulation of the reactive pro-oxidant species over time can damage proteins, lipids, carbohydrates, and nucleic acids. Over time, this oxidative stress can contribute to a range of aging-related degenerative diseases such as cancer, diabetes, macular degeneration, and Alzheimer's, and Parkinson's diseases. It is well accepted that natural compounds, including vitamins A, C, and E, β-carotene, and minerals found in fruits and vegetables are powerful anti-oxidants that offer health benefits against several different oxidative stress induced degenerative diseases, including Alzheimer's disease (AD). There is increasing interest in developing anti-oxidative therapeutics to prevent AD. There are contradictory and inconsistent reports on the possible benefits of anti-oxidative supplements; however, fruits and vegetables enriched with multiple anti-oxidants (e.g., flavonoids and polyphenols) and minerals may be highly effective in attenuating the harmful effects of oxidative stress. As the physiological activation of either protective or destructive pro-oxidant behavior remains relatively unclear, it is not straightforward to relate the efficacy of dietary anti-oxidants in disease prevention. Here, we review oxidative stress mediated toxicity associated with AD and highlight the modulatory roles of natural dietary anti-oxidants in preventing AD.

  4. Biomarkers for oxidative stress: clinical application in pediatric medicine.

    PubMed

    Tsukahara, Hirokazu

    2007-01-01

    Loads of reactive oxygen species (ROS), including superoxide anion and nitric oxide, that overburden antioxidant systems induce oxidative stress in the body. Major cellular targets of ROS are membrane lipids, proteins, nucleic acids, and carbohydrates. Circumstantial evidence suggests that ROS play a crucial role in the initiation and progression of various diseases in children and adolescents. The involvement of ROS and oxidative stress in pediatric diseases is an important concern, but oxidative stress status in young subjects and appropriate methods for its measurement remain to be defined. Recently, specific biomarkers for oxidative damage and antioxidant defense have been introduced into the field of pediatric medicine. This review is intended to provide an overview of clinical applications of oxidative stress biomarkers in the field of pediatric medicine. First, this review presents the biochemistry and pathophysiology of ROS and antioxidant defense systems. Second, it presents a list of clinically applicable biomarkers, along with pediatric diseases in which enhanced oxidative stress might be involved. The discussion emphasizes that several reliable biomarkers are easily measurable using enzyme-linked immunosorbent assay. Third, this review presents age-related reference normal ranges of oxidative stress biomarkers, including urinary acrolein-lysine, 8-hydroxy-2'-deoxyguanosine, nitrite/nitrate, and pentosidine, and the changes of the parameters in several clinical conditions, including atopic dermatitis and diabetes mellitus. New and interesting data on oxidative stress and antioxidant defenses in neonatal biology are also presented. Fourth, this review discusses the ever-accumulating body of data linking oxidative stress to disturbances of the nitric oxide system and vascular endothelial activation/dysfunction. Finally, this review describes the reported clinical trials that have evaluated the efficacy of antioxidants for oxidative-stress related diseases

  5. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    PubMed

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention.

  6. The glutathione mimic ebselen inhibits oxidative stress but not endoplasmic reticulum stress in endothelial cells.

    PubMed

    Ahwach, Salma Makhoul; Thomas, Melanie; Onstead-Haas, Luisa; Mooradian, Arshag D; Haas, Michael J

    2015-08-01

    Reactive oxygen species are associated with cardiovascular disease, diabetes, and atherosclerosis, yet the use of antioxidants in clinical trials has been ineffective at improving outcomes. In endothelial cells, high-dextrose-induced oxidative stress and endoplasmic reticulum stress promote endothelial dysfunction leading to the recruitment and activation of peripheral blood lymphocytes and the breakdown of barrier function. Ebselen, a glutathione peroxidase 1 (GPX1) mimic, has been shown to improve β-cell function in diabetes and prevent atherosclerosis. To determine if ebselen inhibits both oxidative stress and endoplasmic reticulum (ER) stress in endothelial cells, we examined its effects in human umbilical vein endothelial cells (HUVEC) and human coronary artery endothelial cells (HCAEC) with and without high-dextrose. Oxidative stress and ER stress were measured by 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride chemiluminescence and ER stress alkaline phosphatase assays, respectively. GPX1 over-expression and knockdown were performed by transfecting cells with a GPX1 expression construct or a GPX1-specific siRNA, respectively. Ebselen inhibited dextrose-induced oxidative stress but not ER stress in both HUVEC and HCAEC. Ebselen also had no effect on tunicamycin-induced ER stress in HCAEC. Furthermore, augmentation of GPX1 activity directly by sodium selenite supplementation or transfection of a GPX1 expression plasmid decreased dextrose-induced oxidative stress but not ER stress, while GPX1 knockout enhanced oxidative stress but had no effect on ER stress. These results suggest that ebselen targets only oxidative stress but not ER stress. Copyright © 2015. Published by Elsevier Inc.

  7. Association between prenatal psychological stress and oxidative stress during pregnancy.

    PubMed

    Eick, Stephanie M; Barrett, Emily S; van 't Erve, Thomas J; Nguyen, Ruby H N; Bush, Nicole R; Milne, Ginger; Swan, Shanna H; Ferguson, Kelly K

    2018-03-30

    Prenatal psychological stress during pregnancy has been associated with adverse reproductive outcomes. A growing animal literature supports an association between psychological stress and oxidative stress. We assessed this relationship in pregnant women, hypothesising that psychological stress is associated with higher concentrations of oxidative stress biomarkers during pregnancy. Psychosocial status and stressful life events (SLE) were self-reported. 8-iso-prostaglandin F 2α (8-iso-PGF 2α ) was measured as a biomarker of oxidative stress in urine samples at median 32 weeks' gestation. We examined SLEs individually (ever vs never) and in summary (any vs none) and psychosocial status as measured by individual subscales and in summary (poor vs good). Linear models estimated associations between these parameters and urinary 8-iso-PGF 2α concentrations after adjusting for covariates. The geometric mean of 8-iso-PGF 2α was significantly higher among pregnant women who were non-White, smokers, had less than a college education, higher pre-pregnancy BMI and were unmarried. Having ever had a death in the family (n = 39) during pregnancy was associated with a 22.9% increase in 8-iso-PGF 2α in unadjusted models (95% confidence interval [CI] 1.50, 48.8). Poor psychosocial status was associated with a 13.1% (95% CI 2.43, 25.0) greater mean 8-iso-PGF 2α in unadjusted analyses. Associations were attenuated, but remained suggestive, after covariate adjustment. These data suggest that 8-iso-PGF 2α is elevated in pregnant women with who are at a sociodemographic disadvantage and who have higher psychological stress in pregnancy. Previous studies have observed that 8-iso-PGF 2α levels are associated with adverse birth outcomes, oxidative stress could be a mediator in these relationships. © 2018 John Wiley & Sons Ltd.

  8. Oxidative shielding or oxidative stress?

    PubMed

    Naviaux, Robert K

    2012-09-01

    In this review I report evidence that the mainstream field of oxidative damage biology has been running fast in the wrong direction for more than 50 years. Reactive oxygen species (ROS) and chronic oxidative changes in membrane lipids and proteins found in many chronic diseases are not the result of accidental damage. Instead, these changes are the result of a highly evolved, stereotyped, and protein-catalyzed "oxidative shielding" response that all eukaryotes adopt when placed in a chemically or microbially hostile environment. The machinery of oxidative shielding evolved from pathways of innate immunity designed to protect the cell from attack and limit the spread of infection. Both oxidative and reductive stress trigger oxidative shielding. In the cases in which it has been studied explicitly, functional and metabolic defects occur in the cell before the increase in ROS and oxidative changes. ROS are the response to disease, not the cause. Therefore, it is not the oxidative changes that should be targeted for therapy, but rather the metabolic conditions that create them. This fresh perspective is relevant to diseases that range from autism, type 1 diabetes, type 2 diabetes, cancer, heart disease, schizophrenia, Parkinson's disease, and Alzheimer disease. Research efforts need to be redirected. Oxidative shielding is protective and is a misguided target for therapy. Identification of the causal chemistry and environmental factors that trigger innate immunity and metabolic memory that initiate and sustain oxidative shielding is paramount for human health.

  9. Tolerance to oxidative stress is required for maximal xylem colonization by the xylem-limited bacterial phytopathogen, Xylella fastidiosa.

    PubMed

    Wang, Peng; Lee, Yunho; Igo, Michele M; Roper, M Caroline

    2017-09-01

    Bacterial plant pathogens often encounter reactive oxygen species (ROS) during host invasion. In foliar bacterial pathogens, multiple regulatory proteins are involved in the sensing of oxidative stress and the activation of the expression of antioxidant genes. However, it is unclear whether xylem-limited bacteria, such as Xylella fastidiosa, experience oxidative stress during the colonization of plants. Examination of the X. fastidiosa genome uncovered only one homologue of oxidative stress regulatory proteins, OxyR. Here, a knockout mutation in the X. fastidiosa oxyR gene was constructed; the resulting strain was significantly more sensitive to hydrogen peroxide (H 2 O 2 ) relative to the wild-type. In addition, during early stages of grapevine infection, the survival rate was 1000-fold lower for the oxyR mutant than for the wild-type. This supports the hypothesis that grapevine xylem represents an oxidative environment and that X. fastidiosa must overcome this challenge to achieve maximal xylem colonization. Finally, the oxyR mutant exhibited reduced surface attachment and cell-cell aggregation and was defective in biofilm maturation, suggesting that ROS could be a potential environmental cue stimulating biofilm development during the early stages of host colonization. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  10. Effect of curcumin on amyloid-like aggregates generated from methionine-oxidized apolipoprotein A-I

    DOE PAGES

    Krishnamoorthy, Aparna; Tavoosi, Narjes; Chan, Gary K. L.; ...

    2018-01-10

    Curcumin is a polyphenolic phytonutrient that has antineurodegenerative properties. Here, we investigated the anti-amyloidogenic properties of curcumin. Following incubation with curcumin, intrinsic tryptophan fluorescence emission of apolipoprotein (apo) A-I was strongly quenched. At the same time, curcumin fluorescence emission was enhanced. The fluorescence emission spectra of curcumin in the presence of amyloid-like aggregates formed by methionine-oxidized (ox) apoA-I varied, depending on whether curcumin was added before, or after, aggregate formation. The impact of curcumin on the structure of the aggregating material was revealed by the lower amount of β-structure in ox-apoA-I amyloid-like aggregates formed in the presence of curcumin, comparedmore » to aggregates formed without curcumin. However, the kinetics of ox-apoA-I amyloid-like aggregate formation was not altered by the presence of curcumin. Moreover, electron microscopy analysis detected no discernable differences in amyloid morphology when ox-apoA-I amyloid-like aggregates were formed in the presence or absence of curcumin. In conclusion, curcumin interacts with apoA-I and alters the structure of ox-apoA-I amyloid-like aggregates yet does not diminish the propensity of ox-apoA-I to form aggregates.« less

  11. Effect of curcumin on amyloid-like aggregates generated from methionine-oxidized apolipoprotein A-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamoorthy, Aparna; Tavoosi, Narjes; Chan, Gary K. L.

    Curcumin is a polyphenolic phytonutrient that has antineurodegenerative properties. Here, we investigated the anti-amyloidogenic properties of curcumin. Following incubation with curcumin, intrinsic tryptophan fluorescence emission of apolipoprotein (apo) A-I was strongly quenched. At the same time, curcumin fluorescence emission was enhanced. The fluorescence emission spectra of curcumin in the presence of amyloid-like aggregates formed by methionine-oxidized (ox) apoA-I varied, depending on whether curcumin was added before, or after, aggregate formation. The impact of curcumin on the structure of the aggregating material was revealed by the lower amount of β-structure in ox-apoA-I amyloid-like aggregates formed in the presence of curcumin, comparedmore » to aggregates formed without curcumin. However, the kinetics of ox-apoA-I amyloid-like aggregate formation was not altered by the presence of curcumin. Moreover, electron microscopy analysis detected no discernable differences in amyloid morphology when ox-apoA-I amyloid-like aggregates were formed in the presence or absence of curcumin. In conclusion, curcumin interacts with apoA-I and alters the structure of ox-apoA-I amyloid-like aggregates yet does not diminish the propensity of ox-apoA-I to form aggregates.« less

  12. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells

    PubMed Central

    Johansson, Ida; Monsen, Vivi Talstad; Pettersen, Kristine; Mildenberger, Jennifer; Misund, Kristine; Kaarniranta, Kai; Schønberg, Svanhild; Bjørkøy, Geir

    2015-01-01

    Accumulation and aggregation of misfolded proteins is a hallmark of several diseases collectively known as proteinopathies. Autophagy has a cytoprotective role in diseases associated with protein aggregates. Age-related macular degeneration (AMD) is the most common neurodegenerative eye disease that evokes blindness in elderly. AMD is characterized by degeneration of retinal pigment epithelial (RPE) cells and leads to loss of photoreceptor cells and central vision. The initial phase associates with accumulation of intracellular lipofuscin and extracellular deposits called drusen. Epidemiological studies have suggested an inverse correlation between dietary intake of marine n-3 polyunsaturated fatty acids (PUFAs) and the risk of developing neurodegenerative diseases, including AMD. However, the disease-preventive mechanism(s) mobilized by n-3 PUFAs is not completely understood. In human retinal pigment epithelial cells we find that physiologically relevant doses of the n-3 PUFA docosahexaenoic acid (DHA) induce a transient increase in cellular reactive oxygen species (ROS) levels that activates the oxidative stress response regulator NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2). Simultaneously, there is a transient increase in intracellular protein aggregates containing SQSTM1/p62 (sequestosome 1) and an increase in autophagy. Pretreatment with DHA rescues the cells from cell cycle arrest induced by misfolded proteins or oxidative stress. Cells with a downregulated oxidative stress response, or autophagy, respond with reduced cell growth and survival after DHA supplementation. These results suggest that DHA both induces endogenous antioxidants and mobilizes selective autophagy of misfolded proteins. Both mechanisms could be relevant to reduce the risk of developing aggregate-associate diseases such as AMD. PMID:26237736

  13. Characterization of reaction intermediate aggregates in aniline oxidative polymerization at low proton concentration.

    PubMed

    Ding, Zhongfen; Sanchez, Timothy; Labouriau, Andrea; Iyer, Srinivas; Larson, Toti; Currier, Robert; Zhao, Yusheng; Yang, Dali

    2010-08-19

    Aggregates of reaction intermediates form during the early stages of aniline oxidative polymerization whenever the initial mole ratio of proton concentration to aniline monomer concentration is low ([H(+)](0)/[An](0) aggregates. The intermediate aggregates show a UV-Vis absorption peak at around 410 nm when dispersed in aqueous solution, whereas the peak is centered on 370 nm when dissolved in an organic solvent such as N-methylpyrrolidone. The electronic band gap decreases when the intermediates aggregate to form a solid, and thus, the absorption peak is red-shifted. Gel permeation chromatography (GPC) shows the aggregates contain a major low molecular weight peak with a long tail. The oligoanilines with low molecular weights consistently show a UV-Vis absorption peak at around 370 nm. Mass spectrometry confirms that the intermediate aggregates contain mainly a component with mass number 363 (M + H(+)), likely a tetramer. UV-Vis, GPC, mass spectrometry, NMR, FTIR, and XRD characterization results are presented and chemical structures for the tetramer are proposed. The major components of the intermediate aggregates are likely highly symmetric phenazine- and dihydrophenazine-containing structures. These particular organic compounds have not been identified before as intermediates. The aggregation and precipitation of the tetramers apparently stabilizes these intermediates. The aggregates are highly crystalline, as evidenced by powder X-ray diffraction. A new reaction mechanism for the formation of these intermediates is proposed.

  14. Oxidative stress signaling to chromatin in health and disease

    PubMed Central

    Kreuz, Sarah; Fischle, Wolfgang

    2016-01-01

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation. PMID:27319358

  15. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Nexus Implicated in Bowel Disease Pathophysiology

    PubMed Central

    Chong, Wai Chin; Shastri, Madhur D.; Eri, Rajaraman

    2017-01-01

    The endoplasmic reticulum (ER) is a complex protein folding and trafficking organelle. Alteration and discrepancy in the endoplasmic reticulum environment can affect the protein folding process and hence, can result in the production of misfolded proteins. The accumulation of misfolded proteins causes cellular damage and elicits endoplasmic reticulum stress. Under such stress conditions, cells exhibit reduced functional synthesis, and will undergo apoptosis if the stress is prolonged. To resolve the ER stress, cells trigger an intrinsic mechanism called an unfolded protein response (UPR). UPR is an adaptive signaling process that triggers multiple pathways through the endoplasmic reticulum transmembrane transducers, to reduce and remove misfolded proteins and improve the protein folding mechanism, in order to improve and maintain endoplasmic reticulum homeostasis. An increasing number of studies support the view that oxidative stress has a strong connection with ER stress. During the protein folding process, reactive oxygen species are produced as by-products, leading to impaired reduction-oxidation (redox) balance conferring oxidative stress. As the protein folding process is dependent on redox homeostasis, the oxidative stress can disrupt the protein folding mechanism and enhance the production of misfolded proteins, causing further ER stress. It is proposed that endoplasmic reticulum stress and oxidative stress together play significant roles in the pathophysiology of bowel diseases. PMID:28379196

  16. Endoplasmic Reticulum Stress and Oxidative Stress: A Vicious Nexus Implicated in Bowel Disease Pathophysiology.

    PubMed

    Chong, Wai Chin; Shastri, Madhur D; Eri, Rajaraman

    2017-04-05

    The endoplasmic reticulum (ER) is a complex protein folding and trafficking organelle. Alteration and discrepancy in the endoplasmic reticulum environment can affect the protein folding process and hence, can result in the production of misfolded proteins. The accumulation of misfolded proteins causes cellular damage and elicits endoplasmic reticulum stress. Under such stress conditions, cells exhibit reduced functional synthesis, and will undergo apoptosis if the stress is prolonged. To resolve the ER stress, cells trigger an intrinsic mechanism called an unfolded protein response (UPR). UPR is an adaptive signaling process that triggers multiple pathways through the endoplasmic reticulum transmembrane transducers, to reduce and remove misfolded proteins and improve the protein folding mechanism, in order to improve and maintain endoplasmic reticulum homeostasis. An increasing number of studies support the view that oxidative stress has a strong connection with ER stress. During the protein folding process, reactive oxygen species are produced as by-products, leading to impaired reduction-oxidation (redox) balance conferring oxidative stress. As the protein folding process is dependent on redox homeostasis, the oxidative stress can disrupt the protein folding mechanism and enhance the production of misfolded proteins, causing further ER stress. It is proposed that endoplasmic reticulum stress and oxidative stress together play significant roles in the pathophysiology of bowel diseases.

  17. Relationship between hyposalivation and oxidative stress in aging mice.

    PubMed

    Yamauchi, Yoshitaka; Matsuno, Tomonori; Omata, Kazuhiko; Satoh, Tazuko

    2017-07-01

    The increase in oxidative stress that accompanies aging has been implicated in the abnormal advance of aging and in the onset of various systemic diseases. However, the details of what effects the increase in oxidative stress that accompanies aging has on saliva secretion are not known. In this study, naturally aging mice were used to examine the stimulated whole saliva flow rate, saliva and serum oxidative stress, antioxidant level, submandibular gland H-E staining, and immunofluorescence staining to investigate the effect of aging on the volume of saliva secretion and the relationship with oxidative stress, as well as the effect of aging on the structure of salivary gland tissue. The stimulated whole saliva flow rate decreased significantly with age. Also, oxidative stress increased significantly with age. Antioxidant levels, however, decreased significantly with age. Structural changes of the submandibular gland accompanying aging included atrophy of parenchyma cells and fatty degeneration and fibrosis of stroma, and the submandibular gland weight ratio decreased. These results suggest that oxidative stress increases with age, not just systemically but also locally in the submandibular gland, and that oxidative stress causes changes in the structure of the salivary gland and is involved in hyposalivation.

  18. Endoplasmic Reticulum Stress Induces Myostatin High Molecular Weight Aggregates and Impairs Mature Myostatin Secretion.

    PubMed

    Sachdev, Rishibha; Kappes-Horn, Karin; Paulsen, Lydia; Duernberger, Yvonne; Pleschka, Catharina; Denner, Philip; Kundu, Bishwajit; Reimann, Jens; Vorberg, Ina

    2018-03-15

    Sporadic inclusion body myositis (sIBM) is the most prevalent acquired muscle disorder in the elderly with no defined etiology or effective therapy. Endoplasmic reticulum stress and deposition of myostatin, a secreted negative regulator of muscle growth, have been implicated in disease pathology. The myostatin signaling pathway has emerged as a major target for symptomatic treatment of muscle atrophy. Here, we systematically analyzed the maturation and secretion of myostatin precursor MstnPP and its metabolites in a human muscle cell line. We find that increased MsntPP protein levels induce ER stress. MstnPP metabolites were predominantly retained within the endoplasmic reticulum (ER), also evident in sIBM histology. MstnPP cleavage products formed insoluble high molecular weight aggregates, a process that was aggravated by experimental ER stress. Importantly, ER stress also impaired secretion of mature myostatin. Reduced secretion and aggregation of MstnPP metabolites were not simply caused by overexpression, as both events were also observed in wildtype cells under ER stress. It is tempting to speculate that reduced circulating myostatin growth factor could be one explanation for the poor clinical efficacy of drugs targeting the myostatin pathway in sIBM.

  19. Local oxidative stress in interdigital tinea pedis.

    PubMed

    Ozturk, Perihan; Arican, Ozer; Kurutas, Ergul B; Karakas, Tugba; Gungor, Meltem

    2013-02-01

    Several skin diseases are believed to be associated with oxidative stress. Tinea pedis is an infection of the feet caused by fungi. The infectious diseases caused by dermatophytes are mainly related to the enzymes produced by these fungi. The cutaneous oxidative stress status of tinea pedis has not been demonstrated in the published work up to now. The aim of the present study was to evaluate the role of oxidative stress in affected skin areas in a group of patients with interdigital tinea pedis. Thirty-one consecutive patients with a diagnosis of unilateral interdigital tinea pedis were enrolled. The samples were obtained by scraping the skin surface. Oxidative stress biomarkers such as superoxide dismutase, catalase and malondialdehyde levels were measured spectrophotometrically. The activities of superoxide dismutase and catalase and the levels of malondialdehyde were significantly higher on the lesional area than the non-lesional area (P < 0.001). According to sex and fungal subtypes, there was no significant difference in the levels of oxidative stress biomarkers in patients with tinea pedis (P > 0.05). Our results suggested that antioxidant defense of lesional skin surface was higher compared to non-lesional skin. This is possibly due to a compensatory response to various fungal infections and thereby protects the cells against oxidative damage. © 2012 Japanese Dermatological Association.

  20. Oxidative Stress in Schizophrenia: An Integrated Approach

    PubMed Central

    Bitanihirwe, Byron K.Y.; Woo, Tsung-Ung W.

    2010-01-01

    Oxidative stress has been suggested to contribute to the pathophysiology of schizophrenia. In particular, oxidative damage to lipids, proteins, and DNA as observed in schizophrenia is known to impair cell viability and function, which may subsequently account for the deteriorating course of the illness. Currently available evidence points towards an alteration in the activities of enzymatic and nonenzymatic antioxidant systems in schizophrenia. In fact, experimental models have demonstrated that oxidative stress induces behavioural and molecular anomalies strikingly similar to those observed in schizophrenia. These findings suggest that oxidative stress is intimately linked to a variety of pathophysiological processes, such as inflammation, oligodendrocyte abnormalities, mitochondrial dysfunction, hypoactive N-methyl-D-aspartate receptors and the impairment of fast-spiking gamma-aminobutyric acid interneurons.[bkyb1] Such self-sustaining mechanisms may progressively worsen producing the functional and structural consequences associated with schizophrenia. Recent clinical studies have shown antioxidant treatment to be effective in ameliorating schizophrenic symptoms. Hence, identifying viable therapeutic strategies to tackle oxidative stress and the resulting physiological disturbances provide an exciting opportunity for the treatment and ultimately prevention of schizophrenia. PMID:20974172

  1. Classification and Characterization of Therapeutic Antibody Aggregates

    PubMed Central

    Joubert, Marisa K.; Luo, Quanzhou; Nashed-Samuel, Yasser; Wypych, Jette; Narhi, Linda O.

    2011-01-01

    A host of diverse stress techniques was applied to a monoclonal antibody (IgG2) to yield protein particles with varying attributes and morphologies. Aggregated solutions were evaluated for percent aggregation, particle counts, size distribution, morphology, changes in secondary and tertiary structure, surface hydrophobicity, metal content, and reversibility. Chemical modifications were also identified in a separate report (Luo, Q., Joubert, M. K., Stevenson, R., Narhi, L. O., and Wypych, J. (2011) J. Biol. Chem. 286, 25134–25144). Aggregates were categorized into seven discrete classes, based on the traits described. Several additional molecules (from the IgG1 and IgG2 subtypes as well as intravenous IgG) were stressed and found to be defined with the same classification system. The mechanism of protein aggregation and the type of aggregate formed depends on the nature of the stress applied. Different IgG molecules appear to aggregate by a similar mechanism under the same applied stress. Aggregates created by harsh mechanical stress showed the largest number of subvisible particles, and the class generated by thermal stress displayed the largest number of visible particles. Most classes showed a disruption of the higher order structure, with the degree of disorder depending on the stress process. Particles in all classes (except thermal stress) were at least partially reversible upon dilution in pH 5 buffer. High copper content was detected in isolated metal-catalyzed aggregates, a stress previously shown to produce immunogenic aggregates. In conclusion, protein aggregates can be a very heterogeneous population, whose qualities are the result of the type of stress that was experienced. PMID:21454532

  2. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    PubMed Central

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  3. The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats

    PubMed Central

    2012-01-01

    Background Dietary changes are a major factor in determining cardiovascular risk. n-3 polyunsaturated fatty acids modulate the risk factors for metabolic syndrome via multiple mechanisms, including the regulation of the lipid metabolism. We therefore investigated the effect of Odontella aurita, a microalga rich in EPA, which is already used as a food supplement, on the risk factors for high-fat diet induced metabolic syndrome in rats. Methods Male Wistar rats were divided into 4 groups and were fed with a standard diet (control); with the standard diet supplemented with 3% freeze-dried O. aurita (COA); with a high-fat diet (HF); or with the high-fat diet supplemented with 3% of freeze-dried O. aurita (HFOA) for 7 weeks. In this study we evaluated the impact of these different diets on the risk factors for metabolic syndrome, such as hyperlipidemia, platelet aggregation, thromboxane B2 production, and oxidative stress. Results After 7 weeks of treatment, high fat feeding had increased final body weight, glycemia, triacylglycerol, and total cholesterol levels in plasma and liver compared to the control diet. Collagen-induced platelet aggregation and basal platelet thromboxane B2 were also higher in the high-fat fed rats than in those in the control group. In the liver, oxidative stress was greater in the HF group than in the control group. O. aurita intake in HFOA-fed rats resulted in lower glycemia and lipid levels in the plasma and liver relative than in the HF group. Thus, in the HFOA group, n-3 polyunsaturated fatty acid levels in the tissues studied (plasma, liver, and platelets) were higher than in the HF group. Platelet hyper-aggregability tended to decrease in HFOA-fed rats as basal platelet thromboxane B2 production decreased. Finally, O. aurita reduced oxidative stress in the liver, with lower malondialdehyde levels and increased glutathione peroxidase activity. Conclusions O. aurita is a marine diatom rich in EPA as well as in other bioactive molecules

  4. The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats.

    PubMed

    Haimeur, Adil; Ulmann, Lionel; Mimouni, Virginie; Guéno, Frédérique; Pineau-Vincent, Fabienne; Meskini, Nadia; Tremblin, Gérard

    2012-10-31

    Dietary changes are a major factor in determining cardiovascular risk. n-3 polyunsaturated fatty acids modulate the risk factors for metabolic syndrome via multiple mechanisms, including the regulation of the lipid metabolism. We therefore investigated the effect of Odontella aurita, a microalga rich in EPA, which is already used as a food supplement, on the risk factors for high-fat diet induced metabolic syndrome in rats. Male Wistar rats were divided into 4 groups and were fed with a standard diet (control); with the standard diet supplemented with 3% freeze-dried O. aurita (COA); with a high-fat diet (HF); or with the high-fat diet supplemented with 3% of freeze-dried O. aurita (HFOA) for 7 weeks. In this study we evaluated the impact of these different diets on the risk factors for metabolic syndrome, such as hyperlipidemia, platelet aggregation, thromboxane B2 production, and oxidative stress. After 7 weeks of treatment, high fat feeding had increased final body weight, glycemia, triacylglycerol, and total cholesterol levels in plasma and liver compared to the control diet. Collagen-induced platelet aggregation and basal platelet thromboxane B2 were also higher in the high-fat fed rats than in those in the control group. In the liver, oxidative stress was greater in the HF group than in the control group. O. aurita intake in HFOA-fed rats resulted in lower glycemia and lipid levels in the plasma and liver relative than in the HF group. Thus, in the HFOA group, n-3 polyunsaturated fatty acid levels in the tissues studied (plasma, liver, and platelets) were higher than in the HF group. Platelet hyper-aggregability tended to decrease in HFOA-fed rats as basal platelet thromboxane B2 production decreased. Finally, O. aurita reduced oxidative stress in the liver, with lower malondialdehyde levels and increased glutathione peroxidase activity. O. aurita is a marine diatom rich in EPA as well as in other bioactive molecules, such as pigments. The synergistic effect

  5. Thyroid hormone-induced oxidative stress.

    PubMed

    Venditti, P; Di Meo, S

    2006-02-01

    Hypermetabolic state in hyperthyroidism is associated with tissue oxidative injury. Available data indicate that hyperthyroid tissues exhibit an increased ROS and RNS production. The increased mitochondrial ROS generation is a side effect of the enhanced level of electron carriers, by which hyperthyroid tissues increase their metabolic capacity. Investigations of antioxidant defence system have returned controversial results. Moreover, other thyroid hormone-linked biochemical changes increase tissue susceptibility to oxidative challenge, which exacerbates the injury and dysfunction they suffer under stressful conditions. Mitochondria, as a primary target for oxidative stress, might account for hyperthyroidism linked tissue dysfunction. This is consistent with the inverse relationship found between functional recovery of ischemic hyperthyroid hearts and mitochondrial oxidative damage and respiration impairment. However, thyroid hormone-activated mitochondrial mechanisms provide protection against excessive tissue dysfunction, including increased expression of uncoupling proteins, proteolytic enzymes and transcriptional coactivator PGC-1, and stimulate opening of permeability transition pores.

  6. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress.

    PubMed

    Spencer, Jennifer; Phister, Trevor G; Smart, Katherine A; Greetham, Darren

    2014-03-17

    Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress.

  7. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress

    PubMed Central

    2014-01-01

    Background Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Results Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Conclusions Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress. PMID:24636079

  8. Hypertension and physical exercise: The role of oxidative stress.

    PubMed

    Korsager Larsen, Monica; Matchkov, Vladimir V

    2016-01-01

    Oxidative stress is associated with the pathogenesis of hypertension. Decreased bioavailability of nitric oxide (NO) is one of the mechanisms involved in the pathogenesis. It has been suggested that physical exercise could be a potential non-pharmacological strategy in treatment of hypertension because of its beneficial effects on oxidative stress and endothelial function. The aim of this review is to investigate the effect of oxidative stress in relation to hypertension and physical exercise, including the role of NO in the pathogenesis of hypertension. Endothelial dysfunction and decreased NO levels have been found to have the adverse effects in the correlation between oxidative stress and hypertension. Most of the previous studies found that aerobic exercise significantly decreased blood pressure and oxidative stress in hypertensive subjects, but the intense aerobic exercise can also injure endothelial cells. Isometric exercise decreases normally only systolic blood pressure. An alternative exercise, Tai chi significantly decreases blood pressure and oxidative stress in normotensive elderly, but the effect in hypertensive subjects has not yet been studied. Physical exercise and especially aerobic training can be suggested as an effective intervention in the prevention and treatment of hypertension and cardiovascular disease via reduction in oxidative stress. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  9. Severe Life Stress and Oxidative Stress in the Brain: From Animal Models to Human Pathology

    PubMed Central

    Jaquet, Vincent; Trabace, Luigia; Krause, Karl-Heinz

    2013-01-01

    Abstract Significance: Severe life stress (SLS), as opposed to trivial everyday stress, is defined as a serious psychosocial event with the potential of causing an impacting psychological traumatism. Recent Advances: Numerous studies have attempted to understand how the central nervous system (CNS) responds to SLS. This response includes a variety of morphological and neurochemical modifications; among them, oxidative stress is almost invariably observed. Oxidative stress is defined as disequilibrium between oxidant generation and the antioxidant response. Critical Issues: In this review, we discuss how SLS leads to oxidative stress in the CNS, and how the latter impacts pathophysiological outcomes. We also critically discuss experimental methods that measure oxidative stress in the CNS. The review covers animal models and human observations. Animal models of SLS include sleep deprivation, maternal separation, and social isolation in rodents, and the establishment of hierarchy in non-human primates. In humans, SLS, which is caused by traumatic events such as child abuse, war, and divorce, is also accompanied by oxidative stress in the CNS. Future Directions: The outcome of SLS in humans ranges from resilience, over post-traumatic stress disorder, to development of chronic mental disorders. Defining the sources of oxidative stress in SLS might in the long run provide new therapeutic avenues. Antioxid. Redox Signal. 18, 1475–1490. PMID:22746161

  10. Oxidative stress and mitochondrial dysfunction in Kindler syndrome.

    PubMed

    Zapatero-Solana, Elisabeth; García-Giménez, Jose Luis; Guerrero-Aspizua, Sara; García, Marta; Toll, Agustí; Baselga, Eulalia; Durán-Moreno, Maria; Markovic, Jelena; García-Verdugo, Jose Manuel; Conti, Claudio J; Has, Cristina; Larcher, Fernando; Pallardó, Federico V; Del Rio, Marcela

    2014-12-21

    Kindler Syndrome (KS) is an autosomal recessive skin disorder characterized by skin blistering, photosensitivity, premature aging, and propensity to skin cancer. In spite of the knowledge underlying cause of this disease involving mutations of FERMT1 (fermitin family member 1), and efforts to characterize genotype-phenotype correlations, the clinical variability of this genodermatosis is still poorly understood. In addition, several pathognomonic features of KS, not related to skin fragility such as aging, inflammation and cancer predisposition have been strongly associated with oxidative stress. Alterations of the cellular redox status have not been previously studied in KS. Here we explored the role of oxidative stress in the pathogenesis of this rare cutaneous disease. Patient-derived keratinocytes and their respective controls were cultured and classified according to their different mutations by PCR and western blot, the oxidative stress biomarkers were analyzed by spectrophotometry and qPCR and additionally redox biosensors experiments were also performed. The mitochondrial structure and functionality were analyzed by confocal microscopy and electron microscopy. Patient-derived keratinocytes showed altered levels of several oxidative stress biomarkers including MDA (malondialdehyde), GSSG/GSH ratio (oxidized and reduced glutathione) and GCL (gamma-glutamyl cysteine ligase) subunits. Electron microscopy analysis of both, KS skin biopsies and keratinocytes showed marked morphological mitochondrial abnormalities. Consistently, confocal microscopy studies of mitochondrial fluorescent probes confirmed the mitochondrial derangement. Imbalance of oxidative stress biomarkers together with abnormalities in the mitochondrial network and function are consistent with a pro-oxidant state. This is the first study to describe mitochondrial dysfunction and oxidative stress involvement in KS.

  11. Implantation of Neural Probes in the Brain Elicits Oxidative Stress

    PubMed Central

    Ereifej, Evon S.; Rial, Griffin M.; Hermann, John K.; Smith, Cara S.; Meade, Seth M.; Rayyan, Jacob M.; Chen, Keying; Feng, He; Capadona, Jeffrey R.

    2018-01-01

    Clinical implantation of intracortical microelectrodes has been hindered, at least in part, by the perpetual inflammatory response occurring after device implantation. The neuroinflammatory response observed after device implantation has been correlated to oxidative stress that occurs due to neurological injury and disease. However, there has yet to be a definitive link of oxidative stress to intracortical microelectrode implantation. Thus, the objective of this study is to give direct evidence of oxidative stress following intracortical microelectrode implantation. This study also aims to identify potential molecular targets to attenuate oxidative stress observed postimplantation. Here, we implanted adult rats with silicon non-functional microelectrode probes for 4 weeks and compared the oxidative stress response to no surgery controls through postmortem gene expression analysis and qualitative histological observation of oxidative stress markers. Gene expression analysis results at 4 weeks postimplantation indicated that EH domain-containing 2, prion protein gene (Prnp), and Stearoyl-Coenzyme A desaturase 1 (Scd1) were all significantly higher for animals implanted with intracortical microelectrode probes compared to no surgery control animals. To the contrary, NADPH oxidase activator 1 (Noxa1) relative gene expression was significantly lower for implanted animals compared to no surgery control animals. Histological observation of oxidative stress showed an increased expression of oxidized proteins, lipids, and nucleic acids concentrated around the implant site. Collectively, our results reveal there is a presence of oxidative stress following intracortical microelectrode implantation compared to no surgery controls. Further investigation targeting these specific oxidative stress linked genes could be beneficial to understanding potential mechanisms and downstream therapeutics that can be utilized to reduce oxidative stress-mediated damage following

  12. Decreasing oxidative stress and neuroinflammation with a multifunctional peptide rescues memory deficits in mice with Alzheimer disease.

    PubMed

    Zhou, Wei-wei; Lu, Shuai; Su, Ya-jing; Xue, Di; Yu, Xiao-lin; Wang, Shao-wei; Zhang, He; Xu, Peng-xin; Xie, Xi-xiu; Liu, Rui-tian

    2014-09-01

    Alzheimer disease (AD) is characterized by extracellular senile plaques, intracellular neurofibrillary tangles, and memory loss. Aggregated amyloid-β (Aβ), oxidative stress, and inflammation have pivotal roles in the pathogenesis of AD. Therefore, the inhibition of Aβ-induced neurotoxicity, oxidative stress, and inflammation is a potential therapeutic strategy for the treatment of AD. In this study, a heptapeptide, isolated from a Ph.D.-C7C library by phage display, attenuated Aβ42-induced cytotoxicity in SH-SY5Y neuroblastoma cells and reduced Aβ42-induced oxidative stress by decreasing the production of reactive oxygen species and glutathione disulfide. As a result, glutathione level increased and superoxide dismutase and glutathione peroxidase activities were enhanced in vitro and in vivo. This peptide also suppressed the inflammatory response by decreasing the release of proinflammatory cytokines, such as tumor necrosis factor α and interleukin 1β, in microglia and by reducing microgliosis and astrogliosis in AD transgenic mice. This peptide was intracerebroventricularly administered to APPswe/PS1dE9 transgenic mice. We found that this peptide significantly improved spatial memory and reduced the amyloid plaque burden and soluble and insoluble Aβ levels. Our findings suggest that this multifunctional peptide has therapeutic potential for an Aβ-targeted treatment of AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Mammalian Metallothionein-2A and Oxidative Stress

    PubMed Central

    Ling, Xue-Bin; Wei, Hong-Wei; Wang, Jun; Kong, Yue-Qiong; Wu, Yu-You; Guo, Jun-Li; Li, Tian-Fa; Li, Ji-Ke

    2016-01-01

    Mammalian metallothionein-2A (MT2A) has received considerable attention in recent years due to its crucial pathophysiological role in anti-oxidant, anti-apoptosis, detoxification and anti-inflammation. For many years, most studies evaluating the effects of MT2A have focused on reactive oxygen species (ROS), as second messengers that lead to oxidative stress injury of cells and tissues. Recent studies have highlighted that oxidative stress could activate mitogen-activated protein kinases (MAPKs), and MT2A, as a mediator of MAPKs, to regulate the pathogenesis of various diseases. However, the molecule mechanism of MT2A remains elusive. A deeper understanding of the functional, biochemical and molecular characteristics of MT2A would be identified, in order to bring new opportunities for oxidative stress therapy. PMID:27608012

  14. Oxidative stress parameters in localized scleroderma patients.

    PubMed

    Kilinc, F; Sener, S; Akbaş, A; Metin, A; Kirbaş, S; Neselioglu, S; Erel, O

    2016-11-01

    Localized scleroderma (LS) (morphea) is a chronic, inflammatory skin disease with unknown cause that progresses with sclerosis in the skin and/or subcutaneous tissues. Its pathogenesis is not completely understood. Oxidative stress is suggested to have a role in the pathogenesis of localized scleroderma. We have aimed to determine the relationship of morphea lesions with oxidative stress. The total oxidant capacity (TOC), total antioxidant capacity (TAC), paroxonase (PON) and arylesterase (ARES) activity parameters of PON 1 enzyme levels in the serum were investigated in 13 LS patients (generalized and plaque type) and 13 healthy controls. TOC values of the patient group were found higher than the TOC values of the control group (p < 0.01). ARES values of the patient group was found to be higher than the control group (p < 0.0001). OSI was significantly higher in the patient group when compared to the control (p < 0.005). Oxidative stress seems to be effective in the pathogenesis. ARES levels have increased in morphea patients regarding to the oxidative stress and its reduction. Further controlled studies are required in wider series.

  15. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Farkhondeh, Tahereh; Samini, Fariborz

    2017-03-01

    Restraint stress has been indicated to induce oxidative damage in tissues. Several investigations have reported that curcumin (CUR) may have a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CUR on restraint stress induced oxidative stress damage in the brain, liver and kidneys. For chronic restraint stress, rats were kept in the restrainers for 1h every day, for 21 consecutive days. The animals received systemic administrations of CUR daily for 21days. In order to evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), as well as antioxidant enzyme activities superoxide dismutase (SOD) glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were measured in the brain, liver and kidney of rats after the end of restraint stress. The restraint stress significantly increased MDA level, but decreased the level of GSH and activists of SOD, GPx, GR, and CAT the brain, liver and kidney of rats in comparison to the normal rats (P<0.001). Intraperitoneal administration of CUR significantly attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in the tissues versus the control group (P<0.05). This study shows that CUR can prevent restraint stress-induced oxidative damage in the brain, liver and kidney of rats and propose that CUR may be useful agents against oxidative stress in the tissues. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Oxidative stress in organophosphate poisoning: role of standard antidotal therapy.

    PubMed

    Vanova, Nela; Pejchal, Jaroslav; Herman, David; Dlabkova, Alzbeta; Jun, Daniel

    2018-08-01

    Despite the main mechanism of organophosphate (OP) toxicity through inhibition of acetylcholinesterase (AChE) being well known over the years, some chronic adverse health effects indicate the involvement of additional pathways. Oxidative stress is among the most intensively studied. Overstimulation of cholinergic and glutamatergic nervous system is followed by intensified generation of reactive species and oxidative damage in many tissues. In this review, the role of oxidative stress in pathophysiology of OP poisoning and the influence of commonly used medical interventions on its levels are discussed. Current standardized therapy of OP intoxications comprises live-saving administration of the anticholinergic drug atropine accompanied by oxime AChE reactivator and diazepam. The capability of these antidotes to ameliorate OP-induced oxidative stress varies between both therapeutic groups and individual medications within the drug class. Regarding oxidative stress, atropine does not seem to have a significant effect on oxidative stress parameters in OP poisoning. In a case of AChE reactivators, pro-oxidative and antioxidative properties could be found. It is assumed that the ability of oximes to trigger oxidative stress is rather associated with their chemical structure than reactivation efficacy. The data indicating the potency of diazepam in preventing OP-induced oxidative stress are not available. Based on current knowledge on the mechanism of OP-mediated oxidative stress, alternative approaches (including antioxidants or multifunctional drugs) in therapy of OP poisoning are under consideration. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Strawberry polyphenols decrease oxidative stress in chronic diseases

    PubMed

    Oviedo-Solís, Cecilia Isabel; Cornejo-Manzo, Sinthia; Murillo-Ortiz, Blanca Olivia; Guzmán-Barrón, Michelle Montserrat; Ramírez-Emiliano, Joel

    2018-01-01

    Consumption of hypercaloric diets leads to increase of free fatty acids (FFA), pro-inflammatory cytokines and production of oxygen and nitrogen reactive species. These alterations induce oxidative and nitrosative stress causing dysfunction of tissues and consequently the development of chronic diseases. Therefore, it is important to decrease oxidative stress and thus preventing the development of these diseases. Strawberry has a lot of Vitamin C and polyphenols, compounds with excellent antioxidant properties, which may be an option for reducing oxidative stress and therefore to prevent the development of some diseases. Studies conducted in vitro in animal models and clinical studies support that this fruit can be a good alternative to reduce oxidative stress and thus reducing and/or preventing the development of diseases in humans. Copyright: © 2018 SecretarÍa de Salud.

  18. Assessment of ligand binding at a site relevant to SOD1 oxidation and aggregation.

    PubMed

    Manjula, Ramu; Wright, Gareth S A; Strange, Richard W; Padmanabhan, Balasundaram

    2018-05-01

    Cu/Zn superoxide dismutase-1 (SOD1) mutations are causative for a subset of amyotrophic lateral sclerosis (ALS) cases. These mutations lead to structural instability, aggregation and ultimately motor neuron death. We have determined crystal structures of SOD1 in complex with a naphthalene-catechol-linked compound which binds with low micro-molar affinity to a site important for oxidative damage-induced aggregation. SOD1 Trp32 oxidation is indeed significantly inhibited by ligand binding. Our work shows how compound linking can be applied successfully to ligand interactions on the SOD1 surface to generate relatively good binding strength. The ligand, positioned in a region important for SOD1 fibrillation, offers the possibility that it, or a similar compound, could prevent the abnormal self-association that drives SOD1 toxicity in ALS. © 2018 Federation of European Biochemical Societies.

  19. Oxidative and Anti-Oxidative Stress Markers in Chronic Glaucoma: A Systematic Review and Meta-Analysis

    PubMed Central

    Benoist d’Azy, Cédric; Pereira, Bruno; Chiambaretta, Frédéric

    2016-01-01

    Chronic glaucoma is a multifactorial disease among which oxidative stress may play a major pathophysiological role. We conducted a systematic review and meta-analysis to evaluate the levels of oxidative and antioxidative stress markers in chronic glaucoma compared with a control group. The PubMed, Cochrane Library, Embase and Science Direct databases were searched for studies reporting oxidative and antioxidative stress markers in chronic glaucoma and in healthy controls using the following keywords: “oxidative stress” or “oxidant stress” or “nitrative stress” or “oxidative damage” or “nitrative damage” or “antioxidative stress” or “antioxidant stress” or “antinitrative stress” and “glaucoma”. We stratified our meta-analysis on the type of biomarkers, the type of glaucoma, and the origin of the sample (serum or aqueous humor). We included 22 case-control studies with a total of 2913 patients: 1614 with glaucoma and 1319 healthy controls. We included 12 studies in the meta-analysis on oxidative stress markers and 19 on antioxidative stress markers. We demonstrated an overall increase in oxidative stress markers in glaucoma (effect size = 1.64; 95%CI 1.20–2.09), ranging from an effect size of 1.29 in serum (95%CI 0.84–1.74) to 2.62 in aqueous humor (95%CI 1.60–3.65). Despite a decrease in antioxidative stress marker in serum (effect size = –0.41; 95%CI –0.72 to –0.11), some increased in aqueous humor (superoxide dismutase, effect size = 3.53; 95%CI 1.20–5.85 and glutathione peroxidase, effect size = 6.60; 95%CI 3.88–9.31). The differences in the serum levels of oxidative stress markers between glaucoma patients and controls were significantly higher in primary open angle glaucoma vs primary angle closed glaucoma (effect size = 12.7; 95%CI 8.78–16.6, P < 0.001), and higher in pseudo-exfoliative glaucoma vs primary angle closed glaucoma (effect size = 12.2; 95%CI 8.96–15.5, P < 0.001). In conclusion, oxidative

  20. Visualization of Oxidative Stress Induced by Experimental Periodontitis in Keap1-Dependent Oxidative Stress Detector-Luciferase Mice.

    PubMed

    Kataoka, Kota; Ekuni, Daisuke; Tomofuji, Takaaki; Irie, Koichiro; Kunitomo, Muneyoshi; Uchida, Yoko; Fukuhara, Daiki; Morita, Manabu

    2016-11-16

    The aim of this study was to investigate whether a Keap1-dependent oxidative stress detector-luciferase (OKD-LUC) mouse model would be useful for the visualization of oxidative stress induced by experimental periodontitis. A ligature was placed around the mandibular first molars for seven days to induce periodontitis. Luciferase activity was measured with an intraperitoneal injection of d-luciferin on days 0, 1, and 7. The luciferase activity in the periodontitis group was significantly greater than that in the control group at seven days. The expressions of heme oxygenase-1 (HO-1) and malondialdehyde in periodontal tissue were significantly higher in the periodontitis group than in the control group. Immunofluorescent analysis confirmed that the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) occurred more frequently in the periodontitis group than in the control group. This study found that under oxidative stress induced by experimental periodontitis, the Nrf2/antioxidant defense pathway was activated and could be visualized from the luciferase activity in the OKD-LUC model. Thus, the OKD-LUC mouse model may be useful for exploring the mechanism underlying the relationship between the Nrf2/antioxidant defense pathway and periodontitis by enabling the visualization of oxidative stress over time.

  1. Oxidative airway inflammation leads to systemic and vascular oxidative stress in a murine model of allergic asthma.

    PubMed

    Al-Harbi, Naif O; Nadeem, A; Al-Harbi, Mohamed M; Imam, F; Al-Shabanah, Othman A; Ahmad, Sheikh F; Sayed-Ahmed, Mohamed M; Bahashwan, Saleh A

    2015-05-01

    Oxidant-antioxidant imbalance plays an important role in repeated cycles of airway inflammation observed in asthma. It is when reactive oxygen species (ROS) overwhelm antioxidant defenses that a severe inflammatory state becomes apparent and may impact vasculature. Several studies have shown an association between airway inflammation and cardiovascular complications; however so far none has investigated the link between airway oxidative stress and systemic/vascular oxidative stress in a murine model of asthma. Therefore, this study investigated the contribution of oxidative stress encountered in asthmatic airways in modulation of vascular/systemic oxidant-antioxidant balance. Rats were sensitized intraperitoneally with ovalbumin (OVA) in the presence of aluminum hydroxide followed by several intranasal (i.n.) challenges with OVA. Rats were then assessed for airway and vascular inflammation, oxidative stress (ROS, lipid peroxides) and antioxidants measured as total antioxidant capacity (TAC) and thiol content. Challenge with OVA led to increased airway inflammation and oxidative stress with a concomitant increase in vascular inflammation and oxidative stress. Oxidative stress in the vasculature was significantly inhibited by antioxidant treatment, N-acetyl cysteine; whereas hydrogen peroxide (H2O2) inhalation worsened it. Therefore, our study shows that oxidative airway inflammation is associated with vascular/systemic oxidative stress which might predispose these patients to increased cardiovascular risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Oxidative stress induces senescence in human mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandl, Anita; Meyer, Matthias; Bechmann, Volker

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolongedmore » low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.« less

  3. Parallels between major depressive disorder and Alzheimer's disease: role of oxidative stress and genetic vulnerability.

    PubMed

    Rodrigues, Roberto; Petersen, Robert B; Perry, George

    2014-10-01

    The thesis of this review is that oxidative stress is the central factor in major depressive disorder (MDD) and Alzheimer's disease (AD). The major elements involved are inflammatory cytokines, the hypothalamic-pituitary axis, the hypothalamic-pituitary gonadal, and arginine vasopressin systems, which induce glucocorticoid and "oxidopamatergic" cascades when triggered by psychosocial stress, severe life-threatening events, and mental-affective and somatic diseases. In individuals with a genomic vulnerability to depression, these cascades may result in chronic depression-anxiety-stress spectra, resulting in MDD and other known depressive syndromes. In contrast, in subjects with genomic vulnerability to AD, oxidative stress-induced brain damage triggers specific antioxidant defenses, i.e., increased levels of amyloid-β (Aβ) and aggregation of hyper-phosphorylated tau, resulting in paired helical filaments and impaired functions related to the ApoEε4 isoform, leading to complex pathological cascades culminating in AD. Surprisingly, all the AD-associated molecular pathways mentioned in this review have been shown to be similar or analogous to those found in depression, including structural damage, i.e., hippocampal and frontal cortex atrophy. Other interacting molecular signals, i.e., GSK-3β, convergent survival factors (brain-derived neurotrophic factor and heat shock proteins), and transition redox metals are also mentioned to emphasize the vast array of intermediates that could interact via comparable mechanisms in both MDD and AD.

  4. Oxidative stress in uremia: nature, mechanisms, and potential consequences.

    PubMed

    Vaziri, Nosratola D

    2004-09-01

    Oxidative stress has emerged as a constant feature of chronic renal failure (CRF). The presence of oxidative stress in CRF is evidenced by an overabundance of lipid, carbohydrate, and protein oxidation products in the plasma and tissues of uremic patients and animals. We recently have shown that oxidative stress in CRF animals is associated with and, in part, owing to up-regulation of superoxide-producing enzyme, nicotinamide-adenine dinucleotide phosphate (NAD(P)H) oxidase, and down-regulation of superoxide dismutase (SOD). The functional significance of these findings was confirmed by favorable response to administration of the cell-permeable SOD-mimetic agent, tempol, in CRF rats. Oxidative stress in CRF plays an important role in the pathogenesis of the associated hypertension (oxidation of NO and arachidonic acid and vascular remodeling), cardiovascular disease (oxidation of lipoproteins, atherogenesis), neurologic disorders (nitration of brain proteins, oxidation of myelin), anemia (reduction of erythrocyte lifespan), inflammation (nuclear factor kappa B activation), fibrosis, apoptosis, and accelerated aging. The CRF-induced oxidative stress is aggravated by diabetes, uncontrolled hypertension, and autoimmune diseases, which independently increase production of reactive oxygen intermediates, and frequently are associated with CRF. In addition, dialysis treatment (blood interaction with dialyzer membrane and dialysate impurities), acute and chronic infections (blood access infection, hepatitis, and so forth), and excessive parenteral iron administration intensify CRF-associated oxidative stress and its adverse consequences in patients with end-stage renal disease. The problem is compounded by limited intake of fresh fruits and vegetables (K(+) restriction), which contain numerous natural phytochemicals and antioxidant vitamins.

  5. Prohibitin as an oxidative stress biomarker in the eye

    PubMed Central

    Lee, Hyunju; Arnouk, Hilal; Sripathi, Srinivas; Chen, Ping; Zhang, Ruonan; Hunt, Richard C.; Hrushesky, William J. M.; Chung, Hyewon; Lee, Sung Haeng; Jahng, Wan Jin

    2016-01-01

    Identification of biomarker proteins in the retina and the retinal pigment epithelium (RPE) under oxidative stress may imply new insights into signaling mechanisms of retinal degeneration at the molecular level. Proteomic data from an in vivo mice model in constant light and an in vitro oxidative stress model are compared to controls under normal conditions. Our proteomic study shows that prohibitin is involved in oxidative stress signaling in the retina and RPE. The identity of prohibitin in the retina and the RPE was studied using 2D electrophoresis, immunohistochemistry, western blot, and mass spectrometry analysis. Comparison of expression levels with apoptotic markers as well as translocation between mitochondria and the nucleus imply that the regulation of prohibitin is an early signaling event in the RPE and retina under oxidative stress. Immunohistochemical analysis of murine aged and diabetic eyes further suggests that the regulation of prohibitin in the RPE/retina is related to aging- and diabetes-induced oxidative stress. Our proteomic approach implies that prohibitin in the RPE and the retina could be a new biomarker protein of oxidative stress in aging and diabetes. PMID:20832420

  6. Prohibitin as an oxidative stress biomarker in the eye.

    PubMed

    Lee, Hyunju; Arnouk, Hilal; Sripathi, Srinivas; Chen, Ping; Zhang, Ruonan; Bartoli, Manuela; Hunt, Richard C; Hrushesky, William J M; Chung, Hyewon; Lee, Sung Haeng; Jahng, Wan Jin

    2010-12-01

    Identification of biomarker proteins in the retina and retinal pigment epithelium (RPE) under oxidative stress may imply new insights into signaling mechanisms of retinal degeneration at the molecular level. Proteomic data from an in vivo mice model in constant light and an in vitro oxidative stress model are compared to controls under normal conditions. Our proteomic study shows that prohibitin is involved in oxidative stress signaling in the retina and RPE. The identity of prohibitin in the retina and RPE was studied using 2D electrophoresis, immunohistochemistry, western blot, and mass spectrometry analysis. Comparison of expression levels with apoptotic markers as well as translocation between mitochondria and the nucleus imply that the regulation of prohibitin is an early signaling event in the RPE and retina under oxidative stress. Immunohistochemical analysis of murine aged and diabetic eyes further suggests that the regulation of prohibitin in the RPE/retina is related to aging- and diabetes-induced oxidative stress. Our proteomic approach implies that prohibitin in the RPE and the retina could be a new biomarker protein of oxidative stress in aging and diabetes. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Differential effects of grape ( Vitis vinifera ) skin polyphenolics on human platelet aggregation and low-density lipoprotein oxidation.

    PubMed

    Shanmuganayagam, Dhanansayan; Beahm, Mark R; Kuhns, Melissa A; Krueger, Christian G; Reed, Jess D; Folts, John D

    2012-06-13

    Antioxidant and antiplatelet properties of grape products are thought to be responsible for observed antiatherosclerotic effects. Diverse classes of phenolics are derived from the seed and skin (GSK) of grapes. The relative contributions of the classes of phenolics to observed properties of grape products are unknown. In this paper, GSK fractions were used to examine effects on platelet aggregation, low-density lipoprotein (LDL) oxidation in vitro, and relative binding of phenolics to LDL. GSK was separated into six fractions (fractions 1-6), and primary phenolics were characterized using high-performance liquid chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Fractions 4, 5, and 6, enriched in polygalloyl polyflavan-3-ols (PGPFs) with 3-6, 4-8, and 6-15 degrees of polymerization, respectively, inhibited platelet aggregation. Fractions 1-3, containing various amounts of oligosaccharides, hydroxycinnamic acids, anthocyanins, flavanols, and low molecular weight PGPFs, significantly increased platelet aggregation. Fractions 4-6 were most effective in binding LDL and inhibiting LDL oxidation. Fractions 5 and 6 exhibited the greatest inhibition of platelet aggregation and LDL oxidation, suggesting that polymeric PGPFs are responsible for the beneficial effects of grape products. Conversely, phenolics in fractions 1-3 may reduce the net biological potency of the grape products and have undesirable effects on cardiovascular disease risk factors.

  8. Oxidative Stress in Myopia

    PubMed Central

    Francisco, Bosch-Morell; Salvador, Mérida; Amparo, Navea

    2015-01-01

    Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem. PMID:25922643

  9. Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

    PubMed

    Kaushik, Manish Singh; Srivastava, Meenakshi; Srivastava, Alka; Singh, Anumeha; Mishra, Arun Kumar

    2016-11-01

    In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.

  10. Nitrative and Oxidative Stress in Toxicology and Disease

    PubMed Central

    Roberts, Ruth A.; Laskin, Debra L.; Smith, Charles V.; Robertson, Fredika M.; Allen, Erin M. G.; Doorn, Jonathan A.; Slikker, William

    2009-01-01

    Persistent inflammation and the generation of reactive oxygen and nitrogen species play pivotal roles in tissue injury during disease pathogenesis and as a reaction to toxicant exposures. The associated oxidative and nitrative stress promote diverse pathologic reactions including neurodegenerative disorders, atherosclerosis, chronic inflammation, cancer, and premature labor and stillbirth. These effects occur via sustained inflammation, cellular proliferation and cytotoxicity and via induction of a proangiogenic environment. For example, exposure to the ubiquitous air pollutant ozone leads to generation of reactive oxygen and nitrogen species in lung macrophages that play a key role in subsequent tissue damage. Similarly, studies indicate that genes involved in regulating oxidative stress are altered by anesthetic treatment resulting in brain injury, most notable during development. In addition to a role in tissue injury in the brain, inflammation, and oxidative stress are implicated in Parkinson's disease, a neurodegenerative disease characterized by the loss of dopamine neurons. Recent data suggest a mechanistic link between oxidative stress and elevated levels of 3,4-dihydroxyphenylacetaldehyde, a neurotoxin endogenous to dopamine neurons. These findings have significant implications for development of therapeutics and identification of novel biomarkers for Parkinson's disease pathogenesis. Oxidative and nitrative stress is also thought to play a role in creating the proinflammatory microenvironment associated with the aggressive phenotype of inflammatory breast cancer. An understanding of fundamental concepts of oxidative and nitrative stress can underpin a rational plan of treatment for diseases and toxicities associated with excessive production of reactive oxygen and nitrogen species. PMID:19656995

  11. Nanoparticle-induced oxidation of corona proteins initiates an oxidative stress response in cells†

    PubMed Central

    Jayaram, Dhanya T.; Runa, Sabiha; Kemp, Melissa L.

    2017-01-01

    Titanium dioxide nanoparticles (TiO2 NPs), used as pigments and photocatalysts, are ubiquitous in our daily lives. Previous work has observed cellular oxidative stress in response to the UV-excitation of photocatalytic TiO2 NPs. In comparison, most human exposure to TiO2 NPs takes place in the dark, in the lung following inhalation or in the gut following consumption of TiO2 NP food pigment. Our spectroscopic characterization shows that both photocatalytic and food grade TiO2 NPs, in the dark, generate low levels of reactive oxygen species (ROS), specifically hydroxyl radicals and superoxides. These ROS oxidize serum proteins that form a corona of proteins on the NP surface. This protein layer is the interface between the NP and the cell. An oxidized protein corona triggers an oxidative stress response, detected with PCR and western blotting. Surface modification of TiO2 NPs to increase or decrease surface defects correlates with ROS generation and oxidative stress, suggesting that NP surface defects, likely oxygen vacancies, are the underlying cause of TiO2 NP-induced oxidative stress. PMID:28537609

  12. Protein Quality Control Under Oxidative Stress Conditions

    PubMed Central

    Dahl, Jan-Ulrik; Gray, Michael J.; Jakob, Ursula

    2015-01-01

    Accumulation of reactive oxygen and chlorine species (RO/CS) is generally regarded to be a toxic and highly undesirable event, which serves as contributing factor in aging and many age-related diseases. However, it is also put to excellent use during host defense, when high levels of RO/CS are produced to kill invading microorganisms and regulate bacterial colonization. Biochemical and cell biological studies of how bacteria and other microorganisms deal with RO/CS have now provided important new insights into the physiological consequences of oxidative stress, the major targets that need protection, and the cellular strategies employed by organisms to mitigate the damage. This review examines the redox-regulated mechanisms by which cells maintain a functional proteome during oxidative stress. We will discuss the well-characterized redox-regulated chaperone Hsp33, and review recent discoveries demonstrating that oxidative stress-specific activation of chaperone function is a much more widespread phenomenon than previously anticipated. New members of this group include the cytosolic ATPase Get3 in yeast, the E. coli protein RidA, and the mammalian protein α2-macroglobin. We will conclude our review with recent evidence showing that inorganic polyphosphate (polyP), whose accumulation significantly increases bacterial oxidative stress resistance, works by a protein-like chaperone mechanism. Understanding the relationship between oxidative and proteotoxic stresses will improve our understanding of both host-microbe interactions and of how mammalian cells combat the damaging side effects of uncontrolled RO/CS production, a hallmark of inflammation. PMID:25698115

  13. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    PubMed Central

    Li, Sha; Tan, Hor-Yue; Wang, Ning; Zhang, Zhang-Jin; Lao, Lixing; Wong, Chi-Woon; Feng, Yibin

    2015-01-01

    A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed. PMID:26540040

  14. Oxidative stress markers imbalance in late-life depression.

    PubMed

    Diniz, Breno S; Mendes-Silva, Ana Paula; Silva, Lucelia Barroso; Bertola, Laiss; Vieira, Monica Costa; Ferreira, Jessica Diniz; Nicolau, Mariana; Bristot, Giovana; da Rosa, Eduarda Dias; Teixeira, Antonio L; Kapczinski, Flavio

    2018-03-20

    Oxidative stress has been implicated in the pathophysiology of mood disorders in young adults. However, there is few data to support its role in the elderly. The primary aim of this study was to evaluate whether subjects with late-life depression (LLD) presented with changes in oxidative stress response in comparison with the non-depressed control group. We then explored how oxidative stress markers associated with specific features of LLD, in particular cognitive performance and age of onset of major depressive disorder in these individuals. We included a convenience sample of 124 individuals, 77 with LLD and 47 non-depressed subjects (Controls). We measure the plasma levels of 6 oxidative stress markers: thiobarbituric acid reactive substances (TBARS), protein carbonil content (PCC), free 8-isoprostane, glutathione peroxidase (GPx) activity, glutathione reductase (GR) activity, and glutathione S-transferase (GST) activity. We found that participants with LLD had significantly higher free 8-isoprostane levels (p = 0.003) and lower glutathione peroxidase activity (p = 0.006) compared to controls. Free 8-isoprostane levels were also significantly correlated with worse scores in the initiation/perseverance (r = -0.24, p = 0.01), conceptualization (r = -0.22, p = 0.02) sub-scores, and the total scores (r = -0.21, p = 0.04) on the DRS. Our study provides robust evidence of the imbalance between oxidative stress damage, in particular lipid peroxidation, and anti-oxidative defenses as a mechanism related to LLD, and cognitive impairment in this population. Interventions aiming to reduce oxidative stress damage can have a potential neuroprotective effect for LLD subjects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Stressed Oxidation of C/SiC Composites

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Brewer, David N.; Eckel, Andrew J.; Cawley, James D.

    1997-01-01

    Constant load, stressed oxidation testing was performed on T-300 C/SiC composites with a SiC seal coat. Test conditions included temperatures ranging from 350 C to 1500 C at stresses of 69 MPa and 172 MPa (10 and 25 ksi). The coupon subjected to stressed oxidation at 550 C/69 MPa for 25 hours had a room temperature residual strength one-half that of the as-received coupons. The coupon tested at the higher stress and all coupons tested at higher temperatures failed in less than 25 hr. Microstructural analysis of the fracture surfaces, using SEM (scanning electron microscopy), revealed the formation of reduced cross-sectional fibers with pointed tips. Analysis of composite cross-sections show pathways for oxygen ingress. The discussion will focus on fiber/matrix interphase oxidation and debonding as well as the formation and implications of the fiber tip morphology.

  16. 13 reasons why the brain is susceptible to oxidative stress.

    PubMed

    Cobley, James Nathan; Fiorello, Maria Luisa; Bailey, Damian Miles

    2018-05-01

    The human brain consumes 20% of the total basal oxygen (O 2 ) budget to support ATP intensive neuronal activity. Without sufficient O 2 to support ATP demands, neuronal activity fails, such that, even transient ischemia is neurodegenerative. While the essentiality of O 2 to brain function is clear, how oxidative stress causes neurodegeneration is ambiguous. Ambiguity exists because many of the reasons why the brain is susceptible to oxidative stress remain obscure. Many are erroneously understood as the deleterious result of adventitious O 2 derived free radical and non-radical species generation. To understand how many reasons underpin oxidative stress, one must first re-cast free radical and non-radical species in a positive light because their deliberate generation enables the brain to achieve critical functions (e.g. synaptic plasticity) through redox signalling (i.e. positive functionality). Using free radicals and non-radical derivatives to signal sensitises the brain to oxidative stress when redox signalling goes awry (i.e. negative functionality). To advance mechanistic understanding, we rationalise 13 reasons why the brain is susceptible to oxidative stress. Key reasons include inter alia unsaturated lipid enrichment, mitochondria, calcium, glutamate, modest antioxidant defence, redox active transition metals and neurotransmitter auto-oxidation. We review RNA oxidation as an underappreciated cause of oxidative stress. The complex interplay between each reason dictates neuronal susceptibility to oxidative stress in a dynamic context and neural identity dependent manner. Our discourse sets the stage for investigators to interrogate the biochemical basis of oxidative stress in the brain in health and disease. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  17. LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism.

    PubMed

    Carnevale, Roberto; Bartimoccia, Simona; Nocella, Cristina; Di Santo, Serena; Loffredo, Lorenzo; Illuminati, Giulio; Lombardi, Elisabetta; Boz, Valentina; Del Ben, Maria; De Marco, Luigi; Pignatelli, Pasquale; Violi, Francesco

    2014-11-01

    Platelets generate oxidized LDL (ox-LDL) via NOX2-derived oxidative stress. We investigated if once generated by activated platelets ox-LDL can propagate platelet activation. Experiments were performed in platelets from healthy subjects (HS), hyper-cholesterolemic patients and patients with NOX2 hereditary deficiency. Agonist-stimulated platelets from HS added with LDL were associated with a dose-dependent increase of reactive oxidant species and ox-LDL. Agonist-stimulated platelets from HS added with a fixed dose of LDL (57.14 μmol/L) or added with homogenized human atherosclerotic plaque showed enhanced ox-LDL formation (approximately +50% and +30% respectively), which was lowered by a NOX2 inhibitor (approximately -35% and -25% respectively). Compared to HS, ox-LDL production was more pronounced in agonist-stimulated platelet rich plasma (PRP) from hyper-cholesterolemic patients but was almost absent in PRP from NOX2-deficient patients. Platelet aggregation and 8-iso-PGF2α-ΙΙΙ formation increased in LDL-treated washed platelets (+42% and +53% respectively) and PRP (+31% and +53% respectively). Also, LDL enhanced platelet-dependent thrombosis at arterial shear rate (+33%) but did not affect platelet activation in NOX2-deficient patients. Platelet activation by LDL was significantly inhibited by CD36 or LOX1 blocking peptides, two ox-LDL receptor antagonists, or by a NOX2 inhibitor. LDL-added platelets showed increased p38MAPK (+59%) and PKC (+51%) phosphorylation, p47(phox) translocation to platelet membrane (+34%) and NOX2 activation (+30%), which were inhibited by ox-LDL receptor antagonists. Platelets oxidize LDL, which in turn amplify platelet activation via specific ox-LDL receptors; both effects are mediated by NOX2 activation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. The impact of oxidative stress on hair.

    PubMed

    Trüeb, R M

    2015-12-01

    Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage lipids, proteins, and DNA. They are generated by a multitude of endogenous and environmental challenges, while the body possesses endogenous defense mechanisms. With age, production of free radicals increases, while the endogenous defense mechanisms decrease. This imbalance leads to progressive damage of cellular structures, presumably resulting in the aging phenotype. While the role of oxidative stress has been widely discussed in skin aging, little focus has been placed on its impact on hair condition. Moreover, most literature on age-related hair changes focuses on alopecia, but it is equally important that the hair fibers that emerge from the scalp exhibit significant age-related changes that have equal impact on the overall cosmetic properties of hair. Sources of oxidative stress with impact on the pre-emerging fiber include: oxidative metabolism, smoking, UVR, and inflammation from microbial, pollutant, or irritant origins. Sources of oxidative stress with impact on the post-emerging fiber include: UVR (enhanced by copper), chemical insults, and oxidized scalp lipids. The role of the dermatologist is recognition and treatment of pre- and post-emerging factors for lifetime scalp and hair health. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. IGF-1, oxidative stress, and atheroprotection

    PubMed Central

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a critical role not only in initial lesion formation but also in lesion progression and destabilization. While growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that IGF-1 exerts pleiotropic anti-oxidant effects along with anti-inflammatory effects that together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in vascular injury and atherosclerosis models, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. PMID:20071192

  20. The Role of Oxidative Stress in Parkinson’s Disease

    PubMed Central

    Dias, Vera; Junn, Eunsung; Mouradian, M. Maral

    2014-01-01

    Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson’s disease (PD). Disruptions in the physiologic maintenance of the redox potential in neurons interfere with several biological processes, ultimately leading to cell death. Evidence has been developed for oxidative and nitrative damage to key cellular components in the PD substantia nigra. A number of sources and mechanisms for the generation of reactive oxygen species (ROS) are recognized including the metabolism of dopamine itself, mitochondrial dysfunction, iron, neuroinflammatory cells, calcium, and aging. PD causing gene products including DJ-1, PINK1, parkin, alpha-synuclein and LRRK2 also impact in complex ways mitochondrial function leading to exacerbation of ROS generation and susceptibility to oxidative stress. Additionally, cellular homeostatic processes including the ubiquitin-proteasome system and mitophagy are impacted by oxidative stress. It is apparent that the interplay between these various mechanisms contributes to neurodegeneration in PD as a feed forward scenario where primary insults lead to oxidative stress, which damages key cellular pathogenetic proteins that in turn cause more ROS production. Animal models of PD have yielded some insights into the molecular pathways of neuronal degeneration and highlighted previously unknown mechanisms by which oxidative stress contributes to PD. However, therapeutic attempts to target the general state of oxidative stress in clinical trials have failed to demonstrate an impact on disease progression. Recent knowledge gained about the specific mechanisms related to PD gene products that modulate ROS production and the response of neurons to stress may provide targeted new approaches towards neuroprotection. PMID:24252804

  1. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    PubMed

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Oxidative Stress in Diabetes: Implications for Vascular and Other Complications

    PubMed Central

    Pitocco, Dario; Tesauro, Manfredi; Alessandro, Rizzi; Ghirlanda, Giovanni; Cardillo, Carmine

    2013-01-01

    In recent decades, oxidative stress has become a focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence shows that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on these studies, an emerging concept is that oxidative stress is the “final common pathway” through which the risk factors for several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell–cell homeostasis; in particular, oxidative stress plays a key role in the pathogenesis of insulin resistance and β-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes and its vascular complications, the leading cause of death in diabetic patients. PMID:24177571

  3. Oxidative Stress in Placenta: Health and Diseases

    PubMed Central

    Wu, Fan; Tian, Fu-Ju; Lin, Yi

    2015-01-01

    During pregnancy, development of the placenta is interrelated with the oxygen concentration. Embryo development takes place in a low oxygen environment until the beginning of the second trimester when large amounts of oxygen are conveyed to meet the growth requirements. High metabolism and oxidative stress are common in the placenta. Reactive oxidative species sometimes harm placental development, but they are also reported to regulate gene transcription and downstream activities such as trophoblast proliferation, invasion, and angiogenesis. Autophagy and apoptosis are two crucial, interconnected processes in the placenta that are often influenced by oxidative stress. The proper interactions between them play an important role in placental homeostasis. However, an imbalance between the protective and destructive mechanisms of autophagy and apoptosis seems to be linked with pregnancy-related disorders such as miscarriage, preeclampsia, and intrauterine growth restriction. Thus, potential therapies to hold oxidative stress in leash, promote placentation, and avoid unwanted apoptosis are discussed. PMID:26693479

  4. Moderate treadmill exercise prevents oxidative stress-induced anxiety-like behavior in rats.

    PubMed

    Salim, Samina; Sarraj, Nada; Taneja, Manish; Saha, Kaustuv; Tejada-Simon, Maria Victoria; Chugh, Gaurav

    2010-04-02

    Recent work has suggested correlation of oxidative stress with anxiety-like behavior. There also is evidence for anxiolytic effects of physical exercise. However, a direct role of oxidative stress in anxiety is not clear and a protective role of physical exercise in oxidative stress-mediated anxiety has never been addressed. In this study, we have utilized rats to test direct involvement of oxidative stress with anxiety-like behavior and have identified oxidative stress mechanisms likely involved in anxiolytic effects of physical exercise. Intraperitoneal injections at non-toxic dose of l-buthionine-(S,R)-sulfoximine (BSO), an agent that increases oxidative stress markers, increased anxiety-like behavior of rats compared to vehicle-treated control rats. Prior 2 weeks treatment with the antioxidant, tempol attenuated BSO-induced anxiety-like behavior of rats suggesting a role of oxidative stress in this phenomenon. Moreover, moderate treadmill exercise prevented BSO-induced anxiety-like behavior of rats and also prevented BSO-mediated increase in oxidative stress markers in serum, urine and brain tissue homogenates from hippocampus, amygdala and locus coeruleus. Thus increasing oxidative stress increases anxiety-like behavior of rats. Moreover, antioxidant or treadmill exercise training both reduce oxidative stress in the rat brain regions implicated in anxiety response and prevent anxiety-like behavior of rats. Published by Elsevier B.V.

  5. A review: oxidative stress in fish induced by pesticides.

    PubMed

    Slaninova, Andrea; Smutna, Miriam; Modra, Helena; Svobodova, Zdenka

    2009-01-01

    The knowledge in oxidative stress in fish has a great importance for environmental and aquatic toxicology. Because oxidative stress is evoked by many chemicals including some pesticides, pro-oxidant factors' action in fish organism can be used to assess specific area pollution or world sea pollution. Hepatotoxic effect of DDT may be related with lipid peroxidation. Releasing of reactive oxygen species (ROS) after HCB exposure can be realized via two ways: via the uncoupling of the electron transport chain from monooxygenase activity and via metabolism of HCB major metabolite pentachlorophenol. Chlorothalonil disrupts mitochondrial metabolism due to the impairment of NADPH oxidase function. Activation of spleen macrophages and a decrease of catalase (CAT) activity have been observed after endosulfan exposure. Excessive release of superoxide radicals after etoxazole exposure can cause a decrease of CAT activity and increase phagocytic activity of splenocytes. Anticholinergic activity of organophosphates leads to the accumulation of ROS and resulting lipid peroxidation. Carbaryl induces changes in the content of glutathione and antioxidant enzymes activities. The antioxidant enzymes changes have been observed after actuation of pesticides deltamethrin and cypermethrin. Bipyridyl herbicides are able to form redox cycles and thereby cause oxidative stress. Low concentrations of simazine do not cause oxidative stress in carps during sub-chronic tests while sublethal concentrations of atrazin can induce oxidative stress in bluegill sunfish. Butachlor causes increased activity of superoxide dismutase -catalase system in the kidney. Rotenon can inhibit the electron transport in mitochondria and thereby increase ROS production. Dichloroaniline, the metabolite of diuron, has oxidative effects. Oxidative damage from fenpyroximate actuation is related to the disruption of mitochondrial redox respiratory chain. Low concentration of glyphosate can cause mild oxidative stress.

  6. A Study on Suitability of EAF Oxidizing Slag in Concrete: An Eco-Friendly and Sustainable Replacement for Natural Coarse Aggregate

    PubMed Central

    Sekaran, Alan; Palaniswamy, Murthi; Balaraju, Sivagnanaprakash

    2015-01-01

    Environmental and economic factors increasingly encourage higher utility of industrial by-products. The basic objective of this study was to identify alternative source for good quality aggregates which is depleting very fast due to fast pace of construction activities in India. EAF oxidizing slag as a by-product obtained during the process in steel making industry provides great opportunity to utilize it as an alternative to normally available coarse aggregates. The primary aim of this research was to evaluate the physical, mechanical, and durability properties of concrete made with EAF oxidizing slag in addition to supplementary cementing material fly ash. This study presents the experimental investigations carried out on concrete grades of M20 and M30 with three mixes: (i) Mix A, conventional concrete mix with no material substitution, (ii) Mix B, 30% replacement of cement with fly ash, and (iii) Mix C, 30% replacement of cement with fly ash and 50% replacement of coarse aggregate with EAF oxidizing slag. Tests were conducted to determine mechanical and durability properties up to the age of 90 days. The test results concluded that concrete made with EAF oxidizing slag and fly ash (Mix C) had greater strength and durability characteristics when compared to Mix A and Mix B. Based on the overall observations, it could be recommended that EAF oxidizing slag and fly ash could be effectively utilized as coarse aggregate replacement and cement replacement in all concrete applications. PMID:26421315

  7. A Study on Suitability of EAF Oxidizing Slag in Concrete: An Eco-Friendly and Sustainable Replacement for Natural Coarse Aggregate.

    PubMed

    Sekaran, Alan; Palaniswamy, Murthi; Balaraju, Sivagnanaprakash

    2015-01-01

    Environmental and economic factors increasingly encourage higher utility of industrial by-products. The basic objective of this study was to identify alternative source for good quality aggregates which is depleting very fast due to fast pace of construction activities in India. EAF oxidizing slag as a by-product obtained during the process in steel making industry provides great opportunity to utilize it as an alternative to normally available coarse aggregates. The primary aim of this research was to evaluate the physical, mechanical, and durability properties of concrete made with EAF oxidizing slag in addition to supplementary cementing material fly ash. This study presents the experimental investigations carried out on concrete grades of M20 and M30 with three mixes: (i) Mix A, conventional concrete mix with no material substitution, (ii) Mix B, 30% replacement of cement with fly ash, and (iii) Mix C, 30% replacement of cement with fly ash and 50% replacement of coarse aggregate with EAF oxidizing slag. Tests were conducted to determine mechanical and durability properties up to the age of 90 days. The test results concluded that concrete made with EAF oxidizing slag and fly ash (Mix C) had greater strength and durability characteristics when compared to Mix A and Mix B. Based on the overall observations, it could be recommended that EAF oxidizing slag and fly ash could be effectively utilized as coarse aggregate replacement and cement replacement in all concrete applications.

  8. Oxidative stress in MeHg-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br; Aschner, Michael; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have beenmore » reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the

  9. Oxidative stress negatively affects human sperm mitochondrial respiration.

    PubMed

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. PARALLELS BETWEEN MAJOR DEPRESSIVE DISORDER AND ALZHEIMER’S DISEASE: ROLE OF OXIDATIVE STRESS AND GENETIC VULNERABILITY

    PubMed Central

    Rodrigues, Roberto; Petersen, Robert B.

    2014-01-01

    The thesis of this review is that oxidative stress is the central factor in major depressive disorder (MDD) and Alzheimer’s disease (AD). The major elements involved are inflammatory cytokines, the hypothalamic pituitary axis, the hypothalamic pituitary gonadal, and arginine vasopressin systems, which induce glucocorticoid and “oxidopamatergic” cascades when triggered by psychosocial stress, severe life threatening events, and mental-affective and somatic diseases. In individuals with a genomic vulnerability to depression these cascades may result in chronic depression-anxiety-stress spectra, resulting in MDD and other known depressive syndromes. In contrast, in subjects with genomic vulnerability to Alzheimer’s disease, oxidative stress-induced brain damage triggers specific antioxidant defenses, i.e. increased levels of amyloid-β (Aβ) and aggregation of hyper-phosphorylated tau, resulting in paired helical filaments and impaired functions related to the ApoEε4 isoform, leading to complex pathological cascades culminating in AD. Surprisingly, all the AD associated molecular pathways mentioned in this review have been shown to be similar or analogous to those found in depression, including structural damage, i.e. hippocampal and frontal cortex atrophy. Other interacting molecular signals, i.e. GSK-3β, convergent survival factors (brain-derived neurotrophic factor and heat shock proteins), and transition-redox metals are also mentioned to emphasize the vast array of intermediates that could interact via comparable mechanisms in both MDD and AD. PMID:24927694

  11. Oxidative Stress and Metabolic Pathologies: From an Adipocentric Point of View

    PubMed Central

    Le Lay, Soazig; Martinez, Maria Carmen; Andriantsitohaina, Ramaroson

    2014-01-01

    Oxidative stress plays a pathological role in the development of various diseases including diabetes, atherosclerosis, or cancer. Systemic oxidative stress results from an imbalance between oxidants derivatives production and antioxidants defenses. Reactive oxygen species (ROS) are generally considered to be detrimental for health. However, evidences have been provided that they can act as second messengers in adaptative responses to stress. Obesity represents a major risk factor for deleterious associated pathologies such as type 2 diabetes, liver, and coronary heart diseases. Many evidences regarding obesity-induced oxidative stress accumulated over the past few years based on established correlations of biomarkers or end-products of free-radical-mediated oxidative stress with body mass index. The hypothesis that oxidative stress plays a significant role in the development of metabolic disorders, especially insulin-resistance state, is supported by several studies where treatments reducing ROS production reverse metabolic alterations, notably through improvement of insulin sensitivity, hyperlipidemia, or hepatic steatosis. In this review, we will develop the mechanistic links between oxidative stress generated by adipose tissue in the context of obesity and its impact on metabolic complications development. We will also attempt to discuss potential therapeutic approaches targeting obesity-associated oxidative stress in order to prevent associated-metabolic complications. PMID:25143800

  12. Oxidative stress status in patients with melasma.

    PubMed

    Seçkin, Havva Yıldız; Kalkan, Göknur; Baş, Yalçın; Akbaş, Ali; Önder, Yalçın; Özyurt, Hüseyin; Sahin, Mehmet

    2014-09-01

    Melasma is an acquired skin disease characterized clinically by development of gray-brown macules or patches. The lesions have geographic borders and most often seen on face and less frequently on the neck and forearms. Pathogenesis has not been completely understood yet. Although the disease constitutes a very disturbing cosmetic problem, it has not obtained an efficient treatment. There were not any studies in the literature that evaluates the role of oxidative stress in melasma. The evaluation of the role of oxidative stress in melasma. Fifty melasma patients and 50 healthy volunteers were included in the study. The diagnosis was made clinically and the patients were evaluated by Melasma Area Severity Index. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) enzyme activities and malondialdehyde, nitric oxide, protein carbonyl levels were measured both in the melasma group and the control group. SOD and GSH-Px enzyme activities were significantly higher in the patient group in comparison with the control group (p < 0.001). Protein carbonyl levels were significantly lower in the patient group (p < 0.001). The results show that the balance between oxidant and anti-oxidants was disrupted and the oxidative stress increased in melasma. These results improve the understanding of etiology-pathogenesis of the disease and its treatment.

  13. Identification of Four Oxidative Stress-Responsive MicroRNAs, miR-34a-5p, miR-1915-3p, miR-638, and miR-150-3p, in Hepatocellular Carcinoma.

    PubMed

    Wan, Yong; Cui, Ruixia; Gu, Jingxian; Zhang, Xing; Xiang, Xiaohong; Liu, Chang; Qu, Kai; Lin, Ting

    2017-01-01

    Increasing evidence suggests that oxidative stress plays an essential role during carcinogenesis. However, the underlying mechanism between oxidative stress and carcinogenesis remains unknown. Recently, microRNAs (miRNAs) are revealed to be involved in oxidative stress response and carcinogenesis. This study aims to identify miRNAs in hepatocellular carcinoma (HCC) cells which might involve in oxidative stress response. An integrated analysis of miRNA expression signature was performed by employing robust rank aggregation (RRA) method, and four miRNAs (miR-34a-5p, miR-1915-3p, miR-638, and miR-150-3p) were identified as the oxidative stress-responsive miRNAs. Pathway enrichment analysis suggested that these four miRNAs played an important role in antiapoptosis process. Our data also revealed miR-34a-5p and miR-1915-3p, but not miR-150-3p and miR-638, were regulated by p53 in HCC cell lines under oxidative stress. In addition, clinical investigation revealed that these four miRNAs might be involved in oxidative stress response by targeting oxidative stress-related genes in HCC tissues. Kaplan-Meier analysis showed that these four miRNAs were associated with patients' overall survival. In conclusion, we identified four oxidative stress-responsive miRNAs, which were regulated by p53-dependent (miR-34a-5p and miR-1915-3p) and p53-independent pathway (miR-150-3p and miR-638). These four miRNAs may offer new strategy for HCC diagnosis and prognosis.

  14. Mycotoxin-Containing Diet Causes Oxidative Stress in the Mouse

    PubMed Central

    Hou, Yan-Jun; Zhao, Yong-Yan; Xiong, Bo; Cui, Xiang-Shun; Kim, Nam-Hyung; Xu, Yin-Xue; Sun, Shao-Chen

    2013-01-01

    Mycotoxins which mainly consist of Aflatoxin (AF), Zearalenone (ZEN) and Deoxynivalenol (DON) are commonly found in many food commodities. Although each component has been shown to cause liver toxicity and oxidative stress in several species, there is no evidence regarding the effect of naturally contained multiple mycotoxins on tissue toxicity and oxidative stress in vivo. In the present study, mycotoxins-contaminated maize (AF 597 µg/kg, ZEN 729 µg/kg, DON 3.1 mg/kg maize) was incorporated into the diet at three different doses (0, 5 and 20%) to feed the mice, and blood and tissue samples were collected to examine the oxidative stress related indexes. The results showed that the indexes of liver, kidney and spleen were all increased and the liver and kidney morphologies changed in the mycotoxin-treated mice. Also, the treatment resulted in the elevated glutathione peroxidase (GPx) activity and malondialdehyde (MDA) level in the serum and liver, indicating the presence of the oxidative stress. Moreover, the decrease of catalase (CAT) activity in the serum, liver and kidney as well as superoxide dismutase (SOD) activity in the liver and kidney tissue further confirmed the occurrence of oxidative stress. In conclusion, our data indicate that the naturally contained mycotoxins are toxic in vivo and able to induce the oxidant stress in the mouse. PMID:23555961

  15. IGF-1, oxidative stress and atheroprotection.

    PubMed

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2010-04-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a crucial role not only in initial lesion formation but also in lesion progression and destabilization. Although most growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that insulin-like growth factor (IGF)-1 exerts both pleiotropic anti-oxidant effects and anti-inflammatory effects, which together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in models of vascular injury and atherosclerosis, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. [Influence of dietary intake on plasma biomarkers of oxidative stress in humans].

    PubMed

    Barbosa, K B F; Bressan, J; Zulet, M A; Martínez Hernández, J A

    2008-01-01

    Oxidative stress is related to an imbalance between the production of reactive species and the antioxidant defenses. In essence, oxidative stress has been defined as a disturbance in the pro-oxidant/antioxidant balance, leading to potential damage. It has been suggested that oxidative stress is involved in the etiology of several chronic diseases including cardiovascular disease, diabetes, cancer and neurodegenerative processes. The antioxidant defenses include nonenzymatic (especially dietary antioxidants) and antioxidant enzymes. Vitamins, minerals and phytochemicals (polyphenols and carotenoids) are among the major dietary antioxidants. The assessment of oxidative stress status though specific biomarkers has acquired great importance. The major biomarkers include the products of the attack of free radicals and reactive species to various substrates: lipids, proteins and nucleic acids. Measurement of antioxidant capacity may also involve the assessment of specific oxidative stress biomarkers. Most of the studies that have examined the association between diet and oxidative stress consider the effects of antioxidant supplements (vitamins and minerals), drinks and foods with bioactive compounds or dietary patterns on oxidative stress biomarkers. Some of these studies have demonstrated beneficial results on oxidative stress markers. However, the role of diet on oxidative stress biomarkers remains unclear and represents a potentially fruitful area for further research in the health area.

  17. Influence of Endodontic Treatment on Systemic Oxidative Stress

    PubMed Central

    Inchingolo, Francesco; Marrelli, Massimo; Annibali, Susanna; Cristalli, Maria Paola; Dipalma, Gianna; Inchingolo, Alessio Danilo; Palladino, Antonio; Inchingolo, Angelo Michele; Gargari, Marco; Tatullo, Marco

    2014-01-01

    Introduction: An increased production of oxidizing species related to reactive oral diseases, such as chronic apical periodontitis, could have systemic implications such as an increase in cardiovascular morbidity. Based on this consideration, we conducted a prospective study to assess whether subjects affected by chronic periodontitis presented with higher values of oxidative stress than reference values before endodontic treatment, and whether endodontic treatment can reduce the oxidative imbalance and bring it back to normal in these subjects. Materials and methods: The authors recruited 2 groups of patients from private studies and dental clinics: these patients were recruited randomly. The oxidative balance in both patients with chronic apical periodontitis (CAP) and healthy control patients was determined by measuring the oxidant status, using an identification of the reactive oxygen metabolites (d-ROMs) test, while the antioxidant status in these patients was determined using a biological antioxidant potential (BAP) test. Both these tests were carried on plasma samples taken from enrolled patients. Values were measured both before the endodontic treatment of the patients with chronic apical periodontitis, and 30 and 90 days after treatment, and compared to those obtained from healthy control patients. Results: It was found that, on recruitment, the patients with chronic apical periodontitis exhibited significantly higher levels of oxidative stress than control patients, as determined by the d-ROMs and BAP tests. Furthermore, the d-ROMs test values were shown to decrease and the BAP test values to increase over time in patients with chronic apical periodontitis following endodontic therapy. As the levels of oxidative stress in these patients tended to reduce and return to normal by 90 days following treatment. Conclusions: This study has demonstrated a positive association between chronic apical periodontitis and oxidative stress. Subjects affected by chronic

  18. Staphylococcus aureus CymR Is a New Thiol-based Oxidation-sensing Regulator of Stress Resistance and Oxidative Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Quanjiang; Zhang, Liang; Sun, Fei

    As a human pathogen, Staphylococcus aureus must cope with oxidative stress generated by the human immune system. Here, we report that CymR utilizes its sole Cys-25 to sense oxidative stress. Oxidation followed by thiolation of this cysteine residue leads to dissociation of CymR from its cognate promoter DNA. In contrast, the DNA binding of the CymRC25S mutant was insensitive to oxidation and thiolation, suggesting that CymR senses oxidative stress through oxidation of its sole cysteine to form a mixed disulfide with low molecular weight thiols. The determined crystal structures of the reduced and oxidized forms of CymR revealed that Cys-25more » is oxidized to Cys-25-SOH in the presence of H{sub 2}O{sub 2}. Deletion of cymR reduced the resistance of S. aureus to oxidative stresses, and the resistance was restored by expressing a C25S mutant copy of cymR. In a C25S substitution mutant, the expression of two genes, tcyP and mccB, was constitutively repressed and did not respond to hydrogen peroxide stress, whereas the expression of the genes were highly induced under oxidative stress in a wild-type strain, indicating the critical role of Cys-25 in redox signaling in vivo. Thus, CymR is another master regulator that senses oxidative stress and connects stress responses to virulence regulation in S. aureus.« less

  19. Assessment of Eccentric Exercise-Induced Oxidative Stress Using Oxidation-Reduction Potential Markers

    PubMed Central

    Stagos, Dimitrios; Goutzourelas, Nikolaos; Ntontou, Amalia-Maria; Kafantaris, Ioannis; Deli, Chariklia K.; Poulios, Athanasios; Jamurtas, Athanasios Z.; Bar-Or, David; Kouretas, Dimitrios

    2015-01-01

    The aim of the present study was to investigate the use of static (sORP) and capacity ORP (cORP) oxidation-reduction potential markers as measured by the RedoxSYS Diagnostic System in plasma, for assessing eccentric exercise-induced oxidative stress. Nineteen volunteers performed eccentric exercise with the knee extensors. Blood was collected before, immediately after exercise, and 24, 48, and 72 h after exercise. Moreover, common redox biomarkers were measured, which were protein carbonyls, thiobarbituric acid-reactive substances, total antioxidant capacity in plasma, and catalase activity and glutathione levels in erythrocytes. When the participants were examined as one group, there were not significant differences in any marker after exercise. However, in 11 participants there was a high increase in cORP after exercise, while in 8 participants there was a high decrease. Thus, the participants were divided in low cORP group exhibiting significant decrease in cORP after exercise and in high cORP group exhibiting significant increase. Moreover, only in the low cORP group there was a significant increase in lipid peroxidation after exercise suggesting induction of oxidative stress. The results suggested that high decreases in cORP values after exercise may indicate induction of oxidative stress by eccentric exercise, while high increases in cORP values after exercise may indicate no existence of oxidative stress. PMID:25874019

  20. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    PubMed Central

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K.; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z.; Mastorakos, George; Fatouros, Ioannis G.

    2017-01-01

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty. PMID:28106721

  1. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    PubMed Central

    Consales, Claudia; Merla, Caterina; Marino, Carmela; Benassi, Barbara

    2012-01-01

    Electromagnetic fields (EMFs) originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system. PMID:22991514

  2. Evaluation of oxidative stress in hunting dogs during exercise.

    PubMed

    Pasquini, A; Luchetti, E; Cardini, G

    2010-08-01

    Exercise has been shown to increase the production of reactive oxygen species (ROS) to a point that can exceed antioxidant defenses, to cause oxidative stress. The aim of our trials was to evaluate oxidative stress and recovery times in trained dogs during two different hunting exercises, with reactive oxygen metabolites-derivatives (d-ROMs) and biological antioxidant potential (BAP) tests. A group of nine privately owned Italian hounds were included. A 20-min aerobic exercise and a 4-h aerobic exercise, after 30 days of rest, were performed by the dogs. Our results show an oxidative stress after exercise due to both the high concentration of oxidants (d-ROMs) and the low level of antioxidant power (BAP). Besides, the recovery time is faster after the 4-h aerobic exercise than the 20-min aerobic exercise. Oxidative stress monitoring during dogs exercise could become an interesting aid to establish ideal adaptation to training. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Piracetam improves mitochondrial dysfunction following oxidative stress

    PubMed Central

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. Piracetam treatment at concentrations between 100 and 1000 μM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 μM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. Piracetam treatment (100–500 mg kg−1 daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients. PMID:16284628

  4. Aggregate breakdown of nanoparticulate titania

    NASA Astrophysics Data System (ADS)

    Venugopal, Navin

    Six nanosized titanium dioxide powders synthesized from a sulfate process were investigated. The targeted end-use of this powder was for a de-NOx catalyst honeycomb monolith. Alteration of synthesis parameters had resulted principally in differences in soluble ion level and specific surface area of the powders. The goal of this investigation was to understand the role of synthesis parameters in the aggregation behavior of these powders. Investigation via scanning electron microscopy of the powders revealed three different aggregation iterations at specific length scales. Secondary and higher order aggregate strength was investigated via oscillatory stress rheometry as a means of simulating shear conditions encountered during extrusion. G' and G'' were measured as a function of the applied oscillatory stress. Oscillatory rheometry indicated a strong variation as a function of the sulfate level of the particles in the viscoelastic yield strengths. Powder yield stresses ranged from 3.0 Pa to 24.0 Pa of oscillatory stress. Compaction curves to 750 MPa found strong similarities in extrapolated yield point of stage I and II compaction for each of the powders (at approximately 500 MPa) suggesting that the variation in sulfate was greatest above the primary aggregate level. Scanning electron microscopy of samples at different states of shear in oscillatory rheometry confirmed the variation in the linear elastic region and the viscous flow regime. A technique of this investigation was to approach aggregation via a novel perspective: aggregates are distinguished as being loose open structures that are highly disordered and stochastic in nature. The methodology used was to investigate the shear stresses required to rupture the various aggregation stages encountered and investigate the attempt to realign the now free-flowing constituents comprising the aggregate into a denser configuration. Mercury porosimetry was utilized to measure the pore size of the compact resulting from

  5. Chrononutrition against Oxidative Stress in Aging

    PubMed Central

    Garrido, M.; Terrón, M. P.; Rodríguez, A. B.

    2013-01-01

    Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked to reducing the risk of major oxidative stress-induced diseases. Some dietary components of foods possess biological activities which influence circadian rhythms in humans. Chrononutrition studies have shown that not only the content of food, but also the time of ingestion contributes to the natural functioning of the circadian system. Dietary interventions with antioxidant-enriched foods taking into account the principles of chrononutrition are of particular interest for the elderly since they may help amplify the already powerful benefits of phytochemicals as natural instruments with which to prevent or delay the onset of common age-related diseases. PMID:23861994

  6. Metabolic states following accumulation of intracellular aggregates: implications for neurodegenerative diseases.

    PubMed

    Vazquez, Alexei

    2013-01-01

    The formation of intracellular aggregates is a common etiology of several neurodegenerative diseases. Mitochondrial defects and oxidative stress has been pointed as the major mechanistic links between the accumulation of intracellular aggregates and cell death. In this work we propose a "metabolic cell death by overcrowding" as an alternative hypothesis. Using a model of neuron metabolism, we predict that as the concentration of protein aggregates increases the neurons transit through three different metabolic phases. The first phase (0-6 mM) corresponds with the normal neuron state, where the neuronal activity is sustained by the oxidative phosphorylation of lactate. The second phase (6-8.6 mM) is characterized by a mixed utilization of lactate and glucose as energy substrates and a switch from ammonia uptake to ammonia release by neurons. In the third phase (8.6-9.3 mM) neurons are predicted to support their energy demands from glycolysis and an alternative pathway for energy generation, involving reactions from serine synthesis, one carbon metabolism and the glycine cleavage system. The model also predicts a decrease in the maximum neuronal capacity for energy generation with increasing the concentration of protein aggregates. Ultimately this maximum capacity becomes zero when the protein aggregates reach a concentration of about 9.3 mM, predicting the cessation of neuronal activity.

  7. Effect of interface reaction and diffusion on stress-oxidation coupling at high temperature

    NASA Astrophysics Data System (ADS)

    Yue, Mengkun; Dong, Xuelin; Fang, Xufei; Feng, Xue

    2018-04-01

    High-temperature structural materials undergo oxidation during the service, and stress would generate in the oxide film. Understanding the coupling effect between stress and oxidation contributes to the understanding of material degradation and failure during the oxidation process. Here, we propose a model to investigative the coupling effect of stress and oxidation at high temperature by considering the three-stage oxidation process, where both the interface reaction and the diffusion process are present. The governing equations including the oxidation kinetics and stress equilibrium for isothermal oxidation under stress-oxidation coupling effect have been derived. The theory is validated by comparing with the experimental results of SiO2 grown on Si substrate. Results show that the coupling of stress and oxidation influences the growth of the oxide film by affecting all three stages of the oxidation process.

  8. Salivary markers of oxidative stress in oral diseases

    PubMed Central

    Tóthová, L'ubomíra; Kamodyová, Natália; Červenka, Tomáš; Celec, Peter

    2015-01-01

    Saliva is an interesting alternative diagnostic body fluid with several specific advantages over blood. These include non-invasive and easy collection and related possibility to do repeated sampling. One of the obstacles that hinders the wider use of saliva for diagnosis and monitoring of systemic diseases is its composition, which is affected by local oral status. However, this issue makes saliva very interesting for clinical biochemistry of oral diseases. Periodontitis, caries, oral precancerosis, and other local oral pathologies are associated with oxidative stress. Several markers of lipid peroxidation, protein oxidation and DNA damage induced by reactive oxygen species can be measured in saliva. Clinical studies have shown an association with oral pathologies at least for some of the established salivary markers of oxidative stress. This association is currently limited to the population level and none of the widely used markers can be applied for individual diagnostics. Oxidative stress seems to be of local oral origin, but it is currently unclear whether it is caused by an overproduction of reactive oxygen species due to inflammation or by the lack of antioxidants. Interventional studies, both, in experimental animals as well as humans indicate that antioxidant treatment could prevent or slow-down the progress of periodontitis. This makes the potential clinical use of salivary markers of oxidative stress even more attractive. This review summarizes basic information on the most commonly used salivary markers of oxidative damage, antioxidant status, and carbonyl stress and the studies analyzing these markers in patients with caries or periodontitis. PMID:26539412

  9. Nitric oxide donors rescue diabetic nephropathy through oxidative-stress-and nitrosative-stress-mediated Wnt signaling pathways

    PubMed Central

    Hsu, Yung-Chien; Lee, Pei-Hsien; Lei, Chen-Chou; Ho, Cheng; Shih, Ya-Hsueh; Lin, Chun-Liang

    2015-01-01

    Aims/Introduction The role of the renal nitric oxide (NO) system in the pathophysiology of diabetic nephropathy constitutes a very challenging and fertile field for future investigation. The purpose of the present study was to investigate whether NO donors can attenuate diabetic renal fibrosis and apoptosis through modulating oxidative-and nitrosative-stress, and Wnt signaling using in vivo diabetic models. Materials and Methods Diabetic rat was induced by a single intraperitoneal injection of streptozotocin. Rats in each group were intraperitoneally given 2,2′-(hydroxynitrosohydrazino)bis-ethanamine (1 U/kg/day) and vehicle for 28 and 56 consecutive days. Expression of the oxidative-and nitrosative-stress, and Wnt signaling components were examined in kidneys from diabetic animals by quantitative reverse transcription polymerase chain reaction, western blot analysis and immunohistochemical staining. Results NO donor treatment significantly reduced the ratio of kidney weight to bodyweight and proteinuria. This treatment also significantly restored the suppressive effect of diabetes on urinary NO2 + NO3 levels. Immunohistochemistry showed that NO donor treatment significantly reduced transforming growth factor (TGF)-β1, fibronectin, cleaved caspase-3 and triphosphate-biotin nick end-labeling expression in the glomeruli of diabetic rats. We found that diabetes promoted 8-hydroxy-2′-deoxyguanosine, and peroxynitrite expression coincided with reduced endothelial NO synthase expression in glomeruli. Interestingly, NO donor treatment completely removed oxidative stress and nitrosative stress, and restored endothelial NO synthase expression in diabetic renal glomeruli. Immunohistomorphometry results showed that NO donor treatment significantly restored suppressed Wnt5a expression and β-catenin immunoreactivities in glomeruli. Based on laser-captured microdissection for quantitative reverse transcription polymerase chain reaction, diabetes significantly increased

  10. Oxidative stress in hepatitis C infected end-stage renal disease subjects

    PubMed Central

    Horoz, Mehmet; Bolukbas, Cengiz; Bolukbas, Filiz F; Aslan, Mehmet; Koylu, Ahmet O; Selek, Sahbettin; Erel, Ozcan

    2006-01-01

    Background Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Methods Sixteen hepatitis C (+) hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Results Total antioxidant capacity was significantly higher in controls than hemodialysis subjects with or without hepatitis C infection (all p < 0.05/3), while total peroxide level and oxidative stress index were significantly lower (all p < 0.05/3). Hepatitis C (-) hemodialysis subjects had higher total antioxidant capacity compared to hepatitis C (+) hemodialysis subjects (all p < 0.05/3). Total peroxide level and oxidative stress index was comparable between hemodialysis subjects with or without hepatitis C infection (p > 0.05/3). Conclusion Oxidative stress is increased in both hepatitis C (+) and hepatitis C (-) hemodialysis subjects. However, hepatitis C infection seems to not cause any additional increase in oxidative stress in hemodialysis subjects and it may be partly due to protective effect of dialysis treatment on hepatitis C infection. PMID:16842626

  11. Oxidative stress in hepatitis C infected end-stage renal disease subjects.

    PubMed

    Horoz, Mehmet; Bolukbas, Cengiz; Bolukbas, Filiz F; Aslan, Mehmet; Koylu, Ahmet O; Selek, Sahbettin; Erel, Ozcan

    2006-07-14

    Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. Sixteen hepatitis C (+) hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. Total antioxidant capacity was significantly higher in controls than hemodialysis subjects with or without hepatitis C infection (all p < 0.05/3), while total peroxide level and oxidative stress index were significantly lower (all p < 0.05/3). Hepatitis C (-) hemodialysis subjects had higher total antioxidant capacity compared to hepatitis C (+) hemodialysis subjects (all p < 0.05/3). Total peroxide level and oxidative stress index was comparable between hemodialysis subjects with or without hepatitis C infection (p > 0.05/3). Oxidative stress is increased in both hepatitis C (+) and hepatitis C (-) hemodialysis subjects. However, hepatitis C infection seems to not cause any additional increase in oxidative stress in hemodialysis subjects and it may be partly due to protective effect of dialysis treatment on hepatitis C infection.

  12. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress.

    PubMed

    Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d'Hellencourt, Christian; Ravanan, Palaniyandi

    2014-01-01

    Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress.

  13. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress

    PubMed Central

    Chaudhari, Namrata; Talwar, Priti; Parimisetty, Avinash; Lefebvre d’Hellencourt, Christian; Ravanan, Palaniyandi

    2014-01-01

    Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress. PMID:25120434

  14. Nanomaterial induction of oxidative stress in lung epithelial cells and macrophages

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Pal, Anoop K.; Isaacs, Jacqueline A.; Bello, Dhimiter; Carrier, Rebecca L.

    2014-09-01

    Oxidative stress in the lung epithelial A549 cells and macrophages J774A.1 due to contact with commercially important nanomaterials [i.e., nano-silver (nAg), nano-alumina (nAl2O3), single-wall carbon nanotubes (CNT), and nano-titanium oxide anatase (nTiO2)] was evaluated. Nanomaterial-induced intracellular oxidative stress was analyzed by both H2DCFDA fluorescein probe and GSH depletion, extracellular oxidative stress was assessed by H2HFF fluorescein probes, and the secretion of chemokine IL-8 by A549 cells due to elevation of cellular oxidative stress was also monitored, in order to provide a comprehensive in vitro study on nanomaterial-induced oxidative stress in lung. In addition, results from this study were also compared with an acellular "ferric reducing ability of serum" (FRAS) assay and a prokaryotic cell-based assay in evaluating oxidative damage caused by the same set of nanomaterials, for comparison purposes. In general, it was found that nanomaterial-induced oxidative stress is highly cell-type dependent. In A549 lung epithelial cells, nAg appeared to induce highest level of oxidative stress and cell death followed by CNT, nTiO2, and nAl2O3. Different biological oxidative damage (BOD) assays' (i.e., H2DCFA, GSH, and IL-8 release) results generally agreed with each other, and the same trends of nanomaterial-induced BOD were also observed in acellular FRAS and prokaryotic E. coli K12-based assay. In macrophage J774A.1 cells, nAl2O3 and nTiO2 appeared to induce highest levels of oxidative stress. These results suggest that epithelial and macrophage cell models may provide complimentary information when conducting cell-based assays to evaluate nanomaterial-induced oxidative damage in lung.

  15. [Oxidative stress. Should it be measured in the diabetic patient?].

    PubMed

    Villa-Caballero, L; Nava-Ocampo, A A; Frati-Munari, A C; Ponce-Monter, H

    2000-01-01

    Oxidative stress has been defined as a loss of counterbalance between free radical or reactive oxygen species production and the antioxidant systems, with negative effects on carbohydrates, lipids, and proteins. It is also involved in the progression of different chronic diseases and apoptosis. Diabetes mellitus is associated to a high oxidative stress level through different biochemical pathways, i.e. protein glycosylation, glucose auto-oxidation, and the polyol pathway, mainly induced by hyperglycemia. Oxidative stress could also be involved in the pathogenesis of atherosclerotic lesions and other chronic diabetic complications. Measurement of oxidative stress could be useful to investigate its role in the initiation and development processes of chronic diabetic complications and also to evaluate preventive actions, including antioxidative therapy. Different attempts have been made to obtain a practical, accurate, specific, and sensitive method to evaluate oxidative stress in clinical practice. However, this ideal method is not currently available to date and the usefulness of the current methods needs to be confirmed in daily practice. We suggest quantifying oxidated and reduced glutation (GSSG/GSH) and the thiobarbituric reactive substances (TBARS) with currently alternatives. Currently available alternative methods while we await better options.

  16. Oxidative stress in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2004-01-01

    Juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum), were held in 8-11??C freshwater, starved for 3 days and subjected to a low-water stressor to determine the relationship between the general stress response and oxidative stress. Lipid peroxidation (LPO) levels (lipid hydroperoxides) were measured in kidney, liver and brain samples taken at the beginning of the experiment (0-h unstressed controls) and at 6, 24 and 48 h after application of a continuous low-water stressor. Tissue samples were also taken at 48 h from fish that had not been exposed to the stressor (48-h unstressed controls). Exposure to the low-water stressor affected LPO in kidney and brain tissues. In kidney, LPO decreased 6 h after imposition of the stressor; similar but less pronounced decreases also occurred in the liver and brain. At 48 h, LPO increased (in comparison with 6-h stressed tissues) in the kidney and brain. In comparison with 48-h unstressed controls, LPO levels were higher in the kidney and brain of stressed fish. Although preliminary, results suggest that stress can cause oxidative tissue damage in juvenile chinook salmon. Measures of oxidative stress have shown similar responses to stress in mammals; however, further research is needed to determine the extent of the stress-oxidative stress relationship and the underlying physiological mechanisms in fish.

  17. The Role of Oxidative Stress in Cerebral Aneurysm Formation and Rupture

    PubMed Central

    Starke, Robert M.; Chalouhi, Nohra; Ali, Muhammad S.; Jabbour, Pascal M.; Tjoumakaris, Stavropoula I.; Gonzalez, L. Fernando; Rosenwasser, Robert H.; Koch, Walter J.; Dumont, Aaron S.

    2013-01-01

    Oxidative stress is known to contribute to the progression of cerebrovascular disease. Additionally, oxidative stress may be increased by, but also augment inflammation, a key contributor to cerebral aneurysm development and rupture. Oxidative stress can induce important processes leading to cerebral aneurysm formation including direct endothelial injury as well as smooth muscle cell phenotypic switching to an inflammatory phenotype and ultimately apoptosis. Oxidative stress leads to recruitment and invasion of inflammatory cells through upregulation of chemotactic cytokines and adhesion molecules. Matrix metalloproteinases can be activated by free radicals leading to vessel wall remodeling and breakdown. Free radicals mediate lipid peroxidation leading to atherosclerosis and contribute to hemodynamic stress and hypertensive pathology, all integral elements of cerebral aneurysm development. Preliminary studies suggest that therapies targeted at oxidative stress may provide a future beneficial treatment for cerebral aneurysms, but further studies are indicated to define the role of free radicals in cerebral aneurysm formation and rupture. The goal of this review is to assess the role of oxidative stress in cerebral aneurysm pathogenesis. PMID:23713738

  18. Oxidative stress and skin diseases: possible role of physical activity.

    PubMed

    Kruk, Joanna; Duchnik, Ewa

    2014-01-01

    The skin is the largest body organ that regulates excretion of metabolic waste products, temperature, and plays an important role in body protection against environmental physical and chemical, as well as biological factors. These include agents that may act as oxidants or catalysts of reactions producing reactive oxygen species (ROS), reactive nitrogen species (RNS), and other oxidants in skin cells. An increased amount of the oxidants, exceeding the antioxidant defense system capacity is called oxidative stress, leading to chronic inflammation, which, in turn, can cause collagen fragmentation and disorganization of collagen fibers and skin cell functions, and thus contribute to skin diseases including cancer. Moreover, research suggests that oxidative stress participates in all stages of carcinogenesis. We report here a summary of the present state of knowledge on the role of oxidative stress in pathogenesis of dermatologic diseases, defensive systems against ROS/RNS, and discuss how physical activity may modulate skin diseases through effects on oxidative stress. The data show duality of physical activity actions: regular moderate activity protects against ROS/RNS damage, and endurance exercise with a lack of training mediates oxidative stress. These findings indicate that the redox balance should be considered in the development of new antioxidant strategies linked to the prevention and therapy of skin diseases.

  19. Selected oxidative stress markers in a South American crocodilian species.

    PubMed

    Furtado-Filho, Orlando V; Polcheira, Cássia; Machado, Daniel P; Mourão, Guilherme; Hermes-Lima, Marcelo

    2007-01-01

    Crocodilians and other diving vertebrates experience hypoperfusion and hypoxia of several internal organs during long dives. At the end of a dive, reperfusion of aerated blood may cause a physiologically relevant oxidative stress. In this study, we analyzed selected markers of oxidative stress in eight organs of normoxic Paraguayan caiman (Caiman yacare) captured in the Brazilian Pantanal wetlands during the winter of 2001 (six mature-adult males and eight young-adult males; AD-1 and YA-1 groups, respectively), and during the summer of 2002 (six young-adult males (YA-2 group), ten hatchlings and five embryos). Lipid peroxidation products determined by three different assays were generally highest in brain, liver and kidney (in comparison with all other organs), and lowest in white muscles from the tail and hind legs. Liver and kidney showed the highest levels of carbonyl protein, while brain showed low levels. Intermediate levels of oxidative stress markers were mostly found in the heart ventricles and lung. Differences in oxidative stress markers between AD-1 and YA-1 were organ-specific, showing no age-related correlation. However, most oxidative stress markers in YA-2 organs were either higher than (by 1.4- to 3.7-fold) or not significantly different from respective values in hatchlings organs. This pattern (hatchlings versus young-adults) was confirmed using correlation analysis of individual caiman size versus levels of oxidative damage markers in four organs. The higher level of oxidative stress markers in young-adults possibly relates to the fast growth rate (and thus, increased oxidative metabolic rate) of C. yacare in the first years of life. Differences in oxidative stress markers between YA-1 and YA-2 were also observed and were ascribed to seasonal changes in free radical metabolism. These results in normoxic C. yacare represent the first step towards understanding the age-related physiological oxidative stress of a diving reptile from a seasonally

  20. Effects of Temperature on Aggregation Kinetics of Graphene Oxide in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Wang, M.; Gao, B.; Tang, D.; Sun, H.; Yin, X.; Yu, C.

    2017-12-01

    Temperature may play an important role in controlling graphene oxide (GO) stability in aqueous solutions, but it has been overlooked in the literature. In this work, laboratory experiments were conducted to determine the effects of temperature (6, 25, and 40 °C) on GO aggregation kinetics under different combinations of ionic strength, cation type, humic acid (HA) concentration by monitoring GO hydrodynamic radii and attachment efficiencies. The results showed that, without HA, temperature increase promoted GO aggregation in both monovalent (Na+ and K+) and divalent (Ca2+) solutions. This phenomenon might be caused by multiple processes including enhanced collision frequency, enhanced cation dehydration, and reduced electrostatic repulsion. The presence of HA introduced steric repulsion forces that enhanced GO stability and temperature showed different effects GO aggregation kinetics in monovalent and divalent electrolytes. In monovalent electrolytes, cold temperature diminished the steric repulsion of HA-coated GO. As a result, the fastest increasing rate of GO hydrodynamic radius and the smallest critical coagulation concentration value appeared at the lowest temperature (6 °C). Conversely, in divalent electrolyte solutions with HA, high temperate favored GO aggregation, probably because the interactions between Ca2+ and HA increased with temperature resulting in lower HA coating on GO. Findings of this work emphasized the importance of temperature as well as solution chemistry on the stability and fate of GO nanoparticles in aquatic environment.

  1. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  2. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  3. The impact of pesticides on oxidative stress level in human organism and their activity as an endocrine disruptor.

    PubMed

    Jabłońska-Trypuć, Agata; Wołejko, Elżbieta; Wydro, Urszula; Butarewicz, Andrzej

    2017-07-03

    Pesticides cause serious environmental and health problems both to humans and animals. The aim of this review is to discuss selected herbicides and fungicides regarding their mode of action and their influence on basic oxidative stress parameters and endocrine disruption properties tested in selected cell cultures in vitro. Because of numerous difficulties which animal studies are subject to, cell cultures are an excellent experimental model reflecting human exposure to different pesticides through all relevant routes. This experimental model can be used to monitor aggregate and cumulative pesticide exposures.

  4. Chronic unpredictable mild stress generates oxidative stress and systemic inflammation in rats.

    PubMed

    López-López, Ana Laura; Jaime, Herlinda Bonilla; Escobar Villanueva, María Del Carmen; Padilla, Malinalli Brianza; Palacios, Gonzalo Vázquez; Aguilar, Francisco Javier Alarcón

    2016-07-01

    Stress is considered to be a causal agent of chronic degenerative diseases, such as cardiovascular disease, diabetes mellitus, arthritis and Alzheimer's. Chronic glucocorticoid and catecholamine release into the circulation during the stress response has been suggested to activate damage mechanisms, which in the long term produce metabolic alterations associated with oxidative stress and inflammation. However, the consequences of stress in animal models for periods longer than 40days have not been explored. The goal of this work was to determine whether chronic unpredictable mild stress (CUMS) produced alterations in the redox state and the inflammatory profile of rats after 20, 40, and 60days. CUMS consisted of random exposure of the animals to different stressors. The following activities were measured in the liver and pancreas: reduced glutathione (GSH), lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), and protein oxidation. Similarly, serum cytokine levels (IL-6, TNF-α, IL-1β, and IL-10) were determined. CUMS activated the stress response from day 20 until day 60. In the liver and pancreas, GHS levels were decreased from day 40, whereas protein lipid peroxidation and protein oxidation were increased. This is the first work to report that the pancreas redox state is subject to chronic stress conditions. The TAC was constant in the liver and reduced in the pancreas. An increase in the TNF-α, IL-1β, and IL-6 inflammatory markers and a decrease in the IL-10 level due to CUMS was shown, thereby resulting in the generation of a systemic inflammation state after 60days of treatment. Together, the CUMS consequences on day 60 suggest that both processes can contribute to the development of chronic degenerative diseases, such as cardiovascular disease and diabetes mellitus. CUMS is an animal model that in addition to avoiding habituation activates damage mechanisms such as oxidative stress and low-grade chronic

  5. Oxidative stress treatment for clinical trials in neurodegenerative diseases.

    PubMed

    Ienco, Elena Caldarazzo; LoGerfo, Annalisa; Carlesi, Cecilia; Orsucci, Daniele; Ricci, Giulia; Mancuso, Michelangelo; Siciliano, Gabriele

    2011-01-01

    Oxidative stress is a metabolic condition arising from imbalance between the production of potentially reactive oxygen species and the scavenging activities. Mitochondria are the main providers but also the main scavengers of cell oxidative stress. The role of mitochondrial dysfunction and oxidative stress in the pathogenesis of neurodegenerative diseases is well documented. Therefore, therapeutic approaches targeting mitochondrial dysfunction and oxidative damage hold great promise in neurodegenerative diseases. Despite this evidence, human experience with antioxidant neuroprotectants has generally been negative with regards to the clinical progress of disease, with unclear results in biochemical assays. Here we review the antioxidant approaches performed so far in neurodegenerative diseases and the future challenges in modern medicine.

  6. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    EPA Science Inventory

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ)induce oxidative stress by redox cycling, which generates hydrogen peroxide (H202). Cysteinylthio...

  7. Impact of early life stress on the pathogenesis of mental disorders: relation to brain oxidative stress.

    PubMed

    Schiavone, Stefania; Colaianna, Marilena; Curtis, Logos

    2015-01-01

    Stress is an inevitable part of human life and it is experienced even before birth. Stress to some extent could be considered normal and even necessary for the survival and the regular psychological development during childhood or adolescence. However, exposure to prolonged stress could become harmful and strongly impact mental health increasing the risk of developing psychiatric disorders. Recent studies have attempted to clarify how the human central nervous system (CNS) reacts to early life stress, focusing mainly on neurobiological modifications. Oxidative stress, defined as a disequilibrium between the oxidant generation and the antioxidant response, has been recently described as a candidate for most of the observed modifications. In this review, we will discuss how prolonged stressful events during childhood or adolescence (such as early maternal separation, parental divorce, physical violence, sexual or psychological abuses, or exposure to war events) can lead to increased oxidative stress in the CNS and enhance the risk to develop psychiatric diseases such as anxiety, depression, drug abuse or psychosis. Defining the sources of oxidative stress following exposure to early life stress might open new beneficial insights in therapeutic approaches to these mental disorders.

  8. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress.

    PubMed

    Mehta, Vineet; Parashar, Arun; Udayabanu, Malairaman

    2017-03-15

    It is now evident that chronic stress is associated with anxiety, depression and cognitive dysfunction and very few studies have focused on identifying possible methods to prevent these stress-induced disorders. Previously, we identified abundance of quercetin in Urtica dioica extract, which efficiently attenuated stress related complications. Therefore, current study was designed to investigate the effect of quercetin on chronic unpredicted stress (CUS) induced behavioral dysfunction, oxidative stress and neuroinflammation in the mouse hippocampus. Animals were subjected to unpredicted stress for 21days, during which 30mg/kg quercetin was orally administered to them. Effect of CUS and quercetin treatment on animal behavior was assessed between day 22-26. Afterward, the hippocampus was processed to evaluate neuronal damage, oxidative and inflammatory stress. Results revealed that stressed animals were highly anxious (Elevated Plus Maze and Open Field), showed depressive-like behavior (sucrose preference task), performed poorly in short-term and long-term associative memory task (passive avoidance step-through task) and displayed reduced locomotion (open field). Quercetin alleviated behavioral dysfunction in chronically stressed animals. Compared to CUS, quercetin treatment significantly reduced anxiety, attenuated depression, improved cognitive dysfunction and normalized locomotor activity. Further, CUS elevated the levels of oxidative stress markers (TBARS, nitric oxide), lowered antioxidants (total thiol, catalase), enhanced expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1β and COX-2) in the hippocampus and damaged hippocampal neurons. Quercetin treatment significantly lowered oxidative and inflammatory stress and prevented neural damage. In conclusion, quercetin can efficiently prevent stress induced neurological complications by rescuing brain from oxidative and inflammatory stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Photo-oxidative stress in emerging and senescing leaves: a mirror image?

    PubMed

    Juvany, Marta; Müller, Maren; Munné-Bosch, Sergi

    2013-08-01

    The life cycle of a leaf can be characterized as consisting of different stages: from primordial leaf initiation in the shoot apical meristem (SAM) to leaf senescence. Leaf development, from early leaf growth to senescence, is tightly controlled by plant development and the environment. Here, we primarily focus on summarizing current evidence indicating that photo-oxidative stress occurs at the two extremes of a leaf's lifespan. Some recent studies clearly indicate that--as happens in senescing leaves--emerging new leaves suffer from photo-oxidative stress, which suggests that oxidative stress plays a key role at both ends of the leaf life cycle. We discuss the causes and consequences of suffering from photo-oxidative stress during leaf development, paying attention to the particularities of this process at the two extremes of leaf development. Of particular importance is the current evidence showing mechanisms that maintain an adequate cellular reactive oxygen species/antioxidant (redox) balance that allows growth and prevents oxidative damage in young emerging leaves, while later on photo-oxidative stress induces cell death in senescing leaves. Also of interest is the fact that reductions in the efficiency of photosystem II photochemistry may not necessarily indicate photo-oxidative stress in emerging leaves. In this review, we summarize current knowledge of photoinhibition, photoprotection, and photo-oxidative stress at the two ends of the leaf life cycle: early leaf growth and leaf senescence.

  10. Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis.

    PubMed

    Findeisen, Hannes M; Pearson, Kevin J; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L; Cohn, Dianne; Heywood, Elizabeth B; de Cabo, Rafael; Bruemmer, Dennis

    2011-04-14

    Aging constitutes a major independent risk factor for the development of type 2 diabetes and is accompanied by insulin resistance and adipose tissue dysfunction. One of the most important factors implicitly linked to aging and age-related chronic diseases is the accumulation of oxidative stress. However, the effect of increased oxidative stress on adipose tissue biology remains elusive. In this study, we demonstrate that aging in mice results in a loss of fat mass and the accumulation of oxidative stress in adipose tissue. In vitro, increased oxidative stress through glutathione depletion inhibits preadipocyte differentiation. This inhibition of adipogenesis is at least in part the result of reduced cell proliferation and an inhibition of G(1)→S-phase transition during the initial mitotic clonal expansion of the adipocyte differentiation process. While phosphorylation of the retinoblastoma protein (Rb) by cyclin/cdk complexes remains unaffected, oxidative stress decreases the expression of S-phase genes downstream of Rb. This silencing of S phase gene expression by increased oxidative stress is mediated through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target promoters. Collectively, these data demonstrate a previously unrecognized role of oxidative stress in the regulation of adipogenesis which may contribute to age-associated adipose tissue dysfunction.

  11. Oxidative Stress Accumulates in Adipose Tissue during Aging and Inhibits Adipogenesis

    PubMed Central

    Findeisen, Hannes M.; Pearson, Kevin J.; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L.; Cohn, Dianne; Heywood, Elizabeth B.; de Cabo, Rafael; Bruemmer, Dennis

    2011-01-01

    Aging constitutes a major independent risk factor for the development of type 2 diabetes and is accompanied by insulin resistance and adipose tissue dysfunction. One of the most important factors implicitly linked to aging and age-related chronic diseases is the accumulation of oxidative stress. However, the effect of increased oxidative stress on adipose tissue biology remains elusive. In this study, we demonstrate that aging in mice results in a loss of fat mass and the accumulation of oxidative stress in adipose tissue. In vitro, increased oxidative stress through glutathione depletion inhibits preadipocyte differentiation. This inhibition of adipogenesis is at least in part the result of reduced cell proliferation and an inhibition of G1→S-phase transition during the initial mitotic clonal expansion of the adipocyte differentiation process. While phosphorylation of the retinoblastoma protein (Rb) by cyclin/cdk complexes remains unaffected, oxidative stress decreases the expression of S-phase genes downstream of Rb. This silencing of S phase gene expression by increased oxidative stress is mediated through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target promoters. Collectively, these data demonstrate a previously unrecognized role of oxidative stress in the regulation of adipogenesis which may contribute to age-associated adipose tissue dysfunction. PMID:21533223

  12. Acute restraint stress induces endothelial dysfunction: role of vasoconstrictor prostanoids and oxidative stress.

    PubMed

    Carda, Ana P P; Marchi, Katia C; Rizzi, Elen; Mecawi, André S; Antunes-Rodrigues, José; Padovan, Claudia M; Tirapelli, Carlos R

    2015-01-01

    We hypothesized that acute stress would induce endothelial dysfunction. Male Wistar rats were restrained for 2 h within wire mesh. Functional and biochemical analyses were conducted 24 h after the 2-h period of restraint. Stressed rats showed decreased exploration on the open arms of an elevated-plus maze (EPM) and increased plasma corticosterone concentration. Acute restraint stress did not alter systolic blood pressure, whereas it increased the in vitro contractile response to phenylephrine and serotonin in endothelium-intact rat aortas. NG-nitro-l-arginine methyl ester (l-NAME; nitric oxide synthase, NOS, inhibitor) did not alter the contraction induced by phenylephrine in aortic rings from stressed rats. Tiron, indomethacin and SQ29548 reversed the increase in the contractile response to phenylephrine induced by restraint stress. Increased systemic and vascular oxidative stress was evident in stressed rats. Restraint stress decreased plasma and vascular nitrate/nitrite (NOx) concentration and increased aortic expression of inducible (i) NOS, but not endothelial (e) NOS. Reduced expression of cyclooxygenase (COX)-1, but not COX-2, was observed in aortas from stressed rats. Restraint stress increased thromboxane (TX)B(2) (stable TXA(2) metabolite) concentration but did not affect prostaglandin (PG)F2α concentration in the aorta. Restraint reduced superoxide dismutase (SOD) activity, whereas concentrations of hydrogen peroxide (H(2)O(2)) and reduced glutathione (GSH) were not affected. The major new finding of our study is that restraint stress increases vascular contraction by an endothelium-dependent mechanism that involves increased oxidative stress and the generation of COX-derived vasoconstrictor prostanoids. Such stress-induced endothelial dysfunction could predispose to the development of cardiovascular diseases.

  13. [Oxidative stress and vascular function].

    PubMed

    Urbański, Karol; Nowak, Michal; Guzik, Tomasz J

    2013-01-01

    The maintenance of blood vessel homeostasis is closely associated with Reactive Oxygen and Nitrogen Species (ROS and RNS) production in the blood vessel wall. The main molecules taking part in this process are nitric oxide (NO), superoxide anion (O2*-), hydrogen peroxide (H2O2) and their derivatives. The production of these factors occurs in health and disease, however the increased ROS release is often referred to as oxidative stress. While initially oxidative stress was considered systemically, recent data indicate that it occurs locally in subcellular spaces and may be a result of dysfunction of individual enzyme systems. Oxidative stress induces inflammation, proliferation and migration of vascular smooth muscle cells, may regulate apoptosis and the function of the cells of vascular wall, finally leading to dysfunction of endothelium, media and adventitia, leading to cardiovascular diseases such as atherosclerosis, hypertension or heart failure. It is believed that a family of NADPH oxidases is the main source of ROS in the vessel wall, but also in other organs and tissues. It consists of seven known and quite precisely characterized homologues (NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2) which often have very distinct activity and cellular localization and function. Besides harmful actions, we are beginning to understand the protective effects of ROS and RNS. They have many functions regulating redox-sensitive gene expression and influencing a proper function of cells and vessels. NOX4 has been particularly well characterized in this respect. Thus, the maintenance of the right homeostasis depends not only on ROS removing capabilities, but especially on preserving the adequate level of ROS production.

  14. Anti-Oxidative Effects of Rooibos Tea (Aspalathus linearis) on Immobilization-Induced Oxidative Stress in Rat Brain

    PubMed Central

    Kim, Hyun-Pyo

    2014-01-01

    Exposure to chronic psychological stress may be related to increased reactive oxygen species (ROS) or free radicals, and thus, long-term exposure to high levels of oxidative stress may cause the accumulation of oxidative damage and eventually lead to many neurodegenerative diseases. Compared with other organs, the brain appears especially susceptible to excessive oxidative stress due to its high demand for oxygen. In the case of excessive ROS production, endogenous defense mechanisms against ROS may not be sufficient to suppress ROS-associated oxidative damage. Dietary antioxidants have been shown to protect neurons against a variety of experimental neurodegenerative conditions. In particular, Rooibos tea might be a good source of antioxidants due to its larger proportion of polyphenolic compounds. An optimal animal model for stress should show the features of a stress response and should be able to mimic natural stress progression. However, most animal models of stress, such as cold-restraint, electric foot shock, and burn shock, usually involve physical abuse in addition to the psychological aspects of stress. Animals subjected to chronic restraint or immobilization are widely believed to be a convenient and reliable model to mimic psychological stress. Therefore, in the present study, we propose that immobilization-induced oxidative stress was significantly attenuated by treatment with Rooibos tea. This conclusion is demonstrated by Rooibos tea’s ability to (i) reverse the increase in stress-related metabolites (5-HIAA and FFA), (ii) prevent lipid peroxidation (LPO), (iii) restore stress-induced protein degradation (PD), (iv) regulate glutathione metabolism (GSH and GSH/GSSG ratio), and (v) modulate changes in the activities of antioxidant enzymes (SOD and CAT). PMID:24466326

  15. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    PubMed Central

    Wages, Phillip A.; Lavrich, Katelyn S.; Zhang, Zhenfa; Cheng, Wan-Yun; Corteselli, Elizabeth; Gold, Avram; Bromberg, Philip; Simmons, Steven O.; Samet, James M.

    2016-01-01

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in physiological contexts and are also toxicological targets of oxidant stress induced by environmental contaminants. We investigated whether exposure to environmentally relevant concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were exposed to 0–1000 μM 1,2-NQ for 0–30 min, and levels of H2O2 were measured by ratiometric spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at concentrations as low as 3 μM induces H2O2-dependent protein sulfenylation in BEAS-2B cells. Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air contaminant represents a novel marker of oxidative environmental stress. PMID:26605980

  16. Nitric oxide mitigates arsenic-induced oxidative stress and genotoxicity in Vicia faba L.

    PubMed

    Shukla, Pratiksha; Singh, A K

    2015-09-01

    The protective effects of nitric oxide (NO) against arsenic (As)-induced structural disturbances in Vicia faba have been investigated. As treatment (0.25, 0.50, and 1 mM) resulted in a declined growth of V. faba seedlings. Arsenic treatment stimulates the activity of SOD and CAT while the activities of APX and GST content were decreased. The oxidative stress markers such as superoxide radical, hydrogen peroxide and malondialdehyde (lipid peroxidation) contents were enhanced by As. Overall results revealed that significant accumulation of As suppressed growth, photosynthesis, antioxidant enzymes (SOD, CAT, APX, and GST activity), mitotic index, and induction of different chromosomal abnormalities, hence led to oxidative stress. The concentration of SNP (0.02 mM) was very effective in counteracting the adverse effect of As toxicity. These abnormalities use partially or fully reversed by a simultaneous application of As and NO donor and sodium nitroprusside and has an ameliorating effect against As-induced oxidative stress and genotoxicity in V. faba roots.

  17. Role of Oxidative Stress in Epigenetic Modification in Endometriosis.

    PubMed

    Ito, Fuminori; Yamada, Yuki; Shigemitsu, Aiko; Akinishi, Mika; Kaniwa, Hiroko; Miyake, Ryuta; Yamanaka, Shoichiro; Kobayashi, Hiroshi

    2017-11-01

    Aberrant DNA methylation and histone modification are associated with an increased risk of reproductive disorders such as endometriosis. However, a cause-effect relationship between epigenetic mechanisms and endometriosis development has not been fully determined. This review provides current information based on oxidative stress in epigenetic modification in endometriosis. This article reviews the English-language literature on epigenetics, DNA methylation, histone modification, and oxidative stress associated with endometriosis in an effort to identify epigenetic modification that causes a predisposition to endometriosis. Oxidative stress, secondary to the influx of hemoglobin, heme, and iron during retrograde menstruation, is involved in the expression of CpG demethylases, ten-eleven translocation, and jumonji (JMJ). Ten-eleven translocation and JMJ recognize a wide range of endogenous DNA methyltransferases (DNMTs). The increased expression levels of DNMTs may be involved in the subsequent downregulation of the decidualization-related genes. This review supports the hypothesis that there are at least 2 distinct phases of epigenetic modification in endometriosis: the initial wave of iron-induced oxidative stress would be followed by the second big wave of epigenetic modulation of endometriosis susceptibility genes. We summarize the recent advances in our understanding of the underlying epigenetic mechanisms focusing on oxidative stress in endometriosis.

  18. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs.

    PubMed

    Smith, Samson W; Latta, Leigh C; Denver, Dee R; Estes, Suzanne

    2014-07-24

    The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory.

  19. Endogenous ROS levels in C. elegans under exogenous stress support revision of oxidative stress theory of life-history tradeoffs

    PubMed Central

    2014-01-01

    Background The oxidative stress theory of life-history tradeoffs states that oxidative stress caused by damaging free radicals directly underpins tradeoffs between reproduction and longevity by altering the allocation of energetic resources between these tasks. We test this theory by characterizing the effects of exogenous oxidative insult and its interaction with thermal stress and diet quality on a suite of life-history traits and correlations in Caenorhabditis elegans nematodes. We also quantify demographic aging rates and endogenous reactive oxygen species (ROS) levels in live animals. Results Our findings indicate a tradeoff between investment in reproduction and antioxidant defense (somatic maintenance) consistent with theoretical predictions, but correlations between standard life-history traits yield little evidence that oxidative stress generates strict tradeoffs. Increasing oxidative insult, however, shows a strong tendency to uncouple positive phenotypic correlations and, in particular, to reduce the correlation between reproduction and lifespan. We also found that mild oxidative insult results in lower levels of endogenous ROS accompanied by hormetic changes in lifespan, demographic aging, and reproduction that disappear in combined-stress treatments--consistent with the oxidative stress theory of aging. Conclusions Our findings demonstrate that oxidative stress is a direct contributor to life-history trait variation and that traditional tradeoffs are not necessary to invoke oxidative stress as a mediator of relationships between life-history traits, supporting previous calls for revisions to theory. PMID:25056725

  20. Role of mitochondrial oxidative stress in hypertension

    PubMed Central

    Ungvari, Zoltan

    2013-01-01

    Based on mosaic theory, hypertension is a multifactorial disorder that develops because of genetic, environmental, anatomical, adaptive neural, endocrine, humoral, and hemodynamic factors. It has been recently proposed that oxidative stress may contribute to all of these factors and production of reactive oxygen species (ROS) play an important role in the development of hypertension. Previous studies focusing on the role of vascular NADPH oxidases provided strong support of this concept. Although mitochondria represent one of the most significant sources of cellular ROS generation, the regulation of mitochondrial ROS generation in the cardiovascular system and its pathophysiological role in hypertension are much less understood. In this review, the role of mitochondrial oxidative stress in the pathophysiology of hypertension and cross talk between angiotensin II signaling, pathways involved in mechanotransduction, NADPH oxidases, and mitochondria-derived ROS are considered. The possible benefits of therapeutic strategies that have the potential to attenuate mitochondrial oxidative stress for the prevention/treatment of hypertension are also discussed. PMID:24043248

  1. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    PubMed

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Increased carbonylation, protein aggregation and apoptosis in the spinal cord of mice with experimental autoimmune encephalomyelitis

    PubMed Central

    Dasgupta, Anushka; Zheng, Jianzheng; Perrone-Bizzozero, Nora I.; Bizzozero, Oscar A.

    2013-01-01

    Previous work from our laboratory implicated protein carbonylation in the pathophysiology of both MS (multiple sclerosis) and its animal model EAE (experimental autoimmune encephalomyelitis). Subsequent in vitro studies revealed that the accumulation of protein carbonyls, triggered by glutathione deficiency or proteasome inhibition, leads to protein aggregation and neuronal cell death. These findings prompted us to investigate whether their association can be also established in vivo. In the present study, we characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of MOG (myelin-oligodendrocyte glycoprotein)35–55 peptide-induced EAE in C57BL/6 mice. The results show that protein carbonyls accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. We also show a temporal correlation between protein carbonylation (but not oxidative stress) and apoptosis. Furthermore, carbonyl levels are significantly higher in apoptotic cells than in live cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are present during the course of EAE. The LC3 (microtubule-associated protein light chain 3)-II/LC3-I ratio is significantly reduced in both acute and chronic EAE indicating reduced autophagy and explaining why aggresomes accumulate in this disorder. Taken together, the results of the present study suggest a link between protein oxidation and neuronal/glial cell death in vivo, and also demonstrate impaired proteostasis in this widely used murine model of MS. PMID:23489322

  3. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress.

    PubMed

    Imam, Mustapha Umar; Zhang, Shenshen; Ma, Jifei; Wang, Hao; Wang, Fudi

    2017-06-28

    Oxidative stress is a common denominator in the pathogenesis of many chronic diseases. Therefore, antioxidants are often used to protect cells and tissues and reverse oxidative damage. It is well known that iron metabolism underlies the dynamic interplay between oxidative stress and antioxidants in many pathophysiological processes. Both iron deficiency and iron overload can affect redox state, and these conditions can be restored to physiological conditions using iron supplementation and iron chelation, respectively. Similarly, the addition of antioxidants to these treatment regimens has been suggested as a viable therapeutic approach for attenuating tissue damage induced by oxidative stress. Notably, many bioactive plant-derived compounds have been shown to regulate both iron metabolism and redox state, possibly through interactive mechanisms. This review summarizes our current understanding of these mechanisms and discusses compelling preclinical evidence that bioactive plant-derived compounds can be both safe and effective for managing both iron deficiency and iron overload conditions.

  4. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders.

    PubMed

    Islam, Md Torequl

    2017-01-01

    Reactive species play an important role in physiological functions. Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species along with the failure of balance by the body's antioxidant enzyme systems results in destruction of cellular structures, lipids, proteins, and genetic materials such as DNA and RNA. Moreover, the effects of reactive species on mitochondria and their metabolic processes eventually cause a rise in ROS/RNS levels, leading to oxidation of mitochondrial proteins, lipids, and DNA. Oxidative stress has been considered to be linked to the etiology of many diseases, including neurodegenerative diseases (NDDs) such as Alzheimer diseases, Amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, Multiple sclerosis, and Parkinson's diseases. In addition, oxidative stress causing protein misfold may turn to other NDDs include Creutzfeldt-Jakob disease, Bovine Spongiform Encephalopathy, Kuru, Gerstmann-Straussler-Scheinker syndrome, and Fatal Familial Insomnia. An overview of the oxidative stress and mitochondrial dysfunction-linked NDDs has been summarized in this review.

  5. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress

    PubMed Central

    Zhang, Shenshen; Ma, Jifei; Wang, Hao; Wang, Fudi

    2017-01-01

    Oxidative stress is a common denominator in the pathogenesis of many chronic diseases. Therefore, antioxidants are often used to protect cells and tissues and reverse oxidative damage. It is well known that iron metabolism underlies the dynamic interplay between oxidative stress and antioxidants in many pathophysiological processes. Both iron deficiency and iron overload can affect redox state, and these conditions can be restored to physiological conditions using iron supplementation and iron chelation, respectively. Similarly, the addition of antioxidants to these treatment regimens has been suggested as a viable therapeutic approach for attenuating tissue damage induced by oxidative stress. Notably, many bioactive plant-derived compounds have been shown to regulate both iron metabolism and redox state, possibly through interactive mechanisms. This review summarizes our current understanding of these mechanisms and discusses compelling preclinical evidence that bioactive plant-derived compounds can be both safe and effective for managing both iron deficiency and iron overload conditions. PMID:28657578

  6. Oxidative stress and anti-oxidant enzyme activities in the trophocytes and fat cells of queen honeybees (Apis mellifera).

    PubMed

    Hsieh, Yu-Shan; Hsu, Chin-Yuan

    2013-08-01

    Trophocytes and fat cells of queen honeybees have been used for delayed cellular senescence studies, but their oxidative stress and anti-oxidant enzyme activities with advancing age are unknown. In this study, we assayed reactive oxygen species (ROS) and anti-oxidant enzymes in the trophocytes and fat cells of young and old queens. Young queens had lower ROS levels, lower superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, and higher thioredoxin reductase (TR) activity compared to old queens. These results show that oxidative stress and anti-oxidant enzyme activities in trophocytes and fat cells increase with advancing age in queens and suggest that an increase in oxidative stress and a consequent increase in stress defense mechanisms are associated with the longevity of queen honeybees.

  7. Chronic stress increases vulnerability to diet-related abdominal fat, oxidative stress, and metabolic risk.

    PubMed

    Aschbacher, Kirstin; Kornfeld, Sarah; Picard, Martin; Puterman, Eli; Havel, Peter J; Stanhope, Kimber; Lustig, Robert H; Epel, Elissa

    2014-08-01

    In preclinical studies, the combination of chronic stress and a high sugar/fat diet is a more potent driver of visceral adiposity than diet alone, a process mediated by peripheral neuropeptide Y (NPY). In a human model of chronic stress, we investigated whether the synergistic combination of highly palatable foods (HPF; high sugar/fat) and stress was associated with elevated metabolic risk. Using a case-control design, we compared 33 post-menopausal caregivers (the chronic stress group) to 28 age-matched low-stress control women on reported HPF consumption (modified Block Food Frequency Questionnaire), waistline circumference, truncal fat ultrasound, and insulin sensitivity using a 3-h oral glucose tolerance test. A fasting blood draw was assayed for plasma NPY and oxidative stress markers (8-hydroxyguanosine and F2-Isoprostanes). Among chronically stressed women only, greater HPF consumption was associated with greater abdominal adiposity, oxidative stress, and insulin resistance at baseline (all p's≤.01). Furthermore, plasma NPY was significantly elevated in chronically stressed women (p<.01), and the association of HPF with abdominal adiposity was stronger among women with high versus low NPY. There were no significant predictions of change over 1-year, likely due to high stability (little change) in the primary outcomes over this period. Chronic stress is associated with enhanced vulnerability to diet-related metabolic risk (abdominal adiposity, insulin resistance, and oxidative stress). Stress-induced peripheral NPY may play a mechanistic role. Copyright © 2014. Published by Elsevier Ltd.

  8. Dietary antioxidents and oxidative stress in predialysis chronic kidney disease patients.

    PubMed

    L Gupta, Krishan; Sahni, Nancy

    2012-10-01

    Dietary antioxidants are important in protecting against human diseases. Oxidative stress, a non- traditional risk factors of cardio-vascular disease is far more prevalent in chronic kidney disease (CKD) patients than in normal subjects. Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Oxidative stress could be a consequence of an increase in reactive oxygen species as well as a decrease in antioxidant defenses. Among the important factors that can be involved in triggering oxidative stress is insufficient dietary intake of antioxidants. Malnourished CKD patients are reported to have more oxidative stress than well nourished ones. Moving beyond the importance of assessment of dietary protein and energy in pre dialysis CKD patients to the assessment of dietary antioxidants is of utmost importance to help combat enhanced oxidative stress levels in such patients.

  9. Myocardial Oxidative Stress in Infants Undergoing Cardiac Surgery.

    PubMed

    Sznycer-Taub, Nathaniel; Mackie, Stewart; Peng, Yun-Wen; Donohue, Janet; Yu, Sunkyung; Aiyagari, Ranjit; Charpie, John

    2016-04-01

    Cardiac surgery for congenital heart disease often necessitates a period of myocardial ischemia during cardiopulmonary bypass and cardioplegic arrest, followed by reperfusion after aortic cross-clamp removal. In experimental models, myocardial ischemia-reperfusion is associated with significant oxidative stress and ventricular dysfunction. A prospective observational study was conducted in infants (<1 year) who underwent elective surgical repair of a ventricular septal defect (VSD) or tetralogy of Fallot (TOF). Blood samples were drawn following anesthetic induction (baseline) and directly from the coronary sinus at 1, 3, 5, and 10 min following aortic cross-clamp removal. Samples were analyzed for oxidant stress using assays for thiobarbituric acid-reactive substances, protein carbonyl, 8-isoprostane, and total antioxidant capacity. For each subject, raw assay data were normalized to individual baseline samples and expressed as fold-change from baseline. Results were compared using a one-sample t test with Bonferroni correction for multiple comparisons. Sixteen patients (ten with TOF and six with VSD) were enrolled in the study, and there were no major postoperative complications observed. For the entire cohort, there was an immediate, rapid increase in myocardial oxidative stress that was sustained for 10 min following aortic cross-clamp removal in all biomarker assays (all P < 0.01), except total antioxidant capacity. Infant cardiac surgery is associated with a rapid, robust, and time-dependent increase in myocardial oxidant stress as measured from the coronary sinus in vivo. Future studies with larger enrollment are necessary to assess any association between myocardial oxidative stress and early postoperative outcomes.

  10. Ursodeoxycholic Acid Ameliorated Diabetic Nephropathy by Attenuating Hyperglycemia-Mediated Oxidative Stress.

    PubMed

    Cao, Aili; Wang, Li; Chen, Xia; Guo, Hengjiang; Chu, Shuang; Zhang, Xuemei; Peng, Wen

    2016-08-01

    Oxidative stress has a great role in diabetes and diabetes induced organ damage. Endoplasmic reticulum (ER) stress is involved in the onset of diabetic nephropathy. We hypothesize that ER stress inhibition could protect against kidney injury through anti-oxidative effects. To test whether block ER stress could attenuate oxidative stress and improve diabetic nephropathy in vivo and in vitro, the effect of ursodeoxycholic acid (UDCA), an ER stress inhibitor, on spontaneous diabetic nephropathy db/db mice, ER stress inducer or high glucose-triggered podocytes were studied. Mice were assigned to 3 groups (n=6 per group): control group (treated with vehicle), db/db group (treated with vehicle), and UDCA group (db/db mice treated with 40 mg/kg/d UDCA). After 8 weeks treatment, mice were sacrificed. Blood and kidneys were collected for the assessment of albumin/creatinine ratio, blood urea nitrogen (BUN), serum creatinine (SCr), insulin, total cholesterol, triglyceride, low density lipoprotein cholesterol (LDL-C), oxidized LDL-C, high density lipoprotein cholesterol (HDL-C), non-esterified fatty acid (NEFA), superoxide dismutase (SOD), catalase (CAT), methane dicarboxylic aldehyde (MDA), the expressions of SOD isoforms and glutathione peroxidase 1, as well as histopathological examination. In addition, generation of reactive oxygen species (ROS) was detected by 2'7'-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence. The results showed that UDCA alleviated renal ER stress-evoked cell death, oxidative stress, renal dysfunction, ROS production, upregulated the expression of Bcl-2 and suppressed Bax in vivo and in vitro. Hence, inhibition ER stress diminishes oxidative stress and exerts renoprotective effects.

  11. Evolution of thermal stress and failure probability during reduction and re-oxidation of solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Jiang, Wenchun; Luo, Yun; Zhang, Yucai; Tu, Shan-Tung

    2017-12-01

    The reduction and re-oxidation of anode have significant effects on the integrity of the solid oxide fuel cell (SOFC) sealed by the glass-ceramic (GC). The mechanical failure is mainly controlled by the stress distribution. Therefore, a three dimensional model of SOFC is established to investigate the stress evolution during the reduction and re-oxidation by finite element method (FEM) in this paper, and the failure probability is calculated using the Weibull method. The results demonstrate that the reduction of anode can decrease the thermal stresses and reduce the failure probability due to the volumetric contraction and porosity increasing. The re-oxidation can result in a remarkable increase of the thermal stresses, and the failure probabilities of anode, cathode, electrolyte and GC all increase to 1, which is mainly due to the large linear strain rather than the porosity decreasing. The cathode and electrolyte fail as soon as the linear strains are about 0.03% and 0.07%. Therefore, the re-oxidation should be controlled to ensure the integrity, and a lower re-oxidation temperature can decrease the stress and failure probability.

  12. [Role of green tea in oxidative stress prevention].

    PubMed

    Metro, D; Muraca, U; Manasseri, L

    2006-01-01

    Oxidative stress is a condition caused by an increase of Reactive Oxygen Species (ROS) or by a shortage of the mechanisms of cellular protection and antioxidant defence. ROS have a potential oxidative effect towards various cellular macromolecules: proteins, nucleic acids, proteoglycans, lipids, with consequent damages in several cellular districts and promotion of the ageing process of the organism. However, some substances are able to prevent and/or reduce the damages caused by ROS; therefore, they are defined antioxidant. The present research studied, in a group of subjects, the antioxidant effects of the green tea, that was administered with fruit and vegetables in a strictly controlled diet. 50 subjects were selected and requested to daily consume 2-3 fruit portions (especially pineapple), 3-5 portions of vegetables (especially tomato) and 2-3 glasses of green tea for about 2 months to integrate the controlled basic diet. Some indicators of the oxidative stress were measured in the plasma before and after the integration period. The integration of a basic diet with supplements of fruit, vegetables and green tea turned out to be able in increasing both plasmatic total antioxidant capacity and endogenous antioxidant levels and to reduce the lipid peroxidation of the membranes, suggesting a reduction of the oxidative stress. These data suggest that an adequate supplement of antioxidants can prevent oxidative stress and correlated pathologies.

  13. Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer's disease.

    PubMed

    Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2017-10-01

    Alzheimer's disease (AD) is a neurodegenerative disease, in which the primary etiology remains unknown. AD presents amyloid beta (Aβ) protein aggregation and neurofibrillary plaque deposits. AD shows oxidative stress and chronic inflammation. In AD, canonical Wingless-Int (Wnt)/β-catenin pathway is downregulated, whereas peroxisome proliferator-activated receptor γ (PPARγ) is increased. Downregulation of Wnt/β-catenin, through activation of glycogen synthase kinase-3β (GSK-3β) by Aβ, and inactivation of phosphatidylinositol 3-kinase/Akt signaling involve oxidative stress in AD. Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid from Cannabis sativa plant. In PC12 cells, Aβ-induced tau protein hyperphosphorylation is inhibited by CBD. This inhibition is associated with a downregulation of p-GSK-3β, an inhibitor of Wnt pathway. CBD may also increase Wnt/β-catenin by stimulation of PPARγ, inhibition of Aβ and ubiquitination of amyloid precursor protein. CBD attenuates oxidative stress and diminishes mitochondrial dysfunction and reactive oxygen species generation. CBD suppresses, through activation of PPARγ, pro-inflammatory signaling and may be a potential new candidate for AD therapy. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Xueqi; Huang, Shengbin; Yu, Qing

    Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H{sub 2}O{sub 2}-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activitymore » and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H{sub 2}O{sub 2}-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis. - Highlights: • Oxidative stress is an early pathological event in osteoporosis. • Imbalance of mitochondrial dynamics are linked to oxidative stress in osteoporosis. • The role of the Drp1-dependent mitochondrial pathway in osteoporosis.« less

  15. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    PubMed

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  16. Role of oxidative stress in melasma: a prospective study on serum and blood markers of oxidative stress in melasma patients.

    PubMed

    Choubey, Vikrant; Sarkar, Rashmi; Garg, Vijay; Kaushik, Smita; Ghunawat, Sneha; Sonthalia, Sidharth

    2017-09-01

    Melasma is a common pigmentary disorder presenting in the dermatological clinic. Many factors have been implicated in the pathogenesis, however, the cause still remains elusive. Recently the effect of oxidative damage has been proposed in the etiopathogenesis of melasma. This study was undertaken to evaluate the role of oxidative stress in patients with melasma. Fifty patients with melasma, age 18 years of age and older, and an equal number of age and sex-matched controls were included in the study. Baseline severity assessment using the modified Melasma Area and Severity Index (modified MASI score) was done in all patients. Serum malondialdehyde, blood superoxide dismutase, and blood glutathione peroxidase levels were measured in cases and controls group and results were compared. The serum levels of malondialdehyde, superoxide dismutase, and blood glutathione were significantly higher among the cases compared to controls. The difference in the serum concentrations was significant between the two groups (P < 0.01). A positive correlation was found between these enzyme levels and severity of melasma (modified MASI score); however, this correlation was statistically significant with serum malondialdehyde only. The level of oxidative stress among the male and female melasma patients was not statistically different. Oxidative stress was found to be increased in cases of melasma compared to the control group in this study. This substantiates the role of oxidative stress in etiopathogenesis of melasma; however, further studies are required to reach a definitive conclusion. © 2017 The International Society of Dermatology.

  17. Oxygen and oxidative stress in the perinatal period.

    PubMed

    Torres-Cuevas, Isabel; Parra-Llorca, Anna; Sánchez-Illana, Angel; Nuñez-Ramiro, Antonio; Kuligowski, Julia; Cháfer-Pericás, Consuelo; Cernada, María; Escobar, Justo; Vento, Máximo

    2017-08-01

    Fetal life evolves in a hypoxic environment. Changes in the oxygen content in utero caused by conditions such as pre-eclampsia or type I diabetes or by oxygen supplementation to the mother lead to increased free radical production and correlate with perinatal outcomes. In the fetal-to-neonatal transition asphyxia is characterized by intermittent periods of hypoxia ischemia that may evolve to hypoxic ischemic encephalopathy associated with neurocognitive, motor, and neurosensorial impairment. Free radicals generated upon reoxygenation may notably increase brain damage. Hence, clinical trials have shown that the use of 100% oxygen given with positive pressure in the airways of the newborn infant during resuscitation causes more oxidative stress than using air, and increases mortality. Preterm infants are endowed with an immature lung and antioxidant system. Clinical stabilization of preterm infants after birth frequently requires positive pressure ventilation with a gas admixture that contains oxygen to achieve a normal heart rate and arterial oxygen saturation. In randomized controlled trials the use high oxygen concentrations (90% to 100%) has caused more oxidative stress and clinical complications that the use of lower oxygen concentrations (30-60%). A correlation between the amount of oxygen received during resuscitation and the level of biomarkers of oxidative stress and clinical outcomes was established. Thus, based on clinical outcomes and analytical results of oxidative stress biomarkers relevant changes were introduced in the resuscitation policies. However, it should be underscored that analysis of oxidative stress biomarkers in biofluids has only been used in experimental and clinical research but not in clinical routine. The complexity of the technical procedures, lack of automation, and cost of these determinations have hindered the routine use of biomarkers in the clinical setting. Overcoming these technical and economical difficulties constitutes a

  18. Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver

    PubMed Central

    Satapati, Santhosh; Kucejova, Blanka; Duarte, Joao A.G.; Fletcher, Justin A.; Reynolds, Lacy; Sunny, Nishanth E.; He, Tianteng; Nair, L. Arya; Livingston, Kenneth; Fu, Xiaorong; Merritt, Matthew E.; Sherry, A. Dean; Malloy, Craig R.; Shelton, John M.; Lambert, Jennifer; Parks, Elizabeth J.; Corbin, Ian; Magnuson, Mark A.; Browning, Jeffrey D.; Burgess, Shawn C.

    2015-01-01

    Mitochondria are critical for respiration in all tissues; however, in liver, these organelles also accommodate high-capacity anaplerotic/cataplerotic pathways that are essential to gluconeogenesis and other biosynthetic activities. During nonalcoholic fatty liver disease (NAFLD), mitochondria also produce ROS that damage hepatocytes, trigger inflammation, and contribute to insulin resistance. Here, we provide several lines of evidence indicating that induction of biosynthesis through hepatic anaplerotic/cataplerotic pathways is energetically backed by elevated oxidative metabolism and hence contributes to oxidative stress and inflammation during NAFLD. First, in murine livers, elevation of fatty acid delivery not only induced oxidative metabolism, but also amplified anaplerosis/cataplerosis and caused a proportional rise in oxidative stress and inflammation. Second, loss of anaplerosis/cataplerosis via genetic knockdown of phosphoenolpyruvate carboxykinase 1 (Pck1) prevented fatty acid–induced rise in oxidative flux, oxidative stress, and inflammation. Flux appeared to be regulated by redox state, energy charge, and metabolite concentration, which may also amplify antioxidant pathways. Third, preventing elevated oxidative metabolism with metformin also normalized hepatic anaplerosis/cataplerosis and reduced markers of inflammation. Finally, independent histological grades in human NAFLD biopsies were proportional to oxidative flux. Thus, hepatic oxidative stress and inflammation are associated with elevated oxidative metabolism during an obesogenic diet, and this link may be provoked by increased work through anabolic pathways. PMID:26571396

  19. Essential hypertension and oxidative stress: New insights

    PubMed Central

    González, Jaime; Valls, Nicolás; Brito, Roberto; Rodrigo, Ramón

    2014-01-01

    Essential hypertension is a highly prevalent pathological condition that is considered as one of the most relevant cardiovascular risk factors and is an important cause of morbidity and mortality around the world. Despite the fact that mechanisms underlying hypertension are not yet fully elucidated, a large amount of evidence shows that oxidative stress plays a central role in its pathophysiology. Oxidative stress can be defined as an imbalance between oxidant agents, such as superoxide anion, and antioxidant molecules, and leads to a decrease in nitric oxide bioavailability, which is the main factor responsible for maintaining the vascular tone. Several vasoconstrictor peptides, such as angiotensin II, endothelin-1 and urotensin II, act through their receptors to stimulate the production of reactive oxygen species, by activating enzymes like NADPH oxidase and xanthine oxidase. The knowledge of the mechanism described above has allowed generating new therapeutic strategies against hypertension based on the use of antioxidants agents, including vitamin C and E, N-Acetylcysteine, polyphenols and selenium, among others. These substances have different therapeutic targets, but all represent antioxidant reinforcement. Several clinical trials using antioxidants have been made. The aim of the present review is to provide new insights about the key role of oxidative stress in the pathophysiology of essential hypertension and new clinical attempts to demonstrate the usefulness of antioxidant therapy in the treatment of hypertension. PMID:24976907

  20. Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants.

    PubMed

    Carini, Francesco; Mazzola, Margherita; Rappa, Francesca; Jurjus, Abdo; Geagea, Alice Gerges; Al Kattar, Sahar; Bou-Assi, Tarek; Jurjus, Rosalyn; Damiani, Provvidenza; Leone, Angelo; Tomasello, Giovanni

    2017-09-01

    One of the contributory causes of colon cancer is the negative effect of reactive oxygen species on DNA repair mechanisms. Currently, there is a growing support for the concept that oxidative stress may be an important etiological factor for carcinogenesis. The purpose of this review is to elucidate the role of oxidative stress in promoting colorectal carcinogenesis and to highlight the potential protective role of antioxidants. Several studies have documented the importance of antioxidants in countering oxidative stress and preventing colorectal carcinogenesis. However, there are conflicting data in the literature concerning its proper use in humans, since these studies did not yield definitive results and were performed mostly in vitro on cell populations, or in vivo in experimental animal models. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress.

    PubMed

    Sripathi, Srinivas R; He, Weilue; Um, Ji-Yeon; Moser, Trevor; Dehnbostel, Stevie; Kindt, Kimberly; Goldman, Jeremy; Frost, Megan C; Jahng, Wan Jin

    2012-01-01

    Light is a risk factor for various eye diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). We aim to understand how cytoskeletal proteins in the retinal pigment epithetlium (RPE) respond to oxidative stress, including light and how these responses affect apoptotic signaling. Previously, proteomic analysis revealed that the expression levels of vimentin and serine/threonine protein phosphatase 2A (PP2A) are significantly increased when mice are exposed under continuous light for 7 days compared to a condition of 12 hrs light/dark cycling exposure using retina degeneration 1 (rd1) model. When melatonin is administered to animals while they are exposed to continuous light, the levels of vimentin and PP2A return to a normal level. Vimentin is a substrate of PP2A that directly binds to vimentin and dephosphorylates it. The current study shows that upregulation of PP2Ac (catalytic subunit) phosphorylation negatively correlates with vimentin phosphorylation under stress condition. Stabilization of vimentin appears to be achieved by decreased PP2Ac phosphorylation by nitric oxide induction. We tested our hypothesis that site-specific modifications of PP2Ac may drive cytoskeletal reorganization by vimentin dephosphorylation through nitric oxide signaling. We speculate that nitric oxide determines protein nitration under stress conditions. Our results demonstrate that PP2A and vimentin are modulated by nitric oxide as a key element involved in cytoskeletal signaling. The current study suggests that external stress enhances nitric oxide to regulate PP2Ac and vimentin phosphorylation, thereby stabilizing or destabilizing vimentin. Phosphorylation may result in depolymerization of vimentin, leading to nonfilamentous particle formation. We propose that a stabilized vimentin might act as an anti-apoptotic molecule when cells are under oxidative stress.

  2. Nitric oxide leads to cytoskeletal reorganization in the retinal pigment epithelium under oxidative stress

    PubMed Central

    Um, Ji-Yeon; Moser, Trevor; Dehnbostel, Stevie; Kindt, Kimberly; Goldman, Jeremy; Frost, Megan C.; Jahng, Wan Jin

    2016-01-01

    Light is a risk factor for various eye diseases, including age-related macular degeneration (AMD) and retinitis pigmentosa (RP). We aim to understand how cytoskeletal proteins in the retinal pigment epithetlium (RPE) respond to oxidative stress, including light and how these responses affect apoptotic signaling. Previously, proteomic analysis revealed that the expression levels of vimentin and serine/threonine protein phosphatase 2A (PP2A) are significantly increased when mice are exposed under continuous light for 7 days compared to a condition of 12 hrs light/dark cycling exposure using retina degeneration 1 (rd1) model. When melatonin is administered to animals while they are exposed to continuous light, the levels of vimentin and PP2A return to a normal level. Vimentin is a substrate of PP2A that directly binds to vimentin and dephosphorylates it. The current study shows that upregulation of PP2Ac (catalytic subunit) phosphorylation negatively correlates with vimentin phosphorylation under stress condition. Stabilization of vimentin appears to be achieved by decreased PP2Ac phosphorylation by nitric oxide induction. We tested our hypothesis that site-specific modifications of PP2Ac may drive cytoskeletal reorganization by vimentin dephosphorylation through nitric oxide signaling. We speculate that nitric oxide determines protein nitration under stress conditions. Our results demonstrate that PP2A and vimentin are modulated by nitric oxide as a key element involved in cytoskeletal signaling. The current study suggests that external stress enhances nitric oxide to regulate PP2Ac and vimentin phosphorylation, thereby stabilizing or destabilizing vimentin. Phosphorylation may result in depolymerization of vimentin, leading to nonfilamentous particle formation. We propose that a stabilized vimentin might act as an anti-apoptotic molecule when cells are under oxidative stress. PMID:27974994

  3. Monoclonal Antibody Interactions with Micro- and Nanoparticles: Adsorption, Aggregation and Accelerated Stress Studies

    PubMed Central

    Bee, Jared S.; Chiu, David; Sawicki, Suzanne; Stevenson, Jennifer L.; Chatterjee, Koustuv; Freund, Erwin; Carpenter, John F.; Randolph, Theodore W.

    2009-01-01

    Therapeutic proteins are exposed to various wetted surfaces that could shed sub-visible particles. In this work we measured the adsorption of a monoclonal antibody (mAb) to various microparticles, characterized the adsorbed mAb secondary structure, and determined the reversibility of adsorption. We also developed and used a front-face fluorescence quenching method to determine that the mAb tertiary structure was near-native when adsorbed to glass, cellulose and silica. Initial adsorption to each of the materials tested was rapid. During incubation studies, exposure to the air-water interface was a significant cause of aggregation but acted independently of the effects of microparticles. Incubations with glass, cellulose, stainless steel or Fe2O3 microparticles gave very different results. Cellulose preferentially adsorbed aggregates from solution. Glass and Fe2O3 adsorbed the mAb but did not cause aggregation. Adsorption to stainless steel microparticles was irreversible, and caused appearance of soluble aggregates upon incubation. The secondary structure of mAb adsorbed to glass and cellulose was near-native. We suggest that the protocol described in this work could be a useful preformulation stress screening tool to determine the sensitivity of a therapeutic protein to exposure to common surfaces encountered during processing and storage. PMID:19492408

  4. Oxidative Stress and Periodontal Disease in Obesity.

    PubMed

    Dursun, Erhan; Akalin, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-03-01

    Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women.Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated.Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status markers

  5. Oxidative Stress and Periodontal Disease in Obesity

    PubMed Central

    Dursun, Erhan; Akalın, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-01-01

    Abstract Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women. Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated. Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P < 0.05 for all). GCF TOS was higher in the obese women (P < 0.05), whereas there was a nonsignificant trend for higher serum TOS in obese women (P = 0.074). GCF TAOC values showed a negative correlation with body mass index, whereas GCF OSI was positively correlated with fasting insulin and low-density lipoprotein-cholesterol levels (P < 0.05 for all). Clinical periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status

  6. Dietary antioxidents and oxidative stress in predialysis chronic kidney disease patients

    PubMed Central

    L Gupta, Krishan; Sahni, Nancy

    2012-01-01

    Context Dietary antioxidants are important in protecting against human diseases. Oxidative stress, a non- traditional risk factors of cardio-vascular disease is far more prevalent in chronic kidney disease (CKD) patients than in normal subjects. Evidence Acquisitions Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. Results Oxidative stress could be a consequence of an increase in reactive oxygen species as well as a decrease in antioxidant defenses. Among the important factors that can be involved in triggering oxidative stress is insufficient dietary intake of antioxidants. Malnourished CKD patients are reported to have more oxidative stress than well nourished ones. Conclusions Moving beyond the importance of assessment of dietary protein and energy in pre dialysis CKD patients to the assessment of dietary antioxidants is of utmost importance to help combat enhanced oxidative stress levels in such patients. PMID:24475404

  7. Carbon monoxide exposure enhances arrhythmia after cardiac stress: involvement of oxidative stress.

    PubMed

    André, Lucas; Gouzi, Fares; Thireau, Jérôme; Meyer, Gregory; Boissiere, Julien; Delage, Martine; Abdellaoui, Aldja; Feillet-Coudray, Christine; Fouret, Gilles; Cristol, Jean-Paul; Lacampagne, Alain; Obert, Philippe; Reboul, Cyril; Fauconnier, Jérémy; Hayot, Maurice; Richard, Sylvain; Cazorla, Olivier

    2011-11-01

    Arrhythmias following cardiac stress are a key predictor of death in healthy population. Carbon monoxide (CO) is a ubiquitous pollutant promoting oxidative stress and associated with hospitalization for cardiovascular disease and cardiac mortality. We investigated the effect of chronic CO exposure on the occurrence of arrhythmic events after a cardiac stress test and the possible involvement of related oxidative stress. Wistar rats exposed chronically (4 weeks) to sustained urban CO pollution presented more arrhythmic events than controls during recovery after cardiac challenge with isoprenaline in vivo. Sudden death occurred in 22% of CO-exposed rats versus 0% for controls. Malondialdehyde (MDA), an end-product of lipid peroxidation, was increased in left ventricular tissue of CO-exposed rats. Cardiomyocytes isolated from CO-exposed rats showed higher reactive oxygen species (ROS) production (measured with MitoSox Red dye), higher diastolic Ca(2+) resulting from SR calcium leak and an higher occurrence of irregular Ca(2+) transients (measured with Indo-1) in comparison to control cells after a high pacing sequence. Acute treatment with a ROS scavenger (N-acetylcysteine, 20 mmol/L, 1 h) prevented this sequence of alterations and decreased the number of arrhythmic cells following high pacing. Chronic CO exposure promotes oxidative stress that alters Ca(2+) homeostasis (through RYR2 and SERCA defects) and thereby mediates the triggering of ventricular arrhythmia after cardiac stress that can lead to sudden death.

  8. Intrinsic stress evolution during amorphous oxide film growth on Al surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flötotto, D., E-mail: d.floetotto@is.mpg.de; Wang, Z. M.; Jeurgens, L. P. H.

    2014-03-03

    The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al{sub 2}O{sub 3} films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively.

  9. Oxidative Stress and Antioxidants in the Diagnosis and Therapy of Periodontitis

    PubMed Central

    Tóthová, L'ubomíra; Celec, Peter

    2017-01-01

    Oxidative stress has been implicated in the pathogenesis of numerous diseases. However, large interventional studies with antioxidants failed to show benefits in the prevention or treatment of cardiovascular diseases, cancer, or diabetes mellitus. Numerous clinical studies have confirmed the association of oxidative stress markers and periodontitis. Technical and biological variability is high for most of the analyzed markers and none of them seems to be optimal for routine clinical use. In a research setting, analysis of a palette of oxidative stress markers is needed to cover lipid peroxidation, protein oxidation, and the antioxidant status. The source of reactive oxygen species and their role in the pathogenesis of periodontitis remains unclear. Interventional experiments indicate that oxidative stress might be more than just a simple consequence of the inflammation. Small studies have confirmed that some antioxidants could have therapeutic value at least as an addition to the standard non-surgical treatment of periodontitis. A clear evidence for the efficiency of antioxidant treatment in large patient cohorts is lacking. Potentially, because lowering of oxidative stress markers might be a secondary effect of anti-inflammatory or antibacterial agents. As the field of research of oxidative stress in periodontitis gains attraction and the number of relevant published papers is increasing a systematic overview of the conducted observational and interventional studies is needed. This review summarizes the currently available literature linking oxidative stress and periodontitis and points toward the potential of adjuvant antioxidant treatment, especially in cases where standard treatment fails to improve the periodontal status. PMID:29311982

  10. Transfer RNAs Mediate the Rapid Adaptation of Escherichia coli to Oxidative Stress

    PubMed Central

    Du, Gaofei; Sun, Xuesong; He, Qing-Yu; Zhang, Gong

    2015-01-01

    Translational systems can respond promptly to sudden environmental changes to provide rapid adaptations to environmental stress. Unlike the well-studied translational responses to oxidative stress in eukaryotic systems, little is known regarding how prokaryotes respond rapidly to oxidative stress in terms of translation. In this study, we measured protein synthesis from the entire Escherichia coli proteome and found that protein synthesis was severely slowed down under oxidative stress. With unchanged translation initiation, this slowdown was caused by decreased translation elongation speed. We further confirmed by tRNA sequencing and qRT-PCR that this deceleration was caused by a global, enzymatic downregulation of almost all tRNA species shortly after exposure to oxidative agents. Elevation in tRNA levels accelerated translation and protected E. coli against oxidative stress caused by hydrogen peroxide and the antibiotic ciprofloxacin. Our results showed that the global regulation of tRNAs mediates the rapid adjustment of the E. coli translation system for prompt adaptation to oxidative stress. PMID:26090660

  11. Arabidopsis ensemble reverse-engineered gene regulatory network discloses interconnected transcription factors in oxidative stress.

    PubMed

    Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves

    2014-12-01

    The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. © 2014 American Society of Plant Biologists. All rights reserved.

  12. Oxidative stress in myelin sheath: The other face of the extramitochondrial oxidative phosphorylation ability.

    PubMed

    Ravera, S; Bartolucci, M; Cuccarolo, P; Litamè, E; Illarcio, M; Calzia, D; Degan, P; Morelli, A; Panfoli, I

    2015-01-01

    Oxidative phosphorylation (OXPHOS) is not only the main source of ATP for the cell, but also a major source of reactive oxygen species (ROS), which lead to oxidative stress. At present, mitochondria are considered the organelles responsible for the OXPHOS, but in the last years we have demonstrated that it can also occur outside the mitochondrion. Myelin sheath is able to conduct an aerobic metabolism, producing ATP that we have hypothesized is transferred to the axon, to support its energetic demand. In this work, spectrophotometric, cytofluorimetric, and luminometric analyses were employed to investigate the oxidative stress production in isolated myelin, as far as its respiratory activity is concerned. We have evaluated the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), markers of lipid peroxidation, as well as of hydrogen peroxide (H2O2), marker of ROS production. To assess the presence of endogenous antioxidant systems, superoxide dismutase, catalase, and glutathione peroxidase activities were assayed. The effect of certain uncoupling or antioxidant molecules on oxidative stress in myelin was also investigated. We report that isolated myelin produces high levels of MDA, 4-HNE, and H2O2, likely through the pathway composed by Complex I-III-IV, but it also contains active superoxide dismutase, catalase, and glutathione peroxidase, as antioxidant defense. Uncoupling compounds or Complex I inhibitors increase oxidative stress, while antioxidant compounds limit ROS generation. Data may shed new light on the role of myelin sheath in physiology and pathology. In particular, it can be presumed that the axonal degeneration associated with myelin loss in demyelinating diseases is related to oxidative stress caused by impaired OXPHOS.

  13. The link between radiofrequencies emitted from wireless technologies and oxidative stress.

    PubMed

    Dasdag, Suleyman; Akdag, Mehmet Zulkuf

    2016-09-01

    Wireless communication such as cellular telephones and other types of handheld phones working with frequencies of 900MHz, 1800MHz, 2100MHz, 2450MHz have been increasing rapidly. Therefore, public opinion concern about the potential human health hazards of short and long-term effect of exposure to radiofrequency (RF) radiation. Oxidative stress is a biochemical condition, which is defined by the imbalance between reactive oxygen species (ROS) and the anti-oxidative defense. In this review, we evaluated available in vitro and in vivo studies carried out on the relation between RF emitted from mobile phones and oxidative stress. The results of the studies we reviewed here indicated that mobile phones and similar equipment or radars can be thought as a factor, which cause oxidative stress. Even some of them claimed that oxidative stress originated from radiofrequencies can be resulted with DNA damage. For this reason one of the points to think on is relation between mobile phones and oxidative stress. However, more performance is necessary especially on human exposure studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Oxidative stress and vascular inflammation in aging.

    PubMed

    El Assar, Mariam; Angulo, Javier; Rodríguez-Mañas, Leocadio

    2013-12-01

    Vascular aging, a determinant factor for cardiovascular disease and health status in the elderly, is now viewed as a modifiable risk factor. Impaired endothelial vasodilation is a early hallmark of arterial aging that precedes the clinical manifestations of vascular dysfunction, the first step to cardiovascular disease and influencing vascular outcomes in the elderly. Accordingly, the preservation of endothelial function is thought to be an essential determinant of healthy aging. With special attention on the effects of aging on the endothelial function, this review is focused on the two main mechanisms of aging-related endothelial dysfunction: oxidative stress and inflammation. Aging vasculature generates an excess of the reactive oxygen species (ROS), superoxide and hydrogen peroxide, that compromise the vasodilatory activity of nitric oxide (NO) and facilitate the formation of the deleterious radical, peroxynitrite. Main sources of ROS are mitochondrial respiratory chain and NADPH oxidases, although NOS uncoupling could also account for ROS generation. In addition, reduced antioxidant response mediated by erythroid-2-related factor-2 (Nrf2) and downregulation of mitochondrial manganese superoxide dismutase (SOD2) contributes to the establishment of chronic oxidative stress in aged vessels. This is accompanied by a chronic low-grade inflammatory phenotype that participates in defective endothelial vasodilation. The redox-sensitive transcription factor, nuclear factor-κB (NF-κB), is upregulated in vascular cells from old subjects and drives a proinflammatory shift that feedbacks oxidative stress. This chronic NF-κB activation is contributed by increased angiotensin-II signaling and downregulated sirtuins and precludes adequate cellular response to acute ROS generation. Interventions targeted to recover endogenous antioxidant capacity and cellular stress response rather than exogenous antioxidants could reverse oxidative stress-inflammation vicious cycle in

  15. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos.

    PubMed

    Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram

    2016-04-01

    Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Role of Magnesium in Oxidative Stress in Individuals with Obesity.

    PubMed

    Morais, Jennifer Beatriz Silva; Severo, Juliana Soares; Santos, Loanne Rocha Dos; de Sousa Melo, Stéfany Rodrigues; de Oliveira Santos, Raisa; de Oliveira, Ana Raquel Soares; Cruz, Kyria Jayanne Clímaco; do Nascimento Marreiro, Dilina

    2017-03-01

    Adipose tissue is considered an endocrine organ that promotes excessive production of reactive oxygen species when in excess, thus contributing to lipid peroxidation. Magnesium deficiency contributes to the development of oxidative stress in obese individuals, as this mineral plays a role as an antioxidant, participates as a cofactor of several enzymes, maintains cell membrane stability and mitigates the effects of oxidative stress. The objective of this review is to bring together updated information on the participation of magnesium in the oxidative stress present in obesity. We conducted a search of articles published in the PubMed, SciELO and LILACS databases, using the keywords 'magnesium', 'oxidative stress', 'malondialdehyde', 'superoxide dismutase', 'glutathione peroxidase', 'reactive oxygen species', 'inflammation' and 'obesity'. The studies show that obese subjects have low serum concentrations of magnesium, as well as high concentrations of oxidative stress marker in these individuals. Furthermore, it is evident that the adequate intake of magnesium contributes to its appropriate homeostasis in the body. Thus, this review of current research can help define the need for intervention with supplementation of this mineral for the prevention and treatment of disorders associated with this chronic disease.

  17. Honey Bee (Apis mellifera) Drones Survive Oxidative Stress due to Increased Tolerance instead of Avoidance or Repair of Oxidative Damage

    PubMed Central

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K.; Tarpy, David R.; Rueppell, Olav

    2016-01-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. PMID:27422326

  18. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    PubMed

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Oxidative stress in hemodialysis patients receiving intravenous iron therapy and the role of N-acetylcysteine in preventing oxidative stress.

    PubMed

    Swarnalatha, G; Ram, R; Neela, Prasad; Naidu, M U R; Dakshina Murty, K V

    2010-09-01

    To determine the contribution of injectable iron administered to hemodialysis (HD) patients in causing oxidative stress and the beneficial effect of N-acetylcysteine (NAC) in reducing it, we studied in a prospective, double blinded, randomized controlled, cross over trial 14 adult HD patients who were randomized into two groups; one group received NAC in a dose of 600 mgs twice daily for 10 days prior to intravenous iron therapy and the other group received placebo. Both the groups were subjected to intravenous iron therapy, 100 mg of iron sucrose in 100 mL of normal saline given over a period of one hour. Blood samples for the markers of oxidative stress were taken before and after iron therapy. After the allowance of a week of wash out period for the effect of N-acetylcysteine we crossed over the patients to the opposite regimen. We measured the lipid peroxidation marker, malondiaaldehyde (MDA), to evaluate the oxidative stress and total anti-oxidant capacity (TAC) for the antioxidant level in addition to the highly sensitive C-reactive protein (HsCRP). Non-invasive assessment of endothelial dysfunction was measured by digital plethysmography before and after intravenous iron therapy. There was an increase of MDA (21.97 + 3.65% vs 7.06 + 3.65%) and highly sensitive C-reactive protein (HsCRP) (11.19 + 24.63% vs 13.19 + 7.7%) after iron administration both in the placebo and the NAC groups. NAC reduced the baseline acute systemic generation of oxidative stress when compared to placebo, which was statistically significant with MDA (12.76 + 4.4% vs 9.37 + 4.40%: P = 0.032) but not with HsCRP though there was a declining trend (2.85 + 22.75 % vs 8.93 + 5.19%: P = 0.112). Pre-treatment with NAC reduced the endothelial dysfunction when compared to placebo, but it was not statistically significant, except for reflection index (RI). We conclude that in our HD patients NAC reduced the oxidative stress before and after the administration of intravenous iron therapy in

  20. Oxidative stress and maternal obesity: feto-placental unit interaction.

    PubMed

    Malti, N; Merzouk, H; Merzouk, S A; Loukidi, B; Karaouzene, N; Malti, A; Narce, M

    2014-06-01

    To determine oxidative stress markers in maternal obesity during pregnancy and to evaluate feto-placental unit interaction, especially predictors of fetal metabolic alterations. 40 obese pregnant women (prepregnancy BMI > 30 kg/m²) were compared to 50 control pregnant women. Maternal, cord blood and placenta samples were collected at delivery. Biochemical parameters (total cholesterol and triglycerides) and oxidative stress markers (malondialdehyde, carbonyl proteins, superoxide anion expressed as reduced Nitroblue Tetrazolium, nitric oxide expressed as nitrite, reduced glutathione, catalase, superoxide dismutase) were assayed by biochemical methods. Maternal, fetal and placental triglyceride levels were increased in obese group compared to control. Maternal malondialdehyde, carbonyl proteins, nitric oxide and superoxide anion levels were high while reduced glutathione concentrations and superoxide dismutase activity were low in obesity. In the placenta and in newborns of these obese mothers, variations of redox balance were also observed indicating high oxidative stress. Maternal and placental interaction constituted a strong predictor of fetal redox variations in obese pregnancies. Maternal obesity compromised placental metabolism and antioxidant status which strongly impacted fetal redox balance. Oxidative stress may be one of the key downstream mediators that initiate programming of the offspring. Maternal obesity is associated with metabolic alterations and dysregulation of redox balance in the mother-placenta - fetus unit. These perturbations could lead to maternal and fetal complications and should be carefully considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Brain aluminium accumulation and oxidative stress in the presence of calcium silicate dental cements.

    PubMed

    Demirkaya, K; Demirdöğen, B Can; Torun, Z Öncel; Erdem, O; Çırak, E; Tunca, Y M

    2017-10-01

    Mineral trioxide aggregate (MTA) is a calcium silicate dental cement used for various applications in dentistry. This study was undertaken to test whether the presence of three commercial brands of calcium silicate dental cements in the dental extraction socket of rats would affect the brain aluminium (Al) levels and oxidative stress parameters. Right upper incisor was extracted and polyethylene tubes filled with MTA Angelus, MTA Fillapex or Theracal LC, or left empty for the control group, were inserted into the extraction socket. Rats were killed 7, 30 or 60 days after operation. Brain tissues were obtained before killing. Al levels were measured by atomic absorption spectrometry. Thiobarbituric acid reactive substances (TBARS) levels, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were determined using spectrophotometry. A transient peak was observed in brain Al level of MTA Angelus group on day 7, while MTA Fillapex and Theracal LC groups reached highest brain Al level on day 60. Brain TBARS level, CAT, SOD and GPx activities transiently increased on day 7 and then returned to almost normal levels. This in vivo study for the first time indicated that initial washout may have occurred in MTA Angelus, while element leaching after the setting is complete may have taken place for MTA Fillapex and Theracal LC. Moreover, oxidative stress was induced and antioxidant enzymes were transiently upregulated. Further studies to search for oxidative neuronal damage should be done to completely understand the possible toxic effects of calcium silicate cements on the brain.

  2. Protein Carbonyl Formation in Response to Propiconazole-Induced Oxidative Stress.

    EPA Science Inventory

    Propiconazole, a widely used fungicide, is hepatotoxic and hepatotumorigenic in mice. Previous genomic analysis of liver tissues from propiconazole-treated mice identified genes and pathways involved in oxidative stress, suggesting that oxidative stress may play a role in propico...

  3. The role of oxidative stress in nervous system aging.

    PubMed

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M; Dauch, Jacqueline R; Keller, Peter J; Brooks, Susan V; Feldman, Eva L

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1(-/-)) mice, a mouse model of increased oxidative stress. Sod1(-/-) mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1(+/+) mice at 30 months and the Sod1(-/-) mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging.

  4. Accelerated aging in schizophrenia patients: the potential role of oxidative stress.

    PubMed

    Okusaga, Olaoluwa O

    2014-08-01

    Several lines of evidence suggest that schizophrenia, a severe mental illness characterized by delusions, hallucinations and thought disorder is associated with accelerated aging. The free radical (oxidative stress) theory of aging assumes that aging occurs as a result of damage to cell constituents and connective tissues by free radicals arising from oxygen-associated reactions. Schizophrenia has been associated with oxidative stress and chronic inflammation, both of which also appear to reciprocally induce each other in a positive feedback manner. The buildup of damaged macromolecules due to increased oxidative stress and failure of protein repair and maintenance systems is an indicator of aging both at the cellular and organismal level. When compared with age-matched healthy controls, schizophrenia patients have higher levels of markers of oxidative cellular damage such as protein carbonyls, products of lipid peroxidation and DNA hydroxylation. Potential confounders such as antipsychotic medication, smoking, socio-economic status and unhealthy lifestyle make it impossible to solely attribute the earlier onset of aging-related changes or oxidative stress to having a diagnosis of schizophrenia. Regardless of whether oxidative stress can be attributed solely to a diagnosis of schizophrenia or whether it is due to other factors associated with schizophrenia, the available evidence is in support of increased oxidative stress-induced cellular damage of macromolecules which may play a role in the phenomenon of accelerated aging presumed to be associated with schizophrenia.

  5. Modulation of Hypercholesterolemia-Induced Oxidative/Nitrative Stress in the Heart

    PubMed Central

    Sárközy, Márta; Pipicz, Márton; Dux, László; Csont, Tamás

    2016-01-01

    Hypercholesterolemia is a frequent metabolic disorder associated with increased risk for cardiovascular morbidity and mortality. In addition to its well-known proatherogenic effect, hypercholesterolemia may exert direct effects on the myocardium resulting in contractile dysfunction, aggravated ischemia/reperfusion injury, and diminished stress adaptation. Both preclinical and clinical studies suggested that elevated oxidative and/or nitrative stress plays a key role in cardiac complications induced by hypercholesterolemia. Therefore, modulation of hypercholesterolemia-induced myocardial oxidative/nitrative stress is a feasible approach to prevent or treat deleterious cardiac consequences. In this review, we discuss the effects of various pharmaceuticals, nutraceuticals, some novel potential pharmacological approaches, and physical exercise on hypercholesterolemia-induced oxidative/nitrative stress and subsequent cardiac dysfunction as well as impaired ischemic stress adaptation of the heart in hypercholesterolemia. PMID:26788247

  6. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress.

    PubMed

    Oksala, Niku K J; Ekmekçi, F Güler; Ozsoy, Ergi; Kirankaya, Serife; Kokkola, Tarja; Emecen, Güzin; Lappalainen, Jani; Kaarniranta, Kai; Atalay, Mustafa

    2014-01-01

    Heat shock proteins (HSPs), originally identified as heat-inducible gene products, are a family of highly conserved proteins that respond to a wide variety of stress including oxidative stress. Although both acute and chronic oxidative stress have been well demonstrated to induce HSP responses, little evidence is available whether increased HSP levels provide enhanced protection against oxidative stress under elevated yet sublethal temperatures. We studied relationships between oxidative stress and HSPs in a physiological model by using Garra rufa (doctor fish), a fish species naturally acclimatized to different thermal conditions. We compared fish naturally living in a hot spring with relatively high water temperature (34.4±0.6°C) to those living in normal river water temperature (25.4±4.7°C), and found that levels of all the studied HSPs (HSP70, HSP60, HSP90, HSC70 and GRP75) were higher in fish living in elevated water temperature compared with normal river water temperature. In contrast, indicators of oxidative stress, including protein carbonyls and lipid hydroperoxides, were decreased in fish living in the elevated temperature, indicating that HSP levels are inversely associated with oxidative stress. The present results provide evidence that physiologically increased HSP levels provide protection against oxidative stress and enhance cytoprotection. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Exacerbation of oxidative stress during sickle vaso-occlusive crisis is associated with decreased anti-band 3 autoantibodies rate and increased red blood cell-derived microparticle level: a prospective study.

    PubMed

    Hierso, Régine; Lemonne, Nathalie; Villaescusa, Rinaldo; Lalanne-Mistrih, Marie-Laure; Charlot, Keyne; Etienne-Julan, Maryse; Tressières, Benoit; Lamarre, Yann; Tarer, Vanessa; Garnier, Yohann; Hernandez, Ada Arce; Ferracci, Serge; Connes, Philippe; Romana, Marc; Hardy-Dessources, Marie-Dominique

    2017-03-01

    Painful vaso-occlusive crisis, a hallmark of sickle cell anaemia, results from complex, incompletely understood mechanisms. Red blood cell (RBC) damage caused by continuous endogenous and exogenous oxidative stress may precipitate the occurrence of vaso-occlusive crises. In order to gain insight into the relevance of oxidative stress in vaso-occlusive crisis occurrence, we prospectively compared the expression levels of various oxidative markers in 32 adults with sickle cell anaemia during vaso-occlusive crisis and steady-state conditions. Compared to steady-state condition, plasma levels of free haem, advanced oxidation protein products and myeloperoxidase, RBC caspase-3 activity, as well as the concentrations of total, neutrophil- and RBC-derived microparticles were increased during vaso-occlusive crises, whereas the reduced glutathione content was decreased in RBCs. In addition, natural anti-band 3 autoantibodies levels decreased during crisis and were negatively correlated with the rise in plasma advanced oxidation protein products and RBC caspase-3 activity. These data showed an exacerbation of the oxidative stress during vaso-occlusive crises in sickle cell anaemia patients and strongly suggest that the higher concentration of harmful circulating RBC-derived microparticles and the reduced anti-band 3 autoantibodies levels may be both related to the recruitment of oxidized band 3 into membrane aggregates. © 2016 John Wiley & Sons Ltd.

  8. Coping with Physiological Oxidative Stress: A Review of Antioxidant Strategies in Seals

    PubMed Central

    Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Elsner, Robert; Ortiz, Rudy M.

    2012-01-01

    While diving, seals are exposed to apnea-induced hypoxemia and repetitive cycles of ischemia/reperfusion. While on land, seals experience sleep apnea, as well as prolonged periods of food and water deprivation. Prolonged fasting, sleep apnea, hypoxemia and ischemia/reperfusion increase oxidant production and oxidative stress in terrestrial mammals. In seals, however, neither prolonged fasting nor apnea-induced hypoxemia or ischemia/reperfusion increase systemic or local oxidative damage. The strategies seals evolved to cope with increased oxidant production are reviewed in the present manuscript. Among these strategies, high antioxidant capacity and the oxidant-mediated activation of hormetic responses against hypoxia and oxidative stress are discussed. In addition to expanding our knowledge of the evolution of antioxidant defenses and adaptive responses to oxidative stress, understanding the mechanisms that allow adapted mammals to avoid oxidative damage has the potential to advance our knowledge of oxidative stress-induced pathologies and to enhance the translative value of biomedical therapies in the long term. PMID:22327141

  9. Oxidation of Proline by Mitochondria Isolated from Water-Stressed Maize Shoots 1

    PubMed Central

    Sells, Gary D.; Koeppe, David E.

    1981-01-01

    Proline oxidation and coupled phosphorylation were measured in mitochondria after isolation from shoots of water-stressed, etiolated maize (Zea mays L.) seedlings. Both state III and state IV rates of proline oxidation decreased as a logarithmic function of increased seedling water stress between −5 and −10 bars. Proline oxidation rates decreased 62% (state III) and 58% (state IV) as seedling water potentials were decreased from −5 to −10 bars. By comparison, oxidation of succinate, exogenous NADH, or malate + pyruvate decreased only 10 to 15% in this stress range. These decreases were a linear function of increased stress and were comparable to oxidation rates of mitochondria subjected to varying in vitro osmotic potentials. Osmotically induced in vitro stress reduced proline oxidation rates linearly with more negative osmotic potentials, a decrease that was similar to the responses of the other substrates to more negative osmotic potentials. Some decrease in coupling, with all substrates as determined by ADP/O ratios, was observed under osmotic stress. Mitochondria were also isolated from shoot tissue that had been stressed and then rewatered. On a percentage basis, the recovery of proline oxidation was greater than that of the other substrates. The decreases in the proline oxidase activity of mitochondria after only slight stress indicate a mitochondrial sensitivity to water stress at significantly less negative water potentials than previously reported for measurements of maize membrane permeability and respiratory activity. PMID:16662051

  10. An Antioxidant Phytotherapy to Rescue Neuronal Oxidative Stress

    PubMed Central

    Lin, Zhihong; Zhu, Danni; Yan, Yongqing; Yu, Boyang; Wang, Qiujuan; Shen, Pingniang; Ruan, Kefeng

    2011-01-01

    Oxidative stress is involved in the pathogenesis of ischemic neuronal injury. A Chinese herbal formula composed of Poria cocos (Chinese name: Fu Ling), Atractylodes macrocephala (Chinese name: Bai Zhu) and Angelica sinensis (Chinese names: Danggui, Dong quai, Donggui; Korean name: Danggwi) (FBD), has been proved to be beneficial in the treatment of cerebral ischemia/reperfusion (I/R).This study was carried out to evaluate the protective effect of FBD against neuronal oxidative stress in vivo and in vitro. Rat I/R were established by middle cerebral artery occlusion (MCAO) for 1 h, followed by 24 h reperfusion. MCAO led to significant depletion in superoxide dismutase and glutathione and rise in lipid peroxidation (LPO) and nitric oxide in brain. The neurological deficit and brain infarction were also significantly elevated by MCAO as compared with sham-operated group. All the brain oxidative stress and damage were significantly attenuated by 7 days pretreatment with the aqueous extract of FBD (250 mg kg−1, p.o.). Moreover, cerebrospinal fluid sampled from FBD-pretreated rats protected PC12 cells against oxidative insult induced by 0.2 mM hydrogen peroxide, in a concentration and time-dependent manner (IC50 10.6%, ET50 1.2 h). However, aqueous extract of FBD just slightly scavenged superoxide anion radical generated in xanthine–xanthine oxidase system (IC50 2.4 mg ml−1) and hydroxyl radical generated in Fenton reaction system (IC50 3.6 mg ml−1). In conclusion, FBD was a distinct antioxidant phytotherapy to rescue neuronal oxidative stress, through blocking LPO, restoring endogenous antioxidant system, but not scavenging free radicals. PMID:18955358

  11. Oxidative stress markers during a course of hyperthyroidism.

    PubMed

    Lampka, Magdalena; Junik, Roman; Nowicka, Anna; Kopczyńska, Ewa; Tyrakowski, Tomasz; Odrowaz-Sypniewska, Grazyna

    2006-01-01

    Previous studies have shown the presence of oxidative stress in hyperthyroid patients. The aim of this study was to evaluate the influence of hyperthyroidism on lipid peroxidation, plasma lipoprotein oxidation and antioxidant status. We have estimated the clinical utility of the biochemical parameters analysed as markers of oxidative stress in hyperthyroidism. Twenty five patients with overt hyperthyroidism because of Graves' disease or toxic multinodular goitre and 20 healthy subjects were included in the study. Lipid peroxidation was evaluated by measurement of peroxides and malondialdehyde with 4-hydroxynonenal (MDA + 4-HNE) concentrations. Autoantibodies against oxidised LDL (anti-oxLDL) were assayed as a marker of lipoprotein oxidation. Changes in the antioxidant defence system were estimated by measurement of total antioxidant status in serum (TAS) and erythrocyte superoxide dismutase activity (SOD). A significant increase in serum concentration of peroxides and MDA + 4-HNE was observed in patients with hyperthyroidism. However, no difference was found in anti-oxLDL concentration and antioxidant status parameters (TAS, SOD) between the control group and the patient group. Our results indicate an intensification of the oxidative processes caused by an excess of thyroid hormones, which is not accompanied by a response from the antioxidant system. Elevated concentrations of lipid peroxidation products in serum, both peroxides and malondialdehyde with 4-hydroxynonenal, may be useful as markers of oxidative stress during the course of hyperthyroidism.

  12. Wet-cupping removes oxidants and decreases oxidative stress.

    PubMed

    Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol

    2014-12-01

    Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Oxidative costs of reproduction: Oxidative stress in mice fed standard and low antioxidant diets.

    PubMed

    Vaanholt, L M; Milne, A; Zheng, Y; Hambly, C; Mitchell, S E; Valencak, T G; Allison, D B; Speakman, J R

    2016-02-01

    Lactation is one of the most energetically expensive behaviours, and trade-offs may exist between the energy devoted to it and somatic maintenance, including protection against oxidative damage. However, conflicting data exist for the effects of reproduction on oxidative stress. In the wild, a positive relationship is often observed, but in laboratory studies oxidative damage is often lower in lactating than in non-breeding animals. We hypothesised that this discrepancy may exist because during lactation food intake increases many-fold resulting in a large increase in the intake of dietary antioxidants which are typically high in laboratory rodent chow where they are added as a preservative. We supplied lactating and non-breeding control mice with either a standard or low antioxidant diet and studied how this affected the activity of endogenous antioxidants (catalase, superoxide dismutase; SOD, and glutathione peroxidise; GPx) and oxidative damage to proteins (protein carbonyls, PC) in liver and brain tissue. The low antioxidant diet did not significantly affect activities of antioxidant enzymes in brain or liver, and generally did not result in increased protein damage, except in livers of control mice on low antioxidant diet. Catalase activity, but not GPx or SOD, was decreased in both control and lactating mice on the low antioxidant diet. Lactating mice had significantly reduced oxidative damage to both liver and brain compared to control mice, independent of the diet they were given. In conclusion, antioxidant content of the diet did not affect oxidative stress in control or reproductive mice, and cannot explain the previously observed reduction in oxidative stress in lactating mammals studied in the laboratory. The reduced oxidative stress in the livers of lactating mice even under low antioxidant diet treatment was consistent with the 'shielding' hypothesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Oxidative stress and the effect of parasites on a carotenoid-based ornament.

    PubMed

    Mougeot, F; Martínez-Padilla, J; Blount, J D; Pérez-Rodríguez, L; Webster, L M I; Piertney, S B

    2010-02-01

    Oxidative stress, the physiological condition whereby the production of reactive oxygen and nitrogen species overwhelms the capacity of antioxidant defences, causes damage to key bio-molecules. It has been implicated in many diseases, and is proposed as a reliable currency in the trade-off between individual health and ornamentation. Whether oxidative stress mediates the expression of carotenoid-based signals, which are among the commonest signals of many birds, fish and reptiles, remains controversial. In the present study, we explored interactions between parasites, oxidative stress and the carotenoid-based ornamentation of red grouse Lagopus lagopus scoticus. We tested whether removing nematode parasites influenced both oxidative balance (levels of oxidative damage and circulating antioxidant defences) and carotenoid-based ornamentation. At the treatment group level, parasite purging enhanced the size and colouration of ornaments but did not significantly affect circulating carotenoids, antioxidant defences or oxidative damage. However, relative changes in these traits among individuals indicated that males with a greater number of parasites prior to treatment (parasite purging) showed a greater increase in the levels of circulating carotenoids and antioxidants, and a greater decrease in oxidative damage, than those with initially fewer parasites. At the individual level, a greater increase in carotenoid pigmentation was associated with a greater reduction in oxidative damage. Therefore, an individual's ability to express a carotenoid-based ornament appeared to be linked to its current oxidative balance and susceptibility to oxidative stress. Our experimental results suggest that oxidative stress can mediate the impact of parasites on carotenoid-based signals, and we discuss possible mechanisms linking carotenoid-based ornaments to oxidative stress.

  15. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage

    USDA-ARS?s Scientific Manuscript database

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked: considerable variation in oxidative stress resistance exists among and within species and ...

  16. [Effect of occupational stress on oxidation/antioxidant capacity in nurses].

    PubMed

    Cao, Lili; Tian, Honger; Zhang, Qingdong; Zhu, Xinyun; Zhan, Yongguo; Su, Jingguo; Xu, Tian; Zhu, Huabin; Liu, Ling

    2014-02-01

    To investigate the effect of occupational stress on the oxidation/antioxidant capacity in nurses. A total of 131 nurses were included as study subjects. The occupational health information collection system (based on the Internet of things) was used for measurement of occupational stress. Levels of hydroxyl free radicals and antioxidant enzymes were determined. The serum level of superoxide dismutase (SOD) was the highest in nurses under the age of 30 and the lowest in those over 45 (P < 0.05). The serum levels of glutathione peroxidase (GSH-Px) and peroxidase (POD) were the highest in nurses of working age less than 5 years, followed by those of 5-15 years, and nurses with more than 25 years' working experience showed the lowest GSH-Px and POD levels (P < 0.05). Furthermore, nurses with a university (college) degree had a higher GSH-Px level and a lower POD level compared with those with junior and senior high school degrees (P < 0.05). Job prospects and job control were positive occupational stress factors for SOD. Job hazards were negative occupational stress factors for POD. Psychological satisfaction was negative occupational stress reaction for hydroxyl free radicals. Calmness was positive occupational stress reaction for SOD, and daily stress was a negative one. The positive occupational stress reactions for GSH-Px were psychological satisfaction and job satisfaction, and daily stress was negative reaction. Nurses with higher occupational stress have stronger oxidation and weaker antioxidant capacity, which intensifies oxidant-antioxidant imbalance and leads to oxidative stress damage.

  17. Reduced Coupling of Oxidative Phosphorylation In Vivo Precedes Electron Transport Chain Defects Due to Mild Oxidative Stress in Mice

    PubMed Central

    Siegel, Michael P.; Kruse, Shane E.; Knowels, Gary; Salmon, Adam; Beyer, Richard; Xie, Hui; Van Remmen, Holly; Smith, Steven R.; Marcinek, David J.

    2011-01-01

    Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ) treatment of wild type mice) and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1−/−)) models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O) at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax) was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain. PMID:22132085

  18. Influence of resveratrol on oxidative stress resistance and life span in Caenorhabditis elegans.

    PubMed

    Chen, Wei; Rezaizadehnajafi, Leila; Wink, Michael

    2013-05-01

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a polyphenol from red wine, has been reported to be beneficial in cases of ageing-related cardiovascular and neurodegenerative diseases owing to its property to reduce oxidative stress. Previous studies on the longevity promoting effect of resveratrol have been partly inconclusive, therefore we set out to investigate whether resveratrol at least promoted longevity in Caenorhabditis elegans under acute oxidative stress conditions. C. elegans was cultured under standard conditions with or without resveratrol. After exposure to juglone-induced acute oxidative stress, the survival rate and hsp-16.2::GFP expression were measured. The influence of resveratrol on life span was recorded also under oxidative stress induced by high glucose concentrations in the growth medium. No extension of the normal life span of C. elegans was observed either in liquid or solid growth media containing different concentrations of resveratrol. However, resveratrol alleviated juglone-induced lethal oxidative stress, and significantly prolonged the life span of C. elegans under conditions of acute oxidative damage and oxidative stress caused by high concentrations of glucose. Resveratrol, as an antioxidant, ameliorated oxidative stress in vivo but did not extend the life span of C. elegans under normal conditions. However, resveratrol did extend life span under conditions of oxidative stress. © 2013 The Authors. JPP © 2013 Royal Pharmaceutical Society.

  19. Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress.

    PubMed

    Li, Yibo; Amarachintha, Surya; Wilson, Andrew F; Li, Xue; Du, Wei

    2017-06-18

    Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G 2 /M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.

  20. Oxidative Stress Mediates Physiological Costs of Begging in Magpie (Pica pica) Nestlings

    PubMed Central

    Moreno-Rueda, Gregorio; Redondo, Tomás; Trenzado, Cristina E.; Sanz, Ana; Zúñiga, Jesús M.

    2012-01-01

    Background Theoretical models predict that a cost is necessary to guarantee honesty in begging displays given by offspring to solicit food from their parents. There is evidence for begging costs in the form of a reduced growth rate and immunocompetence. Moreover, begging implies vigorous physical activity and attentiveness, which should increase metabolism and thus the releasing of pro-oxidant substances. Consequently, we predict that soliciting offspring incur a cost in terms of oxidative stress, and growth rate and immune response (processes that generate pro-oxidants substances) are reduced in order to maintain oxidative balance. Methodology/Principal Findings We test whether magpie (Pica pica) nestlings incur a cost in terms of oxidative stress when experimentally forced to beg intensively, and whether oxidative balance is maintained by reducing growth rate and immune response. Our results show that begging provokes oxidative stress, and that nestlings begging for longer bouts reduce growth and immune response, thereby maintaining their oxidative status. Conclusions/Significance These findings help explaining the physiological link between begging and its associated growth and immunocompetence costs, which seems to be mediated by oxidative stress. Our study is a unique example of the complex relationships between the intensity of a communicative display (begging), oxidative stress, and life-history traits directly linked to viability. PMID:22808144

  1. Chemometrics models for assessment of oxidative stress risk in chrome-electroplating workers.

    PubMed

    Zendehdel, Rezvan; Shetab-Boushehri, Seyed Vahid; Azari, Mansoor R; Hosseini, Vajihe; Mohammadi, Hamidreza

    2015-04-01

    Oxidative stress is the main cause of hexavalant chromium-induced damage in chrome electroplating workers. The main goal of this study is toxicity analysis and the possibility of toxicity risk categorizing in the chrome electroplating workers based on oxidative stress parameters as prognostic variables. We assessed blood chromium levels and biomarkers of oxidative stress such as lipid peroxidation, thiol (SH) groups and antioxidant capacity of plasma. Data were subjected to principle component analysis (PCA) and artificial neuronal network (ANN) to obtain oxidative stress pattern for chrome electroplating workers. Blood chromium levels increased from 4.42 ppb to 10.6 ppb. Induction of oxidative stress was observed by increased in lipid peroxidation (22.38 ± 10.47 μM versus 14.74 ± 4.82 μM, p < 0.0008), decreased plasma antioxidant capacity (3.17 ± 1.35 μM versus 7.74 ± 4.45 μM, p < 0.0001) and plasma total thiol (SH groups) (0.21 ± 0.07 μM versus 0.45 ± 0.41 μM, p < 0.0042) in comparison to controls. Based on the oxidative parameters, two groups were identified by PCA methods. One category is workers with the risk of oxidative stress and second group is subjects with probable risk of oxidative stress induction. ANN methods can predict oxidative-risk category for assessment of toxicity induction in chrome electroplaters. The result showed multivariate modeling can be interpreted as the induced biochemical toxicity in the workers exposed to hexavalent chromium. Different occupation groups were assessed on the basis of risk level of oxidative stress which could further justify proceeding engineering control measures.

  2. The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration.

    PubMed

    Botella, Jose A; Ulschmid, Julia K; Gruenewald, Christoph; Moehle, Christoph; Kretzschmar, Doris; Becker, Katja; Schneuwly, Stephan

    2004-05-04

    A growing body of evidence suggests that oxidative stress is a common underlying mechanism in the pathogenesis of neurodegenerative disorders such as Alzheimer's, Huntington's, Creutzfeld-Jakob and Parkinson's diseases. Despite the increasing number of reports finding a causal relation between oxidative stress and neurodegeneration, little is known about the genetic elements that confer protection against the deleterious effects of oxidation in neurons. We have isolated and characterized the Drosophila melanogaster gene sniffer, whose function is essential for preventing age-related neurodegeneration. In addition, we demonstrate that oxidative stress is a direct cause of neurodegeneration in the Drosophila central nervous system and that reduction of sniffer activity leads to neuronal cell death. The overexpression of the gene confers neuronal protection against oxygen-induced apoptosis, increases resistance of flies to experimental normobaric hyperoxia, and improves general locomotor fitness. Sniffer belongs to the family of short-chain dehydrogenase/reductase (SDR) enzymes and exhibits carbonyl reductase activity. This is the first in vivo evidence of the direct and important implication of this enzyme as a neuroprotective agent in the cellular defense mechanisms against oxidative stress.

  3. Association between oxidative stress and nutritional status in the elderly.

    PubMed

    Moreira, Priscila Lucelia; Villas Boas, Paulo Jose Fortes; Ferreira, Ana Lucia Anjos

    2014-01-01

    Ageing is a dynamic and progressive process that is characterized by the occurrence of morphological, biochemical, functional and psychological changes in the organism. The aim of the present article is to provide updated concepts on oxidative stress, covering its importance in aging, as well as nutritional status and supplementation with antioxidants (substances that prevent or attenuate oxidation of oxidizable substrates, such as lipids, proteins, carbohydrates and deoxyribonucleic acid) in the geriatric population. Evidence suggests that there is an inverse relationship between oxidative stress and nutritional status in elderly individuals. Although an increase in oxidative stress in chronic diseases associated with aging has been proven, such as Parkinson's disease and Alzheimer's disease, up to now there has been no consistent clinical evidence proving the efficiency of supplementation with antioxidants against oxidative stress. In this context, supplementation is not recommended. On the other hand, the elderly should be encouraged to eat antioxidant foods, such as fruits and vegetables. Maintaining a normal weight (body mass index between 23 and 28 Kg/m(2)) should also be stimulated.

  4. Impact of extreme exercise at high altitude on oxidative stress in humans.

    PubMed

    Quindry, John; Dumke, Charles; Slivka, Dustin; Ruby, Brent

    2016-09-15

    Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field-based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox-sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude-induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude-induced hypoxia may have an independent influence on redox-sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  5. Impact of extreme exercise at high altitude on oxidative stress in humans

    PubMed Central

    Dumke, Charles; Slivka, Dustin; Ruby, Brent

    2015-01-01

    Abstract Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field‐based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox‐sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude‐induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude‐induced hypoxia may have an independent influence on redox‐sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude. PMID:26453842

  6. Overexpression of calreticulin sensitizes SERCA2a to oxidative stress.

    PubMed

    Ihara, Yoshito; Kageyama, Kan; Kondo, Takahito

    2005-04-22

    Calreticulin (CRT), a Ca(2+)-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac disorder in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In this study, the effect of overexpression of CRT on sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. The in vitro activity of SERCA2a and uptake of (45)Ca(2+) into isolated microsomes were suppressed by H(2)O(2) in CRT-overexpressing cells compared with controls. Moreover, SERCA2a protein was degraded via a proteasome-dependent pathway following the formation of a complex with CRT under the stress with H(2)O(2). Thus, we conclude that overexpression of CRT enhances the inactivation and degradation of SERCA2a in the cells under oxidative stress, suggesting some pathophysiological functions of CRT in Ca(2+) homeostasis of myocardiac disease.

  7. Exercise-induced oxidative stress and hypoxic exercise recovery.

    PubMed

    Ballmann, Christopher; McGinnis, Graham; Peters, Bridget; Slivka, Dustin; Cuddy, John; Hailes, Walter; Dumke, Charles; Ruby, Brent; Quindry, John

    2014-04-01

    Hypoxia due to altitude diminishes performance and alters exercise oxidative stress responses. While oxidative stress and exercise are well studied, the independent impact of hypoxia on exercise recovery remains unknown. Accordingly, we investigated hypoxic recovery effects on post-exercise oxidative stress. Physically active males (n = 12) performed normoxic cycle ergometer exercise consisting of ten high:low intensity intervals, 20 min at moderate intensity, and 6 h recovery at 975 m (normoxic) or simulated 5,000 m (hypoxic chamber) in a randomized counter-balanced cross-over design. Oxygen saturation was monitored via finger pulse oximetry. Blood plasma obtained pre- (Pre), post- (Post), 2 h post- (2Hr), 4 h post- (4Hr), and 6 h (6Hr) post-exercise was assayed for Ferric Reducing Ability of Plasma (FRAP), Trolox Equivalent Antioxidant Capacity (TEAC), Lipid Hydroperoxides (LOOH), and Protein Carbonyls (PC). Biopsies from the vastus lateralis obtained Pre and 6Hr were analyzed by real-time PCR quantify expression of Heme oxygenase 1 (HMOX1), Superoxide Dismutase 2 (SOD2), and Nuclear factor (euthyroid-derived2)-like factor (NFE2L2). PCs were not altered between trials, but a time effect (13 % Post-2Hr increase, p = 0.044) indicated exercise-induced blood oxidative stress. Plasma LOOH revealed only a time effect (p = 0.041), including a 120 % Post-4Hr increase. TEAC values were elevated in normoxic recovery versus hypoxic recovery. FRAP values were higher 6Hr (p = 0.045) in normoxic versus hypoxic recovery. Exercise elevated gene expression of NFE2L2 (20 % increase, p = 0.001) and SOD2 (42 % increase, p = 0.003), but hypoxic recovery abolished this response. Data indicate that recovery in a hypoxic environment, independent of exercise, may alter exercise adaptations to oxidative stress and metabolism.

  8. Association of military training with oxidative stress and overreaching.

    PubMed

    Tanskanen, Minna M; Uusitalo, Arja L; Kinnunen, Hannu; Häkkinen, Keijo; Kyröläinen, Heikki; Atalay, Mustafa

    2011-08-01

    We hypothesized that increased oxidative stress and disrupted redox balance may be predisposing factors and markers for overreaching (OR). The study's purpose was to examine whether oxidative stress markers and antioxidant status and physical fitness are related to OR during an 8-wk military basic training (BT) period. Oxidative stress and antioxidant status were evaluated in the beginning and after 4 and 7 wk of training in 35 males (age = 19.7 ± 0.3 yr) at rest and immediately after a 45-min submaximal exercise. Physical activity (PA) was monitored by an accelerometer throughout BT. Indicators of OR were also examined. From baseline to week 4, increased daytime moderate to vigorous PA led to concomitant decreases in the ratio of oxidized to total glutathione (GSSG/TGSH) and GSSG. After 4 wk of BT, GSSG/TGSH and GSSG returned to the baseline values at rest, whereas PA remained unchanged. At every time point, acute exercise decreased TGSH and increased GSSG and GSSG/TGSH, whereas a decrease was observed in antioxidant capacity after 4 wk of training. In the beginning of BT, OR subjects (11 of the 35 males) had higher GSSG, GSSG/TGSH, and malondialdehyde (a marker of lipid peroxidation) at rest (P < 0.01-0.05) and lower response of GSSG and GSSG/TGSH ratio (P < 0.01) to exercise than non-OR subjects. Moreover, OR subjects had higher PA during BT than non-OR (P < 0.05). The sustained training load during the last 4 wk of BT led to oxidative stress observable both at rest and after submaximal exercise. Increased oxidative stress may be a marker of insufficient recovery leading possibly to OR.

  9. Oxidative stress and pathology in muscular dystrophies: focus on protein thiol oxidation and dysferlinopathies.

    PubMed

    Terrill, Jessica R; Radley-Crabb, Hannah G; Iwasaki, Tomohito; Lemckert, Frances A; Arthur, Peter G; Grounds, Miranda D

    2013-09-01

    The muscular dystrophies comprise more than 30 clinical disorders that are characterized by progressive skeletal muscle wasting and degeneration. Although the genetic basis for many of these disorders has been identified, the exact mechanism for pathogenesis generally remains unknown. It is considered that disturbed levels of reactive oxygen species (ROS) contribute to the pathology of many muscular dystrophies. Reactive oxygen species and oxidative stress may cause cellular damage by directly and irreversibly damaging macromolecules such as proteins, membrane lipids and DNA; another major cellular consequence of reactive oxygen species is the reversible modification of protein thiol side chains that may affect many aspects of molecular function. Irreversible oxidative damage of protein and lipids has been widely studied in Duchenne muscular dystrophy, and we have recently identified increased protein thiol oxidation in dystrophic muscles of the mdx mouse model for Duchenne muscular dystrophy. This review evaluates the role of elevated oxidative stress in Duchenne muscular dystrophy and other forms of muscular dystrophies, and presents new data that show significantly increased protein thiol oxidation and high levels of lipofuscin (a measure of cumulative oxidative damage) in dysferlin-deficient muscles of A/J mice at various ages. The significance of this elevated oxidative stress and high levels of reversible thiol oxidation, but minimal myofibre necrosis, is discussed in the context of the disease mechanism for dysferlinopathies, and compared with the situation for dystrophin-deficient mdx mice. © 2013 The Authors Journal compilation © 2013 FEBS.

  10. Antioxidant status and biomarkers of oxidative stress in canine lymphoma

    USDA-ARS?s Scientific Manuscript database

    Background – Oxidative stress might play a role in carcinogenesis, as well as impacting morbidity and mortality of veterinary cancer patients. The purpose of this study was to evaluate antioxidant concentrations and biomarkers of oxidative stress in dogs with newly-diagnosed lymphoma prior to treatm...

  11. Brain rust: recent discoveries on the role of oxidative stress in neurodegenerative diseases.

    PubMed

    de Oliveira, Diêgo Madureira; Ferreira Lima, Rute Maria; El-Bachá, Ramon Santos

    2012-05-01

    Oxidative stress (OS) and damages due to excessive reactive oxygen species (ROS) are common causes of injuries to cells and organisms. The prevalence of neurodegenerative diseases (ND) increases with aging and much of the research involving ROS and OS has emerged from works in this field. This text reviews some recent published articles about the role of OS in ND. Since there are many reviews in this field, the focus was centered in articles published recently. The Scientific Journals Directory supported by the Brazilian Ministry of Education Office for the Coordination of Higher Educational Personnel Improvement (CAPES) was used to search, download, and review articles. The search engine looked for the terms 'oxidative stress AND neurodegenerative diseases AND nutrition' in 10 different scientific collections. Biochemical markers for ND lack sensitivity or specificity for diagnosis or for tracking response to therapy today. OS has an intimate connection with ND, albeit low levels of ROS seem to protect the brain. Deleterious changes in mitochondria, OS, calcium, glucocorticoids, inflammation, trace metals, insulin, cell cycle, protein aggregation, and hundreds to thousands of genes occur in ND. The interaction of genes with their environment, may explain ND. Although OS has received much attention over the years, which increased the number of scientific works on antioxidant interventions, no one knows how to stop or delay ND at present. Interventions in vitro, in vivo, and in humans will continue to contribute for a better understanding of these pathologies.

  12. Stable and Size-Tunable Aggregation-Induced Emission Nanoparticles Encapsulated with Nanographene Oxide and Applications in Three-Photon Fluorescence Bioimaging.

    PubMed

    Zhu, Zhenfeng; Qian, Jun; Zhao, Xinyuan; Qin, Wei; Hu, Rongrong; Zhang, Hequn; Li, Dongyu; Xu, Zhengping; Tang, Ben Zhong; He, Sailing

    2016-01-26

    Organic fluorescent dyes with high quantum yield are widely applied in bioimaging and biosensing. However, most of them suffer from a severe effect called aggregation-caused quenching (ACQ), which means that their fluorescence is quenched at high molecular concentrations or in the aggregation state. Aggregation-induced emission (AIE) is a diametrically opposite phenomenon to ACQ, and luminogens with this feature can effectively solve this problem. Graphene oxide has been utilized as a quencher for many fluorescent dyes, based on which biosensing can be achieved. However, using graphene oxide as a surface modification agent of fluorescent nanoparticles is seldom reported. In this article, we used nanographene oxide (NGO) to encapsulate fluorescent nanoparticles, which consisted of a type of AIE dye named TPE-TPA-FN (TTF). NGO significantly improved the stability of nanoparticles in aqueous dispersion. In addition, this method could control the size of nanoparticles' flexibly as well as increase their emission efficiency. We then used the NGO-modified TTF nanoparticles to achieve three-photon fluorescence bioimaging. The architecture of ear blood vessels in mice and the distribution of nanoparticles in zebrafish could be observed clearly. Furthermore, we extended this method to other AIE luminogens and showed it was widely feasible.

  13. Microbial oxidative stress response: Novel insights from environmental facultative anaerobic bacteria.

    PubMed

    Fu, Huihui; Yuan, Jie; Gao, Haichun

    2015-10-15

    Facultative bacteria can grow under either oxic or anoxic conditions. While oxygen provides substantial advantages in energy yield by respiration, it can become life-threatening because of reactive oxygen species that derive from the molecule naturally. Thus, to survive and thrive in a given niche, these bacteria have to constantly regulate physiological processes to make maximum benefits from oxygen respiration while restraining oxidative stress. Molecular mechanisms and physiological consequences of oxidative stress have been under extensive investigation for decades, mostly on research model Escherichia coli, from which our understanding of bacterial oxidative stress response is largely derived. Nevertheless, given that bacteria live in enormously diverse environments, to cope with oxidative stress different strategies are conceivably developed. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome

    PubMed Central

    Reeg, Sandra; Jung, Tobias; Castro, José P.; Davies, Kelvin J.A.; Henze, Andrea; Grune, Tilman

    2016-01-01

    One hallmark of aging is the accumulation of protein aggregates, promoted by the unfolding of oxidized proteins. Unraveling the mechanism by which oxidized proteins are degraded may provide a basis to delay the early onset of features, such as protein aggregate formation, that contribute to the aging phenotype. In order to prevent aggregation of oxidized proteins, cells recur to the 20S proteasome, an efficient turnover proteolysis complex. It has previously been shown that upon oxidative stress the 26S proteasome, another form, dissociates into the 20S form. A critical player implicated in its dissociation is the Heat Shock Protein 70 (Hsp70), which promotes an increase in free 20S proteasome and, therefore, an increased capability to degrade oxidized proteins. The aim of this study was to test whether or not Hsp70 is involved in cooperating with the 20S proteasome for a selective degradation of oxidatively damaged proteins. Our results demonstrate that Hsp70 expression is induced in HT22 cells as a result of mild oxidative stress conditions. Furthermore, Hsp70 prevents the accumulation of oxidized proteins and directly promotes their degradation by the 20S proteasome. In contrast the expression of the Heat shock cognate protein 70 (Hsc70) was not changed in recovery after oxidative stress and Hsc70 has no influence on the removal of oxidatively damaged proteins. We were able to demonstrate in HT22 cells, in brain homogenates from 129/SV mice and in vitro, that there is an increased interaction of Hsp70 with oxidized proteins, but also with the 20S proteasome, indicating a role of Hsp70 in mediating the interaction of oxidized proteins with the 20S proteasome. Thus, our data clearly implicate an involvement of Hsp70 oxidatively damaged protein degradation by the 20S proteasome. PMID:27498116

  15. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus

    PubMed Central

    Tangvarasittichai, Surapon

    2015-01-01

    Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356

  16. A tale of two toxicities: malformed selenoproteins and oxidative stress both contribute to selenium stress in plants

    PubMed Central

    Van Hoewyk, Doug

    2013-01-01

    Background Despite selenium's toxicity in plants at higher levels, crops supply most of the essential dietary selenium in humans. In plants, inorganic selenium can be assimilated into selenocysteine, which can replace cysteine in proteins. Selenium toxicity in plants has been attributed to the formation of non-specific selenoproteins. However, this paradigm can be challenged now that there is increasingly abundant evidence suggesting that selenium-induced oxidative stress also contributes to toxicity in plants. Scope This Botanical Briefing summarizes the evidence indicating that selenium toxicity in plants is attributable to both the accumulation of non-specific selenoproteins and selenium-induced oxidative stress. Evidence is also presented to substantiate the claim that inadvertent selenocysteine replacement probably impairs or misfolds proteins, which supports the malformed selenoprotein hypothesis. The possible physiological ramifications of selenoproteins and selenium-induced oxidative stress are discussed. Conclusions Malformed selenoproteins and oxidative stress are two distinct types of stress that drive selenium toxicity in plants and could impact cellular processes in plants that have yet to be thoroughly explored. Although challenging, deciphering whether the extent of selenium toxicity in plants is imparted by selenoproteins or oxidative stress could be helpful in the development of crops with fortified levels of selenium. PMID:23904445

  17. The effect of upper gastrointestinal system endoscopy process on serum oxidative stress levels.

    PubMed

    Turan, Mehmet Nuri; Aslan, Mehmet; Bolukbas, Filiz Fusun; Bolukbas, Cengiz; Selek, Sahbettin; Sabuncu, Tevfik

    2016-12-01

    Some authors have investigated the effects of oxidative stress in some process such as undergoing laparoscopic. However, the effect of upper gastrointestinal system endoscopy process on oxidative stress is unclear. We evaluated the short-term effect of upper gastrointestinal system endoscopy process on oxidative stress. Thirty patients who underwent endoscopy process and 20 healthy controls were enrolled in the prospective study. Serum total antioxidant capacity and total oxidant status measurements were measured before and after endoscopy process. The ratio percentage of total oxidant status to total antioxidant capacity was regarded as oxidative stress index. Before endoscopy process, serum total antioxidant capacity levels were higher, while serum total oxidant status levels and oxidative stress index values were lower in patients than controls, but this difference was not statistically significant (all, p > 0.05). After endoscopy process, serum total antioxidant capacity and total oxidant status levels were significantly higher in patients than before endoscopy process (both, p < 0.05). However, oxidative stress index values were slight higher in patients but this difference was not statistically significant (p > 0.05). We observed that serum TAC and TOS levels were increased in patients who underwent endoscopy process after endoscopy process. However, short-time upper gastrointestinal system endoscopy process did not cause an important change in the oxidative stress index. Further studies enrolling a larger number of patients are required to clarify the results obtained here.

  18. Oxidative stress status in elite athletes engaged in different sport disciplines

    PubMed Central

    Hadžović - Džuvo, Almira; Valjevac, Amina; Lepara, Orhan; Pjanić, Samra; Hadžimuratović, Adnan; Mekić, Amel

    2014-01-01

    Exercise training may increase production of free radicals and reactive oxygen species in different ways. The training type and intensity may influence free radicals production, which leads to differences in oxidative stress status between athletes, but the results of the previous studies are incosistent. The aim of our study was to estimate oxidative stress status in elite athletes engaged in different sport disciplines. The study included 39 male highly skilled professional competitors with international experience (2 Olympic players): 12 wrestlers, 14 soccer players and 13 basketball players in whom we determined the levels of advanced oxidation protein products (AOPP) and malondialdehyde (MDA), as markers of oxidative stress and the total antioxidative capacity (ImAnOX) using commercially available assay kits. The mean AOPP concentration was not significantly different between soccer players, wrestler and basketball players (60.0±23.0 vs. 68.5±30.8 and 80.72±29.1 μmol/L respectively). Mean ImAnOX concentration was not different between soccer players (344.8±35.6 μmol/L), wrestlers (342±36.2 μmol/L) and basketball players (347.95±31.3 μmol/L). Mean MDA concentration was significantly higher in basketball players (1912.1±667.7 ng/mL) compared to soccer players (1060.1±391.0 ng/mL, p=0.003). In spite of this fact, oxidative stress markers levels were increased compared to referral values provided by the manufacturer. Type of sports (soccer, wrestler or basketball) have no impact on the levels of oxidative stress markers. Elite sports engagement is a potent stimulus of oxidative stress that leads to the large recruitment of antioxidative defense. Oxidative stress status monitoring followed by appropriate use of antioxidants is recommended as a part of training regime. PMID:24856375

  19. Oxidative stress status in elite athletes engaged in different sport disciplines.

    PubMed

    Hadžović-Džuvo, Almira; Valjevac, Amina; Lepara, Orhan; Pjanić, Samra; Hadžimuratović, Adnan; Mekić, Amel

    2014-05-01

    Exercise training may increase production of free radicals and reactive oxygen species in different ways. The training type and intensity may influence free radicals production, which leads to differences in oxidative stress status between athletes, but the results of the previous studies are incosistent. The aim of our study was to estimate oxidative stress status in elite athletes engaged in different sport disciplines. The study included 39 male highly skilled professional competitors with international experience (2 Olympic players): 12 wrestlers, 14 soccer players and 13 basketball players in whom we determined the levels of advanced oxidation protein products (AOPP) and malondialdehyde (MDA), as markers of oxidative stress and the total antioxidative capacity (ImAnOX) using commercially available assay kits. The mean AOPP concentration was not significantly different between soccer players, wrestler and basketball players (60.0 ± 23.0 vs. 68.5 ± 30.8 and 80.72 ± 29.1 μmol/L respectively). Mean ImAnOX concentration was not different between soccer players (344.8 ± 35.6 μmol/L), wrestlers (342.5 ± 36.2 μmol/L) and basketball players (347.95 ± 31.3 μmol/L). Mean MDA concentration was significantly higher in basketball players (1912.1 ± 667.7 ng/mL) compared to soccer players (1060.1 ± 391.0 ng/mL, p=0.003). In spite of this fact, oxidative stress markers levels were increased compared to referral values provided by the manufacturer. Type of sports (soccer, wrestler or basketball) have no impact on the levels of oxidative stress markers. Elite sports engagement is a potent stimulus of oxidative stress that leads to the large recruitment of antioxidative defense. Oxidative stress status monitoring followed by appropriate use of antioxidants is recommended as a part of training regime.

  20. Oxidative stress in Nipah virus-infected human small airway epithelial cells.

    PubMed

    Escaffre, Olivier; Halliday, Hailey; Borisevich, Viktoriya; Casola, Antonella; Rockx, Barry

    2015-10-01

    Nipah virus (NiV) is a zoonotic emerging pathogen that can cause severe and often fatal respiratory disease in humans. The pathogenesis of NiV infection of the human respiratory tract remains unknown. Reactive oxygen species (ROS) produced by airway epithelial cells in response to viral infections contribute to lung injury by inducing inflammation and oxidative stress; however, the role of ROS in NiV-induced respiratory disease is unknown. To investigate whether NiV induces oxidative stress in human respiratory epithelial cells, we used oxidative stress markers and monitored antioxidant gene expression. We also used ROS scavengers to assess their role in immune response modulation. Oxidative stress was confirmed in infected cells and correlated with the reduction in antioxidant enzyme gene expression. Infected cells treated by ROS scavengers resulted in a significant decrease of the (F2)-8-isoprostane marker, inflammatory responses and virus replication. In conclusion, ROS are induced during NiV infection in human respiratory epithelium and contribute to the inflammatory response. Understanding how oxidative stress contributes to NiV pathogenesis is crucial for therapeutic development.

  1. Progranulin causes adipose insulin resistance via increased autophagy resulting from activated oxidative stress and endoplasmic reticulum stress.

    PubMed

    Guo, Qinyue; Xu, Lin; Li, Huixia; Sun, Hongzhi; Liu, Jiali; Wu, Shufang; Zhou, Bo

    2017-01-31

    Progranulin (PGRN) has recently emerged as an important regulator for insulin resistance. However, the direct effect of progranulin in adipose insulin resistance associated with the autophagy mechanism is not fully understood. In the present study, progranulin was administered to 3T3-L1 adipocytes and C57BL/6 J mice with/without specific inhibitors of oxidative stress and endoplasmic reticulum stress, and metabolic parameters, oxidative stress, endoplasmic reticulum stress and autophagy markers were assessed. Progranulin treatment increased iNOS expression, NO synthesis and ROS generation, and elevated protein expressions of CHOP, GRP78 and the phosphorylation of PERK, and caused a significant increase in Atg7 and LC3-II protein expression and a decreased p62 expression, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and glucose uptake, demonstrating that progranulin activated oxidative stress and ER stress, elevated autophagy and induced insulin insensitivity in adipocytes and adipose tissue of mice. Interestingly, inhibition of iNOS and ER stress both reversed progranulin-induced stress response and increased autophagy, protecting against insulin resistance in adipocytes. Furthermore, the administration of the ER stress inhibitor 4-phenyl butyric acid reversed the negative effect of progranulin in vivo. Our findings showed the clinical potential of the novel adipokine progranulin in the regulation of insulin resistance, suggesting that progranulin might mediate adipose insulin resistance, at least in part, by inducing autophagy via activated oxidative stress and ER stress.

  2. Systems-Level Feedbacks of NRF2 Controlling Autophagy upon Oxidative Stress Response

    PubMed Central

    Kapuy, Orsolya; Papp, Diána; Bánhegyi, Gábor

    2018-01-01

    Although the primary role of autophagy-dependent cellular self-eating is cytoprotective upon various stress events (such as starvation, oxidative stress, and high temperatures), sustained autophagy might lead to cell death. A transcription factor called NRF2 (nuclear factor erythroid-related factor 2) seems to be essential in maintaining cellular homeostasis in the presence of either reactive oxygen or nitrogen species generated by internal metabolism or external exposure. Accumulating experimental evidence reveals that oxidative stress also influences the balance of the 5′ AMP-activated protein kinase (AMPK)/rapamycin (mammalian kinase target of rapamycin or mTOR) signaling pathway, thereby inducing autophagy. Based on computational modeling here we propose that the regulatory triangle of AMPK, NRF2 and mTOR guaranties a precise oxidative stress response mechanism comprising of autophagy. We suggest that under conditions of oxidative stress, AMPK is crucial for autophagy induction via mTOR down-regulation, while NRF2 fine-tunes the process of autophagy according to the level of oxidative stress. We claim that the cellular oxidative stress response mechanism achieves an incoherently amplified negative feedback loop involving NRF2, mTOR and AMPK. The mTOR-NRF2 double negative feedback generates bistability, supporting the proper separation of two alternative steady states, called autophagy-dependent survival (at low stress) and cell death (at high stress). In addition, an AMPK-mTOR-NRF2 negative feedback loop suggests an oscillatory characteristic of autophagy upon prolonged intermediate levels of oxidative stress, resulting in new rounds of autophagy stimulation until the stress events cannot be dissolved. Our results indicate that AMPK-, NRF2- and mTOR-controlled autophagy induction provides a dynamic adaptation to altering environmental conditions, assuming their new frontier in biomedicine. PMID:29510589

  3. Oxidative stress in β-thalassaemia and sickle cell disease

    PubMed Central

    Voskou, S.; Aslan, M.; Fanis, P.; Phylactides, M.; Kleanthous, M.

    2015-01-01

    Sickle cell disease and β-thalassaemia are inherited haemoglobinopathies resulting in structural and quantitative changes in the β-globin chain. These changes lead to instability of the generated haemoglobin or to globin chain imbalance, which in turn impact the oxidative environment both intracellularly and extracellularly. The ensuing oxidative stress and the inability of the body to adequately overcome it are, to a large extent, responsible for the pathophysiology of these diseases. This article provides an overview of the main players and control mechanisms involved in the establishment of oxidative stress in these haemoglobinopathies. PMID:26285072

  4. A prolyl oligopeptidase inhibitor, KYP-2047, reduces α-synuclein protein levels and aggregates in cellular and animal models of Parkinson's disease

    PubMed Central

    Myöhänen, TT; Hannula, MJ; Van Elzen, R; Gerard, M; Van Der Veken, P; García-Horsman, JA; Baekelandt, V; Männistö, PT; Lambeir, AM

    2012-01-01

    BACKGROUND AND PURPOSE The aggregation of α-synuclein is connected to the pathology of Parkinson's disease and prolyl oligopeptidase (PREP) accelerates the aggregation of α-synuclein in vitro. The aim of this study was to investigate the effects of a PREP inhibitor, KYP-2047, on α-synuclein aggregation in cell lines overexpressing wild-type or A30P/A53T mutant human α-syn and in the brains of two A30P α-synuclein transgenic mouse strains. EXPERIMENTAL APPROACH Cells were exposed to oxidative stress and then incubated with the PREP inhibitor during or after the stress. Wild-type or transgenic mice were treated for 5 days with KYP-2047 (2 × 3 mg·kg−1 a day). Besides immunohistochemistry and thioflavin S staining, soluble and insoluble α-synuclein protein levels were measured by Western blot. α-synuclein mRNA levels were quantified by PCR. The colocalization of PREP and α-synuclein,and the effect of KYP-2047 on cell viability were also investigated. KEY RESULTS In cell lines, oxidative stress induced a robust aggregation of α-synuclein,and low concentrations of KYP-2047 significantly reduced the number of cells with α-synuclein inclusions while abolishing the colocalization of α-synuclein and PREP. KYP-2047 significantly reduced the amount of aggregated α-synuclein,and it had beneficial effects on cell viability. In the transgenic mice, a 5-day treatment with the PREP inhibitor reduced the amount of α-synuclein immunoreactivity and soluble α-synuclein protein in the brain. CONCLUSIONS AND IMPLICATIONS The results suggest that the PREP may play a role in brain accumulation and aggregation of α-synuclein, while KYP-2047 seems to effectively prevent these processes. PMID:22233220

  5. Pro-Oxidant Biological Effects of Inorganic Component of Petroleum: Vanadium and Oxidative Stress

    DTIC Science & Technology

    1996-08-01

    independent existence. Pro-Oxidant Chemicals and Free Radicals Involved in Oxidative Stress Pro-Oxidant Chemicals Chemical and Metabolic Generation... metabolic reactions may generate primary free radicals (Fig. 1). Then, in an avalanche-type process, secondary free radicals and reactive oxygen species...vanadium absorption, distribution, metabolism , and disposition, and no pharmacokinetic model is available describing comparative kinetics and toxicity

  6. The Role of Oxidative Stress in Nervous System Aging

    PubMed Central

    Sims-Robinson, Catrina; Hur, Junguk; Hayes, John M.; Dauch, Jacqueline R.; Keller, Peter J.; Brooks, Susan V.; Feldman, Eva L.

    2013-01-01

    While oxidative stress is implicated in aging, the impact of oxidative stress on aging in the peripheral nervous system is not well understood. To determine a potential mechanism for age-related deficits in the peripheral nervous system, we examined both functional and morphological changes and utilized microarray technology to compare normal aging in wild-type mice to effects in copper/zinc superoxide dismutase-deficient (Sod1−/−) mice, a mouse model of increased oxidative stress. Sod1−/− mice exhibit a peripheral neuropathy phenotype with normal sensory nerve function and deficits in motor nerve function. Our data indicate that a decrease in the synthesis of cholesterol, which is vital to myelin formation, correlates with the structural deficits in axons, myelin, and the cell body of motor neurons in the Sod1+/+ mice at 30 months and the Sod1−/− mice at 20 months compared with mice at 2 months. Collectively, we have demonstrated that the functional and morphological changes within the peripheral nervous system in our model of increased oxidative stress are manifested earlier and resemble the deficits observed during normal aging. PMID:23844146

  7. Role of oxidative stress in female reproduction

    PubMed Central

    Agarwal, Ashok; Gupta, Sajal; Sharma, Rakesh K

    2005-01-01

    In a healthy body, ROS (reactive oxygen species) and antioxidants remain in balance. When the balance is disrupted towards an overabundance of ROS, oxidative stress (OS) occurs. OS influences the entire reproductive lifespan of a woman and even thereafter (i.e. menopause). OS results from an imbalance between prooxidants (free radical species) and the body's scavenging ability (antioxidants). ROS are a double-edged sword – they serve as key signal molecules in physiological processes but also have a role in pathological processes involving the female reproductive tract. ROS affect multiple physiological processes from oocyte maturation to fertilization, embryo development and pregnancy. It has been suggested that OS modulates the age-related decline in fertility. It plays a role during pregnancy and normal parturition and in initiation of preterm labor. Most ovarian cancers appear in the surface epithelium, and repetitive ovulation has been thought to be a causative factor. Ovulation-induced oxidative base damage and damage to DNA of the ovarian epithelium can be prevented by antioxidants. There is growing literature on the effects of OS in female reproduction with involvement in the pathophsiology of preeclampsia, hydatidiform mole, free radical-induced birth defects and other situations such as abortions. Numerous studies have shown that OS plays a role in the pathoysiology of infertility and assisted fertility. There is some evidence of its role in endometriosis, tubal and peritoneal factor infertility and unexplained infertility. This article reviews the role OS plays in normal cycling ovaries, follicular development and cyclical endometrial changes. It also discusses OS-related female infertility and how it influences the outcomes of assisted reproductive techniques. The review comprehensively explores the literature for evidence of the role of oxidative stress in conditions such as abortions, preeclampsia, hydatidiform mole, fetal embryopathies, preterm

  8. Oxidative Stress Mechanisms Do Not Discriminate between Genotoxic and Nongenotoxic Liver Carcinogens.

    PubMed

    Deferme, Lize; Wolters, Jarno; Claessen, Sandra; Briedé, Jacco; Kleinjans, Jos

    2015-08-17

    It is widely accepted that in chemical carcinogenesis different modes-of-action exist, e.g., genotoxic (GTX) versus nongenotoxic (NGTX) carcinogenesis. In this context, it has been suggested that oxidative stress response pathways are typical for NGTX carcinogenesis. To evaluate this, we examined oxidative stress-related changes in gene expression, cell cycle distribution, and (oxidative) DNA damage in human hepatoma cells (HepG2) exposed to GTX-, NGTX-, and noncarcinogens, at multiple time points (4-8-24-48-72 h). Two GTX (azathriopine (AZA) and furan) and two NGTX (tetradecanoyl-phorbol-acetate, (TPA) and tetrachloroethylene (TCE)) carcinogens as well as two noncarcinogens (diazinon (DZN, d-mannitol (Dman)) were selected, while per class one compound was deemed to induce oxidative stress and the other not. Oxidative stressors AZA, TPA, and DZN induced a 10-fold higher number of gene expression changes over time compared to those of furan, TCE, or Dman treatment. Genes commonly expressed among AZA, TPA, and DZN were specifically involved in oxidative stress, DNA damage, and immune responses. However, differences in gene expression between GTX and NGTX carcinogens did not correlate to oxidative stress or DNA damage but could instead be assigned to compound-specific characteristics. This conclusion was underlined by results from functional readouts on ROS formation and (oxidative) DNA damage. Therefore, oxidative stress may represent the underlying cause for increased risk of liver toxicity and even carcinogenesis; however, it does not discriminate between GTX and NGTX carcinogens.

  9. [The oxidative stress in platelets of patients with ovary cancer as observed at chemotherapy].

    PubMed

    Zubrikhina, G N; Davydova, T V; Kormosh, N G; Gorozhanskaia, E G

    2004-12-01

    Disorders in the main chains of platelet antioxidant protection were examined in 32 patients with primarily-diagnosed ovary cancer who were postoperatively receiving chemotherapy according to PC. The activity of antioxidant-protection enzymes (superoxide dismutase, catalase, glutation-S-transferase) as well as the content of malonic dialdehyde (MDA) and glutathione were examined after each course of chemotherapy. The data obtained were compared with the aggregation ability of platelets, with the content of fibrinogen and with the count of platelets. The parameters of the antioxidant system in platelets were examined for control in 30 virtually healthy women. The results denote that the oxidant stress progression in the body due to the growing tumor and aggravating because of chemodrugs deregulates the free-radical processes in platelets, which can affect their functional properties or rheological blood properties.

  10. Markers of Oxidative Stress and Neuroprogression in Depression Disorder

    PubMed Central

    Vaváková, Magdaléna; Trebatická, Jana

    2015-01-01

    Major depression is multifactorial disorder with high prevalence and alarming prognostic in the nearest 15 years. Several mechanisms of depression are known. Neurotransmitters imbalance and imbalance between neuroprogressive and neuroprotective factors are observed in major depression. Depression is accompanied by inflammatory responses of the organism and consequent elevation of proinflammatory cytokines and increased lipid peroxidation are described in literature. Neuropsychiatric disorders including major depression are also associated with telomerase shortening, oxidative changes in nucleotides, and polymorphisms in several genes connected to metabolism of reactive oxygen species. Mitochondrion dysfunction is directly associated with increasing levels of oxidative stress. Oxidative stress plays significant role in pathophysiology of major depression via actions of free radicals, nonradical molecules, and reactive oxygen and nitrogen species. Products of oxidative stress represent important parameters for measuring and predicting of depression status as well as for determining effectiveness of administrated antidepressants. Positive effect of micronutrients, vitamins, and antioxidants in depression treatment is also reviewed. PMID:26078821

  11. Oxidative stress-mediated NFκB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy

    PubMed Central

    Qi, Xiaoping; Beli, Eleni; Rao, Haripriya V.; Ding, Jindong; Ip, Colin S.; Gu, Hongmei; Akin, Debra; Dunn, William A.; Bowes Rickman, Catherine; Lewin, Alfred S.; Grant, Maria B.; Boulton, Michael E.

    2017-01-01

    p62 is a scaffolding adaptor implicated in the clearance of protein aggregates by autophagy. Reactive oxygen species (ROS) can either stimulate or inhibit NFκB-mediated gene expression influencing cellular fate. We studied the effect of hydrogen peroxide (H2O2)-mediated oxidative stress and NFκB signaling on p62 expression in the retinal pigment epithelium (RPE) and investigated its role in regulation of autophagy and RPE survival against oxidative damage. Cultured human RPE cell line ARPE-19 and primary human adult and fetal RPE cells were exposed to H2O2-induced oxidative stress. The human apolipoprotein E4 targeted-replacement (APOE4) mouse model of AMD was used to study expression of p62 and other autophagy proteins in the retina. p62, NFκB p65 (total, phosphorylated, nuclear and cytoplasmic) and ATG10 expression was assessed by mRNA and protein analyses. Cellular ROS and mitochondrial superoxide were measured by CM-H2DCFDA and MitoSOX staining respectively. Mitochondrial viability was determined using MTT activity. qPCR-array system was used to investigate autophagic genes affected by p62. Nuclear and cytoplasmic levels of NFκB p65 were evaluated after cellular fractionation by Western blotting. We report that p62 is up-regulated in RPE cells under H2O2-induced oxidative stress and promotes autophagic activity. Depletion of endogenous p62 reduces autophagy by downregulation of ATG10 rendering RPE more susceptible to oxidative damage. NFκB p65 phosphorylation at Ser-536 was found to be critical for p62 upregulation in response to oxidative stress. Proteasome inhibition by H2O2 causes p62-NFκB signaling as antioxidant pre-treatment reversed p62 expression and p65 phosphorylation when RPE was challenged by H2O2 but not when by Lactacystin. p62 protein but not RNA levels are elevated in APOE4-HFC AMD mouse model, suggesting reduction of autophagic flux in disease conditions. Our findings suggest that p62 is necessary for RPE cytoprotection under oxidative

  12. In-vitro assessment of oxidative stress generated by orthodontic archwires.

    PubMed

    Spalj, Stjepan; Mlacovic Zrinski, Magda; Tudor Spalj, Vedrana; Ivankovic Buljan, Zorana

    2012-05-01

    Several metals undergo redox cycling, producing free radicals and generating oxidative stress. The purpose of this study was to investigate in-vitro oxidative stress of orthodontic archwires made of various alloys. Mouse fibroblast cells L929 were exposed to 6 types of archwires, and the concentration of the oxidative stress marker 8-hydroxy-2'-deoxyguanosine in DNA was evaluated. Trypan blue dye was used in the determination of cell viability and numbers. Standard nickel-titanium archwires generated the highest oxidative stress, significantly higher than all other wires and the controls (P <0.05), and coated nickel-titanium, copper-nickel-titanium, and cobalt-chromium were lower than nickel-titanium (P <0.05), but higher than titanium-molybdenum and the negative and absolute controls (P <0.05). Titanium-molybdenum and stainless steel generated the lowest stress. Nickel-titanium induced the lowest viability, lower than the negative and absolute controls and all other wires (P <0.05) except titanium-molybdenum. Stainless steel showed the highest viability. Nickel-titanium produced the highest inhibition of cell growth, higher than all samples (P <0.05) except the positive control and cobalt-chromium. The lowest inhibition was observed in stainless steel and titanium-molybdenum, lower than nickel-titanium, cobalt-chromium, and the positive control (P <0.05). All orthodontic archwires generate oxidative stress in vitro. Stainless steel archwires have the highest and nickel-titanium the lowest biocompatibility. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  13. Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress

    PubMed Central

    Wilson, Andrew F.; Li, Xue

    2017-01-01

    ABSTRACT Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G2/M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress. PMID:28475398

  14. Arabidopsis Ensemble Reverse-Engineered Gene Regulatory Network Discloses Interconnected Transcription Factors in Oxidative Stress[W

    PubMed Central

    Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves

    2014-01-01

    The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. PMID:25549671

  15. Thiol specific oxidative stress response in Mycobacteria.

    PubMed

    Dosanjh, Nirpjit S; Rawat, Mamta; Chung, Ji-Hae; Av-Gay, Yossef

    2005-08-01

    The cellular response of mycobacteria to thiol specific oxidative stress was studied in Mycobacterium bovis BCG cultures. Two-dimensional gel electrophoresis revealed that upon diamide treatment at least 60 proteins were upregulated. Fourteen of these proteins were identified by MALDI-MS; four proteins, AhpC, Tpx, GroEL2, and GroEL1 are functionally related to oxidative stress response; eight proteins, LeuC, LeuD, Rv0224c, Rv3029c, AsnB, Rv2971, PheA and HisH are classified as part of the bacterial intermediary metabolism and respiration pathways; protein EchA14 belong to lipid metabolism, and NrdE, belongs to the mycobacterial information pathway category. Reverse transcription followed by quantitative real time PCR in response to diamide stress demonstrated that protein expression is directly proportional to the corresponding gene transcription.

  16. Depression and oxidative stress: results from a meta-analysis of observational studies.

    PubMed

    Palta, Priya; Samuel, Laura J; Miller, Edgar R; Szanton, Sarah L

    2014-01-01

    To perform a systematic review and meta-analysis that quantitatively tests and summarizes the hypothesis that depression results in elevated oxidative stress and lower antioxidant levels. We performed a meta-analysis of studies that reported an association between depression and oxidative stress and/or antioxidant status markers. PubMed and EMBASE databases were searched for articles published from January 1980 through December 2012. A random-effects model, weighted by inverse variance, was performed to pool standard deviation (Cohen's d) effect size estimates across studies for oxidative stress and antioxidant status measures, separately. Twenty-three studies with 4980 participants were included in the meta-analysis. Depression was most commonly measured using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria. A Cohen's d effect size of 0.55 (95% confidence interval = 0.47-0.63) was found for the association between depression and oxidative stress, indicating a roughly 0.55 of 1-standard-deviation increase in oxidative stress among individuals with depression compared with those without depression. The results of the studies displayed significant heterogeneity (I(2) = 80.0%, p < .001). A statistically significant effect was also observed for the association between depression and antioxidant status markers (Cohen's d = -0.24, 95% confidence interval = -0.33 to -0.15). This meta-analysis observed an association between depression and oxidative stress and antioxidant status across many different studies. Differences in measures of depression and markers of oxidative stress and antioxidant status markers could account for the observed heterogeneity. These findings suggest that well-established associations between depression and poor heath outcomes may be mediated by high oxidative stress.

  17. RAGE polymorphisms and oxidative stress levels in Hashimoto's thyroiditis.

    PubMed

    Giannakou, Maria; Saltiki, Katerina; Mantzou, Emily; Loukari, Eleni; Philippou, Georgios; Terzidis, Konstantinos; Lili, Kiriaki; Stavrianos, Charalampos; Kyprianou, Miltiades; Alevizaki, Maria

    2017-05-01

    Polymorphisms of the receptor for advanced glycation end products (RAGE) gene have been studied in various autoimmune disorders, but not in Hashimoto's thyroiditis. Also, increased oxidative stress has been described in patients with Hashimoto's thyroiditis. The aim of this study was to investigate the possible role of two common RAGE polymorphisms (-429T>C, -374T>A) in Hashimoto's thyroiditis; in parallel, we studied oxidative stress levels. A total of 300 consecutive euthyroid women were examined and classified into three groups: Hashimoto's thyroiditis with treatment (n = 96), Hashimoto's thyroiditis without treatment (n = 109) and controls (n = 95). For a rough evaluation of oxidative stress, total lipid peroxide levels in serum were measured. The -429T>C AluI and -374T>A MfeI polymorphisms of RAGE were studied in genomic DNA. Significant association of the RAGE system with Hashimoto's thyroiditis was found only with regard to the prevalence of the -429T>C, but not with -374T>A polymorphism. The levels of oxidative stress were significantly elevated in Hashimoto's thyroiditis patients under treatment. Further analysis demonstrated that an oxidative stress cut-off value of 590 μmol/L is associated with an increased risk of progression of Hashimoto's thyroiditis from euthyroidism to hypothyroidism; this risk is further increased in carriers of the RAGE -429T>C polymorphism. Our findings indicate that both examined risk factors may be implicated in the occurrence of Hashimoto's thyroiditis, but this covers only a fraction of the pathophysiology of the disease. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.

  18. Oxidative stress in normal hematopoietic stem cells and leukemia.

    PubMed

    Samimi, Azin; Kalantari, Heybatullah; Lorestani, Marzieh Zeinvand; Shirzad, Reza; Saki, Najmaldin

    2018-04-01

    Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  19. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment.

    PubMed

    Chikara, Shireen; Nagaprashantha, Lokesh Dalasanur; Singhal, Jyotsana; Horne, David; Awasthi, Sanjay; Singhal, Sharad S

    2018-01-28

    Several epidemiological observations have shown an inverse relation between consumption of plant-based foods, rich in phytochemicals, and incidence of cancer. Phytochemicals, secondary plant metabolites, via their antioxidant property play a key role in cancer chemoprevention by suppressing oxidative stress-induced DNA damage. In addition, they modulate several oxidative stress-mediated signaling pathways through their anti-oxidant effects, and ultimately protect cells from undergoing molecular changes that trigger carcinogenesis. In several instances, however, the pro-oxidant property of these phytochemicals has been observed with respect to cancer treatment. Further, in vitro and in vivo studies show that several phytochemicals potentiate the efficacy of chemotherapeutic agents by exacerbating oxidative stress in cancer cells. Therefore, we reviewed multiple studies investigating the role of dietary phytochemicals such as, curcumin (turmeric), epigallocatechin gallate (EGCG; green tea), resveratrol (grapes), phenethyl isothiocyanate (PEITC), sulforaphane (cruciferous vegetables), hesperidin, quercetin and 2'-hydroxyflavanone (2HF; citrus fruits) in regulating oxidative stress and associated signaling pathways in the context of cancer chemoprevention and treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An update on oxidative stress-mediated organ pathophysiology.

    PubMed

    Rashid, Kahkashan; Sinha, Krishnendu; Sil, Parames C

    2013-12-01

    Exposure to environmental pollutants and drugs can result in pathophysiological situations in the body. Research in this area is essential as the knowledge on cellular survival and death would help in designing effective therapeutic strategies that are needed for the maintenance of the normal physiological functions of the body. In this regard, naturally occurring bio-molecules can be considered as potential therapeutic targets as they are normally available in commonly consumed foodstuffs and are thought to have minimum side effects. This review article describes the detailed mechanisms of oxidative stress-mediated organ pathophysiology and the ultimate fate of the cells either to survive or to undergo necrotic or apoptotic death. The mechanisms underlying the beneficial role of a number of naturally occurring bioactive molecules in oxidative stress-mediated organ pathophysiology have also been included in the review. The review provides useful information about the recent progress in understanding the mechanism(s) of various types of organ pathophysiology, the complex cross-talk between these pathways, as well as their modulation in stressed conditions. Additionally, it suggests possible therapeutic applications of a number of naturally occurring bioactive molecules in conditions involving oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds.

    PubMed

    Stier, Antoine; Massemin, Sylvie; Criscuolo, François

    2014-12-01

    Endotherms have evolved two major types of thermogenesis that allow them to actively produce heat in response to cold exposure, either through muscular activity (i.e. shivering thermogenesis) or through futile electro-chemical cycles (i.e. non-shivering thermogenesis). Amongst the latter, mitochondrial uncoupling is of key importance because it is suggested to drive heat production at a low cost in terms of oxidative stress. While this has been experimentally shown in mammals, the oxidative stress consequences of cold exposure and mitochondrial uncoupling are clearly less understood in the other class of endotherms, the birds. We compared metabolic and oxidative stress responses of zebra finches chronically treated with or without a chemical mitochondrial uncoupler (2,4-dinitrophenol: DNP), undergoing an acute (24 h) and a chronic (4 weeks) cold exposure (12 °C). We predicted that control birds should present at least a transient elevation of oxidative stress levels in response to cold exposure. This oxidative stress cost should be more pronounced in control birds than in DNP-treated birds, due to their lower basal uncoupling state. Despite similar increase in metabolism, control birds presented elevated levels of DNA oxidative damage in response to acute (but not chronic) cold exposure, while DNP-treated birds did not. Plasma antioxidant capacity decreased overall in response to chronic cold exposure. These results show that acute cold exposure increases oxidative stress in birds. However, uncoupling mitochondrial functioning appears as a putative compensatory mechanism preventing cold-induced oxidative stress. This result confirms previous observations in mice and underlines non-shivering thermogenesis as a putative key mechanism for endotherms in mounting a response to cold at a low oxidative cost.

  2. The paradoxical relationship between stallion fertility and oxidative stress.

    PubMed

    Gibb, Zamira; Lambourne, Sarah R; Aitken, Robert J

    2014-09-01

    The relationship between stallion fertility and oxidative stress remains poorly understood. The purpose of this study was to identify criteria for thoroughbred fertility assessment by performing a logistical regression analysis using "dismount" sperm parameters as predictors and weekly per-cycle conception rate as the dependent variable. Paradoxically, positive relationships between fertility and oxidative stress were revealed, such that samples that produced pregnancies exhibited higher rates of 8-hydroxy-2'-deoxyguanosine release (1490.2% vs. 705.5 pg/ml/24 h) and lower vitality (60.5% vs. 69.6%) and acrosome integrity (40.2% vs. 50.1%) than those that did not. We hypothesized that the most fertile spermatozoa exhibited the highest levels of oxidative phosphorylation (OXPHOS), with oxidative stress simply being a by-product of intense mitochondrial activity. Accordingly, an experiment to investigate the relationship between oxidative stress and motility was conducted and revealed positive correlations between mitochondrial ROS and total motility (R² = 0.90), rapid motility (R² = 0.89), average path velocity (VAP; R² = 0.59), and curvilinear velocity (VCL; R² = 0.66). Similarly, lipid peroxidation was positively correlated with total motility (R² = 0.46), rapid motility (R² = 0.51), average path velocity (R² = 0.62), and VCL (R² = 0.56), supporting the aforementioned hypothesis. The relative importance of OXPHOS in supporting the motility of equine spermatozoa was contrasted with human spermatozoa, which primarily utilize glycolysis. In this study, mitochondrial inhibition significantly reduced the velocity (P < 0.01) and ATP (P < 0.05) content of equine, but not human, spermatozoa, emphasizing the former's relative dependence on OXPHOS. The equine is the first mammal in which such a positive relationship between oxidative stress and functionality has been observed, with implications for the management of stallion fertility in vitro and in vivo. © 2014 by

  3. Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis.

    PubMed

    Kasajima, Ichiro

    2017-04-26

    Oxidative stress is considered to be involved in growth retardation of plants when they are exposed to a variety of biotic and abiotic stresses. Despite its potential importance in improving crop production, comparative studies on oxidative stress tolerance between rice (Oryza sativa L.) cultivars are limited. This work describes the difference in term of oxidative stress tolerance between 72 rice cultivars. 72 rice cultivars grown under naturally lit greenhouse were used in this study. Excised leaf discs were subjected to a low concentration of methyl viologen (paraquat), a chemical reagent known to generate reactive oxygen species in chloroplast. Chlorophyll fluorescence analysis using a two-dimensional fluorescence meter, ion leakage analysis as well as the measurement of chlorophyll contents were used to evaluate the oxidative stress tolerance of leaf discs. Furthermore, fluorescence intensities were finely analyzed based on new fluorescence theories that we have optimized. Treatment of leaf discs with methyl viologen caused differential decrease of maximum quantum yield of photosystem II (Fv/Fm) between cultivars. Decrease of Fv/Fm was also closely correlated with increase of ion leakage and decrease of chlorophyll a/b ratio. Fv/Fm was factorized into photochemical and non-photochemical parameters to classify rice cultivars into sensitive and tolerant ones. Among the 72 compared rice cultivars, the traditional cultivar Co13 was identified as the most tolerant to oxidative stress. Koshihikari, a dominant modern Japonica cultivar in Japan as well as IR58, one of the modern Indica breeding lines exhibited a strong tolerance to oxidative stress. Close correlation between Fv/Fm and chlorophyll a/b ratio provides a simple method to estimate oxidative stress tolerance, without measurement of chlorophyll fluorescence with special equipment. The fact that modern cultivars, especially major cultivars possessed tolerance to oxidative stress suggests that oxidative stress

  4. Oxidative stress biomarkers in pediatric sepsis: a prospective observational pilot study.

    PubMed

    Molina, Víctor; von Dessauer, Bettina; Rodrigo, Ramón; Carvajal, Cristian

    2017-11-01

    Oxidative stress is known to participate in the progression of sepsis. Definite data regarding the behavior of oxidative stress biomarkers in pediatric sepsis is still lacking. This study hypothesized that oxidative stress occurs in pediatric sepsis and that the magnitude of the redox derangement is associated with worse clinical progression. Forty-two previously healthy pediatric patients with sepsis and a group of control subjects were included. Oxidative stress and inflammatory activity biomarkers were determined in blood samples. Patients were prospectively followed until their discharge or death. Patients with non-severe and severe sepsis showed higher levels of plasmatic antioxidant capacity, lower erythrocyte thiol index, lower superoxide dismutase and catalase activities, higher glutathione peroxidase activity, and higher plasmatic F 2 -isoprostanes concentration than controls. Patients with severe sepsis had higher NF-kappaB activation than those with non-severe sepsis. Although we observed changes in some biomarkers in patients with worse clinical evolution, the explored biomarkers did not correlate with clinical estimators of outcome. Oxidative stress occurs in pediatric sepsis, resulting in oxidative damage. The explored biomarkers are not useful as outcome predictors in the studied population. The behavior of these biomarkers still needs to be addressed in broader groups of pediatric patients with sepsis.

  5. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress.

    PubMed

    Fu, Jianming; Momcilović, Ivana; Clemente, Thomas E; Nersesian, Natalya; Trick, Harold N; Ristic, Zoran

    2008-10-01

    Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (Triticum aestivum) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein.

  6. Hormonal Regulation of Response to Oxidative Stress in Insects—An Update

    PubMed Central

    Kodrík, Dalibor; Bednářová, Andrea; Zemanová, Milada; Krishnan, Natraj

    2015-01-01

    Insects, like other organisms, must deal with a wide variety of potentially challenging environmental factors during the course of their life. An important example of such a challenge is the phenomenon of oxidative stress. This review summarizes the current knowledge on the role of adipokinetic hormones (AKH) as principal stress responsive hormones in insects involved in activation of anti-oxidative stress response pathways. Emphasis is placed on an analysis of oxidative stress experimentally induced by various stressors and monitored by suitable biomarkers, and on detailed characterization of AKH’s role in the anti-stress reactions. These reactions are characterized by a significant increase of AKH levels in the insect body, and by effective reversal of the markers—disturbed by the stressors—after co-application of the stressor with AKH. A plausible mechanism of AKH action in the anti-oxidative stress response is discussed as well: this probably involves simultaneous employment of both protein kinase C and cyclic adenosine 3′,5′-monophosphate pathways in the presence of extra and intra-cellular Ca2+ stores, with the possible involvement of the FoxO transcription factors. The role of other insect hormones in the anti-oxidative defense reactions is also discussed. PMID:26516847

  7. Contrasting protective effects of cannabinoids against oxidative stress and amyloid-β evoked neurotoxicity in vitro.

    PubMed

    Harvey, Benjamin S; Ohlsson, Katharina S; Mååg, Jesper L V; Musgrave, Ian F; Smid, Scott D

    2012-01-01

    Cannabinoids have been widely reported to have neuroprotective properties in vitro and in vivo. In this study we compared the effects of CB1 and CB2 receptor-selective ligands, the endocannabinoid anandamide and the phytocannabinoid cannabidiol, against oxidative stress and the toxic hallmark Alzheimer's protein, β-amyloid (Aβ) in neuronal cell lines. PC12 or SH-SY5Y cells were selectively exposed to either hydrogen peroxide, tert-butyl hydroperoxide or Aβ, alone or in the presence of the CB1 specific agonist arachidonyl-2'-chloroethylamide (ACEA), CB2 specific agonist JWH-015, anandamide or cannabidiol. Cannabidiol improved cell viability in response to tert-butyl hydroperoxide in PC12 and SH-SY5Y cells, while hydrogen peroxide-mediated toxicity was unaffected by cannabidiol pretreatment. Aβ exposure evoked a loss of cell viability in PC12 cells. Of the cannabinoids tested, only anandamide was able to inhibit Aβ-evoked neurotoxicity. ACEA had no effect on Aβ-evoked neurotoxicity, suggesting a CB1 receptor-independent effect of anandamide. JWH-015 pretreatment was also without protective influence on PC12 cells from either pro-oxidant or Aβ exposure. None of the cannabinoids directly inhibited or disrupted preformed Aβ fibrils and aggregates. In conclusion, the endocannabinoid anandamide protects neuronal cells from Aβ exposure via a pathway unrelated to CB1 or CB2 receptor activation. The protective effect of cannabidiol against oxidative stress does not confer protection against Aβ exposure, suggesting divergent pathways for neuroprotection of these two cannabinoids. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. ELECTROSTATIC CHARGE STIMULATES OXIDATIVE STRESS IN CNS MICROGLIA.

    EPA Science Inventory

    Nanometer size particles carry free radical activity on their surface and can create oxidative stress (OS)-mediated inflammatory changes upon impact. The oxidative burst signals the activation of phage-lineage cells such as peripheral macrophages, Kupffer cells and CNS microgl...

  9. Permeability of Concrete with Recycled Concrete Aggregate and Pozzolanic Materials under Stress

    PubMed Central

    Wang, Hailong; Sun, Xiaoyan; Wang, Junjie; Monteiro, Paulo J.M.

    2016-01-01

    The research reported herein studied the permeability of concrete containing recycled-concrete aggregate (RA), superfine phosphorous slag (PHS), and ground granulated blast-furnace slag (GGBS) with and without stress. Test results showed that the chloride diffusion coefficient of RA concrete (RAC) without external loads decreased with time, and the permeability of RAC is much lower than that of the reference concrete due to the on-going hydration and the pozzolanic reaction provided by the PHS and GGBS additives in the RAC mixture. The permeability of chloride under flexural load is much more sensitive than that under compressive load due to the differences in porosity and cracking pattern. At low compressive stress levels, the permeability of chloride decreased by the closing of pores and microcracks within RAC specimens. However, in a relatively short time the chloride diffusion coefficient and the chloride content increased rapidly with the increase of compressive stress when it exceeded a threshold stress level of approximate 35% of the ultimate compressive strength. Under flexural stress, the chloride transport capability increased with the increase of stress level and time. At high compressive and flexural stress levels, creep had a significant effect on the permeability of chloride in the RAC specimens due to the damage from the nucleation and propagation of microcracks over time. It is apparent that mortar cracking has more of a significant effect on the chloride transport in concrete than cracking in the interfacial transition zone (ITZ). PMID:28773376

  10. Permeability of Concrete with Recycled Concrete Aggregate and Pozzolanic Materials under Stress.

    PubMed

    Wang, Hailong; Sun, Xiaoyan; Wang, Junjie; Monteiro, Paulo J M

    2016-03-30

    The research reported herein studied the permeability of concrete containing recycled-concrete aggregate (RA), superfine phosphorous slag (PHS), and ground granulated blast-furnace slag (GGBS) with and without stress. Test results showed that the chloride diffusion coefficient of RA concrete (RAC) without external loads decreased with time, and the permeability of RAC is much lower than that of the reference concrete due to the on-going hydration and the pozzolanic reaction provided by the PHS and GGBS additives in the RAC mixture. The permeability of chloride under flexural load is much more sensitive than that under compressive load due to the differences in porosity and cracking pattern. At low compressive stress levels, the permeability of chloride decreased by the closing of pores and microcracks within RAC specimens. However, in a relatively short time the chloride diffusion coefficient and the chloride content increased rapidly with the increase of compressive stress when it exceeded a threshold stress level of approximate 35% of the ultimate compressive strength. Under flexural stress, the chloride transport capability increased with the increase of stress level and time. At high compressive and flexural stress levels, creep had a significant effect on the permeability of chloride in the RAC specimens due to the damage from the nucleation and propagation of microcracks over time. It is apparent that mortar cracking has more of a significant effect on the chloride transport in concrete than cracking in the interfacial transition zone (ITZ).

  11. [Oxidative stress promotes hepatocyte apoptosis mediated by glycogen synthase kinase 3β].

    PubMed

    Zhang, Xiangying; Guo, Yuanyuan; Zhang, Li; Wen, Tao; Piao, Zhengfu; Shi, Hongbo; Chen, Dexi; Duan, Zhongping; Ren, Feng

    2015-01-01

    To analyze the role of glycogen synthase kinase 3β (GSK3β) in hepatocyte apoptosis induced by oxidative stress. Human HL-7702 hepatoma cells were induced by H₂O₂/antimycin A to establish oxidative stress-induced cell apoptosis models. SB216763, a specific inhibitor of GSK3β, was given to the cells two hours before H₂O₂/antimycin A induction. Cell survival was observed using calcein acetoxymethyl ester/propidium iodide (PI) double staining, and cell apoptosis was detected using annexin V-FITC/PI staining combined with flow cytometry. In the meanwhile, the cell culture supernatant was subjected to lactate dehydrogenase (LDH) assay to evaluate the extent of cell death. The expressions of p-GSK3β, GSK3β, caspase-3, cleaved caspase-3, c-Jun N-terminal kinase (JNK) and cytochrome C (CytC) proteins were examined using Western blotting. Oxidative stress triggered by H₂O₂/antimycin A promoted GSK3β activity; inhibition of GSK3β activity by SB216763 relieved oxidative stress and reduced cell apoptosis induced by oxidative stress. Compared with the model groups, SB216763 intervened group showed that the cell apoptosis rate and the level of LDH were reduced significantly, and that the expressions of cleaved caspase-3, JNK, CytC proteins decreased. GSK3β is an important signaling molecule in the apoptosis pathway induced by oxidative stress. The inhibition on GSK3β may alleviate the oxidative stress-induced hepatocyte apoptosis.

  12. Stress and strain partitioning during high PT deformation of polyphase aggregates

    NASA Astrophysics Data System (ADS)

    Bejina, F.; Bystricky, M.; Ingrin, J.

    2013-12-01

    Previous experimental studies on the rheology of the upper mantle have mostly focused on the deformation properties of olivine. Yet minerals other than olivine constitute up to 40 vol% of upper mantle rocks and may have a significant effect on the rheological behavior of these rocks. In this study, and as a first step before focusing on more realistic mantle-like compositions, we have performed deformation experiments on polymineralic model aggregates of forsterite and MgO, at upper mantle pressures and temperatures. Commercial powders of Mg2SiO4 and MgO were mixed and ground in WC grinders and dried in a one-atmosphere furnace at 1000°C. Powders with different volume proportions of the two phases (up to 50 vol% of MgO) were sintered by spark plasma sintering at temperatures of 1300-1400°C and 100 MPa for a few minutes, resulting in dense pellets 8 mm in diameter and 3-4 mm in length. Deformation experiments on samples 1.2 mm in diameter and 1.2 mm in length were performed at 3-8 GPa and 1000-1300°C in a D-DIA apparatus coupled with synchrotron X-ray radiation. The technique permits in situ measurement of macroscopic strain rates as well as stress levels sustained by different subpopulations of grains of each phase. Typically, two specimens were deformed concurrently in order to minimize the relative uncertainties in temperature and pressure and to facilitate the comparison of their rheological properties. The samples were deformed to total strains of 15-25%. The harder phase, forsterite, sustains significantly higher stress levels than MgO, as predicted by numerical models for two-phase flow. Microstructural analysis by SEM reveals equilibrated microstructures in the starting samples, with well-mixed forsterite and MgO layers alternating with forsterite-rich layers. In the deformed samples, this compositional banding is accentuated, with more intense deformation in the well-mixed layers. Results on stress and strain partitioning in polyphase aggregates in the

  13. Lithospermum erythrorhizon extract protects keratinocytes and fibroblasts against oxidative stress.

    PubMed

    Yoo, Hee Geun; Lee, Bong Han; Kim, Wooki; Lee, Jong Suk; Kim, Gun Hee; Chun, Ock K; Koo, Sung I; Kim, Dae-Ok

    2014-11-01

    Oxidative stress damages dermal and epidermal cells and degrades extracellular matrix proteins, such as collagen, ultimately leading to skin aging. The present study evaluated the potential protective effect of the aqueous methanolic extract obtained from Lithospermum erythrorhizon (LE) against oxidative stress, induced by H2O2 and ultraviolet (UV) irradiation, on human keratinocyte (HaCaT) and human dermal fibroblast-neonatal (HDF-n) cells. Exposure of cells to H2O2 or UVB irradiation markedly increased oxidative stress and reduced cell viability. However, pretreatment of cells with the LE extract not only increased cell viability (up to 84.5%), but also significantly decreased oxidative stress. Further, the LE extract downregulated the expression of matrix metalloproteinase-1, an endopeptidase that degrades extracellular matrix collagen. In contrast, treatment with the LE extract did not affect the expression of procollagen type 1 in HDF-n cells exposed to UVA irradiation. Thirteen phenolic compounds, including derivatives of shikonin and caffeic acid, were identified by ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. These results suggest that LE-derived extracts may protect oxidative-stress-induced skin aging by inhibiting degradation of skin collagen, and that this protection may derive at least in part from the antioxidant phenolics present in these extracts. Further studies are warranted to determine the potential utility of LE-derived extracts in both therapeutic and cosmetic applications.

  14. Age-dependent oxidative stress-induced DNA damage in Down's lymphocytes.

    PubMed

    Zana, Marianna; Szécsényi, Anita; Czibula, Agnes; Bjelik, Annamária; Juhász, Anna; Rimanóczy, Agnes; Szabó, Krisztina; Vetró, Agnes; Szucs, Péter; Várkonyi, Agnes; Pákáski, Magdolna; Boda, Krisztina; Raskó, István; Janka, Zoltán; Kálmán, János

    2006-06-30

    The aim of the present study was to investigate the oxidative status of lymphocytes from children (n=7) and adults (n=18) with Down's syndrome (DS). The basal oxidative condition, the vulnerability to in vitro hydrogen peroxide exposure, and the repair capacity were measured by means of the damage-specific alkaline comet assay. Significantly and age-independently elevated numbers of single strand breaks and oxidized bases (pyrimidines and purines) were found in the nuclear DNA of the lymphocytes in the DS group in the basal condition. These results may support the role of an increased level of endogenous oxidative stress in DS and are similar to those previously demonstrated in Alzheimer's disease. In the in vitro oxidative stress-induced state, a markedly higher extent of DNA damage was observed in DS children as compared with age- and gender-matched healthy controls, suggesting that young trisomic lymphocytes are more sensitive to oxidative stress than normal ones. However, the repair ability itself was not found to be deteriorated in either DS children or DS adults.

  15. Markers of Oxidant Stress that are Clinically Relevant in Aging and Age-related Disease

    PubMed Central

    Jacob, Kimberly D.; Hooten, Nicole Noren; Trzeciak, Andrzej R.; Evans, Michele K.

    2013-01-01

    Despite the long held hypothesis that oxidant stress results in accumulated oxidative damage to cellular macromolecules and subsequently to aging and age-related chronic disease, it has been difficult to consistently define and specifically identify markers of oxidant stress that are consistently and directly linked to age and disease status. Inflammation because it is also linked to oxidant stress, aging, and chronic disease also plays an important role in understanding the clinical implications of oxidant stress and relevant markers. Much attention has focused on identifying specific markers of oxidative stress and inflammation that could be measured in easily accessible tissues and fluids (lymphocytes, plasma, serum). The purpose of this review is to discuss markers of oxidant stress used in the field as biomarkers of aging and age-related diseases, highlighting differences observed by race when data is available. We highlight DNA, RNA, protein, and lipid oxidation as measures of oxidative stress, as well as other well-characterized markers of oxidative damage and inflammation and discuss their strengths and limitations. We present the current state of the literature reporting use of these markers in studies of human cohorts in relation to age and age-related disease and also with a special emphasis on differences observed by race when relevant. PMID:23428415

  16. Introduction to Oxidative Stress in Biomedical and Biological Research

    PubMed Central

    Breitenbach, Michael; Eckl, Peter

    2015-01-01

    Oxidative stress is now a well-researched area with thousands of new articles appearing every year. We want to give the reader here an overview of the topics in biomedical and basic oxidative stress research which are covered by the authors of this thematic issue. We also want to give the newcomer a short introduction into some of the basic concepts, definitions and analytical procedures used in this field. PMID:26117854

  17. The effect of sunblock against oxidative stress in farmers: a pilot study

    PubMed Central

    Kim, Yong-Dae; Yim, Dong-Hyuk; Eom, Sang-Yong; Yeoun Lee, Ji; Kim, Heon

    2017-01-01

    Farmers are frequently exposed to ultraviolet (UV) radiation which causes various diseases by inducing oxidative stress. This study aimed to assess the effects of sunblock on oxidative stress in the body. Eighty-seven farmers were divided into two groups: those who wore sunblock for five days and those who did not. The total antioxidant capacity (TAC) in urine, which is an antioxidant indicator, and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels in urine, an oxidative stress indicator, were measured. The urinary TAC of sunblock users was significantly higher than that of non-users, but urinary 8-OHdG levels were not significantly different. Even after adjustment for potential confounders, urinary TAC was found to be markedly increased with sunblock usage. These results suggest that sunblock is effective in preventing oxidative stress among farmers. In addition, they show that urinary TAC can be used as a good effect marker of oxidative stress caused by UV exposure. PMID:28808206

  18. Oxidative stress and plasma lipoproteins in cancer patients

    PubMed Central

    Maia, Fernanda Maria Machado; Santos, Emanuelly Barbosa; Reis, Germana Elias

    2014-01-01

    Objective To evaluate the relation between oxidative stress and lipid profile in patients with different types of cancer. Methods This was an observational cross-sectional. A total of 58 subjects were evaluated, 33 males, divided into two groups of 29 patients each: Group 1, patients with cancer of the digestive tract and accessory organs; Group 2 patients with other types of cancers, all admitted to a public hospital. The plasma levels (lipoproteins and total cholesterol, HDL, and triglycerides, for example) were analyzed by enzymatic kits, and oxidative stress based on thiobarbituric acid-reactive substances, by assessing the formation of malondialdehyde. Results In general the levels of malondialdehyde of patients were high (5.00μM) as compared to 3.31μM for healthy individuals. The median values of lipids exhibited normal triacylglycerol (138.78±89.88mg/dL), desirable total cholesterol values (163.04±172.38mg/dL), borderline high LDL (151.30±178.25mg/dL) and low HDL (31.70±22.74mg/dL). Median HDL levels in Group 1 were lower (31.32mg/dL) than the cancer patients in Group 2 (43.67mg/dL) (p=0.038). Group 1 also showed higher levels of oxidative stress (p=0.027). Conclusion The lipid profile of patients with cancer was not favorable, which seems to have contributed to higher lipid peroxidation rate, generating a significant oxidative stress. PMID:25628201

  19. Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis.

    PubMed

    Richier, Sophie; Sabourault, Cécile; Courtiade, Juliette; Zucchini, Nathalie; Allemand, Denis; Furla, Paola

    2006-09-01

    Symbiosis between cnidarian and photosynthetic protists is widely distributed over temperate and tropical seas. These symbioses can periodically breakdown, a phenomenon known as cnidarian bleaching. This event can be irreversible for some associations subjected to acute and/or prolonged environmental disturbances, and leads to the death of the animal host. During bleaching, oxidative stress has been described previously as acting at molecular level and apoptosis is suggested to be one of the mechanisms involved. We focused our study on the role of apoptosis in bleaching via oxidative stress in the association between the sea anemone Anemonia viridis and the dinoflagellates Symbiodinium species. Characterization of caspase-like enzymes were conducted at the biochemical and molecular level to confirm the presence of a caspase-dependent apoptotic phenomenon in the cnidarian host. We provide evidence of oxidative stress followed by induction of caspase-like activity in animal host cells after an elevated temperature stress, suggesting the concomitant action of these components in bleaching.

  20. Depression and Oxidative Stress: Results From a Meta-Analysis of Observational Studies

    PubMed Central

    Palta, Priya; Samuel, Laura J.; Miller, Edgar R.; Szanton, Sarah L.

    2014-01-01

    Objective To perform a systematic review and meta-analysis that quantitatively tests and summarizes the hypothesis that depression results in elevated oxidative stress and lower antioxidant levels. Methods We performed a meta-analysis of studies that reported an association between depression and oxidative stress and/or antioxidant status markers. PubMed and EMBASE databases were searched for articles published from January 1980 through December 2012. A random-effects model, weighted by inverse variance, was performed to pool standard deviation (Cohen’s d) effect size estimates across studies for oxidative stress and antioxidant status measures, separately. Results Twenty-three studies with 4980 participants were included in the meta-analysis. Depression was most commonly measured using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria. A Cohen’s d effect size of 0.55 (95% confidence interval = 0.47–0.63) was found for the association between depression and oxidative stress, indicating a roughly 0.55 of 1-standard-deviation increase in oxidative stress among individuals with depression compared with those without depression. The results of the studies displayed significant heterogeneity (I2 = 80.0%, p < .001). A statistically significant effect was also observed for the association between depression and antioxidant status markers (Cohen’s d = −0.24, 95% confidence interval = −0.33 to −0.15). Conclusions This meta-analysis observed an association between depression and oxidative stress and antioxidant status across many different studies. Differences in measures of depression and markers of oxidative stress and antioxidant status markers could account for the observed heterogeneity. These findings suggest that well-established associations between depression and poor heath outcomes may be mediated by high oxidative stress. PMID:24336428

  1. Alpha-synuclein aggregation induced by brief ischemia negatively impacts neuronal survival in vivo: a study in [A30P]alpha-synuclein transgenic mouse

    PubMed Central

    Unal-Cevik, Isin; Gursoy-Ozdemir, Yasemin; Yemisci, Muge; Lule, Sevda; Gurer, Gunfer; Can, Alp; Müller, Veronica; Kahle, Philip J; Dalkara, Turgay

    2011-01-01

    Alpha-synuclein oligomerization and aggregation are considered to have a role in the pathogenesis of neurodegenerative diseases. However, despite numerous in vitro studies, the impact of aggregates in the intact brain is unclear. In vitro, oxidative/nitrative stress and acidity induce α-synuclein oligomerization. These conditions favoring α-synuclein fibrillization are present in the ischemic brain, which may serve as an in vivo model to study α-synuclein aggregation. In this study, we show that 30-minute proximal middle cerebral artery (MCA) occlusion and 72 hours reperfusion induce oligomerization of wild-type α-synuclein in the ischemic mouse brain. The nonamyloidogenic isoform β-synuclein did not form oligomers. Alpha-synuclein aggregates were confined to neurons and colocalized with ubiquitin immunoreactivity. We also found that 30 minutes proximal MCA occlusion and 24 hours reperfusion induced larger infarcts in C57BL/6(Thy1)-h[A30P]alphaSYN transgenic mice, which have an increased tendency to form synuclein fibrils. Trangenics also developed more selective neuronal necrosis when subjected to 20 minutes distal MCA occlusion and 72 hours reperfusion. Enhanced 3-nitrotyrosine immunoreactivity in transgenic mice suggests that oxidative/nitrative stress may be one of the mechanisms mediating aggregate toxicity. Thus, the increased vulnerability of transgenic mice to ischemia suggests that α-synuclein aggregates not only form during ischemia but also negatively impact neuronal survival, supporting the idea that α-synuclein misfolding may be neurotoxic. PMID:20877387

  2. Nitric oxide in the stress axis.

    PubMed

    López-Figueroa, M O; Day, H E; Akil, H; Watson, S J

    1998-10-01

    In recent years nitric oxide (NO) has emerged as a unique biological messenger. NO is a highly diffusible gas, synthesized from L-arginine by the enzyme nitric oxide synthase (NOS). Three unique subtypes of NOS have been described, each with a specific distribution profile in the brain and periphery. NOS subtype I is present, among other areas, in the hippocampus, hypothalamus, pituitary and adrenal gland. Together these structures form the limbic-hypothalamic-pituitary-adrenal (LHPA) or stress axis, activation of which is one of the defining features of a stress response. Evidence suggests that NO may modulate the release of the stress hormones ACTH and corticosterone, and NOS activity and transcription is increased in the LHPA axis following various stressful stimuli. Furthermore, following activation of the stress axis, glucocorticoids are thought to down-regulate the transcription and activity of NOS via a feedback mechanism. Taken together, current data indicate a role for NO in the regulation of the LHPA axis, although at present this role is not well defined. It has been suggested that NO may act as a cellular communicator in plasticity and development, to facilitate the activation or the release of other neurotransmitters, to mediate immune responses, and/or as a vasodilator in the regulation of blood flow. In the following review we summarize some of the latest insights into the function of NO, with special attention to its relationship with the LHPA axis.

  3. Thiamine deficiency induces endoplasmic reticulum stress and oxidative stress in human neurons derived from induced pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Xu, Mei; Frank, Jacqueline A.

    Thiamine (vitamin B1) deficiency (TD) plays a major role in the etiology of Wernicke's encephalopathy (WE) which is a severe neurological disorder. TD induces selective neuronal cell death, neuroinflammation, endoplasmic reticulum (ER) stress and oxidative stress in the brain which are commonly observed in many aging-related neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and progressive supranuclear palsy (PSP). However, the underlying cellular and molecular mechanisms remain unclear. The progress in this line of research is hindered due to the lack of appropriate in vitro models. The neurons derived for the human induced pluripotent stemmore » cells (hiPSCs) provide a relevant and powerful tool for the research in pharmaceutical and environmental neurotoxicity. In this study, we for the first time used human induced pluripotent stem cells (hiPSCs)-derived neurons (iCell neurons) to investigate the mechanisms of TD-induced neurodegeneration. We showed that TD caused a concentration- and duration-dependent death of iCell neurons. TD induced ER stress which was evident by the increase in ER stress markers, such as GRP78, XBP-1, CHOP, ATF-6, phosphorylated eIF2α, and cleaved caspase-12. TD also triggered oxidative stress which was shown by the increase in the expression 2,4-dinitrophenyl (DNP) and 4-hydroxynonenal (HNE). ER stress inhibitors (STF-083010 and salubrinal) and antioxidant N-acetyl cysteine (NAC) were effective in alleviating TD-induced death of iCell neurons, supporting the involvement of ER stress and oxidative stress. It establishes that the iCell neurons are a novel tool to investigate cellular and molecular mechanisms for TD-induced neurodegeneration. - Highlights: • Thiamine deficiency (TD) causes death of human neurons in culture. • TD induces both endoplasmic reticulum (ER) stress and oxidative stress. • Alleviating ER stress and oxidative stress reduces TD

  4. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1

    PubMed Central

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective. PMID:27242761

  5. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1.

    PubMed

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective.

  6. Effects of magnetic field strength and particle aggregation on relaxivity of ultra-small dual contrast iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ta, Hang T.; Li, Zhen; Wu, Yuao; Cowin, Gary; Zhang, Shaohua; Yago, Anya; Whittaker, Andrew K.; Xu, Zhi Ping

    2017-11-01

    This study aims to compare the relaxivities of ultra-small dual positive and negative contrast iron oxide nanoparticles (DCION) at different magnetic field strengths ranging from 4.7 to 16.4 T at physiological temperatures; and to investigate the effect of particle aggregation on relaxivities. Relaxivities of DCIONs were determined by magnetic resonance imaging scanners at 4.7, 7, 9.4, and 16.4 T. Both longitudinal (T 1) and transverse relaxation times (T 2) were measured by appropriate spin-echo sequences. It has been found that both longitudinal and transverse relaxivities are significantly dependent on the magnetic field strength. Particle aggregation also strongly affects the relaxivities. Awareness of the field strength and particle colloid stability is crucial for the comparison and evaluation of relaxivity values of these ultra-small iron oxide nanoparticles, and also for their medical applications as contrast agents.

  7. [Modulation of oxidative stresses in human aging skin].

    PubMed

    Blatt, T; Mundt, C; Mummert, C; Maksiuk, T; Wolber, R; Keyhani, R; Schreiner, V; Hoppe, U; Schachtschabel, D O; Stäb, F

    1999-04-01

    Oxidative stress (UV irradiation, free radicals) plays a significant role in aging. Coenzyme Q10 (CoQ10) and exogenously applied antioxidants can significantly reduce the formation of oxidative stress with increasing age. In our in vitro and in vivo experiments concerning the parameters of ultraweak photon emission (UPE), intracellular thiol status, mitochondrial membrane potential and cell vitality, we demonstrated a diminished resistance in keratinocytes of old donors against UV irradiation. This reduced epidermal resistance against oxidative stressors, i.e. UV irradiation, can be improved by topical application of CoQ10 and antioxidants like alpha-glucosylrutin (15). Furthermore, our in vivo investigations show that wrinkles around the region of the eyes ("crow feet") could be reduced by long-term application of CoQ10.

  8. Determining the Effect of Aluminum Oxide Nanoparticles on the Aggregation of Amyloid-Beta in Transgenic Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Patel, Suhag; Matticks, John; Howell, Carina

    2014-03-01

    The cause of Alzheimer's disease has been linked partially to genetic factors but the predicted environmental components have yet to be determined. In Alzheimer's, accumulation of amyloid-beta protein in the brain forms plaques resulting in neurodegeneration and loss of mental functions. It has been postulated that aluminum influences the aggregation of amyloid-beta. To test this hypothesis, transgenic Caenorhabditis elegans, CL2120, was used as a model organism to observe neurodegeneration in nematodes exposed to aluminum oxide nanoparticles. Behavioral testing, fluorescent staining, and fluorescence microscopy were used to test the effects of aggregation of amyloid-beta in the nervous systems of effected nematodes exposed to aluminum oxide nanoparticles. Energy-dispersive x-ray spectroscopy was used to quantify the total concentration of aluminum oxide that the worms were exposed to during the experiment. Exposure of transgenic and wild type worms to a concentration of 4 mg mL-1 aluminum oxide showed a decrease in the sinusoidal motion, as well as an infirmity of transgenic worms when compared to control worms. These results support the hypothesis that aluminum may play a role in neurodegeneration in C. elegans, and may influence and increase the progression of Alzheimer's disease. This work was supported by National Science Foundation grants DUE-1058829, DMR-0923047 DUE-0806660 and Lock Haven FPDC grants.

  9. 1,2,4-trihydroxynaphthalene-2-O-β-D-glucopyranoside delays amyloid-β42 aggregation and reduces amyloid cytotoxicity.

    PubMed

    Dhouafli, Zohra; Leri, Manuela; Bucciantini, Monica; Stefani, Massimo; Gadhoumi, Hamza; Mahjoub, Borhane; Ben Jannet, Hichem; Guillard, Jérôme; Ksouri, Riadh; Saidani Tounsi, Moufida; Soto, Claudio; Hayouni, El Akrem

    2018-03-26

    Presently, misfolding and aggregation of amyloid-β 42 (Aβ 42 ) are considered early events in Alzheimer's disease (AD) pathogenesis. The use of natural products to inhibit the aggregation process and to protect cells from cytotoxicity of early aggregate grown at the onset of the aggregation path is one of the promising strategies against AD. Recently, we have purified a new powerful antioxidant and inhibitor of Aβ 42 aggregation from the leaves of Lawsonia inermis. The new compound was identified as a new Lawsoniaside; 1,2,4-trihydroxynaphthalene-2-O-β-D-glucopyranoside (THNG). Herein, we show that THNG interferes with Aβ 42 aggregation, inhibits its conformational change to a β-sheet-rich structure, decreases its polymerization into large fibrillar species, reduces oxidative stress, and aggregate cytotoxicity. These results indicate that THNG has great potential as a neuroprotective and therapeutic agent against AD. © 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  10. Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease

    PubMed Central

    Cao, Stewart Siyan

    2014-01-01

    Abstract Significance: The endoplasmic reticulum (ER) is a specialized organelle for the folding and trafficking of proteins, which is highly sensitive to changes in intracellular homeostasis and extracellular stimuli. Alterations in the protein-folding environment cause accumulation of misfolded proteins in the ER that profoundly affect a variety of cellular signaling processes, including reduction–oxidation (redox) homeostasis, energy production, inflammation, differentiation, and apoptosis. The unfolded protein response (UPR) is a collection of adaptive signaling pathways that evolved to resolve protein misfolding and restore an efficient protein-folding environment. Recent Advances: Production of reactive oxygen species (ROS) has been linked to ER stress and the UPR. ROS play a critical role in many cellular processes and can be produced in the cytosol and several organelles, including the ER and mitochondria. Studies suggest that altered redox homeostasis in the ER is sufficient to cause ER stress, which could, in turn, induce the production of ROS in the ER and mitochondria. Critical Issues: Although ER stress and oxidative stress coexist in many pathologic states, whether and how these stresses interact is unknown. It is also unclear how changes in the protein-folding environment in the ER cause oxidative stress. In addition, how ROS production and protein misfolding commit the cell to an apoptotic death and contribute to various degenerative diseases is unknown. Future Directions: A greater fundamental understanding of the mechanisms that preserve protein folding homeostasis and redox status will provide new information toward the development of novel therapeutics for many human diseases. Antioxid. Redox Signal. 21, 396–413. PMID:24702237

  11. Osteogenesis potential of different titania nanotubes in oxidative stress microenvironment.

    PubMed

    Yu, Yonglin; Shen, Xinkun; Luo, Zhong; Hu, Yan; Li, Menghuan; Ma, Pingping; Ran, Qichun; Dai, Liangliang; He, Ye; Cai, Kaiyong

    2018-06-01

    Oxidative stress is commonly existed in bone degenerative disease (osteoarthritis, osteoporosis etc.) and some antioxidants had great potential to enhance osteogenesis. In this study, we aim to investigate the anti-oxidative properties of various TiO 2 nanotubes (TNTs) so to screen the desirable size for improved osteogenesis and reveal the underlying molecular mechanism in vitro. Comparing cellular behaviors under normal and oxidative stress conditions, an interesting conclusion was obtained. In normal microenvironment, small TNTs were beneficial for adhesion and proliferation of osteoblasts, but large TNTs greatly increased osteogenic differentiation. However, after H 2 O 2 (300 μM) treatment (mimicking oxidative stress), only large TNTs samples demonstrated superior cellular behaviors of increased osteoblasts' adhesion, survival and differentiation when comparing with those of native titanium (control). Molecular results revealed that oxidative stress resistance of large nanotubes was closely related to the high expression of integrin α5β1 (ITG α5β1), which further up-regulated the production of anti-apoptotic proteins (p-FAK, p-Akt, p-FoxO3a and Bcl2) and down-regulated the expression of pro-apoptotic protein (Bax). Moreover, we found that Wnt signals (Wnt3a, Wnt5a, Lrp5, Lrp6 and β-catenin) played an important role in promoting osteogenic differentiation of osteoblasts under oxidative condition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Oxidative stress biomarkers in amniotic fluid of pregnant women with hypothyroidism.

    PubMed

    Novakovic, Tanja R; Dolicanin, Zana C; Djordjevic, Natasa Z

    2017-11-15

    Hypothyroidism in pregnancy is the serious state that may lead to fetal morbidity and mortality. Oxidative stress biomarkers in the amniotic fluid can provide important information on the health, development and maturation of the fetus during pregnancy. In this study, we examined whether maternal hypothyroidism contributes to increased oxidative stress biomarkers in the amniotic fluid during the first trimester of pregnancy. The study was conducted on healthy pregnant women and pregnant women with hypothyroidism (gestational age: 16-18 weeks). Oxidative stress biomarkers, such as superoxide anion (O 2 •- ), hydrogen peroxide (H 2 O 2 ), nitric oxide (NO), peroxynitrite (ONOO - ), lipid peroxide (LPO), reduced glutathione (GSH) and oxidized glutathione (GSSG) were assayed in the amniotic fluid. The results of this study indicated that concentrations of O 2 •- and NO are significantly higher, while the concentration of H 2 O 2 is significantly lower in the amniotic fluid of pregnant women with hypothyroidism in comparison to healthy pregnant women. There were no differences in concentrations of LPO, GSH and GSSG among tested groups. Also, we found that amniotic fluid concentration of O 2 •- is negatively correlated with the body weight and Apgar score values of the newborns. These results suggest that pregnancy hypothyroidism is characterized by the amniotic fluid oxidative stress. Incorporation of the oxidative stress biomarkers measurement in the amniotic fluid may be of clinical importance in the management of pregnancy hypothyroidism.

  13. Use of ade1 and ade2 mutations for development of a versatile red/white colour assay of amyloid-induced oxidative stress in saccharomyces cerevisiae.

    PubMed

    Bharathi, Vidhya; Girdhar, Amandeep; Prasad, Archana; Verma, Meenkshi; Taneja, Vibha; Patel, Basant K

    2016-12-01

    Mutations in adenine biosynthesis pathway genes ADE1 and ADE2 have been conventionally used to score for prion [PSI + ] in yeast. If ade1-14 mutant allele is present, which contains a premature stop codon, [psi - ] yeast appear red on YPD medium owing to accumulation of a red intermediate compound in vacuoles. In [PSI + ] yeast, partial inactivation of the translation termination factor, Sup35 protein, owing to its amyloid aggregation allows for read-through of the ade1-14 stop codon and the yeast appears white as the red intermediate pigment is not accumulated. The red colour development in ade1 and ade2 mutant yeast requires reduced-glutathione, which helps in transport of the intermediate metabolite P-ribosylaminoimidazole carboxylate into vacuoles, which develops the red colour. Here, we hypothesize that amyloid-induced oxidative stress would deplete reduced-glutathione levels and thus thwart the development of red colour in ade1 or ade2 yeast. Indeed, when we overexpressed amyloid-forming human proteins TDP-43, Aβ-42 and Poly-Gln-103 and the yeast prion protein Rnq1, the otherwise red ade1 yeast yielded some white colonies. Further, the white colour eventually reverted back to red upon turning off the amyloid protein's expression. Also, the aggregate-bearing yeast have increased oxidative stress and white phenotype yeast revert to red when grown on media with reducing agent. Furthermore, the red/white assay could also be emulated in ade2-1, ade2Δ, and ade1Δ mutant yeast and also in an ade1-14 mutant with erg6 gene deletion that increases cell-wall permeability. This model would be useful tool for drug-screening against general amyloid-induced oxidative stress and toxicity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Sulforaphane Inhibits Mitochondrial Permeability Transition and Oxidative Stress

    PubMed Central

    Greco, Tiffany; Shafer, Jonathan; Fiskum, Gary

    2012-01-01

    Exposure of mitochondria to oxidative stress and elevated Ca2+ promotes opening of the mitochondrial permeability transition pore (PTP), resulting in membrane depolarization, uncoupling of oxidative phosphorylation, and potentially cell death. This study tested the hypothesis that treatment of rats with sulforaphane (SFP), an activator of the Nrf2 pathway of antioxidant gene expression, increases the resistance of liver mitochondria to redox-regulated PTP opening and elevates mitochondrial levels of antioxidants. Rats were injected with SFP or drug vehicle and liver mitochondria were isolated 40 hr later. Respiring mitochondria actively accumulated added Ca2+, which was then released through PTP opening induced by agents that either cause an oxidized shift in the mitochondrial redox state or that directly oxidize protein thiol groups. SFP treatment of rats inhibited the rate of pro-oxidant-induced mitochondrial Ca2+ release and increased expression of the glutathione peroxidase/reductase system, thioredoxin, and malic enzyme. These results are the first to demonstrate that SFP treatment of animals increases liver mitochondrial antioxidant defenses and inhibits redox-sensitive PTP opening. This novel form of preconditioning could protect against a variety of pathologies that include oxidative stress and mitochondrial dysfunction in their etiologies. PMID:21986339

  15. Stress generation and evolution in oxide heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Fluri, Aline; Pergolesi, Daniele; Wokaun, Alexander; Lippert, Thomas

    2018-03-01

    Many physical properties of oxides can be changed by inducing lattice distortions in the crystal through heteroepitaxial growth of thin films. The average lattice strain can often be tuned by changing the film thickness or using suitable buffer layers between film and substrate. The exploitation of the full potential of strain engineering for sample or device fabrication rests on the understanding of the fundamental mechanisms of stress generation and evolution. For this study an optical measurement of the substrate curvature is used to monitor in situ how the stress builds up and relaxes during the growth of oxide thin films by pulsed laser deposition. The relaxation behavior is correlated with the growth mode, which is monitored simultaneously with reflection high-energy electron diffraction. The stress relaxation data is fitted and compared with theoretical models for stress evolution which were established for semiconductor epitaxy. The initial stage of the growth appears to be governed by surface stress and surface energy effects, while the subsequent stress relaxation is found to be fundamentally different between films grown on single-crystal substrates and on buffer layers. The first case can be rationalized with established theoretical models, but these models fail in the attempt to describe the growth on buffer layers. This is most probably due to the larger average density of crystalline defects in the buffer layers, which leads to a two-step stress relaxation mechanism, driven first by the nucleation and later by the migration of dislocation lines.

  16. [The role of oxidative stress in placental-related diseases of pregnancy].

    PubMed

    Jauniaux, E; Burton, G J

    2016-10-01

    In normal pregnancies, the earliest stages of development take place in a low oxygen (O 2 ) environment. This physiological hypoxia of the early gestational sac protects the developing fetus against the deleterious and teratogenic effects of O 2 free radicals. Oxidative stress is manifested at the maternal-fetal interface from early pregnancy onwards. In early pregnancy, a well-controlled oxidative stress plays a role in modulating placental development, functions and remodelling. Focal trophoblastic oxidative damage and progressive villous degeneration trigger the formation of the fetal membranes, which is an essential developmental step enabling vaginal delivery. Our data have demonstrated that the first trimester placenta in humans is histiotrophic and not haemochorial. The development and maintenance of a physiological O 2 gradient between the uterine and fetal circulations is also essential for placental functions, such as transport and hormonal synthesis. Pathological oxidative stress arises when the production of reactive O 2 species overwhelms the intrinsic anti-oxidant defences causing indiscriminate damage to biological molecules, leading to loss of function and cell death. We here review the role of oxidative stress in the pathophysiology of miscarriage, pre-eclampsia and fetal growth restriction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Delta-aminolevulinate dehydratase activity and oxidative stress markers in preeclampsia.

    PubMed

    de Lucca, Leidiane; Rodrigues, Fabiane; Jantsch, Letícia B; Kober, Helena; Neme, Walter S; Gallarreta, Francisco M P; Gonçalves, Thissiane L

    2016-12-01

    Preeclampsia is an important pregnancy-specific multisystem disorder characterized by the onset of hypertension and proteinuria. It is of unknown etiology and involves serious risks for the pregnant women and fetus. One of the main factors involved in the pathophysiology of preeclampsia is oxidative stress, where excess free radicals produce harmful effects, including damage to macromolecules such as lipids, proteins and DNA. In addition, the sulfhydryl delta-aminolevulinate dehydratase enzyme (δ-ALA-D) that is part of the heme biosynthetic pathway in pro-oxidant conditions can be inhibited, which may result in the accumulation of 5-aminolevulinic acid (ALA), associated with the overproduction of free radicals, suggesting it to be an indirect marker of oxidative stress. As hypertensive pregnancy complications are a major cause of morbidity and mortality maternal and fetal where oxidative stress appears to be an important factor involved in preeclampsia, the aim of this study was to evaluate the activity of δ-ALA-D and classic oxidative stress markers in the blood of pregnant women with mild and severe preeclampsia. The analysis and quantification of the following oxidative stress markers were performed: thiobarbituric acid-reactive species (TBARS); presence of protein and non-protein thiol group; quantification of vitamin C; Catalase and δ-ALA--D activities in samples of blood of pregnant women with mild preeclampsia (n=25), with severe preeclampsia (n=30) and in a control group of healthy pregnant women (n=30). TBARS was significantly higher in women with preeclampsia, while the presence of thiol groups, levels of vitamin C, catalase and δ-ALA-D activity were significantly lower in groups of pregnant women with preeclampsia compared with healthy women. In addition, the results showed no significant difference between groups of pregnant women with mild and severe preeclampsia. The data suggest a state of increased oxidative stress in pregnant women with

  18. Inference of the oxidative stress network in Anopheles stephensi upon Plasmodium infection.

    PubMed

    Shrinet, Jatin; Nandal, Umesh Kumar; Adak, Tridibes; Bhatnagar, Raj K; Sunil, Sujatha

    2014-01-01

    Ookinete invasion of Anopheles midgut is a critical step for malaria transmission; the parasite numbers drop drastically and practically reach a minimum during the parasite's whole life cycle. At this stage, the parasite as well as the vector undergoes immense oxidative stress. Thereafter, the vector undergoes oxidative stress at different time points as the parasite invades its tissues during the parasite development. The present study was undertaken to reconstruct the network of differentially expressed genes involved in oxidative stress in Anopheles stephensi during Plasmodium development and maturation in the midgut. Using high throughput next generation sequencing methods, we generated the transcriptome of the An. stephensi midgut during Plasmodium vinckei petteri oocyst invasion of the midgut epithelium. Further, we utilized large datasets available on public domain on Anopheles during Plasmodium ookinete invasion and Drosophila datasets and arrived upon clusters of genes that may play a role in oxidative stress. Finally, we used support vector machines for the functional prediction of the un-annotated genes of An. stephensi. Integrating the results from all the different data analyses, we identified a total of 516 genes that were involved in oxidative stress in An. stephensi during Plasmodium development. The significantly regulated genes were further extracted from this gene cluster and used to infer an oxidative stress network of An. stephensi. Using system biology approaches, we have been able to ascertain the role of several putative genes in An. stephensi with respect to oxidative stress. Further experimental validations of these genes are underway.

  19. Integrated Approaches to Drug Discovery for Oxidative Stress-Related Retinal Diseases.

    PubMed

    Nishimura, Yuhei; Hara, Hideaki

    2016-01-01

    Excessive oxidative stress induces dysregulation of functional networks in the retina, resulting in retinal diseases such as glaucoma, age-related macular degeneration, and diabetic retinopathy. Although various therapies have been developed to reduce oxidative stress in retinal diseases, most have failed to show efficacy in clinical trials. This may be due to oversimplification of target selection for such a complex network as oxidative stress. Recent advances in high-throughput technologies have facilitated the collection of multilevel omics data, which has driven growth in public databases and in the development of bioinformatics tools. Integration of the knowledge gained from omics databases can be used to generate disease-related biological networks and to identify potential therapeutic targets within the networks. Here, we provide an overview of integrative approaches in the drug discovery process and provide simple examples of how the approaches can be exploited to identify oxidative stress-related targets for retinal diseases.

  20. Oxidative Stress and Huntington's Disease: The Good, The Bad, and The Ugly.

    PubMed

    Kumar, Amit; Ratan, Rajiv R

    2016-10-01

    Redox homeostasis is crucial for proper cellular functions, including receptor tyrosine kinase signaling, protein folding, and xenobiotic detoxification. Under basal conditions, there is a balance between oxidants and antioxidants. This balance facilitates the ability of oxidants, such as reactive oxygen species, to play critical regulatory functions through a direct modification of a small number of amino acids (e.g. cysteine) on signaling proteins. These signaling functions leverage tight spatial, amplitude, and temporal control of oxidant concentrations. However, when oxidants overwhelm the antioxidant capacity, they lead to a harmful condition of oxidative stress. Oxidative stress has long been held to be one of the key players in disease progression for Huntington's disease (HD). In this review, we will critically review this evidence, drawing some intermediate conclusions, and ultimately provide a framework for thinking about the role of oxidative stress in the pathophysiology of HD.

  1. Oxidative Stress in Spinocerebellar Ataxia Type 7 Is Associated with Disease Severity.

    PubMed

    Torres-Ramos, Y; Montoya-Estrada, A; Cisneros, B; Tercero-Pérez, K; León-Reyes, G; Leyva-García, N; Hernández-Hernández, Oscar; Magaña, Jonathan J

    2018-06-06

    Spinocerebellar ataxia type 7 is a neurodegenerative inherited disease caused by a CAG expansion in the coding region of the ATXN7 gene, which results in the synthesis of polyglutamine-containing ataxin-7. Expression of mutant ataxin-7 disturbs different cell processes, including transcriptional regulation, protein conformation and clearance, autophagy, and glutamate transport; however, mechanisms underlying neurodegeneration in SCA7 are still unknown. Implication of oxidative stress in the pathogenesis of various neurodegenerative diseases, including polyglutamine disorders, has recently emerged. We perform a cross-sectional study to determine for the first time pheripheral levels of different oxidative stress markers in 29 SCA7 patients and 28 age- and sex-matched healthy subjects. Patients with SCA7 exhibit oxidative damage to lipids (high levels of lipid hydroperoxides and malondialdehyde) and proteins (elevated levels of advanced oxidation protein products and protein carbonyls). Furthermore, SCA7 patients showed enhanced activity of various anti-oxidant enzymes (glutathione reductase, glutathione peroxidase, and paraoxonase) as well as increased total anti-oxidant capacity, which suggest that activation of the antioxidant defense system might occur to counteract oxidant damage. Strikingly, we found positive correlation between some altered oxidative stress markers and disease severity, as determined by different clinical scales, with early-onset patients showing a more severe disturbance of the redox system than adult-onset patients. In summay, our results suggest that oxidative stress might contribute to SCA7 pathogenesis. Furthermore, oxidative stress biomarkers that were found relevant to SCA7 in this study could be useful to follow disease progression and monitor therapeutic intervention.

  2. Amyloid-beta aggregation: selective inhibition of aggregation in mixtures of amyloid with different chain lengths.

    PubMed Central

    Snyder, S W; Ladror, U S; Wade, W S; Wang, G T; Barrett, L W; Matayoshi, E D; Huffaker, H J; Krafft, G A; Holzman, T F

    1994-01-01

    One of the clinical manifestations of Alzheimer's disease is the deposition of the 39-43 residue amyloid-beta (A beta) peptide in aggregated fibrils in senile plaques. Characterization of the aggregation behavior of A beta is one of the critical issues in understanding the role of A beta in the disease process. Using solution hydrodynamics, A beta was observed to form three types of species in phosphate-buffered saline: insoluble aggregates with sedimentation coefficients of approximately 50,000 S and molecular masses of approximately 10(9) Da, "soluble aggregates" with sedimentation coefficients of approximately 30 S and masses of approximately 10(6) Da, and monomer. When starting from monomer, the aggregation kinetics of A beta 1-40 (A beta 40) and A beta 1-42 (A beta 42), alone and in combination, reveal large differences in the tendency of these peptides to aggregate as a function of pH and other solution conditions. At pH 4.1 and 7.0-7.4, aggregation is significantly slower than at pH 5 and 6. Under all conditions, aggregation of the longer A beta 42 was more rapid than A beta 40. Oxidation of Met-35 to the sulfoxide in A beta 40 enhances the aggregation rate over that of the nonoxidized peptide. Aggregation was found to be dependent upon temperature and to be strongly dependent on peptide concentration and ionic strength, indicating that aggregation is driven by a hydrophobic effect. When A beta 40 and A beta 42 are mixed together, A beta 40 retards the aggregation of A beta 42 in a concentration-dependent manner. Shorter fragments have a decreasing ability to interfere with A beta 42 aggregation. Conversely, the rate of aggregation of A beta 40 can be significantly enhanced by seeding slow aggregating solutions with preformed aggregates of A beta 42. Taken together, the inhibition of A beta 42 aggregation by A beta 40, the seeding of A beta 40 aggregation by A beta 42 aggregates, and the chemical oxidation of A beta 40 suggest that the relative abundance and

  3. Oxidative Stress, Redox Signaling, and Autophagy: Cell Death Versus Survival

    PubMed Central

    Navarro-Yepes, Juliana; Burns, Michaela; Anandhan, Annadurai; Khalimonchuk, Oleh; del Razo, Luz Maria; Quintanilla-Vega, Betzabet; Pappa, Aglaia; Panayiotidis, Mihalis I.

    2014-01-01

    Abstract Significance: The molecular machinery regulating autophagy has started becoming elucidated, and a number of studies have undertaken the task to determine the role of autophagy in cell fate determination within the context of human disease progression. Oxidative stress and redox signaling are also largely involved in the etiology of human diseases, where both survival and cell death signaling cascades have been reported to be modulated by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Recent Advances: To date, there is a good understanding of the signaling events regulating autophagy, as well as the signaling processes by which alterations in redox homeostasis are transduced to the activation/regulation of signaling cascades. However, very little is known about the molecular events linking them to the regulation of autophagy. This lack of information has hampered the understanding of the role of oxidative stress and autophagy in human disease progression. Critical Issues: In this review, we will focus on (i) the molecular mechanism by which ROS/RNS generation, redox signaling, and/or oxidative stress/damage alter autophagic flux rates; (ii) the role of autophagy as a cell death process or survival mechanism in response to oxidative stress; and (iii) alternative mechanisms by which autophagy-related signaling regulate mitochondrial function and antioxidant response. Future Directions: Our research efforts should now focus on understanding the molecular basis of events by which autophagy is fine tuned by oxidation/reduction events. This knowledge will enable us to understand the mechanisms by which oxidative stress and autophagy regulate human diseases such as cancer and neurodegenerative disorders. Antioxid. Redox Signal. 21, 66–85. PMID:24483238

  4. Oxidative stress status in congenital hypogonadism: an appraisal.

    PubMed

    Haymana, C; Aydoğdu, A; Soykut, B; Erdem, O; Ibrahimov, T; Dinc, M; Meric, C; Basaran, Y; Sonmez, A; Azal, O

    2017-07-01

    Patients with hypogonadism are at increased risk of cardiac and metabolic diseases. However, the pathogenesis of increased cardiometabolic risk in patients with hypogonadism is not clear. Oxidative stress plays an important role in the pathogenesis of cardiometabolic diseases. This study aimed to investigate possible differences in oxidative stress conditions between patients with hypogonadism and healthy controls. In this study, 38 male patients with congenital hypogonadotropic hypogonadism (CHH) (mean age: 21.7 ± 1.6 years) and 44 healthy male controls (mean age: 22.3 ± 1.4 years) with almost equal body mass index were enrolled. The demographic parameters, follicle-stimulating hormone (FSH), luteinizing hormone (LH), total and free testosterone, homeostatic model assessment of insulin resistance (HOMA-IR) and oxidative stress parameters, such as superoxide dismutase, catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA), were compared between both groups. Compared to the healthy controls, triglycerides (p = .02), insulin levels, HOMA-IR values, CAT activities and MDA levels (p < .001 for all) were significantly higher and HDL cholesterol (p = .04), total and free testosterone, FSH, LH levels and GPx activity were significantly lower (p < .001 for all) in patients with CHH. There were significant correlations between total testosterone levels and CAT activity (r = -.33 p = .01), GPx activity (r = .36 p = .007) and MDA (r = -.47 p < .001) levels. The results of this study showed that young and treatment-naïve patients with congenital hypogonadism had an increased status of oxidative stress.

  5. Immune response in a wild bird is predicted by oxidative status, but does not cause oxidative stress.

    PubMed

    Cram, Dominic L; Blount, Jonathan D; York, Jennifer E; Young, Andrew J

    2015-01-01

    The immune system provides vital protection against pathogens, but extensive evidence suggests that mounting immune responses can entail survival and fecundity costs. The physiological mechanisms that underpin these costs remain poorly understood, despite their potentially important role in shaping life-histories. Recent studies involving laboratory models highlight the possibility that oxidative stress could mediate these costs, as immune-activation can increase the production of reactive oxygen species leading to oxidative stress. However, this hypothesis has rarely been tested in free-ranging wild populations, where natural oxidative statuses and compensatory strategies may moderate immune responses and their impacts on oxidative status. Furthermore, the possibility that individuals scale their immune responses according to their oxidative status, conceivably to mitigate such costs, remains virtually unexplored. Here, we experimentally investigate the effects of a phytohaemagglutinin (PHA) immune-challenge on oxidative status in wild male and female white-browed sparrow weavers, Plocepasser mahali. We also establish whether baseline oxidative status prior to challenge predicts the scale of the immune responses. Contrary to previous work on captive animals, our findings suggest that PHA-induced immune-activation does not elicit oxidative stress. Compared with controls (n = 25 birds), PHA-injected birds (n = 27 birds) showed no evidence of a differential change in markers of oxidative damage or enzymatic and non-enzymatic antioxidant protection 24 hours after challenge. We did, however, find that the activity of a key antioxidant enzyme (superoxide dismutase, SOD) prior to immune-activation predicted the scale of the resulting swelling: birds with stronger initial SOD activity subsequently produced smaller swellings. Our findings (i) suggest that wild birds can mount immune responses without suffering from systemic oxidative stress, and (ii) lend support to

  6. Immune Response in a Wild Bird Is Predicted by Oxidative Status, but Does Not Cause Oxidative Stress

    PubMed Central

    Cram, Dominic L.; Blount, Jonathan D.; York, Jennifer E.; Young, Andrew J.

    2015-01-01

    The immune system provides vital protection against pathogens, but extensive evidence suggests that mounting immune responses can entail survival and fecundity costs. The physiological mechanisms that underpin these costs remain poorly understood, despite their potentially important role in shaping life-histories. Recent studies involving laboratory models highlight the possibility that oxidative stress could mediate these costs, as immune-activation can increase the production of reactive oxygen species leading to oxidative stress. However, this hypothesis has rarely been tested in free-ranging wild populations, where natural oxidative statuses and compensatory strategies may moderate immune responses and their impacts on oxidative status. Furthermore, the possibility that individuals scale their immune responses according to their oxidative status, conceivably to mitigate such costs, remains virtually unexplored. Here, we experimentally investigate the effects of a phytohaemagglutinin (PHA) immune-challenge on oxidative status in wild male and female white-browed sparrow weavers, Plocepasser mahali. We also establish whether baseline oxidative status prior to challenge predicts the scale of the immune responses. Contrary to previous work on captive animals, our findings suggest that PHA-induced immune-activation does not elicit oxidative stress. Compared with controls (n = 25 birds), PHA-injected birds (n = 27 birds) showed no evidence of a differential change in markers of oxidative damage or enzymatic and non-enzymatic antioxidant protection 24 hours after challenge. We did, however, find that the activity of a key antioxidant enzyme (superoxide dismutase, SOD) prior to immune-activation predicted the scale of the resulting swelling: birds with stronger initial SOD activity subsequently produced smaller swellings. Our findings (i) suggest that wild birds can mount immune responses without suffering from systemic oxidative stress, and (ii) lend support to

  7. Oxidative stress differentially impacts male and female bovine embryos depending on the culture medium and the stress condition.

    PubMed

    Dallemagne, Matthew; Ghys, Emmanuelle; De Schrevel, Catalina; Mwema, Ariane; De Troy, Delphine; Rasse, Catherine; Donnay, Isabelle

    2018-09-01

    Male and female embryos are known to differ for their metabolism and response to environmental factors very early in development. The present study aimed to evaluate the response to oxidative stress of male and female bovine embryos at the morula-blastocyst stages in terms of developmental rates, total cell number and apoptotic rates in two culture conditions. Embryos where cultured in a medium supplemented with either 5% fetal calf serum (FCS) or 4 mg/mL bovine serum albumin and a mixture of insulin, transferrin and selenium (BSA-ITS). Oxidative stress was applied at Day-5 post insemination (pi) by adding either AAPH or menadione to the culture medium, and blastocysts were analyzed at Day-7pi. The impact on development and blastocyst quality was dependent on the culture medium and the stress inducer but differed between male and female embryos. Male embryos resisted better to oxidative stress in FCS supplemented medium, no matter the stress inducer. Accordingly, the impact on blastocyst cell number tended to be higher in female blastocysts after stress induction with AAPH in FCS supplemented medium. On the other hand, in BSA-ITS supplemented medium, female embryos were more resistant to AAPH induced stress, while menadione had no impact on sex ratio. The weaker resistance of males to AAPH in this medium is in accordance with their trend to show a higher increase in apoptotic rates than females in this condition. In conclusion, this study shows that oxidative stress has differential impact on male and female bovine blastocysts depending on the culture condition and on the way oxidative stress is induced. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. A primary study on the performance of piezoceramic based smart aggregate under various compressive stresses

    NASA Astrophysics Data System (ADS)

    Zou, Dujian; Liu, Tiejun; Yang, Antai; Zhao, Yanru; Du, Chengcheng

    2017-10-01

    The reliability of piezoceramic based smart aggregate (SA) used for damage detection of concrete structures has already been validated by laboratory tests. However, the in situ concrete members are generally under a big range of stress levels, and the performance of SA under various compressive stresses is still unclear. In this study, an electronic universal testing machine was employed to apply different stresses on the SAs. The received signals of SA sensor accompanying with different drive signals were recorded. The experimental results show that the amplitude of received signals increases firstly, and then tends to be stable with stress. This enhancement is mainly induced by the decrease in thickness of epoxy resin layer caused by compressive stress. It indicates that the change of load applied on monitored concrete members embedded with SAs may lead to a change in monitoring signal amplitude even in elastic range, but it does not stand for the change of health state of monitored concrete member.

  9. Modulating Oxidative Stress and Inflammation in Elders: The MOXIE Study

    PubMed Central

    Ellis, Amy Cameron; Dudenbostel, Tanja; Locher, Julie L.; Crowe-White, Kristi

    2016-01-01

    Cardiovascular disease (CVD) is the leading cause of death among women in the United States. Endothelial dysfunction and arterial stiffness increase with advancing age and are early predictors of future CVD outcomes. We designed the Modulating Oxidative Stress and Inflammation in Elders (MOXIE) study to examine the effects of 100% watermelon juice as a “food-first” intervention to reduce CVD risk among African American (AA) and European American (EA) women aged 55–69 years. Vascular dysfunction is more pronounced in AA compared to EA women due in part to lower nitric oxide bioavailability caused by higher oxidative stress. However, bioactive compounds in watermelon may improve vascular function by increasing nitric oxide bioavailability and antioxidant capacity. This trial will use a randomized, placebo-controlled, crossover design to investigate the potential of 100% watermelon juice to positively impact various robust measures of vascular function as well as serum biomarkers of oxidative stress and antioxidant capacity. This nutrition intervention and its unique methodology to examine both clinical and mechanistic outcomes are described in this article. PMID:27897608

  10. Oxidized quercetin inhibits α-synuclein fibrillization.

    PubMed

    Zhu, Min; Han, Shubo; Fink, Anthony L

    2013-04-01

    α-Synucein is a small (14 kDa), abundant, intrinsically disordered presynaptic protein, whose aggregation is believed to be a critical step in Parkinson's disease (PD). Oxidative stress is reported to be a risk factor for dopamine cell degeneration in PD. Flavonoids are suggested to be important antioxidant against oxidative stress. Flavonoids were reported to inhibit fibrillization and disaggregate the preformed fibrils of α-synucein, but the molecular mechanism was still not clear. Quercetin, a well-recognized flavonoid antioxidant, was tested for its inhibition of α-synucein aggregation by thioflavin T assay, light scattering measurement, size-exclusion high performance liquid chromatography, atomic force microscopy, etc. The pre-incubated quercetin exhibited a noticeably stronger inhibition behavior to the fibril formation than that of the freshly prepared. The inhibition is significant in the presence of ortho- and para-benzenediol isomers and inconsiderable in the presence of meta-isomer. The oxidized quercetin species (i.e., chalcantrione, benzyfuranone, quercetinchinone, and other derivatives) cause stronger inhibition than quercetin does because of the elevated polarity and hydrophilicity. Presence of quercetin disaggregates α-synucein fibrils, rather than oligomers and amorphous aggregations. Instead of the antioxidant activity, the 1:1 covalent binding of quercetin with α-synucein, and the increased hydophilicity of the covalently modified α-synucein oligomers or monomers, account for the inhibition of α-synucein fibrillation. Clarification of the molecular mechanism of the inhibition and disaggregation may help to screen safer and more effective flavonoid therapeutic in combating PD. Copyright © 2012. Published by Elsevier B.V.

  11. Prebiotics, Prosynbiotics and Synbiotics: Can They Reduce Plasma Oxidative Stress Parameters? A Systematic Review.

    PubMed

    Salehi-Abargouei, Amin; Ghiasvand, Reza; Hariri, Mitra

    2017-03-01

    This study assessed the effectiveness of presybiotics, prosybiotics and synbiotics on reducing serum oxidative stress parameters. PubMed/Medline, Ovid, Google Scholar, ISI Web of Science and SCOPUS were searched up to September 2016. English language randomized clinical trials reporting the effect of presybiotics, prosybiotics or synbiotic interventions on serum oxidative stress parameters in human adults were included. Twenty-one randomized clinical trials met the inclusion criteria for systematic review. Two studies investigated prebiotics, four studies synbiotics and fifteen studies probiotics. According to our systematic review, prebiotic could decrease malondialdehyde and increase superoxidative dismutase, but evidence is not enough. In comparison with fructo-oligosaccharide, inulin is much more useful for oxidative stress reduction. Using probiotics with dairy products could reduce oxidative stress significantly, but probiotic in form of supplementation did not have any effect on oxidative stress. There is limited but supportive evidence that presybiotics, prosybiotics and synbiotics are effective for reducing oxidative stress parameters. Further randomized clinical trials with longer duration of intervention especially on population with increased oxidative stress are needed to provide more definitive results before any recommendation for clinical use of these interventions.

  12. Influence of acute exercise of varying intensity and duration on postprandial oxidative stress.

    PubMed

    Canale, Robert E; Farney, Tyler M; McCarthy, Cameron G; Bloomer, Richard J

    2014-09-01

    Aerobic exercise can reduce postprandial lipemia, and possibly oxidative stress, when performed prior to a lipid-rich meal. To compare the impact of acute exercise on postprandial oxidative stress. We compared aerobic and anaerobic exercise bouts of different intensities and durations on postprandial blood triglycerides (TAG), oxidative stress biomarkers (malondialdehyde, hydrogen peroxide, advanced oxidation protein products), and antioxidant status (trolox equivalent antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase). Twelve trained men (21-35 years) underwent four conditions: (1) No exercise rest; (2) 60-min aerobic exercise at 70% heart rate reserve; (3) five 60-s sprints at 100% max capacity; and (4) ten 15-s sprints at 200% max capacity. All exercise bouts were performed on a cycle ergometer. A high-fat meal was consumed 1 h after exercise cessation. Blood samples were collected pre-meal and 2 and 4 h post-meal and analyzed for TAG, oxidative stress biomarkers, and antioxidant status. No significant interaction or condition effects were noted for any variable (p > 0.05), with acute exercise having little to no effect on the magnitude of postprandial oxidative stress. In a sample of healthy, well-trained men, neither aerobic nor anaerobic exercise attenuates postprandial oxidative stress in response to a high-fat meal.

  13. Increased endothelial microparticles and oxidative stress at extreme altitude.

    PubMed

    Pichler Hefti, Jacqueline; Leichtle, Alexander; Stutz, Monika; Hefti, Urs; Geiser, Thomas; Huber, Andreas R; Merz, Tobias M

    2016-04-01

    Hypoxia and oxidative stress affect endothelial function. Endothelial microparticles (MP) are established measures of endothelial dysfunction and influence vascular reactivity. To evaluate the effects of hypoxia and antioxidant supplementation on endothelial MP profiles, a double-blind, placebo-controlled trial, during a high altitude expedition was performed. 29 participants were randomly assigned to a treatment group (n = 14), receiving vitamin E, C, A, and N-acetylcysteine daily, and a control group (n = 15), receiving placebo. Blood samples were obtained at 490 m (baseline), 3530, 4590, and 6210 m. A sensitive tandem mass spectrometry method was used to measure 8-iso-prostaglandin F2α and hydroxyoctadecadienoic acids as markers of oxidative stress. Assessment of MP profiles including endothelial activation markers (CD62+MP and CD144+MP) and cell apoptosis markers (phosphatidylserine+MP and CD31+MP) was performed using a standardized flow cytometry-based protocol. 15 subjects reached all altitudes and were included in the final analysis. Oxidative stress increased significantly at altitude. No statistically significant changes were observed comparing baseline to altitude measurements of phosphatidylserine expressing MP (p = 0.1718) and CD31+MP (p = 0.1305). Compared to baseline measurements, a significant increase in CD62+MP (p = 0.0079) and of CD144+MP was detected (p = 0.0315) at high altitudes. No significant difference in any MP level or oxidative stress markers were found between the treatment and the control group. Hypobaric hypoxia is associated with increased oxidative stress and induces a significant increase in CD62+ and CD144+MP, whereas phosphatidylserine+MP and CD31+MP remain unchanged. This indicates that endothelial activation rather than an apoptosis is the primary factor of hypoxia induced endothelial dysfunction.

  14. Oxidative stress reduces levels of dysbindin-1A via its PEST domain.

    PubMed

    Yap, Mei-Yi Alicia; Lo, Yew-Long; Talbot, Konrad; Ong, Wei-Yi

    2014-12-01

    Oxidative stress resulting from the generation of reactive oxygen species has been proposed as an etiological factor in schizophrenia. The present study tests the hypothesis that oxidative stress can affect levels of dysbindin-1A, encoded by Dtnbp1, a genetic risk factor for schizophrenia, via its PEST domain. In vitro studies on SH-SY5Y cells indicate that oxidative stress triggers proteasomal degradation of dysbindin-1A, and that this requires interactions with its PEST domain, which may be a TRIM32 target. We specifically found (a) that oxidative stress induced in SH-SY5Y cells by 500 µM hydrogen peroxide reduced levels of full-length dysbindin-1, but did not reduce levels of that protein lacking its PEST domain and (b) that levels of full-length dysbindin-1, but not dysbindin-1 lacking its PEST domain, were higher in cells treated with the proteasome inhibitor MG132. Oxidative stress thus emerges as the first known cellular factor regulating dysbindin-1 isoforms with PEST domains. These findings are consistent with the previously noted fact that phosphorylation of PEST domains often marks proteins for proteasomal degradation, and raises the possibility that treatments reducing oxidative stress in the brain, especially during development, may lower schizophrenia risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Modelling the breakup of solid aggregates in turbulent flows

    NASA Astrophysics Data System (ADS)

    B?Bler, Matth?Us U.; Morbidelli, Massimo; Ba?Dyga, Jerzy

    The breakup of solid aggregates suspended in a turbulent flow is considered. The aggregates are assumed to be small with respect to the Kolmogorov length scale and the flow is assumed to be homogeneous. Further, it is assumed that breakup is caused by hydrodynamic stresses acting on the aggregates, and breakup is therefore assumed to follow a first-order kinetic where KB(x) is the breakup rate function and x is the aggregate mass. To model KB(x), it is assumed that an aggregate breaks instantaneously when the surrounding flow is violent enough to create a hydrodynamic stress that exceeds a critical value required to break the aggregate. For aggregates smaller than the Kolmogorov length scale the hydrodynamic stress is determined by the viscosity and local energy dissipation rate whose fluctuations are highly intermittent. Hence, the first-order breakup kinetics are governed by the frequency with which the local energy dissipation rate exceeds a critical value (that corresponds to the critical stress). A multifractal model is adopted to describe the statistical properties of the local energy dissipation rate, and a power-law relation is used to relate the critical energy dissipation rate above which breakup occurs to the aggregate mass. The model leads to an expression for KB(x) that is zero below a limiting aggregate mass, and diverges for x . When simulating the breakup process, the former leads to an asymptotic mean aggregate size whose scaling with the mean energy dissipation rate differs by one third from the scaling expected in a non-fluctuating flow.

  16. The effects of anesthetic agents on oxidative stress

    NASA Astrophysics Data System (ADS)

    Yakan, Selvinaz; Düzgüner, Vesile

    2016-04-01

    Oxidative stress can be defined as the instability between antioxidant defense of the body and the production of free radical that causes peroxydation on the lipid layer. Free radicals are reactive oxygen species that are produced in the course of normal metabolisms of aerobe organisms and they may cause disorders in cell structure and organelles by interacting macromolecules, like lipid, protein, nucleic acids. Therefore, they may cause cardiovascular, immune system, liver, kidney illnesses and many other illnesses like cancer, aging, cataract, diabetes. It is known that many drugs used for the purpose of anesthetizing may cause lipid peroxidation in organism. For these reasons, determining the Oxidative stress index of anaesthetic stress chosen in the ones that are exposed to long term anaesthetic agents and anaesthesia appliccations, is so substantial.

  17. Physical exercise and oxidative stress in muscular dystrophies: is there a good balance?

    PubMed

    Chico, L; Ricci, G; Cosci O Di Coscio, M; Simoncini, C; Siciliano, G

    2017-07-01

    The effect of oxidative stress on muscle damage inducted by physical exercise is widely debated. It is generally agreed that endurance and intense exercise can increase oxidative stress and generate changes in antioxidant power inducing muscle damage; however, regular and moderate exercise can be beneficial for the health improving the antioxidant defense mechanisms in the majority of cases. Growing evidences suggest that an increased oxidative/nitrosative stress is involved in the pathogenesis of several muscular dystrophies (MDs). Notably, physical training has been considered useful for patients with these disorders. This review will focus on the involvement of oxidative stress in MDs and on the possible effects of physical activities to decrease oxidative damage and improve motor functions in MDs patients.

  18. 8-isoprostane as Oxidative Stress Marker in Coal Mine Workers.

    PubMed

    Zimet, Zlatko; Bilban, Marjan; Marc Malovrh, Mateja; Korošec, Peter; Poljšak, Borut; Osredkar, Joško; Šilar, Mira

    2016-08-01

    This study was to investigate whether working in conditions of elevated concentrations of mine gases (CO2, CO, CH4, DMS) and dust may result in oxidative stress. Coal miners (n=94) from the Velenje Coal mine who were arranged into control group and three groups according to a number of consecutive working days. 8-isoprostane as a biological marker of oxidative stress was measured in exhaled breath condensate (EBC). Miners who worked for three consecutive days had higher 8-isoprostane values in EBC compared to the control group. Gas/dust concentrations and exposure time of a single/two day shift seem too low to trigger immediate oxidative stress. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  19. Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells.

    PubMed

    Dejeans, Nicolas; Tajeddine, Nicolas; Beck, Raphaël; Verrax, Julien; Taper, Henryk; Gailly, Philippe; Calderon, Pedro Buc

    2010-05-01

    Increase in cytosolic calcium concentration ([Ca2+](c)), release of endoplasmic reticulum (ER) calcium ([Ca2+](er)) and ER stress have been proposed to be involved in oxidative toxicity. Nevertheless, their relative involvements in the processes leading to cell death are not well defined. In this study, we investigated whether oxidative stress generated during ascorbate-driven menadione redox cycling (Asc/Men) could trigger these three events, and, if so, whether they contributed to Asc/Men cytoxicity in MCF-7 cells. Using microspectrofluorimetry, we demonstrated that Asc/Men-generated oxidative stress was associated with a slow and moderate increase in [Ca2+](c), largely preceding permeation of propidium iodide, and thus cell death. Asc/Men treatment was shown to partially deplete ER calcium stores after 90 min (decrease by 45% compared to control). This event was associated with ER stress activation, as shown by analysis of eIF2 phosphorylation and expression of the molecular chaperone GRP94. Thapsigargin (TG) was then used to study the effect of complete [Ca2+](er) emptying during the oxidative stress generated by Asc/Men. Surprisingly, the combination of TG and Asc/Men increased ER stress to a level considerably higher than that observed for either treatment alone, suggesting that [Ca2+](er) release alone is not sufficient to explain ER stress activation during oxidative stress. Finally, TG-mediated [Ca2+](er) release largely potentiated ER stress, DNA fragmentation and cell death caused by Asc/Men, supporting a role of ER stress in the process of Asc/Men cytotoxicity. Taken together, our results highlight the involvement of ER stress and [Ca2+](er) decrease in the process of oxidative stress-induced cell death in MCF-7 cells. 2009 Elsevier Inc. All rights reserved.

  20. Integrated Approaches to Drug Discovery for Oxidative Stress-Related Retinal Diseases

    PubMed Central

    Hara, Hideaki

    2016-01-01

    Excessive oxidative stress induces dysregulation of functional networks in the retina, resulting in retinal diseases such as glaucoma, age-related macular degeneration, and diabetic retinopathy. Although various therapies have been developed to reduce oxidative stress in retinal diseases, most have failed to show efficacy in clinical trials. This may be due to oversimplification of target selection for such a complex network as oxidative stress. Recent advances in high-throughput technologies have facilitated the collection of multilevel omics data, which has driven growth in public databases and in the development of bioinformatics tools. Integration of the knowledge gained from omics databases can be used to generate disease-related biological networks and to identify potential therapeutic targets within the networks. Here, we provide an overview of integrative approaches in the drug discovery process and provide simple examples of how the approaches can be exploited to identify oxidative stress-related targets for retinal diseases. PMID:28053689

  1. [Oxidative stress in station service workers].

    PubMed

    Basso, A; Elia, G; Petrozzi, M T; Zefferino, R

    2004-01-01

    The aim of this study is to identify an oxidative stress in service station workers. Previous studies verified an increased incidence of leukemia and myeloma, however other authors haven't verified it. There are reports of nasal, pharyngeal, laryngeal, and lung cancer in service station workers. Our study wants to evaluate the oxidative balance in the fuel workers. We studied 44 subjects with gasoline exposure and 29 control subjects. We determined the blood concentrations of Glutathione reduced and oxidized, Protein sulfhydrylic (PSH) Vitamine E, Vitamine C, Malondialdehyde, Protein oxidized (OX-PROT) and beta carotene. The t test was performed to analyze the differences between the means, the Chi square was used to evaluate the statistical significance of associations between variable categorical (redox index). The Anova test excluded the confusing effect of age, smoke and alcohol habit. The mean age of the workers was 36.6 years, instead the control group was 38. In the workers Glutathione reduced, Vit. E and Beta carotene were lower than in the control subjects, this difference was statistically significant (p < 0.01). The Malondialdehyde concentration was higher in the workers higher than in the control group, but this difference wasn't statistically significant. Our data demonstrated Glutathione, Vit. E, and Beta carotene are useful to verify a reduction of the antioxidant activity. The only marker of the presence of oxidative injury that correlated to work exposure was the malondialdehyde. The redox index was surest marker. The limit of our study is the number of control group, it was little and lower than workers. Conclusively we believe it's useful to continue our studies and, if our results are going to be confirmed, we retain that stress oxidative determination would be verified in occupational medicine using these markers, especially to study exposure of the fuel workers who were investigated less and, in our opinion, would receive more attention.

  2. Serum total oxidant and antioxidant status in earthquake survivors with post-traumatic stress disorder.

    PubMed

    Ozdemir, Pinar Guzel; Kaplan, İbrahim; Uysal, Cem; Bulut, Mahmut; Atli, Abdullah; Bez, Yasin; Kaya, Mehmet Cemal; Ozdemir, Osman

    2015-06-01

    Oxidative stress has been shown to play an important role in the pathogenesis of post-traumatic stress disorder (PTSD). Although there are some studies on oxidative stress and PTSD, there is no report available on the serum total oxidant and antioxidant status in earthquake survivors with PTSD. Therefore, this study aimed to investigate the serum total oxidant and antioxidant status in earthquake survivors with chronic PTSD. The study group included 45 earthquake survivors with PTSD and 40 earthquake survivors without PTSD. The oxidative status was determined using the total antioxidant status and total oxidant status (TOS) measurements and by calculating the oxidative stress index (OSI). There were no statistically significant differences in the total antioxidant status, TOS, or OSI when comparing individuals with and without PTSD (all, p>0.05). There were no correlations between Clinician-Administered PTSD Scale scores and oxidant and antioxidant stress markers (all, p>0.05). Our results suggest that the total oxidant and antioxidant status may not affect earthquake survivors with PTSD. This is the first study to evaluate the oxidative status in earthquake survivors with PTSD. Further studies are necessary to confirm these findings.

  3. Oxidative stress, oxidative balance score, and hypertension among a racially diverse population.

    PubMed

    Annor, Francis B; Goodman, Michael; Okosun, Ike S; Wilmot, Douglas W; Il'yasova, Dora; Ndirangu, Murugi; Lakkur, Sindhu

    2015-08-01

    Hypertension is a risk factor for several vascular diseases. Evidence suggests that oxidative stress (OS) plays a significant role in its pathophysiology. Human studies have shown inconsistent results, varying based on the OS biomarker and study population. In a racially diverse population, examine the association between: (1) blood pressure or hypertension and four markers of OS and (2) blood pressure or hypertension and oxidative balance score (OBS). Using data (n = 317) from the cross-sectional study on race, stress, and hypertension, an OBS was constructed from various measures of pro-oxidant and antioxidant exposures. OS was assessed by four biomarkers: fluorescence oxidative products, F2-isoprostanes, mitochondrial DNA copy number, and gamma tocopherol. Multivariate linear and logistic regression analyses were used to estimate the associations of interest. None of the adjusted associations between hypertension and OS markers was statistically significant. OBS was inversely associated with hypertension after adjusting for study covariates. Persons with higher OBS have lower odds of having hypertension; however, the evidence on the relationship between OS markers and blood pressure remains unconvincing. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  4. Effect of seminal oxidative stress on fertility after vasectomy reversal.

    PubMed

    Kolettis, P N; Sharma, R K; Pasqualotto, F F; Nelson, D; Thomas, A J; Agarwal, A

    1999-02-01

    To evaluate seminal oxidative stress in men after vasectomy reversal and to determine whether seminal oxidative stress could predict fertility after vasectomy reversal. Measurement of seminal reactive oxygen species (ROS) and total antioxidant capacity (TAC) in normal donors, men who were fertile after vasectomy reversal, and men who were infertile after vasectomy reversal. A male infertility clinic of a tertiary care center. Thirty men who underwent vasectomy reversal and 17 normal donors. None. Semen characteristics, seminal ROS, and TAC were measured with chemiluminescence assays in samples from donors and reversal patients. Mean adjusted seminal ROS (log [ROS+1]) was higher in infertile reversal patients (2.38+/-0.25) than in normal donors (1.30+/-0.14). Seminal ROS was also higher in all (fertile and infertile reversal combined) reversal patients than in donors. Total antioxidant capacity did not differ between groups. The ROS-TAC score, a composite index of seminal oxidative stress, was a significant predictor of fertility. A ROS-TAC score of 45 or greater had a positive predictive value of 73% in predicting fertility. Seminal oxidative stress is associated with vasectomy reversal. The ROS-TAC score is a possible predictor of infertility after vasectomy reversal.

  5. Chronic social stress increases nitric oxide-dependent vasorelaxation in normotensive rats

    PubMed Central

    Puzserova, Angelika; Bernatova, Iveta

    2010-01-01

    The aim of this study was to examine oxidative load and endothelium-dependent vasorelaxation in the serotonin pre-constricted femoral artery (FA) of Wistar-Kyoto (WKY) rats exposed to chronic social stress produced by crowding in the presence or absence of ascorbic acid (AsA) in working solution. Adult male rats were randomly divided into control (living space: 480 cm2/rat) or stressed (living space: 200 cm2/rat) groups for 8 weeks. Blood pressure and heart rate, determined using tail-cuff plethysmography, were not influenced by stress vs. control. Conjugated dienes (CD) and concentrations of thiobarbituric acid-reactive substances (TBARS) were measured in the left ventricle and liver (for assessment of oxidative load) and were found unchanged by chronic crowding. The nitric oxide (NO)-dependent component of endothelium-dependent relaxation was investigated in the FA using a wire myograph. In both the presence and absence of AsA, acetylcholine-induced relaxation of the FA of stressed rats significantly exceeded that of the controls, which was associated with an increase of the NO-dependent component. In conclusion, the data showed that chronic crowding did not produce oxidative stress in the organs investigated and indicate that elevation of NO production during chronic stress is an important way of adaptation, which may prevent normotensive rats from the development of stress-induced hypertension. PMID:21331175

  6. A short-term supranutritional vitamin E supplementation alleviated respiratory alkalosis but did not reduce oxidative stress in heat stressed pigs.

    PubMed

    Liu, Fan; Celi, Pietro; Chauhan, Surinder Singh; Cottrell, Jeremy James; Leury, Brian Joseph; Dunshea, Frank Rowland

    2018-02-01

    Heat stress (HS) triggers oxidative stress and respiratory alkalosis in pigs. The objective of this experiment was to study whether a short-term supranutritional amount of dietary vitamin E (VE) can mitigate oxidative stress and respiratory alkalosis in heat-stressed pigs. A total of 24 pigs were given either a control diet (17 IU/kg VE) or a high VE (200 IU/kg VE; HiVE) diet for 14 d, then exposed to thermoneutral (TN; 20°C, 45% humidity) or HS (35°C, 35% to 45% humidity, 8 h daily) conditions for 7 d. Respiration rate and rectal temperature were measured three times daily during the thermal exposure. Blood gas variables and oxidative stress markers were studied in blood samples collected on d 7. Although HiVE diet did not affect the elevated rectal temperature or respiration rate observed during HS, it alleviated (all p<0.05 for diet×temperature) the loss of blood CO 2 partial pressure and bicarbonate, as well as the increase in blood pH in the heat-stressed pigs. The HS reduced (p = 0.003) plasma biological antioxidant potential (BAP) and tended to increase (p = 0.067) advanced oxidized protein products (AOPP) in the heat-stressed pigs, suggesting HS triggers oxidative stress. The HiVE diet did not affect plasma BAP or AOPP. Only under TN conditions the HiVE diet reduced the plasma reactive oxygen metabolites (p<0.05 for diet× temperature). A short-term supplementation with 200 IU/kg VE partially alleviated respiratory alkalosis but did not reduce oxidative stress in heat-stressed pigs.

  7. Soft-food diet induces oxidative stress in the rat brain.

    PubMed

    Yoshino, Fumihiko; Yoshida, Ayaka; Hori, Norio; Ono, Yumie; Kimoto, Katsuhiko; Onozuka, Minoru; Lee, Masaichi Chang-il

    2012-02-02

    Decreased dopamine (DA) release in the hippocampus may be caused by dysfunctional mastication, although the mechanisms involved remain unclear. The present study examined the effects of soft- and hard-food diets on oxidative stress in the brain, and the relationship between these effects and hippocampal DA levels. The present study showed that DA release in the hippocampus was decreased in rats fed a soft-food diet. Electron spin resonance studies using the nitroxyl spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl directly demonstrated a high level of oxidative stress in the rat brain due to soft-food diet feeding. In addition, we confirmed that DA directly react with reactive oxygen species such as hydroxyl radical and superoxide. These observations suggest that soft-food diet feeding enhances oxidative stress, which leads to oxidation and a decrease in the release of DA in the hippocampus of rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Hypothermia can reverse hepatic oxidative stress damage induced by hypoxia in rats.

    PubMed

    Garnacho-Castaño, Manuel Vicente; Alva, Norma; Sánchez-Nuño, Sergio; Bardallo, Raquel G; Palomeque, Jesús; Carbonell, Teresa

    2016-12-01

    Our previous findings demonstrated that hypothermia enhances the reduction potential in the liver and helps to maintain the plasmatic antioxidant pool. Here, we aimed to elucidate if hypothermia protects against hypoxia-induced oxidative stress damage in rat liver. Several hepatic markers of oxidative stress were compared in three groups of animals (n = 8 in each group): control normothermic group ventilated with room air and two groups under extreme hypoxia (breathing 10 % O 2 ), one kept at normothermia (HN) (37 °C) and the other under deep hypothermia (HH) (central body temperature of 21-22 °C). Hypoxia in normothermia significantly increased the levels of hepatic nitric oxide, inducible nitric oxide synthase expression, protein oxidation, Carbonilated proteins, advanced oxidation protein products, 4-hydroxynonenal (HNE) protein adducts, and lipid peroxidation when compared to the control group (p < 0.05). However, when hypoxia was induced under hypothermia, results from the oxidative stress biomarker analyses did not differ significantly from those found in the control group. Indeed, 4-HNE protein adduct amounts were significantly lower in the HH versus HN group (p < 0.05). Therefore, hypothermia can mitigate hypoxia-induced oxidative stress damage in rat liver. These effects could help clarify the mechanisms of action of therapeutic hypothermia.

  9. Food-derived bioactive peptides on inflammation and oxidative stress.

    PubMed

    Chakrabarti, Subhadeep; Jahandideh, Forough; Wu, Jianping

    2014-01-01

    Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases.

  10. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCEmore » exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure

  11. Fundamental studies of stress distributions and stress relaxation in oxide scales on high temperature alloys. [Final progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shores, D.A.; Stout, J.H.; Gerberich, W.W.

    1993-06-01

    This report summarizes a three-year study of stresses arising in the oxide scale and underlying metal during high temperature oxidation and of scale cracking. In-situ XRD was developed to measure strains during oxidation over 1000{degrees}C on pure metals. Acoustic emission was used to observe scale fracture during isothermal oxidation and cooling, and statistical analysis was used to infer mechanical aspects of cracking. A microscratch technique was used to measure the fracture toughness of scale/metal interface. A theoretical model was evaluated for the development and relaxation of stresses in scale and metal substrate during oxidation.

  12. Targeting copper(II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer's disease using multifunctional tacrine-coumarin hybrid molecules.

    PubMed

    Hamulakova, Slavka; Poprac, Patrik; Jomova, Klaudia; Brezova, Vlasta; Lauro, Peter; Drostinova, Lenka; Jun, Daniel; Sepsova, Vendula; Hrabinova, Martina; Soukup, Ondrej; Kristian, Pavol; Gazova, Zuzana; Bednarikova, Zuzana; Kuca, Kamil; Valko, Marian

    2016-08-01

    Alzheimer's disease is a multifactorial disease that is characterized mainly by Amyloid-β (A-β) deposits, cholinergic deficit and extensive metal (copper, iron)-induced oxidative stress. In this work we present details of the synthesis, antioxidant and copper-chelating properties, DNA protection study, cholinergic activity and amyloid-antiaggregation properties of new multifunctional tacrine-7-hydroxycoumarin hybrids. The mode of interaction between copper(II) and hybrids and interestingly, the reduction of Cu(II) to Cu(I) species (for complexes Cu-5e-g) were confirmed by EPR measurements. EPR spin trapping on the model Fenton reaction, using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trap, demonstrated a significantly suppressed formation of hydroxyl radicals for the Cu-5e complex in comparison with free copper(II). This suggests that compound 5e upon coordination to free copper ion prevents the Cu(II)-catalyzed decomposition of hydrogen peroxide, which in turn may alleviate oxidative stress-induced damage. Protective activity of hybrids 5c and 5e against DNA damage in a Fenton system (copper catalyzed) was found to be in excellent agreement with the EPR spin trapping study. Compound 5g was the most effective in the inhibition of acetylcholinesterase (hAChE, IC50=38nM) and compound 5b was the most potent inhibitor of butyrylcholinesterase (hBuChE, IC50=63nM). Compound 5c was the strongest inhibitor of A-β1-40 aggregation, although a significant inhibition (>50%) was detected for compounds 5b, 5d, 5e and 5g. Collectively, these results suggest that the design and investigation of multifunctional agents containing along with the acetylcholinesterase inhibitory segment also an antioxidant moiety capable of alleviating metal (copper)-induced oxidative stress, may be of importance in the treatment of Alzheimer's disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The Role of Oxidative Stress in Apoptosis of Breast Cancer.

    DTIC Science & Technology

    1995-09-27

    supported by studies demonstrating that inappropriate expression of an oncogene, bcl - 2 , prevents cell death and thereby promotes Page _1L ANNUAL REPORT...see Appendix: Baker et al., "Decreased Antioxidant Defense and Increased Oxidant Stress During Dexamethasone-Induced Apoptosis: bcl - 2 Selectively...Alzheimer’s disease. The bcl - 2 oncogene blocks apoptosis in diverse systems and protects cells against oxidative stress- induced damage (Hockenbery et

  14. In vitro model suggests oxidative stress involved in keratoconus disease

    PubMed Central

    Karamichos, D.; Hutcheon, A. E. K.; Rich, C. B.; Trinkaus-Randall, V.; Asara, J. M.; Zieske, J. D.

    2014-01-01

    Keratoconus (KC) affects 1:2000 people and is a disorder where cornea thins and assumes a conical shape. Advanced KC requires surgery to maintain vision. The role of oxidative stress in KC remains unclear. We aimed to identify oxidative stress levels between human corneal keratocytes (HCKs), fibroblasts (HCFs) and keratoconus cells (HKCs). Cells were cultured in 2D and 3D systems. Vitamin C (VitC) and TGF-β3 (T3) were used for 4 weeks to stimulate self-assembled extracellular matrix (ECM). No T3 used as controls. Samples were analyzed using qRT-PCR and metabolomics. qRT-PCR data showed low levels of collagen I and V, as well as keratocan for HKCs, indicating differentiation to a myofibroblast phenotype. Collagen type III, a marker for fibrosis, was up regulated in HKCs. We robustly detected more than 150 metabolites of the targeted 250 by LC-MS/MS per condition and among those metabolites several were related to oxidative stress. Lactate levels, lactate/malate and lactate/pyruvate ratios were elevated in HKCs, while arginine and glutathione/oxidized glutathione ratio were reduced. Similar patterns found in both 2D and 3D. Our data shows that fibroblasts exhibit enhanced oxidative stress compared to keratocytes. Furthermore the HKC cells exhibit the greatest level suggesting they may have a myofibroblast phenotype. PMID:24714342

  15. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome.

    PubMed

    Reeg, Sandra; Jung, Tobias; Castro, José P; Davies, Kelvin J A; Henze, Andrea; Grune, Tilman

    2016-10-01

    One hallmark of aging is the accumulation of protein aggregates, promoted by the unfolding of oxidized proteins. Unraveling the mechanism by which oxidized proteins are degraded may provide a basis to delay the early onset of features, such as protein aggregate formation, that contribute to the aging phenotype. In order to prevent aggregation of oxidized proteins, cells recur to the 20S proteasome, an efficient turnover proteolysis complex. It has previously been shown that upon oxidative stress the 26S proteasome, another form, dissociates into the 20S form. A critical player implicated in its dissociation is the Heat Shock Protein 70 (Hsp70), which promotes an increase in free 20S proteasome and, therefore, an increased capability to degrade oxidized proteins. The aim of this study was to test whether or not Hsp70 is involved in cooperating with the 20S proteasome for a selective degradation of oxidatively damaged proteins. Our results demonstrate that Hsp70 expression is induced in HT22 cells as a result of mild oxidative stress conditions. Furthermore, Hsp70 prevents the accumulation of oxidized proteins and directly promotes their degradation by the 20S proteasome. In contrast the expression of the Heat shock cognate protein 70 (Hsc70) was not changed in recovery after oxidative stress and Hsc70 has no influence on the removal of oxidatively damaged proteins. We were able to demonstrate in HT22 cells, in brain homogenates from 129/SV mice and in vitro, that there is an increased interaction of Hsp70 with oxidized proteins, but also with the 20S proteasome, indicating a role of Hsp70 in mediating the interaction of oxidized proteins with the 20S proteasome. Thus, our data clearly implicate an involvement of Hsp70 oxidatively damaged protein degradation by the 20S proteasome. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. The role of heat shock protein 70 in oxidant stress and inflammatory injury in quail spleen induced by cold stress.

    PubMed

    Ren, Jiayi; Liu, Chunpeng; Zhao, Dan; Fu, Jing

    2018-05-15

    The aim of this study was to investigate the role of heat shock protein 70 (Hsp70) in oxidative stress and inflammatory damage in the spleen of quails which were induced by cold stress. One hundred ninety-two 15-day-old male quails were randomly divided into 12 groups and kept at 12 ± 1 °C to examine acute and chronic cold stress. We first detected the changes in activities of antioxidant enzymes in the spleen tissue under acute and chronic cold stress. The activities of glutathione peroxidase (GSH-Px) fluctuated in acute cold stress groups, while they were significantly decreased (p < 0.05) after chronic cold stress. The activities of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS), and nitric oxide (NO) content were decreased significantly (p < 0.05) in both of the acute and chronic cold stress groups. Malondialdehyde (MDA) content was significantly increased (p < 0.05) under cold stress except the 0.5 h group of acute cold stress. Besides, histopathological analysis showed that quail's spleen tissue was inflammatory injured seriously in both the acute and chronic cold stress groups. Additionally, the inflammatory factors (cyclooxygenase-2 (COX-2), prostaglandin E synthase (PTGES), iNOS, nuclear factor-kappa B (NF-κB), and tumor necrosis factor-a (TNF-α)) and Hsp70 mRNA levels were increased in both of the acute and chronic cold stress groups compared with the control groups. These results suggest that oxidative stress and inflammatory injury could be induced by cold stress in spleen tissues of quails. Furthermore, the increased expression of Hsp70 may play a role in protecting the spleen against oxidative stress and inflammatory damage caused by cold stress.

  17. Aggregation and disaggregation kinetics of human blood platelets: Part II. Shear-induced platelet aggregation.

    PubMed Central

    Huang, P Y; Hellums, J D

    1993-01-01

    A population balance equation (PBE) mathematical model for analyzing platelet aggregation kinetics was developed in Part I (Huang, P. Y., and J. D. Hellums. 1993. Biophys. J. 65: 334-343) of a set of three papers. In this paper, Part II, platelet aggregation and related reactions are studied in the uniform, known shear stress field of a rotational viscometer, and interpreted by means of the model. Experimental determinations are made of the platelet-aggregate particle size distributions as they evolve in time under the aggregating influence of shear stress. The PBE model is shown to give good agreement with experimental determinations when either a reversible (aggregation and disaggregation) or an irreversible (no disaggregation) form of the model is used. This finding suggests that for the experimental conditions studied disaggregation processes are of only secondary importance. During shear-induced platelet aggregation, only a small fraction of platelet collisions result in the binding together of the involved platelets. The modified collision efficiency is approximately zero for shear rates below 3000 s-1. It increases with shear rates above 3000 s-1 to about 0.01 for a shear rate of 8000 s-1. Addition of platelet chemical agonists yields order of magnitude increases in collision efficiency. The collision efficiency for shear-induced platelet aggregation is about an order of magnitude less at 37 degrees C than at 24 degrees C. The PBE model gives a much more accurate representation of aggregation kinetics than an earlier model based on a monodispersed particle size distribution. PMID:8369442

  18. Oxidative Stress: A New Target for Pancreatic Cancer Prognosis and Treatment

    PubMed Central

    Martinez-Useros, Javier; Li, Weiyao; Cabeza-Morales, Marticela; Garcia-Foncillas, Jesus

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of tumors, and its incidence is rising worldwide. Survival can be improved when tumors are detected at an early stage; however, this cancer is usually asymptomatic, and the disease only becomes apparent after metastasis. Several risk factors are associated to this disease. Chronic pancreatitis, diabetes, and some infectious disease are the most relevant risk factors. Incidence of PDAC has increased in the last decades. It is hypothesized it could be due to other acquired risk habits, like smoking, high alcohol intake, and obesity. Indeed, adipose tissue is a dynamic endocrine organ that secretes different pro-inflammatory cytokines, enzymes, and other factors that activate oxidative stress. Reactive oxygen species caused by oxidative stress, damage DNA, proteins, and lipids, and produce several toxic and high mutagenic metabolites that could modify tumor behavior, turning it into a malignant phenotype. Anti-oxidant compounds, like vitamins, are considered protective factors against cancer. Here, we review the literature on oxidative stress, the molecular pathways that activate or counteract oxidative stress, and potential treatment strategies that target reactive oxygen species suitable for this kind of cancer. PMID:28282928

  19. PML is a ROS sensor activating p53 upon oxidative stress.

    PubMed

    Niwa-Kawakita, Michiko; Ferhi, Omar; Soilihi, Hassane; Le Bras, Morgane; Lallemand-Breitenbach, Valérie; de Thé, Hugues

    2017-11-06

    Promyelocytic leukemia (PML) nuclear bodies (NBs) recruit partner proteins, including p53 and its regulators, thereby controlling their abundance or function. Investigating arsenic sensitivity of acute promyelocytic leukemia, we proposed that PML oxidation promotes NB biogenesis. However, physiological links between PML and oxidative stress response in vivo remain unexplored. Here, we identify PML as a reactive oxygen species (ROS) sensor. Pml -/- cells accumulate ROS, whereas PML expression decreases ROS levels. Unexpectedly, Pml -/- embryos survive acute glutathione depletion. Moreover, Pml -/- animals are resistant to acetaminophen hepatotoxicity or fasting-induced steatosis. Molecularly, Pml -/- animals fail to properly activate oxidative stress-responsive p53 targets, whereas the NRF2 response is amplified and accelerated. Finally, in an oxidative stress-prone background, Pml -/- animals display a longevity phenotype, likely reflecting decreased basal p53 activation. Thus, similar to p53, PML exerts basal antioxidant properties but also drives oxidative stress-induced changes in cell survival/proliferation or metabolism in vivo. Through NB biogenesis, PML therefore couples ROS sensing to p53 responses, shedding a new light on the role of PML in senescence or stem cell biology. © 2017 Niwa-Kawakita et al.

  20. Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants.

    PubMed

    Lee, Seung-Yup; Lee, Soo-Jung; Han, Changsu; Patkar, Ashwin A; Masand, Prakash S; Pae, Chi-Un

    2013-10-01

    The brain is an organ predisposed to oxidative/nitrosative stress. This is especially true in the case of aging as well as several neurodegenerative diseases. Under such circumstances, a decline in the normal antioxidant defense mechanisms leads to an increase in the vulnerability of the brain to the deleterious effects of oxidative damage. Highly reactive oxygen/nitrogen species damage lipids, proteins, and mitochondrial and neuronal genes. Unless antioxidant defenses react appropriately to damage inflicted by radicals, neurons may experience microalteration, microdysfunction, and degeneration. We reviewed how oxidative and nitrosative stresses contribute to the pathogenesis of depressive disorders and reviewed the clinical implications of various antioxidants as future targets for antidepressant treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. d-Alanine 2, Leucine 5 Enkephaline (DADLE)-mediated DOR activation augments human hUCB-BFs viability subjected to oxidative stress via attenuation of the UPR.

    PubMed

    Mullick, Madhubanti; Venkatesh, Katari; Sen, Dwaipayan

    2017-07-01

    Human mesenchymal stem cells (hMSCs) although being potent in repairing injured or ischemic tissues, their success regarding tissue-regenerative approaches are hindered by the paucity in their viability. The elevated levels of reactive oxygen species (ROS) in damaged sites provoke the pernicious effects of donor MSC survival. In the present study, the effect of delta-opioid receptor (DOR) activation on human umbilical cord-blood borne fibroblasts (hUCB-BFs) survival under oxidative stress (H 2 O 2 ) was evaluated. Oxidative stress which is known to trigger pathological conditions of the unfolded protein response (UPR) leads to endoplasmic reticulum stress. Upon its activation by D-Alanine 2, Leucine 5 Enkephaline (DADLE, selective DOR agonist) in hUCB-BFs under oxidative stress, a significant down regulation (~2 folds) of key UPR genes was observed as determined by qPCR, Thioflavin-T protein aggregation assay and western blot analysis. Concomitantly, the oxidative stress-mediated cell-death was ameliorated and the viable-cells' percentage was enhanced following DOR activation. The intracellular ROS production upon H 2 O 2 treatment as determined by CM-H 2 DCFDA staining was repressed, the anti-apoptotic marker Bcl-2 was upregulated along with a significant suppression in the expression levels of pro-apoptotic proteins Bax and Bad upon DOR activation. Upon subsequent treatment with naltrindole, the effects of DADLE-induced cytoprotection were reverted significantly. These results propound the role of DADLE-mediated DOR-activation on improvement of the viability, which might succour successful hUCB-BFs transplants and greatly absolve the inefficacy of tissue-specific engineered transplants. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Gypenosides protect retinal pigment epithelium cells from oxidative stress.

    PubMed

    Alhasani, Reem Hasaballah; Biswas, Lincoln; Tohari, Ali Mohammad; Zhou, Xinzhi; Reilly, James; He, Jian-Feng; Shu, Xinhua

    2018-02-01

    Oxidative stress plays a critical role in the pathogenesis of retinal degeneration. Gypenosides are the major functional components isolated from Gynostemma pentaphyllum. They have been shown to protect against oxidative stress and inflammation and have also demonstrated a protective effect on experimental optic neuritis. In order to determine the protective properties of gypenosides against oxidative stress in human retinal pigment epithelium (RPE) cells, ARPE-19 cells were treated with H 2 O 2 or H 2 O 2 plus gypenosides for 24 h. ARPE-19 cells co-treated with gypenosides had significantly increased cell viability and decreased cell death rate when compared to cells treated with H 2 O 2 alone. The level of GSH, the activities of SOD and catalase, and the expression of NRF2 and antioxidant genes were notably decreased, while there were marked increases in ROS, MDA and pro-inflammatory cytokines in ARPE-19 cells exposed to H 2 O 2 ; co-treatment with gypenosides significantly counteract these changes. Our study suggests that gypenosides protect RPE cells from oxidative damage and offer therapeutic potential for the treatment of retinal degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. p53 as a retrovirus-induced oxidative stress modulator.

    PubMed

    Kim, Soo Jin; Wong, Paul K Y

    2015-01-01

    Infection of astrocytes by the neuropathogenic mutant of Moloney murine leukemia virus, ts1, exhibits increased levels of reactive oxygen species (ROS) and signs of oxidative stress compared with uninfected astrocytes. Previously, we have demonstrated that ts1 infection caused two separate events of ROS upregulation. The first upregulation occurs during early viral establishment in host cells and the second during the virus-mediated apoptotic process. In this study, we show that virus-mediated ROS upregulation activates the protein kinase, ataxia telangiectasia mutated, which in turn phosphorylates serine 15 on p53. This activation of p53 however, is unlikely associated with ts1-induced cell death. Rather p53 appears to be involved in suppressing intracellular ROS levels in astrocytes under oxidative stress. The activated p53 appears to delay retroviral gene expression by suppressing NADPH oxidase, a superoxide-producing enzyme. These results suggest that p53 plays a role as a retrovirus-mediated oxidative stress modulator. © 2015 The Authors.

  4. Insights into the Role and Interdependence of Oxidative Stress and Inflammation in Liver Diseases

    PubMed Central

    Li, Sha; Hong, Ming

    2016-01-01

    The crucial roles of oxidative stress and inflammation in the development of hepatic diseases have been unraveled and emphasized for decades. From steatosis to fibrosis, cirrhosis and liver cancer, hepatic oxidative stress, and inflammation are sustained and participated in this pathological progressive process. Notably, increasing evidences showed that oxidative stress and inflammation are tightly related, which are regarded as essential partners that present simultaneously and interact with each other in various pathological conditions, creating a vicious cycle to aggravate the hepatic diseases. Clarifying the interaction of oxidative stress and inflammation is of great importance to provide new directions and targets for developing therapeutic intervention. Herein, this review is concerned with the regulation and interdependence of oxidative stress and inflammation in a variety of liver diseases. In addition to classical mediators and signaling, particular emphasis is placed upon immune suppression, a potential linkage of oxidative stress and inflammation, to provide new inspiration for the treatment of liver diseases. Furthermore, since antioxidation and anti-inflammation have been extensively attempted as the strategies for treatment of liver diseases, the application of herbal medicines and their derived compounds that protect liver from injury via regulating oxidative stress and inflammation collectively were reviewed and discussed. PMID:28070230

  5. 4-Phenylbutyrate Benefits Traumatic Hemorrhagic Shock in Rats by Attenuating Oxidative Stress, Not by Attenuating Endoplasmic Reticulum Stress.

    PubMed

    Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming

    2016-07-01

    Vascular dysfunction such as vascular hyporeactivity following severe trauma and shock is a major cause of death in injured patients. Oxidative stress and endoplasmic reticulum stress play an important role in vascular dysfunction. The objective of the present study was to determine whether or not 4-phenylbutyrate can improve vascular dysfunction and elicit antishock effects by inhibiting oxidative and endoplasmic reticulum stress. Prospective, randomized, controlled laboratory experiment. State key laboratory of trauma, burns, and combined injury. Five hundred and fifty-two Sprague-Dawley rats. Rats were anesthetized, and a model of traumatic hemorrhagic shock was established by left femur fracture and hemorrhage. The effects of 4-phenylbutyrate (5, 20, 50, 100, 200, and 300 mg/kg) on vascular reactivity, animal survival, hemodynamics, and vital organ function in traumatic hemorrhagic shock rats and cultured vascular smooth muscle cells, and the relationship to oxidative stress and endoplasmic reticulum stress was observed. Lower doses of 4-phenylbutyrate significantly improved the vascular function, stabilized the hemodynamics, and increased the tissue blood flow and vital organ function in traumatic hemorrhagic shock rats, and markedly improved the survival outcomes. Among all dosages observed in the present study, 20 mg/kg of 4-phenylbutyrate had the best effect. Further results indicated that 4-phenylbutyrate significantly inhibited the oxidative stress, decreased shock-induced oxidative stress index such as the production of reactive oxygen species, increased the antioxidant enzyme levels such as superoxide dismutase, catalase, and glutathione, and improved the mitochondrial function by inhibiting the opening of the mitochondrial permeability transition pore in rat artery and vascular smooth muscle cells. In contrast, 4-phenylbutyrate did not affect the changes of endoplasmic reticulum stress markers following traumatic hemorrhagic shock. Furthermore, 4

  6. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress.

    PubMed

    Ipson, Brett R; Fisher, Alfred L

    2016-05-01

    The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer's disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress. Published by Elsevier B.V.

  7. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress

    PubMed Central

    Ipson, Brett R.; Fisher, Alfred L.

    2016-01-01

    The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer’s disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs, and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress. PMID:27039887

  8. Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes*

    PubMed Central

    Collins, John A.; Wood, Scott T.; Nelson, Kimberly J.; Rowe, Meredith A.; Carlson, Cathy S.; Chubinskaya, Susan; Poole, Leslie B.; Furdui, Cristina M.; Loeser, Richard F.

    2016-01-01

    Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1–3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observed in situ in human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism. PMID:26797130

  9. Modulation of oxidative stress by beta-carotene in chicken embryo fibroblasts.

    PubMed

    Lawlor, S M; O'Brien, N M

    1995-06-01

    The ability of beta-carotene to protect against oxidative stress in vitro was assessed. Primary cultures of chicken embryo fibroblasts (CEF) were oxidatively stressed by exposure to paraquat (PQ). Activities of the antioxidant enzymes superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6) and glutathione peroxidase (GSH-Px; EC 1.11.19) were measured as indices of oxidative stress. CEF incubated with 0.25 mM-PQ for 18 h exhibited increased SOD and CAT activities and decreased GSH-Px activity compared with the control (P < 0.001). Incorporation of added beta-carotene (0.1 microM) into 0.25 mM-PQ-treated CEF returned SOD activity to that seen in non-PQ-treated cells. beta-Carotene (0.1 microM) reduced the CAT activity from that seen in PQ-treated cells and returned the GSH-Px activity to its control value thus protecting the cells against PQ-induced oxidative stress. However, at higher concentrations of beta-carotene (10 microM), SOD and CAT activities increased significantly (P < 0.001) relative to non-PQ-treated cells and GSH-Px activity decreased relative to its control value. Similar trends were observed when CEF grown in beta-carotene-enriched media (0.1-10 microM) were oxidatively stressed by exposure to 0.25 mM-PQ for 18 h.

  10. Antioxidant functionalized polymer capsules to prevent oxidative stress.

    PubMed

    Larrañaga, Aitor; Isa, Isma Liza Mohd; Patil, Vaibhav; Thamboo, Sagana; Lomora, Mihai; Fernández-Yague, Marc A; Sarasua, Jose-Ramon; Palivan, Cornelia G; Pandit, Abhay

    2018-02-01

    Polymeric capsules exhibit significant potential for therapeutic applications as microreactors, where the bio-chemical reactions of interest are efficiently performed in a spatial and time defined manner due to the encapsulation of an active biomolecule (e.g., enzyme) and control over the transfer of reagents and products through the capsular membrane. In this work, catalase loaded polymer capsules functionalized with an external layer of tannic acid (TA) are fabricated via a layer-by-layer approach using calcium carbonate as a sacrificial template. The capsules functionalised with TA exhibit a higher scavenging capacity for hydrogen peroxide and hydroxyl radicals, suggesting that the external layer of TA shows intrinsic antioxidant properties, and represents a valid strategy to increase the overall antioxidant potential of the developed capsules. Additionally, the hydrogen peroxide scavenging capacity of the capsules is enhanced in the presence of the encapsulated catalase. The capsules prevent oxidative stress in an in vitro inflammation model of degenerative disc disease. Moreover, the expression of matrix metalloproteinase-3 (MMP-3), and disintegrin and metalloproteinase with thrombospondin motif-5 (ADAMTS-5), which represents the major proteolytic enzymes in intervertebral disc, are attenuated in the presence of the polymer capsules. This platform technology exhibits potential to reduce oxidative stress, a key modulator in the pathology of a broad range of inflammatory diseases. Oxidative stress damages important cell structures leading to cellular apoptosis and senescence, for numerous disease pathologies including cancer, neurodegeneration or osteoarthritis. Thus, the development of biomaterials-based systems to control oxidative stress has gained an increasing interest. Herein, polymer capsules loaded with catalase and functionalized with an external layer of tannic acid are fabricated, which can efficiently scavenge important reactive oxygen species (i

  11. Association between Oxidative Stress, Genetic Factors, and Clinical Severity in Children with Sickle Cell Anemia.

    PubMed

    Renoux, Céline; Joly, Philippe; Faes, Camille; Mury, Pauline; Eglenen, Buse; Turkay, Mine; Yavas, Gokce; Yalcin, Ozlem; Bertrand, Yves; Garnier, Nathalie; Cuzzubbo, Daniela; Gauthier, Alexandra; Romana, Marc; Möckesch, Berenike; Cannas, Giovanna; Antoine-Jonville, Sophie; Pialoux, Vincent; Connes, Philippe

    2018-04-01

    To investigate the associations between several sickle cell disease genetic modifiers (beta-globin haplotypes, alpha-thalassemia, and glucose-6-phosphate dehydrogenase deficiency) and the level of oxidative stress and to evaluate the association between oxidative stress and the rates of vaso-occlusive events. Steady-state oxidative and nitrosative stress markers, biological variables, genetic modulators, and vaso-occlusive crisis events requiring emergency admissions were measured during a 2-year period in 62 children with sickle cell anemia (58 SS and 4 Sβ 0 ). Twelve ethnic-matched children without sickle cell anemia also participated as healthy controls (AA) for oxidative and nitrosative stress level measurement. Oxidative and nitrosative stress were greater in patients with sickle cell anemia compared with control patients, but the rate of vaso-occlusive crisis events in sickle cell anemia was not associated with the level of oxidative stress. The presence of alpha-thalassemia, but not glucose-6-phosphate dehydrogenase deficiency or beta-globin haplotype, modulated the level of oxidative stress in children with sickle cell anemia. Mild hemolysis in children with alpha-thalassemia may limit oxidative stress and could explain the protective role of alpha-thalassemia in hemolysis-related sickle cell complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Are there intergenerational and population-specific effects of oxidative stress in sockeye salmon (Oncorhynchus nerka)?

    PubMed

    Taylor, Jessica J; Wilson, Samantha M; Sopinka, Natalie M; Hinch, Scott G; Patterson, David A; Cooke, Steven J; Willmore, William G

    2015-06-01

    Intergenerational effects of stress have been reported in a wide range of taxa; however, few researchers have examined the intergenerational consequences of oxidative stress. Oxidative stress occurs in living organisms when reactive oxygen species remain unquenched by antioxidant defense systems and become detrimental to cells. In fish, it is unknown how maternal oxidative stress and antioxidant capacity influence offspring quality. The semelparous, migratory life history of Pacific salmon (Oncorhynchus spp.) provides a unique opportunity to explore intergenerational effects of oxidative stress. This study examined the effects of population origin on maternal and developing offspring oxidative stress and antioxidant capacity, and elucidated intergenerational relationships among populations of sockeye salmon (Oncorhynchus nerka) with varying migration effort. For three geographically distinct populations of Fraser River sockeye salmon (British Columbia, Canada), antioxidant capacity and oxidative stress were measured in adult female plasma, heart, brain, and liver, as well as in developing offspring until time of emergence. Maternal and offspring oxidative stress and antioxidant capacity varied among populations but patterns were not consistent across tissue/developmental stage. Furthermore, maternal oxidative stress and antioxidant capacity did not affect offspring oxidative stress and antioxidant capacity across any of the developmental stages or populations sampled. Our results revealed that offspring develop their endogenous antioxidant systems at varying rates across populations; however, this variability is overcome by the time of emergence. While offspring may be relying on maternally derived antioxidants in the initial stages of development, they rapidly develop their own antioxidant systems (mainly glutathione) during later stages of development. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Oxidative stress inhibition and oxidant activity by fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia

    2015-09-01

    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Blue light-induced oxidative stress in live skin.

    PubMed

    Nakashima, Yuya; Ohta, Shigeo; Wolf, Alexander M

    2017-07-01

    Skin damage from exposure to sunlight induces aging-like changes in appearance and is attributed to the ultraviolet (UV) component of light. Photosensitized production of reactive oxygen species (ROS) by UVA light is widely accepted to contribute to skin damage and carcinogenesis, but visible light is thought not to do so. Using mice expressing redox-sensitive GFP to detect ROS, blue light could produce oxidative stress in live skin. Blue light induced oxidative stress preferentially in mitochondria, but green, red, far red or infrared light did not. Blue light-induced oxidative stress was also detected in cultured human keratinocytes, but the per photon efficacy was only 25% of UVA in human keratinocyte mitochondria, compared to 68% of UVA in mouse skin. Skin autofluorescence was reduced by blue light, suggesting flavins are the photosensitizer. Exposing human skin to the blue light contained in sunlight depressed flavin autofluorescence, demonstrating that the visible component of sunlight has a physiologically significant effect on human skin. The ROS produced by blue light is probably superoxide, but not singlet oxygen. These results suggest that blue light contributes to skin aging similar to UVA. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effect of oxidative stress on Rho kinase II and smooth muscle contraction in rat stomach.

    PubMed

    Al-Shboul, Othman; Mustafa, Ayman

    2015-06-01

    Recent studies have shown that both Rho kinase signaling and oxidative stress are involved in the pathogenesis of a number of human diseases, such as diabetes mellitus, hypertension, and atherosclerosis. However, very little is known about the effect of oxidative stress on the gastrointestinal (GI) smooth muscle Rho kinase pathway. The aim of the current study was to investigate the effect of oxidative stress on Rho kinase II and muscle contraction in rat stomach. The peroxynitrite donor 3-morpholinosydnonimine (SIN-1), hydrogen peroxide (H2O2), and peroxynitrite were used to induce oxidative stress. Rho kinase II expression and ACh-induced activity were measured in control and oxidant-treated cells via specifically designed enzyme-linked immunosorbent assay (ELISA) and activity assay kits, respectively. Single smooth muscle cell contraction was measured via scanning micrometry in the presence or absence of the Rho kinase blocker, Y-27632 dihydrochloride. All oxidant agents significantly increased ACh-induced Rho kinase II activity without affecting its expression level. Most important, oxidative stress induced by all three agents augmented ACh-stimulated muscle cell contraction, which was significantly inhibited by Y-27632. In conclusion, oxidative stress activates Rho kinase II and enhances contraction in rat gastric muscle, suggesting an important role in GI motility disorders associated with oxidative stress.

  16. [Oxidative stress in pathogenesis of COPD].

    PubMed

    Betsuyaku, Tomoko

    2007-04-01

    Cigarette smoke and aging are major risk factors of chronic obstructive pulmonary disease(COPD). It remains unsolved how long -term smoking with age affects the molecular responses in the lung. Respiratory tract is the major interface to the environment and is rich in glutathione, which protects lung from oxidative stress. We performed bronchoalveolar lavage for nonsmokers and smokers of various ages, who were further categorized according to the presence of emphysema on high-resolution computed tomography. We thus evaluated glutathione antioxidant system in BAL fluid. Characterization of older smokers with long-term smoking histories, contrasted with young recent smokers, may in part explain the predisposition of the lungs to destructive lung diseases. On the other hands, oxidative stress results from an imbalance in aerobic metabolism and poses a serious threat to cellular apoptosis, leading to emphysematous lung destruction. The therapeutic interference with targeted up-regulation of protective mechanisms might be critical for the success of future COPD therapies.

  17. Oxidative stress and apoptosis in preeclampsia.

    PubMed

    Can, Murat; Guven, Berrak; Bektas, Sibel; Arikan, Ilker

    2014-12-01

    We aimed to determine the oxidative stress and antioxidant status in preeclamptic placenta. Also, we investigated the apoptotic index of villous trophoblast and proliferation index of cytotrophoblasts. The study included 32 pregnant with preeclampsia and 31 normotensive healthy pregnant women. Malondialdehyde (MDA) and total antioxidant status (TAS) levels were measured in the placenta. For detection of apoptosis and proliferation in trophoblast, apoptosis protease activating factor 1 (APAF-1) and Ki-67 were used. Placental MDA levels in preeclamptic women were significantly higher than normal pregnancies (p=0.002). There was no significant difference between the groups in the TAS levels of placenta (p=0.773). Also, the apoptotic index in villous trophoblasts increased (p<0.001), but proliferation index did not change in preeclampsia (p=0.850). Increased oxidative stress and apoptosis in pathological placenta are not balanced by antioxidant systems and proliferation mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effects of repeated restraint stress and WiFi signal exposure on behavior and oxidative stress in rats.

    PubMed

    Othman, Haifa; Ammari, Mohamed; Sakly, Mohsen; Abdelmelek, Hafedh

    2017-10-01

    Today, due to technology development and aversive events of daily life, Human exposure to both radiofrequency and stress is unavoidable. This study investigated the co-exposure to repeated restraint stress and WiFi signal on cognitive function and oxidative stress in brain of male rats. Animals were divided into four groups: Control, WiFi-exposed, restrained and both WiFi-exposed and restrained groups. Each of WiFi exposure and restraint stress occurred 2 h (h)/day during 20 days. Subsequently, various tests were carried out for each group, such as anxiety in elevated plus maze, spatial learning abilities in the water maze, cerebral oxidative stress response and cholinesterase activity in brain and serum. Results showed that WiFi exposure and restraint stress, alone and especially if combined, induced an anxiety-like behavior without impairing spatial learning and memory abilities in rats. At cerebral level, we found an oxidative stress response triggered by WiFi and restraint, per se and especially when combined as well as WiFi-induced increase in acetylcholinesterase activity. Our results reveal that there is an impact of WiFi signal and restraint stress on the brain and cognitive processes especially in elevated plus maze task. In contrast, there are no synergistic effects between WiFi signal and restraint stress on the brain.

  19. Cytokines and Oxidative Stress Status Following a Handball Game in Elite Male Players

    PubMed Central

    Marin, Douglas Popp; Macedo dos Santos, Rita de Cassia; Bolin, Anaysa Paola; Guerra, Beatriz Alves; Hatanaka, Elaine; Otton, Rosemari

    2011-01-01

    Background. Handball is considered an intermittent sport that places an important stress on a player's aerobic and anaerobic metabolism. However, the oxidative stress responses following a handball game remain unknown. We investigated the responses of plasma and erythrocyte antioxidant system and oxidative stress biomarkers following a single handball game. Methods. Fourteen male elite Brazilian handball athletes were recruited in the present study. Blood samples were taken before, immediately, and 24 hours after the game. Results. After the game and during 24 hours of recovery, the concentration of all oxidative stress indices changed significantly in a way indicating increased oxidative stress in the blood (thiol groups and reduced glutathione decreased, whereas TBARS and plasma antioxidant capacity was increased) as well as in erythrocyte (increased levels of TBARS and protein carbonyls). Erythrocyte antioxidant enzyme activities were also significantly changed by handball. Muscle damage indices (creatine kinase and lactate dehydrogenase) increased significantly after exercise. In addition, IL-6 increased after the game, whereas TNF-α decreased during recovery. Conclusion. This study demonstrates that a single handball game in elite athletes induces a marked state of oxidative stress evidenced by the oxidative modification in plasma and erythrocyte macromolecules, as well as by changes in the enzymatic and nonenzymatic antioxidant system. PMID:21922038

  20. Nanoparticle Inhalation Increases Microvascular Oxidative Stress and Compromises Nitric Oxide Bioavailability

    EPA Science Inventory

    We have shown that pulmonary nanoparticle exposure impairs endothelium dependent dilation in systemic arterioles. However, the mechanism(s) through which this effect occurs are unclear. The purpose of this study was to identify alterations in the production of oxidative stress an...

  1. Oxidative stress and nitrosative stress are involved in different stages of proteolytic pulmonary emphysema.

    PubMed

    Lanzetti, Manuella; da Costa, Cristiane Aguiar; Nesi, Renata Tiscoski; Barroso, Marina Valente; Martins, Vanessa; Victoni, Tatiana; Lagente, Vincent; Pires, Karla Maria Pereira; e Silva, Patrícia Machado Rodrigues; Resende, Angela Castro; Porto, Luis Cristóvão; Benjamim, Cláudia Farias; Valença, Samuel Santos

    2012-12-01

    Our aim was to investigate the role of oxidative stress in elastase-induced pulmonary emphysema. C57BL/6 mice were subjected to pancreatic porcine elastase (PPE) instillation (0.05 or 0.5 U per mouse, i.t.) to induce pulmonary emphysema. Lungs were collected on days 7, 14, and 21 after PPE instillation. The control group was sham injected. Also, mice treated with 1% aminoguanidine (AMG) and inducible NO synthase (iNOS) knockout mice received 0.5 U PPE (i.t.), and lungs were analyzed 21 days after. We performed bronchoalveolar lavage, biochemical analyses of oxidative stress, and lung stereology and morphometry assays. Emphysema was observed histologically at 21 days after 0.5 U PPE treatment; tissues from these mice exhibited increased alveolar linear intercept and air-space volume density in comparison with the control group. TNF-α was elevated at 7 and 14 days after 0.5 U PPE treatment, concomitant with a reduction in the IL-10 levels at the same time points. Myeloperoxidase was elevated in all groups treated with 0.5 U PPE. Oxidative stress was observed during early stages of emphysema, with increased nitrite levels and malondialdehyde and superoxide dismutase activity at 7 days after 0.5 U PPE treatment. Glutathione peroxidase activity was increased in all groups treated with 0.5 U PPE. The emphysema was attenuated when iNOS was inhibited using 1% AMG and in iNOS knockout mice. Furthermore, proteolytic stimulation by PPE enhanced the expression of nitrotyrosine and iNOS, whereas the PPE+AMG group showed low expression of iNOS and nitrotyrosine. PPE stimulus also induced endothelial (e) NOS expression, whereas AMG reduced eNOS. Our results suggest that the oxidative and nitrosative stress pathways are triggered by nitric oxide production via iNOS expression in pulmonary emphysema. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Oxidative Stress and Autophagy in Cardiovascular Homeostasis

    PubMed Central

    Morales, Cyndi R.; Pedrozo, Zully; Lavandero, Sergio

    2014-01-01

    Abstract Significance: Autophagy is an evolutionarily ancient process of intracellular protein and organelle recycling required to maintain cellular homeostasis in the face of a wide variety of stresses. Dysregulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to oxidative damage. Both autophagy and ROS/RNS serve pathological or adaptive roles within cardiomyocytes, depending on the context. Recent Advances: ROS/RNS and autophagy communicate with each other via both transcriptional and post-translational events. This cross talk, in turn, regulates the structural integrity of cardiomyocytes, promotes proteostasis, and reduces inflammation, events critical to disease pathogenesis. Critical Issues: Dysregulation of either autophagy or redox state has been implicated in many cardiovascular diseases. Cardiomyocytes are rich in mitochondria, which make them particularly sensitive to oxidative damage. Maintenance of mitochondrial homeostasis and elimination of defective mitochondria are each critical to the maintenance of redox homeostasis. Future Directions: The complex interplay between autophagy and oxidative stress underlies a wide range of physiological and pathological events and its elucidation holds promise of potential clinical applicability. Antioxid. Redox Signal. 20, 507–518. PMID:23641894

  3. Live-cell Imaging Approaches for the Investigation of Xenobiotic-Induced Oxidant Stress

    EPA Science Inventory

    BACKGROUND: Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular t...

  4. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent

    EPA Science Inventory

    Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this...

  5. The Association Between Physical Activity and Sex-Specific Oxidative Stress in Older Adults

    PubMed Central

    Takahashi, Masaki; Miyashita, Masashi; Park, Jong-Hwan; Kim, Hyun-Shik; Nakamura, Yoshio; Sakamoto, Shizuo; Suzuki, Katsuhiko

    2013-01-01

    Oxidative stress increases with advancing age and is a mediator of several diseases including cancer, cardiovascular disease, and diabetes. Moreover, postmenopausal women have a lower estrogen concentration, which is associated with elevated oxidative stress. However, there is no definitive evidence regarding the relationship between daily physical activity and oxidative stress status in older adults, including postmenopausal women. Twenty-nine adults (age, 70.1 ± 1.0 years, mean ± SE; 12 women and 17 men) were examined in this cross-sectional study. Prior to blood collection, the participants were asked to wear a uniaxial accelerometer for 4 consecutive weeks to determine their level of physical activity. After a 48-h period of physical activity avoidance and a 10-h overnight fast, venous blood samples were obtained from each participant. Fasting plasma derivatives of reactive oxygen metabolites (d-ROMs) and malondialdehyde (MDA) concentrations of oxidative stress markers were negatively correlated with the amount of physical activity in women (d-ROMs; r = -0.708, p = 0.002) (MDA; r = -0.549, p = 0. 028), but not in men. Fasting plasma biological antioxidant potential of antioxidant capacity marker was positively correlated with the amount of physical activity in women (BAP; r = 0.657, p = 0.006) (GSH; r = 0.549, p = 0.028), but not in men. Moreover, superoxide dismutase activity of antioxidant capacity marker was positively correlated with the amount of physical activity in men (r = 0.627, p = 0.039), but not in women. There were no associations between physical activity and other oxidative stress markers (reduced and oxidized glutathione, glutathione peroxidise, thioredoxin). These findings suggest that regular physical activity may have a protective effect against oxidative stress by increasing total antioxidant capacity, especially in postmenopausal women. Key Points It is important to consider daily physical activity status when evaluating antioxidant

  6. The association between physical activity and sex-specific oxidative stress in older adults.

    PubMed

    Takahashi, Masaki; Miyashita, Masashi; Park, Jong-Hwan; Kim, Hyun-Shik; Nakamura, Yoshio; Sakamoto, Shizuo; Suzuki, Katsuhiko

    2013-01-01

    Oxidative stress increases with advancing age and is a mediator of several diseases including cancer, cardiovascular disease, and diabetes. Moreover, postmenopausal women have a lower estrogen concentration, which is associated with elevated oxidative stress. However, there is no definitive evidence regarding the relationship between daily physical activity and oxidative stress status in older adults, including postmenopausal women. Twenty-nine adults (age, 70.1 ± 1.0 years, mean ± SE; 12 women and 17 men) were examined in this cross-sectional study. Prior to blood collection, the participants were asked to wear a uniaxial accelerometer for 4 consecutive weeks to determine their level of physical activity. After a 48-h period of physical activity avoidance and a 10-h overnight fast, venous blood samples were obtained from each participant. Fasting plasma derivatives of reactive oxygen metabolites (d-ROMs) and malondialdehyde (MDA) concentrations of oxidative stress markers were negatively correlated with the amount of physical activity in women (d-ROMs; r = -0.708, p = 0.002) (MDA; r = -0.549, p = 0. 028), but not in men. Fasting plasma biological antioxidant potential of antioxidant capacity marker was positively correlated with the amount of physical activity in women (BAP; r = 0.657, p = 0.006) (GSH; r = 0.549, p = 0.028), but not in men. Moreover, superoxide dismutase activity of antioxidant capacity marker was positively correlated with the amount of physical activity in men (r = 0.627, p = 0.039), but not in women. There were no associations between physical activity and other oxidative stress markers (reduced and oxidized glutathione, glutathione peroxidise, thioredoxin). These findings suggest that regular physical activity may have a protective effect against oxidative stress by increasing total antioxidant capacity, especially in postmenopausal women. Key PointsIt is important to consider daily physical activity status when evaluating antioxidant

  7. Oxidative Stress Relevance in the Pathogenesis of the Rheumatoid Arthritis: A Systematic Review

    PubMed Central

    Quiñonez-Flores, Celia María; González-Chávez, Susana Aideé; Del Río Nájera, Danyella; Pacheco-Tena, César

    2016-01-01

    Rheumatoid arthritis (RA) is an autoimmune inflammatory disease whose pathogenic mechanisms remain to be elucidated. The oxidative stress and antioxidants play an important role in the disease process of RA. The study of oxidants and antioxidants biomarkers in RA patients could improve our understanding of disease pathogenesis; likely determining the oxidative stress levels in these patients could prove helpful in assessing disease activity and might also have prognostic implications. To date, the usefulness of oxidative stress biomarkers in RA patients is unclear and the evidence supporting them is heterogeneous. In order to resume and update the information in the status of oxidants and antioxidants and their connection as biomarkers in RA, we performed a systematic literature search in the PubMed database, including clinical trials published in the last five years using the word combination “rheumatoid arthritis oxidative stress”. In conclusion, this review supports the fact that the oxidative stress is an active process in RA pathogenesis interrelated to other better known pathogenic elements. However, some controversial results preclude a definite conclusion. PMID:27340664

  8. Comparative Expression Profiling of Distinct T Cell Subsets Undergoing Oxidative Stress

    PubMed Central

    Lichtenfels, Rudolf; Mougiakakos, Dimitrios; Johansson, C. Christian; Dressler, Sven P.; Recktenwald, Christian V.; Kiessling, Rolf; Seliger, Barbara

    2012-01-01

    The clinical outcome of adoptive T cell transfer-based immunotherapies is often limited due to different escape mechanisms established by tumors in order to evade the hosts' immune system. The establishment of an immunosuppressive micromilieu by tumor cells along with distinct subsets of tumor-infiltrating lymphocytes is often associated with oxidative stress that can affect antigen-specific memory/effector cytotoxic T cells thereby substantially reducing their frequency and functional activation. Therefore, protection of tumor-reactive cytotoxic T lymphocytes from oxidative stress may enhance the anti-tumor-directed immune response. In order to better define the key pathways/proteins involved in the response to oxidative stress a comparative 2-DE-based proteome analysis of naïve CD45RA+ and their memory/effector CD45RO+ T cell counterparts in the presence and absence of low dose hydrogen peroxide (H2O2) was performed in this pilot study. Based on the profiling data of these T cell subpopulations under the various conditions, a series of differentially expressed spots were defined, members thereof identified by mass spectrometry and subsequently classified according to their cellular function and localization. Representative targets responding to oxidative stress including proteins involved in signaling pathways, in regulating the cellular redox status as well as in shaping/maintaining the structural cell integrity were independently verified at the transcript and protein level under the same conditions in both T cell subsets. In conclusion the resulting profiling data describe complex, oxidative stress-induced, but not strictly concordant changes within the respective expression profiles of CD45RA+ and CD45RO+ T cells. Some of the differentially expressed genes/proteins might be further exploited as potential targets toward modulating the redox capacity of the distinct lymphocyte subsets thereby providing the basis for further studies aiming at rendering them

  9. Serum oxidative-anti-oxidative stress balance is dysregulated in patients with hepatitis C virus-related hepatocellular carcinoma.

    PubMed

    Nishimura, Mamoru; Takaki, Akinobu; Tamaki, Naofumi; Maruyama, Takayuki; Onishi, Hideki; Kobayashi, Sayo; Nouso, Kazuhiro; Yasunaka, Tetsuya; Koike, Kazuko; Hagihara, Hiroaki; Kuwaki, Kenji; Nakamura, Shinichiro; Ikeda, Fusao; Iwasaki, Yoshiaki; Tomofuji, Takaaki; Morita, Manabu; Yamamoto, Kazuhide

    2013-10-01

    Oxidative stress is associated with progression of chronic liver disease (CLD). This association is best established in chronic hepatitis C. However, the anti-oxidative state is not well characterized. The objective of the present study was to investigate the balance of oxidative and anti-oxidative stress in CLD patients. We recruited a study population of 208 patients, including healthy volunteers (HV; n = 15), patients with hepatitis B virus (HBV)-related CLD without or with hepatocellular carcinoma (HBV-non-HCC, n = 25, and HBV-HCC, n = 50, respectively), and patients with hepatitis C virus (HCV)-related CLD without or with HCC (HCV-non-HCC, n = 49, and HCV-HCC, n = 69, respectively). Serum levels of reactive oxygen metabolites (ROM) and anti-oxidative markers (OXY-adsorbent test; OXY) were determined, and the balance of these values was used as the oxidative index. Correlations among ROM, OXY, oxidative index and clinical characteristics were investigated. Patients with CLD exhibited elevated ROM and oxidative index compared to HV. Among patients with CLD, HCV positive status correlated with increased ROM. In CLD, HCV-HCC patients exhibited the highest ROM levels. Among HCV-related CLD patients, lower OXY correlated with HCC positive status, but was recovered by eradication of HCC. In HCV-HCC, lower OXY correlated with high PT-INR. HCV positive CLD patients displayed higher oxidative stress and HCV-HCC patients displayed lower anti-oxidative state. Anti-oxidative state depression was associated with liver reservoir-related data in HCV-HCC and could be reversed with HCC eradication. © 2012 The Japan Society of Hepatology.

  10. Additional oxidative stress reroutes the global response of Aspergillus fumigatus to iron depletion.

    PubMed

    Kurucz, Vivien; Krüger, Thomas; Antal, Károly; Dietl, Anna-Maria; Haas, Hubertus; Pócsi, István; Kniemeyer, Olaf; Emri, Tamás

    2018-05-10

    Aspergillus fumigatus has to cope with a combination of several stress types while colonizing the human body. A functional interplay between these different stress responses can increase the chances of survival for this opportunistic human pathogen during the invasion of its host. In this study, we shed light on how the H 2 O 2 -induced oxidative stress response depends on the iron available to this filamentous fungus, using transcriptomic analysis, proteomic profiles, and growth assays. The applied H 2 O 2 treatment, which induced only a negligible stress response in iron-replete cultures, deleteriously affected the fungus under iron deprivation. The majority of stress-induced changes in gene and protein expression was not predictable from data coming from individual stress exposure and was only characteristic for the combination of oxidative stress plus iron deprivation. Our experimental data suggest that the physiological effects of combined stresses and the survival of the fungus highly depend on fragile balances between economization of iron and production of essential iron-containing proteins. One observed strategy was the overproduction of iron-independent antioxidant proteins to combat oxidative stress during iron deprivation, e.g. the upregulation of superoxide dismutase Sod1, the thioredoxin reductase Trr1, and the thioredoxin orthologue Afu5g11320. On the other hand, oxidative stress induction overruled iron deprivation-mediated repression of several genes. In agreement with the gene expression data, growth studies underlined that in A. fumigatus iron deprivation aggravates oxidative stress susceptibility. Our data demonstrate that studying stress responses under separate single stress conditions is not sufficient to understand how A. fumigatus adapts in a complex and hostile habitat like the human body. The combinatorial stress of iron depletion and hydrogen peroxide caused clear non-additive effects upon the stress response of A. fumigatus. Our data

  11. Relationships between Psychosocial Difficulties and Oxidative Stress Biomarkers in Women Subject to Intimate Partner Violence.

    PubMed

    Kim, Jae Yop; Lee, Ji Hyeon; Song, Hyang Joo; Kim, Dong Goo; Yim, Yeong Shin

    2017-02-01

    Women subject to violence by their intimate partners often experience a range of psychosocial problems such as depression, excessive alcohol use, and stressful life events that, in turn, lead to health issues. This study examined psychosocial difficulties and oxidative stress levels in abused and non-abused Korean women and analyzed the relationship between psychosocial outcomes and oxidative stress levels. Markers were determined in 16 women (seven abused, nine non-abused). The two groups of women (abused and non-abused) were compared with respect to scores in depression, alcohol use, life stress events, and oxidative stress biomarkers using the Mann-Whitney U test. Correlations between depression, alcohol use, life stress events, and oxidative stress biomarkers were tested by the Spearman rank correlation coefficient. The abused women had significantly higher levels of oxidative stress markers and significantly lower levels of antioxidants than the non-abused women. Life stress events and oxidative biomarker levels were significantly correlated. These findings have implications for both social services providers and medical personnel when assessing abused women to ensure that they receive the most appropriate service. © 2016 National Association of Social Workers.

  12. On the determination of growth stress during oxidation of pure zirconium at elevated temperature

    NASA Astrophysics Data System (ADS)

    Kurpaska, L.; Favergeon, J.; Lahoche, L.; Moulin, G.

    2018-07-01

    An experimental approach have been proposed to evaluate growth of stress during high temperature oxidation of pure zirconium. The development of stress in the oxide scale has been investigated experimentally in in-situ conditions by combining the Deflection Test in Monofacial Oxidation (DTMO) with Acoustic Emission analysis (AE). Microstructure of the sample were studied by using Scanning Electron Microscopy technique. Oxidation experiments were performed continuously during 24 h at 400 °C and 500 °C in air under normal atmospheric pressure. Taking into account purely elastic behaviour of the material, primary evolution of growth stress developed in the oxide scale during oxidation process have been estimated. Presented study of the Zr/ZrO2 system revealed two opposite phenomena of stress relief when cooling from 400 °C and 500 °C to room temperature. This study is presented as a tool to understand the phenomena of stress evolution in the zirconia layer during isothermal treatment at high temperature and after cooling.

  13. Erythrocyte deformability and oxidative stress in inflammatory bowel disease.

    PubMed

    Akman, Tulay; Akarsu, Mesut; Akpinar, Hale; Resmi, Halil; Taylan, Ebru; Sezer, Ebru

    2012-02-01

    Oxidative stress and reduced microvascular flow are important factors in the pathogenesis of inflammatory bowel disease (IBD). The increased oxidative stress reduces the erythrocyte deformability. However, in IBD, there are no studies in the literature which evaluate erythrocyte deformability. In our study, we investigated the effect of oxidative stress and erythrocyte deformability in IBD. Forty-three patients with active IBD, 48 patients with inactive IBD and 45 healthy controls were included. The erytrocyte deformability, malonyldialdehyde levels, glutation peroxidase and sulfhydryl levels were measured in peripheral venous blood samples. Erytrocyte malonyldialdehyde levels in both active and inactive IBD were significantly increased compared with control groups. Plasma glutation peroxidase levels did not show statistically significant difference between all groups. The decreased plasma sulfhydryl levels in active IBD were statistically significant compared with both the inactive IBD and the control group, but plasma sulfhydryl levels in inactive IBD group did not show statistically significant differences when compared with the control group. Elongation index values in both active and inactive IBD increased significantly compared with the control group. Statistically significant correlations were not found between the elongation index and glutation peroxidase, malonyldialdehyde, sulfhydryl levels in all groups. Our study is the first to evaluate the erythrocyte deformability in IBD. In our study, increased erytrocyte malonyldialdehyde levels and decreased plasma sulfhydryl levels manifested the role of oxidative stress in the pathogenesis of the disease. It is thought that the increased erythrocyte malonyldialdehyde values cause the reduction in erythrocyte deformability.

  14. Oxidative Stress Induces Disruption of the Axon Initial Segment

    PubMed Central

    Clark, Kareem C.; Sword, Brooke A.; Dupree, Jeffrey L.

    2017-01-01

    The axon initial segment (AIS), the domain responsible for action potential initiation and maintenance of neuronal polarity, is targeted for disruption in a variety of central nervous system pathological insults. Previous work in our laboratory implicates oxidative stress as a potential mediator of structural AIS alterations in two separate mouse models of central nervous system inflammation, as these effects were attenuated following reactive oxygen species scavenging and NADPH oxidase-2 ablation. While these studies suggest a role for oxidative stress in modulation of the AIS, the direct effects of reactive oxygen and nitrogen species (ROS/RNS) on the stability of this domain remain unclear. Here, we demonstrate that oxidative stress, as induced through treatment with 3-morpholinosydnonimine (SIN-1), a spontaneous ROS/RNS generator, drives a reversible loss of AIS protein clustering in primary cortical neurons in vitro. Pharmacological inhibition of both voltage-dependent and intracellular calcium (Ca2+) channels suggests that this mechanism of AIS disruption involves Ca2+ entry specifically through L-type voltage-dependent Ca2+ channels and its release from IP3-gated intracellular stores. Furthermore, ROS/RNS-induced AIS disruption is dependent upon activation of calpain, a Ca2+-activated protease previously shown to drive AIS modulation. Overall, we demonstrate for the first time that oxidative stress, as induced through exogenously applied ROS/RNS, is capable of driving structural alterations in the AIS complex. PMID:29228786

  15. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease.

    PubMed

    Yan, Michael H; Wang, Xinglong; Zhu, Xiongwei

    2013-09-01

    Alzheimer disease (AD) and Parkinson disease (PD) are the two most common age-related neurodegenerative diseases characterized by prominent neurodegeneration in selective neural systems. Although a small fraction of AD and PD cases exhibit evidence of heritability, among which many genes have been identified, the majority are sporadic without known causes. Molecular mechanisms underlying neurodegeneration and pathogenesis of these diseases remain elusive. Convincing evidence demonstrates oxidative stress as a prominent feature in AD and PD and links oxidative stress to the development of neuronal death and neural dysfunction, which suggests a key pathogenic role for oxidative stress in both AD and PD. Notably, mitochondrial dysfunction is also a prominent feature in these diseases, which is likely to be of critical importance in the genesis and amplification of reactive oxygen species and the pathophysiology of these diseases. In this review, we focus on changes in mitochondrial DNA and mitochondrial dynamics, two aspects critical to the maintenance of mitochondrial homeostasis and function, in relationship with oxidative stress in the pathogenesis of AD and PD. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease

    PubMed Central

    Yan, Michael H.; Wang, Xinglong; Zhu, Xiongwei

    2013-01-01

    Alzheimer disease (AD) and Parkinson disease (PD) are the two most common age-related neurodegenerative diseases characterized by prominent neurodegeneration in selective neural systems. Although a small fraction of AD and PD cases exhibit evidence of heritability, among which many genes have been identified, the majority are sporadic without known causes. Molecular mechanisms underlying neurodegeneration and pathogenesis of these diseases remain elusive. Convincing evidence demonstrates oxidative stress as a prominent feature in AD and PD and links oxidative stress to the development of neuronal death and neural dysfunction, which suggests a key pathogenic role for oxidative stress in both AD and PD. Notably, mitochondrial dysfunction is also a prominent feature in these diseases, which is likely to be of critical importance in the genesis and amplification of reactive oxygen species and the pathophysiology of these diseases. In this review, we focus on changes in mitochondrial DNA and mitochondrial dynamics, two aspects critical to the maintenance of mitochondrial homeostasis and function, in relationship with oxidative stress in the pathogenesis of AD and PD. PMID:23200807

  17. Emissions of putative isoprene oxidation products from mango branches under abiotic stress

    PubMed Central

    Jardine, Kolby J.; Meyers, Kimberly; Abrell, Leif; Alves, Eliane G.; Yanez Serrano, Ana Maria; Kesselmeier, Jürgen; Karl, Thomas; Guenther, Alex; Vickers, Claudia; Chambers, Jeffrey Q.

    2013-01-01

    Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putative isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freeze–thaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under 13CO2 resulted in rapid (<30min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance. PMID:23881400

  18. Emissions of putative isoprene oxidation products from mango branches under abiotic stress.

    PubMed

    Jardine, Kolby J; Meyers, Kimberly; Abrell, Leif; Alves, Eliane G; Yanez Serrano, Ana Maria; Kesselmeier, Jürgen; Karl, Thomas; Guenther, Alex; Chambers, Jeffrey Q; Vickers, Claudia

    2013-09-01

    Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putative isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freeze-thaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under (13)CO2 resulted in rapid (<30 min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance.

  19. Emissions of putative isoprene oxidation products from mango branches under abiotic stress

    DOE PAGES

    Jardine, Kolby J.; Meyers, Kimberly; Abrell, Leif; ...

    2013-07-23

    Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putativemore » isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freeze–thaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under 13CO 2 resulted in rapid (<30min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance.« less

  20. Emissions of putative isoprene oxidation products from mango branches under abiotic stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, Kolby J.; Meyers, Kimberly; Abrell, Leif

    Although several per cent of net carbon assimilation can be re-released as isoprene emissions to the atmosphere by many tropical plants, much uncertainty remains regarding its biological significance. In a previous study, we detected emissions of isoprene and its oxidation products methyl vinyl ketone (MVK) and methacrolein (MACR) from tropical plants under high temperature/light stress, suggesting that isoprene is oxidized not only in the atmosphere but also within plants. However, a comprehensive analysis of the suite of isoprene oxidation products in plants has not been performed and production relationships with environmental stress have not been described. In this study, putativemore » isoprene oxidation products from mango (Mangifera indica) branches under abiotic stress were first identified. High temperature/light and freeze–thaw treatments verified direct emissions of the isoprene oxidation products MVK and MACR together with the first observations of 3-methyl furan (3-MF) and 2-methyl-3-buten-2-ol (MBO) as putative novel isoprene oxidation products. Mechanical wounding also stimulated emissions of MVK and MACR. Photosynthesis under 13CO 2 resulted in rapid (<30min) labelling of up to five carbon atoms of isoprene, with a similar labelling pattern observed in the putative oxidation products. These observations highlight the need to investigate further the mechanisms of isoprene oxidation within plants under stress and its biological and atmospheric significance.« less

  1. Mineralogical and chemical assessment of concrete damaged by the oxidation of sulfide-bearing aggregates: Importance of thaumasite formation on reaction mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, A.; Duchesne, J., E-mail: josee.duchesne@ggl.ulaval.ca; Fournier, B.

    Damages in concrete containing sulfide-bearing aggregates were recently observed in the Trois-Rivieres area (Quebec, Canada), characterized by rapid deterioration within 3 to 5 years after construction. A petrographic examination of concrete core samples was carried out using a combination of tools including: stereomicroscopic evaluation, polarized light microscopy, scanning electron microscopy, X-ray diffraction and electron microprobe analysis. The aggregate used to produce concrete was an intrusive igneous rock with different metamorphism degrees and various proportions of sulfide minerals. In the rock, sulfide minerals were often surrounded by a thin layer of carbonate minerals (siderite). Secondary reaction products observed in the damagedmore » concrete include 'rust' mineral forms (e.g. ferric oxyhydroxides such as goethite, limonite (FeO (OH) nH{sub 2}O) and ferrihydrite), gypsum, ettringite and thaumasite. In the presence of water and oxygen, pyrrhotite oxidizes to form iron oxyhydroxides and sulphuric acid. The acid then reacts with the phases of the cement paste/aggregate and provokes the formation of sulfate minerals. Understanding both mechanisms, oxidation and internal sulfate attack, is important to be able to duplicate the damaging reaction in laboratory conditions, thus allowing the development of a performance test for evaluating the potential for deleterious expansion in concrete associated with sulfide-bearing aggregates.« less

  2. Oxygen radical absorbance capacity (ORAC) and exercise-induced oxidative stress in trotters.

    PubMed

    Kinnunen, Susanna; Hyyppä, Seppo; Lehmuskero, Arja; Oksala, Niku; Mäenpää, Pekka; Hänninen, Osmo; Atalay, Mustafa

    2005-12-01

    Strenuous exercise is a potent inducer of oxidative stress, which has been suggested to be associated with disturbances in muscle homeostasis, fatigue and injury. There is no comprehensive or uniform view of the antioxidant status in horses. We have previously shown that moderate exercise induces protein oxidation in trotters. The aim of this study was to measure the antioxidative capacity of the horse in relation to different antioxidant components and oxidative stress markers after a single bout of moderate exercise to elucidate the mechanisms of antioxidant protection in horses. Eight clinically normal and regularly trained standard-bred trotters were treadmill-exercised for 53 min at moderate intensity. Blood samples were collected prior to and immediately after exercise and at 4 and 24 h of recovery. Muscle biopsies from the middle gluteal muscle were taken before exercise and after 4 h of recovery. Acute induction of oxygen radical absorbance capacity (ORAC) did not prevent exercise-induced oxidative stress, which was demonstrated by increased lipid hydroperoxides (LPO). Pre-exercise ORAC levels were, however, a determinant of total glutathione content of the blood after 4 and 24 h of recovery. Furthermore, baseline ORAC level correlated negatively with 4-h recovery LPO levels. Our results imply that horses are susceptible to oxidative stress, but a stronger antioxidant capacity may improve coping with exercise-induced oxidative stress.

  3. Systemic and airway oxidative stress in competitive swimmers.

    PubMed

    Škrgat, Sabina; Marčun, Robert; Kern, Izidor; Šilar, Mira; Šelb, Julij; Fležar, Matjaž; Korošec, Peter

    2018-04-01

    The environment in swimming pools, which contain chlorine, might interact with the airway epithelium, resulting in oxidative stress and/or inflammation during high intensity training periods. We evaluated pulmonary functional (metacholine challenge test, FEV1 and VC), cellular (eosinophils and neutrophils), inflammatory (FeNo, IL-5, IL-6, IL-8 and TNF-α), oxidative (8-isoprostanes) and angiogenesis factors (VEGF) in induced sputum and peripheral blood of 41 healthy non-asthmatic elite swimmers (median 16 years) during the period of high intensity training before a national championship. The second paired sampling was performed seven months later after training had been stopped for one month. There was a ten-fold increase (median 82-924 pg/ml; P < 0.001) in 8-isoprostanes in induced sputum and five-fold increase (median 82-924 pg/ml; P < 0.001) in sera during training in comparison to the period of rest. However, there was no difference in FEV1 (113 vs 116%), VC (119 vs 118%), FeNo (median 34 vs 38 ppb), eosinophils (2.7 vs 2.9% in sputum; 180 vs 165 cells/μl in blood), neutrophils, different cytokines or VEGF in induced sputum or sera. The only exception was TNF-α, which was moderately increased in sera (median 23 vs 40 pg/ml; P = 0.02) during the peak training period. Almost half (18 of 41) of swimmers showed bronchial hyperresponsiveness during the peak training period (PC20 cutoff was 4 mg/ml). There was no correlation between hyperresponsiveness and the markers of oxidative stress or inflammation. High intensity training in healthy, non-asthmatic competitive swimmers results in marked oxidative stress at the airway and systemic levels, but does not lead to airway inflammation. However, we could not confirm that oxidative stress is associated with bronchial hyperresponsiveness (AHR), which is often observed during the peak exercise training period. Copyright © 2018. Published by Elsevier Ltd.

  4. Structural Characterization of IgG1 mAb Aggregates and Particles Generated under Various Stress Conditions

    PubMed Central

    Telikepalli, Srivalli N.; Kumru, Ozan S.; Kalonia, Cavan; Esfandiary, Reza; Joshi, Sangeeta B.; Middaugh, C. Russell; Volkin, David B.

    2014-01-01

    IgG1 mAb solutions were prepared with and without sodium chloride and subjected to different environmental stresses. Formation of aggregates and particles of varying size was monitored by a combination of size exclusion chromatography (SEC), Nanosight Tracking Analysis (NTA), Micro-flow Imaging (MFI), turbidity, and visual assessments. Stirring and heating induced the highest concentration of particles. In general, the presence of NaCl enhanced this effect. The morphology of the particles formed from mAb samples exposed to different stresses was analyzed from TEM and MFI images. Shaking samples without NaCl generated the most fibrillar particles, while stirring created largely spherical particles. The composition of the particles was evaluated for covalent cross-linking by SDS-PAGE, overall secondary structure by FTIR microscopy, and surface apolarity by extrinsic fluorescence spectroscopy. Freeze-thaw and shaking led to particles containing protein with native-like secondary structure. Heating and stirring produced IgG1 containing aggregates and particles with some non-native disulfide crosslinks, varying levels of intermolecular beta sheet content, and increased surface hydrophobicity. These results highlight the importance of evaluating protein particle morphology and composition, in addition to particle number and size distributions, to better understand the effect of solution conditions and environmental stresses on the formation of protein particles in mAb solutions. PMID:24452866

  5. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions.

    PubMed

    Telikepalli, Srivalli N; Kumru, Ozan S; Kalonia, Cavan; Esfandiary, Reza; Joshi, Sangeeta B; Middaugh, C Russell; Volkin, David B

    2014-03-01

    IgG1 mAb solutions were prepared with and without sodium chloride and subjected to different environmental stresses. Formation of aggregates and particles of varying size was monitored by a combination of size-exclusion chromatography, Nanoparticle Tracking Analysis, Micro-flow Imaging (MFI), turbidity, and visual assessments. Stirring and heating induced the highest concentration of particles. In general, the presence of NaCl enhanced this effect. The morphology of the particles formed from mAb samples exposed to different stresses was analyzed from transmission electron microscopy and MFI images. Shaking samples without NaCl generated the most fibrillar particles, whereas stirring created largely spherical particles. The composition of the particles was evaluated for covalent cross-linking by SDS-PAGE, overall secondary structure by FTIR microscopy, and surface apolarity by extrinsic fluorescence spectroscopy. Freeze-thaw and shaking led to particles containing protein with native-like secondary structure. Heating and stirring produced IgG1-containing aggregates and particles with some non-native disulfide cross-links, varying levels of intermolecular beta sheet content, and increased surface hydrophobicity. These results highlight the importance of evaluating protein particle morphology and composition, in addition to particle number and size distributions, to better understand the effect of solution conditions and environmental stresses on the formation of protein particles in mAb solutions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Mangiferin decreases inflammation and oxidative damage in rat brain after stress.

    PubMed

    Márquez, Lucía; García-Bueno, Borja; Madrigal, José L M; Leza, Juan C

    2012-09-01

    Stress exposure elicits neuroinflammation and oxidative damage in brain, and stress-related neurological and neuropsychiatric diseases have been associated with cell damage and death. Mangiferin (MAG) is a polyphenolic compound abundant in the stem bark of Mangifera indica L. with antioxidant and anti-inflammatory properties in different experimental settings. In this study, the capacity of MAG to prevent neuroinflammation and brain oxidative damage induced by stress exposure was investigated. Young-adult male Wistar rats immobilized during 6 h were administered by oral gavage with increasing doses of MAG (15, 30, and 60 mg/Kg), respectively, 7 days before stress. Prior treatment with MAG prevented all of the following stress-induced effects: (1) increase in glucocorticoids (GCs) and interleukin-1β (IL-1β) plasma levels, (2) loss of redox balance and reduction in catalase brain levels, (3) increase in pro-inflammatory mediators, such as tumor necrosis factor alpha TNF-α and its receptor TNF-R1, nuclear factor-kappa B (NF-κB) and synthesis enzymes, such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), (4) increase in lipid peroxidation. These multifaceted protective effects suggest that MAG administration could be a new therapeutic strategy in neurological/neuropsychiatric pathologies in which hypothalamic/pituitary/adrenal (HPA) stress axis dysregulation, neuroinflammation, and oxidative damage take place in their pathophysiology.

  7. Thiopurines Induce Oxidative Stress in T-Lymphocytes: A Proteomic Approach

    PubMed Central

    Misdaq, Misbah; Ziegler, Sonia; von Ahsen, Nicolas; Asif, Abdul R.

    2015-01-01

    Thiopurines are extensively used immunosuppressants for the treatment of inflammatory bowel disease (IBD). The polymorphism of thiopurine S-methyltransferase (TPMT) influences thiopurine metabolism and therapy outcome. We used a TPMT knockdown (kd) model of human Jurkat T-lymphocytes cells to study the effects of treatment with 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) on proteome and phosphoproteome. We identified thirteen proteins with altered expression and nine proteins with altered phosphorylation signals. Three proteins (THIO, TXD17, and GSTM3) with putative functions in cellular oxidative stress responses were altered by 6-TG treatment and another protein PRDX3 was differentially phosphorylated in TPMT kd cells. Furthermore, reactive oxygen species (ROS) assay results were consistent with a significant induction of oxidative stress by both TPMT knockdown and thiopurine treatments. Immunoblot analyses showed treatment altered expression of key antioxidant enzymes (i.e., SOD2 and catalase) in both wt and kd groups, while SOD1 was downregulated by 6-TG treatment and TPMT knockdown. Collectively, increased oxidative stress might be a mechanism involved in thiopurine induced cytotoxicity and adverse effects (i.e., hepatotoxicity) and an antioxidant cotherapy might help to combat this. Results highlight the significance of oxidative stress in thiopurines' actions and could have important implications for the treatment of IBD patients. PMID:25873760

  8. Enteric bacteria boost defences against oxidative stress in Entamoeba histolytica.

    PubMed

    Varet, Hugo; Shaulov, Yana; Sismeiro, Odile; Trebicz-Geffen, Meirav; Legendre, Rachel; Coppée, Jean-Yves; Ankri, Serge; Guillen, Nancy

    2018-06-13

    Oxidative stress is one of the strongest toxic factors in nature: it can harm or even kill cells. Cellular means of subverting the toxicity of oxidative stress are important for the success of infectious diseases. Many types of bacterium inhabit the intestine, where they can encounter pathogens. During oxidative stress, we analyzed the interplay between an intestinal parasite (the pathogenic amoeba Entamoeba histolytica - the agent of amoebiasis) and enteric bacteria (microbiome residents, pathogens and probiotics). We found that live enteric bacteria protected E. histolytica against oxidative stress. By high-throughput RNA sequencing, two amoebic regulatory modes were observed with enteric bacteria but not with probiotics. The first controls essential elements of homeostasis, and the second the levels of factors required for amoeba survival. Characteristic genes of both modes have been acquired by the amoebic genome through lateral transfer from the bacterial kingdom (e.g. glycolytic enzymes and leucine-rich proteins). Members of the leucine-rich are homologous to proteins from anti-bacterial innate immune such as Toll-like receptors. The factors identified here suggest that despite its old age in evolutionary terms, the protozoan E. histolytica displays key characteristics of higher eukaryotes' innate immune systems indicating that components of innate immunity existed in the common ancestor of plants and animals.

  9. Stress generation in thermally grown oxide films. [oxide scale spalling from superalloy substrates

    NASA Technical Reports Server (NTRS)

    Kumnick, A. J.; Ebert, L. J.

    1981-01-01

    A three dimensional finite element analysis was conducted, using the ANSYS computer program, of the stress state in a thin oxide film thermally formed on a rectangular piece of NiCrAl alloy. The analytical results indicate a very high compressive stress in the lateral directions of the film (approximately 6200 MPa), and tensile stresses in the metal substrate that ranged from essentially zero to about 55 MPa. It was found further that the intensity of the analytically determined average stresses could be approximated reasonably well by the modification of an equation developed previously by Oxx for stresses induced into bodies by thermal gradients.

  10. Intracellular response to process optimization and impact on productivity and product aggregates for a high-titer CHO cell process.

    PubMed

    Handlogten, Michael W; Lee-O'Brien, Allison; Roy, Gargi; Levitskaya, Sophia V; Venkat, Raghavan; Singh, Shailendra; Ahuja, Sanjeev

    2018-01-01

    A key goal in process development for antibodies is to increase productivity while maintaining or improving product quality. During process development of an antibody, titers were increased from 4 to 10 g/L while simultaneously decreasing aggregates. Process development involved optimization of media and feed formulations, feed strategy, and process parameters including pH and temperature. To better understand how CHO cells respond to process changes, the changes were implemented in a stepwise manner. The first change was an optimization of the feed formulation, the second was an optimization of the medium, and the third was an optimization of process parameters. Multiple process outputs were evaluated including cell growth, osmolality, lactate production, ammonium concentration, antibody production, and aggregate levels. Additionally, detailed assessment of oxygen uptake, nutrient and amino acid consumption, extracellular and intracellular redox environment, oxidative stress, activation of the unfolded protein response (UPR) pathway, protein disulfide isomerase (PDI) expression, and heavy and light chain mRNA expression provided an in-depth understanding of the cellular response to process changes. The results demonstrate that mRNA expression and UPR activation were unaffected by process changes, and that increased PDI expression and optimized nutrient supplementation are required for higher productivity processes. Furthermore, our findings demonstrate the role of extra- and intracellular redox environment on productivity and antibody aggregation. Processes using the optimized medium, with increased concentrations of redox modifying agents, had the highest overall specific productivity, reduced aggregate levels, and helped cells better withstand the high levels of oxidative stress associated with increased productivity. Specific productivities of different processes positively correlated to average intracellular values of total glutathione. Additionally

  11. Melatonin resists oxidative stress-induced apoptosis in nucleus pulposus cells.

    PubMed

    He, Ruijun; Cui, Min; Lin, Hui; Zhao, Lei; Wang, Jiayu; Chen, Songfeng; Shao, Zengwu

    2018-04-15

    Intervertebral disc degeneration (IVDD) is thought to be the major cause of low back pain (LBP), which is still in lack of effective etiological treatment. Oxidative stress has been demonstrated to participate in the impairment of nucleus pulposus cells (NPCs). As the most important neuroendocrine hormone in biological clock regulation, melatonin (MLT) is also featured by good antioxidant effect. In this study, we investigated the effect and mechanisms of melatonin on oxidative stress-induced damage in rat NPCs. Cytotoxicity of H 2 O 2 and protecting effect of melatonin were analyzed with Cell Counting kit-8 (CCK-8). Cell apoptosis rate was detected by Annexin V-FITC/PI staining. DCFH-DA probe was used for the reactive oxygen species (ROS) detection. The mitochondrial membrane potential (MMP) changes were analyzed with JC-1 probe. Intracellular oxidation product and reductants were measured through enzymatic reactions. Extracellular matrix (ECM) and apoptosis associated proteins were analyzed with Western blot assays. Melatonin preserved cell viability of NPCs under oxidative stress. The apoptosis rate, ROS level and malonaldehyde (MDA) declined with melatonin. MLT/H 2 O 2 group showed higher activities of GSH and SOD. The fall of MMP receded and the expression of ECM protein increased with treatment of melatonin. The mitochondrial pathway of apoptosis was inhibited by melatonin. Melatonin alleviated the oxidative stress-induced apoptosis of NPCs. Melatonin could be a promising alternative in treatment of IVDD. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Differentiation of Sclerotinia minor depends on thiol redox state and oxidative stress.

    PubMed

    Patsoukis, Nikolaos; Georgiou, Christos D

    2008-01-01

    Sclerotial differentiation in Sclerotinia minor is associated with oxidative stress and thiol redox state. The significance of oxidative stress to sclerotial differentiation was revealed by the higher oxidative stress of S. minor compared with a nonsclerotiogenic counterpart. The effect of thiol redox state on sclerotial differentiation was shown by the antioxidant action of the thiol (-SH) group of N-acetylcysteine and cysteine and by an unknown (not antioxidant) role of glutathione (GSH) on S. minor. The nonantioxidant role of GSH was indicated by the differentiation-inhibiting and differentiation-noninhibiting actions of the GSH biosynthesis inhibitor L-buthionine-S,R-sulfoximine and the GSH biosynthesis inducer L-2-oxo-thiazolidine-4-carboxylate, respectively, and by the increase of oxidative stress they caused during the transition from the undifferentiated to differentiated state of S. minor. Moreover, N-acetylcysteine can be used as a potent nontoxic fungicide against this phytopathogenic fungus by acting as a growth-inhibiting cytotoxic oxidant and by sustaining the fungus in the undifferentiated hyphal stage, which is vulnerable to degradation by soil microorganisms.

  13. Iodinated contrast media can induce long-lasting oxidative stress in hemodialysis patients.

    PubMed

    Hwang, Seun Deuk; Kim, Yoon Ji; Lee, Sang Heun; Cho, Deok Kyu; Cho, Yun Hyeong; Moon, Sung Jin; Lee, Sang Choel; Yoon, Soo Young

    2013-11-01

    Due to their comorbidities, dialysis patients have many chances to undergo radiologic procedures using iodinated contrast media. We aimed to assess time-sequenced blood oxidative stress level after contrast exposure in hemodialysis (HD) patients compared to those in the non-dialysis population. We included 21 anuric HD patients [HD-coronary angiography (CAG) group] and 23 persons with normal renal function (nonHD-CAG group) scheduled for CAG, and assessed 4 oxidative stress markers [advanced oxidation protein products (AOPP); catalase; 8-hydroxydeoxyguanosine; and malondialdehyde] before and after CAG, and subsequently up to 28 days. In the nonHD-CAG group, only AOPP increased immediately after CAG and returned to baseline within one day. However, in the HD-CAG group, all four oxidative stress markers were significantly increased starting one day after CAG, and remained elevated longer than those in the nonHD-CAG group. Especially, AOPP level remained elevated for a month after contrast exposure. Our study showed that iodinated contrast media induces severe and prolonged oxidative stress in HD patients.

  14. Iodinated Contrast Media Can Induce Long-Lasting Oxidative Stress in Hemodialysis Patients

    PubMed Central

    Hwang, Seun Deuk; Kim, Yoon Ji; Lee, Sang Heun; Cho, Deok Kyu; Cho, Yun Hyeong; Moon, Sung Jin; Lee, Sang Choel

    2013-01-01

    Purpose Due to their comorbidities, dialysis patients have many chances to undergo radiologic procedures using iodinated contrast media. We aimed to assess time-sequenced blood oxidative stress level after contrast exposure in hemodialysis (HD) patients compared to those in the non-dialysis population. Materials and Methods We included 21 anuric HD patients [HD-coronary angiography (CAG) group] and 23 persons with normal renal function (nonHD-CAG group) scheduled for CAG, and assessed 4 oxidative stress markers [advanced oxidation protein products (AOPP); catalase; 8-hydroxydeoxyguanosine; and malondialdehyde] before and after CAG, and subsequently up to 28 days. Results In the nonHD-CAG group, only AOPP increased immediately after CAG and returned to baseline within one day. However, in the HD-CAG group, all four oxidative stress markers were significantly increased starting one day after CAG, and remained elevated longer than those in the nonHD-CAG group. Especially, AOPP level remained elevated for a month after contrast exposure. Conclusion Our study showed that iodinated contrast media induces severe and prolonged oxidative stress in HD patients. PMID:24142649

  15. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Wenqing; Zhang, Baoxin; Duan, Dongzhu

    2012-08-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH, is ubiquitous in all cells and involved in many redox-dependent signaling pathways. Curcumin, a naturally occurring pigment that gives a specific yellow color in curry food, is consumed in normal diet up to 100 mg per day. This molecule has also been used in traditional medicine for the treatment of a variety of diseases. Curcumin has numerous biological functions, and many of these functions are related to induction of oxidative stress. However, how curcumin elicits oxidative stress in cells is unclear. Our previous work has demonstrated the waymore » by which curcumin interacts with recombinant TrxR1 and alters the antioxidant enzyme into a reactive oxygen species (ROS) generator in vitro. Herein we reported that curcumin can target the cytosolic/nuclear thioredoxin system to eventually elevate oxidative stress in HeLa cells. Curcumin-modified TrxR1 dose-dependently and quantitatively transfers electrons from NADPH to oxygen with the production of ROS. Also, curcumin can drastically down-regulate Trx1 protein level as well as its enzyme activity in HeLa cells, which in turn remarkably decreases intracellular free thiols, shifting the intracellular redox balance to a more oxidative state, and subsequently induces DNA oxidative damage. Furthermore, curcumin-pretreated HeLa cells are more sensitive to oxidative stress. Knockdown of TrxR1 sensitizes HeLa cells to curcumin cytotoxicity, highlighting the physiological significance of targeting TrxR1 by curcumin. Taken together, our data disclose a previously unrecognized prooxidant mechanism of curcumin in cells, and provide a deep insight in understanding how curcumin works in vivo. -- Highlights: ► Curcumin induces oxidative stress by targeting the thioredoxin system. ► Curcumin-modified TrxR quantitatively oxidizes NADPH to generate ROS. ► Knockdown of TrxR1 augments curcumin's cytotoxicity in HeLa cells.

  16. Ophthalmic acid is a marker of oxidative stress in plants as in animals.

    PubMed

    Servillo, Luigi; Castaldo, Domenico; Giovane, Alfonso; Casale, Rosario; D'Onofrio, Nunzia; Cautela, Domenico; Balestrieri, Maria Luisa

    2018-04-01

    Ophthalmic acid (OPH), γ-glutamyl-L-2-aminobutyryl-glycine, a tripeptide analogue of glutathione (GSH), has recently captured considerable attention as a biomarker of oxidative stress in animals. The OPH and GSH biosynthesis, as well as some biochemical behaviors, are very similar. Here, we sought to investigate the presence of OPH in plants and its possible relationship with GSH, known to possess multiple functions in the plant development, growth and response to environmental changes. HPLC-ESI-MS/MS analysis was used to examine the occurrence of OPH in leaves from various plant species, and flours from several plant seeds. Different types of oxidative stress, i.e., water, dark, paraquat, and cadmium stress, were induced in rye, barley, oat, and winter wheat leaves to evaluate the effects on the levels of OPH and its metabolic precursors. OPH and its dipeptide precursor, γ-glutamyl-2-aminobutyric acid, were found to occur in phylogenetically distant plants. Interestingly, the levels of OPH were tightly associated with the oxidative stress tested. Levels of OPH precursors, γ-glutamyl-2-aminobutyric acid and 2-aminobutyric acid, the latter efficiently formed in plants via biosynthetic pathways absent in the animal kingdom, were also found to increase during oxidative stress. OPH occurs in plants and its levels are tightly associated with oxidative stress. OPH behaves as an oxidative stress marker and its biogenesis might occur through a biochemical pathway common to many living organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Infectious Agents in Atherosclerotic Cardiovascular Diseases through Oxidative Stress.

    PubMed

    Di Pietro, Marisa; Filardo, Simone; Falasca, Francesca; Turriziani, Ombretta; Sessa, Rosa

    2017-11-18

    Accumulating evidence demonstrates that vascular oxidative stress is a critical feature of atherosclerotic process, potentially triggered by several infectious agents that are considered as risk co-factors for the atherosclerotic cardiovascular diseases (CVDs). C. pneumoniae has been shown to upregulate multiple enzymatic systems capable of producing reactive oxygen species (ROS) such as NADPH oxidase (NOX) and cyclooxygenase in vascular endothelial cells, NOX and cytochrome c oxidase in macrophages as well as nitric oxide synthase and lipoxygenase in platelets contributing to both early and late stages of atherosclerosis. P. gingivalis seems to be markedly involved in the atherosclerotic process as compared to A. actinomycetemcomitans contributing to LDL oxidation and foam cell formation. Particularly interesting is the evidence describing the NLRP3 inflammasome activation as a new molecular mechanism underlying P. gingivalis -induced oxidative stress and inflammation. Amongst viral agents, immunodeficiency virus-1 and hepatitis C virus seem to have a major role in promoting ROS production, contributing, hence, to the early stages of atherosclerosis including endothelial dysfunction and LDL oxidation. In conclusion, oxidative mechanisms activated by several infectious agents during the atherosclerotic process underlying CVDs are very complex and not well-known, remaining, thus, an attractive target for future research.

  18. The oxidative stress theory of disease: levels of evidence and epistemological aspects.

    PubMed

    Ghezzi, Pietro; Jaquet, Vincent; Marcucci, Fabrizio; Schmidt, Harald H H W

    2017-06-01

    The theory that oxidative stress (OS) is at the root of several diseases is extremely popular. However, so far, no antioxidant has been recommended or offered by healthcare systems neither has any been approved as therapy by regulatory agencies that base their decisions on evidence-based medicine. This is simply because, so far, despite many preclinical and clinical studies indicating a beneficial effect of antioxidants in many disease conditions, randomised clinical trials have failed to provide the evidence of efficacy required for drug approval. In this review, we discuss the levels of evidence required to claim causality in preclinical research on OS, the weakness of the oversimplification associated with OS theory of disease and the importance of the narrative in its popularity. Finally, from a more translational perspective, we discuss the reasons why antioxidants acting by scavenging ROS might not only prevent their detrimental effects but also interfere with essential signalling roles. We propose that ROS have a complex metabolism and are generated by different enzymes at diverse sites and at different times. Aggregating this plurality of systems into a single theory of disease may not be the best way to develop new drugs, and future research may need to focus on specific oxygen-toxifying pathways rather than on non-specific ROS scavengers. Finally, similarly to what is nowadays required for clinical trials, we recommend making unpublished data available in repositories (open data), as this will allow big data approaches or meta-analyses, without the drawbacks of publication bias. This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc. © 2016 The British Pharmacological Society.

  19. Does oxidative stress affect the activity of the sodium-proton exchanger?

    PubMed

    Bober, Joanna; Kedzierska, Karolina; Kwiatkowska, Ewa; Stachowska, Ewa; Gołembiewska, Edyta; Mazur, Olech; Staniewicz, Zdzisław; Ciechanowski, Kazimierz; Chlubek, Dariusz

    2010-01-01

    Accumulation of reactive oxygen species (ROS) takes place in patients with chronic renal failure (CRF). Oxidative stress causes disorders in the activity of the sodium-proton exchanger (NHE). Studies on NHE in CRF produced results that are discrepant and difficult to interpret. The aim of this study was to demonstrate that oxidative stress had an effect on the activity of NHE. We enrolled 87 subjects divided into 4 groups: patients with CRF treated conservatively; patients with CRF hemodialyzed without glucose--HD-g(-); patients with CRF hemodialyzed with glucose--HD-g(+); controls (C). The activity of NHE, the rate of proton efflux V(max), Michaelis constant (Km), and the concentration of thiobarbituric acid-reactive substances (TBARS, an indicator of oxidative stress) in plasma, as well as the concentration of reduced glutathione in blood were determined. The concentration of TBARS was significantly higher in hemodialyzed patients before and after dialysis and in patients with CRF on conservative treatment in comparison with group C. TBARS in plasma correlated negatively with VpH(i)6.4 in group C and with V(max) and VpH(i)6.4 after HD in group HD-g(-). We found that the concentration of creatinine correlated with TBARS (p < 0.0001; r = +0.51) in the conservatively treated group. We observed a marked oxidative stress and decreased NHE activity when dialysis was done without glucose, whereas patients dialyzed with glucose demonstrated a relatively low intensity of oxidative stress.

  20. Plasma selenium levels and oxidative stress biomarkers: a gene-environment interaction population-based study.

    PubMed

    Galan-Chilet, Inmaculada; Tellez-Plaza, Maria; Guallar, Eliseo; De Marco, Griselda; Lopez-Izquierdo, Raul; Gonzalez-Manzano, Isabel; Carmen Tormos, M; Martin-Nuñez, Gracia M; Rojo-Martinez, Gemma; Saez, Guillermo T; Martín-Escudero, Juan C; Redon, Josep; Javier Chaves, F

    2014-09-01

    The role of selenium exposure in preventing chronic disease is controversial, especially in selenium-repleted populations. At high concentrations, selenium exposure may increase oxidative stress. Studies evaluating the interaction of genetic variation in genes involved in oxidative stress pathways and selenium are scarce. We evaluated the cross-sectional association of plasma selenium concentrations with oxidative stress levels, measured as oxidized to reduced glutathione ratio (GSSG/GSH), malondialdehyde (MDA), and 8-oxo-7,8-dihydroguanine (8-oxo-dG) in urine, and the interacting role of genetic variation in oxidative stress candidate genes, in a representative sample of 1445 men and women aged 18-85 years from Spain. The geometric mean of plasma selenium levels in the study sample was 84.76 µg/L. In fully adjusted models the geometric mean ratios for oxidative stress biomarker levels comparing the highest to the lowest quintiles of plasma selenium levels were 0.61 (0.50-0.76) for GSSG/GSH, 0.89 (0.79-1.00) for MDA, and 1.06 (0.96-1.18) for 8-oxo-dG. We observed nonlinear dose-responses of selenium exposure and oxidative stress biomarkers, with plasma selenium concentrations above ~110 μg/L being positively associated with 8-oxo-dG, but inversely associated with GSSG/GSH and MDA. In addition, we identified potential risk genotypes associated with increased levels of oxidative stress markers with high selenium levels. Our findings support that high selenium levels increase oxidative stress in some biological processes. More studies are needed to disentangle the complexity of selenium biology and the relevance of potential gene-selenium interactions in relation to health outcomes in human populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Updates of the role of oxidative stress in the pathogenesis of ovarian cancer.

    PubMed

    Saed, Ghassan M; Diamond, Michael P; Fletcher, Nicole M

    2017-06-01

    Clinical and epidemiological investigations have provided evidence supporting the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS), collectively known as oxidative stress, in the etiology of cancer. Exogenous factors such as chronic inflammation, infection and hypoxia are major sources of cellular oxidative stress. Specifically, oxidative stress plays an important role in the pathogenesis, neoangiogenesis, and dissemination of local or distant ovarian cancer, as it is known to induce phenotypic modifications of tumor cells by cross talk between tumor cells and the surrounding stroma. Subsequently, the biological significance of the relationship between oxidative stress markers and various stages of epithelial ovarian cancer highlights potential therapeutic interventions as well as provides urgently needed early detection biomarkers. In the light of our scientific research and the most recent experimental and clinical observations, this review provides the reader with up to date most relevant findings on the role of oxidative stress in the pathogenesis of ovarian cancer and the possible therapeutic implications. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Financial strain is associated with increased oxidative stress levels: the Women's Health and Aging Studies.

    PubMed

    Palta, Priya; Szanton, Sarah L; Semba, Richard D; Thorpe, Roland J; Varadhan, Ravi; Fried, Linda P

    2015-01-01

    Elevated oxidative stress levels may be one mechanism contributing to poor health outcomes. Financial strain and oxidative stress are each predictors of morbidity and mortality, but little research has investigated their relationship. Community-dwelling older adults (n = 728) from the Women's Health and Aging Studies I and II were included in this cross-sectional analysis. Financial strain was ascertained as an ordinal response to: "At the end of the month, do you have more than enough money left over, just enough, or not enough?" Oxidative stress was measured using serum protein carbonyl concentrations. Linear regression was used to quantify the relationship between financial strain and oxidative stress. Participants who reported high financial strain exhibited 13.4% higher protein carbonyl concentrations compared to individuals who reported low financial strain (p = 0.002). High financial strain may be associated with increased oxidative stress, suggesting that oxidative stress could mediate associations between financial strain and poor health. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Oxidative Stress Responses in the Human Fungal Pathogen, Candida albicans

    PubMed Central

    da Silva Dantas, Alessandra; Day, Alison; Ikeh, Mélanie; Kos, Iaroslava; Achan, Beatrice; Quinn, Janet

    2015-01-01

    Candida albicans is a major fungal pathogen of humans, causing approximately 400,000 life-threatening systemic infections world-wide each year in severely immunocompromised patients. An important fungicidal mechanism employed by innate immune cells involves the generation of toxic reactive oxygen species (ROS), such as superoxide and hydrogen peroxide. Consequently, there is much interest in the strategies employed by C. albicans to evade the oxidative killing by macrophages and neutrophils. Our understanding of how C. albicans senses and responds to ROS has significantly increased in recent years. Key findings include the observations that hydrogen peroxide triggers the filamentation of this polymorphic fungus and that a superoxide dismutase enzyme with a novel mode of action is expressed at the cell surface of C. albicans. Furthermore, recent studies have indicated that combinations of the chemical stresses generated by phagocytes can actively prevent C. albicans oxidative stress responses through a mechanism termed the stress pathway interference. In this review, we present an up-date of our current understanding of the role and regulation of oxidative stress responses in this important human fungal pathogen. PMID:25723552

  4. Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity.

    PubMed

    Li, G; Liu, J-Y; Zhang, H-X; Li, Q; Zhang, S-W

    2015-01-01

    It is known that excessive sympathetic activity and oxidative stress are enhanced in obesity. This study aimed to clarify whether exercise training (ET) attenuates sympathetic activation and oxidative stress in obesity. The obesity was induced by high-fat diet (HFD) for 12 weeks. Male Sprague-Dawley rats were assigned to four groups: regular diet (RD) plus sedentary (RD-S), RD plus ET (RD-ET), HFD plus sedentary (HFD-S), and HFD plus ET (HFD-ET). The rats in RD-ET and HFD-ET groups were trained on a motorized treadmill for 60 min/day, five days/week for 8 weeks. The sympathetic activity was evaluated by the plasma norepinephrine (NE) level. The superoxide anion, malondialdehyde and F2-isoprostanes levels in serum and muscles were measured to evaluate oxidative stress. The ET prevented the increases in the body weight, arterial pressure and white adipose tissue mass in HFD rats. The NE level in plasma and oxidative stress related parameters got lower in HFD-ET group compared with HFD-S group. We have found decreased mRNA and protein levels of toll-like receptor (TLR)-2 and TLR-4 by ET in HFD rats. These findings suggest that ET may be effective for attenuating sympathetic activation and oxidative stress in diet-induced obesity.

  5. Hydrodynamic size-based separation and characterization of protein aggregates from total cell lysates

    PubMed Central

    Tanase, Maya; Zolla, Valerio; Clement, Cristina C; Borghi, Francesco; Urbanska, Aleksandra M; Rodriguez-Navarro, Jose Antonio; Roda, Barbara; Zattoni, Andrea; Reschiglian, Pierluigi; Cuervo, Ana Maria; Santambrogio, Laura

    2016-01-01

    Herein we describe a protocol that uses hollow-fiber flow field-flow fractionation (FFF) coupled with multiangle light scattering (MALS) for hydrodynamic size-based separation and characterization of complex protein aggregates. The fractionation method, which requires 1.5 h to run, was successfully modified from the analysis of protein aggregates, as found in simple protein mixtures, to complex aggregates, as found in total cell lysates. In contrast to other related methods (filter assay, analytical ultracentrifugation, gel electrophoresis and size-exclusion chromatography), hollow-fiber flow FFF coupled with MALS allows a flow-based fractionation of highly purified protein aggregates and simultaneous measurement of their molecular weight, r.m.s. radius and molecular conformation (e.g., round, rod-shaped, compact or relaxed). The polyethersulfone hollow fibers used, which have a 0.8-mm inner diameter, allow separation of as little as 20 μg of total cell lysates. In addition, the ability to run the samples in different denaturing and nondenaturing buffer allows defining true aggregates from artifacts, which can form during sample preparation. The protocol was set up using Paraquat-induced carbonylation, a model that induces protein aggregation in cultured cells. This technique will advance the biochemical, proteomic and biophysical characterization of molecular-weight aggregates associated with protein mutations, as found in many CNS degenerative diseases, or chronic oxidative stress, as found in aging, and chronic metabolic and inflammatory conditions. PMID:25521790

  6. Dual behavior of N-acetylcysteine during ethanol-induced oxidative stress in embryonic chick brains.

    PubMed

    Bauer, Alison K; Fitzgerald, Mary; Ladzinski, Adam T; Lenhart Sherman, Sydney; Maddock, Benjamin H; Norr, Zoe M; Miller, Robert R

    2017-10-01

    Ethanol (EtOH) causes oxidative stress in embryos. Because N-acetylcysteine (NAC) failures and successes in ameliorating EtOH-induced oxidative stress have been reported, the objective was to determine if exogenous NAC ameliorated EtOH-induced oxidative stress within embryonic chick brains. Control eggs were injected with approximately 25 µl of water on day 0, 1, and 2 of development (E 0-2 ). Experimental eggs were injected with dosages of either 3.0 mmol EtOH/kg egg; 747 µmol NAC/kg egg; 3.0 mmol EtOH and 747 µmol NAC/kg egg; 1000 µmol NAC/kg egg; or 3.0 mmol EtOH and 1000 µmol NAC/kg during the first 3 days of development (E 0-2 ). At 11 days of development (E 11 ; late embryogenesis), brains were harvested and subsequently assayed for oxidative stress markers including the loss of long-chain membrane polyunsaturated fatty acids (PUFAs); the accumulation of lipid hydroperoxides (LPO); decreased glutathione (GSH) and glutathione/glutathione disulfide (GSSG) levels; and decreased glutathione peroxidase (GPx) activities. EtOH (3 mmol/kg egg), medium NAC (747 µmol/kg egg), and EtOH and medium NAC promoted oxidative stress. These treatments caused decreased brain membrane long-chain PUFAs; increased LPO levels; decreased GSH levels and GSH/GSSG levels; and decreased Se-dependent GPx activities. High NAC dosages (1000 µmol/kg egg) attenuated EtOH-induced oxidative stress within EtOH and high NAC-treated chick brains. Exogenous EtOH and/or medium NAC propagated oxidative stress. Meanwhile, high NAC ameliorated EtOH-induced oxidative stress.

  7. Effects of interventions on oxidative stress and inflammation of cardiovascular diseases

    PubMed Central

    Lee, Sewon; Park, Yoonjung; Zuidema, Mozow Yusof; Hannink, Mark; Zhang, Cuihua

    2011-01-01

    Excessive oxidative stress and low-grade chronic inflammation are major pathophysiological factors contributing to the development of cardiovascular diseases (CVD) such as hypertension, diabetes and atherosclerosis. Accumulating evidence suggests that a compromised anti-oxidant system can lead to excessive oxidative stress in cardiovascular related organs, resulting in cell damage and death. In addition, increased circulating levels of pro-inflammatory cytokines, such as tumor necrosis factor α, interleukin-6 and C-reactive protein, are closely related to morbidity and mortality of cardiovascular complications. Emerging evidence suggests that interventions including nutrition, pharmacology and exercise may activate expression of cellular anti-oxidant systems via the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 signaling pathway and play a role in preventing inflammatory processes in CVD. The focus of the present review is to summarize recent evidence showing the role of these anti-oxidant and anti-inflammatory interventions in cardiovascular disease. We believe that these findings may prompt new effective pathogenesis-oriented interventions, based on the exercise-induced protection from disease in the cardiovascular system, aimed at targeting oxidant stress and inflammation. PMID:21286214

  8. Red blood cell deformability and aggregation behaviour in different animal species.

    PubMed

    Plasenzotti, R; Stoiber, B; Posch, M; Windberger, U

    2004-01-01

    Comparative animal studies showed the wide variation of whole blood and plasma viscosity, and erythrocyte aggregation among mammalian species. Whole blood viscosity and red blood cell aggregation is influenced by red cell fluidity. To evaluate differences in erythrocyte deformability in mammals, three species were investigated, whose erythrocytes have a different aggregation property: horse, as a species with high, dog with medium, and sheep with almost unmeasurable aggregation tendency. Erythrocyte deformability was tested ektacytometrically (Elongation Index [EI], LORCA, Mechatronics, Hoorn, Netherlands) at shear stresses from 0.30 to 53.06 Pa. Equine erythrocytes showed EI-values from 0.047 at low shear stress to 0.541 at high shear stress. The EI from dog's erythrocytes ranged from 0.035 to 0.595. Sheep's erythrocytes had an EI of 0.005 at low and 0.400 at high shear stress. Although it might be presumed from the aggregation property that horse had the highest EI among the three species, the EI of canine erythrocytes exceeded the value in horses by 10% at high shear stress. Further, equine erythrocytes started to deform at higher shear stresses (1.69 Pa) than did canine and ovine cells, whose EI increased continuously with increasing shear stress. At moderate shear stress (1-5 Pa) deformability was even higher in the sheep than in the horse. However, at shear stresses higher than 5.34 Pa, equine red cell elongation clearly exceeded the values of sheep. We conclude that erythrocyte elongation is different between the animal species, not clearly linked with the aggregation property, and that the degree of deformability at various shear stresses is species-specific.

  9. Adaptive stress response to menadione-induced oxidative stress in Saccharomyces cerevisiae KNU5377.

    PubMed

    Kim, Il-Sup; Sohn, Ho-Yong; Jin, Ingnyol

    2011-10-01

    The molecular mechanisms involved in the ability of yeast cells to adapt and respond to oxidative stress are of great interest to the pharmaceutical, medical, food, and fermentation industries. In this study, we investigated the time-dependent, cellular redox homeostasis ability to adapt to menadione-induced oxidative stress, using biochemical and proteomic approaches in Saccharomyces cerevisiae KNU5377. Time-dependent cell viability was inversely proportional to endogenous amounts of ROS measured by a fluorescence assay with 2',7'-dichlorofluorescin diacetate (DCFHDA), and was hypersensitive when cells were exposed to the compound for 60 min. Morphological changes, protein oxidation and lipid peroxidation were also observed. To overcome the unfavorable conditions due to the presence of menadione, yeast cells activated a variety of cell rescue proteins including antioxidant enzymes, molecular chaperones, energy-generating metabolic enzymes, and antioxidant molecules such as trehalose. Thus, these results show that menadione causes ROS generation and high accumulation of cellular ROS levels, which affects cell viability and cell morphology and there is a correlation between resistance to menadione and the high induction of cell rescue proteins after cells enter into this physiological state, which provides a clue about the complex and dynamic stress response in yeast cells.

  10. S-Nitrosylation: NO-Related Redox Signaling to Protect Against Oxidative Stress

    PubMed Central

    STEENBERGEN, CHARLES; MURPHY, ELIZABETH

    2007-01-01

    Nitric oxide (NO) plays an important role in the regulation of cardiovascular function. S-nitrosylation, the covalent attachment of an NO moiety to sulfhydryl residues of proteins, resulting in the formation of S-nitrosothiols (SNOs), is a prevalent posttranslational protein modification involved in redox-based cellular signaling. Under physiologic conditions, protein S>-nitrosylation and SNOs provide protection preventing further cellular oxidative and nitrosative stress. However, oxidative stress and the resultant dysfunction of NO signaling have been implicated in the pathogenesis of cardiovascular diseases. PMID:16987022

  11. Oxidative stress-induced necrotic cell death via mitochondira-dependent burst of reactive oxygen species.

    PubMed

    Choi, Kyungsun; Kim, Jinho; Kim, Gyung W; Choi, Chulhee

    2009-11-01

    Oxidative stress is deeply involved in various brain diseases, including neurodegenerative diseases, stroke, and ischemia/reperfusion injury. Mitochondria are thought to be the target and source of oxidative stress. We investigated the role of mitochondria in oxidative stress-induced necrotic neuronal cell death in a neuroblastoma cell line and a mouse model of middle cerebral artery occlusion. The exogenous administration of hydrogen peroxide was used to study the role of oxidative stress on neuronal cell survival and mitochondrial function in vitro. Hydrogen peroxide induced non-apoptotic neuronal cell death in a c-Jun N-terminal kinase- and poly(ADP-ribosyl) polymerase-dependent manner. Unexpectedly, hydrogen peroxide treatment induced transient hyperpolarization of the mitochondrial membrane potential and a subsequent delayed burst of endogenous reactive oxygen species (ROS). The inhibition of mitochondrial hyperpolarization by diphenylene iodonium or rotenone, potent inhibitors of mitochondrial respiratory chain complex I, resulted in reduced ROS production and subsequent neuronal cell death in vitro and in vivo. The inhibition of mitochondrial hyperpolarization can protect neuronal cells from oxidative stress-induced necrotic cell death, suggesting a novel method of therapeutic intervention in oxidative stress-induced neurological disease.

  12. Aggregation and Stability of Reduced Graphene Oxide: Complex Roles of Divalent Cations, pH, and Natural Organic Matter

    EPA Science Inventory

    The aggregation and stability of graphene oxide (GO) and three successively reduced GO (rGO) nanomaterials were investigated. Reduced GO species were partially reduced GO (rGO-1h), intermediately reduced GO (rGO-2h), and fully reduced GO (rGO-5h). Specifically, influence of pH, i...

  13. Oxidative Stress and Respiratory System: Pharmacological and Clinical Reappraisal of N-Acetylcysteine

    PubMed Central

    Santus, Pierachille; Corsico, Angelo; Solidoro, Paolo; Braido, Fulvio; Di Marco, Fabiano

    2014-01-01

    The large surface area for gas exchange makes the respiratory system particularly susceptible to oxidative stress-mediated injury. Both endogenous and exogenous pro-oxidants (e.g. cigarette smoke) trigger activation of leukocytes and host defenses. These mechanisms interact in a “multilevel cycle” responsible for the control of the oxidant/antioxidant homeostasis. Several studies have demonstrated the presence of increased oxidative stress and decreased antioxidants (e.g. reduced glutathione [GSH]) in subjects with chronic obstructive pulmonary disease (COPD), but the contribution of oxidative stress to the pathophysiology of COPD is generally only minimally discussed. The aim of this review was to provide a comprehensive overview of the role of oxidative stress in the pathogenesis of respiratory diseases, particularly COPD, and to examine the available clinical and experimental evidence on the use of the antioxidant N-acetylcysteine (NAC), a precursor of GSH, as an adjunct to standard therapy for the treatment of COPD. The proposed concept of “multilevel cycle” helps understand the relationship between respiratory diseases and oxidative stress, thus clarifying the rationale for using NAC in COPD. Until recently, antioxidant drugs such as NAC have been regarded only as mucolytic agents. Nevertheless, several clinical trials indicate that NAC may reduce the rate of COPD exacerbations and improve small airways function. The most plausible explanation for the beneficial effects observed in patients with COPD treated with NAC lies in the mucolytic and antioxidant effects of this drug. Modulation of bronchial inflammation by NAC may further account for these favorable clinical results. PMID:24787454

  14. Oxidative Stress and Programmed Cell Death in Yeast

    PubMed Central

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed. PMID:22737670

  15. Infrared Dielectric Properties of Low-Stress Silicon Oxide

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe; Wollack, Edward J.; Brown, Ari D.; Miller, Kevin H.

    2016-01-01

    Silicon oxide thin films play an important role in the realization of optical coatings and high-performance electrical circuits. Estimates of the dielectric function in the far- and mid-infrared regime are derived from the observed transmittance spectrum for a commonly employed low-stress silicon oxide formulation. The experimental, modeling, and numerical methods used to extract the dielectric function are presented.

  16. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates.

    PubMed

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.

  17. Expression of Aluminum-Induced Genes in Transgenic Arabidopsis Plants Can Ameliorate Aluminum Stress and/or Oxidative Stress1

    PubMed Central

    Ezaki, Bunichi; Gardner, Richard C.; Ezaki, Yuka; Matsumoto, Hideaki

    2000-01-01

    To examine the biological role of Al-stress-induced genes, nine genes derived from Arabidopsis, tobacco (Nicotiana tabacum L.), wheat (Triticum aestivum L.), and yeast (Saccharomyces cerevisiae) were expressed in Arabidopsis ecotype Landsberg. Lines containing eight of these genes were phenotypically normal and were tested in root elongation assays for their sensitivity to Al, Cd, Cu, Na, Zn, and to oxidative stresses. An Arabidopsis blue-copper-binding protein gene (AtBCB), a tobacco glutathione S-transferase gene (parB), a tobacco peroxidase gene (NtPox), and a tobacco GDP-dissociation inhibitor gene (NtGDI1) conferred a degree of resistance to Al. Two of these genes, AtBCB and parB, and a peroxidase gene from Arabidopsis (AtPox) also showed increased resistance to oxidative stress induced by diamide, while parB conferred resistance to Cu and Na. Al content of Al-treated root tips was reduced in the four Al-resistant plant lines compared with wild-type Ler-0, as judged by morin staining. All four Al-resistant lines also showed reduced staining of roots with 2′,7′-dichloro fluorescein diacetate (H2DCFDA), an indicator of oxidative stress. We conclude that Al-induced genes can serve to protect against Al toxicity, and also provide genetic evidence for a link between Al stress and oxidative stress in plants. PMID:10712528

  18. Reperfusion does not induce oxidative stress but sustained endoplasmic reticulum stress in livers of rats subjected to traumatic-hemorrhagic shock.

    PubMed

    Duvigneau, Johanna Catharina; Kozlov, Andrey V; Zifko, Clara; Postl, Astrid; Hartl, Romana T; Miller, Ingrid; Gille, Lars; Staniek, Katrin; Moldzio, Rudolf; Gregor, Wolfgang; Haindl, Susanne; Behling, Tricia; Redl, Heinz; Bahrami, Soheyl

    2010-03-01

    Oxidative stress is believed to accompany reperfusion and to mediate dysfunction of the liver after traumatic-hemorrhagic shock (THS). Recently, endoplasmic reticulum (ER) stress has been suggested as an additional factor. This study investigated whether reperfusion after THS leads to increased oxidative and/or ER stress in the liver. In a rat model, including laparotomy, bleeding until decompensation, followed by inadequate or adequate reperfusion phase, three time points were investigated: 40 min, 3 h, and 18 h after shock. The reactive oxygen and nitrogen species and its scavenging capacity (superoxide dismutase 2), the nitrotyrosine formation in proteins, and the lipid peroxidation together with the status of endogenous antioxidants (alpha-tocopherylquinone-alpha-tocopherol ratio) were investigated as markers for oxidative or nitrosylative stress. Mitochondrial function and cytochrome P450 isoform 1A1 activity were analyzed as representatives for hepatocyte function. Activation of the inositol-requiring enzyme 1/X-box binding protein pathway and up-regulation of the 78-kDa glucose-regulated protein were recorded as ER stress markers. Plasma levels of alanine aminotransferase and Bax/Bcl-XL messenger RNA (mRNA) ratio were used as indicators for hepatocyte damage and apoptosis induction. Oxidative or nitrosylative stress markers or representatives of hepatocyte function were unchanged during and short after reperfusion (40 min, 3 h after shock). In contrast, ER stress markers were elevated and paralleled those of hepatocyte damage. Incidence for sustained ER stress and subsequent apoptosis induction were found at 18 h after shock. Thus, THS or reperfusion induces early and persistent ER stress of the liver, independent of oxidative or nitrosylative stress. Although ER stress was not associated with depressed hepatocyte function, it may act as an early trigger of protracted cell death, thereby contributing to delayed organ failure after THS.

  19. Augmentation of aluminum-induced oxidative stress in rat cerebrum by presence of pro-oxidant (graded doses of ethanol) exposure.

    PubMed

    Nayak, Prasunpriya; Sharma, Shiv Bhushan; Chowdary, Nadella Vijaya Subbaraya

    2010-11-01

    Both aluminum and ethanol are pro-oxidants and neurotoxic. Considering the possibilities of co-exposure and sharing mechanisms of producing neurotoxicity, the present study was planned to identify the level of aluminum-induced oxidative stress in altered pro-oxidant (ethanol exposure) status of cerebrum. Male rats were coexposed to aluminum and ethanol for 4 weeks. After the exposure period, cerebral levels of protein, reduced glutathione (GSH), lipid peroxidation (TBARS) were measured. Activities of catalase, superoxide dismutase (SOD), glutathione reductase (GR) and glutathione perioxidase (GPx) of cerebrum were estimated. In most of the cases significant correlations were observed between the alterations and graded ethanol doses, suggesting a dose-dependency in pushing the oxidant equilibrium toward pro-oxidants. Aluminum is found to influence significantly all the studied parameters of oxidative stress. Likewise, ethanol also influenced these parameters significantly, except GR, while the interaction between ethanol and aluminum could significantly influence only the GSH content and GR activity of cerebrum. Present study demonstrate that coexposure of aluminum with pro-oxidant might favor development of aluminum-induced oxidative stress in cerebrum. This observation might be helpful in understanding of mechanism of neurodegenerative disorders and ameliorate them.

  20. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection

    PubMed Central

    Hall, Alex; Troupin, Andrea; Londono-Renteria, Berlin; Colpitts, Tonya M.

    2017-01-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development. PMID:28644404

  1. Passive smoking reduces and vitamin C increases exercise-induced oxidative stress: does this make passive smoking an anti-oxidant and vitamin C a pro-oxidant stimulus?

    PubMed

    Theodorou, Anastasios A; Paschalis, Vassilis; Kyparos, Antonios; Panayiotou, George; Nikolaidis, Michalis G

    2014-11-07

    The current interpretative framework states that, for a certain experimental treatment (usually a chemical substance) to be classified as "anti-oxidant", it must possess the property of reducing (or even nullifying) exercise-induced oxidative stress. The aim of the study was to compare side by side, in the same experimental setup, redox biomarkers responses to an identical acute eccentric exercise session, before and after chronic passive smoking (considered a pro-oxidant stimulus) or vitamin C supplementation (considered an anti-oxidant stimulus). Twenty men were randomly assigned into either passive smoking or vitamin C group. All participants performed two acute eccentric exercise sessions, one before and one after either exposure to passive smoking or vitamin C supplementation for 12 days. Vitamin C, oxidant biomarkers (F2-isoprostanes and protein carbonyls) and the non-enzymatic antioxidant (glutathione) were measured, before and after passive smoking, vitamin C supplementation or exercise. It was found that chronic exposure to passive smoking increased the level of F2-isoprostanes and decreased the level of glutathione at rest, resulting in minimal increase or absence of oxidative stress after exercise. Conversely, chronic supplementation with vitamin C decreased the level of F2-isoprostanes and increased the level of glutathione at rest, resulting in marked exercise-induced oxidative stress. Contrary to the current scientific consensus, our results show that, when a pro-oxidant stimulus is chronically delivered, it is more likely that oxidative stress induced by subsequent exercise is decreased and not increased. Reversely, it is more likely to find greater exercise-induced oxidative stress after previous exposure to an anti-oxidant stimulus. We believe that the proposed framework will be a useful tool to reach more pragmatic explanations of redox biology phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis

    PubMed Central

    Choudhury, Mahua G.; Saha, Nirmalendu

    2016-01-01

    The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in

  3. Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis.

    PubMed

    Choudhury, Mahua G; Saha, Nirmalendu

    2016-01-01

    The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in

  4. Psychological stress during exercise: immunoendocrine and oxidative responses.

    PubMed

    Huang, Chun-Jung; Webb, Heather E; Evans, Ronald K; McCleod, Kelly A; Tangsilsat, Supatchara E; Kamimori, Gary H; Acevedo, Edmund O

    2010-12-01

    The purpose of this study was to examine the changes in catecholamines (epinephrine [EPI] and norepinephrine [NE]), interleukin-2 (IL-2) and a biomarker of oxidative stress (8-isoprostane) in healthy individuals who were exposed to a dual challenge (physical and psychological stress). Furthermore, this study also examined the possible relationships between catecholamines (NE and EPI) and 8-isoprostane and between IL-2 and 8-isoprostane following a combined physical and psychological challenge. Seven healthy male subjects completed two experimental conditions. The exercise-alone condition (EAC) consisted of cycling at 60% VO(2max) for 37 min, while the dual-stress condition (DSC) included 20 min of a mental challenge while cycling. DSC showed greater EPI and 8-isoprostane levels (significant condition by time interaction). NE and IL-2 revealed significant change across time in both conditions. In addition, following dual stress, EPI area-under-the-curve (AUC) demonstrated a positive correlation with NE AUC and IL-2 AUC. NE AUC was positively correlated with IL-2 AUC and peak 8-isoprostane, and peak IL-2 was positively correlated with peak 8-isoprostane in response to a dual stress. The potential explanation for elevated oxidative stress during dual stress may be through the effects of the release of catecholamines and IL-2. These findings may further provide the potential explanation that dual stress alters physiological homeostasis in many occupations including firefighting, military operations and law enforcement. A greater understanding of these responses to stress can assist in finding strategies (e.g. exercise training) to overcome the inherent psychobiological challenges associated with physically and mentally demanding professions.

  5. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports.

    PubMed

    Pingitore, Alessandro; Lima, Giuseppina Pace Pereira; Mastorci, Francesca; Quinones, Alfredo; Iervasi, Giorgio; Vassalle, Cristina

    2015-01-01

    Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need

  6. Oxidative Stress Induced Inflammation Initiates Functional Decline of Tear Production

    PubMed Central

    Uchino, Yuichi; Kawakita, Tetsuya; Miyazawa, Masaki; Ishii, Takamasa; Onouchi, Hiromi; Yasuda, Kayo; Ogawa, Yoko; Shimmura, Shigeto; Ishii, Naoaki; Tsubota, Kazuo

    2012-01-01

    Oxidative damage and inflammation are proposed to be involved in an age-related functional decline of exocrine glands. However, the molecular mechanism of how oxidative stress affects the secretory function of exocrine glands is unclear. We developed a novel mev-1 conditional transgenic mouse model (Tet-mev-1) using a modified tetracycline system (Tet-On/Off system). This mouse model demonstrated decreased tear production with morphological changes including leukocytic infiltration and fibrosis. We found that the mev-1 gene encodes Cyt-1, which is the cytochrome b560 large subunit of succinate-ubiquinone oxidoreductase in complex II of mitochondria (homologous to succinate dehydrogenase C subunit (SDHC) in humans). The mev-1 gene induced excessive oxidative stress associated with ocular surface epithelial damage and a decrease in protein and aqueous secretory function. This new model provides evidence that mitochondrial oxidative damage in the lacrimal gland induces lacrimal dysfunction resulting in dry eye disease. Tear volume in Tet-mev-1 mice was lower than in wild type mice and histopathological analyses showed the hallmarks of lacrimal gland inflammation by intense mononuclear leukocytic infiltration and fibrosis in the lacrimal gland of Tet-mev-1 mice. These findings strongly suggest that oxidative stress can be a causative factor for the development of dry eye disease. PMID:23071526

  7. Diabetes and Kidney Disease: Role of Oxidative Stress

    PubMed Central

    Jha, Jay C.; Banal, Claudine; Chow, Bryna S.M.; Cooper, Mark E.

    2016-01-01

    Abstract Significance: Intrarenal oxidative stress plays a critical role in the initiation and progression of diabetic kidney disease (DKD). Enhanced oxidative stress results from overproduction of reactive oxygen species (ROS) in the context of concomitant, insufficient antioxidant pathways. Renal ROS production in diabetes is predominantly mediated by various NADPH oxidases (NOXs), but a defective antioxidant system as well as mitochondrial dysfunction may also contribute. Recent Advances: Effective agents targeting the source of ROS generation hold the promise to rescue the kidney from oxidative damage and prevent subsequent progression of DKD. Critical Issues and Future Directions: In the present review, we summarize and critically analyze molecular and cellular mechanisms that have been demonstrated to be involved in NOX-induced renal injury in diabetes, with particular focus on the role of increased glomerular injury, the development of albuminuria, and tubulointerstitial fibrosis, as well as mitochondrial dysfunction. Furthermore, novel agents targeting NOX isoforms are discussed. Antioxid. Redox Signal. 25, 657–684. PMID:26906673

  8. OxyR Is a Key Regulator in Response to Oxidative Stress in Streptomyces avermitilis.

    PubMed

    Liu, Xingchao; Sun, Meng; Cheng, Yaqing; Yang, Renjun; Wen, Ying; Chen, Zhi; Li, Jilun

    2016-02-02

    The role of the H2O2-sensing transcriptional regulator OxyR in oxidative stress responses in Streptomyces avermitilis was investigated. An oxyR deletion mutant was more sensitive to H2O2 and tert-butyl hydroperoxide than was the wild-type strain, indicating that OxyR mediates the defensive system against H2O2 and organic peroxide. Evidence presented herein suggests that in cells treated with exogenous H2O2, the oxidized form of OxyR activated expression of ahpCD by binding to a palindromic sequence of the promoter region. Oxidized OxyR also induced expression of other antioxidant enzymes (KatA1, KatA2, KatA3, OhrB1) and oxidative stress regulators (CatR, OhrR, σR). The thiol-oxidative stress regulator gene sigR was regulated at the transcription level by OxyR. We conclude that OxyR is necessary to activate transcription of sigR from the σR-dependent promoter to express an unstable larger isoform of σR during oxidative stress. In response to oxidative stress, OxyR facilitates rapid production of H2O2-scavenging enzymes to repair oxidative damage through direct regulation and cascaded regulation of CatR, OhrR, and σR.

  9. An Experimental Study of Mortars with Recycled Ceramic Aggregates: Deduction and Prediction of the Stress-Strain.

    PubMed

    Cabrera-Covarrubias, Francisca Guadalupe; Gómez-Soberón, José Manuel; Almaral-Sánchez, Jorge Luis; Arredondo-Rea, Susana Paola; Gómez-Soberón, María Consolación; Corral-Higuera, Ramón

    2016-12-21

    The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε); therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%), such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content) are those of: σ (elastic ranges and failure maximum), ε (elastic ranges and failure maximum), and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications.

  10. An Experimental Study of Mortars with Recycled Ceramic Aggregates: Deduction and Prediction of the Stress-Strain

    PubMed Central

    Cabrera-Covarrubias, Francisca Guadalupe; Gómez-Soberón, José Manuel; Almaral-Sánchez, Jorge Luis; Arredondo-Rea, Susana Paola; Gómez-Soberón, María Consolación; Corral-Higuera, Ramón

    2016-01-01

    The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε); therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%), such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content) are those of: σ (elastic ranges and failure maximum), ε (elastic ranges and failure maximum), and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications. PMID:28774151

  11. Protective effects of a novel sea buckthorn wine on oxidative stress and hypercholesterolemia.

    PubMed

    Negi, Bharti; Kaur, Rajdeep; Dey, Gargi

    2013-02-01

    We developed a novel sea buckthorn wine containing significant in vitro free radical-scavenging activity. High-performance liquid chromatographic analysis of the sea buckthorn wine revealed that it contains high rutin, myricetin and quercetin levels compared to Cabernet Shiraz wine. In this study, we evaluated the protective effects of sea buckthorn wine against phorone-induced oxidative stress and high-cholesterol diet induced hypercholesterolemia in male LACA mice. Oral administration of sea buckthorn wine increased the redox ratio accompanied by reduction of oxidized glutathione levels leading to attenuation of phorone-induced oxidative stress. Furthermore, the sea buckthorn wine supplementation reduced hepatic lipid peroxidation and increased the superoxide dismutase activity indicating improved resistance to oxidative stress. In addition, high-cholesterol-fed mice administered with sea buckthorn wine exhibited a 197% increase in the HDL-C/LDL-C ratio compared to high-cholesterol diet treated mice. These studies provide important evidence that sea buckthorn wine exerts protective effects against oxidative stress and hypercholesterolemia.

  12. DETECTION OF WHOLE BODY OXIDATIVE STRESS IN URINE USING OXYGEN-18 LABELING

    EPA Science Inventory

    DETECTION OF WHOLE BODY OXIDATIVE STRESS IN URINE USING OXYGEN-18 LABELING. R Slade, J L McKee and G E Hatch. PTB, ETD, NHEERL, ORD, USEPA, Research Triangle Park, NC, USA.
    Reliable non-invasive markers for detecting oxidative stress in vivo are currently not available. We pr...

  13. Stripping in hot mix asphalt produced by aggregates from construction and demolition waste.

    PubMed

    Pérez, I; Pasandín, A R; Gallego, J

    2012-01-01

    This paper analyses the effect of water on the durability of hot asphalt mixtures made with recycled aggregates from construction and demolition debris. Indirect tensile stress tests were carried out to evaluate stripping behaviour. The mixtures tested were fabricated with 0, 20, 40 and 60% recycled aggregates. Two types of natural aggregates were used: schist and calcite dolomite. An increase in the percentage of recycled aggregates was found to produce a decrease in the tensile stress ratio of the hot asphalt mixtures. To study this phenomenon, two and three factor analyses of variance (ANOVA) were performed with indirect tensile stress being used as the dependent variable. The factors studied were the percentage of recycled aggregates (0, 20, 40 and 60%), the moisture state (dry, wet) and the type of natural aggregate (schist, calcite). On the basis of the ANOVA results, it was found that the most important factor affecting resistance was the moisture state (dry, wet) of the specimens. The percentage of recycled aggregate also affected indirect tensile stress, especially in the dry state. The type of natural aggregate did not have a significant effect on indirect tensile stress. The hot asphalt mixture specimens made with different percentages of recycled aggregates from construction and demolition debris and of natural quarry aggregates showed poor stripping behaviour. This stripping behaviour can be related to both the poor adhesion of the recycled aggregates and the high absorption of the mortar of cement adhered to them.

  14. Effect of reuse of polysulfone membrane on oxidative stress during hemodialysis

    PubMed Central

    Ramakrishna, P.; Reddy, E. Prabhakar; Suchitra, M. M.; Bitla, A. R.; Rao, P. V. Srinivasa; Sivakumar, V.

    2012-01-01

    Patients with chronic renal failure, especially those on long-term hemodialysis (HD), have a high incidence of premature cardiovascular disease. Oxidative stress, which occurs when there is an excessive free radical production or low antioxidant level, has recently been implicated as a causative factor in atherogenesis. Hourly changes in malondialdehyde (MDA) and antioxidant enzymes, vitamins, lipid profile and ferric reducing ability of plasma (FRAP) were studied with the first use and immediate subsequent reuse of polysulfone dialysis membrane in 27 patients on regular HD treatment. Data were corrected for hemoconcentration and standardized to measure the rate of change. Increase in MDA and erythrocyte catalase along with decrease in plasma vitamin E and FRAP levels and no change in glutathione peroxidase levels were observed as a result of both fresh and reuse dialysis. These findings indicate a net oxidative stress in both fresh as well as dialyzer reuse sessions. There was no significant change in oxidative stress in both fresh and reuse sessions. The oxidative stress with reuse dialysis was less when compared to first use dialysis, but the difference was not statistically significant. PMID:23087556

  15. Pulmonary dysfunctions, oxidative stress and DNA damage in brick kiln workers.

    PubMed

    Kaushik, R; Khaliq, F; Subramaneyaan, M; Ahmed, R S

    2012-11-01

    Brick kilns in the suburban areas in developing countries pose a big threat to the environment and hence the health of their workers and people residing around them. The present study was planned to assess the lung functions, oxidative stress parameters and DNA damage in brick kiln workers. A total of 31 male subjects working in brick kiln, and 32 age, sex and socioeconomic status matched controls were included in the study. The lung volumes, capacities and flow rates, namely, forced expiratory volume in first second (FEV(1)), forced vital capacity (FVC), FEV(1)/FVC, expiratory reserve volume, inspiratory capacity (IC), maximal expiratory flow when 50% of FVC is remaining to be expired, maximum voluntary ventilation, peak expiratory flow rate and vital capacity were significantly decreased in the brick kiln workers. Increased oxidative stress as evidenced by increased malonedialdehyde levels and reduced glutathione content, glutathione S-transferase activity and ferric reducing ability of plasma were observed in the study group when compared with controls. Our results indicate a significant correlation between oxidative stress parameters and pulmonary dysfunction, which may be due to silica-induced oxidative stress and resulting lung damage.

  16. Effects of 12-week combined exercise therapy on oxidative stress in female fibromyalgia patients.

    PubMed

    Sarıfakıoğlu, Banu; Güzelant, Aliye Yıldırım; Güzel, Eda Celik; Güzel, Savaş; Kızıler, Ali Rıza

    2014-10-01

    The aims of this study were to investigate the effect of exercise therapy on the oxidative stress in fibromyalgia patients and relationship between oxidative stress and fibromyalgia symptoms. Thirty women diagnosed with fibromyalgia according to the American College of Rheumatology preliminary criteria, and 23 healthy women whose age- and weight-matched women were enrolled the study. Pain intensity with visual analog scale (VAS), the number of tender points, the fibromyalgia impact questionnaire (FIQ), the Beck depression inventory (BDI) were evaluated. The oxidative stress parameters thiobarbituric acid reactive substances, protein carbonyls, and nitric oxide, and antioxidant parameters thiols and catalase were investigated in patients and control group. After, combined aerobic and strengthen exercise regimen was given to fibromyalgia group. Exercise therapy consisted of a warming period of 10 min, aerobic exercises period of 20 min, muscle strengthening exercises for 20 min, and 10 min cooling down period. Therapy was lasting 1 h three times per week over a 12-week period. All parameters were reevaluated after the treatment in the patient group. The oxidative stress parameters levels were significantly higher, and antioxidant parameters were significantly lower in patients with fibromyalgia than in the controls. VAS, FIQ, and BDI scores decreased significantly with exercise therapy. The exercise improved all parameters of oxidative stress and antioxidant parameters. Also, all clinical parameters were improved with exercise. We should focus on oxidative stress in the treatment for fibromyalgia with the main objective of reducing oxidative load.

  17. Angiotensin Mediated Oxidative Stress and Neuroprotective Potential of Antioxidants and AT1 Receptor Blockers.

    PubMed

    Prusty, Shakti Ketan; Sahu, Pratap Kumar; Subudhi, Bharat Bhusan

    2017-01-01

    Oxidative stress in brain underlies the major neurological disorders including Alzheimer's disease (AD) and Parkinson's disease (PD). Peripherally, Angiotensin-II is a major effector of inflammation. Identification of its capacity to access brain during hypertension, as well as location of central renin angiotensin system have led to its recognition as the major effector of oxidative stress in brain. Clinical uses of antioxidants to antagonize this oxidative stress have mostly failed. In this scenario, AT1 blockers have been investigated to prevent neurodegeneration. Although it has shown promise, clinical efficacy is limited to few drugs including telmisartan mainly due to the poor brain availability of others. In this review we aim to analyze the potential of antioxidants to reduce oxidative stress in brain. We have given critical analysis of the approaches for re-purposing of AT1 blockers against oxidative stress induced neurodegeneration. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Stressed Oxidation Life Prediction for C/SiC Composites

    NASA Technical Reports Server (NTRS)

    Levine, Stanley R.

    2004-01-01

    The residual strength and life of C/SiC is dominated by carbon interface and fiber oxidation if seal coat and matrix cracks are open to allow oxygen ingress. Crack opening is determined by the combination of thermal, mechanical and thermal expansion mismatch induced stresses. When cracks are open, life can be predicted by simple oxidation based models with reaction controlled kinetics at low temperature, and by gas phase diffusion controlled kinetics at high temperatures. Key life governing variables in these models include temperature, stress, initial strength, oxygen partial pressure, and total pressure. These models are described in this paper.

  19. [Oxidative Stress Level of Vanadium-exposed Workers].

    PubMed

    Wei, Teng-da; Li, Shun-pin; Liu, Yun-xing; Tan, Chun-ping; Li, Juan; Zhang, Zu-hui; Lan, Ya-jia; Zhang, Qin

    2015-11-01

    To determine the oxidative stress level in peripheral blood of vanadium-exposed workers, as an indication of population health effect of vanadium on human neurobehavioral system. 86 vanadium-exposed workers and 65 non-exposed workers were recruited by cluster sampling. A questionnaire was administered to collect demographic and occupational exposure information. Serum activity of superoxide dismutase (SOD), inducible nitric oxide synthase (iNOS) and malonaldehyde (MDA) contents were detected by kit assay. The differences in oxidative stress level between vanadium-exposed and non-exposed workers were compared. Vanadium-exposed workers had higher levels of MDA contents than the controls. The total superoxide dismutase(T-SOD) activity in vanadium-exposed workers was significantly lower than that in the controls, which was associated with lowered levels of manganese superoxide dismutase (Mn-SOD) activity. No changes in serum levels of cupro-zinc superoxide dismutase (CuZn-SOD) was found in vanadium-exposed workers. No difference in iNOS activity was found between vanadium-exposed workers and controls. Vanadium exposure increases free radical production in serum and reduces antioxidant capacity. But the relationship between vanadium exposure and iNOS damage remains uncertain.

  20. Oxidative Stress in Dilated Cardiomyopathy Caused by MYBPC3 Mutation

    PubMed Central

    Lynch, Thomas L.; Sivaguru, Mayandi; Velayutham, Murugesan; Cardounel, Arturo J.; Michels, Michelle; Barefield, David; Govindan, Suresh; dos Remedios, Cristobal; van der Velden, Jolanda; Sadayappan, Sakthivel

    2015-01-01

    Cardiomyopathies can result from mutations in genes encoding sarcomere proteins including MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C). However, whether oxidative stress is augmented due to contractile dysfunction and cardiomyocyte damage in MYBPC3-mutated cardiomyopathies has not been elucidated. To determine whether oxidative stress markers were elevated in MYBPC3-mutated cardiomyopathies, a previously characterized 3-month-old mouse model of dilated cardiomyopathy (DCM) expressing a homozygous MYBPC3 mutation (cMyBP-C(t/t)) was used, compared to wild-type (WT) mice. Echocardiography confirmed decreased percentage of fractional shortening in DCM versus WT hearts. Histopathological analysis indicated a significant increase in myocardial disarray and fibrosis while the second harmonic generation imaging revealed disorganized sarcomeric structure and myocyte damage in DCM hearts when compared to WT hearts. Intriguingly, DCM mouse heart homogenates had decreased glutathione (GSH/GSSG) ratio and increased protein carbonyl and lipid malondialdehyde content compared to WT heart homogenates, consistent with elevated oxidative stress. Importantly, a similar result was observed in human cardiomyopathy heart homogenate samples. These results were further supported by reduced signals for mitochondrial semiquinone radicals and Fe-S clusters in DCM mouse hearts measured using electron paramagnetic resonance spectroscopy. In conclusion, we demonstrate elevated oxidative stress in MYPBC3-mutated DCM mice, which may exacerbate the development of heart failure. PMID:26508994