Sample records for agility research aircraft

  1. Flight dynamics research for highly agile aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Luat T.

    1989-01-01

    This paper highlights recent results of research conducted at the NASA Langley Research Center as part of a broad flight dynamics program aimed at developing technology that will enable future combat aircraft to achieve greatly enhanced agility capability at subsonic combat conditions. Studies of advanced control concepts encompassing both propulsive and aerodynamic approaches are reviewed. Dynamic stall phenomena and their potential impact on maneuvering performance and stability are summarized. Finally, issues of mathematical modeling of complex aerodynamics occurring during rapid, large amplitude maneuvers are discussed.

  2. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA and McDonnell Douglas Corporation (MDC) personnel remove protective covers from the newly arrived NASA/McDonnell Douglas Corporation X-36 Tailless Fighter Agility Research Aircraft. It arrived at NASA Dryden Flight Research Center, Edwards, California, on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1

  3. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft in it's hangar at NASA Dryden Flight Research Center, Edwards, California, following its arrival on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  4. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA and McDonnell Douglas Corporation (MDC) personnel wait to attach a hoist to the X-36 Tailless Fighter Agility Research Aircraft, which arrived at NASA Dryden Flight Research Center, Edwards, California, on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high

  5. X-36 Tailless Fighter Agility Research Aircraft arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft is steered to it's hangar at NASA Dryden Flight Research Center, Edwards, California, following arrival on July 2, 1996. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a

  6. An investigation of fighter aircraft agility

    NASA Technical Reports Server (NTRS)

    Valasek, John; Downing, David R.

    1993-01-01

    This report attempts to unify in a single document the results of a series of studies on fighter aircraft agility funded by the NASA Ames Research Center, Dryden Flight Research Facility and conducted at the University of Kansas Flight Research Laboratory during the period January 1989 through December 1993. New metrics proposed by pilots and the research community to assess fighter aircraft agility are collected and analyzed. The report develops a framework for understanding the context into which the various proposed fighter agility metrics fit in terms of application and testing. Since new metrics continue to be proposed, this report does not claim to contain every proposed fighter agility metric. Flight test procedures, test constraints, and related criteria are developed. Instrumentation required to quantify agility via flight test is considered, as is the sensitivity of the candidate metrics to deviations from nominal pilot command inputs, which is studied in detail. Instead of supplying specific, detailed conclusions about the relevance or utility of one candidate metric versus another, the authors have attempted to provide sufficient data and analyses for readers to formulate their own conclusions. Readers are therefore ultimately responsible for judging exactly which metrics are 'best' for their particular needs. Additionally, it is not the intent of the authors to suggest combat tactics or other actual operational uses of the results and data in this report. This has been left up to the user community. Twenty of the candidate agility metrics were selected for evaluation with high fidelity, nonlinear, non real-time flight simulation computer programs of the F-5A Freedom Fighter, F-16A Fighting Falcon, F-18A Hornet, and X-29A. The information and data presented on the 20 candidate metrics which were evaluated will assist interested readers in conducting their own extensive investigations. The report provides a definition and analysis of each metric; details

  7. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The tailless X-36 technology demonstrator research aircraft cruises over the California desert at low altitude during a 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams International F112 turbofan engine

  8. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The X-36 technology demonstrator shows off its distinctive shape as the remotely piloted aircraft flies a research mission over the Southern California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams

  9. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The lack of a vertical tail on the X-36 technology demonstrator is evident as the remotely piloted aircraft flies a low-altitude research flight above Rogers Dry Lake at Edwards Air Force Base in the California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three

  10. Analysis and optimization of preliminary aircraft configurations in relationship to emerging agility metrics

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Bauer, Brent Alan

    1993-01-01

    This paper discusses the development of a FORTRAN computer code to perform agility analysis on aircraft configurations. This code is to be part of the NASA-Ames ACSYNT (AirCraft SYNThesis) design code. This paper begins with a discussion of contemporary agility research in the aircraft industry and a survey of a few agility metrics. The methodology, techniques and models developed for the code are then presented. Finally, example trade studies using the agility module along with ACSYNT are illustrated. These trade studies were conducted using a Northrop F-20 Tigershark aircraft model. The studies show that the agility module is effective in analyzing the influence of common parameters such as thrust-to-weight ratio and wing loading on agility criteria. The module can compare the agility potential between different configurations. In addition one study illustrates the module's ability to optimize a configuration's agility performance.

  11. X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft undergoes high-speed taxi tests on Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, on October 17, 1996. The aircraft was tested at speeds up to 85 knots. Normal takeoff speed would be 110 knots. More taxi and radio frequency tests were slated before it's first flight would be made. This took place on May 17, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems

  12. X-36 Tailless Fighter Agility Research Aircraft on lakebed during high-speed taxi tests

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA/McDonnell Douglas Corporation (MDC) X-36 Tailless Fighter Agility Research Aircraft undergoes high-speed taxi tests on Rogers Dry Lake at NASA Dryden Flight Research Center, Edwards, California, on October 17, 1996. The aircraft was tested at speeds up to 85 knots. Normal takeoff speed would be 110 knots. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X

  13. Development of a Computer Program for Analyzing Preliminary Aircraft Configurations in Relationship to Emerging Agility Metrics

    NASA Technical Reports Server (NTRS)

    Bauer, Brent

    1993-01-01

    This paper discusses the development of a FORTRAN computer code to perform agility analysis on aircraft configurations. This code is to be part of the NASA-Ames ACSYNT (AirCraft SYNThesis) design code. This paper begins with a discussion of contemporary agility research in the aircraft industry and a survey of a few agility metrics. The methodology, techniques and models developed for the code are then presented. Finally, example trade studies using the agility module along with ACSYNT are illustrated. These trade studies were conducted using a Northrop F-20 Tigershark aircraft model. The studies show that the agility module is effective in analyzing the influence of common parameters such as thrust-to-weight ratio and wing loading on agility criteria. The module can compare the agility potential between different configurations. In addition, one study illustrates the module's ability to optimize a configuration's agility performance.

  14. Fighter agility metrics, research, and test

    NASA Technical Reports Server (NTRS)

    Liefer, Randall K.; Valasek, John; Eggold, David P.

    1990-01-01

    Proposed new metrics to assess fighter aircraft agility are collected and analyzed. A framework for classification of these new agility metrics is developed and applied. A completed set of transient agility metrics is evaluated with a high fidelity, nonlinear F-18 simulation provided by the NASA Dryden Flight Research Center. Test techniques and data reduction methods are proposed. A method of providing cuing information to the pilot during flight test is discussed. The sensitivity of longitudinal and lateral agility metrics to deviations from the pilot cues is studied in detail. The metrics are shown to be largely insensitive to reasonable deviations from the nominal test pilot commands. Instrumentation required to quantify agility via flight test is also considered. With one exception, each of the proposed new metrics may be measured with instrumentation currently available. Simulation documentation and user instructions are provided in an appendix.

  15. Development of an agility assessment module for preliminary fighter design

    NASA Technical Reports Server (NTRS)

    Ngan, Angelen; Bauer, Brent; Biezad, Daniel; Hahn, Andrew

    1996-01-01

    A FORTRAN computer program is presented to perform agility analysis on fighter aircraft configurations. This code is one of the modules of the NASA Ames ACSYNT (AirCraft SYNThesis) design code. The background of the agility research in the aircraft industry and a survey of a few agility metrics are discussed. The methodology, techniques, and models developed for the code are presented. FORTRAN programs were developed for two specific metrics, CCT (Combat Cycle Time) and PM (Pointing Margin), as part of the agility module. The validity of the code was evaluated by comparing with existing flight test data. Example trade studies using the agility module along with ACSYNT were conducted using Northrop F-20 Tigershark and McDonnell Douglas F/A-18 Hornet aircraft models. The sensitivity of thrust loading and wing loading on agility criteria were investigated. The module can compare the agility potential between different configurations and has the capability to optimize agility performance in the preliminary design process. This research provides a new and useful design tool for analyzing fighter performance during air combat engagements.

  16. Concepts and application of dynamic separation for agility and super-maneuverability of aircraft: An assessment

    NASA Technical Reports Server (NTRS)

    Freymuth, Peter

    1992-01-01

    Aims for improvement of fighter aircraft pursued by the unsteady flow community are high agility (the ability of the aircraft to make close turns in a low-speed regime) and super maneuverability (the ability of the aircraft to operate at high angles of attack in a post stall regime during quick maneuvers in a more extended speed range). High agility requires high lift coefficients at low speeds in a dynamic situation and this requirement can be met by dynamically forced separation or by quasistatic stall control. The competing methods will be assessed based on the known physics. Maneuvering into the post stall regime also involves dynamic separation but because even fast maneuvers involving the entire aircraft are 'aerodynamically slow' the resulting dynamic vortex structures should be considered 'elicited' rather than 'forced.' More work seems to be needed in this area of elicited dynamic separation.

  17. Utilization of an agility assessment module in analysis and optimization of preliminary fighter configuration

    NASA Technical Reports Server (NTRS)

    Ngan, Angelen; Biezad, Daniel

    1996-01-01

    A study has been conducted to develop and to analyze a FORTRAN computer code for performing agility analysis on fighter aircraft configurations. This program is one of the modules of the NASA Ames ACSYNT (AirCraft SYNThesis) design code. The background of the agility research in the aircraft industry and a survey of a few agility metrics are discussed. The methodology, techniques, and models developed for the code are presented. The validity of the existing code was evaluated by comparing with existing flight test data. A FORTRAN program was developed for a specific metric, PM (Pointing Margin), as part of the agility module. Example trade studies using the agility module along with ACSYNT were conducted using a McDonnell Douglas F/A-18 Hornet aircraft model. Tile sensitivity of thrust loading, wing loading, and thrust vectoring on agility criteria were investigated. The module can compare the agility potential between different configurations and has capability to optimize agility performance in the preliminary design process. This research provides a new and useful design tool for analyzing fighter performance during air combat engagements in the preliminary design.

  18. X-36 Tailless Fighter Agility Research Aircraft in flight

    NASA Image and Video Library

    1997-10-30

    The lack of a vertical tail on the X-36 technology demonstrator is evident as the remotely piloted aircraft flies a low-altitude research flight above Rogers Dry Lake at Edwards Air Force Base in the California desert on October 30, 1997.

  19. Investigation into the impact of agility on conceptual fighter design

    NASA Technical Reports Server (NTRS)

    Engelbeck, R. M.

    1995-01-01

    The Agility Design Study was performed by the Boeing Defense and Space Group for the NASA Langley Research Center. The objective of the study was to assess the impact of agility requirements on new fighter configurations. Global trade issues investigated were the level of agility, the mission role of the aircraft (air-to-ground, multi-role, or air-to-air), and whether the customer is Air force, Navy, or joint service. Mission profiles and design objectives were supplied by NASA. An extensive technology assessment was conducted to establish the available technologies to industry for the aircraft. Conceptual level methodology is presented to assess the five NASA-supplied agility metrics. Twelve configurations were developed to address the global trade issues. Three-view drawings, inboard profiles, and performance estimates were made and are included in the report. A critical assessment and lessons learned from the study are also presented.

  20. Impact of flow unsteadiness on maneuvers and loads of agile aircraft

    NASA Technical Reports Server (NTRS)

    Jarrah, M. Ameen; Ashley, Holt

    1989-01-01

    A program of airload measurements on a family of low-aspect-ratio delta wings with sharp leading edges, subjected to large amplitude pitch transients with angles of attack up to 90 deg, is reviewed. Even for small values of the pitch-rate parameter, representative of maneuvers anticipated for agile aircraft, the force and moment overshoots can exceed by 50 percent their steady-state values. This is explained in terms of the hysteretic behavior of the breakdown locations of leading-edge vortices. An approximate theoretical model is proposed which includes the breakdown hysteresis as part of a three-term representation of the unsteady chordwise load distribution.

  1. Application of Piloted Simulation to High-Angle-of-Attack Flight-Dynamics Research for Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Ogburn, Marilyn E.; Foster, John V.; Hoffler, Keith D.

    2005-01-01

    This paper reviews the use of piloted simulation at Langley Research Center as part of the NASA High-Angle-of-Attack Technology Program (HATP), which was created to provide concepts and methods for the design of advanced fighter aircraft. A major research activity within this program is the development of the design processes required to take advantage of the benefits of advanced control concepts for high-angle-of-attack agility. Fundamental methodologies associated with the effective use of piloted simulation for this research are described, particularly those relating to the test techniques, validation of the test results, and design guideline/criteria development.

  2. An Investigation of Agility Issues in Scrum Teams Using Agility Indicators

    NASA Astrophysics Data System (ADS)

    Pikkarainen, Minna; Wang, Xiaofeng

    Agile software development methods have emerged and become increasingly popular in recent years; yet the issues encountered by software development teams that strive to achieve agility using agile methods are yet to be explored systematically. Built upon a previous study that has established a set of indicators of agility, this study investigates what issues are manifested in software development teams using agile methods. It is focussed on Scrum teams particularly. In other words, the goal of the chapter is to evaluate Scrum teams using agility indicators and therefore to further validate previously presented agility indicators within the additional cases. A multiple case study research method is employed. The findings of the study reveal that the teams using Scrum do not necessarily achieve agility in terms of team autonomy, sharing, stability and embraced uncertainty. The possible reasons include previous organizational plan-driven culture, resistance towards the Scrum roles and changing resources.

  3. Pervasive Agility and Agile Fires in Support of Decisive Action

    DTIC Science & Technology

    2012-03-29

    Pervasive Agility and Agile Fires in Support of Decisive Action FORMAT: Civilian Research Project DATE: 29 March 2012 WORD COUNT : 12,599 PAGES: 54...will face, this pollenization may require creative measures, perhaps virtual or constructive scenarios. The National Training Center at Fort Irwin

  4. Aircraft as Research Tools

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Aeronautical research usually begins with computers, wind tunnels, and flight simulators, but eventually the theories must fly. This is when flight research begins, and aircraft are the primary tools of the trade. Flight research involves doing precision maneuvers in either a specially built experimental aircraft or an existing production airplane that has been modified. For example, the AD-1 was a unique airplane made only for flight research, while the NASA F-18 High Alpha Research Vehicle (HARV) was a standard fighter aircraft that was transformed into a one-of-a-kind aircraft as it was fitted with new propulsion systems, flight controls, and scientific equipment. All research aircraft are able to perform scientific experiments because of the onboard instruments that record data about its systems, aerodynamics, and the outside environment. Since the 1970's, NASA flight research has become more comprehensive, with flights involving everything form Space Shuttles to ultralights. NASA now flies not only the fastest airplanes, but some of the slowest. Flying machines continue to evolve with new wing designs, propulsion systems, and flight controls. As always, a look at today's experimental research aircraft is a preview of the future.

  5. Future Research in Agile Systems Development: Applying Open Innovation Principles Within the Agile Organisation

    NASA Astrophysics Data System (ADS)

    Conboy, Kieran; Morgan, Lorraine

    A particular strength of agile approaches is that they move away from ‘introverted' development and intimately involve the customer in all areas of development, supposedly leading to the development of a more innovative and hence more valuable information system. However, we argue that a single customer representative is too narrow a focus to adopt and that involvement of stakeholders beyond the software development itself is still often quite weak and in some cases non-existent. In response, we argue that current thinking regarding innovation in agile development needs to be extended to include multiple stakeholders outside the business unit. This paper explores the intra-organisational applicability and implications of open innovation in agile systems development. Additionally, it argues for a different perspective of project management that includes collaboration and knowledge-sharing with other business units, customers, partners, and other relevant stakeholders pertinent to the business success of an organisation, thus embracing open innovation principles.

  6. NASA research in aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.

    1982-01-01

    A broad overview of the scope of research presently being supported by NASA in aircraft propulsion is presented with emphasis on Lewis Research Center activities related to civil air transports, CTOL and V/STOL systems. Aircraft systems work is performed to identify the requirements for the propulsion system that enhance the mission capabilities of the aircraft. This important source of innovation and creativity drives the direction of propulsion research. In a companion effort, component research of a generic nature is performed to provide a better basis for design and provides an evolutionary process for technological growth that increases the capabilities of all types of aircraft. Both are important.

  7. Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.

    2005-01-01

    The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.

  8. Aircraft icing research at NASA

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.

    1982-01-01

    Research activity is described for: ice protection systems, icing instrumentation, experimental methods, analytical modeling for the above, and in flight research. The renewed interest in aircraft icing has come about because of the new need for All-Weather Helicopters and General Aviation aircraft. Because of increased fuel costs, tomorrow's Commercial Transport aircraft will also require new types of ice protection systems and better estimates of the aeropenalties caused by ice on unprotected surfaces. The physics of aircraft icing is very similar to the icing that occurs on ground structures and structures at sea; all involve droplets that freeze on the surfaces because of the cold air. Therefore all icing research groups will benefit greatly by sharing their research information.

  9. Opening up the Agile Innovation Process

    NASA Astrophysics Data System (ADS)

    Conboy, Kieran; Donnellan, Brian; Morgan, Lorraine; Wang, Xiaofeng

    The objective of this panel is to discuss how firms can operate both an open and agile innovation process. In an era of unprecedented changes, companies need to be open and agile in order to adapt rapidly and maximize their innovation processes. Proponents of agile methods claim that one of the main distinctions between agile methods and their traditional bureaucratic counterparts is their drive toward creativity and innovation. However, agile methods are rarely adopted in their textbook, "vanilla" format, and are usually adopted in part or are tailored or modified to suit the organization. While we are aware that this happens, there is still limited understanding of what is actually happening in practice. Using innovation adoption theory, this panel will discuss the issues and challenges surrounding the successful adoption of agile practices. In addition, this panel will report on the obstacles and benefits reported by over 20 industrial partners engaged in a pan-European research project into agile practices between 2006 and 2009.

  10. Demonstrative Maneuvers for Aircraft Agility Predictions

    DTIC Science & Technology

    2008-03-01

    AIAA Paper 1996-3741. 19. Raymer , Daniel P. Aircraft Design: A Conceptual Approach. American Institute of Aeronautics and Astronautics, Inc., 3rd...Shaw, Robert L. Fighter Combat: Tactics and Maneuvering. Naval Institute Press, Annapolis, MD, 1985. 25. Smith, Steven W. The Scientist and

  11. Agile Systems Engineering-Kanban Scheduling Subsection

    DTIC Science & Technology

    2017-03-10

    including both online and standalone versions. RESEARCH GOALS The overall Agile SE Management Project research goals are to: 1. Identify agile...March 10, 2017 5 Establish a better technical project management and... Project Management ,” Master of Science Project , Stevens Institute, to be completed in May, 2017. • Smith, Jeffrey, “System of Systems Task

  12. Impact of emerging technologies on future combat aircraft agility

    NASA Technical Reports Server (NTRS)

    Nguyen, Luat T.; Gilert, William P.

    1990-01-01

    The foreseeable character of future within-visual-range air combat entails a degree of agility which calls for the integration of high-alpha aerodynamics, thrust vectoring, intimate pilot/vehicle interfaces, and advanced weapons/avionics suites, in prospective configurations. The primary technology-development programs currently contributing to these goals are presently discussed; they encompass the F-15 Short Takeoff and Landing/Maneuver Technology Demonstrator Program, the Enhanced Fighter Maneuverability Program, the High Angle-of-Attack Technology Program, and the X-29 Technology Demonstrator Program.

  13. Aircraft fire safety research

    NASA Technical Reports Server (NTRS)

    Botteri, Benito P.

    1987-01-01

    During the past 15 years, very significant progress has been made toward enhancing aircraft fire safety in both normal and hostile (combat) operational environments. Most of the major aspects of the aircraft fire safety problem are touched upon here. The technology of aircraft fire protection, although not directly applicable in all cases to spacecraft fire scenarios, nevertheless does provide a solid foundation to build upon. This is particularly true of the extensive research and testing pertaining to aircraft interior fire safety and to onboard inert gas generation systems, both of which are still active areas of investigation.

  14. Agile Metrics: Progress Monitoring of Agile Contractors

    DTIC Science & Technology

    2014-01-01

    epic. The short timeframe is usually called an itera- tion or, in Scrum -based teams, a sprint; multiple iterations make up a release [Lapham 2011...9769 [Rawsthorne 2012] Rawsthorne, Dan. Monitoring Scrum Projects with AgileEVM and Earned Business Value Metrics (EBV). 2012. http...AgileEVM – Earned Value Manage- ment in Scrum Projects.” Presented at Agile2006, 23-28 July 2006. [USAF 2008] United States Air Force. United

  15. Oblique Wing Research Aircraft on ramp

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This 1976 photograph of the Oblique Wing Research Aircraft was taken in front of the NASA Flight Research Center hangar, located at Edwards Air Force Base, California. In the photograph the noseboom, pitot-static probe, and angles-of-attack and sideslip flow vanes(covered-up) are attached to the front of the vehicle. The clear nose dome for the television camera, and the shrouded propellor for the 90 horsepower engine are clearly seen. The Oblique Wing Research Aircraft was a small, remotely piloted, research craft designed and flight tested to look at the aerodynamic characteristics of an oblique wing and the control laws necessary to achieve acceptable handling qualities. NASA Dryden Flight Research Center and the NASA Ames Research Center conducted research with this aircraft in the mid-1970s to investigate the feasibility of flying an oblique wing aircraft.

  16. A Model for a Single Unmanned Aircraft Systems (UAS) Program Office Managing Joint ISR Capabilities

    DTIC Science & Technology

    2017-10-01

    reduction in manning from the multiple program office structure to the new single program management model. Additional information regarding this...OFFICE MANAGING JOINT ISR CAPABILITIES by Angela E. Burris A Research Report Submitted to the Faculty In Partial Fulfillment of...research paper is to answer how a single management office could provide greater agility for unmanned aircraft systems (UAS); supporting Joint concepts

  17. The F-18 systems research aircraft facility

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.

    1992-01-01

    To help ensure that new aerospace initiatives rapidly transition to competitive U.S. technologies, NASA Dryden Flight Research Facility has dedicated a systems research aircraft facility. The primary goal is to accelerate the transition of new aerospace technologies to commercial, military, and space vehicles. Key technologies include more-electric aircraft concepts, fly-by-light systems, flush airdata systems, and advanced computer architectures. Future aircraft that will benefit are the high-speed civil transport and the National AeroSpace Plane. This paper describes the systems research aircraft flight research vehicle and outlines near-term programs.

  18. Aircraft in the Flight Research Building at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-06-21

    A Consolidated B–24D Liberator (left), Boeing B–29 Superfortress (background), and Lockheed RA–29 Hudson (foreground) parked inside the Flight Research Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory in Cleveland, Ohio. A P–47G Thunderbolt and P–63A King Cobra are visible in the background. The laboratory utilized 15 different aircraft during the final 2.5 years of World War II. This starkly contrasts with the limited-quantity, but long-duration aircraft of the NASA’s modern fleet. The Flight Research Building is a 272- by 150-foot hangar with an internal height ranging from 40 feet at the sides to 90 feet at its apex. The steel support trusses were pin-connected at the top with tension members extending along the corrugated transite walls down to the floor. The 37.5-foot-tall and 250-foot-long doors on either side can be opened in sections. The hangar included a shop area and stock room along the far wall, and a single-story office wing with nine offices, behind the camera. The offices were later expanded. The hangar has been in continual use since its completion in December 1942. Nearly 70 different aircraft have been sheltered here over the years. Temporary offices were twice constructed over half of the floor area when office space was at a premium.

  19. NASA Aircraft Controls Research, 1983

    NASA Technical Reports Server (NTRS)

    Beasley, G. P. (Compiler)

    1984-01-01

    The workshop consisted of 24 technical presentations on various aspects of aircraft controls, ranging from the theoretical development of control laws to the evaluation of new controls technology in flight test vehicles. A special report on the status of foreign aircraft technology and a panel session with seven representatives from organizations which use aircraft controls technology were also included. The controls research needs and opportunities for the future as well as the role envisioned for NASA in that research were addressed. Input from the panel and response to the workshop presentations will be used by NASA in developing future programs.

  20. Towards seamless workflows in agile data science

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Robertson, J.

    2017-12-01

    Agile workflows are a response to projects with requirements that may change over time. They prioritise rapid and flexible responses to change, preferring to adapt to changes in requirements rather than predict them before a project starts. This suits the needs of research very well because research is inherently agile in its methodology. The adoption of agile methods has made collaborative data analysis much easier in a research environment fragmented across institutional data stores, HPC, personal and lab computers and more recently cloud environments. Agile workflows use tools that share a common worldview: in an agile environment, there may be more that one valid version of data, code or environment in play at any given time. All of these versions need references and identifiers. For example, a team of developers following the git-flow conventions (github.com/nvie/gitflow) may have several active branches, one for each strand of development. These workflows allow rapid and parallel iteration while maintaining identifiers pointing to individual snapshots of data and code and allowing rapid switching between strands. In contrast, the current focus of versioning in research data management is geared towards managing data for reproducibility and long-term preservation of the record of science. While both are important goals in the persistent curation domain of the institutional research data infrastructure, current tools emphasise planning over adaptation and can introduce unwanted rigidity by insisting on a single valid version or point of truth. In the collaborative curation domain of a research project, things are more fluid. However, there is no equivalent to the "versioning iso-surface" of the git protocol for the management and versioning of research data. At CSIRO we are developing concepts and tools for the agile management of software code and research data for virtual research environments, based on our experiences of actual data analytics projects in the

  1. V/STOL tilt rotor aircraft study. Volume 5: Definition of stowed rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Soule, V. A.

    1973-01-01

    The results of a study of folding tilt rotor (stowed rotor) aircraft are presented. The effects of design cruise speed on the gross weight of a conceptual design stowed rotor aircraft are shown and a comparison is made with a conventional (non-folding) tilt rotor aircraft. A flight research stowed rotor design is presented. The program plans, including costs and schedules, are shown for the research aircraft development and a wind tunnel plan is presented for a full scale test of the aircraft.

  2. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  3. Reflections on Three Corporate Research Labs: Bell Labs, HP Labs, Agilent Labs

    NASA Astrophysics Data System (ADS)

    Hollenhorst, James

    2008-03-01

    This will be a personal reflection on corporate life and physics-based research in three industrial research labs over three decades, Bell Labs during the 1980's, HP Labs during the 1990's, and Agilent Labs during the 2000's. These were times of great change in all three companies. I'll point out some of the similarities and differences in corporate cultures and how this impacted the research and development activities. Along the way I'll mention some of the great products that resulted from physics-based R&D.

  4. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2013-01-01

    This paper provides an overview of the aircraft turbine engine control research at the NASA Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. With the increased emphasis on aircraft safety, enhanced performance, and affordability, as well as the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA Aeronautics Research Mission programs. The rest of the paper provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges, and the key progress to date are summarized.

  5. Role of research aircraft in technology development

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.

    1984-01-01

    The United States's aeronautical research program has been rich in the use of research aircraft to explore new flight regimes, develop individual aeronautical concepts, and investigate new vehicle classes and configurations. This paper reviews the NASA supercritical wing, digital fly-by-wire, HiMAT, and AD-1 oblique-wing flight research programs, and draws from these examples general conclusions regarding the role and impact of research aircraft in technology development. The impact of a flight program on spinoff technology is also addressed. The secondary, serendipitous results are often highly significant. Finally, future research aircraft programs are examined for technology trends and expected results.

  6. Advanced aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, P.; Wegener, S.; Langford, J.; Anderson, J.; Lux, D.; Hall, D. W.

    1991-01-01

    The development of aircraft for high-altitude research is described in terms of program objectives and environmental, technological limitations, and the work on the Perseus A aircraft. The need for these advanced aircraft is proposed in relation to atmospheric science issues such as greenhouse trapping, the dynamics of tropical cyclones, and stratospheric ozone. The implications of the study on aircraft design requirements is addressed with attention given to the basic categories of high-altitude, long-range, long-duration, and nap-of-the-earth aircraft. A strategy is delineated for a platform that permits unique stratospheric measurements and is a step toward a more advanced aircraft. The goal of Perseus A is to carry scientific air sampling payloads weighing at least 50 kg to altitudes of more than 25 km. The airfoils are designed for low Reynolds numbers, the structural weight is very low, and the closed-cycle power plant runs on liquid oxygen.

  7. Supercharger Research at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-01-21

    A researcher in the Supercharger Research Division at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory measures the blade thickness on a supercharger. Superchargers were developed at General Electric used to supply additional air to reciprocating engines. The extra air resulted in increased the engine’s performance, particularly at higher altitudes. The Aircraft Engine Research Laboratory had an entire division dedicated to superchargers during World War II. General Electric developed the supercharger in response to a 1917 request from the NACA to develop a device to enhance high-altitude flying. The supercharger pushed larger volumes of air into the engine manifold. The extra oxygen allowed the engine to operate at its optimal sea-level rating even when at high altitudes. Thus, the aircraft could maintain its climb rate, maneuverability and speed as it rose higher into the sky. NACA work on the supercharger ceased after World War II due to the arrival of the turbojet engine. The Supercharger Research Division was disbanded in October 1945 and reconstituted as the Compressor and Turbine Division.

  8. Applying Agile Principles in Teaching Undergraduate Information Technology Project Management

    ERIC Educational Resources Information Center

    Budu, Joseph

    2018-01-01

    This article describes how the traditional teaching and learning activities over the years have been challenged to be agile--easily adaptable to changing classroom conditions. Despite this new phenomenon, there is a perceived paucity of agile-in-teaching research. Available studies neither focus on the use of agile principles beyond delivering…

  9. Examination of the perceived agility and balance during a reactive agility task.

    PubMed

    Stirling, Leia; Eke, Chika; Cain, Stephen M

    2018-01-01

    In vehicle dynamics, it is commonly understood that there is an inverse relationship between stability and maneuverability. However, animal studies have found that stability and maneuverability can coincide. In this study, we examine humans running a reactive agility obstacle and consider the relationship between observational perceived agility and balance, as well as the relationship between quantified surrogates of agility and balance. Recreational athletes (n = 18) completed the agility task while wearing inertial measurement units (IMUs) on their body. The task was also video-recorded. An observational study was completed by a separate group of adults (n = 33) that were asked to view the videos and score each athlete on a Likert scale for balance and for agility. The data from the body-worn IMUs were used to estimate quantified surrogate measures for agility and balance, and to assess if the relationship between the quantified agility and balance was in the same direction as the perceived relationship from the Likert scale responses. Results indicate that athletes that were given a higher Likert agility score were also given a higher balance score (rs = 0.75,p < 0.001). Quantitative surrogates of agility and balance also showed this same relationship. Additional insights on technique for this reactive agility task were informed by the quantitative surrogates. We observed the importance of stepping technique in achieving the faster completion times. The fast performing athletes spent a greater proportion of the task in double support and lower overall time in single support indicating increased periods of static stability. The fast performing athletes did not have a higher body speed, but performed the task with a more efficient technique, using foot placement to enable heading changes, and thus may have had a more efficient path. Similar to animal studies, people use technique to enable agile strategies while also enabling increased balance across the task.

  10. Investigating the strategic antecedents of agility in humanitarian logistics.

    PubMed

    L'Hermitte, Cécile; Brooks, Benjamin; Bowles, Marcus; Tatham, Peter H

    2017-10-01

    This study investigates the strategic antecedents of operational agility in humanitarian logistics. It began by identifying the particular actions to be taken at the strategic level of a humanitarian organisation to support field-level agility. Next, quantitative data (n=59) were collected on four strategic-level capabilities (being purposeful, action-focused, collaborative, and learning-oriented) and on operational agility (field responsiveness and flexibility). Using a quantitative analysis, the study tested the relationship between organisational capacity building and operational agility and found that the four strategic-level capabilities are fundamental building blocks of agility. Collectively they account for 52 per cent of the ability of humanitarian logisticians to deal with ongoing changes and disruptions in the field. This study emphasises the need for researchers and practitioners to embrace a broader perspective of agility in humanitarian logistics. In addition, it highlights the inherently strategic nature of agility, the development of which involves focusing simultaneously on multiple drivers. © 2017 The Author(s). Disasters © Overseas Development Institute, 2017.

  11. Walter C. Williams Research Aircraft Integration Facility (RAIF)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA-Dryden Integrated Test Facility (ITF), also known as the Walter C. Williams Research Aircraft Integration Facility (RAIF), provides an environment for conducting efficient and thorough testing of advanced, highly integrated research aircraft. Flight test confidence is greatly enhanced by the ability to qualify interactive aircraft systems in a controlled environment. In the ITF, each element of a flight vehicle can be regulated and monitored in real time as it interacts with the rest of the aircraft systems. Testing in the ITF is accomplished through automated techniques in which the research aircraft is interfaced to a high-fidelity real-time simulation. Electric and hydraulic power are also supplied, allowing all systems except the engines to function as if in flight. The testing process is controlled by an engineering workstation that sets up initial conditions for a test, initiates the test run, monitors its progress, and archives the data generated. The workstation is also capable of analyzing results of individual tests, comparing results of multiple tests, and producing reports. The computers used in the automated aircraft testing process are also capable of operating in a stand-alone mode with a simulation cockpit, complete with its own instruments and controls. Control law development and modification, aerodynamic, propulsion, guidance model qualification, and flight planning -- functions traditionally associated with real-time simulation -- can all be performed in this manner. The Remotely Augmented Vehicles (RAV) function, now located in the ITF, is a mainstay in the research techniques employed at Dryden. This function is used for tests that are too dangerous for direct human involvement or for which computational capacity does not exist onboard a research aircraft. RAV provides the researcher with a ground-based computer that is radio linked to the test aircraft during actual flight. The Ground Vibration Testing (GVT) system, formerly housed

  12. Historical trend in the research and development of aircraft

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1981-01-01

    Results are presented from a study of aircraft design trends undertaken to determine the relationship between research, development, test and evaluation and aircraft mission capability, requirements and objectives. It is shown that while in some cases a performance objective was the primary research driver, research was the driver in the formulation of objectives in others. Among the topics discussed are: (1) speed considerations such as compressibility, propulsion and test techniques; (2) airframe considerations such as swept, delta, trapezoidal and variable-sweep planforms and mission commonality; (3) research aircraft; (4) the recent impact of computer-aided design; (5) Soviet aircraft development approaches and (6) a comparison of Soviet and U.S. military aircraft design trends. Attention is given to experimental and prototype aircraft programs which, although cancelled, anticipated significant subsequent developments.

  13. The NASA Langley Research Center's Unmanned Aerial System Surrogate Research Aircraft

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III; Jessup, Artie; Jones, Frank; Joyce, Claude; Sugden, Paul; Verstynen, Harry; Mielnik, John

    2010-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). The NASA Langley Research Center has transformed a Cirrus Design SR22 general aviation (GA) aircraft into a UAS Surrogate research aircraft to serve as a platform for UAS systems research, development, flight testing and evaluation. The aircraft is manned with a Safety Pilot and systems operator that allows for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). The UAS Surrogate can be controlled from a modular, transportable ground station like a true UAS. The UAS Surrogate is able to file and fly in the NAS with normal traffic and is a better platform for real world UAS research and development than existing vehicles flying in restricted ranges or other sterilized airspace. The Cirrus Design SR22 aircraft is a small, singleengine, four-place, composite-construction aircraft that NASA Langley acquired to support NASA flight-research programs like the Small Aircraft Transportation System (SATS) Project. Systems were installed to support flight test research and data gathering. These systems include: separate research power; multi-function flat-panel displays; research computers; research air data and inertial state sensors; video recording; data acquisition; data-link; S-band video and data telemetry; Common Airborne Instrumentation System (CAIS); Automatic Dependent Surveillance-Broadcast (ADS-B); instrumented surfaces and controls; and a systems operator work station. The transformation of the SR22 to a UAS Surrogate was accomplished in phases. The first phase was to modify the existing autopilot to accept external commands from a research computer that was connected by redundant data-link radios to a ground control station. An electro-mechanical auto

  14. U-2 Aircraft at the Lewis Research Center

    NASA Image and Video Library

    1973-09-21

    A National Aeronautics and Space Administration (NASA) Lockheed U-2 aircraft on display at the 1973 Inspection of the Lewis Research Center in Cleveland, Ohio. Lockheed developed the U-2 as a high-altitude reconnaissance aircraft in the early 1950s before satellites were available. The U-2 could cruise over enemy territory at 70,000 feet and remain impervious to ground fire, interceptor aircraft, and even radar. An advanced camera system was designed specifically for the aircraft. The pilot is required to use a pressure suit similar to those worn by astronauts. NASA’s Ames Research Center received two U-2 aircraft in April 1971 to conduct high-altitude research. They were used to study and monitor various Earth resources, celestial bodies, atmospheric chemistry, and oceanic processes. NASA replaced its U-2s with ER-2 aircraft in 1981 and 1989. The ER-2s were designed to carry up to 2600 pounds of scientific equipment. The ER-2 program was transferred to Dryden Flight Research Center in 1997. Since the inaugural flight for this program on August 31, 1971, NASA’s U-2 and ER-2 aircraft have flown more than 4500 data missions and test flights for NASA, other federal agencies, states, universities, and the private sector.

  15. YO-3A acoustics research aircraft systems manual

    NASA Technical Reports Server (NTRS)

    Cross, J. L.

    1984-01-01

    The flight testing techniques, equipment, and procedures employed during air-to-air acoustic testing of helicopters using the NASA YO-3A Acoustic Research Aircraft are discussed. The research aircraft instrumentation system is described as well as hardware installation on the test aircraft and techniques used during the tests. Emphasis is placed on formation flying, position locations, test matrices, and test procedures.

  16. Agile Methods for Open Source Safety-Critical Software.

    PubMed

    Gary, Kevin; Enquobahrie, Andinet; Ibanez, Luis; Cheng, Patrick; Yaniv, Ziv; Cleary, Kevin; Kokoori, Shylaja; Muffih, Benjamin; Heidenreich, John

    2011-08-01

    The introduction of software technology in a life-dependent environment requires the development team to execute a process that ensures a high level of software reliability and correctness. Despite their popularity, agile methods are generally assumed to be inappropriate as a process family in these environments due to their lack of emphasis on documentation, traceability, and other formal techniques. Agile methods, notably Scrum, favor empirical process control, or small constant adjustments in a tight feedback loop. This paper challenges the assumption that agile methods are inappropriate for safety-critical software development. Agile methods are flexible enough to encourage the rightamount of ceremony; therefore if safety-critical systems require greater emphasis on activities like formal specification and requirements management, then an agile process will include these as necessary activities. Furthermore, agile methods focus more on continuous process management and code-level quality than classic software engineering process models. We present our experiences on the image-guided surgical toolkit (IGSTK) project as a backdrop. IGSTK is an open source software project employing agile practices since 2004. We started with the assumption that a lighter process is better, focused on evolving code, and only adding process elements as the need arose. IGSTK has been adopted by teaching hospitals and research labs, and used for clinical trials. Agile methods have matured since the academic community suggested they are not suitable for safety-critical systems almost a decade ago, we present our experiences as a case study for renewing the discussion.

  17. The NASA aircraft icing research program

    NASA Technical Reports Server (NTRS)

    Shaw, Robert J.; Reinmann, John J.

    1990-01-01

    The objective of the NASA aircraft icing research program is to develop and make available to industry icing technology to support the needs and requirements for all-weather aircraft designs. Research is being done for both fixed wing and rotary wing applications. The NASA program emphasizes technology development in two areas, advanced ice protection concepts and icing simulation. Reviewed here are the computer code development/validation, icing wind tunnel testing, and icing flight testing efforts.

  18. Study of aerodynamic technology for VSTOL fighter attack aircraft

    NASA Technical Reports Server (NTRS)

    Burhans, W., Jr.; Crafta, V. J., Jr.; Dannenhoffer, N.; Dellamura, F. A.; Krepski, R. E.

    1978-01-01

    Vertical short takeoff aircraft capability, supersonic dash capability, and transonic agility were investigated for the development of Fighter/attack aircraft to be accommodated on ships smaller than present aircraft carriers. Topics covered include: (1) description of viable V/STOL fighter/attack configuration (a high wing, close-coupled canard, twin-engine, control configured aircraft) which meets or exceeds specified levels of vehicle performance; (2) estimates of vehicle aerodynamic characteristics and the methodology utilized to generate them; (3) description of propulsion system characteristics and vehicle mass properties; (4) identification of areas of aerodynamic uncertainty; and (5) a test program to investigate the areas of aerodynamic uncertainty in the conventional flight mode.

  19. VSTOL Systems Research Aircraft (VSRA) Harrier

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA's Ames Research Center has developed and is testing a new integrated flight and propulsion control system that will help pilots land aircraft in adverse weather conditions and in small confined ares (such as, on a small ship or flight deck). The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems research Aircraft (VSRA), which is a modified version of the U.S. Marine Corps's AV-8B Harrier jet fighter, which can take off and land vertically. The new automated flight control system features both head-up and panel-mounted computer displays and also automatically integrates control of the aircraft's thrust and thrust vector control, thereby reducing the pilot's workload and help stabilize the aircraft for landing. Visiting pilots will be encouraged to test the new system and provide formal evaluation flights data and feedback. An actual flight test and the display panel of control system are shown in this video.

  20. Effect of Exercise Program Speed, Agility, and Quickness (SAQ) in Improving Speed, Agility, and Acceleration

    NASA Astrophysics Data System (ADS)

    Azmi, K.; Kusnanik, N. W.

    2018-01-01

    This study aimed to analyze the effect of speed, agility and quickness training program to increase in speed, agility and acceleration. This study was conducted at 26 soccer players and divided into 2 groups with 13 players each group. Group 1 was given SAQ training program, and Group 2 conventional training program for 8 weeks. This study used a quantitative approach with quasi-experimental method. The design of this study used a matching-only design. Data was collected by testing 30-meter sprint (speed), agility t-test (agility), and run 10 meters (acceleration) during the pretest and posttest. Furthermore, the data was analyzed using paired sample t-test and independent t-test. The results showed: that there was a significant effect of speed, agility and quickness training program in improving in speed, agility and acceleration. In summary, it can be concluded that the speed, agility and quickness training program can improve the speed, agility and acceleration of the soccer players.

  1. Flight Research Building at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1942-09-21

    The Flight Research Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory is a 272- by 150-foot hangar with an internal height up to 90 feet. The hangar’s massive 37.5-foot-tall and 250-foot-long doors can be opened in sections to suit different size aircraft. The hangar has sheltered a diverse fleet of aircraft over the decades. These have ranged from World War II bombers to Cessna trainers and from supersonic fighter jets to a DC–9 airliner. At the time of this September 1942 photograph, however, the hangar was being used as an office building during the construction of the laboratory. In December of 1941, the Flight Research Building became the lab’s first functional building. Temporary offices were built inside the structure to house the staff while the other buildings were completed. The hangar offices were used for an entire year before being removed in early 1943. It was only then that the laboratory acquired its first aircraft, pilots and flight mechanics. The temporary one-story offices can be seen in this photograph inside the large sliding doors. Also note the vertical lift gate below the NACA logo. The gate was installed so that the tails of larger aircraft could pass into the hangar. The white Farm House that served as the Administration Building during construction can be seen in the distance to the left of the hangar.

  2. Agile rediscovering values: Similarities to continuous improvement strategies

    NASA Astrophysics Data System (ADS)

    Díaz de Mera, P.; Arenas, J. M.; González, C.

    2012-04-01

    Research in the late 80's on technological companies that develop products of high value innovation, with sufficient speed and flexibility to adapt quickly to changing market conditions, gave rise to the new set of methodologies known as Agile Management Approach. In the current changing economic scenario, we considered very interesting to study the similarities of these Agile Methodologies with other practices whose effectiveness has been amply demonstrated in both the West and Japan. Strategies such as Kaizen, Lean, World Class Manufacturing, Concurrent Engineering, etc, would be analyzed to check the values they have in common with the Agile Approach.

  3. Agile Methods for Open Source Safety-Critical Software

    PubMed Central

    Enquobahrie, Andinet; Ibanez, Luis; Cheng, Patrick; Yaniv, Ziv; Cleary, Kevin; Kokoori, Shylaja; Muffih, Benjamin; Heidenreich, John

    2011-01-01

    The introduction of software technology in a life-dependent environment requires the development team to execute a process that ensures a high level of software reliability and correctness. Despite their popularity, agile methods are generally assumed to be inappropriate as a process family in these environments due to their lack of emphasis on documentation, traceability, and other formal techniques. Agile methods, notably Scrum, favor empirical process control, or small constant adjustments in a tight feedback loop. This paper challenges the assumption that agile methods are inappropriate for safety-critical software development. Agile methods are flexible enough to encourage the right amount of ceremony; therefore if safety-critical systems require greater emphasis on activities like formal specification and requirements management, then an agile process will include these as necessary activities. Furthermore, agile methods focus more on continuous process management and code-level quality than classic software engineering process models. We present our experiences on the image-guided surgical toolkit (IGSTK) project as a backdrop. IGSTK is an open source software project employing agile practices since 2004. We started with the assumption that a lighter process is better, focused on evolving code, and only adding process elements as the need arose. IGSTK has been adopted by teaching hospitals and research labs, and used for clinical trials. Agile methods have matured since the academic community suggested they are not suitable for safety-critical systems almost a decade ago, we present our experiences as a case study for renewing the discussion. PMID:21799545

  4. An Overview of NASA's SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft’s mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft’s flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT’s research systems and capabilities

  5. Research related to variable sweep aircraft development

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.; Toll, T. A.

    1981-01-01

    Development in high speed, variable sweep aircraft research is reviewed. The 1946 Langley wind tunnel studies related to variable oblique and variable sweep wings and results from the X-5 and the XF1OF variable sweep aircraft are discussed. A joint program with the British, evaluation of the British "Swallow", development of the outboard pivot wing/aft tail configuration concept by Langley, and the applied research program that followed and which provided the technology for the current, variable sweep military aircraft is outlined. The relative state of variable sweep as a design option is also covered.

  6. Control research in the NASA high-alpha technology program

    NASA Technical Reports Server (NTRS)

    Gilbert, William P.; Nguyen, Luat T.; Gera, Joseph

    1990-01-01

    NASA is conducting a focused technology program, known as the High-Angle-of-Attack Technology Program, to accelerate the development of flight-validated technology applicable to the design of fighters with superior stall and post-stall characteristics and agility. A carefully integrated effort is underway combining wind tunnel testing, analytical predictions, piloted simulation, and full-scale flight research. A modified F-18 aircraft has been extensively instrumented for use as the NASA High-Angle-of-Attack Research Vehicle used for flight verification of new methods and concepts. This program stresses the importance of providing improved aircraft control capabilities both by powered control (such as thrust-vectoring) and by innovative aerodynamic control concepts. The program is accomplishing extensive coordinated ground and flight testing to assess and improve available experimental and analytical methods and to develop new concepts for enhanced aerodynamics and for effective control, guidance, and cockpit displays essential for effective pilot utilization of the increased agility provided.

  7. Pilot users in agile development processes: motivational factors.

    PubMed

    Johannessen, Liv Karen; Gammon, Deede

    2010-01-01

    Despite a wealth of research on user participation, few studies offer insights into how to involve multi-organizational users in agile development methods. This paper is a case study of user involvement in developing a system for electronic laboratory requisitions using agile methodologies in a multi-organizational context. Building on an interpretive approach, we illuminate questions such as: How does collaboration between users and developers evolve and how might it be improved? What key motivational aspects are at play when users volunteer and continue contributing in the face of considerable added burdens? The study highlights how agile methods in themselves appear to facilitate mutually motivating collaboration between user groups and developers. Lessons learned for leveraging the advantages of agile development processes include acknowledging the substantial and ongoing contributions of users and their roles as co-designers of the system.

  8. Advanced instrumentation for aircraft icing research

    NASA Technical Reports Server (NTRS)

    Bachalo, W.; Smith, J.; Rudoff, R.

    1990-01-01

    A compact and rugged probe based on the phase Doppler method was evaluated as a means for characterizing icing clouds using airborne platforms and for advancing aircraft icing research in large scale wind tunnels. The Phase Doppler Particle Analyzer (PDPA) upon which the new probe was based is now widely recognized as an accurate method for the complete characterization of sprays. The prototype fiber optic-based probe was evaluated in simulated aircraft icing clouds and found to have the qualities essential to providing information that will advance aircraft icing research. Measurement comparisons of the size and velocity distributions made with the standard PDPA and the fiber optic probe were in excellent agreement as were the measurements of number density and liquid water content. Preliminary testing in the NASA Lewis Icing Research Tunnel (IRT) produced reasonable results but revealed some problems with vibration and signal quality at high speeds. The cause of these problems were identified and design changes were proposed to eliminate the shortcomings of the probe.

  9. What Does an Agile Coach Do?

    NASA Astrophysics Data System (ADS)

    Davies, Rachel; Pullicino, James

    The surge in Agile adoption has created a demand for project managers rather than direct their teams. A sign of this trend is the ever-increasing number of people getting certified as scrum masters and agile leaders. Training courses that introduce agile practices are easy to find. But making the transition to coach is not as simple as understanding what agile practices are. Your challenge as an Agile Coach is to support your team in learning how to wield their new Agile tools in creating great software.

  10. Supersonic cruise aircraft research: An annotated bibliography

    NASA Technical Reports Server (NTRS)

    Tuttle, M. H.

    1980-01-01

    This bibliography, with abstracts, consists of 69 publications arranged in chronological order. The material may be useful to those interested in supersonic cruise fighter/penetrator/interceptor airplanes. Two pertinent conferences on military supercruise aircraft are considered as single items; one contains 37 papers and the other 29 papers. In addition, several related bibliographies are included which cover supersonic civil aircraft and military aircraft studies at the Langley Research Center. There is also an author index.

  11. Agile Mythbusting

    DTIC Science & Technology

    2015-01-01

    0321502752 Coaching Agile Teams Lyssa Adkins ISBN #0321637704 Agile Project Management : Creating Innovative Products – Second Edition Jim Highsmith ISBN...Picatinny Arsenal Lapham, Wrubel Jan 2015 © 2015 Carnegie Mellon University. DoD Acquisition and Innovation Many regulated environments, like the DoD...NEED innovation and NEED incremental improvements to their systems. Many of them are now willing to consider changing their approach if they can do it

  12. Initiation of Research at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1942-05-21

    A group of National Advisory Committee for Aeronautics (NACA) officials and local dignitaries were on hand on May 8, 1942, to witness the Initiation of Research at the NACA's new Aircraft Engine Research Laboratory in Cleveland, Ohio. The group in this photograph was in the control room of the laboratory's first test facility, the Engine Propeller Research Building. The NACA press release that day noted, "First actual research activities in what is to be the largest aircraft engine research laboratory in the world was begun today at the National Advisory Committee for Aeronautics laboratory at the Cleveland Municipal Airport.” The ceremony, however, was largely symbolic since most of the laboratory was still under construction. Dr. George W. Lewis, the NACA's Director of Aeronautical Research, and John F. Victory, NACA Secretary, are at the controls in this photograph. Airport Manager John Berry, former City Manager William Hopkins, NACA Assistant Secretary Ed Chamberlain, Langley Engineer-in-Charge Henry Reid, Executive Engineer Carlton Kemper, and Construction Manager Raymond Sharp are also present. The propeller building contained two torque stands to test complete engines at ambient conditions. The facility was primarily used at the time to study engine lubrication and cooling systems for World War II aircraft, which were required to perform at higher altitudes and longer ranges than previous generations.

  13. An agile implementation of SCRUM

    NASA Astrophysics Data System (ADS)

    Gannon, Michele

    Is Agile a way to cut corners? To some, the use of an Agile Software Development Methodology has a negative connotation - “ Oh, you're just not producing any documentation” . So can a team with no experience in Agile successfully implement and use SCRUM?

  14. SuperAGILE Services at ASDC

    NASA Astrophysics Data System (ADS)

    Preger, B.; Verrecchia, F.; Pittori, C.; Antonelli, L. A.; Giommi, P.; Lazzarotto, F.; Evangelista, Y.

    2008-05-01

    The Italian Space Agency Science Data Center (ASDC) is a facility with several responsibilities including support to all the ASI scientific missions as for management and archival of the data, acting as the interface between ASI and the scientific community and providing on-line access to the data hosted. In this poster we describe the services that ASDC provides for SuperAGILE, in particular the ASDC public web pages devoted to the dissemination of SuperAGILE scientific results. SuperAGILE is the X-Ray imager onboard the AGILE mission, and provides the scientific community with orbit-by-orbit information on the observed sources. Crucial source information including position and flux in chosen energy bands will be reported in the SuperAGILE public web page at ASDC. Given their particular interest, another web page will be dedicated entirely to GRBs and other transients, where new event alerts will be notified and where users will find all the available informations on the GRBs detected by SuperAGILE.

  15. Elements of an Art - Agile Coaching

    NASA Astrophysics Data System (ADS)

    Lundh, Erik

    This tutorial gives you a lead on becoming or redefining yourself as an Agile Coach. Introduction to elements and dimensions of state-of-the-art Agile Coaching. How to position the agile coach to be effective in a larger setting. Making the agile transition - from a single team to thousands of people. How to support multiple teams as a coach. How to build a coaches network in your company. Challenges when the agile coach is a consultant and the organization is large.

  16. Fuels and Lubrication Researcher at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1943-08-21

    A researcher at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory studies the fuel ignition process. Improved fuels and lubrication was an area of particular emphasis at the laboratory during World War II. The military sought to use existing types of piston engines in order to get large numbers of aircraft into the air as quickly as possible. To accomplish its goals, however, the military needed to increase the performance of these engines without having to wait for new models or extensive redesigns. The Aircraft Engine Research Laboratory was called on to lead this effort. The use of superchargers successfully enhanced engine performance, but the resulting heat increased engine knock [fuel detonation] and structural wear. These effects could be offset with improved cooling, lubrication, and fuel mixtures. The NACA researchers in the Fuels and Lubrication Division concentrated on new synthetic fuels, higher octane fuels, and fuel-injection systems. The laboratory studied 16 different types of fuel blends during the war, including extensive investigations of triptane and xylidine.

  17. NASA's Research in Aircraft Vulnerability Mitigation

    NASA Technical Reports Server (NTRS)

    Allen, Cheryl L.

    2005-01-01

    Since its inception in 1958, the National Aeronautics and Space Administration s (NASA) role in civil aeronautics has been to develop high-risk, high-payoff technologies to meet critical national aviation challenges. Following the events of Sept. 11, 2001, NASA recognized that it now shared the responsibility for improving homeland security. The NASA Strategic Plan was modified to include requirements to enable a more secure air transportation system by investing in technologies and collaborating with other agencies, industry, and academia. NASA is conducting research to develop and advance innovative and commercially viable technologies that will reduce the vulnerability of aircraft to threats or hostile actions, and identify and inform users of potential vulnerabilities in a timely manner. Presented in this paper are research plans and preliminary status for mitigating the effects of damage due to direct attacks on civil transport aircraft. The NASA approach to mitigation includes: preventing loss of an aircraft due to a hit from man-portable air defense systems; developing fuel system technologies that prevent or minimize in-flight vulnerability to small arms or other projectiles; providing protection from electromagnetic energy attacks by detecting directed energy threats to aircraft and on/off-board systems; and minimizing the damage due to high-energy attacks (explosions and fire) by developing advanced lightweight, damage-resistant composites and structural concepts. An approach to preventing aircraft from being used as weapons of mass destruction will also be discussed.

  18. Project-Method Fit: Exploring Factors That Influence Agile Method Use

    ERIC Educational Resources Information Center

    Young, Diana K.

    2013-01-01

    While the productivity and quality implications of agile software development methods (SDMs) have been demonstrated, research concerning the project contexts where their use is most appropriate has yielded less definitive results. Most experts agree that agile SDMs are not suited for all project contexts. Several project and team factors have been…

  19. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2014-01-01

    This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  20. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2013-01-01

    This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  1. Strategic agility for nursing leadership.

    PubMed

    Shirey, Maria R

    2015-06-01

    This department highlights change management strategies that may be successful in strategically planning and executing organizational change. In this article, the author discusses strategic agility as an important leadership competency and offers approaches for incorporating strategic agility in healthcare systems. A strategic agility checklist and infrastructure-building approach are presented.

  2. NASA quiet short-haul research aircraft experimenters' handbook

    NASA Technical Reports Server (NTRS)

    Mccracken, R. C.

    1980-01-01

    A summary of guidelines and particulars concerning the use of the NASA-Ames Research Center Quiet Short-Haul Research Aircraft for applicable flight experiments is presented. Procedures for submitting experiment proposals are included along with guidelines for experimenter packages, an outline of experiment selection processes, a brief aircraft description, and additional information regarding support at Ames.

  3. Agile Methodology - Past and Future

    DTIC Science & Technology

    2011-05-01

    Takeuchi & Nonaka HBR 1986, p139 RUGBY Waterfall Red vs Agile Black Team- . - Manifesto 2001 SCRUM GRAPHIC* * Adapted from Schwaber (2007) Agile...learning will help Agile manage its vision • Rugby : All Blacks 36 v England 12 Auckland, NZ (6/19/04) Glossary • AFB – Air Force Base • MCS - Maneuver

  4. Agile, a guiding principle for health care improvement?

    PubMed

    Tolf, Sara; Nyström, Monica E; Tishelman, Carol; Brommels, Mats; Hansson, Johan

    2015-01-01

    The purpose of this paper is to contribute to increased understanding of the concept agile and its potential for hospital managers to optimize design of organizational structures and processes to combine internal efficiency and external effectiveness. An integrative review was conducted using the reSEARCH database. Articles met the following criteria: first, a definition of agility; second, descriptions of enablers of becoming an agile organization; and finally, discussions of agile on multiple organizational levels. In total, 60 articles qualified for the final analysis. Organizational agility rests on the assumption that the environment is uncertain, ranging from frequently changing to highly unpredictable. Proactive, reactive or embracive coping strategies were described as possible ways to handle such uncertain environments. Five organizational capacities were derived as necessary for hospitals to use the strategies optimally: transparent and transient inter-organizational links; market sensitivity and customer focus; management by support for self-organizing employees; organic structures that are elastic and responsive; flexible human and resource capacity for timely delivery. Agile is portrayed as either the "new paradigm" following lean, the needed development on top of a lean base, or as complementary to lean in distinct hybrid strategies. Environmental uncertainty needs to be matched with coping strategies and organizational capacities to design processes responsive to real needs of health care. This implies that lean and agile can be combined to optimize the design of hospitals, to meet different variations in demand and create good patient management. While considerable value has been paid to strategies to improve the internal efficiency within hospitals, this review raise the attention to the value of strategies of external effectiveness.

  5. The Proposed Use of Unmanned Aerial System Surrogate Research Aircraft for National Airspace System Integration Research

    NASA Technical Reports Server (NTRS)

    Howell, Charles T., III

    2011-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). This paper explores the use of Unmanned Aerial System (UAS) Surrogate research aircraft to serve as platforms for UAS systems research, development, and flight testing. These aircraft would be manned with safety pilots and researchers that would allow for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). With pilot override capability, these UAS Surrogate aircraft would be controlled from ground stations like true UAS s. It would be possible to file and fly these UAS Surrogate aircraft in the NAS with normal traffic and they would be better platforms for real world UAS research and development over existing vehicles flying in restricted ranges or other sterilized airspace. These UAS surrogate aircraft could be outfitted with research systems as required such as computers, state sensors, video recording, data acquisition, data link, telemetry, instrumentation, and Automatic Dependent Surveillance-Broadcast (ADS-B). These surrogate aircraft could also be linked to onboard or ground based simulation facilities to further extend UAS research capabilities. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aide in the process of air traffic "see-and-avoid". These and other sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper examines the feasibility of using UAS Surrogate research aircraft as test platforms for a variety of UAS related research.

  6. Agility in Team Sports: Testing, Training and Factors Affecting Performance.

    PubMed

    Paul, Darren J; Gabbett, Tim J; Nassis, George P

    2016-03-01

    Agility is an important characteristic of team sports athletes. There is a growing interest in the factors that influence agility performance as well as appropriate testing protocols and training strategies to assess and improve this quality. The objective of this systematic review was to (1) evaluate the reliability and validity of agility tests in team sports, (2) detail factors that may influence agility performance, and (3) identify the effects of different interventions on agility performance. The review was undertaken in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We conducted a search of PubMed, Google Scholar, Science Direct, and SPORTDiscus databases. We assessed the methodological quality of intervention studies using a customized checklist of assessment criteria. Intraclass correlation coefficient values were 0.80-0.91, 0.10-0.81, and 0.81-0.99 for test time using light, video, and human stimuli. A low-level reliability was reported for youth athletes using the video stimulus (0.10-0.30). Higher-level participants were shown to be, on average, 7.5% faster than their lower level counterparts. Reaction time and accuracy, foot placement, and in-line lunge movement have been shown to be related to agility performance. The contribution of strength remains unclear. Efficacy of interventions on agility performance ranged from 1% (vibration training) to 7.5% (small-sided games training). Agility tests generally offer good reliability, although this may be compromised in younger participants responding to various scenarios. A human and/or video stimulus seems the most appropriate method to discriminate between standard of playing ability. Decision-making and perceptual factors are often propositioned as discriminant factors; however, the underlying mechanisms are relatively unknown. Research has focused predominantly on the physical element of agility. Small-sided games and video training may offer effective

  7. V/STOL tilt rotor aircraft study. Volume 2: Preliminary design of research aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A preliminary design study was conducted to establish a minimum sized, low cost V/STOL tilt-rotor research aircraft with the capability of performing proof-of-concept flight research investigations applicable to a wide range of useful military and commercial configurations. The analysis and design approach was based on state-of-the-art methods and maximum use of off-the-shelf hardware and systems to reduce development risk, procurement cost and schedules impact. The rotors to be used are of 26 foot diameter and are the same as currently under construction and test as part of NASA Tilt-Rotor Contract NAS2-6505. The aircraft has a design gross weight of 12,000 lbs. The proposed engines to be used are Lycoming T53-L-13B rated at 1550 shaft horsepower which are fully qualified. A flight test investigation is recommended which will determine the capabilities and limitations of the research aircraft.

  8. Agile Software Development

    ERIC Educational Resources Information Center

    Biju, Soly Mathew

    2008-01-01

    Many software development firms are now adopting the agile software development method. This method involves the customer at every level of software development, thus reducing the impact of change in the requirement at a later stage. In this article, the principles of the agile method for software development are explored and there is a focus on…

  9. Candidate control design metrics for an agile fighter

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Bailey, Melvin L.; Ostroff, Aaron J.

    1991-01-01

    Success in the fighter combat environment of the future will certainly demand increasing capability from aircraft technology. These advanced capabilities in the form of superagility and supermaneuverability will require special design techniques which translate advanced air combat maneuvering requirements into design criteria. Control design metrics can provide some of these techniques for the control designer. Thus study presents an overview of control design metrics and investigates metrics for advanced fighter agility. The objectives of various metric users, such as airframe designers and pilots, are differentiated from the objectives of the control designer. Using an advanced fighter model, metric values are documented over a portion of the flight envelope through piloted simulation. These metric values provide a baseline against which future control system improvements can be compared and against which a control design methodology can be developed. Agility is measured for axial, pitch, and roll axes. Axial metrics highlight acceleration and deceleration capabilities under different flight loads and include specific excess power measurements to characterize energy meneuverability. Pitch metrics cover both body-axis and wind-axis pitch rates and accelerations. Included in pitch metrics are nose pointing metrics which highlight displacement capability between the nose and the velocity vector. Roll metrics (or torsion metrics) focus on rotational capability about the wind axis.

  10. Planned and reactive agility performance in semiprofessional and amateur basketball players.

    PubMed

    Lockie, Robert G; Jeffriess, Matthew D; McGann, Tye S; Callaghan, Samuel J; Schultz, Adrian B

    2014-09-01

    Research indicates that planned and reactive agility are different athletic skills. These skills have not been adequately assessed in male basketball players. To define whether 10-m-sprint performance and planned and reactive agility measured by the Y-shaped agility test can discriminate between semiprofessional and amateur basketball players. Ten semiprofessional and 10 amateur basketball players completed 10-m sprints and planned- and reactive-agility tests. The Y-shaped agility test involved subjects sprinting 5 m through a trigger timing gate, followed by a 45° cut and 5-m sprint to the left or right through a target gate. In the planned condition, subjects knew the cut direction. For reactive trials, subjects visually scanned to find the illuminated gate. A 1-way analysis of variance (P < .05) determined between-groups differences. Data were pooled (N = 20) for a correlation analysis (P < .05). The reactive tests differentiated between the groups; semiprofessional players were 6% faster for the reactive left (P = .036) and right (P = .029) cuts. The strongest correlations were between the 10-m sprints and planned-agility tests (r = .590-.860). The reactive left cut did not correlate with the planned tests. The reactive right cut moderately correlated with the 10-m sprint and planned right cut (r = .487-.485). The results reemphasized that planned and reactive agility are separate physical qualities. Reactive agility discriminated between the semiprofessional and amateur basketball players; planned agility did not. To distinguish between male basketball players of different ability levels, agility tests should include a perceptual and decision-making component.

  11. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  12. A Literature Review on the Progression of Agile Manufacturing Paradigm and Its Scope of Application in Pump Industry

    PubMed Central

    Devadasan, S. R.; Sivaram, N. M.

    2015-01-01

    During the recent years, the manufacturing world has been witnessing the application of agile manufacturing paradigm. The literature review reported in this paper was carried out to study this progression. This literature review was carried out in two phases. In the first phase, the literature was reviewed to trace the origin of agile manufacturing paradigm and identify its enablers. Further, during this phase, the applications of agile manufacturing reported in literature arena were reviewed. It was also discernable that certain research works have been initiated to apply agile manufacturing paradigm in pump industry. During the second phase, the researches reported on applying agile manufacturing in pump industry were reviewed. At the end of this review, it was found that so far the implementation of agile manufacturing in pump industry has been examined by the researchers by considering only certain components of pumps. In fact, the holistic implementation of agile manufacturing in the pump industry is yet to be examined by the researchers. In the context of drawing this inference, this paper has been concluded by stating that high scope exists in examining the infusing of agility characteristics in designing and manufacturing of pumps. PMID:26065016

  13. A Literature Review on the Progression of Agile Manufacturing Paradigm and Its Scope of Application in Pump Industry.

    PubMed

    Thilak, V M M; Devadasan, S R; Sivaram, N M

    2015-01-01

    During the recent years, the manufacturing world has been witnessing the application of agile manufacturing paradigm. The literature review reported in this paper was carried out to study this progression. This literature review was carried out in two phases. In the first phase, the literature was reviewed to trace the origin of agile manufacturing paradigm and identify its enablers. Further, during this phase, the applications of agile manufacturing reported in literature arena were reviewed. It was also discernable that certain research works have been initiated to apply agile manufacturing paradigm in pump industry. During the second phase, the researches reported on applying agile manufacturing in pump industry were reviewed. At the end of this review, it was found that so far the implementation of agile manufacturing in pump industry has been examined by the researchers by considering only certain components of pumps. In fact, the holistic implementation of agile manufacturing in the pump industry is yet to be examined by the researchers. In the context of drawing this inference, this paper has been concluded by stating that high scope exists in examining the infusing of agility characteristics in designing and manufacturing of pumps.

  14. The Effect of Acceleration Sprint and Zig-zag Drill Combination to Increase Students’ Speed and Agility

    NASA Astrophysics Data System (ADS)

    Bana, O.; Mintarto, E.; Kusnanik, N. W.

    2018-01-01

    The purpose of this research is to analyze the following factors: (1) how far the effect of exercise acceleration sprint on the speed and agility (2) how much influence the zig-zag drill combination to the speed and agility (3) and is there any difference between the effects of exercise acceleration sprint and practice zig-zag drill combination of the speed and agility. This research is quantitative with quasi-experimental approach. The design of this study is matching only design.This study was conducted on 33 male students who take part in extracurricular and divided into 3 groups with 11 students in each group. Group 1 was given training of acceleration sprint, group 2 was given zig-zag training combination drills of conventional and exercises for group 3, for 8 weeks. The data collection was using sprint 30 meter to test the speed and agility t-test to test agility. Data were analyzed using t-test and analysis of variance. The conclusion of the research is (1) there is a significant effect of exercise acceleration sprint for the speed and agility, (2) there is a significant influence combination zig-zag drills, on speed and agility (3) and exercise acceleration sprint have more effect on the speed and agility.

  15. Agile Walker.

    PubMed

    Katz, Reuven

    2015-01-01

    The goal of the Agile Walker is to improve the outdoor mobility of healthy elderly people with some mobility limitations. It is a newly developed, all-terrain walker, equipped with an electric drive system and speed control that can assists elderly people to walk outdoors or to hike. The walker has a unique product design with an attractive look that will appeal to "active-agers" population. This paper describes product design requirements and the development process of the Agile Walker, its features and some preliminary testing results.

  16. Quiet Short-Haul Research Aircraft Joint Navy/NASA Sea Trials

    NASA Technical Reports Server (NTRS)

    Queen, S.; Cochrane, J.

    1982-01-01

    The Quiet Short-Haul Research Aircraft (QSRA) is a flight facility which Ames Research Center is using to conduct a broad program of terminal area and low-speed, propulsive-life flight research. A joint Navy/NASA flight research program used the QSRA to investigate the application of advanced propulsive-lift technology to the naval aircraft-carrier environment. Flight performance of the QSRA is presented together with the results or the joint Navy/NASA flight program. During the joint program, the QSRA operated aboard the USS Kitty Hawk for 4 days, during which numerous unarrested landings and free deck takeoffs were accomplished. These operations demonstrated that a large aircraft incorporating upper-surface-blowing, propulsive-life technology can be operated in the aircraft-carrier environment without any unusual problems.

  17. On the Biomimetic Design of Agile-Robot Legs

    PubMed Central

    Garcia, Elena; Arevalo, Juan Carlos; Muñoz, Gustavo; Gonzalez-de-Santos, Pablo

    2011-01-01

    The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented. PMID:22247667

  18. On the biomimetic design of agile-robot legs.

    PubMed

    Garcia, Elena; Arevalo, Juan Carlos; Muñoz, Gustavo; Gonzalez-de-Santos, Pablo

    2011-01-01

    The development of functional legged robots has encountered its limits in human-made actuation technology. This paper describes research on the biomimetic design of legs for agile quadrupeds. A biomimetic leg concept that extracts key principles from horse legs which are responsible for the agile and powerful locomotion of these animals is presented. The proposed biomimetic leg model defines the effective leg length, leg kinematics, limb mass distribution, actuator power, and elastic energy recovery as determinants of agile locomotion, and values for these five key elements are given. The transfer of the extracted principles to technological instantiations is analyzed in detail, considering the availability of current materials, structures and actuators. A real leg prototype has been developed following the biomimetic leg concept proposed. The actuation system is based on the hybrid use of series elasticity and magneto-rheological dampers which provides variable compliance for natural motion. From the experimental evaluation of this prototype, conclusions on the current technological barriers to achieve real functional legged robots to walk dynamically in agile locomotion are presented.

  19. Agile methods in biomedical software development: a multi-site experience report.

    PubMed

    Kane, David W; Hohman, Moses M; Cerami, Ethan G; McCormick, Michael W; Kuhlmman, Karl F; Byrd, Jeff A

    2006-05-30

    Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods.

  20. Agile methods in biomedical software development: a multi-site experience report

    PubMed Central

    Kane, David W; Hohman, Moses M; Cerami, Ethan G; McCormick, Michael W; Kuhlmman, Karl F; Byrd, Jeff A

    2006-01-01

    Background Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. Results We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. Conclusion We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods. PMID:16734914

  1. NASA aircraft trailing vortex research

    NASA Technical Reports Server (NTRS)

    Mcgowan, W. A.

    1971-01-01

    A brief description is given of NASA's comprehensive program to study the aircraft trailing vortex problem. Wind tunnel experiments are used to develop the detailed processes of wing tip vortex formation and explore different means to either prevent trailing vortices from forming or induce early break-up. Flight tests provide information on trailing vortex system behavior behind large transport aircraft, both near the ground, as in the vicinity of the airport, and at cruise/holding pattern altitudes. Results from some flight tests are used to show how pilots might avoid the dangerous areas when flying in the vicinity of large transport aircraft. Other flight tests will be made to verify and evaluate trailing vortex elimination schemes developed in the model tests. Laser Doppler velocimeters being developed for use in the research program and to locate and measure vortex winds in the airport area are discussed. Field tests have shown that the laser Doppler velocimeter measurements compare well with those from cup anemometers.

  2. Integrated Research/Education University Aircraft Design Program Development

    DTIC Science & Technology

    2017-04-06

    iterations and loop shaping compared to MIMO control methods. Despite the drawbacks, loop closure and classical methods are the design methods most commonly...AFRL-AFOSR-VA-TR-2017-0077 Integrated Research/Education University Aircraft Design Program Development Eli Livne UNIVERSITY OF WASHINGTON 4333...SUBTITLE Integrated Research/Education University Aircraft Design Program Development 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0027 5c.  PROGRAM

  3. Tools for Supporting Distributed Agile Project Planning

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Maurer, Frank; Morgan, Robert; Oliveira, Josyleuda

    Agile project planning plays an important part in agile software development. In distributed settings, project planning is severely impacted by the lack of face-to-face communication and the inability to share paper index cards amongst all meeting participants. To address these issues, several distributed agile planning tools were developed. The tools vary in features, functions and running platforms. In this chapter, we first summarize the requirements for distributed agile planning. Then we give an overview on existing agile planning tools. We also evaluate existing tools based on tool requirements. Finally, we present some practical advices for both designers and users of distributed agile planning tools.

  4. Social media as an information system: improving the technological agility

    NASA Astrophysics Data System (ADS)

    Senadheera, Vindaya; Warren, Matthew; Leitch, Shona

    2017-04-01

    There is an increased focus on research involving social media. This research however has failed to catch up with the pace of the technology development and may prove disadvantageous for both practice and theory. The longitudinal study presented in the paper was conducted over a 3-year period involving Australian banks and popular social media technologies. The paper empirically tests the Honeycomb model as a tool that enhances the technological agility of social media. The paper fills a key research gap and provides dynamism to social media strategy formation, continuous improvement of strategy development in support of greater business agility.

  5. A Review of Agile and Lean Manufacturing as Issues in Selected International and National Research and Development Programs and Roadmaps

    ERIC Educational Resources Information Center

    Castro, Helio; Putnik, Goran D.; Shah, Vaibhav

    2012-01-01

    Purpose: The aim of this paper is to analyze international and national research and development (R&D) programs and roadmaps for the manufacturing sector, presenting how agile and lean manufacturing models are addressed in these programs. Design/methodology/approach: In this review, several manufacturing research and development programs and…

  6. Agile Learning: Sprinting through the Semester

    ERIC Educational Resources Information Center

    Lang, Guido

    2017-01-01

    This paper introduces agile learning, a novel pedagogical approach that applies the processes and principles of agile software development to the context of learning. Agile learning is characterized by short project cycles, called sprints, in which a usable deliverable is fully planned, designed, built, tested, reviewed, and launched. An…

  7. Evaluation of Basketball-Specific Agility: Applicability of Preplanned and Nonplanned Agility Performances for Differentiating Playing Positions and Playing Levels.

    PubMed

    Sekulic, Damir; Pehar, Miran; Krolo, Ante; Spasic, Miodrag; Uljevic, Ognjen; Calleja-González, Julio; Sattler, Tine

    2017-08-01

    Sekulic, D, Pehar, M, Krolo, A, Spasic, M, Uljevic, O, Calleja-González, J, and Sattler, T. Evaluation of basketball-specific agility: applicability of preplanned and nonplanned agility performances for differentiating playing positions and playing levels. J Strength Cond Res 31(8): 2278-2288, 2017-The importance of agility in basketball is well known, but there is an evident lack of studies examining basketball-specific agility performances in high-level players. The aim of this study was to determine the reliability and discriminative validity of 1 standard agility test (test of preplanned agility [change-of-direction speed] over T course, T-TEST), and 4 newly developed basketball-specific agility tests, in defining playing positions and performance levels in basketball. The study comprised 110 high-level male basketball players (height: 194.92 ± 8.09 cm; body mass: 89.33 ± 10.91 kg; age: 21.58 ± 3.92 years). The variables included playing position (Guard, Forward, Center), performance level (first division vs. second division), anthropometrics (body height, body mass, and percentage of body fat), T-TEST, nonplanned basketball agility test performed on dominant (BBAGILdom) and nondominant sides (BBAGILnond), and a preplanned (change-of-direction speed) basketball agility test performed on dominant (BBCODSdom) and nondominant sides (BBCODSnond). The reliability of agility tests was high (intraclass correlation coefficient of 0.81-0.95). Forwards were most successful in the T-TEST (F test: 13.57; p = 0.01). Guards outperformed Centers in BBCODSdom, BBCODSndom, BBAGILdom, and BBAGILnond (F test: 5.06, p = 0.01; 6.57, 0.01; 6.26, 0.01; 3.37, 0.04, respectively). First division Guards achieved better results than second division Guards in BBCODSdom (t: 2.55; p = 0.02; moderate effect size differences), BBAGILdom, and BBAGILnond (t: 3.04 and 3.06, respectively; both p = 0.01 and moderate effect size differences). First division Centers outperformed second division

  8. Subsonic Ultra Green Aircraft Research

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2011-01-01

    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.

  9. Flight Testing the Rotor Systems Research Aircraft (RSRA)

    NASA Technical Reports Server (NTRS)

    Hall, G. W.; Merrill, R. K.

    1983-01-01

    In the late 1960s, efforts to advance the state-of-the-art in rotor systems technology indicated a significant gap existed between our ability to accurately predict the characteristics of a complex rotor system and the results obtained through flight verification. Even full scale wind tunnel efforts proved inaccurate because of the complex nature of a rotating, maneuvering rotor system. The key element missing, which prevented significant advances, was our inability to precisely measure the exact rotor state as a function of time and flight condition. Two Rotor Research Aircraft (RSRA) were designed as pure research aircraft and dedicated rotor test vehicles whose function is to fill the gap between theory, wind tunnel testing, and flight verification. The two aircraft, the development of the piloting techniques required to safely fly the compound helicopter, the government flight testing accomplished to date, and proposed future research programs.

  10. Gamma-ray Astrophysics with AGILE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, Francesco; Tavani, M.; Barbiellini, G.

    2007-07-12

    AGILE will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational in spring 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources. Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view coveringmore » {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV AGILE is now (March 2007) undergoing launcher integration and testing. The PLSV launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.« less

  11. Development of an Agile Knowledge Engineering Framework in Support of Multi-Disciplinary Translational Research

    PubMed Central

    Borlawsky, Tara B.; Dhaval, Rakesh; Hastings, Shannon L.; Payne, Philip R. O.

    2009-01-01

    In October 2006, the National Institutes of Health launched a new national consortium, funded through Clinical and Translational Science Awards (CTSA), with the primary objective of improving the conduct and efficiency of the inherently multi-disciplinary field of translational research. To help meet this goal, the Ohio State University Center for Clinical and Translational Science has launched a knowledge management initiative that is focused on facilitating widespread semantic interoperability among administrative, basic science, clinical and research computing systems, both internally and among the translational research community at-large, through the integration of domain-specific standard terminologies and ontologies with local annotations. This manuscript describes an agile framework that builds upon prevailing knowledge engineering and semantic interoperability methods, and will be implemented as part this initiative. PMID:21347164

  12. Development of an agile knowledge engineering framework in support of multi-disciplinary translational research.

    PubMed

    Borlawsky, Tara B; Dhaval, Rakesh; Hastings, Shannon L; Payne, Philip R O

    2009-03-01

    In October 2006, the National Institutes of Health launched a new national consortium, funded through Clinical and Translational Science Awards (CTSA), with the primary objective of improving the conduct and efficiency of the inherently multi-disciplinary field of translational research. To help meet this goal, the Ohio State University Center for Clinical and Translational Science has launched a knowledge management initiative that is focused on facilitating widespread semantic interoperability among administrative, basic science, clinical and research computing systems, both internally and among the translational research community at-large, through the integration of domain-specific standard terminologies and ontologies with local annotations. This manuscript describes an agile framework that builds upon prevailing knowledge engineering and semantic interoperability methods, and will be implemented as part this initiative.

  13. Team-based work and work system balance in the context of agile manufacturing.

    PubMed

    Yauch, Charlene A

    2007-01-01

    Manufacturing agility is the ability to prosper in an environment characterized by constant and unpredictable change. The purpose of this paper is to analyze team attributes necessary to facilitate agile manufacturing, and using Balance Theory as a framework, it evaluates the potential positive and negative impacts related to these team attributes that could alter the balance of work system elements and resulting "stress load" experienced by persons working on agile teams. Teams operating within the context of agile manufacturing are characterized as multifunctional, dynamic, cooperative, and virtual. A review of the literature relevant to each of these attributes is provided, as well as suggestions for future research.

  14. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  15. Nitrogen oxides at the UTLS: Combining observations from research aircraft and in-service aircraft

    NASA Astrophysics Data System (ADS)

    Ziereis, Helmut; Stratmann, Greta; Schlager, Hans; Gottschaldt, Klaus-Dirk; Rauthe-Schöch, Armin; Zahn, Andreas; Hoor, Peter; van, Peter

    2016-04-01

    Nitrogen oxides have a decisive influence on the chemistry of the upper troposphere and lower stratosphere. They are key constituents of several reaction chains influencing the production of ozone. They also play an essential role in the cycling of hydroxyl radicals and therefore influence the lifetime of methane. Due to their short lifetime and their variety of sources there is still a high uncertainty about the abundance of nitrogen oxides in the UTLS. Dedicated aircraft campaigns aim to study specific atmospheric questions like lightning, long range transport or aircraft emissions. Usually, within a short time period comprehensive measurements are performed within a more or less restricted region. Therefore, especially trace constituents like nitrogen oxides with short lifetime and a variety of different sources are not represented adequately. On the other hand, routine measurements from in-service aircraft allow observations over longer time periods and larger regions. However, it is nearly impossible to influence the scheduling of in-service aircraft and thereby time and space of the observations. Therefore, the combination of dedicated aircraft campaigns and routine observations might supplement each other. For this study we combine nitrogen oxides data sets obtained with the IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) flying laboratory and with the German research aircraft HALO (High altitude and long range research aircraft). Data have been acquired within the IAGOS-CARIBIC project on a monthly base using a Lufthansa Airbus A340-600 since December 2004. About four flights are performed each month covering predominantly northern mid-latitudes. Additional flights have been conducted to destinations in South America and South Africa. Since 2012 HALO has been operational. Nitrogen oxides measurements have been performed during six missions covering mid latitudes, tropical as well as Polar

  16. An overview of the quiet short-haul research aircraft program

    NASA Technical Reports Server (NTRS)

    Shovlin, M. D.; Cochrane, J. A.

    1978-01-01

    An overview of the Quiet Short Haul Research Aircraft (QSRA) Program is presented, with special emphasis on its propulsion and acoustic aspects. A description of the NASA technical participation in the program including wind tunnel testing, engine ground tests, and advanced aircraft simulation is given. The aircraft and its systems are described and, measured performance, where available, is compared to program goals. Preliminary data indicate that additional research and development are needed in some areas of which acoustics is an example. Some of these additional research areas and potential experiments using the QSRA to develop the technology are discussed. The concept of the QSRA as a national flight research facility is explained.

  17. Agile Software Development in the Department of Defense Environment

    DTIC Science & Technology

    2017-03-31

    Research Methodology .............................................................................................. 17 Research Hypothesis...acquisition framework to enable greater adoption of Agile methodologies . Overview of the Research Methodology The strategy for this study was to...guidance. 17 Chapter 3 – Research Methodology This chapter defines the research methodology and processes used in the study, in an effort to

  18. Agile

    NASA Technical Reports Server (NTRS)

    Trimble, Jay Phillip

    2013-01-01

    This is based on a previous talk on agile development. Methods for delivering software on a short cycle are described, including interactions with the customer, the affect on the team, and how to be more effective, streamlined and efficient.

  19. {open_quotes}Airborne Research Australia (ARA){close_quotes} a new research aircraft facility on the southern hemisphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacker, J.M.

    1996-11-01

    {open_quotes}Airborne Research Australia{close_quotes} (ARA) is a new research aircraft facility in Australia. It will serve the scientific community of Australia and will also make its aircraft and expertise available for commercial users. To cover the widest possible range of applications, the facility will operate up to five research aircraft, from a small, low-cost platform to medium-sized multi-purpose aircraft, as well as a unique high altitude aircraft capable of carrying scientific loads to altitudes of up to 15km. The aircraft will be equipped with basic instrumentation and data systems, as well as facilities to mount user-supplied instrumentation and systems internally andmore » externally on the aircraft. The ARA operations base consisting of a hangar, workshops, offices, laboratories, etc. is currently being constructed at Parafield Airport near Adelaide/South Australia. The following text reports about the current state of development of the facility. An update will be given in a presentation at the Conference. 6 figs.« less

  20. Final Report of the NASA Office of Safety and Mission Assurance Agile Benchmarking Team

    NASA Technical Reports Server (NTRS)

    Wetherholt, Martha

    2016-01-01

    To ensure that the NASA Safety and Mission Assurance (SMA) community remains in a position to perform reliable Software Assurance (SA) on NASAs critical software (SW) systems with the software industry rapidly transitioning from waterfall to Agile processes, Terry Wilcutt, Chief, Safety and Mission Assurance, Office of Safety and Mission Assurance (OSMA) established the Agile Benchmarking Team (ABT). The Team's tasks were: 1. Research background literature on current Agile processes, 2. Perform benchmark activities with other organizations that are involved in software Agile processes to determine best practices, 3. Collect information on Agile-developed systems to enable improvements to the current NASA standards and processes to enhance their ability to perform reliable software assurance on NASA Agile-developed systems, 4. Suggest additional guidance and recommendations for updates to those standards and processes, as needed. The ABT's findings and recommendations for software management, engineering and software assurance are addressed herein.

  1. Diagnosing turbulence for research aircraft safety using open source toolkits

    NASA Astrophysics Data System (ADS)

    Lang, T. J.; Guy, N.

    Open source software toolkits have been developed and applied to diagnose in-cloud turbulence in the vicinity of Earth science research aircraft, via analysis of ground-based Doppler radar data. Based on multiple retrospective analyses, these toolkits show promise for detecting significant turbulence well prior to cloud penetrations by research aircraft. A pilot study demonstrated the ability to provide mission scientists turbulence estimates in near real time during an actual field campaign, and thus these toolkits are recommended for usage in future cloud-penetrating aircraft field campaigns.

  2. Impact of Business Intelligence and IT Infrastructure Flexibility on Competitive Advantage: An Organizational Agility Perspective

    ERIC Educational Resources Information Center

    Chen, Xiaofeng

    2012-01-01

    There is growing use of business intelligence (BI) for better management decisions in industry. However, empirical studies on BI are still scarce in academic research. This research investigates BI from an organizational agility perspective. Organizational agility is the ability to sense and respond to market opportunities and threats with speed,…

  3. Aircraft Engine Noise Research and Testing at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Elliott, Dave

    2015-01-01

    The presentation will begin with a brief introduction to the NASA Glenn Research Center as well as an overview of how aircraft engine noise research fits within the organization. Some of the NASA programs and projects with noise content will be covered along with the associated goals of aircraft noise reduction. Topics covered within the noise research being presented will include noise prediction versus experimental results, along with engine fan, jet, and core noise. Details of the acoustic research conducted at NASA Glenn will include the test facilities available, recent test hardware, and data acquisition and analysis methods. Lastly some of the actual noise reduction methods investigated along with their results will be shown.

  4. Aircraft Electric Propulsion Systems Applied Research at NASA

    NASA Technical Reports Server (NTRS)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  5. Global stratospheric change: Requirements for a Very-High-Altitude Aircraft for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The workshop on Requirements for a Very-High-Altitude Aircraft for Atmospheric Research, sponsored by NASA Ames Research Center, was held July 15 to 16, 1989, at Truckee, CA. The workshop had two purposes: to assess the scientific justification for a new aircraft that will support stratospheric research beyond the altitudes accessible to the NASA ER-2; and to determine the aircraft characteristics (e.g., ceiling altitude, payload accommodations, range, flight duration, operational capabilities) required to perform the stratospheric research referred to in the justification. To accomplish these purposes, the workshop brought together a cross-section of stratospheric scientists with several aircraft design and operations experts. The stratospheric scientists included theoreticians as well as experimenters with experience in remote and in situ measurements from satellites, rockets, balloons, aircraft, and the ground. Discussions of required aircraft characteristics focused on the needs of stratospheric research. It was recognized that an aircraft optimal for stratospheric science would also be useful for other applications, including remote measurements of Earth's surface. A brief description of these other applications was given at the workshop.

  6. An Indispensable Ingredient: Flight Research and Aircraft Design

    NASA Technical Reports Server (NTRS)

    Gorn, Michael H.

    2003-01-01

    Flight research-the art of flying actual vehicles in the atmosphere in order to collect data about their behavior-has played a historic and decisive role in the design of aircraft. Naturally, wind tunnel experiments, computational fluid dynamics, and mathematical analyses all informed the judgments of the individuals who conceived of new aircraft. But flight research has offered moments of realization found in no other method. Engineer Dale Reed and research pilot Milt Thompson experienced one such epiphany on March 1, 1963, at the National Aeronautics and Space Administration s Dryden Flight Research Center in Edwards, California. On that date, Thompson sat in the cockpit of a small, simple, gumdrop-shaped aircraft known as the M2-F1, lashed by a long towline to a late-model Pontiac Catalina. As the Pontiac raced across Rogers Dry Lake, it eventually gained enough speed to make the M2-F1 airborne. Thompson braced himself for the world s first flight in a vehicle of its kind, called a lifting body because of its high lift-to-drag ratio. Reed later recounted what he saw:

  7. THE BUREAU OF AERONAUTICS RESEARCH AND DEVELOPMENT PROGRAM FOR WATER-BASED AIRCRAFT,

    DTIC Science & Technology

    WATER BASED AIRCRAFT, BUDGETS), RESEARCH MANAGEMENT, FLIGHT TESTING, WIND TUNNEL MODELS, TABLES(DATA), AIRCRAFT, TEST VEHICLES, HYDRODYNAMICS, PIERS, FLOATING DOCKS, LOADS(FORCES), WATER , STABILITY, SPRAYS, NAVAL AIRCRAFT.

  8. Some historical trends in the research and development of aircraft

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1983-01-01

    A survey of some trends in aircraft design was made in an effort to determine the relation between research, development, test, and evaluation (RDT and E) and aircraft mission capability, requirements, and objectives. Driving forces in the history of aircraft include the quest for speed which involved design concepts incorporating jet propulsion systems and low drag features. The study of high speed design concepts promoted new experimental and analytical research techniques. These research techniques, in turn, have lead to concepts offering new performance potential. Design trends were directed toward increased speed, efficiency, productivity, and safety. Generally speaking, the research and development effort has been evolutionary in nature and, with the exception of the transition to supersonic flight, little has occurred since the origin of flight that has drastically changed the basic design fundamentals of aircraft. However, this does not preclude the possibility of dramatic changes in the future since the products of research are frequently unpredictable. Advances should be expected and sought in improved aerodynamics (reduced drag, enhanced lift, flow field exploitation); propulsion (improved engine cycles, multimode engines, alternate fuels, alternate power sources); structures (new materials, manufacturing techniques); all with a view toward increased efficiency and utility.

  9. STOVL aircraft simulation for integrated flight and propulsion control research

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.; Drummond, Colin K.

    1989-01-01

    The United States is in the initial stages of committing to a national program to develop a supersonic short takeoff and vertical landing (STOVL) aircraft. The goal of the propulsion community in this effort is to have the enabling propulsion technologies for this type aircraft in place to permit a low risk decision regarding the initiation of a research STOVL supersonic attack/fighter aircraft in the late mid-90's. This technology will effectively integrate, enhance, and extend the supersonic cruise, STOVL and fighter/attack programs to enable U.S. industry to develop a revolutionary supersonic short takeoff and vertical landing fighter/attack aircraft in the post-ATF period. A joint NASA Lewis and NASA Ames research program, with the objective of developing and validating technology for integrated-flight propulsion control design methodologies for short takeoff and vertical landing (STOVL) aircraft, was planned and is underway. This program, the NASA Supersonic STOVL Integrated Flight-Propulsion Controls Program, is a major element of the overall NASA-Lewis Supersonic STOVL Propulsion Technology Program. It uses an integrated approach to develop an integrated program to achieve integrated flight-propulsion control technology. Essential elements of the integrated controls research program are realtime simulations of the integrated aircraft and propulsion systems which will be used in integrated control concept development and evaluations. This paper describes pertinent parts of the research program leading up to the related realtime simulation development and remarks on the simulation structure to accommodate propulsion system hardware drop-in for real system evaluation.

  10. An Agile Course-Delivery Approach

    ERIC Educational Resources Information Center

    Capellan, Mirkeya

    2009-01-01

    In the world of software development, agile methodologies have gained popularity thanks to their lightweight methodologies and flexible approach. Many advocates believe that agile methodologies can provide significant benefits if applied in the educational environment as a teaching method. The need for an approach that engages and motivates…

  11. Focused Logistics: Putting Agility in Agile Logistics

    DTIC Science & Technology

    2011-05-19

    list, ahead of companies like American Express, DuPont and Coca Cola ; Supports nearly 1,900 weapon systems; DLA manages eight supply chains and...35 7) Force Health Protection...Distribution, Information Fusion, Joint Theater Logistics Command and Control, Multinational Logistics, Joint Health Services Support, and Agile

  12. Enabling Agile Testing through Continuous Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolberg, Sean E.

    2009-08-24

    A Continuous Integration system is often considered one of the key elements involved in supporting an agile software development and testing environment. As a traditional software tester transitioning to an agile development environment it became clear to me that I would need to put this essential infrastructure in place and promote improved development practices in order to make the transition to agile testing possible. This experience report discusses a continuous integration implementation I lead last year. The initial motivations for implementing continuous integration are discussed and a pre and post-assessment using Martin Fowler's "Practices of Continuous Integration" is provided alongmore » with the technical specifics of the implementation. Finally, I’ll wrap up with a retrospective of my experiences implementing and promoting continuous integration within the context of agile testing.« less

  13. Explaining the Obvious - How Do You Teach Agile?

    NASA Astrophysics Data System (ADS)

    Lundh, Erik

    Agile is now a hot topic and many organizations decide on adopting “agile” without really knowing how and why. This workshop will explore how fresh and seasoned agile coaches teach traditional and novel agile concepts, by example, with discussions. All participants are invited to show and tell about agile with an audience of peers. It might be the fresh first time with an audience, or golden hits that served you well for years.

  14. Rotor systems research aircraft predesign study. Volume 3: Predesign report

    NASA Technical Reports Server (NTRS)

    Schmidt, S. A.; Linden, A. W.

    1972-01-01

    The features of two aircraft designs were selected to be included in the single RSRA configuration. A study was conducted for further preliminary design and a more detailed analysis of development plans and costs. An analysis was also made of foreseeable technical problems and risks, identification of parallel research which would reduce risks and/or add to the basic capability of the aircraft, and a draft aircraft specification.

  15. Some Findings Concerning Requirements in Agile Methodologies

    NASA Astrophysics Data System (ADS)

    Rodríguez, Pilar; Yagüe, Agustín; Alarcón, Pedro P.; Garbajosa, Juan

    Agile methods have appeared as an attractive alternative to conventional methodologies. These methods try to reduce the time to market and, indirectly, the cost of the product through flexible development and deep customer involvement. The processes related to requirements have been extensively studied in literature, in most cases in the frame of conventional methods. However, conclusions of conventional methodologies could not be necessarily valid for Agile; in some issues, conventional and Agile processes are radically different. As recent surveys report, inadequate project requirements is one of the most conflictive issues in agile approaches and better understanding about this is needed. This paper describes some findings concerning requirements activities in a project developed under an agile methodology. The project intended to evolve an existing product and, therefore, some background information was available. The major difficulties encountered were related to non-functional needs and management of requirements dependencies.

  16. Introduction to Stand-up Meetings in Agile Methods

    NASA Astrophysics Data System (ADS)

    Hasnain, Eisha; Hall, Tracy

    2009-05-01

    In recent years, agile methods have become more popular in the software industry. Agile methods are a new approach compared to plan-driven approaches. One of the most important shifts in adopting an agile approach is the central focus given to people in the process. This is exemplified by the independence afforded to developers in the development work they do. This work investigates the opinions of practitioners about daily stand-up meetings in the agile methods and the role of developer in that. For our investigation we joined a yahoo group called "Extreme Programming". Our investigation suggests that although trust is an important factor in agile methods. But stand-ups are not the place to build trust.

  17. Frequency agile optical parametric oscillator

    DOEpatents

    Velsko, S.P.

    1998-11-24

    The frequency agile OPO device converts a fixed wavelength pump laser beam to arbitrary wavelengths within a specified range with pulse to pulse agility, at a rate limited only by the repetition rate of the pump laser. Uses of this invention include Laser radar, LIDAR, active remote sensing of effluents/pollutants, environmental monitoring, antisensor lasers, and spectroscopy. 14 figs.

  18. Frequency agile optical parametric oscillator

    DOEpatents

    Velsko, Stephan P.

    1998-01-01

    The frequency agile OPO device converts a fixed wavelength pump laser beam to arbitrary wavelengths within a specified range with pulse to pulse agility, at a rate limited only by the repetition rate of the pump laser. Uses of this invention include Laser radar, LIDAR, active remote sensing of effluents/pollutants, environmental monitoring, antisensor lasers, and spectroscopy.

  19. Update 2016: Considerations for Using Agile in DoD Acquisition

    DTIC Science & Technology

    2016-12-01

    What Is Agile? 4 2.1 Agile Manifesto and Principles—A Brief History 4 2.2 A Practical Definition 6 2.3 Example Agile Method 6 2.4 Example Agile...5.8 Team Composition 45 5.9 Culture 46 6 Conclusion 48 Appendix A: Examples of Agile Methods 50 Appendix B: Common Objections to Agile 53...thank all those who have contributed to our knowledge of apply- ing “other than traditional” methods for software system acquisition and management over

  20. Cessna UC–78 Bobcat at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1943-10-21

    The Aircraft Engine Research Laboratory acquired the five-seat Cessna UC–78 in March 1943 to maintain the proficiency of its pilots. The UC–78 was referred to as the “Bamboo Bomber” because of its wooden wings and tail and its fabric-covered steel body. The aircraft was produced in 1939 for civilian use, but the military soon began ordering them as training aircraft. The military also began using the aircraft for personnel transport. Cessna produced over 4600 of the aircraft for the military during World War II. The National Advisory Committee for Aeronautics’ (NACA) pilot Howard Lilly flew the UC–78 extensively during its residency in Cleveland. The aircraft was used for ferrying staff members to nearby locations and helping the pilots keep their flying hours up. The UC–78 was transferred in October 1945.

  1. NASA-Langley Research Center's Aircraft Condition Analysis and Management System Implementation

    NASA Technical Reports Server (NTRS)

    Frye, Mark W.; Bailey, Roger M.; Jessup, Artie D.

    2004-01-01

    This document describes the hardware implementation design and architecture of Aeronautical Radio Incorporated (ARINC)'s Aircraft Condition Analysis and Management System (ACAMS), which was developed at NASA-Langley Research Center (LaRC) for use in its Airborne Research Integrated Experiments System (ARIES) Laboratory. This activity is part of NASA's Aviation Safety Program (AvSP), the Single Aircraft Accident Prevention (SAAP) project to develop safety-enabling technologies for aircraft and airborne systems. The fundamental intent of these technologies is to allow timely intervention or remediation to improve unsafe conditions before they become life threatening.

  2. The Holy Grail of Agile Acquisition

    DTIC Science & Technology

    2010-04-01

    Motivation • What is Agility? • Approach C t t Th A i iti S t (Th Bi “A” A i iti P )• on ex : e cqu s on ys em e g cqu s on rocess • Agile Software...Bestsellers…” [Erwin 2009] Motivation • Despite of Erwin’s recommendation… – Agility seems to be a simple concept and it is commonly perceived as a virtue...tension between the numerous stakeholders due to different motivation /behavior • The process elements themselves are complex and ambiguous Slide 16Peter

  3. Oblique Wing Research Aircraft on ramp

    NASA Image and Video Library

    1976-08-02

    This 1976 photograph of the Oblique Wing Research Aircraft was taken in front of the NASA Flight Research Center hangar, located at Edwards Air Force Base, California. In the photograph the noseboom, pitot-static probe, and angles-of-attack and sideslip flow vanes(covered-up) are attached to the front of the vehicle. The clear nose dome for the television camera, and the shrouded propellor for the 90 horsepower engine are clearly seen.

  4. Rolling and tumbling: status of the SuperAGILE experiment

    NASA Astrophysics Data System (ADS)

    Del Monte, E.; Costa, E.; di Persio, G.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Lapshov, I.; Lazzarotto, F.; Mastropietro, M.; Morelli, E.; Pacciani, L.; Rapisarda, M.; Rubini, A.; Soffitta, P.; Tavani, M.; Argan, A.; Trois, A.

    2010-07-01

    The SuperAGILE experiment is the hard X-ray monitor of the AGILE mission. It is a 2 x one-dimensional imager, with 6-arcmin angular resolution in the energy range 18 - 60 keV and a field of view in excess of 1 steradian. SuperAGILE is successfully operating in orbit since Summer 2007, providing long-term monitoring of bright sources and prompt detection and localization of gamma-ray bursts. Starting on October 2009 the AGILE mission lost its reaction wheel and the satellite attitude is no longer stabilized. The current mode of operation of the AGILE satellite is a Spinning Mode, around the Sun-pointing direction, with an angular velocity of about 0.8 degree/s (corresponding to 8 times the SuperAGILE point spread function every second). In these new conditions, SuperAGILE continuously scans a much larger fraction of the sky, with much smaller exposure to each region. In this paper we review some of the results of the first 2.5 years of "standard" operation of SuperAGILE, and show how new implementations in the data analysis software allows to continue the hard X-ray sky monitoring by SuperAGILE also in the new attitude conditions.

  5. Optimal Aircraft Control Upset Recovery With and Without Component Failures

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W.; Moerder, Daniel D.

    2002-01-01

    This paper treats the problem of recovering sustainable nondescending (safe) flight in a transport aircraft after one or more of its control effectors fail. Such recovery can be a challenging goal for many transport aircraft currently in the operational fleet for two reasons. First, they have very little redundancy in their means of generating control forces and moments. These aircraft have, as primary control surfaces, a single rudder and pairwise elevators and aileron/spoiler units that provide yaw, pitch, and roll moments with sufficient bandwidth to be used in stabilizing and maneuvering the airframe. Beyond this, throttling the engines can provide additional moments, but on a much slower time scale. Other aerodynamic surfaces, such as leading and trailing edge flaps, are only intended to be placed in a position and left, and are, hence, very slow-moving. Because of this, loss of a primary control surface strongly degrades the controllability of the vehicle, particularly when the failed effector becomes stuck in a non-neutral position where it exerts a disturbance moment that must be countered by the remaining operating effectors. The second challenge in recovering safe flight is that these vehicles are not agile, nor can they tolerate large accelerations. This is of special importance when, at the outset of the recovery maneuver, the aircraft is flying toward the ground, as is frequently the case when there are major control hardware failures. Recovery of safe flight is examined in this paper in the context of trajectory optimization. For a particular transport aircraft, and a failure scenario inspired by an historical air disaster, recovery scenarios are calculated with and without control surface failures, to bring the aircraft to safe flight from the adverse flight condition that it had assumed, apparently as a result of contact with a vortex from a larger aircraft's wake. An effort has been made to represent relevant airframe dynamics, acceleration limits

  6. NASA Dryden Flight Research Center: Unmanned Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Pestana, Mark

    2010-01-01

    This slide presentation reviews several topics related to operating unmanned aircraft in particular sharing aspects of unmanned aircraft from the perspective of a pilot. There is a section on the Global Hawk project which contains information about the first Global Hawk science mission, (i.e., Global Hawk Pacific (GloPac). Included in this information is GloPac science highlights, a listing of the GloPac Instruments. The second Global Hawk science mission was Genesis and Rapid Intensification Process (GRIP), for the NASA Hurricane Science Research Team. Information includes the instrumentation and the flights that were undertaken during the program. A section on Ikhana is next. This section includes views of the Ground Control Station (GCS), and a discussion of how the piloting of UAS is different from piloting in a manned aircraft. There is also discussion about displays and controls of aircraft. There is also discussion about what makes a pilot. The last section relates the use of Ikhana in the western states fire mission.

  7. Quiet short-haul research aircraft familiarization document. [STOL

    NASA Technical Reports Server (NTRS)

    Mccracken, R. C.

    1979-01-01

    The design features and general characteristics of the NASA Quiet Short-Haul Research Aircraft are described. Aerodynamic characteristics and performance are discussed based on predictions and early flight-test data. Principle airplane systems, including the airborne data-acquisition system, are also described. The aircraft was designed and built to fulfill the need for a national research facility to explore the use of upper surface-blowing propulsive-lift technology in providing short takeoff and landing capability, and perform advanced experiments in various technical disciplines such as aerodynamics, propulsion, stability and control, handling qualities, avionics and flight-control systems, trailing-vortex phenomena, acoustics, structure and loads, operating systems, human factors, and airworthiness/certification criteria. An unusually austere approach using experimental shop practices resulted in a low cost and high research capability.

  8. The Preparation of Cognitively Agile Principals for Turnaround Schools: A Leadership Preparation Programme Study

    ERIC Educational Resources Information Center

    Reyes-Guerra, Daniel; Pisapia, John; Mick, Annie

    2016-01-01

    The purpose of this study was to examine the ability of two educational leadership university programmes to improve the cognitive agility of their graduates. The research looked to discover whether the aspiring principals exited the programmes with an increased ability to employ cognitive agility--the ability to use the multiple thinking skills of…

  9. Organizational Culture and the Deployment of Agile Methods: The Competing Values Model View

    NASA Astrophysics Data System (ADS)

    Iivari, Juhani; Iivari, Netta

    A number of researchers have identified organizational culture as a factor that potentially affects the deployment of agile systems development methods. Inspired by the study of Iivari and Huisman (2007), which focused on the deployment of traditional systems development methods, the present paper proposes a number of hypotheses about the influence of organizational culture on the deployment of agile methods.

  10. Insights into Global Health Practice from the Agile Software Development Movement.

    PubMed

    Flood, David; Chary, Anita; Austad, Kirsten; Diaz, Anne Kraemer; García, Pablo; Martinez, Boris; Canú, Waleska López; Rohloff, Peter

    2016-01-01

    Global health practitioners may feel frustration that current models of global health research, delivery, and implementation are overly focused on specific interventions, slow to provide health services in the field, and relatively ill-equipped to adapt to local contexts. Adapting design principles from the agile software development movement, we propose an analogous approach to designing global health programs that emphasizes tight integration between research and implementation, early involvement of ground-level health workers and program beneficiaries, and rapid cycles of iterative program improvement. Using examples from our own fieldwork, we illustrate the potential of 'agile global health' and reflect on the limitations, trade-offs, and implications of this approach.

  11. Guidelines for composite materials research related to general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Dow, N. F.; Humphreys, E. A.; Rosen, B. W.

    1983-01-01

    Guidelines for research on composite materials directed toward the improvement of all aspects of their applicability for general aviation aircraft were developed from extensive studies of their performance, manufacturability, and cost effectiveness. Specific areas for research and for manufacturing development were identified and evaluated. Inputs developed from visits to manufacturers were used in part to guide these evaluations, particularly in the area of cost effectiveness. Throughout the emphasis was to direct the research toward the requirements of general aviation aircraft, for which relatively low load intensities are encountered, economy of production is a prime requirement, and yet performance still commands a premium. A number of implications regarding further directions for developments in composites to meet these requirements also emerged from the studies. Chief among these is the need for an integrated (computer program) aerodynamic/structures approach to aircraft design.

  12. Manx: Close air support aircraft preliminary design

    NASA Technical Reports Server (NTRS)

    Amy, Annie; Crone, David; Hendrickson, Heidi; Willis, Randy; Silva, Vince

    1991-01-01

    The Manx is a twin engine, twin tailed, single seat close air support design proposal for the 1991 Team Student Design Competition. It blends advanced technologies into a lightweight, high performance design with the following features: High sensitivity (rugged, easily maintained, with night/adverse weather capability); Highly maneuverable (negative static margin, forward swept wing, canard, and advanced avionics result in enhanced aircraft agility); and Highly versatile (design flexibility allows the Manx to contribute to a truly integrated ground team capable of rapid deployment from forward sites).

  13. Backscatter-depolarisation lidars on high-altitude research aircraft

    NASA Astrophysics Data System (ADS)

    Mitev, Valentin; Matthey, Renaud; Makarov, Vladislav

    2014-11-01

    This article presents an overview of the development and the applications of two compact elastic backscatter depolarisation lidars, installed on-board the high-altitude research aircraft Myasishchev M-55 Geophysica. The installation of the lidars is intended for simultaneous probing of air parcels respectively upward and downward from the aircraft flight altitude to identify the presence of clouds (or aerosol )above and below the aircraft and to collocate them with in situ instruments. The lidar configuration and the procedure for its on-ground validation is outlined. Example of airborne measurements include polar stratospheric clouds, both synoptical and in lee-waves, ultra-thin cirrus clouds around the tropical tropopause and observation of aerosol layers emerging from the top of deep tropical convection.

  14. Social Protocols for Agile Virtual Teams

    NASA Astrophysics Data System (ADS)

    Picard, Willy

    Despite many works on collaborative networked organizations (CNOs), CSCW, groupware, workflow systems and social networks, computer support for virtual teams is still insufficient, especially support for agility, i.e. the capability of virtual team members to rapidly and cost efficiently adapt the way they interact to changes. In this paper, requirements for computer support for agile virtual teams are presented. Next, an extension of the concept of social protocol is proposed as a novel model supporting agile interactions within virtual teams. The extended concept of social protocol consists of an extended social network and a workflow model.

  15. Civil Aircraft Side-Facing Seat Research Summary

    DTIC Science & Technology

    2012-11-01

    1983 to 2005, Proceedings of the American Helicopter Society Forum 66, Phoenix, Arizona, May 10-13, 2010. 11. Tulloch, J. Ejection Seat Back...Civil Aircraft Side-Facing Seat Research Summary Richard DeWeese David Moorcroft Civil Aerospace Medical Institute Federal Aviation...

  16. Resilient Propulsion Control Research for the NASA Integrated Resilient Aircraft Control (IRAC) Project

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei; Litt, Jonathan S.

    2007-01-01

    Gas turbine engines are designed to provide sufficient safety margins to guarantee robust operation with an exceptionally long life. However, engine performance requirements may be drastically altered during abnormal flight conditions or emergency maneuvers. In some situations, the conservative design of the engine control system may not be in the best interest of overall aircraft safety; it may be advantageous to "sacrifice" the engine to "save" the aircraft. Motivated by this opportunity, the NASA Aviation Safety Program is conducting resilient propulsion research aimed at developing adaptive engine control methodologies to operate the engine beyond the normal domain for emergency operations to maximize the possibility of safely landing the damaged aircraft. Previous research studies and field incident reports show that the propulsion system can be an effective tool to help control and eventually land a damaged aircraft. Building upon the flight-proven Propulsion Controlled Aircraft (PCA) experience, this area of research will focus on how engine control systems can improve aircraft safe-landing probabilities under adverse conditions. This paper describes the proposed research topics in Engine System Requirements, Engine Modeling and Simulation, Engine Enhancement Research, Operational Risk Analysis and Modeling, and Integrated Flight and Propulsion Controller Designs that support the overall goal.

  17. NASA/Ames Research Center's science and applications aircraft program

    NASA Technical Reports Server (NTRS)

    Hall, G. Warren

    1991-01-01

    NASA-Ames Research Center operates a fleet of seven Science and Applications Aircraft, namely the C-141/Kuiper Airborne Observatory (KAO), DC-8, C-130, Lear Jet, and three ER-2s. These aircraft are used to satisfy two major objectives, each of equal importance. The first is to acquire remote and in-situ scientific data in astronomy, astrophysics, earth sciences, ocean processes, atmospheric physics, meteorology, materials processing and life sciences. The second major objective is to expedite the development of sensors and their attendant algorithms for ultimate use in space and to simulate from an aircraft, the data to be acquired from spaceborne sensors. NASA-Ames Science and Applications Aircraft are recognized as national and international facilities. They have performed and will continue to perform, operational missions from bases in the United States and worldwide. Historically, twice as many investigators have requested flight time than could be accommodated. This situation remains true today and is expected to increase in the years ahead. A major advantage of the existing fleet of aircraft is their ability to cover a large expanse of the earth's ecosystem from the surface to the lower stratosphere over large distances and time aloft. Their large payload capability allows a number of scientists to use multi-investigator sensor suites to permit simultaneous and complementary data gathering. In-flight changes to the sensors or data systems have greatly reduced the time required to optimize the development of new instruments. It is doubtful that spaceborne systems will ever totally replace the need for airborne science aircraft. The operations philosophy and capabilities exist at NASA-Ames Research Center.

  18. Agile Preparation within a Traditional Project Management Course

    ERIC Educational Resources Information Center

    Landry, Jeffrey P.; McDaniel, Rachel

    2016-01-01

    Agile software approaches have seen a steady rise over a decade and a half, but agile's place in the information systems (IS) undergraduate curriculum is far from settled. While agile concepts may arguably be taught in multiple places in the IS curriculum, this paper argues for its inclusion in a project management course. This paper builds on…

  19. Physical demand of seven closed agility drills.

    PubMed

    Atkinson, Mark; Rosalie, Simon; Netto, Kevin

    2016-11-01

    The present study aimed to quantify the demand of seven generic, closed agility drills. Twenty males with experience in invasion sports volunteered to participate in this study. They performed seven, closed agility drills over a standardised 30-m distance. Physical demand measures of peak velocity, total foot contacts, peak impacts, completion time, and maximum heart rate were obtained via the use of wearable sensor technologies. A subjective rating of perceived exertion (RPE) was also obtained. All measures, with the exception of maximum heart rates and RPE were able to delineate drills in terms of physical and physiological demand. The findings of this study exemplify the differences in demand of agility-type movements. Drill demand was dictated by the type of agility movement initiated with the increase in repetitiveness of a given movement type also contributing to increased demand. Findings from this study suggest agility drills can be manipulated to vary physical and physiological demand. This allows for the optimal application of training principles such as overload, progression, and periodisation.

  20. The Introduction of Agility into Albania.

    ERIC Educational Resources Information Center

    Smith-Stevens, Eileen J.; Shkurti, Drita

    1998-01-01

    Describes a plan to introduce and achieve a national awareness of agility (and easy entry into the world market) for Albania through the relatively stable higher-education order. Agility's four strategic principles are enriching the customer, cooperating to enhance competitiveness, organizing to master change and uncertainty, and leveraging the…

  1. NASA's Ship-Aircraft Bio-Optical Research (SABOR)

    NASA Image and Video Library

    2017-12-08

    Storm in the Sargasso Sea Scientist aboard the R/V Endeavor in the Sargasso Sea put their research on hold on July 28, 2014, as a storm system brought high waves crashing onto the deck. NASA's Ship-Aircraft Bio-Optical Research (SABOR) experiment is a coordinated ship and aircraft observation campaign off the Atlantic coast of the United States, an effort to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain. Read more: 1.usa.gov/WWRVzj Credit: NASA/SABOR/Chris Armanetti, University of Rhode Island .NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. CT-assisted agile manufacturing

    NASA Astrophysics Data System (ADS)

    Stanley, James H.; Yancey, Robert N.

    1996-11-01

    The next century will witness at least two great revolutions in the way goods are produced. First, workers will use the medium of virtual reality in all aspects of marketing, research, development, prototyping, manufacturing, sales and service. Second, market forces will drive manufacturing towards small-lot production and just-in-time delivery. Already, we can discern the merging of these megatrends into what some are calling agile manufacturing. Under this new paradigm, parts and processes will be designed and engineered within the mind of a computer, tooled and manufactured by the offspring of today's rapid prototyping equipment, and evaluated for performance and reliability by advanced nondestructive evaluation (NDE) techniques and sophisticated computational models. Computed tomography (CT) is the premier example of an NDE method suitable for future agile manufacturing activities. It is the only modality that provides convenient access to the full suite of engineering data that users will need to avail themselves of computer- aided design, computer-aided manufacturing, and computer- aided engineering capabilities, as well as newly emerging reverse engineering, rapid prototyping and solid freeform fabrication technologies. As such, CT is assured a central, utilitarian role in future industrial operations. An overview of this exciting future for industrial CT is presented.

  3. Insights into Global Health Practice from the Agile Software Development Movement

    PubMed Central

    Flood, David; Chary, Anita; Austad, Kirsten; Diaz, Anne Kraemer; García, Pablo; Martinez, Boris; Canú, Waleska López; Rohloff, Peter

    2016-01-01

    Global health practitioners may feel frustration that current models of global health research, delivery, and implementation are overly focused on specific interventions, slow to provide health services in the field, and relatively ill-equipped to adapt to local contexts. Adapting design principles from the agile software development movement, we propose an analogous approach to designing global health programs that emphasizes tight integration between research and implementation, early involvement of ground-level health workers and program beneficiaries, and rapid cycles of iterative program improvement. Using examples from our own fieldwork, we illustrate the potential of ‘agile global health’ and reflect on the limitations, trade-offs, and implications of this approach. PMID:27134081

  4. Research on rapid agile metrology for manufacturing based on real-time multitask operating system

    NASA Astrophysics Data System (ADS)

    Chen, Jihong; Song, Zhen; Yang, Daoshan; Zhou, Ji; Buckley, Shawn

    1996-10-01

    Rapid agile metrology for manufacturing (RAMM) using multiple non-contact sensors is likely to remain a growing trend in manufacturing. High speed inspecting systems for manufacturing is characterized by multitasks implemented in parallel and real-time events which occur simultaneously. In this paper, we introduce a real-time operating system into RAMM research. A general task model of a class-based object- oriented technology is proposed. A general multitask frame of a typical RAMM system using OPNet is discussed. Finally, an application example of a machine which inspects parts held on a carrier strip is described. With RTOS and OPNet, this machine can measure two dimensions of the contacts at 300 parts/second.

  5. Groundbreaking for the NACA’s Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1941-01-21

    Local politicians and National Advisory Committee for Aeronautics (NACA) officials were on hand for the January 23, 1941 groundbreaking for the NACA’s Aircraft Engine Research Laboratory (AERL). The NACA was established in 1915 to coordinate the nation’s aeronautical research. The committee opened a research laboratory at Langley Field in 1920. By the late 1930s, however, European nations, Germany in particular, were building faster and higher flying aircraft. The NACA decided to expand with a new Ames Aeronautical Laboratory dedicated to high-speed flight and the AERL to handle engine-related research. The NACA examined a number of Midwest locations for its new engine lab before deciding on Cleveland. At the time, Cleveland possessed the nation’s most advanced airport, several key aircraft manufacturing companies, and was home to the National Air Races. Local officials were also able to broker a deal with the power company to discount its electricity rates if the large wind tunnels were operated overnight. The decision was made in October 1940, and the groundbreaking alongside the airport took place on January 23, 1941. From left to right: William Hopkins, John Berry, Ray Sharp, Frederick Crawford, George Brett, Edward Warner, Sydney Kraus, Edward Blythin, and George Lewis

  6. A Roadmap for Using Agile Development in a Traditional Environment

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara A.; Starbird, Thomas; Grenander, Sven

    2006-01-01

    One of the newer classes of software engineering techniques is called 'Agile Development'. In Agile Development software engineers take small implementation steps and, in some cases they program in pairs. In addition, they develop automatic tests prior to implementing their small functional piece. Agile Development focuses on rapid turnaround, incremental planning, customer involvement and continuous integration. Agile Development is not the traditional waterfall method or even a rapid prototyping method (although this methodology is closer to Agile Development). At Jet Propulsion Laboratory (JPL) a few groups have begun Agile Development software implementations. The difficulty with this approach becomes apparent when Agile Development is used in an organization that has specific criteria and requirements handed down for how software development is to be performed. The work at the JPL is performed for the National Aeronautics and Space Agency (NASA). Both organizations have specific requirements, rules and procedure for developing software. This paper will discuss the some of the initial uses of the Agile Development methodology, the spread of this method and the current status of the successful incorporation into the current JPL development policies.

  7. Perspectives on Agile Coaching

    NASA Astrophysics Data System (ADS)

    Fraser, Steven; Lundh, Erik; Davies, Rachel; Eckstein, Jutta; Larsen, Diana; Vilkki, Kati

    There are many perspectives to agile coaching including: growing coaching expertise, selecting the appropriate coach for your context; and eva luating value. A coach is often an itinerant who may observe, mentor, negotiate, influence, lead, and/or architect everything from team organization to system architecture. With roots in diverse fields ranging from technology to sociology coaches have differing motivations and experience bases. This panel will bring together coaches to debate and discuss various perspectives on agile coaching. Some of the questions to be addressed will include: What are the skills required for effective coaching? What should be the expectations for teams or individu als being coached? Should coaches be: a corporate resource (internal team of consultants working with multiple internal teams); an integral part of a specific team; or external contractors? How should coaches exercise influence and au thority? How should management assess the value of a coaching engagement? Do you have what it takes to be a coach? - This panel will bring together sea soned agile coaches to offer their experience and advice on how to be the best you can be!

  8. Agile Mcal, the Mini-Calorimeter

    NASA Astrophysics Data System (ADS)

    Bastia, Paolo; Poulsen, Jens Michael; Monzani, Franco; Radaelli, Paolo; Marchesi, Paolo; Labanti, Claudio; Marisaldi, Martino; Fuschino, Fabio; Bulgarelli, Andrea

    2006-04-01

    AGILE is a scientific mission dedicated to gamma-ray astrophysics in space, and the mini-calorimeter MCAL is one of four detector systems on the satellite. The MCAL instrument is sensitive in the energy range: 300 keV - 100 MeV. It has two main functions: one autonomous mode for detection of impulsive cosmic events and the other as “a slave” supporting the energy measurements of the pair-conversion tracker. The AGILE Small Mission is funded by the Italian Space Agency (ASI), and the INAF-IASF section at Bologna has the scientific responsibility for MCAL. LABEN develops the MCAL instrument with its detectors and electronics. This paper gives an overview of the detectors on AGILE, and then it gives details on the design of MCAL, and finally we report on the tests at instrument level.

  9. Survey-based analysis of risk factors for injury among dogs participating in agility training and competition events.

    PubMed

    Cullen, Kimberley L; Dickey, James P; Bent, Leah R; Thomason, Jeffrey J; Moëns, Noel M M

    2013-10-01

    To identify potential risk factors for agility-related injuries among dogs. Internet-based, retrospective, cross-sectional survey. 3,801 privately owned dogs participating in agility training or trials. A retrospective electronic survey was used to investigate potential risk factors for injury among dogs participating in agility-related activities. Respondents were handlers recruited through member lists of large canine agility associations in Canada and the United Kingdom and through promotion on an agility blog site. Variables evaluated included demographic information for handlers and dogs, exposure variables (eg, frequency of agility practice and competition in the past year), and use of preventive measures intended to keep dogs fit for agility (warmup, cooldown, or conditioning exercises; alternative therapeutic treatments [eg, acupuncture, massage, or chiropractic care]; or dietary supplement products). Data were collected from 1,669 handlers of 3,801 agility dogs internationally; 1,209 (32%) dogs incurred ≥ 1 injury. Previous injury (OR, 100.5), ≤ 4 years of agility experience for dogs (OR, 1.5), use of alternative therapeutic treatments (OR, 1.5), and Border Collie breed (OR, 1.7) were associated with increased odds of injury. Handlers having 5 to 10 or > 10 years of experience (OR, 0.8 and 0.6, respectively) and dogs having > 4 years of experience in the sport (OR, 0.6) were associated with decreased odds of injury. Specific factors were associated with agility-related injuries in dogs. Educational prevention strategies should target at-risk populations in an effort to reduce potential injuries. Future research should focus on the biomechanical factors associated with agility-related injuries.

  10. Evaluation of XV-15 tilt rotor aircraft for flying qualities research application

    NASA Technical Reports Server (NTRS)

    Radford, R. C.; Schelhorn, A. E.; Siracuse, R. J.; Till, R. D.; Wasserman, R.

    1976-01-01

    The results of a design review study and evaluation of the XV-15 Tilt Rotor Research Aircraft for flying qualities research application are presented. The objectives of the program were to determine the capability of the XV-15 aircraft and the V/STOLAND system as a safe, inflight facility to provide meaningful research data on flying qualities, flight control systems, and information display systems.

  11. Rotor systems research aircraft predesign study. Volume 2: Conceptual study report

    NASA Technical Reports Server (NTRS)

    Schmidt, S. A.; Linden, A. W.

    1972-01-01

    The overall feasibility of the technical requirements and concepts for a rotor system research aircraft (RSRA) was determined. The designs of two aircraft were then compared against the RSRA requirements. One of these is an all new aircraft specifically designed as an RSRA vehicle. A new main rotor, transmission, wings, and fuselage are included in this design. The second aircraft uses an existing Sikorsky S-61 main rotor, an S-61 roller gearbox, and a highly modified Sikorsky S-67 airframe. The wing for this aircraft is a new design. Both aircraft employ a fan-in-fin anti-torque/yaw control system, T58-GE-16 engines for rotor power, and TF34-GE-2 turbofans for auxiliary thrust. Each aircraft meets the basic requirements and goals of the program. The all new aircraft has inflight variable main rotor shaft tilt, a side-by-side cockpit seating arrangement, and is slightly faster in the compound mode. It is also somewhat lighter since it uses new dynamic components specifically designed for the RSRA. Preliminary development plans, including schedules and costs, were prepared for both of these aircraft.

  12. NASA's Ship-Aircraft Bio-Optical Research (SABOR)

    NASA Image and Video Library

    2014-08-25

    Fixing the "Fish" On July 19, 2014, Wayne Slade of Sequoia Scientific, and Allen Milligan of Oregon State University, made adjustments to the "fish" that researchers used to hold seawater collected from a depth of about 3 meters (10 feet) while the ship was underway. NASA's Ship-Aircraft Bio-Optical Research (SABOR) experiment is a coordinated ship and aircraft observation campaign off the Atlantic coast of the United States, an effort to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain. Read more: 1.usa.gov/WWRVzj Credit: NASA/SABOR/Wayne Slade, Sequoia Scientific .NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. NASA's Ship-Aircraft Bio-Optical Research (SABOR)

    NASA Image and Video Library

    2014-08-25

    Catnap at Sea Ali Chase of the University of Maine, and Courtney Kearney of the Naval Research Laboratory, caught a quick nap on July 24, 2014, while between successive stops at sea to make measurements from the R/V Endeavor. NASA's Ship-Aircraft Bio-Optical Research (SABOR) experiment is a coordinated ship and aircraft observation campaign off the Atlantic coast of the United States, an effort to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain. Read more: 1.usa.gov/WWRVzj Credit: NASA/SABOR/Wayne Slade, Sequoia Scientific..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Agile Manifesto for Teaching and Learning

    ERIC Educational Resources Information Center

    Krehbiel, Timothy C.; Salzarulo, Peter A.; Cosmah, Michelle L.; Forren, John; Gannod, Gerald; Havelka, Douglas; Hulshult, Andrea R.; Merhout, Jeffrey

    2017-01-01

    A group of faculty members representing six colleges at a public university formed a learning community to study the Agile Way of Working--a method of workplace collaboration widely used in software development--and to determine whether the concepts, practices, and benefits of Agile are applicable to higher education settings. After more than two…

  15. Aeroservoelastic Modeling and Validation of a Thrust-Vectoring F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1996-01-01

    An F/A-18 aircraft was modified to perform flight research at high angles of attack (AOA) using thrust vectoring and advanced control law concepts for agility and performance enhancement and to provide a testbed for the computational fluid dynamics community. Aeroservoelastic (ASE) characteristics had changed considerably from the baseline F/A-18 aircraft because of structural and flight control system amendments, so analyses and flight tests were performed to verify structural stability at high AOA. Detailed actuator models that consider the physical, electrical, and mechanical elements of actuation and its installation on the airframe were employed in the analysis to accurately model the coupled dynamics of the airframe, actuators, and control surfaces. This report describes the ASE modeling procedure, ground test validation, flight test clearance, and test data analysis for the reconfigured F/A-18 aircraft. Multivariable ASE stability margins are calculated from flight data and compared to analytical margins. Because this thrust-vectoring configuration uses exhaust vanes to vector the thrust, the modeling issues are nearly identical for modem multi-axis nozzle configurations. This report correlates analysis results with flight test data and makes observations concerning the application of the linear predictions to thrust-vectoring and high-AOA flight.

  16. A candidate V/STOL research aircraft design concept using an S-3A aircraft and 2 Pegasus 11 engines

    NASA Technical Reports Server (NTRS)

    Lampkin, B. A.

    1980-01-01

    A candidate V/STOL research aircraft concept which uses an S-3A airframe and two Pegasus 11 engines was studied to identify a feasible V/STOL national flight facility that could be obtained at the lowest possible cost for the demonstration of V/STOL technology, inflight simulation, and flight research. The rationale for choosing the configuration, a description of the configuration, and the capability of a fully developed aircraft are discussed.

  17. Test Methods for Robot Agility in Manufacturing.

    PubMed

    Downs, Anthony; Harrison, William; Schlenoff, Craig

    2016-01-01

    The paper aims to define and describe test methods and metrics to assess industrial robot system agility in both simulation and in reality. The paper describes test methods and associated quantitative and qualitative metrics for assessing robot system efficiency and effectiveness which can then be used for the assessment of system agility. The paper describes how the test methods were implemented in a simulation environment and real world environment. It also shows how the metrics are measured and assessed as they would be in a future competition. The test methods described in this paper will push forward the state of the art in software agility for manufacturing robots, allowing small and medium manufacturers to better utilize robotic systems. The paper fulfills the identified need for standard test methods to measure and allow for improvement in software agility for manufacturing robots.

  18. A Roadmap for Using Agile Development in a Traditional Environment

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara; Starbird, Thomas; Grenander, Sven

    2006-01-01

    One of the newer classes of software engineering techniques is called 'Agile Development'. In Agile Development software engineers take small implementation steps and, in some cases, they program in pairs. In addition, they develop automatic tests prior to implementing their small functional piece. Agile Development focuses on rapid turnaround, incremental planning, customer involvement and continuous integration. Agile Development is not the traditional waterfall method or even a rapid prototyping method (although this methodology is closer to Agile Development). At the Jet Propulsion Laboratory (JPL) a few groups have begun Agile Development software implementations. The difficulty with this approach becomes apparent when Agile Development is used in an organization that has specific criteria and requirements handed down for how software development is to be performed. The work at the JPL is performed for the National Aeronautics and Space Agency (NASA). Both organizations have specific requirements, rules and processes for developing software. This paper will discuss some of the initial uses of the Agile Development methodology, the spread of this method and the current status of the successful incorporation into the current JPL development policies and processes.

  19. Inserting Agility in System Development

    DTIC Science & Technology

    2012-07-01

    Agile IT Acquisition, IT Box, Scrum Inserting Agility in System Development Matthew R. Kennedy and Lt Col Dan Ward, USAF With the fast-paced nature...1,700 individuals and 71 countries, found Scrum and eXtreme Programming to be the most widely followed method- ologies (VersionOne, 2007). Other...University http://www.dau.mil 259 Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264 Scrum Scrum is a framework used for project management, which is

  20. Guard House at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-08-21

    A vehicle leaves the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory on August 14, 1945. At 7 p.m. that evening President Truman announced that Japan had accepted terms for surrender and World War II was over. The end of the war brought significant changes for the laboratory. The NACA would cease its troubleshooting of military aircraft and return to research. Researchers would increase their efforts to address the new technologies that emerged during the war. The entire laboratory was reorganized in October to better investigate turbojets, ramjets, and rockets. The guard house sat on the main entrance to the laboratory off of Brookpark Road. The building was fairly small and easily crowded. In the early 1960s a new security facility was built several hundred feet beyond the original guard house. The original structure remained in place for several years but was not utilized. The subsequent structure was replaced in 2011 by a new building and entrance configuration.

  1. Search of GRB with AGILE Minicalorimeter

    NASA Astrophysics Data System (ADS)

    Fuschino, F.; Labanti, C.; Galli, M.; Marisaldi, M.; Bulgarelli, A.; Gianotti, F.; Trifoglio, M.; Argan, A.; Del Monte, E.; Donnarumma, I.; Feroci, M.; Lazzarotto, F.; Pacciani, L.; Tavani, M.; Trois, A.

    2008-04-01

    AGILE, the small scientific mission of the Italian Space Agency devoted to Hard-X and Gamma-ray astrophysics, was successfully launched on April 23, 2007. The AGILE payload is composed of a tungsten-silicon tracker (ST), operating in the gamma-ray energy range 30 MeV 50 GeV; Super-AGILE, an X-ray imager operating in the energy range 15 45 keV; the Minicalorimeter (MCAL) and an Anticoincidence shield. MCAL is a detector of about 1400 cm2 sensitive in the range 0.3 200 MeV, that can be used both as a slave of the ST to contribute to the AGILE Gamma Ray imaging Detector (GRID operative mode) and autonomously for detection of transient events (BURST operative mode). MCAL is made of 30 CsI(Tl) bar-shaped scintillation detectors with photodiode readout at both ends, arranged in two orthogonal layers. Energy and position of interaction can be derived from a proper composition of the signals readout at the bar's ends, absolute time tagging can be achieved with a μs resolution. The Burst logic deals with various rate-meters on different time scales, energy bands, and MCAL spatial zones. Different algorithms can be chosen for Burst triggering considering also the contribution of other detectors like Super AGILE. In this paper the various trigger logic will be reviewed as well as their on-ground test performed with a dedicated experimental setup.

  2. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft

    NASA Technical Reports Server (NTRS)

    Calise, A. J.; Kadushin, I.; Kramer, F.

    1981-01-01

    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.

  3. Total Eclipse From Onboard NASA's G-III Research Aircraft

    NASA Image and Video Library

    2017-09-13

    As the 2017 solar eclipse approaches and enters totality, NASA Armstrong staff and NASA senior management share their excitement and first-hand experience from aboard NASA’s Armstrong Flight Research Center Gulfstream III aircraft. The G-III aircraft flew at 35,000 feet above the coast of Oregon during the 2017 total solar eclipse, capturing some of the very first views of the 2017 total solar eclipse as it made its way across the United States.

  4. Quiet short-haul research aircraft familiarization document, revision 1

    NASA Technical Reports Server (NTRS)

    Eppel, J. C.

    1981-01-01

    The design features and general characteristics of the Quiet Short Haul Research Aircraft are described. Aerodynamic characteristics and performance are discussed based on predictions and early flight test data. Principle airplane systems, including the airborne data acquisition system, are also described. The aircraft was designed and built to fulfill the need for a national research facility to explore the use of upper surface blowing, propulsive lift technology in providing short takeoff and landing capability, and perform advanced experiments in various technical disciplines such as aerodynamics, propulsion, stability and control, handling qualities, avionics and flight control systems, trailing vortex phenomena, acoustics, structure and loads, operating systems, human factors, and airworthiness/certification criteria. An unusually austere approach using experimental shop practices resulted in a low cost and high research capability.

  5. Test Methods for Robot Agility in Manufacturing

    PubMed Central

    Downs, Anthony; Harrison, William; Schlenoff, Craig

    2017-01-01

    Purpose The paper aims to define and describe test methods and metrics to assess industrial robot system agility in both simulation and in reality. Design/methodology/approach The paper describes test methods and associated quantitative and qualitative metrics for assessing robot system efficiency and effectiveness which can then be used for the assessment of system agility. Findings The paper describes how the test methods were implemented in a simulation environment and real world environment. It also shows how the metrics are measured and assessed as they would be in a future competition. Practical Implications The test methods described in this paper will push forward the state of the art in software agility for manufacturing robots, allowing small and medium manufacturers to better utilize robotic systems. Originality / value The paper fulfills the identified need for standard test methods to measure and allow for improvement in software agility for manufacturing robots. PMID:28203034

  6. Agility assessment using fuzzy logic approach: a case of healthcare dispensary.

    PubMed

    Suresh, M; Patri, Rojalin

    2017-06-09

    Agile concepts are not only beneficial for manufacturing sector but also for service sector such as healthcare. However, assessment of agility has been predominantly done in manufacturing enterprises. This study demonstrates a means to measure agility of a healthcare organization by assessing agility of a university dispensary. Its contribution to the knowledge base is twofold. First, it proposes a means to measure the agility of a healthcare organization and second, it identifies the attributes that prevent agile performance and outlines the suggestive measure to enhance its agile capabilities. A case study approach has been adopted and fuzzy logic has been employed to measure the agility of the case dispensary. At first, the measures of assessment which include four enablers, fifteen criteria and forty-five attributes have been identified from the literature and rated by the experts indicating the importance of the measures in the assessment. Then, the case dispensary has been assessed on those measures by collecting observed performance rating from decision makers. At last, Fuzzy logic has been applied on the performance rating data to analyze and interpret the agile capability of the dispensary. The findings suggest that transparent information flow, adequate salary and bonuses for caregivers, reading error in medical descriptions, in house/nearby pathology laboratory services, technical up-gradation of dispensary equipments and facilities, minimization of patient throughput time and adequate training programme for safety practices are the attributes that weakens agile capability of the University dispensary. The current agility of the dispensary was found to be 'Agile' which is average in relation to the agility labels. Attributes such as transparent information flow, adequate salary and bonuses for caregivers, elimination of reading error in medical descriptions, in house/nearby pathology laboratory services, technical up-gradation of dispensary equipments

  7. A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control

    NASA Astrophysics Data System (ADS)

    Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi; Yasui, Hisako

    The Integrated Flight and Propulsion Control (IFPC) for a highly maneuverable aircraft and a fighter-class engine with pitch/yaw thrust vectoring is described. Of the two IFPC functions the aircraft maneuver control utilizes the thrust vectoring based on aerodynamic control surfaces/thrust vectoring control allocation specified by the Integrated Control Unit (ICU) of a FADEC (Full Authority Digital Electronic Control) system. On the other hand in the Performance Seeking Control (PSC) the ICU identifies engine's various characteristic changes, optimizes manipulated variables and finally adjusts engine control parameters in cooperation with the Engine Control Unit (ECU). It is shown by hardware-in-the-loop simulation that the thrust vectoring can enhance aircraft maneuverability/agility and that the PSC can improve engine performance parameters such as SFC (specific fuel consumption), thrust and gas temperature.

  8. Eclipse Shadow from NASA's G-III Research Aircraft

    NASA Image and Video Library

    2017-08-21

    From aboard NASA's Armstrong Flight Research Center G-III aircraft, this wide angle video of the moon's umbra was captured as they flew over the coast of Oregon, near Lincoln City at 35,00 feet during the eclipse.

  9. Measuring the Impact of Agile Coaching on Students' Performance

    ERIC Educational Resources Information Center

    Rodríguez, Guillermo; Soria, Álvaro; Campo, Marcelo

    2016-01-01

    Nowadays, considerable attention is paid to agile methods as a means to improve management of software development processes. The widespread use of such methods in professional contexts has encouraged their integration into software engineering training and undergraduate courses. Although several research efforts have focused on teaching Scrum…

  10. V/STOL tilt rotor aircraft study. Volume 6: Preliminary design of a composite wing for tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Soule, V. A.; Badri-Nath, Y.

    1973-01-01

    The results of a study of the use of composite materials in the wing of a tilt rotor aircraft are presented. An all-metal tilt rotor aircraft was first defined to provide a basis for comparing composite with metal structure. A configuration study was then done in which the wing of the metal aircraft was replaced with composite wings of varying chord and thickness ratio. The results of this study defined the design and performance benefits obtainable with composite materials. Based on these results the aircraft was resized with a composite wing to extend the weight savings to other parts of the aircraft. A wing design was then selected for detailed structural analysis. A development plan including costs and schedules to develop this wing and incorporate it into a proposed flight research tilt rotor vehicle has been devised.

  11. Peridigm summary report : lessons learned in development with agile components.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salinger, Andrew Gerhard; Mitchell, John Anthony; Littlewood, David John

    2011-09-01

    This report details efforts to deploy Agile Components for rapid development of a peridynamics code, Peridigm. The goal of Agile Components is to enable the efficient development of production-quality software by providing a well-defined, unifying interface to a powerful set of component-based software. Specifically, Agile Components facilitate interoperability among packages within the Trilinos Project, including data management, time integration, uncertainty quantification, and optimization. Development of the Peridigm code served as a testbed for Agile Components and resulted in a number of recommendations for future development. Agile Components successfully enabled rapid integration of Trilinos packages into Peridigm. A cost of thismore » approach, however, was a set of restrictions on Peridigm's architecture which impacted the ability to track history-dependent material data, dynamically modify the model discretization, and interject user-defined routines into the time integration algorithm. These restrictions resulted in modifications to the Agile Components approach, as implemented in Peridigm, and in a set of recommendations for future Agile Components development. Specific recommendations include improved handling of material states, a more flexible flow control model, and improved documentation. A demonstration mini-application, SimpleODE, was developed at the onset of this project and is offered as a potential supplement to Agile Components documentation.« less

  12. Developing a model for agile supply: an empirical study from Iranian pharmaceutical supply chain.

    PubMed

    Rajabzadeh Ghatari, Ali; Mehralian, Gholamhossein; Zarenezhad, Forouzandeh; Rasekh, Hamid Reza

    2013-01-01

    Agility is the fundamental characteristic of a supply chain needed for survival in turbulent markets, where environmental forces create additional uncertainty resulting in higher risk in the supply chain management. In addition, agility helps providing the right product, at the right time to the consumer. The main goal of this research is therefore to promote supplier selection in pharmaceutical industry according to the formative basic factors. Moreover, this paper can configure its supply network to achieve the agile supply chain. The present article analyzes the supply part of supply chain based on SCOR model, used to assess agile supply chains by highlighting their specific characteristics and applicability in providing the active pharmaceutical ingredient (API). This methodology provides an analytical modeling; the model enables potential suppliers to be assessed against the multiple criteria using both quantitative and qualitative measures. In addition, for making priority of critical factors, TOPSIS algorithm has been used as a common technique of MADM model. Finally, several factors such as delivery speed, planning and reorder segmentation, trust development and material quantity adjustment are identified and prioritized as critical factors for being agile in supply of API.

  13. Developing a Model for Agile Supply: an Empirical Study from Iranian Pharmaceutical Supply Chain

    PubMed Central

    Rajabzadeh Ghatari, Ali; Mehralian, Gholamhossein; Zarenezhad, Forouzandeh; Rasekh, Hamid Reza

    2013-01-01

    Agility is the fundamental characteristic of a supply chain needed for survival in turbulent markets, where environmental forces create additional uncertainty resulting in higher risk in the supply chain management. In addition, agility helps providing the right product, at the right time to the consumer. The main goal of this research is therefore to promote supplier selection in pharmaceutical industry according to the formative basic factors. Moreover, this paper can configure its supply network to achieve the agile supply chain. The present article analyzes the supply part of supply chain based on SCOR model, used to assess agile supply chains by highlighting their specific characteristics and applicability in providing the active pharmaceutical ingredient (API). This methodology provides an analytical modeling; the model enables potential suppliers to be assessed against the multiple criteria using both quantitative and qualitative measures. In addition, for making priority of critical factors, TOPSIS algorithm has been used as a common technique of MADM model. Finally, several factors such as delivery speed, planning and reorder segmentation, trust development and material quantity adjustment are identified and prioritized as critical factors for being agile in supply of API. PMID:24250689

  14. Agile Methods: Selected DoD Management and Acquisition Concerns

    DTIC Science & Technology

    2011-10-01

    SIDRE Software Intensive Innovative Development and Reengineering/Evolution SLIM Software Lifecycle Management -Estimate SLOC source lines of code...ISBN #0321502752 Coaching Agile Teams Lyssa Adkins ISBN #0321637704 Agile Project Management : Creating Innovative Products – Second Edition Jim...Accessed July 13, 2011. [Highsmith 2009] Highsmith, J. Agile Project Management : Creating Innovative Products, 2nd ed. Addison- Wesley, 2009

  15. X-36 on Ramp Viewed from Above

    NASA Image and Video Library

    1997-07-16

    This look-down view of the X-36 Tailless Fighter Agility Research Aircraft on the ramp at NASA’s Dryden Flight Research Center, Edwards, California, clearly shows the unusual wing and canard design of the remotely-piloted aircraft.

  16. Laterality and performance of agility-trained dogs.

    PubMed

    Siniscalchi, Marcello; Bertino, Daniele; Quaranta, Angelo

    2014-01-01

    Correlations between lateralised behaviour and performance were investigated in 19 agility-trained dogs (Canis familiaris) by scoring paw preference to hold a food object and relating it to performance during typical agility obstacles (jump/A-frame and weave poles). In addition, because recent behavioural studies reported that visual stimuli of emotional valence presented to one visual hemifield at a time affect visually guided motor responses in dogs, the possibility that the position of the owner respectively in the left and in the right canine visual hemifield might be associated with quality of performance during agility was considered. Dogs' temperament was also measured by an owner-rated questionnaire. The most relevant finding was that agility-trained dogs displayed longer latencies to complete the obstacles with the owner located in their left visual hemifield compared to the right. Interestingly, the results showed that this phenomenon was significantly linked to both dogs' trainability and the strength of paw preference.

  17. Distilling Design Patterns From Agile Curation Case Studies

    NASA Astrophysics Data System (ADS)

    Benedict, K. K.; Lenhardt, W. C.; Young, J. W.

    2016-12-01

    In previous work the authors have argued that there is a need to take a new look at the data management lifecycle. Our core argument is that the data management lifecycle needs to be in essence deconstructed and rebuilt. As part of this process we also argue that much can be gained from applying ideas, concepts, and principles from agile software development methods. To be sure we are not arguing for a rote application of these agile software approaches, however, given various trends related to data and technology, it is imperative to update our thinking about how to approach the data management lifecycle, recognize differing project scales, corresponding variations in structure, and alternative models for solving the problems of scientific data curation. In this paper we will describe what we term agile curation design patterns, borrowing the concept of design patterns from the software world and we will present some initial thoughts on agile curation design patterns as informed by a sample of data curation case studies solicited from participants in agile data curation meeting sessions conducted in 2015-16.

  18. Dryden F-8 Research Aircraft Fleet 1973 in flight, DFBW and SCW

    NASA Technical Reports Server (NTRS)

    1973-01-01

    F-8 Digital Fly-By-Wire (left) and F-8 Supercritical Wing in flight. These two aircraft fundamentally changed the nature of aircraft design. The F-8 DFBW pioneered digital flight controls and led to such computer-controlled airacrft as the F-117A, X-29, and X-31. Airliners such as the Boeing 777 and Airbus A320 also use digital fly-by-wire systems. The other aircraft is a highly modified F-8A fitted with a supercritical wing. Dr. Richard T. Whitcomb of Langley Research Center originated the supercritical wing concept in the late 1960s. (Dr. Whitcomb also developed the concept of the 'area rule' in the early 1950s. It singificantly reduced transonic drag.) The F-8 Digital Fly-By-Wire (DFBW) flight research project validated the principal concepts of all-electric flight control systems now used on nearly all modern high-performance aircraft and on military and civilian transports. The first flight of the 13-year project was on May 25, 1972, with research pilot Gary E. Krier at the controls of a modified F-8C Crusader that served as the testbed for the fly-by-wire technologies. The project was a joint effort between the NASA Flight Research Center, Edwards, California, (now the Dryden Flight Research Center) and Langley Research Center. It included a total of 211 flights. The last flight was December 16, 1985, with Dryden research pilot Ed Schneider at the controls. The F-8 DFBW system was the forerunner of current fly-by-wire systems used in the space shuttles and on today's military and civil aircraft to make them safer, more maneuverable, and more efficient. Electronic fly-by-wire systems replaced older hydraulic control systems, freeing designers to design aircraft with reduced in-flight stability. Fly-by-wire systems are safer because of their redundancies. They are more maneuverable because computers can command more frequent adjustments than a human pilot can. For airliners, computerized control ensures a smoother ride than a human pilot alone can provide

  19. The F-18 High Alpha Research Vehicle: A High-Angle-of-Attack Testbed Aircraft

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria; Gatlin, Donald; Kempel, Robert; Matheny, Neil

    1992-01-01

    The F-18 High Alpha Research Vehicle is the first thrust-vectoring testbed aircraft used to study the aerodynamics and maneuvering available in the poststall flight regime and to provide the data for validating ground prediction techniques. The aircraft includes a flexible research flight control system and full research instrumentation. The capability to control the vehicle at angles of attack up to 70 degrees is also included. This aircraft was modified by adding a pitch and yaw thrust-vectoring system. No significant problems occurred during the envelope expansion phase of the program. This aircraft has demonstrated excellent control in the wing rock region and increased rolling performance at high angles of attack. Initial pilot reports indicate that the increased capability is desirable although some difficulty in judging the size and timing of control inputs was observed. The aircraft, preflight ground testing and envelope expansion flight tests are described.

  20. Agile Objects

    ERIC Educational Resources Information Center

    German, Senta; Harris, Jim

    2017-01-01

    In this article, the authors argue that the art-historical canon, however it is construed, has little relevance to the selection of objects for museum-based teaching. Their contention is that all objects are fundamentally agile and capable of interrogation from any number of disciplinary standpoints, and that the canon of museum education,…

  1. The agile alert system for gamma-ray transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulgarelli, A.; Trifoglio, M.; Gianotti, F.

    2014-01-20

    In recent years, a new generation of space missions has offered great opportunities for discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) on board the AGILE space mission. AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many γ-ray transients of both galactic and extragalactic origin. This work presents the AGILE innovative approach to fast γ-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe (1) the AGILE Gamma-Ray Alert System, (2) a newmore » algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for γ-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, via e-mail, and via push notifications from an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in γ-ray astrophysics.« less

  2. The AGILE Alert System for Gamma-Ray Transients

    NASA Astrophysics Data System (ADS)

    Bulgarelli, A.; Trifoglio, M.; Gianotti, F.; Tavani, M.; Parmiggiani, N.; Fioretti, V.; Chen, A. W.; Vercellone, S.; Pittori, C.; Verrecchia, F.; Lucarelli, F.; Santolamazza, P.; Fanari, G.; Giommi, P.; Beneventano, D.; Argan, A.; Trois, A.; Scalise, E.; Longo, F.; Pellizzoni, A.; Pucella, G.; Colafrancesco, S.; Conforti, V.; Tempesta, P.; Cerone, M.; Sabatini, P.; Annoni, G.; Valentini, G.; Salotti, L.

    2014-01-01

    In recent years, a new generation of space missions has offered great opportunities for discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) on board the AGILE space mission. AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many γ-ray transients of both galactic and extragalactic origin. This work presents the AGILE innovative approach to fast γ-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for γ-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, via e-mail, and via push notifications from an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in γ-ray astrophysics.

  3. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    NASA Technical Reports Server (NTRS)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  4. Teaching Agile Software Development: A Case Study

    ERIC Educational Resources Information Center

    Devedzic, V.; Milenkovic, S. R.

    2011-01-01

    This paper describes the authors' experience of teaching agile software development to students of computer science, software engineering, and other related disciplines, and comments on the implications of this and the lessons learned. It is based on the authors' eight years of experience in teaching agile software methodologies to various groups…

  5. Rotor systems research aircraft simulation mathematical model

    NASA Technical Reports Server (NTRS)

    Houck, J. A.; Moore, F. L.; Howlett, J. J.; Pollock, K. S.; Browne, M. M.

    1977-01-01

    An analytical model developed for evaluating and verifying advanced rotor concepts is discussed. The model was used during in both open loop and real time man-in-the-loop simulation during the rotor systems research aircraft design. Future applications include: pilot training, preflight of test programs, and the evaluation of promising concepts before their implementation on the flight vehicle.

  6. Lockheed ER-2 high altitude research aircraft

    NASA Image and Video Library

    1997-11-04

    ER-2 tail number 706, was one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft were platforms for a variety of high-altitude science missions flown over various parts of the world. They were also used for earth science and atmospheric sensor research and development, satellite calibration and data validation.

  7. Agile Methods in Air Force Sustainment: Status and Outlook

    DTIC Science & Technology

    2014-07-01

    Schwaber ISBN10: 073561993X X X Agile Project Management : Creating Innovative Products – 2nd Edition Jim Highsmith ISBN 0321658396 X Agile...ISBN 0787974277 X Leading Change John Kotter ISBN 0875847471 X Leading Geeks: How to Manage and Lead the People Who Deliver Technology Paul ...Development: Achieving Enterprise Agility Alan Shalloway, Guy Beaver, and James R. Trott ISBN 0321532899 X Managing Transitions: Making the Most of

  8. Recent Developments in Aircraft Flyover Noise Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Sullivan, Brenda M.; Aumann, Aric R.

    2008-01-01

    The NASA Langley Research Center is involved in the development of a new generation of synthesis and simulation tools for creation of virtual environments used in the study of aircraft community noise. The original emphasis was on simulation of flyover noise associated with subsonic fixed wing aircraft. Recently, the focus has shifted to rotary wing aircraft. Many aspects of the simulation are applicable to both vehicle classes. Other aspects, particularly those associated with synthesis, are more vehicle specific. This paper discusses the capabilities of the current suite of tools, their application to fixed and rotary wing aircraft, and some directions for the future.

  9. A Case Study of Coordination in Distributed Agile Software Development

    NASA Astrophysics Data System (ADS)

    Hole, Steinar; Moe, Nils Brede

    Global Software Development (GSD) has gained significant popularity as an emerging paradigm. Companies also show interest in applying agile approaches in distributed development to combine the advantages of both approaches. However, in their most radical forms, agile and GSD can be placed in each end of a plan-based/agile spectrum because of how work is coordinated. We describe how three GSD projects applying agile methods coordinate their work. We found that trust is needed to reduce the need of standardization and direct supervision when coordinating work in a GSD project, and that electronic chatting supports mutual adjustment. Further, co-location and modularization mitigates communication problems, enables agility in at least part of a GSD project, and renders the implementation of Scrum of Scrums possible.

  10. Simulation test results for lift/cruise fan research and technology aircraft

    NASA Technical Reports Server (NTRS)

    Bland, M. P.; Konsewicz, R. K.

    1976-01-01

    A flight simulation program was conducted on the flight simulator for advanced aircraft (FSAA). The flight simulation was a part of a contracted effort to provide a lift/cruise fan V/STOL aircraft mathematical model for flight simulation. The simulated aircraft is a configuration of the Lift/Cruise Fan V/STOL research technology aircraft (RTA). The aircraft was powered by three gas generators driving three fans. One lift fan was installed in the nose of the aircraft, and two lift/cruise fans at the wing root. The thrust of these fans was modulated to provide pitch and roll control, and vectored to provide yaw, side force control, and longitudinal translation. Two versions of the RTA were defined. One was powered by the GE J97/LF460 propulsion system which was gas-coupled for power transfer between fans for control. The other version was powered by DDA XT701 gas generators driving 62 inch variable pitch fans. The flight control system in both versions of the RTA was the same.

  11. Steam Plant at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-09-21

    The Steam Plant at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory supplies steam to the major test facilities and office buildings. Steam is used for the Icing Research Tunnel's spray system and the Engine Research Building’s desiccant air dryers. In addition, its five boilers supply heat to various buildings and the cafeteria. Schirmer-Schneider Company built the $141,000 facility in the fall of 1942, and it has been in operation ever since.

  12. Agile Data Curation at a State Geological Survey

    NASA Astrophysics Data System (ADS)

    Hills, D. J.

    2015-12-01

    State agencies, including geological surveys, are often the gatekeepers for myriad data products essential for scientific research and economic development. For example, the Geological Survey of Alabama (GSA) is mandated to explore for, characterize, and report Alabama's mineral, energy, water, and biological resources in support of economic development, conservation, management, and public policy for the betterment of Alabama's citizens, communities, and businesses. As part of that mandate, the GSA has increasingly been called upon to make our data more accessible to stakeholders. Even as demand for greater data accessibility grows, budgets for such efforts are often small, meaning that agencies must do more for less. Agile software development has yielded efficient, effective products, most often at lower cost and in shorter time. Taking guidance from the agile software development model, the GSA is working towards more agile data management and curation. To date, the GSA's work has been focused primarily on data rescue. By using workflows that maximize clear communication while encouraging simplicity (e.g., maximizing the amount of work not done or that can be automated), the GSA is bringing decades of dark data into the light. Regular checks by the data rescuer with the data provider (or their proxy) provides quality control without adding an overt burden on either party. Moving forward, these workflows will also allow for more efficient and effective data management.

  13. Combining Agile and Traditional: Customer Communication in Distributed Environment

    NASA Astrophysics Data System (ADS)

    Korkala, Mikko; Pikkarainen, Minna; Conboy, Kieran

    Distributed development is a radically increasing phenomenon in modern software development environments. At the same time, traditional and agile methodologies and combinations of those are being used in the industry. Agile approaches place a large emphasis on customer communication. However, existing knowledge on customer communication in distributed agile development seems to be lacking. In order to shed light on this topic and provide practical guidelines for companies in distributed agile environments, a qualitative case study was conducted in a large globally distributed software company. The key finding was that it might be difficult for an agile organization to get relevant information from a traditional type of customer organization, even though the customer communication was indicated to be active and utilized via multiple different communication media. Several challenges discussed in this paper referred to "information blackout" indicating the importance of an environment fostering meaningful communication. In order to evaluate if this environment can be created a set of guidelines is proposed.

  14. The AGILE Mission and Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, Francesco; INFN, section of Trieste; Tavani, M.

    2007-05-01

    The AGILE Mission will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational at the beginning of 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources, Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a largemore » field of view covering {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV. The broadband detection of GRBs and the study of implications for particle acceleration and high energy emission are primary goals of the mission. AGILE can image GRBs with 2-3 arcminute error boxes in the hard X-ray range, and provide broadband photon-by photon detection in the 15-45 keV, 03-50 MeV, and 30 MeV-30 GeV energy ranges. Microsecond on-board photon tagging and a {approx} 100 microsecond gamma-ray detection deadtime will be crucial for fast GRB timing. On-board calculated GRB coordinates and energy fluxes will be quickly transmitted to the ground by an ORBCOMM transceiver. AGILE is now (January 2007) undergoing final satellite integration and testing. The PLS V launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.« less

  15. Upset Simulation and Training Initiatives for U.S. Navy Commercial Derived Aircraft

    NASA Technical Reports Server (NTRS)

    Donaldson, Steven; Priest, James; Cunningham, Kevin; Foster, John V.

    2012-01-01

    Militarized versions of commercial platforms are growing in popularity due to many logistical benefits in the form of commercial off-the-shelf (COTS) parts, established production methods, and commonality for different certifications. Commercial data and best practices are often leveraged to reduce procurement and engineering development costs. While the developmental and cost reduction benefits are clear, these militarized aircraft are routinely operated in flight at significantly different conditions and in significantly different manners than for routine commercial flight. Therefore they are at a higher risk of flight envelope exceedance. This risk may lead to departure from controlled flight and/or aircraft loss1. Historically, the risk of departure from controlled flight for military aircraft has been mitigated by piloted simulation training and engineering analysis of typical aircraft response. High-agility military aircraft simulation databases are typically developed to include high angles of attack (AoA) and sideslip due to the dynamic nature of their missions and have been developed for many tactical configurations over the previous decades. These aircraft simulations allow for a more thorough understanding of the vehicle flight dynamics characteristics at high AoA and sideslip. In recent years, government sponsored research on transport airplane aerodynamic characteristics at high angles of attack has produced a growing understanding of stall/post-stall behavior. This research along with recent commercial airline training initiatives has resulted in improved understanding of simulator-based training requirements and simulator model fidelity.2-5 In addition, inflight training research over the past decade has produced a database of pilot performance and recurrency metrics6. Innovative solutions to aerodynamically model large commercial aircraft for upset conditions such as high AoA, high sideslip, and ballistic damage, as well as capability to accurately

  16. Gender-specific influences of balance, speed, and power on agility performance.

    PubMed

    Sekulic, Damir; Spasic, Miodrag; Mirkov, Dragan; Cavar, Mile; Sattler, Tine

    2013-03-01

    The quick change of direction (i.e., agility) is an important athletic ability in numerous sports. Because of the diverse and therefore hardly predictable manifestations of agility in sports, studies noted that the improvement in speed, power, and balance should result in an improvement of agility. However, there is evident lack of data regarding the influence of potential predictors on different agility manifestations. The aim of this study was to determine the gender-specific influence of speed, power, and balance on different agility tests. A total of 32 college-aged male athletes and 31 college-aged female athletes (age 20.02 ± 1.89 years) participated in this study. The subjects were mostly involved in team sports (soccer, team handball, basketball, and volleyball; 80% of men, and 75% of women), martial arts, gymnastics, and dance. Anthropometric variables consisted of body height, body weight, and the body mass index. Five agility tests were used: a t-test (T-TEST), zig-zag test, 20-yard shuttle test, agility test with a 180-degree turn, and forward-backward running agility test (FWDBWD). Other tests included 1 jumping ability power test (squat jump, SQJ), 2 balance tests to determine the overall stability index and an overall limit of stability score (both measured by Biodex Balance System), and 2 running speed tests using a straight sprint for 10 and 20 m (S10 and S20, respectively). A reliability analysis showed that all the agility tests were reliable. Multiple regression and correlation analysis found speed and power (among women), and balance (among men), as most significant predictors of agility. The highest Pearson's correlation in both genders is found between the results of the FWDBWD and S10M tests (0.77 and 0.81 for men and women, respectively; p < 0.05). Power, measured using the SQJ, is significantly (p < 0.05) related to FWDBWD and T-TEST results but only for women (-0.44; -0.41). The balance measures were significantly related to the agility

  17. Kedalion: NASA's Adaptable and Agile Hardware/Software Integration and Test Lab

    NASA Technical Reports Server (NTRS)

    Mangieri, Mark L.; Vice, Jason

    2011-01-01

    NASA fs Kedalion engineering analysis lab at Johnson Space Center is on the forefront of validating and using many contemporary avionics hardware/software development and integration techniques, which represent new paradigms to heritage NASA culture. Kedalion has validated many of the Orion hardware/software engineering techniques borrowed from the adjacent commercial aircraft avionics solution space, with the intention to build upon such techniques to better align with today fs aerospace market. Using agile techniques, commercial products, early rapid prototyping, in-house expertise and tools, and customer collaboration, Kedalion has demonstrated that cost effective contemporary paradigms hold the promise to serve future NASA endeavors within a diverse range of system domains. Kedalion provides a readily adaptable solution for medium/large scale integration projects. The Kedalion lab is currently serving as an in-line resource for the project and the Multipurpose Crew Vehicle (MPCV) program.

  18. The NASA Earth Research-2 (ER-2) Aircraft: A Flying Laboratory for Earth Science Studies

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2007-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, California, has two Lockheed Martin Corporation (Bethesda, Maryland) Earth Research-2 (ER2) aircraft that serve as high-altitude and long-range flying laboratories. The ER-2 aircraft has been successfully utilized to conduct scientific studies of stratospheric and tropospheric chemistry, land-use mapping, disaster assessment, preliminary testing and calibration and validation of satellite sensors. The research missions for the ER-2 aircraft are planned, implemented, and managed by the Dryden Flight Research Center Science Mission Directorate. Maintenance and instrument payload integration is conducted by Dryden personnel. The ER-2 aircraft provides experimenters with a wide array of payload accommodations areas with suitable environment control with required electrical and mechanical interfaces. Missions may be flown out of Dryden or from remote bases worldwide, according to research requirements. The NASA ER-2 aircraft is utilized by a variety of customers, including U.S. Government agencies, civilian organizations, universities, and state governments. The combination of the ER-2 aircraft s range, endurance, altitude, payload power, payload volume and payload weight capabilities complemented by a trained maintenance and operations team provides an excellent and unique platform system to the science community and other customers.

  19. A comparison of linear speed, closed-skill agility, and open-skill agility qualities between backcourt and frontcourt adult semiprofessional male basketball players.

    PubMed

    Scanlan, Aaron T; Tucker, Patrick S; Dalbo, Vincent J

    2014-05-01

    The measurement of fitness qualities relevant to playing position is necessary to inform basketball coaching and conditioning staff of role-related differences in playing groups. To date, sprinting and agility performance have not been compared between playing positions in adult male basketball players. Therefore, the purpose of this study was to describe and compare linear speed, closed-skill agility, and open-skill agility qualities between backcourt (point guard and shooting guard positions) and frontcourt (small forward, power forward, and center positions) semiprofessional basketball players. Six backcourt (mean ± SD: age, 24.3 ± 7.9 years; stature, 183.4 ± 4.0 cm; body mass, 85.5 ± 12.3 kg; VO2max, 51.9 ± 4.8 ml·kg(-1)·min(-1)) and 6 frontcourt (mean ± SD: age, 27.5 ± 5.5 years; stature, 194.4 ± 7.1 cm; body mass, 109.4 ± 8.8 kg; VO2max, 47.1 ± 5.0 ml·kg(-1)·min(-1)) adult male basketball players completed 20-m sprint, closed-skill agility, and open-skill agility performance tests. Magnitude-based inferences revealed that backcourt players (5 m, 1.048 ± 0.027 seconds; 10 m, 1.778 ± 0.048 seconds; 20 m, 3.075 ± 0.121 seconds) possessed likely quicker linear sprint times than frontcourt players (5 m, 1.095 ± 0.085 seconds; 10 m, 1.872 ± 0.127 seconds; 20 m, 3.242 ± 0.221 seconds). Conversely, frontcourt players (1.665 ± 0.096 seconds) held possible superior closed-skill agility performance than backcourt players (1.613 ± 0.111 seconds). In addition, unclear positional differences were apparent for open-skill agility qualities. These findings indicate that linear speed and change of direction speed might be differently developed across playing positions. Furthermore, position-related functions might similarly depend on the aspects of open-skill agility performance across backcourt and frontcourt players. Basketball coaching and conditioning staff should consider the development of position-targeted training drills to improve speed, agility

  20. Towards a Better Understanding of CMMI and Agile Integration - Multiple Case Study of Four Companies

    NASA Astrophysics Data System (ADS)

    Pikkarainen, Minna

    The amount of software is increasing in the different domains in Europe. This provides the industries in smaller countries good opportunities to work in the international markets. Success in the global markets however demands the rapid production of high quality, error free software. Both CMMI and agile methods seem to provide a ready solution for quality and lead time improvements. There is not, however, much empirical evidence available either about 1) how the integration of these two aspects can be done in practice or 2) what it actually demands from assessors and software process improvement groups. The goal of this paper is to increase the understanding of CMMI and agile integration, in particular, focusing on the research question: how to use ‘lightweight’ style of CMMI assessments in agile contexts. This is done via four case studies in which assessments were conducted using the goals of CMMI integrated project management and collaboration and coordination with relevant stakeholder process areas and practices from XP and Scrum. The study shows that the use of agile practices may support the fulfilment of the goals of CMMI process areas but there are still many challenges for the agile teams to be solved within the continuous improvement programs. It also identifies practical advices to the assessors and improvement groups to take into consideration when conducting assessment in the context of agile software development.

  1. Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy; Dyson, Rodger; Felder, James L.

    2017-01-01

    NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL (Technology Readiness Level) level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT - NASA’s Electric Aircraft Testbed) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST - Hybrid-Electric Integrated Systems Testbed) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.

  2. Identification, Characterization, and Evaluation Criteria for Systems Engineering Agile Enablers

    DTIC Science & Technology

    2015-01-16

    Identification, Characterization, and Evaluation Criteria for Systems Engineering Agile Enablers Technical Report SERC -2015-TR-049-1...Task Order 024, RT 124 Report No. SERC -2015-TR-049-1 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...Technology The Systems Engineering Research Center ( SERC ) is a federally funded University Affiliated Research Center managed by Stevens Institute of

  3. Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy; Dyson, Rodger; Felder, James L.

    2017-01-01

    NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.

  4. The impact of flying qualities on helicopter operational agility

    NASA Technical Reports Server (NTRS)

    Padfield, Gareth D.; Lappos, Nick; Hodgkinson, John

    1993-01-01

    Flying qualities standards are formally set to ensure safe flight and therefore reflect minimum, rather than optimum, requirements. Agility is a flying quality but relates to operations at high, if not maximum, performance. While the quality metrics and test procedures for flying, as covered for example in ADS33C, may provide an adequate structure to encompass agility, they do not currently address flight at high performance. This is also true in the fixed-wing world and a current concern in both communities is the absence of substantiated agility criteria and possible conflicts between flying qualities and high performance. AGARD is sponsoring a working group (WG19) title 'Operational Agility' that deals with these and a range of related issues. This paper is condensed from contributions by the three authors to WG19, relating to flying qualities. Novel perspectives on the subject are presented including the agility factor, that quantifies performance margins in flying qualities terms; a new parameter, based on maneuver acceleration is introduced as a potential candidate for defining upper limits to flying qualities. Finally, a probabilistic analysis of pilot handling qualities ratings is presented that suggests a powerful relationship between inherent airframe flying qualities and operational agility.

  5. NASA's Ship-Aircraft Bio-Optical Research (SABOR)

    NASA Image and Video Library

    2014-08-25

    Sunset Over the Gulf of Maine On July 20, 2013, scientists at sea with NASA's SABOR experiment witnessed a spectacular sunset over the Gulf of Maine. NASA's Ship-Aircraft Bio-Optical Research (SABOR) experiment is a coordinated ship and aircraft observation campaign off the Atlantic coast of the United States, an effort to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain. Read more: 1.usa.gov/WWRVzj Credit: NASA/SABOR/Wayne Slade, Sequoia Scientific .NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. NASA's Ship-Aircraft Bio-Optical Research (SABOR)

    NASA Image and Video Library

    2017-12-08

    Instruments Overboard On July 26, 2014, scientists worked past dusk to prepare and deploy the optical instruments and ocean water sensors during NASA's SABOR experiment. NASA's Ship-Aircraft Bio-Optical Research (SABOR) experiment is a coordinated ship and aircraft observation campaign off the Atlantic coast of the United States, an effort to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain. Read more: 1.usa.gov/WWRVzj Credit: NASA/SABOR/Wayne Slade, Sequoia Scientific . NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Conceptual design study of a Harrier V/STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Bode, W. E.; Berger, R. L.; Elmore, G. A.; Lacey, T. R.

    1978-01-01

    MCAIR recently completed a conceptual design study to define modification approaches to, and derive planning prices for the conversion of a two place Harrier to a V/STOL control, display and guidance research aircraft. Control concepts such as rate damping, attitude stabilization, velocity command, and cockpit controllers are to be demonstrated. Display formats will also be investigated, and landing, navigation and guidance systems flight tested. The rear cockpit is modified such that it can be quickly adapted to faithfully simulate the controls, displays and handling qualities of a Type A or Type B V/STOL. The safety pilot always has take command capability. The modifications studied fall into two categories: basic modifications and optional modifications. Technical descriptions of the basic modifications and of the optional modifications are presented. The modification plan and schedule as well as the test plan and schedule are presented. The failure mode and effects analysis, aircraft performance, aircraft weight, and aircraft support are discussed.

  8. Delaying Mobility Disability in People With Parkinson Disease Using a Sensorimotor Agility Exercise Program

    PubMed Central

    King, Laurie A; Horak, Fay B

    2009-01-01

    This article introduces a new framework for therapists to develop an exercise program to delay mobility disability in people with Parkinson disease (PD). Mobility, or the ability to efficiently navigate and function in a variety of environments, requires balance, agility, and flexibility, all of which are affected by PD. This article summarizes recent research identifying how constraints on mobility specific to PD, such as rigidity, bradykinesia, freezing, poor sensory integration, inflexible program selection, and impaired cognitive processing, limit mobility in people with PD. Based on these constraints, a conceptual framework for exercises to maintain and improve mobility is presented. An example of a constraint-focused agility exercise program, incorporating movement principles from tai chi, kayaking, boxing, lunges, agility training, and Pilates exercises, is presented. This new constraint-focused agility exercise program is based on a strong scientific framework and includes progressive levels of sensorimotor, resistance, and coordination challenges that can be customized for each patient while maintaining fidelity. Principles for improving mobility presented here can be incorporated into an ongoing or long-term exercise program for people with PD. PMID:19228832

  9. Delaying mobility disability in people with Parkinson disease using a sensorimotor agility exercise program.

    PubMed

    King, Laurie A; Horak, Fay B

    2009-04-01

    This article introduces a new framework for therapists to develop an exercise program to delay mobility disability in people with Parkinson disease (PD). Mobility, or the ability to efficiently navigate and function in a variety of environments, requires balance, agility, and flexibility, all of which are affected by PD. This article summarizes recent research identifying how constraints on mobility specific to PD, such as rigidity, bradykinesia, freezing, poor sensory integration, inflexible program selection, and impaired cognitive processing, limit mobility in people with PD. Based on these constraints, a conceptual framework for exercises to maintain and improve mobility is presented. An example of a constraint-focused agility exercise program, incorporating movement principles from tai chi, kayaking, boxing, lunges, agility training, and Pilates exercises, is presented. This new constraint-focused agility exercise program is based on a strong scientific framework and includes progressive levels of sensorimotor, resistance, and coordination challenges that can be customized for each patient while maintaining fidelity. Principles for improving mobility presented here can be incorporated into an ongoing or long-term exercise program for people with PD.

  10. Unveiling of sign for Walter C. Williams Research Aircraft Integration Facility

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In a brief ceremony following a memorial service for the late Walter C. Williams on November 17, 1995, the Integrated Test Facility (ITF) at the NASA Dryden Flight Research Center at Edwards, California, was formally renamed the Walter C. Williams Research Aircraft Integration Facility. Shown is the family of Walt Williams: Helen, his widow, sons Charles and Howard, daughter Elizabeth Williams Powell, their spouses and children unveiling the new sign redesignating the Facility. The test facility provides state-of-the-art capabilities for thorough ground testing of advanced research aircraft. It allows researchers and technicians to integrate and test aircraft systems before each research flight, which greatly enhances the safety of each mission. In September 1946 Williams became engineer-in-charge of a team of five engineers who arrived at Muroc Army Air Base (now Edwards AFB) from the National Advisory Committee for Aeronautics's Langley Memorial Aeronautical Laboratory, Hampton, Virginia (now NASA's Langley Research Center), to prepare for supersonic research flights in a joint NACA-Army Air Forces program involving the rocket-powered X-1. This established the first permanent NACA presence at the Mojave Desert site although initially the five engineers and others who followed them were on temporary assignment. Over time, Walt continued to be in charge during the many name changes for the NACA-NASA organization, with Williams ending his stay as Chief of the NASA Flight Research Center in September 1959 (today NASA's Dryden Flight Research Center).

  11. A study for active control research and validation using the Total In-Flight Simulator (TIFS) aircraft

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Daughaday, H.; Andrisani, D., II; Till, R. D.; Weingarten, N. C.

    1975-01-01

    The results of a feasibility study and preliminary design for active control research and validation using the Total In-Flight Simulator (TIFS) aircraft are documented. Active control functions which can be demonstrated on the TIFS aircraft and the cost of preparing, equipping, and operating the TIFS aircraft for active control technology development are determined. It is shown that the TIFS aircraft is as a suitable test bed for inflight research and validation of many ACT concepts.

  12. Performance and safety aspects of the XV-15 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Wernicke, K. G.

    1977-01-01

    Aircraft performance is presented illustrating the flexibility and capability of the XV-15 to conduct its planned proof-of-concept flight research in the areas of dynamics, stability and control, and aerodynamics. Additionally, the aircraft will demonstrate mission-type performance typical of future operational aircraft. The aircraft design is described and discussed with emphasis on the safety and fail-operate features of the aircraft and its systems. Two or more levels of redundancy are provided in the dc and ac electrical systems, hydraulics, conversion, flaps, landing gear extension, SCAS, and force-feel. RPM is maintained by a hydro-electrical blade pitch governor that consists of a primary and standby governor with a cockpit wheel control for manual backup. The two engines are interconnected for operation on a single engine. In the event of total loss of power, the aircraft can enter autorotation starting from the airplane as well as the helicopter mode of flight.

  13. Developing a Framework for Control of Agile Aircraft Platforms in Autonomous Hover

    DTIC Science & Technology

    2009-03-01

    profiles. Two dynamical systems are considered, a scale YAK -54 aerobatic remote control aircraft and the Flexrotor concept developed by Aerovel. Both models...System [28]. . . . . . . 2 1.2 A YAK -54 in hover in the Real Flight RC Simulator [24]. . . . . . . . 3 1.3 The Aerovel Flexrotor concept...17 3.1 A three-view of the YAK -54 showing all geometry and dimensions (in mm) [15

  14. Embedding Agile Practices within a Plan-Driven Hierarchical Project Life Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millard, W. David; Johnson, Daniel M.; Henderson, John M.

    2014-07-28

    Organizations use structured, plan-driven approaches to provide continuity, direction, and control to large, multi-year programs. Projects within these programs vary greatly in size, complexity, level of maturity, technical risk, and clarity of the development objectives. Organizations that perform exploratory research, evolutionary development, and other R&D activities can obtain the benefits of Agile practices without losing the benefits of their program’s overarching plan-driven structure. This paper describes application of Agile development methods on a large plan-driven sensor integration program. While the client employed plan-driven, requirements flow-down methodologies, tight project schedules and complex interfaces called for frequent end-to-end demonstrations to provide feedbackmore » during system development. The development process maintained the many benefits of plan-driven project execution with the rapid prototyping, integration, demonstration, and client feedback possible through Agile development methods. This paper also describes some of the tools and implementing mechanisms used to transition between and take advantage of each methodology, and presents lessons learned from the project management, system engineering, and developer’s perspectives.« less

  15. Agile Task Tracking Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, Roger T.; Crump, Thomas Vu

    The work was created to provide a tool for the purpose of improving the management of tasks associated with Agile projects. Agile projects are typically completed in an iterative manner with many short duration tasks being performed as part of iterations. These iterations are generally referred to as sprints. The objective of this work is to create a single tool that enables sprint teams to manage all of their tasks in multiple sprints and automatically produce all standard sprint performance charts with minimum effort. The format of the printed work is designed to mimic a standard Kanban board. The workmore » is developed as a single Excel file with worksheets capable of managing up to five concurrent sprints and up to one hundred tasks. It also includes a summary worksheet providing performance information from all active sprints. There are many commercial project management systems typically designed with features desired by larger organizations with many resources managing multiple programs and projects. The audience for this work is the small organizations and Agile project teams desiring an inexpensive, simple, user-friendly, task management tool. This work uses standard readily available software, Excel, requiring minimum data entry and automatically creating summary charts and performance data. It is formatted to print out and resemble standard flip charts and provide the visuals associated with this type of work.« less

  16. The Effects of a 6-Week Plyometric Training Program on Agility

    PubMed Central

    Miller, Michael G.; Herniman, Jeremy J.; Ricard, Mark D.; Cheatham, Christopher C.; Michael, Timothy J.

    2006-01-01

    The purpose of the study was to determine if six weeks of plyometric training can improve an athlete's agility. Subjects were divided into two groups, a plyometric training and a control group. The plyometric training group performed in a six week plyometric training program and the control group did not perform any plyometric training techniques. All subjects participated in two agility tests: T-test and Illinois Agility Test, and a force plate test for ground reaction times both pre and post testing. Univariate ANCOVAs were conducted to analyze the change scores (post - pre) in the independent variables by group (training or control) with pre scores as covariates. The Univariate ANCOVA revealed a significant group effect F2,26 = 25.42, p=0.0000 for the T-test agility measure. For the Illinois Agility test, a significant group effect F2,26 = 27.24, p = 0.000 was also found. The plyometric training group had quicker posttest times compared to the control group for the agility tests. A significant group effect F2,26 = 7.81, p = 0.002 was found for the Force Plate test. The plyometric training group reduced time on the ground on the posttest compared to the control group. The results of this study show that plyometric training can be an effective training technique to improve an athlete's agility. Key Points Plyometric training can enhance agility of athletes. 6 weeks of plyometric training is sufficient to see agility results. Ground reaction times are decreased with plyometric training PMID:24353464

  17. Specially-Equipped Martin XB-25E Icing Research Aircraft

    NASA Image and Video Library

    1947-08-21

    In 1946 the Lewis Flight Propulsion Laboratory became the NACA’s official icing research center. In addition to the Icing Research Tunnel, the lab possessed several aircraft modified for icing work, including a Consolidated B-24M Liberator and a North American XB-25E Mitchell, seen here. The XB-25E’s frequent engine fires allegedly resulted in its “Flamin’ Maimie” nickname. The aircraft’s nose art, visible in this photograph, includes a leather-jacketed mechanic with an extinguisher fleeing a fiery woman. North American developed the B-25 in the mid-1930s as a transport aircraft, but it was hurriedly reconfigured as a medium bomber for World War II. This XB-25E was a single prototype designed in 1942 specifically to test an exhaust gas ice prevention system developed by NACA researcher Lewis Rodert. The system circulated the engines’ hot bleed air to the wings, windshield, and tail. The XB-25E was utilized at the NACA’s Ames Aeronautical Laboratory for two years before being transferred to Cleveland in July 1944. NACA Lewis mechanics modified the aircraft further by installing electrical heating in the front fuselage, propellers, inboard sing, cowls, and antennae. Lewis pilots flew the B-24M and XB-25E into perilous weather conditions all across the country to study both deicing technologies and the physics of ice-producing clouds. These dangerous flights led to advances in weather sensing instruments and flight planning.

  18. In-flight acoustic testing techniques using the YO-3A Acoustic Research Aircraft

    NASA Technical Reports Server (NTRS)

    Cross, J. L.; Watts, M. E.

    1984-01-01

    This report discusses the flight testing techniques and equipment employed during air-to-air acoustic testing of helicopters at Ames Research Center. The in flight measurement technique used enables acoustic data to be obtained without the limitations of anechoic chambers or the multitude of variables encountered in ground based flyover testing. The air-to-air testing is made possible by the NASA YO-3A Acoustic Research Aircraft. This "Quiet Aircraft' is an acoustically instrumented version of a quiet observation aircraft manufactured for the military. To date, tests with the following aircraft have been conducted: YO-3A background noise; Hughes 500D; Hughes AH-64; Bell AH-1S; Bell AH-1G. Several system upgrades are being designed and implemented to improve the quality of data. This report will discuss not only the equipment involved and aircraft tested, but also the techniques used in these tests. In particular, formation flying position locations, and the test matrices will be discussed. Examples of data taken will also be presented.

  19. In-flight acoustic testing techniques using the YO-3A acoustic research aircraft

    NASA Technical Reports Server (NTRS)

    Cross, J. L.; Watts, M. E.

    1983-01-01

    This report discusses the flight testing techniques and equipment employed during air-to-air acoustic testing of helicopters at Ames Research Center. The in-flight measurement technique used enables acoustic data to be obtained without the limitations of anechoic chambers or the multitude of variables encountered in ground based flyover testing. The air-to-air testing is made possible by the NASA YO-3A Acoustic Research Aircraft. This 'Quiet Aircraft' is an acoustically instrumented version of a quiet observation aircraft manufactured for the military. To date, tests with the following aircraft have been conducted: YO-3A background noise; Hughes 500D; Hughes AH-64; Bell AH-1S; Bell AH-1G. Several system upgrades are being designed and implemented to improve the quality of data. This report will discuss not only the equipment involved and aircraft tested, but also the techniques used in these tests. In particular, formation flying, position locations, and the test matrices will be discussed. Examples of data taken will also be presented.

  20. Agile manufacturing and constraints management: a strategic perspective

    NASA Astrophysics Data System (ADS)

    Stratton, Roy; Yusuf, Yahaya Y.

    2000-10-01

    The definition of the agile paradigm has proved elusive and is often viewed as a panacea, in contention with more traditional approaches to operations strategy development and Larkin its own methodology and tools. The Theory of Constraints (TOC) is also poorly understood, as it is commonly solely associated with production planning and control systems and bottleneck management. This paper will demonstrate the synergy between these two approaches together with the Theory of Inventive Problem Solving (TRIZ), and establish how the systematic elimination of trade-offs can support the agile paradigm. Whereas agility is often seen as a trade-off free destination, both TOC and TRIZ may be considered to be route finders, as they comprise methodologies that focus on the identification and elimination of the trade-offs that constrain the purposeful improvement of a system, be it organizational or mechanical. This paper will also show how the TOC thinking process may be combined with the TRIZ knowledge based approach and used in breaking contradictions within agile logistics.

  1. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    NASA Technical Reports Server (NTRS)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  2. NASA's Ship-Aircraft Bio-Optical Research (SABOR)

    NASA Image and Video Library

    2014-08-25

    What's in the Water? Robert Foster, of the City College of New York, filters seawater on July 23, 2414, for chlorophyll analysis in a lab on the R/V Endeavor. NASA's Ship-Aircraft Bio-Optical Research (SABOR) experiment is a coordinated ship and aircraft observation campaign off the Atlantic coast of the United States, an effort to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain. Read more: 1.usa.gov/WWRVzj Credit: NASA/SABOR/Wayne Slade, Sequoia Scientific..NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Exercise-Based Fall Prevention in the Elderly: What About Agility?

    PubMed

    Donath, Lars; van Dieën, Jaap; Faude, Oliver

    2016-02-01

    Annually, one in three seniors aged over 65 years fall. Balance and strength training can reduce neuromuscular fall risk factors and fall rates. Besides conventional balance and strength training, explosive or high-velocity strength training, eccentric exercises, perturbation-based balance training, trunk strength, and trunk control have also been emphasized. In contrast, aerobic exercise has to date not been included in fall-prevention studies. However, well-developed endurance capacity might attenuate fatigue-induced declines in postural control in sports-related or general activities of daily living. Physical performance indices, such as balance, strength, and endurance, are generally addressed independently in exercise guidelines. This approach seems time consuming and may impede integrative training of sensorimotor, neuromuscular, and cardiocirculatory functions required to deal with balance-threatening situations in the elderly. An agility-based conceptual training framework comprising perception and decision making (e.g., visual scanning, pattern recognition, anticipation) and changes of direction (e.g., sudden starts, stops and turns; reactive control; concentric and eccentric contractions) might enable an integrative neuromuscular, cardiocirculatory, and cognitive training. The present paper aims to provide a scientific sketch of how to build such an integrated modular training approach, allowing adaptation of intensity, complexity, and cognitive challenge of the agility tasks to the participant's capacity. Subsequent research should address the (1) link between agility and fall risk factors as well as fall rates, (2) benefit-risk ratios of the proposed approach, (3) psychosocial aspects of agility training (e.g., motivation), and (4) logistical requirements (e.g., equipment needed).

  4. Software ``Best'' Practices: Agile Deconstructed

    NASA Astrophysics Data System (ADS)

    Fraser, Steven

    This workshop will explore the intersection of agility and software development in a world of legacy code-bases and large teams. Organizations with hundreds of developers and code-bases exceeding a million or tens of millions of lines of code are seeking new ways to expedite development while retaining and attracting staff who desire to apply “agile” methods. This is a situation where specific agile practices may be embraced outside of their usual zone of applicability. Here is where practitioners must understand both what “best practices” already exist in the organization - and how they might be improved or modified by applying “agile” approaches.

  5. Thigh Muscle Activity, Knee Motion, and Impact Force During Side-Step Pivoting in Agility-Trained Female Basketball Players

    PubMed Central

    Wilderman, Danielle R; Ross, Scott E; Padua, Darin A

    2009-01-01

    Context: Improving neuromuscular control of hamstrings muscles might have implications for decreasing anterior cruciate ligament injuries in females. Objective: To examine the effects of a 6-week agility training program on quadriceps and hamstrings muscle activation, knee flexion angles, and peak vertical ground reaction force. Design: Prospective, randomized clinical research trial. Setting: Sports medicine research laboratory. Patients or Other Participants: Thirty female intramural basketball players with no history of knee injury (age  =  21.07 ± 2.82 years, height  =  171.27 ± 4.66 cm, mass  =  66.36 ± 7.41 kg). Intervention(s): Participants were assigned to an agility training group or a control group that did not participate in agility training. Participants in the agility training group trained 4 times per week for 6 weeks. Main Outcome Measure(s): We used surface electromyography to assess muscle activation for the rectus femoris, vastus medialis oblique, medial hamstrings, and lateral hamstrings for 50 milliseconds before initial ground contact and while the foot was in contact with the ground during a side-step pivot maneuver. Knee flexion angles (at initial ground contact, maximum knee flexion, knee flexion displacement) and peak vertical ground reaction force also were assessed during this maneuver. Results: Participants in the training group increased medial hamstrings activation during ground contact after the 6-week agility training program. Both groups decreased their vastus medialis oblique muscle activation during ground contact. Knee flexion angles and peak vertical ground reaction force did not change for either group. Conclusions: Agility training improved medial hamstrings activity in female intramural basketball players during a side-step pivot maneuver. Agility training that improves hamstrings activity might have implications for reducing anterior cruciate ligament sprain injury associated with side-step pivots. PMID

  6. Integrated control and display research for transition and vertical flight on the NASA V/STOL Research Aircraft (VSRA)

    NASA Technical Reports Server (NTRS)

    Foster, John D.; Moralez, Ernesto, III; Franklin, James A.; Schroeder, Jeffery A.

    1987-01-01

    Results of a substantial body of ground-based simulation experiments indicate that a high degree of precision of operation for recovery aboard small ships in heavy seas and low visibility with acceptable levels of effort by the pilot can be achieved by integrating the aircraft flight and propulsion controls. The availability of digital fly-by-wire controls makes it feasible to implement an integrated control design to achieve and demonstrate in flight the operational benefits promised by the simulation experience. It remains to validate these systems concepts in flight to establish their value for advanced short takeoff vertical landing (STOVL) aircraft designs. This paper summarizes analytical studies and simulation experiments which provide a basis for the flight research program that will develop and validate critical technologies for advanced STOVL aircraft through the development and evaluation of advanced, integrated control and display concepts, and lays out the plan for the flight program that will be conducted on NASA's V/STOL Research Aircraft (VSRA).

  7. Creating IT agility.

    PubMed

    Glaser, John

    2008-04-01

    Seven steps healthcare organizations can take to improve IT agility are: Pay attention to the capabilities of IT applications. Establish short project phases. Stage the release of capital and new IT positions. Cross-train IT staff. Adopt technology standards. Shorten IT plan time horizons. Align IT with organizational strategies and priorities.

  8. Architected Agile Solutions for Software-Reliant Systems

    NASA Astrophysics Data System (ADS)

    Boehm, Barry; Lane, Jo Ann; Koolmanojwong, Supannika; Turner, Richard

    Systems are becoming increasingly reliant on software due to needs for rapid fielding of “70% capabilities,” interoperability, net-centricity, and rapid adaptation to change. The latter need has led to increased interest in agile methods of software development, in which teams rely on shared tacit interpersonal knowledge rather than explicit documented knowledge. However, such systems often need to be scaled up to higher level of performance and assurance, requiring stronger architectural support. Several organizations have recently transformed themselves by developing successful combinations of agility and architecture that can scale to projects of up to 100 personnel. This chapter identifies a set of key principles for such architected agile solutions for software-reliant systems, provides guidance for how much architecting is enough, and illustrates the key principles with several case studies.

  9. Lockheed ER-2 #806 high altitude research aircraft in flight

    NASA Image and Video Library

    1998-11-17

    ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  10. Lockheed ER-2 #809 high altitude research aircraft in flight

    NASA Image and Video Library

    2001-08-01

    ER-2 tail number 809, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  11. Lockheed ER-2 #806 high altitude research aircraft during landing

    NASA Image and Video Library

    1998-12-18

    ER-2 tail number 806, is one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft are platforms for a variety of high-altitude science missions flown over various parts of the world. They are also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2s are capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2 missions last about six hours with ranges of about 2,200 nautical miles. The aircraft typically fly at altitudes above 65,000 feet. On November 19, 1998, the ER-2 set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft is 63 feet long, with a wingspan of 104 feet. The top of the vertical tail is 16 feet above ground when the aircraft is on the bicycle-type landing gear. Cruising speeds are 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2.

  12. Reactive Agility Performance in Handball; Development and Evaluation of a Sport-Specific Measurement Protocol

    PubMed Central

    Spasic, Miodrag; Krolo, Ante; Zenic, Natasa; Delextrat, Anne; Sekulic, Damir

    2015-01-01

    There is no current study that examined sport-specific tests of reactive-agility and change-of-direction-speed (CODS) to replicate real-sport environment in handball (team-handball). This investigation evaluated the reliability and validity of two novel tests designed to assess reactive-agility and CODS of handball players. Participants were female (25.14 ± 3.71 years of age; 1.77 ± 0.09 m and 74.1 ± 6.1 kg) and male handball players (26.9 ± 4.1 years of age; 1.90 ± 0.09 m and 93.90±4.6 kg). Variables included body height, body mass, body mass index, broad jump, 5-m sprint, CODS and reactive-agility tests. Results showed satisfactory reliability for reactive-agility-test and CODS-test (ICC of 0.85-0.93, and CV of 2.4-4.8%). The reactive-agility and CODS shared less than 20% of the common variance. The calculated index of perceptual and reactive capacity (P&RC; ratio between reactive-agility- and CODS-performance) is found to be valid measure in defining true-game reactive-agility performance in handball in both genders. Therefore, the handball athletes’ P&RC should be used in the evaluation of real-game reactive-agility performance. Future studies should explore other sport-specific reactive-agility tests and factors associated to such performance in sports involving agile maneuvers. Key points Reactive agility and change-of-direction-speed should be observed as independent qualities, even when tested over the same course and similar movement template The reactive-agility-performance of the handball athletes involved in defensive duties is closer to their non-reactive-agility-score than in their peers who are not involved in defensive duties The handball specific “true-game” reactive-agility-performance should be evaluated as the ratio between reactive-agility and corresponding CODS performance. PMID:26336335

  13. Reactive Agility Performance in Handball; Development and Evaluation of a Sport-Specific Measurement Protocol.

    PubMed

    Spasic, Miodrag; Krolo, Ante; Zenic, Natasa; Delextrat, Anne; Sekulic, Damir

    2015-09-01

    There is no current study that examined sport-specific tests of reactive-agility and change-of-direction-speed (CODS) to replicate real-sport environment in handball (team-handball). This investigation evaluated the reliability and validity of two novel tests designed to assess reactive-agility and CODS of handball players. Participants were female (25.14 ± 3.71 years of age; 1.77 ± 0.09 m and 74.1 ± 6.1 kg) and male handball players (26.9 ± 4.1 years of age; 1.90 ± 0.09 m and 93.90±4.6 kg). Variables included body height, body mass, body mass index, broad jump, 5-m sprint, CODS and reactive-agility tests. Results showed satisfactory reliability for reactive-agility-test and CODS-test (ICC of 0.85-0.93, and CV of 2.4-4.8%). The reactive-agility and CODS shared less than 20% of the common variance. The calculated index of perceptual and reactive capacity (P&RC; ratio between reactive-agility- and CODS-performance) is found to be valid measure in defining true-game reactive-agility performance in handball in both genders. Therefore, the handball athletes' P&RC should be used in the evaluation of real-game reactive-agility performance. Future studies should explore other sport-specific reactive-agility tests and factors associated to such performance in sports involving agile maneuvers. Key pointsReactive agility and change-of-direction-speed should be observed as independent qualities, even when tested over the same course and similar movement templateThe reactive-agility-performance of the handball athletes involved in defensive duties is closer to their non-reactive-agility-score than in their peers who are not involved in defensive dutiesThe handball specific "true-game" reactive-agility-performance should be evaluated as the ratio between reactive-agility and corresponding CODS performance.

  14. Relationship between agility and lower limb muscle strength, targeting university badminton players.

    PubMed

    Sonoda, Takuya; Tashiro, Yuto; Suzuki, Yusuke; Kajiwara, Yu; Zeidan, Hala; Yokota, Yuki; Kawagoe, Mirei; Nakayama, Yasuaki; Bito, Tsubasa; Shimoura, Kanako; Tatsumi, Masataka; Nakai, Kengo; Nishida, Yuichi; Yoshimi, Soyoka; Aoyama, Tomoki

    2018-02-01

    [Purpose] Targeting university badminton players, this study investigated the relationship between agility, which is associated with performance in badminton, and lower limb muscle strength, and examined which muscles influence agility. [Subjects and Methods] A total of 23 male university badminton players were evaluated for side-shuffle test scores and lower limb strength. The relationships between agility, lower limb strength, and duration of experience playing badminton were evaluated using a correlation analysis. Moreover, the relationship between agility and lower limb strength was evaluated by partial correlation analysis, adjusting for the effects of experience of each badminton player. [Results] The agility score correlated with hip extension and ankle plantar flexion strength, with adjustment for badminton experience. [Conclusion] This study suggests that hip extension training and improvement in ankle plantar flexion strength may improve agility.

  15. Current and Future Research in Active Control of Lightweight, Flexible Structures Using the X-56 Aircraft

    NASA Technical Reports Server (NTRS)

    Ryan, John J.; Bosworth, John T.; Burken, John J.; Suh, Peter M.

    2014-01-01

    The X-56 Multi-Utility Technology Testbed aircraft system is a versatile experimental research flight platform. The system was primarily designed to investigate active control of lightweight flexible structures, but is reconfigurable and capable of hosting a wide breadth of research. Current research includes flight experimentation of a Lockheed Martin designed active control flutter suppression system. Future research plans continue experimentation with alternative control systems, explore the use of novel sensor systems, and experiments with the use of novel control effectors. This paper describes the aircraft system, current research efforts designed around the system, and future planned research efforts that will be hosted on the aircraft system.

  16. Force Projection, Strategic Agility and the Big Meltdown

    DTIC Science & Technology

    2001-05-18

    UNLIMITED Number of Pages 29 ii Abstract of FORCE PROJECTION, STRATEGIC AGILITY AND THE BIG MELTDOWN Due to global warming , the polar icepack which...INTRODUCTION The polar icecap which covers the Arctic Ocean is melting. It is a well-known, scientific fact. Global warming is the generally...operational factors and functions, as applicable. 3 CHAPTER II BACKGROUND Global Warming and the Arctic During this and the last century, researchers have

  17. Towards Agile Ontology Maintenance

    NASA Astrophysics Data System (ADS)

    Luczak-Rösch, Markus

    Ontologies are an appropriate means to represent knowledge on the Web. Research on ontology engineering reached practices for an integrative lifecycle support. However, a broader success of ontologies in Web-based information systems remains unreached while the more lightweight semantic approaches are rather successful. We assume, paired with the emerging trend of services and microservices on the Web, new dynamic scenarios gain momentum in which a shared knowledge base is made available to several dynamically changing services with disparate requirements. Our work envisions a step towards such a dynamic scenario in which an ontology adapts to the requirements of the accessing services and applications as well as the user's needs in an agile way and reduces the experts' involvement in ontology maintenance processes.

  18. Thinking Outside the Box: Agile Business Models for CNOs

    NASA Astrophysics Data System (ADS)

    Loss, Leandro; Crave, Servane

    This paper introduces the idea of an agile Business Model for CNOs grounded on a new model of innovation based on the effects of globalization and of Knowledge Economy. The agile Business Model considers the resources that are spread out and available worldwide as well as the need for each customer to receive a unique customer experience. It aims at reinforcing in the context of the Knowledge Economy the different business models approaches developed so far. The paper also identifies the levers and the barriers of Agile Business Models Innovation in CNOs.

  19. Control design for future agile fighters

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Davidson, John B.

    1991-01-01

    The CRAFT control design methodology is presented. CRAFT stands for the design objectives addressed, namely, Control power, Robustness, Agility, and Flying Qualities Tradeoffs. The approach combines eigenspace assignment, which allows for direct specification of eigenvalues and eigenvectors, and a graphical approach for representing control design metrics that captures numerous design goals in one composite illustration. The methodology makes use of control design metrics from four design objective areas, namely, control power, robustness, agility, and flying qualities. An example of the CRAFT methodology as well as associated design issues are presented.

  20. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1974-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  1. Long range view of materials research for civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Waters, M. H.

    1973-01-01

    The impact of various material technology advancements on the economics of civil transport aircraft is investigated. Benefits of advances in both airframe and engine materials are considered. Benefits are measured primarily by improvements in return on investment for an operator. Materials research and development programs which lead to the greatest benefits are assessed with regards to cost, risk, and commonality with other programs. Emphasis of the paper is on advanced technology subsonic/transonic transports (ATT type aircraft) since these are likely to be the next generation of commercial transports.

  2. Concept to Reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s

    NASA Technical Reports Server (NTRS)

    Chambers, Joseph R.

    2003-01-01

    This document is intended to be a companion to NASA SP-2000-4519, 'Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990s'. Material included in the combined set of volumes provides informative and significant examples of the impact of Langley's research on U.S. civil and military aircraft of the 1990s. This volume, 'Concept to Reality: Contributions of the NASA Langley Research Center to U.S. Civil Aircraft of the 1990s', highlights significant Langley contributions to safety, cruise performance, takeoff and landing capabilities, structural integrity, crashworthiness, flight deck technologies, pilot-vehicle interfaces, flight characteristics, stall and spin behavior, computational design methods, and other challenging technical areas for civil aviation. The contents of this volume include descriptions of some of the more important applications of Langley research to current civil fixed-wing aircraft (rotary-wing aircraft are not included), including commercial airliners, business aircraft, and small personal-owner aircraft. In addition to discussions of specific aircraft applications, the document also covers contributions of Langley research to the operation of civil aircraft, which includes operating problems. This document is organized according to disciplinary technologies, for example, aerodynamics, structures, materials, and flight systems. Within each discussion, examples are cited where industry applied Langley technologies to specific aircraft that were in operational service during the 1990s and the early years of the new millennium. This document is intended to serve as a key reference for national policy makers, internal NASA policy makers, Congressional committees, the media, and the general public. Therefore, it has been written for a broad general audience and does not presume any significant technical expertise. An extensive bibliography is provided for technical specialists and others who desire a

  3. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  4. Cross Sectional Study of Agile Software Development Methods and Project Performance

    ERIC Educational Resources Information Center

    Lambert, Tracy

    2011-01-01

    Agile software development methods, characterized by delivering customer value via incremental and iterative time-boxed development processes, have moved into the mainstream of the Information Technology (IT) industry. However, despite a growing body of research which suggests that a predictive manufacturing approach, with big up-front…

  5. Understanding Organizational Agility: A Work-Design Perspective

    DTIC Science & Technology

    2008-06-01

    NG SDG Proactive Yes Yes Yes Yes Yes Yes N/S N/S N/S Reactive Simultaneity of work design at three levels Yes Supply Chain Network Agility High Table...firm can take effective action to benefit itself and its customers. In analyzing representative supply - chain definitions of agility, the main theme...and Heppard 2000). Third, as effective supply chain management has come to be regarded as major source of competitive advantage for many firms

  6. A survey of risk factors for digit injuries among dogs training and competing in agility events.

    PubMed

    Sellon, Debra C; Martucci, Katherine; Wenz, John R; Marcellin-Little, Denis J; Powers, Michelle; Cullen, Kimberley L

    2018-01-01

    OBJECTIVE To identify potential risk factors for digit injuries in dogs training and competing in agility events. DESIGN Internet-based, retrospective, cross-sectional survey. ANIMALS 1,081 dogs training or competing in agility events. PROCEDURES Data were collected for eligible animals via retrospective surveys distributed electronically to handlers of dogs participating in agility-related activities. Variables evaluated included demographic (handlers) and signalment (dogs) information, physical characteristics of dogs, and injury characteristics. A separate survey of dogs competing in similar agility-related activities but without digit injuries was also administered. Multivariable logistic regression was used to develop a model for assessment of risk factors. RESULTS Data were collected from 207 agility dogs with digit injuries and 874 agility dogs without digit injuries. Factors associated with significantly increased odds of injury included Border Collie breed (OR, 2.3; 95% confidence interval [CI], 1.5 to 3.3), long nails (OR, 2.4; 95% CI, 1.3 to 4.5), absence of front dewclaws (OR, 1.9; 95% CI, 1.3 to 2.6), and greater weight-to-height ratio (OR, 1.5; 95% CI, 1.1 to 2.0). Odds of injury decreased with increasing age of the dog (OR, 0.8; 95% CI, 0.76 to 0.86). CONCLUSIONS AND CLINICAL RELEVANCE Results should be cautiously interpreted because of potential respondent and recall bias and lack of review of medical records. Nevertheless, results suggested that retaining healthy dewclaws, maintaining lean body mass, and trimming nails short for training and competition may decrease the likelihood of digit injuries. Research to investigate training practices, obstacle construction specifcations, and surface considerations for dogs competing in agility activities is indicated.

  7. Some aerodynamic discoveries and related NACA/NASA research programs following World War 2

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1984-01-01

    The World War 2 time period ushered in a new era in aeronautical research and development. The air conflict during the war highlighted the need of aircraft with agility, high speed, long range, large payload capability, and in addition, introduced a new concept in air warfare through the use of guided missiles. Following the war, the influx of foreign technology, primarily German, led to rapid advances in jet propulsion and speed, and a host of new problem areas associated with high-speed flight designs were revealed. The resolution of these problems led to a rash of new design concepts and many of the lessons learned, in principle, are still effective today. In addition to the technical lessons learned related to aircraft development programs, it might also be noted that some lessons involving the political and philosophical nature of aircraft development programs are worth attention.

  8. Investigations into the triggered lightning response of the F106B thunderstorm research aircraft

    NASA Technical Reports Server (NTRS)

    Rudolph, Terence H.; Perala, Rodney A.; Mckenna, Paul M.; Parker, Steven L.

    1985-01-01

    An investigation has been conducted into the lightning characteristics of the NASA F106B thunderstorm research aircraft. The investigation includes analysis of measured data from the aircraft in the time and frequency domains. Linear and nonlinear computer modelling has also been performed. In addition, new computer tools have been developed, including a new enhanced nonlinear air breakdown model, and a subgrid model useful for analyzing fine details of the aircraft's geometry. Comparison of measured and calculated electromagnetic responses of the aircraft to a triggered lightning environment are presented.

  9. Aircrew-aircraft integration: A summary of US Army research programs and plans

    NASA Technical Reports Server (NTRS)

    Key, D. L.; Aiken, E. W.

    1984-01-01

    A review of selected programs which illustrate the research efforts of the U.S. Army Aeromechanics Laboratory in the area of aircrew-aircraft integration is presented. Plans for research programs to support the development of future military rotorcraft are also described. The crew of a combat helicopter must, in general, perform two major functions during the conduct of a particular mission: flightpath control and mission management. Accordingly, the research programs described are being conducted in the same two major categories: (1) flightpath control, which encompasses the areas of handling qualities, stability and control, and displays for the pilot's control of the rotorcraft's flightpath, and (2) mission management, which includes human factors and cockpit integration research topics related to performance of navigation, communication, and aircraft systems management tasks.

  10. Rotor Systems Research Aircraft /RSRA/ canopy explosive severance/fracture

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1976-01-01

    The Rotor Systems Research Aircraft (RSRA), a compound rotor/fixed-wing aircraft, incorporates an emergency escape system for the three crew members; to achieve unobstructed egress, the overhead acrylic canopies of each crew member will be explosively severed and fractured into predictably small, low-mass pieces. A canopy explosive severance/fracture system was developed under this investigation that included the following system design considerations: selection of canopy and explosive materials, determining the acrylic's explosive severance and fracture characteristics, evaluating the effects of installation variables and temperature, determining the most effective explosive patterns, conducting full-scale, flat and double-curvature canopy tests, and evaluating the effects of back-blast of the explosive into the cockpit.

  11. 78 FR 64019 - Manufacturer of Controlled Substances; Notice of Registration; Agilent Technologies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...; Notice of Registration; Agilent Technologies By Notice dated May 24, 2013, and published in the Federal Register on June 4, 2013, 78 FR 33441, Agilent Technologies, 25200 Commercentre Drive, Lake Forest... of Agilent Technologies to manufacture the listed basic classes of controlled substances is...

  12. Martin B–26 Marauder at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1943-09-21

    The Aircraft Engine Research Laboratory’s first aircraft, a Martin B–26B Marauder, parked in front of the Flight Research Building in September 1943. The military loaned the B–26B to the National Advisory Committee for Aeronautics (NACA) to augment the lab’s studies of the Wright Aeronautical R–2800 engines. The military wanted to improve the engine cooling in order to increase the bomber’s performance. On March 17, 1943, the B–26B performed the very first research flight at the NACA’s new engine laboratory. The B–26B received its “Widowmaker” nickname during the rushed effort to transition the new aircraft from design to production and into the sky. During World War II, however, the B–26B proved itself to be a capable war machine. The U.S. lost fewer Marauders than any other type of bomber employed in the war. The B–26B was originally utilized at low altitudes in the Pacific but had its most success at high altitudes over Europe. The B–26B’s flight tests in Cleveland during 1943 mapped the R-2800 engine’s behavior at different altitudes and speeds. The researchers were then able to correlate engine performance in ground facilities to expected performance at different altitudes. They found that air speed, cowl flap position, angle of attack, propeller thrust, and propeller speed influenced inlet pressure recovery and exhaust distribution. The flight testing proceeded quickly, and the B–26B was transferred elsewhere in October 1943.

  13. Effects of High Intensity Interval Training on Increasing Explosive Power, Speed, and Agility

    NASA Astrophysics Data System (ADS)

    Fajrin, F.; Kusnanik, N. W.; Wijono

    2018-01-01

    High Intensity Interval Training (HIIT) is a type of exercise that combines high-intensity exercise and low intensity exercise in a certain time interval. This type of training is very effective and efficient to improve the physical components. The process of improving athletes achievement related to how the process of improving the physical components, so the selection of a good practice method will be very helpful. This study aims to analyze how is the effects of HIIT on increasing explosive power, speed, and agility. This type of research is quantitative with quasi-experimental methods. The design of this study used the Matching-Only Design, with data analysis using the t-test (paired sample t-test). After being given the treatment for six weeks, the results showed there are significant increasing in explosive power, speed, and agility. HIIT in this study used a form of exercise plyometric as high-intensity exercise and jogging as mild or moderate intensity exercise. Increase was due to the improvement of neuromuscular characteristics that affect the increase in muscle strength and performance. From the data analysis, researchers concluded that, Exercises of High Intensity Interval Training significantly effect on the increase in Power Limbs, speed, and agility.

  14. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    NASA Technical Reports Server (NTRS)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  15. Research Aircraft - Controlling Instruments from the Ground in a Secure and Authenticated Fashion

    NASA Astrophysics Data System (ADS)

    Baltzer, T.; Martin, C.; Fawaz, S.; Webster, C.

    2012-12-01

    At NCAR's Research Aviation Facility (RAF) we're finding a number of factors motivating the desire to be able to control instruments fielded on the aircraft we operate for the NSF. Investigators are increasingly interested in fielding greater numbers of research instruments for projects, instruments are becoming increasingly complicated, and adjustment of instrument behavior to adapt to changing conditions around the aircraft and to meet project goals are just a few of these factors. Usually there are not enough seats on the aircraft to accommodate all the instrument PIs and crew members who do occupy the seats are being asked to monitor and control increasing numbers of instruments about which they have limited knowledge. We use Satellite Communications (SatCom) to allow researchers to communicate with colleagues/crew on the aircraft and so that some of the real-time data can be sent to the ground for helping to optimize the research. Historically, challenges of authentication, security and the disruptive SatCom system have motivated us to avoid providing for remote instrument control. Now we have now reached an era where remote instrument control is a necessity. This poster will discuss the approach we are implementing to provide this capability for our instrument investigators. Particular attention is paid to how we assure authentication and security so that only the instrument investigators are capable of communicating with their instruments.;

  16. Adopting best practices: "Agility" moves from software development to healthcare project management.

    PubMed

    Kitzmiller, Rebecca; Hunt, Eleanor; Sproat, Sara Breckenridge

    2006-01-01

    It is time for a change in mindset in how nurses operationalize system implementations and manage projects. Computers and systems have evolved over time from unwieldy mysterious machines of the past to ubiquitous computer use in every aspect of daily lives and work sites. Yet, disconcertingly, the process used to implement these systems has not evolved. Technology implementation does not need to be a struggle. It is time to adapt traditional plan-driven implementation methods to incorporate agile techniques. Agility is a concept borrowed from software development and is presented here because it encourages flexibility, adaptation, and continuous learning as part of the implementation process. Agility values communication and harnesses change to an advantage, which facilitates the natural evolution of an adaptable implementation process. Specific examples of agility in an implementation are described, and plan-driven implementation stages are adapted to incorporate relevant agile techniques. This comparison demonstrates how an agile approach enhances traditional implementation techniques to meet the demands of today's complex healthcare environments.

  17. Balancing Plan-Driven and Agile Methods in Software Engineering Project Courses

    NASA Astrophysics Data System (ADS)

    Boehm, Barry; Port, Dan; Winsor Brown, A.

    2002-09-01

    For the past 6 years, we have been teaching a two-semester software engineering project course. The students organize into 5-person teams and develop largely web-based electronic services projects for real USC campus clients. We have been using and evolving a method called Model- Based (System) Architecting and Software Engineering (MBASE) for use in both the course and in industrial applications. The MBASE Guidelines include a lot of documents. We teach risk-driven documentation: if it is risky to document something, and not risky to leave it out (e.g., GUI screen placements), leave it out. Even so, students tend to associate more documentation with higher grades, although our grading eventually discourages this. We are always on the lookout for ways to have students learn best practices without having to produce excessive documentation. Thus, we were very interested in analyzing the various emerging agile methods. We found that agile methods and milestone plan-driven methods are part of a “how much planning is enough?” spectrum. Both agile and plan-driven methods have home grounds of project characteristics where they clearly work best, and where the other will have difficulties. Hybrid agile/plan-driven approaches are feasible, and necessary for projects having a mix of agile and plan-driven home ground characteristics. Information technology trends are going more toward the agile methods' home ground characteristics of emergent requirements and rapid change, although there is a concurrent increase in concern with dependability. As a result, we are currently experimenting with risk-driven combinations of MBASE and agile methods, such as integrating requirements, test plans, peer reviews, and pair programming into “agile quality management.”

  18. Agile Data Management with the Global Change Information System

    NASA Astrophysics Data System (ADS)

    Duggan, B.; Aulenbach, S.; Tilmes, C.; Goldstein, J.

    2013-12-01

    We describe experiences applying agile software development techniques to the realm of data management during the development of the Global Change Information System (GCIS), a web service and API for authoritative global change information under development by the US Global Change Research Program. Some of the challenges during system design and implementation have been : (1) balancing the need for a rigorous mechanism for ensuring information quality with the realities of large data sets whose contents are often in flux, (2) utilizing existing data to inform decisions about the scope and nature of new data, and (3) continuously incorporating new knowledge and concepts into a relational data model. The workflow for managing the content of the system has much in common with the development of the system itself. We examine various aspects of agile software development and discuss whether or how we have been able to use them for data curation as well as software development.

  19. Current State of Agile User-Centered Design: A Survey

    NASA Astrophysics Data System (ADS)

    Hussain, Zahid; Slany, Wolfgang; Holzinger, Andreas

    Agile software development methods are quite popular nowadays and are being adopted at an increasing rate in the industry every year. However, these methods are still lacking usability awareness in their development lifecycle, and the integration of usability/User-Centered Design (UCD) into agile methods is not adequately addressed. This paper presents the preliminary results of a recently conducted online survey regarding the current state of the integration of agile methods and usability/UCD. A world wide response of 92 practitioners was received. The results show that the majority of practitioners perceive that the integration of agile methods with usability/UCD has added value to their adopted processes and to their teams; has resulted in the improvement of usability and quality of the product developed; and has increased the satisfaction of the end-users of the product developed. The top most used HCI techniques are low-fidelity prototyping, conceptual designs, observational studies of users, usability expert evaluations, field studies, personas, rapid iterative testing, and laboratory usability testing.

  20. Quantifying performance on an outdoor agility drill using foot-mounted inertial measurement units.

    PubMed

    Zaferiou, Antonia M; Ojeda, Lauro; Cain, Stephen M; Vitali, Rachel V; Davidson, Steven P; Stirling, Leia; Perkins, Noel C

    2017-01-01

    Running agility is required for many sports and other physical tasks that demand rapid changes in body direction. Quantifying agility skill remains a challenge because measuring rapid changes of direction and quantifying agility skill from those measurements are difficult to do in ways that replicate real task/game play situations. The objectives of this study were to define and to measure agility performance for a (five-cone) agility drill used within a military obstacle course using data harvested from two foot-mounted inertial measurement units (IMUs). Thirty-two recreational athletes ran an agility drill while wearing two IMUs secured to the tops of their athletic shoes. The recorded acceleration and angular rates yield estimates of the trajectories, velocities and accelerations of both feet as well as an estimate of the horizontal velocity of the body mass center. Four agility performance metrics were proposed and studied including: 1) agility drill time, 2) horizontal body speed, 3) foot trajectory turning radius, and 4) tangential body acceleration. Additionally, the average horizontal ground reaction during each footfall was estimated. We hypothesized that shorter agility drill performance time would be observed with small turning radii and large tangential acceleration ranges and body speeds. Kruskal-Wallis and mean rank post-hoc statistical analyses revealed that shorter agility drill performance times were observed with smaller turning radii and larger tangential acceleration ranges and body speeds, as hypothesized. Moreover, measurements revealed the strategies that distinguish high versus low performers. Relative to low performers, high performers used sharper turns, larger changes in body speed (larger tangential acceleration ranges), and shorter duration footfalls that generated larger horizontal ground reactions during the turn phases. Overall, this study advances the use of foot-mounted IMUs to quantify agility performance in contextually

  1. Speed and agility of 12- and 14-year-old elite male basketball players.

    PubMed

    Jakovljevic, Sasa T; Karalejic, Milivoje S; Pajic, Zoran B; Macura, Marija M; Erculj, Frane F

    2012-09-01

    The aims of this study were (a) to identify and compare the speed and agility of 12- and 14-year-old elite male basketball players and (b) to investigate relations between speed and agility for both age groups of basketball players, to help coaches to improve their work. Sixty-four players aged 12 (M = 11.98 years, SD = 0.311) and 54 players aged 14 (M = 14.092 years, SD = 0.275) were tested. Three agility tests: agility t-test, zigzag agility drill, and agility run 4 × 15 m and 3 speed tests: 20-m run, 30-m run, and 50-m run were applied. Fourteen-year-old players achieved significantly better results in all speed and agility tests compared with 12-year-old players. The correlation coefficient (r = 0.81, p = 0.001) showed that 12-year-old players have the same ability in the 30- and 50-m runs. The other correlation coefficient (r = 0.59, p = 0.001) indicated that 20- and 30-m runs had inherently different qualities. The correlation coefficients between agility tests were <0.71, and therefore, each test in this group represents a specific task. In 14-year-old players, the correlation coefficients between the speed test results were <0.71. In contrast, the correlation coefficients between the agility tests were >0.71, which means that all the 3 tests represent the same quality. During the speed training of 12-year-old players, it is advisable to focus on shorter running distances, up to 30 m. During the agility training of the same players, it is useful to apply exercises with various complexities. In speed training of the 14-year-old players, the 30- and 50-m runs should be applied, and agility training should include more specific basketball movements and activities.

  2. Development of a Low-Cost Sub-Scale Aircraft for Flight Research: The FASER Project

    NASA Technical Reports Server (NTRS)

    Owens, Donald B.; Cox, David E.; Morelli, Eugene A.

    2006-01-01

    An inexpensive unmanned sub-scale aircraft was developed to conduct frequent flight test experiments for research and demonstration of advanced dynamic modeling and control design concepts. This paper describes the aircraft, flight systems, flight operations, and data compatibility including details of some practical problems encountered and the solutions found. The aircraft, named Free-flying Aircraft for Sub-scale Experimental Research, or FASER, was outfitted with high-quality instrumentation to measure aircraft inputs and states, as well as vehicle health parameters. Flight data are stored onboard, but can also be telemetered to a ground station in real time for analysis. Commercial-off-the-shelf hardware and software were used as often as possible. The flight computer is based on the PC104 platform, and runs xPC-Target software. Extensive wind tunnel testing was conducted with the same aircraft used for flight testing, and a six degree-of-freedom simulation with nonlinear aerodynamics was developed to support flight tests. Flight tests to date have been conducted to mature the flight operations, validate the instrumentation, and check the flight data for kinematic consistency. Data compatibility analysis showed that the flight data are accurate and consistent after corrections are made for estimated systematic instrumentation errors.

  3. Research Pilot Milt Thompson in M2-F2 Aircraft Attached to B-52 Mothership

    NASA Technical Reports Server (NTRS)

    1966-01-01

    NASA research pilot Milt Thompson sits in the M2-F2 'heavyweight' lifting body research vehicle before a 1966 test flight. The M2-F2 and the other lifting-body designs were all attached to a wing pylon on NASA's B-52 mothership and carried aloft. The vehicles were then drop-launched and, at the end of their flights, glided back to wheeled landings on the dry lake or runway at Edwards AFB. The lifting body designs influenced the design of the Space Shuttle and were also reincarnated in the design of the X-38 in the 1990s. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft

  4. DoD Acquisitions Reform: Embracing and Implementing Agile

    DTIC Science & Technology

    2015-12-01

    required in the traditional waterfall approach.   Specific models for enterprise level efforts include Scaled Agile Framework, Disciplined Agile...and Acquisition Concerns. Pittsburgh: Carnegie Mellon.  Leffingwell, D. (2007). Why The Waterfall Model Doesn’t Work. In D. Leffingwell, Scaling...serious issue might be the acquisitions process itself. For the last twenty plus years, the Air Force has used the waterfall approach for software

  5. NASA's Ship-Aircraft Bio-Optical Research (SABOR)

    NASA Image and Video Library

    2017-12-08

    Seaweed and Light A type of seaweed called Sargassum, common in the Sargasso Sea, floats by an instrument deployed here on July 26, 2014, as part of NASA's SABOR experiment. Scientists from the City College of New York use the data to study the way light becomes polarized in various conditions both above and below the surface of the ocean. NASA's Ship-Aircraft Bio-Optical Research (SABOR) experiment is a coordinated ship and aircraft observation campaign off the Atlantic coast of the United States, an effort to advance space-based capabilities for monitoring microscopic plants that form the base of the marine food chain. Read more: 1.usa.gov/WWRVzj Credit: NASA/SABOR/Wayne Slade, Sequoia Scientific .NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. The History of the XV-15 Tilt Rotor Research Aircraft: From Concept to Flight

    NASA Technical Reports Server (NTRS)

    Maisel, Martin D.; Giulianetti, Demo J.; Dugan, Daniel C.

    2000-01-01

    This monograph is a testament to the efforts of many people overcoming multiple technical challenges encountered while developing the XV-15 tilt rotor research aircraft. The Ames involvement with the tilt rotor aircraft began in 1957 with investigations of the performance and dynamic behavior of the Bell XV-3 tilt rotor aircraft. At that time, Ames Research Center was known as the Ames Aeronautical Laboratory of the National Advisory Committee for Aeronautics (NACA). As we approach the new millennium, and after more than 40 years of effort and the successful completion of our initial goals, it is appropriate to reflect on the technical accomplishments and consider the future applications of this unique aircraft class, the tilt rotor. The talented engineers, technicians, managers, and leaders at Ames have worked hard with their counterparts in the U.S. rotorcraft industry to overcome technology barriers and to make the military and civil tilt rotor aircraft safer, environmentally acceptable, and more efficient. The tilt rotor aircraft combines the advantages of vertical takeoff and landing capabilities, inherent to the helicopter, with the forward speed and range of a fixed wing turboprop airplane. Our studies have shown that this new vehicle type can provide the aviation transportation industry with the flexibility for highspeed, long-range flight, coupled with runway-independent operations, thus having a significant potential to relieve airport congestion. We see the tilt rotor aircraft as an element of the solution to this growing air transport problem.

  7. X-1 research aircraft landing on lakebed

    NASA Technical Reports Server (NTRS)

    1947-01-01

    The first of the rocket-powered research aircraft, the X-1 (originally designated the XS-1), was a bullet-shaped airplane that was built by the Bell Aircraft Company for the US Air Force and the National Advisory Committee on Aeronautics (NACA). The mission of the X-1 was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier'. The first of the three X-1s was glide-tested at Pinecastle Air Force Base, FL, in early 1946. The first powered flight of the X-1 was made on Dec. 9, 1946, at Edwards Air Force Base with Chalmers Goodlin, a Bell test pilot, at the controls. On Oct. 14, 1947, with USAF Captain Charles 'Chuck' Yeager as pilot, the aircraft flew faster than the speed of sound for the first time. Captain Yeager ignited the four-chambered XLR-11 rocket engines after being air-launched from under the bomb bay of a B-29 at 21,000 ft. The 6,000-lbthrust ethyl alcohol/liquid oxygen burning rockets, built by Reaction Motors, Inc., pushed him up to a speed of 700 mph in level flight. Captain Yeager was also the pilot when the X-1 reached its maximum speed of 957 mph. Another USAF pilot. Lt. Col. Frank Everest, Jr., was credited with taking the X-1 to its maximum altitude of 71,902 ft. Eighteen pilots in all flew the X-1s. The number three plane was destroyed in a fire before ever making any powered flights. A single-place monoplane, the X-1 was 31 ft long, 10 ft high, and had a wingspan of 29 ft. It weighed 4,900 lb and carried 8,200 lb of fuel. It had a flush cockpit with a side entrance and no ejection seat. This roughly 30-second video clip shows the X-1 landing on Rogers Dry Lakebed followed by the safety chase aircraft.

  8. Agile manufacturing: The factory of the future

    NASA Technical Reports Server (NTRS)

    Loibl, Joseph M.; Bossieux, Terry A.

    1994-01-01

    The factory of the future will require an operating methodology which effectively utilizes all of the elements of product design, manufacturing and delivery. The process must respond rapidly to changes in product demand, product mix, design changes or changes in the raw materials. To achieve agility in a manufacturing operation, the design and development of the manufacturing processes must focus on customer satisfaction. Achieving greatest results requires that the manufacturing process be considered from product concept through sales. This provides the best opportunity to build a quality product for the customer at a reasonable rate. The primary elements of a manufacturing system include people, equipment, materials, methods and the environment. The most significant and most agile element in any process is the human resource. Only with a highly trained, knowledgeable work force can the proper methods be applied to efficiently process materials with machinery which is predictable, reliable and flexible. This paper discusses the affect of each element on the development of agile manufacturing systems.

  9. Lockheed ER-2C #809 high altitude research aircraft in flight

    NASA Image and Video Library

    1998-04-29

    ER-2C tail number 809, was one of two Airborne Science ER-2Cs used as science platforms by Dryden. The aircraft were platforms for a variety of high-altitude science missions flown over various parts of the world. They were also used for earth science and atmospheric sensor research and development, satellite calibration and data validation. The ER-2Cs were capable of carrying a maximum payload of 2,600 pounds of experiments in a nose bay, the main equipment bay behind the cockpit, two wing-mounted superpods and small underbody and trailing edges. Most ER-2C missions lasted about six hours with ranges of about 2,200 nautical miles. The aircraft typically flew at altitudes above 65,000 feet. On November 19, 1998, the ER-2C set a world record for medium weight aircraft reaching an altitude of 68,700 feet. The aircraft was 63 feet long, with a wingspan of 104 feet. The top of the vertical tail was 16 feet above ground when the aircraft was on the bicycle-type landing gear. Cruising speeds were 410 knots, or 467 miles per hour, at altitude. A single General Electric F-118 turbofan engine rated at 17,000 pounds thrust powers the ER-2C.

  10. Quiet Short-Haul Research Aircraft - A summary of flight research since 1981

    NASA Technical Reports Server (NTRS)

    Riddle, Dennis W.; Stevens, Victor C.; Eppel, Joseph C.

    1988-01-01

    The Quiet Short-Haul Research Aircraft (QSRA), designed for flight investigation into powered-lift terminal area operations, first flew in 1978 and has flown 600 hours since. This report summarizes QSRA research since 1981. Numerous aerodynamic flight experiments have been conducted including research with an advanced concept stability and control augmentation and pilot display system for category III instrument landings. An electromechanical actuator system was flown to assess performance and reliability. A second ground-based test was conducted to further evaluate circulation-control-wing/upper-surface-blowing performance. QSRA technology has been transferred through reports, guest pilot evaluations and airshow participation. QSRA future research thoughts and an extensive report bibliography are also presented.

  11. Advanced materials research for long-haul aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.; Blankenship, C. P.

    1978-01-01

    The status of research efforts to apply low to intermediate temperature composite materials and advanced high temperature materials to engine components is reviewed. Emerging materials technologies and their potential benefits to aircraft gas turbines were emphasized. The problems were identified, and the general state of the technology for near term use was assessed.

  12. Airframe self-noise: Four years of research. [aircraft noise reduction for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.

    1976-01-01

    A critical assessment of the state of the art in airframe self-noise is presented. Full-scale data on the intensity, spectra and directivity of this noise source are evaluated in the light of the comprehensive theory developed by Ffowcs-Williams and Hawkins. Vibration of panels on commercial aircraft is identified as a possible additional source of airframe noise. The present understanding and methods for prediction of other component sources - airfoils, struts, and cavities - are discussed, and areas for further research as well as potential methods for airframe noise reduction are identified. Finally, the various experimental methods which have been developed for airframe noise research are discussed and sample results are presented.

  13. In-flight simulation of high agility through active control: Taming complexity by design

    NASA Technical Reports Server (NTRS)

    Padfield, Gareth D.; Bradley, Roy

    1993-01-01

    The motivation for research into helicopter agility stems from the realization that marked improvements relative to current operational types are possible, yet there is a dearth of useful criteria for flying qualities at high performance levels. Several research laboratories are currently investing resources in developing second generation airborne rotorcraft simulators. The UK's focus has been the exploitation of agility through active control technology (ACT); this paper reviews the results of studies conducted to date. The conflict between safety and performance in flight research is highlighted and the various forms of safety net to protect against system failures are described. The role of the safety pilot, and the use of actuator and flight envelope limiting are discussed. It is argued that the deep complexity of a research ACT system can only be tamed through a requirement specification assembled using design principles and cast in an operational simulation form. Work along these lines conducted at DRA is described, including the use of the Jackson System Development method and associated Ada simulation.

  14. PDS4 - Some Principles for Agile Data Curation

    NASA Astrophysics Data System (ADS)

    Hughes, J. S.; Crichton, D. J.; Hardman, S. H.; Joyner, R.; Algermissen, S.; Padams, J.

    2015-12-01

    PDS4, a research data management and curation system for NASA's Planetary Science Archive, was developed using principles that promote the characteristics of agile development. The result is an efficient system that produces better research data products while using less resources (time, effort, and money) and maximizes their usefulness for current and future scientists. The key principle is architectural. The PDS4 information architecture is developed and maintained independent of the infrastructure's process, application and technology architectures. The information architecture is based on an ontology-based information model developed to leverage best practices from standard reference models for digital archives, digital object registries, and metadata registries and capture domain knowledge from a panel of planetary science domain experts. The information model provides a sharable, stable, and formal set of information requirements for the system and is the primary source for information to configure most system components, including the product registry, search engine, validation and display tools, and production pipelines. Multi-level governance is also allowed for the effective management of the informational elements at the common, discipline, and project level. This presentation will describe the development principles, components, and uses of the information model and how an information model-driven architecture exhibits characteristics of agile curation including early delivery, evolutionary development, adaptive planning, continuous improvement, and rapid and flexible response to change.

  15. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2001-03-13

    The first of three X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. One of the major goals of the Hyper-X program is flight validation of airframe-integrated, air-breathing propulsion system, which so far have only been tested in ground facilities, such as wind tunnels. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds above Mach 5 (five times the speed of sound). The X-43A design uses the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A/booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  16. Comparison of model and flight test data for an augmented jet flap STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Cook, W. L.; Whittley, D. C.

    1975-01-01

    Aerodynamic design data for the Augmented Jet Flap STOL Research Aircraft or commonly known as the Augmentor-Wing Jet-STOL Research Aircraft was based on results of tests carried out on a large scale research model in the NASA Ames 40- by 80-Foot Wind Tunnel. Since the model differs in some respects from the aircraft, precise correlation between tunnel and flight test is not expected, however the major areas of confidence derived from the wind tunnel tests are delineated, and for the most part, tunnel results compare favorably with flight experience. In some areas the model tests were known to be nonrepresentative so that a degree of uncertainty remained: these areas of greater uncertainty are identified, and discussed in the light of subsequent flight tests.

  17. Strategy quantification using body worn inertial sensors in a reactive agility task.

    PubMed

    Eke, Chika U; Cain, Stephen M; Stirling, Leia A

    2017-11-07

    Agility performance is often evaluated using time-based metrics, which provide little information about which factors aid or limit success. The objective of this study was to better understand agility strategy by identifying biomechanical metrics that were sensitive to performance speed, which were calculated with data from an array of body-worn inertial sensors. Five metrics were defined (normalized number of foot contacts, stride length variance, arm swing variance, mean normalized stride frequency, and number of body rotations) that corresponded to agility terms defined by experts working in athletic, clinical, and military environments. Eighteen participants donned 13 sensors to complete a reactive agility task, which involved navigating a set of cones in response to a vocal cue. Participants were grouped into fast, medium, and slow performance based on their completion time. Participants in the fast group had the smallest number of foot contacts (normalizing by height), highest stride length variance (normalizing by height), highest forearm angular velocity variance, and highest stride frequency (normalizing by height). The number of body rotations was not sensitive to speed and may have been determined by hand and foot dominance while completing the agility task. The results of this study have the potential to inform the development of a composite agility score constructed from the list of significant metrics. By quantifying the agility terms previously defined by expert evaluators through an agility score, this study can assist in strategy development for training and rehabilitation across athletic, clinical, and military domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. X-43A hypersonic research aircraft mated to its modified Pegasus booster rocket.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft was mated to its modified Pegasus booster rocket in late January at NASA's Dryden Flight Research Center, Edwards, Calif. FIRST X-43A MATED TO BOOSTER -- The first of three X-43A hypersonic research aircraft was mated to its modified Pegasus booster rocket in late January at NASA's Dryden Flight Research Center, Edwards, Calif. Mating of the X-43A and its specially-designed adapter to the first stage of the booster rocket marks a major milestone in the Hyper-X hypersonic research program. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., for NASA. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A booster 'stack' is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it impacts into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10 (seven and 10 times the speed of sound respectively) with the first tentatively scheduled for early summer of 2001. The X-43A is powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine, and will use the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The X-43A flights will be the first actual flight tests of an aircraft powered by an air-breathing scramjet engine.

  19. Tailoring Agility: Promiscuous Pair Story Authoring and Value Calculation

    NASA Astrophysics Data System (ADS)

    Tendon, Steve

    This chapter describes how a multi-national software organization created a business plan involving business units from eight countries that followed an agile way, after two previously failed attempts with traditional approaches. The case is told by the consultant who initiated implementation of agility into requirements gathering, estimation and planning processes in an international setting. The agile approach was inspired by XP, but then tailored to meet the peculiar requirements. Two innovations were critical. The first innovation was promiscuous pair story authoring, where user stories were written by two people (similarly to pair programming), and the pairing changed very often (as frequently as every 15-20 minutes) to achieve promiscuity and cater for diverse point of views. The second innovation was an economic value evaluation (and not the cost) which was attributed to stories. Continuous recalculation of the financial value of the stories allowed to assess the projects financial return. In this case implementation of agility in the international context allowed the involved team members to reach consensus and unanimity of decisions, vision and purpose.

  20. Pathways to agility in the production of neutron generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoltz, R.E.; Beavis, L.C.; Cutchen, J.T.

    1994-02-01

    This report is the result of a study team commissioned to explore pathways for increased agility in the manufacture of neutron generators. As a part of Sandia`s new responsibility for generator production, the goal of the study was to identify opportunities to reduce costs and increase flexibility in the manufacturing operation. Four parallel approaches (or pathways) were recommended: (1) Know the goal, (2) Use design leverage effectively, (3) Value simplicity, and (4) Configure for flexibility. Agility in neutron generator production can be enhanced if all of these pathways are followed. The key role of the workforce in achieving agility wasmore » also noted, with emphasis on ownership, continuous learning, and a supportive environment.« less

  1. Wavelength-Agile External-Cavity Diode Laser for DWDM

    NASA Technical Reports Server (NTRS)

    Pilgrim, Jeffrey S.; Bomse, David S.

    2006-01-01

    A prototype external-cavity diode laser (ECDL) has been developed for communication systems utilizing dense wavelength- division multiplexing (DWDM). This ECDL is an updated version of the ECDL reported in Wavelength-Agile External- Cavity Diode Laser (LEW-17090), NASA Tech Briefs, Vol. 25, No. 11 (November 2001), page 14a. To recapitulate: The wavelength-agile ECDL combines the stability of an external-cavity laser with the wavelength agility of a diode laser. Wavelength is modulated by modulating the injection current of the diode-laser gain element. The external cavity is a Littman-Metcalf resonator, in which the zeroth-order output from a diffraction grating is used as the laser output and the first-order-diffracted light is retro-reflected by a cavity feedback mirror, which establishes one end of the resonator. The other end of the resonator is the output surface of a Fabry-Perot resonator that constitutes the diode-laser gain element. Wavelength is selected by choosing the angle of the diffracted return beam, as determined by position of the feedback mirror. The present wavelength-agile ECDL is distinguished by design details that enable coverage of all 60 channels, separated by 100-GHz frequency intervals, that are specified in DWDM standards.

  2. The Pilatus Unmanned Aircraft System for Lower Atmospheric Research

    NASA Technical Reports Server (NTRS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; hide

    2016-01-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might

  3. The Pilatus unmanned aircraft system for lower atmospheric research

    DOE PAGES

    de Boer, Gijs; Palo, Scott; Argrow, Brian; ...

    2016-04-28

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. Inmore » order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured

  4. The Pilatus unmanned aircraft system for lower atmospheric research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Boer, Gijs; Palo, Scott; Argrow, Brian

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. Inmore » order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured

  5. The pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Palo, S.; Argrow, B.; LoDolce, G.; Mack, J.; Gao, R.-S.; Telg, H.; Trussel, C.; Fromm, J.; Long, C. N.; Bland, G.; Maslanik, J.; Schmid, B.; Hock, T.

    2015-11-01

    This paper presents details of the University of Colorado (CU) Pilatus unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take off weight of 25 kg and is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and it's orientation to the upward looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be

  6. The Pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-04-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might

  7. Civil aircraft side-facing seat research summary.

    DOT National Transportation Integrated Search

    2012-11-01

    The Federal Aviation Administration (FAA) has standards and regulations that are intended to protect aircraft : occupants in the event of a crash. However, side-facing seats were not specifically addressed when aircraft seat : dynamic test standards ...

  8. Lockheed ER-2 high altitude research aircraft in flight

    NASA Image and Video Library

    1997-11-04

    ER-2 tail number 706, was one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft were platforms for a variety of high-altitude science missions flown over various parts of the world. They were also used for earth science and atmospheric sensor research and development, satellite calibration and data validation.

  9. Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990's

    NASA Technical Reports Server (NTRS)

    Chambers, Joseph R.

    2000-01-01

    Established in 1917 as the nation#s first civil aeronautics research laboratory under the National Advisory Commit-tee for Aeronautics (NACA), Langley was a small laboratory that solved the problems of flight for military and civil aviation. Throughout history, Langley has maintained a working partnership with the Department of Defense, U.S. industry, universities, and other government agencies to support the defense of the nation with research. During World War II, Langley directed virtually all of its workforce and facilities to research for military aircraft. Following the war, a balanced program of military and civil projects was undertaken. In some instances Langley research from one aircraft program helped solve a problem in another. At the conclusion of some programs, Langley obtained the research models for additional tests to learn more about previously unknown phenomena. The data also proved useful in later developmental programs. Many of the military aircraft in the U.S. inventory as of late 1999 were over 20 years old. Langley activities that contributed to the development of some of these aircraft began over 50 years prior. This publication documents the role, from early concept stages to problem solving for fleet aircraft, that Langley played in the military aircraft fleet of the United States for the 1990's.

  10. Research on systematization and advancement of shipbuilding production management for flexible and agile response for high value offshore platform

    NASA Astrophysics Data System (ADS)

    Song, Young-Joo; Woo, Jong-Hun; Shin, Jong-Gye

    2011-09-01

    Recently, the speed of change related with enterprise management is getting faster than ever owing to the competition among companies, technique diffusion, shortening of product lifecycle, excessive supply of market. For the example, the compliance condition (such as delivery date, product quality, etc.) from the ship owner is getting complicated and the needs for the new product such as FPSO, FSRU are coming to fore. This paradigm shift emphasize the rapid response rather than the competitive price, flexibility and agility rather than effective and optimal perspective for the domestic shipbuilding company. So, domestic shipbuilding companies have to secure agile and flexible ship production environment that could respond change of market and requirements of customers in order to continue a competitive edge in the world market. In this paper, I'm going to define a standard shipbuilding production management system by investigating the environment of domestic major shipbuilding companies. Also, I'm going to propose a unified ship production management and system for the operation of unified management through detail analysis of the activities and the data flow of ship production management. And, the system functions for the strategic approach of ship production management are investigated through the business administration tools such as performance pyramid, VDT and BSC. Lastly, the research of applying strategic KPI to the digital shipyard as virtual execution platform is conducted.

  11. Rotor systems research aircraft risk-reduction shake test

    NASA Technical Reports Server (NTRS)

    Wellman, J. Brent

    1990-01-01

    A shake test and an extensive analysis of results were performed to evaluate the possibility of and the method for dynamically calibrating the Rotor Systems Research Aircraft (RSRA). The RSRA airframe was subjected to known vibratory loads in several degrees of freedom and the responses of many aircraft transducers were recorded. Analysis of the transducer responses using the technique of dynamic force determination showed that the RSRA, when used as a dynamic measurement system, could predict, a posteriori, an excitation force in a single axis to an accuracy of about 5 percent and sometimes better. As the analysis was broadened to include multiple degrees of freedom for the excitation force, the predictive ability of the measurement system degraded to about 20 percent, with the error occasionally reaching 100 percent. The poor performance of the measurement system is explained by the nonlinear response of the RSRA to vibratory forces and the inadequacy of the particular method used in accounting for this nonlinearity.

  12. Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    1997-01-01

    An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.

  13. Pathfinder aircraft in flight

    NASA Image and Video Library

    1995-07-27

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  14. Moving target detection for frequency agility radar by sparse reconstruction

    NASA Astrophysics Data System (ADS)

    Quan, Yinghui; Li, YaChao; Wu, Yaojun; Ran, Lei; Xing, Mengdao; Liu, Mengqi

    2016-09-01

    Frequency agility radar, with randomly varied carrier frequency from pulse to pulse, exhibits superior performance compared to the conventional fixed carrier frequency pulse-Doppler radar against the electromagnetic interference. A novel moving target detection (MTD) method is proposed for the estimation of the target's velocity of frequency agility radar based on pulses within a coherent processing interval by using sparse reconstruction. Hardware implementation of orthogonal matching pursuit algorithm is executed on Xilinx Virtex-7 Field Programmable Gata Array (FPGA) to perform sparse optimization. Finally, a series of experiments are performed to evaluate the performance of proposed MTD method for frequency agility radar systems.

  15. Moving target detection for frequency agility radar by sparse reconstruction.

    PubMed

    Quan, Yinghui; Li, YaChao; Wu, Yaojun; Ran, Lei; Xing, Mengdao; Liu, Mengqi

    2016-09-01

    Frequency agility radar, with randomly varied carrier frequency from pulse to pulse, exhibits superior performance compared to the conventional fixed carrier frequency pulse-Doppler radar against the electromagnetic interference. A novel moving target detection (MTD) method is proposed for the estimation of the target's velocity of frequency agility radar based on pulses within a coherent processing interval by using sparse reconstruction. Hardware implementation of orthogonal matching pursuit algorithm is executed on Xilinx Virtex-7 Field Programmable Gata Array (FPGA) to perform sparse optimization. Finally, a series of experiments are performed to evaluate the performance of proposed MTD method for frequency agility radar systems.

  16. Crash Test of Three Cessna 172 Aircraft at NASA Langley Research Center's Landing and Impact Research Facility

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2015-01-01

    During the summer of 2015, three Cessna 172 aircraft were crash tested at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). The three tests simulated three different crash scenarios. The first simulated a flare-to-stall emergency or hard landing onto a rigid surface such as a road or runway, the second simulated a controlled flight into terrain with a nose down pitch on the aircraft, and the third simulated a controlled flight into terrain with an attempt to unsuccessfully recover the aircraft immediately prior to impact, resulting in a tail strike condition. An on-board data acquisition system captured 64 channels of airframe acceleration, along with acceleration and load in two onboard Hybrid II 50th percentile Anthropomorphic Test Devices, representing the pilot and co-pilot. Each test contained different airframe loading conditions and results show large differences in airframe performance. This paper presents test methods used to conduct the crash tests and will summarize the airframe results from the test series.

  17. Adaptive Global Innovative Learning Environment for Glioblastoma: GBM AGILE.

    PubMed

    Alexander, Brian M; Ba, Sujuan; Berger, Mitchel S; Berry, Donald A; Cavenee, Webster K; Chang, Susan M; Cloughesy, Timothy F; Jiang, Tao; Khasraw, Mustafa; Li, Wenbin; Mittman, Robert; Poste, George H; Wen, Patrick Y; Yung, W K Alfred; Barker, Anna D

    2018-02-15

    Glioblastoma (GBM) is a deadly disease with few effective therapies. Although much has been learned about the molecular characteristics of the disease, this knowledge has not been translated into clinical improvements for patients. At the same time, many new therapies are being developed. Many of these therapies have potential biomarkers to identify responders. The result is an enormous amount of testable clinical questions that must be answered efficiently. The GBM Adaptive Global Innovative Learning Environment (GBM AGILE) is a novel, multi-arm, platform trial designed to address these challenges. It is the result of the collective work of over 130 oncologists, statisticians, pathologists, neurosurgeons, imagers, and translational and basic scientists from around the world. GBM AGILE is composed of two stages. The first stage is a Bayesian adaptively randomized screening stage to identify effective therapies based on impact on overall survival compared with a common control. This stage also finds the population in which the therapy shows the most promise based on clinical indication and biomarker status. Highly effective therapies transition in an inferentially seamless manner in the identified population to a second confirmatory stage. The second stage uses fixed randomization to confirm the findings from the first stage to support registration. Therapeutic arms with biomarkers may be added to the trial over time, while others complete testing. The design of GBM AGILE enables rapid clinical testing of new therapies and biomarkers to speed highly effective therapies to clinical practice. Clin Cancer Res; 24(4); 737-43. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Draftsmen at Work during Construction of the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1942-09-21

    The National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory was designed by a group of engineers at the Langley Memorial Aeronautical Laboratory in late 1940 and 1941. Under the guidance of Ernest Whitney, the men worked on drawings and calculations in a room above Langley’s Structural Research Laboratory. The main Aircraft Engine Research Laboratory design group originally consisted of approximately 30 engineers and draftsmen, but there were smaller groups working separately on specific facilities. The new engine lab would have six principal buildings: the Engine Research Building, hangar, Fuels and Lubricants Building, Administration Building, Propeller Test Stand, and Altitude Wind Tunnel. In December 1941 most of those working on the project transferred to Cleveland from Langley. Harrison Underwood and Charles Egan led 18 architectural, 26 machine equipment, 3 structural and 10 mechanical draftsmen. Initially these staff members were housed in temporary offices in the hangar. As sections of the four-acre Engine Research Building were completed in the summer of 1942, the design team began relocating there. The Engine Research Building contained a variety of test cells and laboratories to address virtually every aspect of piston engine research. It also contained a two-story office wing, seen in this photograph that would later house many of the powerplant research engineers.

  19. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the NASA Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  20. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  1. An Evaluation Technique for an F/A-18 Aircraft Loads Model Using F/A-18 Systems Research Aircraft Flight Data

    NASA Technical Reports Server (NTRS)

    Olney, Candida D.; Hillebrandt, Heather; Reichenbach, Eric Y.

    2000-01-01

    A limited evaluation of the F/A-18 baseline loads model was performed on the Systems Research Aircraft at NASA Dryden Flight Research Center (Edwards, California). Boeing developed the F/A-18 loads model using a linear aeroelastic analysis in conjunction with a flight simulator to determine loads at discrete locations on the aircraft. This experiment was designed so that analysis of doublets could be used to establish aircraft aerodynamic and loads response at 20 flight conditions. Instrumentation on the right outboard leading edge flap, left aileron, and left stabilator measured the hinge moment so that comparisons could be made between in-flight-measured hinge moments and loads model-predicted values at these locations. Comparisons showed that the difference between the loads model-predicted and in-flight-measured hinge moments was up to 130 percent of the flight limit load. A stepwise regression technique was used to determine new loads derivatives. These derivatives were placed in the loads model, which reduced the error to within 10 percent of the flight limit load. This paper discusses the flight test methodology, a process for determining loads coefficients, and the direct comparisons of predicted and measured hinge moments and loads coefficients.

  2. A progress report on the development of an augmentor wing jet STOL research aircraft.

    NASA Technical Reports Server (NTRS)

    Quigley, H. C.; Sinclair, S. R. M.; Nark, T. C., Jr.; O'Keefe, J. V.

    1971-01-01

    The development of the aircraft has progressed to the point where the design of the modifications to the de Havilland C-8A Buffalo is complete and the engines are being tested. The predicted performance shows that the aircraft will be able to take off and land in less than 1500 ft. Simulation studies indicate that the handling qualities of the aircraft, with stability augmentation, will be acceptable for STOL research missions. Special techniques were required, however, for flight path control and transition from cruise to landing configuration .

  3. The influence of physical and cognitive factors on reactive agility performance in men basketball players.

    PubMed

    Scanlan, Aaron; Humphries, Brendan; Tucker, Patrick S; Dalbo, Vincent

    2014-01-01

    This study explored the influence of physical and cognitive measures on reactive agility performance in basketball players. Twelve men basketball players performed multiple sprint, Change of Direction Speed Test, and Reactive Agility Test trials. Pearson's correlation analyses were used to determine relationships between the predictor variables (stature, mass, body composition, 5-m, 10-m and 20-m sprint times, peak speed, closed-skill agility time, response time and decision-making time) and reactive agility time (response variable). Simple and stepwise regression analyses determined the individual influence of each predictor variable and the best predictor model for reactive agility time. Morphological (r = -0.45 to 0.19), sprint (r = -0.40 to 0.41) and change-of-direction speed measures (r = 0.43) had small to moderate correlations with reactive agility time. Response time (r = 0.76, P = 0.004) and decision-making time (r = 0.58, P = 0.049) had large to very large relationships with reactive agility time. Response time was identified as the sole predictor variable for reactive agility time in the stepwise model (R(2) = 0.58, P = 0.004). In conclusion, cognitive measures had the greatest influence on reactive agility performance in men basketball players. These findings suggest reaction and decision-making drills should be incorporated in basketball training programmes.

  4. An Agile Methodology for Implementing Service-Oriented Architecture in Small and Medium Sized Organizations

    ERIC Educational Resources Information Center

    Laidlaw, Gregory

    2013-01-01

    The purpose of this study is to evaluate the use of Lean/Agile principles, using action research to develop and deploy new technology for Small and Medium sized enterprises. The research case was conducted at the Lapeer County Sheriff's Department and involves the initial deployment of a Service Oriented Architecture to alleviate the data…

  5. Gamma-ray blazars: the combined AGILE and MAGIC views

    NASA Astrophysics Data System (ADS)

    Persic, M.; De Angelis, A.; Longo, F.; Tavani, M.

    The large FOV of the AGILE Gamma-Ray Imaging Detector (GRID), 2.5 sr, will allow the whole sky to be surveyed once every 10 days in the 30 MeV - 50 GeV energy band down to 0.05 Crab Units. This fact gives the opportunity of performing the first flux-limited, high-energy g-ray all-sky survey. The high Galactic latitude point-source population is expected to be largely dominated by blazars. Several tens of blazars are expected to be detected by AGILE (e.g., Costamante & Ghisellini 2002), about half of which accessible to the ground-based MAGIC Cherenkov telescope. The latter can then carry out pointed observations of this subset of AGILE sources in the 50GeV - 10TeV band. Given the comparable sensitivities of AGILE/GRID and MAGIC in adjacent energy bands where the emitted radiation is produced by the same (e.g., SSC) mechanism, we expect that most of these sources can be detected by MAGIC. We expect this broadband g-ray strategy to enable discovery by MAGIC of 10-15 previously unknown TeV blazars.

  6. Network configuration management : paving the way to network agility.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maestas, Joseph H.

    2007-08-01

    Sandia networks consist of nearly nine hundred routers and switches and nearly one million lines of command code, and each line ideally contributes to the capabilities of the network to convey information from one location to another. Sandia's Cyber Infrastructure Development and Deployment organizations recognize that it is therefore essential to standardize network configurations and enforce conformance to industry best business practices and documented internal configuration standards to provide a network that is agile, adaptable, and highly available. This is especially important in times of constrained budgets as members of the workforce are called upon to improve efficiency, effectiveness, andmore » customer focus. Best business practices recommend using the standardized configurations in the enforcement process so that when root cause analysis results in recommended configuration changes, subsequent configuration auditing will improve compliance to the standard. Ultimately, this minimizes mean time to repair, maintains the network security posture, improves network availability, and enables efficient transition to new technologies. Network standardization brings improved network agility, which in turn enables enterprise agility, because the network touches all facets of corporate business. Improved network agility improves the business enterprise as a whole.« less

  7. Boeing B–29 Superfortress at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1944-07-21

    A Boeing B–29 Superfortress at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory in Cleveland, Ohio. The B–29 was the Army Air Forces’ deadliest weapon during the latter portion of World War II. The aircraft was significantly larger than previous bombers but could fly faster and higher. The B–29 was intended to soar above anti-aircraft fire and make pinpoint drops onto strategic targets. The bomber was forced to carry 20,000 pounds more armament than it was designed for. The extra weight pushed the B–29’s four powerful Wright R–3350 engines to their operating limits. The over-heating of the engines proved to be a dangerous problem. The military asked the NACA to tackle the issue. Full-scale engine tests on a R–3350 engine in the Prop House demonstrated that a NACA-designed impeller increased the flow rate of the fuel injection system. Altitude Wind Tunnel studies of the engine led to the reshaping of cowling inlet and outlet to improve airflow and reduce drag. Single-cylinder studies on valve failures were resolved by a slight extension of the cylinder head, and the Engine Research Building researchers combated uneven heating with a new fuel injection system. The modifications were then tried out on an actual B–29. The bomber arrived in Cleveland on June 22, 1944. The new injection impeller, ducted head baffles and instrumentation were installed on the bomber’s two left wing engines. Eleven test flights were flown over the next month with military pilots at the helm. Overall the flight tests corroborated the wind tunnel and test stand studies.

  8. Agile Methods in Air Force Sustainment: Status and Outlook

    DTIC Science & Technology

    2014-10-01

    manage for it through iterations, anticipation and adaptation  unleash creativity and innovation by recognizing that individuals are the ultimate...073561993X X X Agile Project Management : Creating Innovative Products – 2nd Edition Jim Highsmith ISBN 0321658396 X Agile Retrospectives...X Leading Change John Kotter ISBN 0875847471 X Leading Geeks: How to Manage and Lead the People Who Deliver Technology Paul Glen ISBN

  9. Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism

    NASA Technical Reports Server (NTRS)

    Kurasaki, S. S.; Vallotton, W. C.

    1985-01-01

    The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.

  10. Evaluation of agile designs in first-in-human (FIH) trials--a simulation study.

    PubMed

    Perlstein, Itay; Bolognese, James A; Krishna, Rajesh; Wagner, John A

    2009-12-01

    The aim of the investigation was to evaluate alternatives to standard first-in-human (FIH) designs in order to optimize the information gained from such studies by employing novel agile trial designs. Agile designs combine adaptive and flexible elements to enable optimized use of prior information either before and/or during conduct of the study to seamlessly update the study design. A comparison of the traditional 6 + 2 (active + placebo) subjects per cohort design with alternative, reduced sample size, agile designs was performed by using discrete event simulation. Agile designs were evaluated for specific adverse event models and rates as well as dose-proportional, saturated, and steep-accumulation pharmacokinetic profiles. Alternative, reduced sample size (hereafter referred to as agile) designs are proposed for cases where prior knowledge about pharmacokinetics and/or adverse event relationships are available or appropriately assumed. Additionally, preferred alternatives are proposed for a general case when prior knowledge is limited or unavailable. Within the tested conditions and stated assumptions, some agile designs were found to be as efficient as traditional designs. Thus, simulations demonstrated that the agile design is a robust and feasible approach to FIH clinical trials, with no meaningful loss of relevant information, as it relates to PK and AE assumptions. In some circumstances, applying agile designs may decrease the duration and resources required for Phase I studies, increasing the efficiency of early clinical development. We highlight the value and importance of useful prior information when specifying key assumptions related to safety, tolerability, and PK.

  11. AGILE integration into APC for high mix logic fab

    NASA Astrophysics Data System (ADS)

    Gatefait, M.; Lam, A.; Le Gratiet, B.; Mikolajczak, M.; Morin, V.; Chojnowski, N.; Kocsis, Z.; Smith, I.; Decaunes, J.; Ostrovsky, A.; Monget, C.

    2015-09-01

    For C040 technology and below, photolithographic depth of focus control and dispersion improvement is essential to secure product functionality. Critical 193nm immersion layers present initial focus process windows close to machine control capability. For previous technologies, the standard scanner sensor (Level sensor - LS) was used to map wafer topology and expose the wafer at the right Focus. Such optical embedded metrology, based on light reflection, suffers from reading issues that cannot be neglected anymore. Metrology errors are correlated to inspected product area for which material types and densities change, and so optical properties are not constant. Various optical phenomena occur across the product field during wafer inspection and have an effect on the quality and position of the reflected light. This can result in incorrect heights being recorded and exposures possibly being done out of focus. Focus inaccuracy associated to aggressive process windows on critical layers will directly impact product realization and therefore functionality and yield. ASML has introduced an air gauge sensor to complement the optical level sensor and lead to optimal topology metrology. The use of this new sensor is managed by the AGILE (Air Gauge Improved process LEveling) application. This measurement with no optical dependency will correct for optical inaccuracy of level sensor, and so improve best focus dispersion across the product. Due to the fact that stack complexity is more and more important through process steps flow, optical perturbation of standard Level sensor metrology is increasing and is becoming maximum for metallization layers. For these reasons AGILE feature implementation was first considered for contact and all metal layers. Another key point is that standard metrology will be sensitive to layer and reticle/product density. The gain of Agile will be enhanced for multiple product contribution mask and for complex System on Chip. Into ST context (High

  12. Small transport aircraft technology

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  13. Experimental Aerodynamic Characteristics of a Joined-wing Research Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Smith, Stephen C.; Stonum, Ronald K.

    1989-01-01

    A wind-tunnel test was conducted at Ames Research Center to measure the aerodynamic characteristics of a joined-wing research aircraft (JWRA). This aircraft was designed to utilize the fuselage and engines of the existing NASA AD-1 aircraft. The JWRA was designed to have removable outer wing panels to represent three different configurations with the interwing joint at different fractions of the wing span. A one-sixth-scale wind-tunnel model of all three configurations of the JWRA was tested in the Ames 12-Foot Pressure Wind Tunnel to measure aerodynamic performance, stability, and control characteristics. The results of these tests are presented. Longitudinal and lateral-directional characteristics were measured over an angle of attack range of -7 to 14 deg and over an angle of sideslip range of -5 to +2.5 deg at a Mach number of 0.35 and a Reynolds number of 2.2x10(6)/ft. Various combinations of deflected control surfaces were tested to measure the effectiveness and impact on stability of several control surface arrangements. In addition, the effects on stall and post-stall aerodynamic characteristics from small leading-edge devices called vortilons were measured. The results of these tests indicate that the JWRA had very good aerodynamic performance and acceptable stability and control throughout its flight envelope. The vortilons produced a profound improvement in the stall and post-stall characteristics with no measurable effects on cruise performance.

  14. Onshore and Offshore Outsourcing with Agility: Lessons Learned

    NASA Astrophysics Data System (ADS)

    Kussmaul, Clifton

    This chapter reflects on case study based an agile distributed project that ran for approximately three years (from spring 2003 to spring 2006). The project involved (a) a customer organization with key personnel distributed across the US, developing an application with rapidly changing requirements; (b) onshore consultants with expertise in project management, development processes, offshoring, and relevant technologies; and (c) an external offsite development team in a CMM-5 organization in southern India. This chapter is based on surveys and discussions with multiple participants. The several years since the project was completed allow greater perspective on both the strengths and weaknesses, since the participants can reflect on the entire life of the project, and compare it to subsequent experiences. Our findings emphasize the potential for agile project management in distributed software development, and the importance of people and interactions, taking many small steps to find and correct errors, and matching the structures of the project and product to support implementation of agility.

  15. Effects of Ankle Braces Upon Agility Course Performance in High School Athletes

    PubMed Central

    Beriau, Mark R.; Cox, William B.; Manning, James

    1994-01-01

    The purpose of this study was to compare the effects of wearing the AircastTM Sports Stirrup, AircastTM Training brace, Swede-OTM brace, and DonJoyTM Ankle Ligament Protector while running an agility course. Eighty-five high school athletes with no history of ankle injury and no experience in wearing any ankle support served as subjects. Each subject participated in four separate testing sessions. During sessions 1 and 4, subjects ran the agility course under the control (unbraced) conditions. Sessions 2 and 3 consisted of randomly wearing the ankle braces while running the agility course. A questionnaire concerning support, comfort, and restriction was completed by each subject after wearing each of the braces. An analysis of variance (ANOVA) with repeated measures revealed that a significant difference existed between the agility times. Tukey's post hoc test indicated that a significant difference existed between each ankle brace and the control 2 agility times as well as a control 1 and control 2 time difference. The control time difference was attributed to a learning effect. An ANOVA with repeated measures of only the four braces revealed that a significant difference existed between the agility times. Tukey's post hoc test showed the only difference was between the DonJoy Ankle Ligament Protector and the Aircast Training brace. We concluded: 1) there is limited practical performance effect upon agility while wearing an ankle brace; and 2) an athlete's perceived comfort, support, and performance restriction are contributing factors that may directly influence the effectiveness of ankle bracing. PMID:16558284

  16. A Flight Investigation of the STOL Characteristics of an Augmented Jet Flap STOL Research Aircraft

    NASA Technical Reports Server (NTRS)

    Quigley, H. C.; Innis, R. C.; Grossmith, S.

    1974-01-01

    The flight test program objectives are: (1) To determine the in-flight aerodynamic, performance, and handling qualities of a jet STOL aircraft incorporating the augmented jet flap concept; (2) to compare the results obtained in flight with characteristics predicted from wind tunnel and simulator test results; (3) to contribute to the development of criteria for design and operation of jet STOL transport aircraft; and (4) to provide a jet STOL transport aircraft for STOL systems research and development. Results obtained during the first 8 months of proof-of-concept flight testing of the aircraft in STOL configurations are reported. Included are a brief description of the aircraft, fan-jet engines, and systems; a discussion of the aerodynamic, stability and control, and STOL performance; and pilot opinion of the handling qualities and operational characteristics.

  17. Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center d

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center during a low-level flyby at Las Cruces Airport in New Mexico. The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  18. Light transport and general aviation aircraft icing research requirements

    NASA Technical Reports Server (NTRS)

    Breeze, R. K.; Clark, G. M.

    1981-01-01

    A short term and a long term icing research and technology program plan was drafted for NASA LeRC based on 33 separate research items. The specific items listed resulted from a comprehensive literature search, organized and assisted by a computer management file and an industry/Government agency survey. Assessment of the current facilities and icing technology was accomplished by presenting summaries of ice sensitive components and protection methods; and assessments of penalty evaluation, the experimental data base, ice accretion prediction methods, research facilities, new protection methods, ice protection requirements, and icing instrumentation. The intent of the research plan was to determine what icing research NASA LeRC must do or sponsor to ultimately provide for increased utilization and safety of light transport and general aviation aircraft.

  19. Surface friction alters the agility of a small Australian marsupial.

    PubMed

    Wheatley, Rebecca; Clemente, Christofer J; Niehaus, Amanda C; Fisher, Diana O; Wilson, Robbie S

    2018-04-23

    Movement speed can underpin an animal's probability of success in ecological tasks. Prey often use agility to outmanoeuvre predators; however, faster speeds increase inertia and reduce agility. Agility is also constrained by grip, as the foot must have sufficient friction with the ground to apply the forces required for turning. Consequently, ground surface should affect optimum turning speed. We tested the speed-agility trade-off in buff-footed antechinus ( Antechinus mysticus ) on two different surfaces. Antechinus used slower turning speeds over smaller turning radii on both surfaces, as predicted by the speed-agility trade-off. Slipping was 64% more likely on the low-friction surface, and had a higher probability of occurring the faster the antechinus were running before the turn. However, antechinus compensated for differences in surface friction by using slower pre-turn speeds as their amount of experience on the low-friction surface increased, which consequently reduced their probability of slipping. Conversely, on the high-friction surface, antechinus used faster pre-turn speeds in later trials, which had no effect on their probability of slipping. Overall, antechinus used larger turning radii (0.733±0.062 versus 0.576±0.051 m) and slower pre-turn (1.595±0.058 versus 2.174±0.050 m s -1 ) and turning speeds (1.649±0.061 versus 2.01±0.054 m s -1 ) on the low-friction surface. Our results demonstrate the interactive effect of surface friction and the speed-agility trade-off on speed choice. To predict wild animals' movement speeds, future studies should examine the interactions between biomechanical trade-offs and terrain, and quantify the costs of motor mistakes in different ecological activities. © 2018. Published by The Company of Biologists Ltd.

  20. The NASA research program on propulsion for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Weber, R. J.

    1975-01-01

    The objectives and status of the propulsion portion of a program aimed at advancing the technology and establishing a data base appropriate for the possible future development of supersonic cruise aircraft are reviewed. Research related to exhaust nozzles, combustors, and inlets that is covered by the noise, pollution, and dynamics programs is described.

  1. First GRB detections with the AGILE Minicalorimeter

    NASA Astrophysics Data System (ADS)

    Marisaldi, M.; Labanti, C.; Fuschino, F.; Galli, M.; Tavani, M.; Bulgarelli, A.; Gianotti, F.; Trifoglio, M.; Argan, A.

    2008-05-01

    The Minicalorimeter (MCAL) onboard the AGILE satellite is a 1400 cm2 scintillation detector sensitive in the energy range 0.3-200 MeV. MCAL works both as a slave of the AGILE Silicon Tracker and as an autonomous detector for transient events (BURST mode). A dedicated onboard Burst Search logic scans BURST mode data in search of count rate increase. Peculiar characteristics of the detector are the high energy spectral coverage and a timing resolution of about 2 microseconds. Even if a trigger is not issued, BURST mode data are used to build a broad band energy spectrum (scientific ratemeters) organized in 11 bands for each of the two MCAL detection planes, with a time resolution of 1 second. After the first engineering commissioning phase, following the AGILE launch on 23rd April 2007, between 22nd June and 5th November 2007 eighteen GRBs were detected offline in the scientific ratemeters data, with a detection rate of about one per week. In this paper the capabilities of the detector will be described and an overview of the first detected GRBs will be given.

  2. AGILE/GRID Science Alert Monitoring System: The Workflow and the Crab Flare Case

    NASA Astrophysics Data System (ADS)

    Bulgarelli, A.; Trifoglio, M.; Gianotti, F.; Tavani, M.; Conforti, V.; Parmiggiani, N.

    2013-10-01

    During the first five years of the AGILE mission we have observed many gamma-ray transients of Galactic and extragalactic origin. A fast reaction to unexpected transient events is a crucial part of the AGILE monitoring program, because the follow-up of astrophysical transients is a key point for this space mission. We present the workflow and the software developed by the AGILE Team to perform the automatic analysis for the detection of gamma-ray transients. In addition, an App for iPhone will be released enabling the Team to access the monitoring system through mobile phones. In 2010 September the science alert monitoring system presented in this paper recorded a transient phenomena from the Crab Nebula, generating an automated alert sent via email and SMS two hours after the end of an AGILE satellite orbit, i.e. two hours after the Crab flare itself: for this discovery AGILE won the 2012 Bruno Rossi prize. The design of this alert system is maximized to reach the maximum speed, and in this, as in many other cases, AGILE has demonstrated that the reaction speed of the monitoring system is crucial for the scientific return of the mission.

  3. Red Teaming Agility (Briefing Charts)

    DTIC Science & Technology

    2014-06-01

    are termed “ antifragile ”. Black Swan Model for Deep Red Futures The future is dominated not by trends, but by outliers, extreme events that lie...disproportionately higher mission impact. Agility is a measure of antifragile systems Red Teaming Defined Red Teaming is a function to provide

  4. V/STOL Systems Research Aircraft: A Tool for Cockpit Integration

    NASA Technical Reports Server (NTRS)

    Stortz, Michael W.; ODonoghue, Dennis P.; Tiffany, Geary (Technical Monitor)

    1995-01-01

    The next generation ASTOVL aircraft will have a complicated propulsion System. The configuration choices include Direct Lift, Lift-Fan and Lift+Lift /Cruise but the aircraft must also have supersonic performance and low-observable characteristics. The propulsion system may have features such as flow blockers, vectoring nozzles and flow transfer schemes. The flight control system will necessarily fully integrate the aerodynamic surfaces and the propulsive elements. With a fully integrated, fly-by-wire flight/propulsion control system, the options for cockpit integration are interesting and varied. It is possible to decouple longitudinal and vertical responses allowing the pilot to close the loop on flight path and flight path acceleration directly. In the hover, the pilot can control the translational rate directly without having to stabilize the inner rate and attitude loops. The benefit of this approach, reduced workload and increased precision. has previously been demonstrated through several motion-based simulations. In order to prove the results in flight, the V/STOL System Research Aircraft (VSRA) was developed at the NASA Ames Research Center. The VSRA is the YAV-8B Prototype modified with a research flight control system using a series-parallel servo configuration in all the longitudinal degrees of freedom (including thrust and thrust vector angle) to provide an integrated flight and propulsion control system in a limited envelope. Development of the system has been completed and flight evaluations of the response types have been performed. In this paper we will discuss the development of the VSRA, the evolution of the flight path command and translational rate command response types and the Guest Pilot evaluations of the system. Pilot evaluation results will be used to draw conclusions regarding the suitability of the system to satisfy V/STOL requirements.

  5. V/STOL systems research aircraft: A tool for cockpit integration

    NASA Technical Reports Server (NTRS)

    Stortz, Michael W.; ODonoghue, Dennis P.

    1995-01-01

    The next generation ASTOVL aircraft will have a complicated propulsion system. The configuration choices include Direct Lift, Lift-Fan and Lift + Lift/Cruise but the aircraft must also have supersonic performance and low-observable characteristics. The propulsion system may have features such as flow blockers, vectoring nozzles and flow transfer schemes. The flight control system will necessarily fully integrate the aerodynamic surfaces and the propulsive elements. With a fully integrated, fly-by-wire flight/propulsion control system, the options for cockpit integration are interesting and varied. It is possible to de-couple longitudinal and vertical responses allowing the pilot to close the loop on flightpath and flightpath acceleration directly. In the hover, the pilot can control the translational rate directly without having to stabilize the inner rate and attitude loops. The benefit of this approach, reduced workload and increased precision, has previously been demonstrated through several motion-based simulations. In order to prove the results in flight, the V/STOL System Research Aircraft (VSRA) was developed at the NASA Ames Research Center. The VSRA is the YAV-8B Prototype modified with a research flight control system using a series-parallel servo configuration in all the longitudinal degrees of freedom (including thrust and thrust vector angle) to provide an integrated flight and propulsion control system in a limited envelope. Development of the system has been completed and flight evaluations of the response types have been performed. In this paper we will discuss the development of the VSRA, the evolution of the flightpath command and translational rate command response types and the Guest Pilot evaluations of the system. Pilot evaluation results are used to draw conclusions regarding the suitability of the system to satisfy V/STOL requirements.

  6. Solar Radiation Measurements Onboard the Research Aircraft HALO

    NASA Astrophysics Data System (ADS)

    Lohse, I.; Bohn, B.; Werner, F.; Ehrlich, A.; Wendisch, M.

    2014-12-01

    Airborne measurements of the separated upward and downward components of solar spectral actinic flux densities for the determination of photolysis frequencies and of upward nadir spectral radiance were performed with the HALO Solar Radiation (HALO-SR) instrument package onboard the High Altitude and Long Range Research Aircraft (HALO). The instrumentation of HALO-SR is characterized and first measurement data from the Next-generation Aircraft Remote-Sensing for Validation Studies (NARVAL) campaigns in 2013 and 2014 are presented. The measured data are analyzed in the context of the retrieved microphysical and optical properties of clouds which were observed underneath the aircraft. Detailed angular sensitivities of the two optical actinic flux receivers were determined in the laboratory. The effects of deviations from the ideal response are investigated using radiative transfer calculations of atmospheric radiance distributions under various atmospheric conditions and different ground albedos. Corresponding correction factors are derived. Example photolysis frequencies are presented, which were sampled in the free troposphere and lower stratosphere over the Atlantic Ocean during the 2013/14 HALO NARVAL campaigns. Dependencies of photolysis frequencies on cloud cover, flight altitude and wavelength range of the photolysis process are investigated. Calculated actinic flux densities in the presence of clouds benefit from the measured spectral radiances. Retrieved cloud optical thicknesses and effective droplet radii are used as model input for the radiative transfer calculations. By comparison with the concurrent measurements of actinic flux densities the retrieval approach is validated. Acknowledgements: Funding by the Deutsche Forschungsgemeinschaft within the priority program HALO (BO 1580/4-1, WE 1900/21-1) is gratefully acknowledged.

  7. A neural based intelligent flight control system for the NASA F-15 flight research aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James

    1993-01-01

    A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.

  8. X-36 Being Prepared on Lakebed for First Flight

    NASA Image and Video Library

    1997-05-17

    As the sun creeps above the horizon of Rogers Dry Lake at NASA's Dryden Flight Research Center, Edwards, California, technicians make final preparations for the first flight of the X-36 Tailless Fighter Agility Research Aircraft.

  9. The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hanga

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hangar at NASA's Dryden flight Research Center, Edwards, California. The elongated 247-foot span lightweight aircraft, resting on its ground maneuvering dolly, stretched almost the full length of the 300-foot long hangar while on display during a visit of NASA Administrator Sean O'Keefe and other NASA officials on Jan. 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on Aug. 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as 'atmospheric satellites,' performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.

  10. NASA Dryden aircraft and avionics technicians install the nose cone on an inert Phoenix missile prior to a fit check on the center's F-15B research aircraft.

    NASA Image and Video Library

    2006-11-13

    NASA Dryden aircraft and avionics technicians (from left) Bryan Hookland, Art Cope, Herman Rijfkogel and Jonathan Richards install the nose cone on a Phoenix missile prior to a fit check on the center's F-15B research aircraft.

  11. Broadband electromagnetic sensors for aircraft lightning research. [electromagnetic effects of lightning on aircraft digital equipment

    NASA Technical Reports Server (NTRS)

    Trost, T. F.; Zaepfel, K. P.

    1980-01-01

    A set of electromagnetic sensors, or electrically-small antennas, is described. The sensors are designed for installation on an F-106 research aircraft for the measurement of electric and magnetic fields and currents during a lightning strike. The electric and magnetic field sensors mount on the aircraft skin. The current sensor mounts between the nose boom and the fuselage. The sensors are all on the order of 10 cm in size and should produce up to about 100 V for the estimated lightning fields. The basic designs are the same as those developed for nuclear electromagnetic pulse studies. The most important electrical parameters of the sensors are the sensitivity, or equivalent area, and the bandwidth (or rise time). Calibration of sensors with simple geometries is reliably accomplished by a geometric analysis; all the sensors discussed possess geometries for which the sensitivities have been calculated. For the calibration of sensors with more complex geometries and for general testing of all sensors, two transmission lines were constructed to transmit known pulsed fields and currents over the sensors.

  12. Agile informatics: application of agile project management to the development of a personal health application.

    PubMed

    Chung, Jeanhee; Pankey, Evan; Norris, Ryan J

    2007-10-11

    We describe the application of the Agile method-- a short iteration cycle, user responsive, measurable software development approach-- to the project management of a modular personal health record, iHealthSpace, to be deployed to the patients and providers of a large academic primary care practice.

  13. CV-990 Landing Systems Research Aircraft (LSRA) during final Space Shuttle tire test

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Convair 990 (CV-990) was used as a Landing Systems Research Aircraft (LSRA) at NASA's Dryden Flight Research Center, Edwards, California, to test space shuttle landing gear and braking systems as part of NASA's effort to upgrade and improve space shuttle capabilities. The first flight at Dryden of the CV-990 with shuttle test components occurred in April 1993, and tests continued into August 1995, when this photo shows a test of the shuttle tires. The purpose of this series of tests was to determine the performance parameters and failure limits of the tires. This particular landing was on the dry lakebed at Edwards, but other tests occurred on the main runway there. The CV-990, built in 1962 by the Convair Division of General Dynamics Corp., Ft. Worth, Texas, served as a research aircraft at Ames Research Center, Moffett Field, California, before it came to Dryden.

  14. Lockheed ER-2 #709 high altitude research aircraft in flight

    NASA Image and Video Library

    1998-03-02

    ER-2 tail number 709, was one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft were platforms for a variety of high-altitude science missions flown over various parts of the world. They were also used for earth science and atmospheric sensor research and development, satellite calibration and data validation.

  15. Evaluation and use of remotely piloted aircraft systems for operations and research - RxCADRE 2012

    Treesearch

    Thomas J. Zajkowski; Matthew B. Dickinson; J. Kevin Hiers; William Holley; Brett W. Williams; Alexander Paxton; Otto Martinez; Gregory W. Walker

    2016-01-01

    Small remotely piloted aircraft systems (RPAS), also known as unmanned aircraft systems (UAS), are expected to provide important contributions to wildland fire operations and research, but their evaluation and use have been limited. Our objectives were to leverage US Air Force-controlled airspace to (1) deploy RPAS in support of the 2012 Prescribed Fire...

  16. Flight testing the fixed-wing configuration of the Rotor Systems Research Aircraft (RSRA)

    NASA Technical Reports Server (NTRS)

    Hall, G. W.; Morris, P. M.

    1985-01-01

    The Rotor Systems Research Aircraft (RSRA) is a unique research aircraft designed to flight test advanced helicopter rotor system. Its principal flight test configuration is as a compound helicopter. The fixed wing configuration of the RSRA was primarily considered an energy fly-home mode in the event it became necessary to sever an unstable rotor system in flight. While it had always been planned to flight test the fixed wing configuration, the selection of the RSRA as the flight test bed for the X-wing rotor accelerated this schedule. This paper discusses the build-up to, and the test of, the RSRA fixed wing configuration. It is written primarily from the test pilot's perspective.

  17. SU-E-T-610: Comparison of Treatment Times Between the MLCi and Agility Multileaf Collimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, C; Bowling, J

    2014-06-01

    Purpose: The Agility is a new 160-leaf MLC developed by Elekta for use in their Infinity and Versa HD linacs. As compared to the MLCi, the Agility increased the maximum leaf speed from 2 cm/s to 3.5 cm/s, and the maximum primary collimator speed from 1.5 cm/s to 9.0 cm/s. The purpose of this study was to determine if the Agility MLC resulted in improved plan quality and/or shorter treatment times. Methods: An Elekta Infinity that was originally equipped with a 80 leaf MLCi was upgraded to an 160 leaf Agility. Treatment plan quality was evaluated using the Pinnacle planningmore » system with SmartArc. Optimization was performed once for the MLCi and once for the Agility beam models using the same optimization parameters and the same number of iterations. Patient treatment times were measured for all IMRT, VMAT, and SBRT patients treated on the Infinity with the MLCi and Agility MLCs. Treatment times were extracted from the EMR and measured from when the patient first walked into the treatment room until exiting the treatment room. Results: 11,380 delivery times were measured for patients treated with the MLCi, and 1,827 measurements have been made for the Agility MLC. The average treatment times were 19.1 minutes for the MLCi and 20.8 minutes for the Agility. Using a t-test analysis, there was no difference between the two groups (t = 0.22). The dose differences between patients planned with the MLCi and the Agility MLC were minimal. For example, the dose difference for the PTV, GTV, and cord for a head and neck patient planned using Pinnacle were effectively equivalent. However, the dose to the parotid glands was slightly worse with the Agility MLC. Conclusion: There was no statistical difference in treatment time, or any significant dosimetric difference between the Agility MLC and the MLCi.« less

  18. Low-speed airspeed calibration data for a single-engine research-support aircraft

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1980-01-01

    A standard service airspeed system on a single engine research support airplane was calibrated by the trailing anemometer method. The effects of flaps, power, sideslip, and lag were evaluated. The factory supplied airspeed calibrations were not sufficiently accurate for high accuracy flight research applications. The trailing anemometer airspeed calibration was conducted to provide the capability to use the research support airplane to perform pace aircraft airspeed calibrations.

  19. Lockheed P–38J Lightning at the Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-03-21

    The National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory acquired two Lockheed P–38J Lightning in October 1944 to augment their burgeoning icing research program. The P–38 was a high-altitude interceptor with a unique twin fuselage configuration. Lockheed designed the aircraft in 1938 and 1939. Its two Allison V–1710 engines carried the aircraft to altitudes up to 40,000 feet. The P–38 was used extensively during World War II in a variety of roles. In August 1943, Lockheed began producing an improved version, the P–38J that included better cockpit heating, engine cooling, and dive flaps. The military loaned the NACA two P–38Js to determine the amount of ice formation on the induction system of the turbosupercharger-equipped engines. In 1944 and 1945 one of the aircraft was subjected to ground tests using an engine blower on the hangar apron. The V–1710 was run over a full range of speeds as different levels of water were injected into the blower and sprayed onto the engine. The other P–38J was flown at 10,000 feet altitude with water sprayed into the engine to simulate rain. The tests confirmed that closing the intercooler flap added protection against the ice by blocking water ingestion and increasing engine heat. NACA pilot Joseph Walker joined the Cleveland laboratory in early 1945 as a physicist. Walker had flown P–38s during World, and later claimed that seeing the NACA’s two P–38Js inspired him to return to his earlier calling as a pilot, this time with the NACA. Walker was particularly active in the icing flight program during his five years of flying in Cleveland.

  20. CV-990 Landing Systems Research Aircraft (LSRA) during Space Shuttle tire test

    NASA Image and Video Library

    1995-08-02

    A NASA CV-990, modified as a Landing Systems Research Aircraft (LSRA), lands on the Edwards AFB main runway in test of the space shuttle landing gear system. In this case, the shuttle tire failed, bursting into flame during the rollout. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy. The CV-990 used as the LSRA was built in 1962 by the Convair Division of General Dynamics Corp., Ft. Worth, Texas, served as a research aircraft at Ames Research Center, Moffett Field, California, before it came to Dryden.

  1. Smart Healthcare Agility Management - Tojisha Doctrine by Self-synchronization

    DTIC Science & Technology

    2014-06-01

    impossibility at our age. One is the technology of space elevator and another is the space-walk tourism which the project has existed since the mid-20 th...In regards to the technologies of space-walk tourism , increase of patents related to the technologies of Pulse Detention Engine worldwide is some...medicine, and there is some reference cases such as "open agility" and "closed agility" is immersed in training specifically in sports science which

  2. Military aircraft and missile technology at the Langley Research Center: A selected bibliography

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1980-01-01

    A compilation of reference material is presented on the Langley Research Center's efforts in developing advanced military aircraft and missile technology over the past twenty years. Reference material includes research made in aerodynamics, performance, stability, control, stall-spin, propulsion integration, flutter, materials, and structures.

  3. The all-electric aircraft - A systems view and proposed NASA research Programs

    NASA Technical Reports Server (NTRS)

    Spitzer, C. R.

    1984-01-01

    It is expected that all-electric aircraft, whether military or commercial, will exhibit reduced weight, acquisition cost and fuel consumption, an expanded flight envelope and improved survivability and reliability, simpler maintenance, and reduced support equipment. Also noteworthy are dramatic improvements in mission adaptability, based on the degree to which control system performance relies on easily exchanged software. Flight-critical secondary power and control systems whose malfunction would mean loss of an aircraft pose failure detection and design methodology problems, however, that have only begun to be addressed. NASA-sponsored research activities concerned with these problems and prospective benefits are presently discussed.

  4. Taking Another Look at the Data Management Life Cycle: Deconstruction, Agile, and Community

    NASA Astrophysics Data System (ADS)

    Young, J. W.; Lenhardt, W. C.; Parsons, M. A.; Benedict, K. K.

    2014-12-01

    The data life cycle has figured prominently in describing the context of digital scientific data stewardship and cyberinfractructure in support of science. There are many different versions of the data life cycle, but they all follow a similar basic pattern: plan, collect, ingest, asses, preserve, discover, and reuse. The process is often interpreted in a fairly linear fashion despite it being a cycle conceptually. More recently at GeoData 2014 and elsewhere, questions have been raised about the utility of the data life cycle as it is currently represented. We are proposing to the community a re-examination of the data life cycle using an agile lens. Our goal is not to deploy agile methods, but to use agile principles as a heuristic to think about how to incorporate data stewardship across the scientific process from proposal stage to research and beyond. We will present alternative conceptualizations of the data life cycle with a goal to solicit feedback and to develop a new model for conceiving and describing the overall data stewardship process. We seek to re-examine past assumptions and shed new light on the challenges and necessity of data stewardship. The ultimate goal is to support new science through enhanced data interoperability, usability, and preservation.

  5. NASA/Army Rotorcraft Technology. Volume 3: Systems Integration, Research Aircraft, and Industry

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This is part 3 of the conference proceedings on rotorcraft technology. This volume is divided into areas on systems integration, research aircraft, and industry. Representative titles from each area are: system analysis in rotorcraft design, the past decade; rotorcraft flight research with emphasis on rotor systems; and an overview of key technology thrusts at Bell Helicopter Textron.

  6. The mini-calorimeter of the AGILE satellite

    NASA Astrophysics Data System (ADS)

    Labanti, C.; Marisaldi, M.; Fuschino, F.; Galli, M.; Argan, A.; Bulgarelli, A.; Costa, E.; Di Cocco, G.; Gianotti, F.; Tavani, M.; Trifoglio, M.

    2006-06-01

    AGILE is a small space mission of the Italian Space Agency (ASI) devoted to astrophysics in the gamma-ray energy range 30 MeV - 50 GeV, and in the X-ray band 15 keV - 45 keV. The AGILE Payload is composed of three instruments: a gamma-ray imager based on a Tungsten-Silicon Tracker (ST), for observations in the gamma ray energy range 30 MeV - 50 GeV, a Silicon based X-ray detector, Super-Agile (SA), for imaging in the range 15 keV - 40 keV and a CsI(Tl) Mini-Calorimeter (MCAL) that detects gamma rays or particle energy deposits between 300 keV and 200 MeV. The payload is currently fully integrated and the satellite is expected to be launched in the second half of 2006. MCAL is composed of 30 CsI(Tl) scintillator detectors with the shape of a bar with photodiode readout at both ends, arranged in two orthogonal layers. MCAL can work both as a slave of the ST and as an independent gamma-ray detector for the detection of transients and Gamma Ray Bursts. In this paper a detailed description of MCAL is presented together with the first on ground calibration results.

  7. Assessment of Specificity of the Badcamp Agility test for Badminton Players

    PubMed Central

    de França Bahia Loureiro, Luiz; Costa Dias, Mário Oliveira; Cremasco, Felipe Couto; da Silva, Maicon Guimarães; de Freitas, Paulo Barbosa

    2017-01-01

    Abstract The Badcamp agility test was created to evaluate agility of badminton players. The Badcamp is a valid and reliable test, however, a doubt about the need for the use of this test exists as simpler tests could provide similar information about agility in badminton players. Thus, the aim of this study was to examine the specificity of the Badcamp, comparing the performance of badminton players and athletes from other sports in the Badcamp and the shuttle run agility test (SRAT). Sixty-four young male and female athletes aged between 14 and 16 years participated in the study. They were divided into 4 groups of 16 according to their sport practices: badminton, tennis, team sport (basketball and volleyball), and track and field. We compared the groups in both tests, the Badcamp and SRAT. The results revealed that the group of badminton players was faster compared to all other groups in the Badcamp. However, in the SRAT there were no differences among groups composed of athletes from open skill sports (e.g., badminton, tennis, and team sports), and a considerable reduction of the difference between badminton players and track and field athletes. Thus, we concluded that the Badcamp test is a specific agility test for badminton players and should be considered in evaluating athletes of this sport modality. PMID:28713471

  8. Assessment of Specificity of the Badcamp Agility test for Badminton Players.

    PubMed

    de França Bahia Loureiro, Luiz; Costa Dias, Mário Oliveira; Cremasco, Felipe Couto; da Silva, Maicon Guimarães; de Freitas, Paulo Barbosa

    2017-06-01

    The Badcamp agility test was created to evaluate agility of badminton players. The Badcamp is a valid and reliable test, however, a doubt about the need for the use of this test exists as simpler tests could provide similar information about agility in badminton players. Thus, the aim of this study was to examine the specificity of the Badcamp, comparing the performance of badminton players and athletes from other sports in the Badcamp and the shuttle run agility test (SRAT). Sixty-four young male and female athletes aged between 14 and 16 years participated in the study. They were divided into 4 groups of 16 according to their sport practices: badminton, tennis, team sport (basketball and volleyball), and track and field. We compared the groups in both tests, the Badcamp and SRAT. The results revealed that the group of badminton players was faster compared to all other groups in the Badcamp. However, in the SRAT there were no differences among groups composed of athletes from open skill sports (e.g., badminton, tennis, and team sports), and a considerable reduction of the difference between badminton players and track and field athletes. Thus, we concluded that the Badcamp test is a specific agility test for badminton players and should be considered in evaluating athletes of this sport modality.

  9. A Quantitative Inquiry into Software Developers' Intentions to Use Agile Scrum Method

    ERIC Educational Resources Information Center

    Huq, M. Shamsul

    2017-01-01

    In recent years, organizations have shown increasing willingness to adopt agile scrum method (ASM) to meet the demand of modern-day software development; that is to deliver faster and better software, with a built-in flexibility to absorb last minute changes in requirements. This research study was undertaken to uncover the underlying factors that…

  10. A Virtual World Workshop Environment for Learning Agile Software Development Techniques

    ERIC Educational Resources Information Center

    Parsons, David; Stockdale, Rosemary

    2012-01-01

    Multi-User Virtual Environments (MUVEs) are the subject of increasing interest for educators and trainers. This article reports on a longitudinal project that seeks to establish a virtual agile software development workshop hosted in the Open Wonderland MUVE, designed to help learners to understand the basic principles of some core agile software…

  11. Do agility and skull architecture influence the geometry of the mammalian vestibulo-ocular reflex?

    PubMed

    Jeffery, Nathan; Cox, Philip G

    2010-04-01

    The spatial arrangement of the semicircular canals and extraocular muscles of the eye has been of considerable interest, particularly to researchers working on adaptations of the vestibulo-ocular reflex. Here we offer the first, extensive comparative analysis of the spatial relationships between each extraocular muscle and the canal providing its primary excitatory stimulus. The sample consisted of 113 specimens, representing 51 extant mammalian species. Hypotheses tested included that variations in the spatial alignments are linked with differences of skull morphology and with differences of agility during locomotion. Internal morphologies were visualized with magnetic resonance imaging and were measured with landmark-based vectors and planes. Values for body mass and agility were taken from the existing literature. Data were investigated for trends and associations with standard bivariate and multivariate statistical methods as well as with phylogenetically adjusted bivariate methods. The findings clearly show that species differences in the alignment of each extraocular muscle relative to the canal providing its primary excitatory stimulus are closely associated with changes of orbit morphology. The results also indicate that the actions of the oblique muscles interchange with those of the superior and inferior recti muscles when comparing lateral-eyed (rabbit) with frontal-eyed species (cat). There was only weak evidence to support the notion that canal-muscle alignments differ significantly among species according to how agile they are. The results suggest that semicircular canal morphology is arranged primarily for detecting head movements and then secondarily, if at all, for diminishing the burden of transforming vestibulo-ocular reflex signals in the most agile species.

  12. Research Institute for Autonomous Precision Guided Systems

    DTIC Science & Technology

    2007-03-08

    research on agile autonomous munitions, in direct support of the Air Force Research Laboratory Munitions Directorate (AFRL/MN). The grant was awarded with a...Flight had (5) research task areas: 1. Aeroforms and Actuation for Small and Micro Agile Air Vehicles 2. Sensing for Autonomous Control and...critical barriers in AAM, but are not covered in the scope of the AVCAAF (Vision-Based Control of Agile, Autonomous Micro Air Vehicles and Small UAVs

  13. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    NASA Astrophysics Data System (ADS)

    Rodi, A. R.; Leon, D. C.

    2012-11-01

    A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  14. The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Tarry, Scott E.; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The aviation industry is an integral part of the world s economy. Travelers have consistently chosen aviation as their mode of transportation as it is reliable, time efficient and safe. The out- dated Hub and Spoke system, coupled with high demand, has led to delays, cancellations and gridlock. NASA is developing innovative solutions to these and other air transportation problems. This research is being conducted through partnerships with federal agencies, industry stakeholders, and academia, specifically the University of Nebraska at Omaha. Each collaborator is pursuing the NASA General Aviation Roadmap through their involvement in the expansion of the Small Aircraft Transportation System (SATS). SATS will utilize technologically advanced small aircraft to transport travelers to and from rural and isolated communities. Additionally, this system will provide a safe alternative to the hub and spoke system, giving more time to more people through high-speed mobility and increased accessibility.

  15. Clustering-based urbanisation to improve enterprise information systems agility

    NASA Astrophysics Data System (ADS)

    Imache, Rabah; Izza, Said; Ahmed-Nacer, Mohamed

    2015-11-01

    Enterprises are daily facing pressures to demonstrate their ability to adapt quickly to the unpredictable changes of their dynamic in terms of technology, social, legislative, competitiveness and globalisation. Thus, to ensure its place in this hard context, enterprise must always be agile and must ensure its sustainability by a continuous improvement of its information system (IS). Therefore, the agility of enterprise information systems (EISs) can be considered today as a primary objective of any enterprise. One way of achieving this objective is by the urbanisation of the EIS in the context of continuous improvement to make it a real asset servicing enterprise strategy. This paper investigates the benefits of EISs urbanisation based on clustering techniques as a driver for agility production and/or improvement to help managers and IT management departments to improve continuously the performance of the enterprise and make appropriate decisions in the scope of the enterprise objectives and strategy. This approach is applied to the urbanisation of a tour operator EIS.

  16. Transitioning from Distributed and Traditional to Distributed and Agile: An Experience Report

    NASA Astrophysics Data System (ADS)

    Wildt, Daniel; Prikladnicki, Rafael

    Global companies that experienced extensive waterfall phased plans are trying to improve their existing processes to expedite team engagement. Agile methodologies have become an acceptable path to follow because it comprises project management as part of its practices. Agile practices have been used with the objective of simplifying project control through simple processes, easy to update documentation and higher team iteration over exhaustive documentation, focusing rather on team continuous improvement and aiming to add value to business processes. The purpose of this chapter is to describe the experience of a global multinational company on transitioning from distributed and traditional to distributed and agile. This company has development centers across North America, South America and Asia. This chapter covers challenges faced by the project teams of two pilot projects, including strengths of using agile practices in a globally distributed environment and practical recommendations for similar endeavors.

  17. Applying Standard Independent Verification and Validation (IVV) Techniques Within an Agile Framework: Is There a Compatibility Issue?

    NASA Technical Reports Server (NTRS)

    Dabney, James B.; Arthur, James Douglas

    2017-01-01

    Agile methods have gained wide acceptance over the past several years, to the point that they are now a standard management and execution approach for small-scale software development projects. While conventional Agile methods are not generally applicable to large multi-year and mission-critical systems, Agile hybrids are now being developed (such as SAFe) to exploit the productivity improvements of Agile while retaining the necessary process rigor and coordination needs of these projects. From the perspective of Independent Verification and Validation (IVV), however, the adoption of these hybrid Agile frameworks is becoming somewhat problematic. Hence, we find it prudent to question the compatibility of conventional IVV techniques with (hybrid) Agile practices.This paper documents our investigation of (a) relevant literature, (b) the modification and adoption of Agile frameworks to accommodate the development of large scale, mission critical systems, and (c) the compatibility of standard IVV techniques within hybrid Agile development frameworks. Specific to the latter, we found that the IVV methods employed within a hybrid Agile process can be divided into three groups: (1) early lifecycle IVV techniques that are fully compatible with the hybrid lifecycles, (2) IVV techniques that focus on tracing requirements, test objectives, etc. are somewhat incompatible, but can be tailored with a modest effort, and (3) IVV techniques involving an assessment requiring artifact completeness that are simply not compatible with hybrid Agile processes, e.g., those that assume complete requirement specification early in the development lifecycle.

  18. Agile Infrastructure Monitoring

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Ascenso, J.; Fedorko, I.; Fiorini, B.; Paladin, M.; Pigueiras, L.; Santos, M.

    2014-06-01

    At the present time, data centres are facing a massive rise in virtualisation and cloud computing. The Agile Infrastructure (AI) project is working to deliver new solutions to ease the management of CERN data centres. Part of the solution consists in a new "shared monitoring architecture" which collects and manages monitoring data from all data centre resources. In this article, we present the building blocks of this new monitoring architecture, the different open source technologies selected for each architecture layer, and how we are building a community around this common effort.

  19. Agile Walking Robot

    NASA Technical Reports Server (NTRS)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.; Waldron, Kenneth J.

    1990-01-01

    Proposed agile walking robot operates over rocky, sandy, and sloping terrain. Offers stability and climbing ability superior to other conceptual mobile robots. Equipped with six articulated legs like those of insect, continually feels ground under leg before applying weight to it. If leg sensed unexpected object or failed to make contact with ground at expected point, seeks alternative position within radius of 20 cm. Failing that, robot halts, examines area around foot in detail with laser ranging imager, and replans entire cycle of steps for all legs before proceeding.

  20. An Integrated Toolset for Agile Systems Engineering Requirements Analysis

    DTIC Science & Technology

    2011-05-19

    Tool STDUse Cases Collaboration Tool Data Mgmt T l 1 e a a managemen oo Run the test in the test lab, redline the STD Update the collaboration...Boeing Defense, Space & Security Lean-Agile Software A I t t d T l t fn n egra e oo se or Agile Systems Engineering Requirements Analysis Phyllis...Regulations (ITAR) and the Export Administration R l ti (EAR) h i l bl b t h th i th BOEING is a trademark of Boeing Management Company. Copyright © 2010

  1. Modification of Agility Running Technique in Reaction to a Defender in Rugby Union

    PubMed Central

    Wheeler, Keane W.; Sayers, Mark G.L.

    2010-01-01

    Three-dimensional kinematic analysis examined agility running technique during pre-planned and reactive performance conditions specific to attacking ball carries in rugby union. The variation to running technique of 8 highly trained rugby union players was compared between agility conditions (pre-planned and reactive) and also agility performance speeds (fast, moderate and slow). Kinematic measures were used to determine the velocity of the centre of mass (COM) in the anteroposterior (running speed) and mediolateral (lateral movement speed) planes. The position of foot-strike and toe-off was also examined for the step prior to the agility side- step (pre-change of direction phase) and then the side-step (change of direction phase). This study demonstrated that less lateral movement speed towards the intended direction change occurred during reactive compared to pre-planned conditions at pre-change of direction (0.08 ± 0.28 m·s-1 and 0.42 ± 0.25 m·s-1, respectively) and change of direction foot-strikes (0.25 ± 0.42 m·s-1 and 0.69 ± 0.43 m·s-1, respectively). Less lateral movement speed during reactive conditions was associated with greater lateral foot displacement (44.52 ± 6.10% leg length) at the change of direction step compared to pre-planned conditions (41.35 ± 5.85%). Importantly, the anticipation abilities during reactive conditions provided a means to differentiate between speeds of agility performance, with faster performances displaying greater lateral movement speed at the change of direction foot- strike (0.52 ± 0.34 m·s-1) compared to moderate (0.20 ± 0.37 m·s-1) and slow (-0.08 ± 0.31 m·s-1). The changes to running technique during reactive conditions highlight the need to incorporate decision-making in rugby union agility programs. Key points Changes to running technique occur when required to make a decision. Fast agility performers use different stepping strategies in reactive conditions. Decision-making must be incorporated in

  2. X-36 Being Prepared on Lakebed for First Flight

    NASA Image and Video Library

    1997-05-17

    Lit by the rays of the morning sunrise on Rogers Dry Lake, adjacent to NASA's Dryden Flight Research Center, Edwards, California, technicians prepare the remotely-piloted X-36 Tailless Fighter Agility Research Aircraft for its first flight in May 1997.

  3. X-36 Being Prepared on Lakebed for First Flight

    NASA Image and Video Library

    1997-05-17

    Lit by the rays of the morning sunrise on Rogers Dry Lake, adjacent to NASA's Dryden Flight Research Center, Edwards, California, technicians prepares the remotely-piloted X-36 Tailless Fighter Agility Research Aircraft for its first flight on May 17, 1997.

  4. Aircraft Cabin Environmental Quality Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Resultsmore » from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.« less

  5. Advancement of proprotor technology. Task 1: Design study summary. [aerodynamic concept of minimum size tilt proprotor research aircraft

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A tilt-proprotor proof-of-concept aircraft design study has been conducted. The results are presented. The ojective of the contract is to advance the state of proprotor technology through design studies and full-scale wind-tunnel tests. The specific objective is to conduct preliminary design studies to define a minimum-size tilt-proprotor research aircraft that can perform proof-of-concept flight research. The aircraft that results from these studies is a twin-engine, high-wing aircraft with 25-foot, three-bladed tilt proprotors mounted on pylons at the wingtips. Each pylon houses a Pratt and Whitney PT6C-40 engine with a takeoff rating of 1150 horsepower. Empty weight is estimated at 6876 pounds. The normal gross weight is 9500 pounds, and the maximum gross weight is 12,400 pounds.

  6. Aircraft operations management manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  7. NASA Aircraft in the Hangar at Lewis Research Center

    NASA Image and Video Library

    1970-09-21

    Several aircraft parked inside the Flight Research Building, or hangar, at the National Aeronautics and Space Administration (NASA) Lewis Research Center in Cleveland, Ohio. A Convair F-106B Delta Dart is in the foreground, a Convair F-102A Delta Dagger is to the right, a Douglas DC-3 is in the back to left, and a Convair T-29 is in background. Lewis’ Martin B-57B Canberra is not seen in this photograph. The F-102A had just been acquired by Lewis to serve as a chase plane for the F-106B. The Lewis team removed the weapons system and 700 pounds of wire from the F-106B when it was acquired on October 20, 1966. The staff cut holes in the wings and modified the elevons to mount the test nacelles. A 228-gallon fuel tank was installed in the missile bay, and the existing wing tanks were used for instrumentation. This photograph contains a rare view of the Block House, seen to the left of the aircraft. Lewis acquired three large developmental programs in 1962—the Centaur and Agena rockets and the M-1 engine. The center was short on office space at the time, and its flight research program was temporarily on the wane. Lewis management decided to construct a large cinderblock structure inside one half of the hangar to house the new personnel. This structure was used until 1965 when the new Developmental Engineering Building was built. The Block House was eventually torn down in 1973.

  8. The second X-43A hypersonic research aircraft, shown here in its protective shipping jig, arrives at NASA's Dryden Flight Research Center

    NASA Image and Video Library

    2001-01-31

    The second of three X-43A hypersonic research aircraft, shown here in its protective shipping jig, arrived at NASA's Dryden Flight Research Center, Edwards, California, on January 31, 2001. The arrival of the second X-43A from its manufacturer, MicroCraft, Inc., of Tullahoma, Tenn., followed by only a few days the mating of the first X-43A and its specially-designed adapter to the first stage of a modified Pegasus® booster rocket. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the 12-foot-long, unpiloted research aircraft to a predetermined altitude and speed after the X-43A/booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it impacts into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10 (seven and 10 times the speed of sound respectively) with the first tentatively scheduled for early summer, 2001. The X-43A is powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine, and will use the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The X-43A flights will be the first actual flight tests of an aircraft powered by an air-breathing scramjet engine.

  9. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent c

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va.,After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  10. A brief review of aircraft controls research opportunities in the general aviation field

    NASA Technical Reports Server (NTRS)

    Kendall, E. R.

    1984-01-01

    A review of aircraft controls research in the general aviation field is given. Among the topics included are: controls technology benefits, military and commercial test programs, flight tests, ride quality control, and wind loading.

  11. Research on modeling of the agile satellite using a single gimbal magnetically suspended CMG and the disturbance feedforward compensation for rotors.

    PubMed

    Cui, Peiling; Yan, Ning

    2012-12-12

    The magnetically suspended Control Moment Gyroscope (CMG) has the advantages of long-life, micro-vibration and being non-lubricating, and is the ideal actuator for agile maneuver satellite attitude control. However, the stability of the rotor in magnetic bearing and the precision of the output torque of a magnetically suspended CMG are affected by the rapid maneuvers of satellites. In this paper, a dynamic model of the agile satellite including a magnetically suspended single gimbal control moment gyroscope is built and the equivalent disturbance torque effected on the rotor is obtained. The feedforward compensation control method is used to depress the disturbance on the rotor. Simulation results are given to show that the rotor displacement is obviously reduced.

  12. Application of shape memory alloy (SMA) spars for aircraft maneuver enhancement

    NASA Astrophysics Data System (ADS)

    Nam, Changho; Chattopadhyay, Aditi; Kim, Youdan

    2002-07-01

    Modern combat aircraft are required to achieve aggressive maneuverability and high agility performance, while maintaining handling qualities over a wide range of flight conditions. Recently, a new adaptive-structural concept called variable stiffness spar is proposed in order to increase the maneuverability of the flexible aircraft. The variable stiffness spar controls wing torsional stiffness to enhance roll performance in the complete flight envelope. However, variable stiffness spar requires the mechanical actuation system in order to rotate the Variable stiffness spar during flight. The mechanical actuation system to rotate variable stiffness spar may cause an additional weight increase. In this paper, we will apply Shape Memory Alloy (SMA) spars for aeroelastic performance enhancement. In order to explore the potential of SMA spar design, roll performance of the composite smart wings will be investigated using ASTROS. Parametric study will be conducted to investigate the SMA spar effects by changing the spar locations and geometry. The results show that with activation of the SMA spar, the roll effectiveness can be increased up to 61% compared with the baseline model.

  13. Science requirements and feasibility/design studies of a very-high-altitude aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Lux, David P.; Reed, R. Dale; Loewenstein, Max; Wegener, Steven

    1991-01-01

    The advantages and shortcomings of currently available aircraft for use in very high altitude missions to study such problems as polar ozone or stratosphere-troposphere exchange pose the question of whether to develop advanced aircraft for atmospheric research. To answer this question, NASA conducted a workshop to determine science needs and feasibility/design studies to assess whether and how those needs could be met. It was determined that there was a need for an aircraft that could cruise at an altitude of 30 km with a range of 6,000 miles with vertical profiling down to 10 km and back at remote points and carry a payload of 3,000 lbs.

  14. X-36 Being Prepared on Lakebed for First Flight

    NASA Image and Video Library

    1997-05-17

    Lit by the rays of the morning sunrise on Rogers Dry Lake, adjacent to NASA's Dryden Flight Research Center, Edwards, California, a technician prepares the remotely-piloted X-36 Tailless Fighter Agility Research Aircraft for its first flight on May 17, 1997.

  15. 5th Annual AGILE Science Workshop

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley

    2008-01-01

    The EGRET model of the galactic diffuse gamma-ray emission (GALDIF) has been extended to provide full-sky coverage and improved to address the discrepancies with the EGRET data. This improved model is compared with the AGILE results from the Galactic center. The comparison is discussed.

  16. The Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) Concept and Research

    NASA Technical Reports Server (NTRS)

    Baxley, B.; Williams, D.; Consiglio, M.; Adams, C.; Abbott, T.

    2005-01-01

    The ability to conduct concurrent, multiple aircraft operations in poor weather at virtually any airport offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase capacity at the 3400 non-radar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during low visibility or ceilings. The concept s key feature is that pilots maintain their own separation from other aircraft using air-to-air datalink and on-board software within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility and low ceilings around an airport without Air Traffic Control (ATC) services. While pilots self-separate within the SCA, an Airport Management Module (AMM) located at the airport assigns arriving pilots their sequence based on aircraft performance, position, winds, missed approach requirements, and ATC intent. The HVO design uses distributed decision-making, safe procedures, attempts to minimize pilot and controller workload, and integrates with today's ATC environment. The HVO procedures have pilots make their own flight path decisions when flying in Instrument Metrological Conditions (IMC) while meeting these requirements. This paper summarizes the HVO concept and procedures, presents a summary of the research conducted and results, and outlines areas where future HVO research is required. More information about SATS HVO can be found at http://ntrs.nasa.gov.

  17. Practical Application of a Subscale Transport Aircraft for Flight Research in Control Upset and Failure Conditions

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Foster, John V.; Morelli, Eugene A.; Murch, Austin M.

    2008-01-01

    Over the past decade, the goal of reducing the fatal accident rate of large transport aircraft has resulted in research aimed at the problem of aircraft loss-of-control. Starting in 1999, the NASA Aviation Safety Program initiated research that included vehicle dynamics modeling, system health monitoring, and reconfigurable control systems focused on flight regimes beyond the normal flight envelope. In recent years, there has been an increased emphasis on adaptive control technologies for recovery from control upsets or failures including damage scenarios. As part of these efforts, NASA has developed the Airborne Subscale Transport Aircraft Research (AirSTAR) flight facility to allow flight research and validation, and system testing for flight regimes that are considered too risky for full-scale manned transport airplane testing. The AirSTAR facility utilizes dynamically-scaled vehicles that enable the application of subscale flight test results to full scale vehicles. This paper describes the modeling and simulation approach used for AirSTAR vehicles that supports the goals of efficient, low-cost and safe flight research in abnormal flight conditions. Modeling of aerodynamics, controls, and propulsion will be discussed as well as the application of simulation to flight control system development, test planning, risk mitigation, and flight research.

  18. Lockheed ER-2 #709 high altitude research aircraft during take off

    NASA Image and Video Library

    1998-02-18

    ER-2 tail number 709, was one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft were platforms for a variety of high-altitude science missions flown over various parts of the world. They were also used for earth science and atmospheric sensor research and development, satellite calibration and data validation.

  19. Lockheed ER-2 #709 high altitude research aircraft during take off

    NASA Image and Video Library

    1998-03-02

    ER-2 tail number 709, was one of two Airborne Science ER-2s used as science platforms by Dryden. The aircraft were platforms for a variety of high-altitude science missions flown over various parts of the world. They were also used for earth science and atmospheric sensor research and development, satellite calibration and data validation.

  20. Agile Data Curation Case Studies Leading to the Identification and Development of Data Curation Design Patterns

    NASA Astrophysics Data System (ADS)

    Benedict, K. K.; Lenhardt, W. C.; Young, J. W.; Gordon, L. C.; Hughes, S.; Santhana Vannan, S. K.

    2017-12-01

    The planning for and development of efficient workflows for the creation, reuse, sharing, documentation, publication and preservation of research data is a general challenge that research teams of all sizes face. In response to: requirements from funding agencies for full-lifecycle data management plans that will result in well documented, preserved, and shared research data products increasing requirements from publishers for shared data in conjunction with submitted papers interdisciplinary research team's needs for efficient data sharing within projects, and increasing reuse of research data for replication and new, unanticipated research, policy development, and public use alternative strategies to traditional data life cycle approaches must be developed and shared that enable research teams to meet these requirements while meeting the core science objectives of their projects within the available resources. In support of achieving these goals, the concept of Agile Data Curation has been developed in which there have been parallel activities in support of 1) identifying a set of shared values and principles that underlie the objectives of agile data curation, 2) soliciting case studies from the Earth science and other research communities that illustrate aspects of what the contributors consider agile data curation methods and practices, and 3) identifying or developing design patterns that are high-level abstractions from successful data curation practice that are related to common data curation problems for which common solution strategies may be employed. This paper provides a collection of case studies that have been contributed by the Earth science community, and an initial analysis of those case studies to map them to emerging shared data curation problems and their potential solutions. Following the initial analysis of these problems and potential solutions, existing design patterns from software engineering and related disciplines are identified as a

  1. Optical flows method for lightweight agile remote sensor design and instrumentation

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Xing, Fei; Wang, Hongjian; You, Zheng

    2013-08-01

    Lightweight agile remote sensors have become one type of the most important payloads and were widely utilized in space reconnaissance and resource survey. These imaging sensors are designed to obtain the high spatial, temporary and spectral resolution imageries. Key techniques in instrumentation include flexible maneuvering, advanced imaging control algorithms and integrative measuring techniques, which are closely correlative or even acting as the bottle-necks for each other. Therefore, mutual restrictive problems must be solved and optimized. Optical flow is the critical model which to be fully represented in the information transferring as well as radiation energy flowing in dynamic imaging. For agile sensors, especially with wide-field-of view, imaging optical flows may distort and deviate seriously when they perform large angle attitude maneuvering imaging. The phenomena are mainly attributed to the geometrical characteristics of the three-dimensional earth surface as well as the coupled effects due to the complicated relative motion between the sensor and scene. Under this circumstance, velocity fields distribute nonlinearly, the imageries may badly be smeared or probably the geometrical structures are changed since the image velocity matching errors are not having been eliminated perfectly. In this paper, precise imaging optical flow model is established for agile remote sensors, for which optical flows evolving is factorized by two forms, which respectively due to translational movement and image shape changing. Moreover, base on that, agile remote sensors instrumentation was investigated. The main techniques which concern optical flow modeling include integrative design with lightweight star sensors along with micro inertial measurement units and corresponding data fusion, the assemblies of focal plane layout and control, imageries post processing for agile remote sensors etc. Some experiments show that the optical analyzing method is effective to

  2. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft

    NASA Image and Video Library

    2001-03-15

    The first of three X-43A hypersonic research aircraft and its modified Pegasus® booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va.,After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  3. Frequency Agile Microwave Photonic Notch Filter in a Photonic Chip

    DTIC Science & Technology

    2016-10-21

    AFRL-AFOSR-JP-TR-2016-0087 Frequency Agile Microwave Photonic Notch Filter in a Photonic Chip Benjamin Eggleton UNIVERSITY OF SYDNEY Final Report 10...REPORT TYPE      Final 3.  DATES COVERED (From - To)      14 May 2014 to 13 May 2016 4.  TITLE AND SUBTITLE Frequency Agile Microwave Photonic Notch Filter ...primary objective is to explore a novel class microwave photonic (MWP) notch filter with a very narrow isolation bandwidth, an ultrahigh stopband

  4. Research on Modeling of the Agile Satellite Using a Single Gimbal Magnetically Suspended CMG and the Disturbance Feedforward Compensation for Rotors

    PubMed Central

    Cui, Peiling; Yan, Ning

    2012-01-01

    The magnetically suspended Control Moment Gyroscope (CMG) has the advantages of long-life, micro-vibration and being non-lubricating, and is the ideal actuator for agile maneuver satellite attitude control. However, the stability of the rotor in magnetic bearing and the precision of the output torque of a magnetically suspended CMG are affected by the rapid maneuvers of satellites. In this paper, a dynamic model of the agile satellite including a magnetically suspended single gimbal control moment gyroscope is built and the equivalent disturbance torque effected on the rotor is obtained. The feedforward compensation control method is used to depress the disturbance on the rotor. Simulation results are given to show that the rotor displacement is obviously reduced. PMID:23235442

  5. Overview of the TriBITS Lifecycle Model: Lean/Agile Software Lifecycle Model for Research-based Computational Science and Engineering Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartlett, Roscoe A; Heroux, Dr. Michael A; Willenbring, James

    2012-01-01

    Software lifecycles are becoming an increasingly important issue for computational science & engineering (CSE) software. The process by which a piece of CSE software begins life as a set of research requirements and then matures into a trusted high-quality capability is both commonplace and extremely challenging. Although an implicit lifecycle is obviously being used in any effort, the challenges of this process--respecting the competing needs of research vs. production--cannot be overstated. Here we describe a proposal for a well-defined software lifecycle process based on modern Lean/Agile software engineering principles. What we propose is appropriate for many CSE software projects thatmore » are initially heavily focused on research but also are expected to eventually produce usable high-quality capabilities. The model is related to TriBITS, a build, integration and testing system, which serves as a strong foundation for this lifecycle model, and aspects of this lifecycle model are ingrained in the TriBITS system. Indeed this lifecycle process, if followed, will enable large-scale sustainable integration of many complex CSE software efforts across several institutions.« less

  6. AutoGNI, the Robot Under the Aircraft Floor: An Automated System for Sampling Giant Aerosol Particles by Impaction in the Free Airstream Outside a Research Aircraft

    NASA Astrophysics Data System (ADS)

    Jensen, J. B.; Schwenz, K.; Aquino, J.; Carnes, J.; Webster, C.; Munnerlyn, J.; Wissman, T.; Lugger, T.

    2017-12-01

    Giant sea-salt aerosol particles, also called Giant Cloud Condensation Nuclei (GCCN), have been proposed as a means of rapidly forming precipitation sized drizzle drops in warm marine clouds (e.g., Jensen and Nugent, 2017). Such rare particles are best sampled from aircraft in air below cloud base, where normal laser optical instruments have too low sample volume to give statistically significant samples of the large particle tail. An automated sampling system (the AutoGNI) has been built to operate from inside a pressurized aircraft. Under the aircraft floor, a pressurized vessel contains 32 custom-built polycarbonate microscope slides. Using robotics with 5 motor drives and 18 positioning switches, the AutoGNI can take slides from their holding cassettes, pass them onto a caddy in an airfoil that extends 200 mm outside the aircraft, where they are exposed in the free airstream, thus avoiding the usual problems with large particle losses in air intakes. Slides are typically exposed for 10-30 s in the marine boundary layer, giving sample volumes of about 100-300 L or more. Subsequently the slides are retracted into the pressure vessel, stored and transported for laboratory microscope image analysis, in order to derive size-distribution histograms. While the aircraft is flying, the AutoGNI system is remotely controlled from a laptop on the ground, using an encrypted commercial satellite connection to the NSF/NCAR GV research aircraft's main server, and onto the AutoGNI microprocessor. The sampling of such GCCN is becoming increasingly important in order to provide complete input data for model calculations of aerosol-cloud interactions and their feedbacks in climate prediction. The AutoGNI has so far been sampling sea-salt GCCN in the Magellan Straight during the 2016 ORCAS project and over the NW Pacific during the 2017 ARISTO project, both from the NSF/NCAR GV research aircraft. Sea-salt particle sizes of 1.4 - 32 μm dry diameter have been observed.

  7. Power of lower extremities is most important determinant of agility among physically inactive or active adult people.

    PubMed

    Manderoos, Sirpa; Vaara, Mariitta; Karppi, Sirkka-Liisa; Aunola, Sirkka; Puukka, Pauli; Surakka, Jukka; Mälkiä, Esko

    2018-04-26

    The purpose of this cross-sectional study was to determine the relationships between agility, running speed, jumping height and length, body mass index, self-report pain in back and in lower extremities, personal factors as self-report health and fitness, and leisure time physical activity in physically inactive or active adult people. Altogether, 233 healthy subjects, 149 women (43.0 ± 7.3 years) and 84 men (44.0 ± 7.7 years), participated into study. Outcome measures were described in the International Classification of Functioning, Disability and Health domains. Multiple regression analysis showed that jumping length explained 24.6% and 15.3% of the variance associated with agility in women and men (adjusted R 2  = .246, p < .001; adjusted R 2  = .153, p = .001, respectively). Jumping length was the main determinant of agility among physically inactive or active women and men. The findings of this study strengthen opinion that the Agility Test for Adults demands also other physical and cognitive characteristics as measured now and their part explaining agility results may be relatively great. We suggest that perception and decision making explain for a great part in agility. It seems that body mass index does not play important role in agility, but physical inactivity can explain or increase the decline of agility. Also, various biological mechanisms in aging process can be linked to the deterioration of capacity of agility. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Agile based "Semi-"Automated Data ingest process : ORNL DAAC example

    NASA Astrophysics Data System (ADS)

    Santhana Vannan, S. K.; Beaty, T.; Cook, R. B.; Devarakonda, R.; Hook, L.; Wei, Y.; Wright, D.

    2015-12-01

    The ORNL DAAC archives and publishes data and information relevant to biogeochemical, ecological, and environmental processes. The data archived at the ORNL DAAC must be well formatted, self-descriptive, and documented, as well as referenced in a peer-reviewed publication. The ORNL DAAC ingest team curates diverse data sets from multiple data providers simultaneously. To streamline the ingest process, the data set submission process at the ORNL DAAC has been recently updated to use an agile process and a semi-automated workflow system has been developed to provide a consistent data provider experience and to create a uniform data product. The goals of semi-automated agile ingest process are to: 1.Provide the ability to track a data set from acceptance to publication 2. Automate steps that can be automated to improve efficiencies and reduce redundancy 3.Update legacy ingest infrastructure 4.Provide a centralized system to manage the various aspects of ingest. This talk will cover the agile methodology, workflow, and tools developed through this system.

  9. Operational Agility (La Maniabilite Operationnelle)

    DTIC Science & Technology

    1994-04-01

    the use of attitude projection 171. The procedure described above is schematically shown in figure 2.10. i Maneuvers...with the performance margins expected of future projects . (9,15) The agility factor concept was developed from that described in Reference 12 and...and in support of , a land battle between enemy forces. The nature of the combined arms battlefield and the terrain and environmental

  10. A Roadmap for using Agile Development in a Traditional System

    NASA Technical Reports Server (NTRS)

    Streiffert, Barbara; Starbird, Thomas

    2006-01-01

    I. Ensemble Development Group: a) Produces activity planning software for in spacecraft; b) Built on Eclipse Rich Client Platform (open source development and runtime software); c) Funded by multiple sources including the Mars Technology Program; d) Incorporated the use of Agile Development. II. Next Generation Uplink Planning System: a) Researches the Activity Planning and Sequencing Subsystem for Mars Science Laboratory (APSS); b) APSS includes Ensemble, Activity Modeling, Constraint Checking, Command Editing and Sequencing tools plus other uplink generation utilities; c) Funded by the Mars Technology Program; d) Integrates all of the tools for APSS.

  11. Interior and exterior fuselage noise measured on NASA's C-8a augmentor wing jet-STOL research aircraft

    NASA Technical Reports Server (NTRS)

    Shovlin, M. D.

    1977-01-01

    Interior and exterior fuselage noise levels were measured on NASA's C-8A Augmentor Wing Jet-STOL Research Aircraft in order to provide design information for the Quiet Short-Haul Research Aircraft (QSRA), which will use a modified C-8A fuselage. The noise field was mapped by 11 microphones located internally and externally in three areas: mid-fuselage, aft fuselage, and on the flight deck. Noise levels were recorded at four power settings varying from takeoff to flight idle and were plotted in one-third octave band spectra. The overall sound pressure levels of the external noise field were compared to previous tests and found to correlate well with engine primary thrust levels. Fuselage values were 145 + or - 3 dB over the aircraft's normal STOL operating range.

  12. Sensory enhancing insoles improve athletic performance during a hexagonal agility task.

    PubMed

    Miranda, Daniel L; Hsu, Wen-Hao; Gravelle, Denise C; Petersen, Kelsey; Ryzman, Rachael; Niemi, James; Lesniewski-Laas, Nicholas

    2016-05-03

    Athletes incorporate afferent signals from the mechanoreceptors of their plantar feet to provide information about posture, stability, and joint position. Sub-threshold stochastic resonance (SR) sensory enhancing insoles have been shown to improve balance and proprioception in young and elderly participant populations. Balance and proprioception are correlated with improved athletic performance, such as agility. Agility is defined as the ability to quickly change direction. An athlete's agility is commonly evaluated during athletic performance testing to assess their ability to participate in a competitive sporting event. Therefore, the purpose of this study was to examine the effects of SR insoles during a hexagonal agility task routinely used by coaches and sports scientists. Twenty recreational athletes were recruited to participate in this study. Each athlete was asked to perform a set of hexagonal agility trials while SR stimulation was either on or off. Vicon motion capture was used to measure feet position during six successful trials for each stimulation condition. Stimulation condition was randomized in a pairwise fashion. The study outcome measures were the task completion time and the positional accuracy of footfalls. Pairwise comparisons revealed a 0.12s decrease in task completion time (p=0.02) with no change in hopping accuracy (p=0.99) when SR stimulation was on. This is the first study to show athletic performance benefits while wearing proprioception and balance improving equipment on healthy participants. With further development, a self-contained sensory enhancing insole device could be used by recreational and professional athletes to improve movements that require rapid changes in direction. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Integrating Low-Cost Rapid Usability Testing into Agile System Development of Healthcare IT: A Methodological Perspective.

    PubMed

    Kushniruk, Andre W; Borycki, Elizabeth M

    2015-01-01

    The development of more usable and effective healthcare information systems has become a critical issue. In the software industry methodologies such as agile and iterative development processes have emerged to lead to more effective and usable systems. These approaches highlight focusing on user needs and promoting iterative and flexible development practices. Evaluation and testing of iterative agile development cycles is considered an important part of the agile methodology and iterative processes for system design and re-design. However, the issue of how to effectively integrate usability testing methods into rapid and flexible agile design cycles has remained to be fully explored. In this paper we describe our application of an approach known as low-cost rapid usability testing as it has been applied within agile system development in healthcare. The advantages of the integrative approach are described, along with current methodological considerations.

  14. Atmospheric effects of stratospheric aircraft - A status report from NASA's High-Speed Research Program

    NASA Technical Reports Server (NTRS)

    Wesoky, Howard L.; Prather, Michael J.

    1991-01-01

    Studies have indicated that, with sufficient technology development, future high-speed civil transport aircraft could be economically competitive with long-haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern which is being addressed in the planned six-year High-Speed Research Program begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, current analytical predictions indicate that an operating range may exist at altitudes below 20 km (i.e., corresponding to a cruise Mach number of approximately 2.4) where the goal level of 5 gm equivalent NO2 emissions/kg fuel will deplete less than one percent of column ozone. Because it will not be possible to directly measure the impact of an aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. In particular, laboratory simulation of heterogeneous chemistry and other effects, and direct measurements of well understood tracers in the troposphere and stratosphere are being used to improve the current models.

  15. Pathfinder aircraft flight #1

    NASA Image and Video Library

    1996-11-19

    The Pathfinder solar-powered research aircraft settles in for landing on the bed of Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, after a successful test flight Nov. 19, 1996. The ultra-light craft flew a racetrack pattern at low altitudes over the flight test area for two hours while project engineers checked out various systems and sensors on the uninhabited aircraft. The Pathfinder was controlled by two pilots, one in a mobile control unit which followed the craft, the other in a stationary control station. Pathfinder, developed by AeroVironment, Inc., is one of several designs being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program.

  16. Lean and Agile: An Epistemological Reflection

    ERIC Educational Resources Information Center

    Browaeys, Marie-Joelle; Fisser, Sandra

    2012-01-01

    Purpose: The aim of the paper is to contribute to the discussion of treating the concepts of lean and agile in isolation or combination by presenting an alternative view from complexity thinking on these concepts, considering an epistemological approach to this topic. Design/methodology/approach: The paper adopts an epistemological approach, using…

  17. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket nestled under the wi

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The X-43A hypersonic research aircraft and its modified Pegasus booster rocket are nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  18. The Aircraft Morphing Program

    NASA Technical Reports Server (NTRS)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  19. The influence of agility training on physiological and cognitive performance.

    PubMed

    Lennemann, Lynette M; Sidrow, Kathryn M; Johnson, Erica M; Harrison, Catherine R; Vojta, Christopher N; Walker, Thomas B

    2013-12-01

    Agility training (AT) has recently been instituted in several military communities in hopes of improving combat performance and general fitness. The purpose of this study was to determine how substituting AT for traditional military physical training (PT) influences physical and cognitive performance. Forty-one subjects undergoing military technical training were divided randomly into 2 groups for 6 weeks of training. One group participated in standard military PT consisting of calisthenics and running. A second group duplicated the amount of exercise of the first group but used AT as their primary mode of training. Before and after training, subjects completed a physical and cognitive battery of tests including V[Combining Dot Above]O2max, reaction time, Illinois Agility Test, body composition, visual vigilance, dichotic listening, and working memory tests. There were significant improvements within the AT group in V[Combining Dot Above]O2max, Illinois Agility Test, visual vigilance, and continuous memory. There was a significant increase in time-to-exhaustion for the traditional group. We conclude that AT is as effective or more effective as PT in enhancing physical fitness. Further, it is potentially more effective than PT in enhancing specific measures of physical and cognitive performance, such as physical agility, memory, and vigilance. Consequently, we suggest that AT be incorporated into existing military PT programs as a way to improve war-fighter performance. Further, it seems likely that the benefits of AT observed here occur in various other populations.

  20. Compact, Automated, Frequency-Agile Microspectrofluorimeter

    NASA Technical Reports Server (NTRS)

    Fernandez, Salvador M.; Guignon, Ernest F.

    1995-01-01

    Compact, reliable, rugged, automated cell-culture and frequency-agile microspectrofluorimetric apparatus developed to perform experiments involving photometric imaging observations of single live cells. In original application, apparatus operates mostly unattended aboard spacecraft; potential terrestrial applications include automated or semiautomated diagnosis of pathological tissues in clinical laboratories, biomedical instrumentation, monitoring of biological process streams, and portable instrumentation for testing biological conditions in various environments. Offers obvious advantages over present laboratory instrumentation.

  1. Aircraft flight flutter testing at the NASA Ames-Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.

    1988-01-01

    Many parameter identification techniques have been used at the NASA Ames Research Center, Dryden Research Facility at Edwards Air Force Base to determine the aeroelastic stability of new and modified research vehicles in flight. This paper presents a summary of each technique used with emphasis on fast Fourier transform methods. Experiences gained from application of these techniques to various flight test programs are discussed. Also presented are data-smoothing techniques used for test data distorted by noise. Data are presented for various aircraft to demonstrate the accuracy of each parameter identification technique discussed.

  2. Overview of Fundamental High-Lift Research for Transport Aircraft at NASA

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Washburn, A. E.; Wahls, R. A.

    2007-01-01

    NASA has had a long history in fundamental and applied high lift research. Current programs provide a focus on the validation of technologies and tools that will enable extremely short take off and landing coupled with efficient cruise performance, simple flaps with flow control for improved effectiveness, circulation control wing concepts, some exploration into new aircraft concepts, and partnership with Air Force Research Lab in mobility. Transport high-lift development testing will shift more toward mid and high Rn facilities at least until the question: "How much Rn is required" is answered. This viewgraph presentation provides an overview of High-Lift research at NASA.

  3. Air Force Officers Visit Aircraft Engine Research Laboratory

    NASA Image and Video Library

    1945-08-21

    A group of 60 Army Air Forces officers visited the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory on August 27, 1945. The laboratory enacted strict security regulations throughout World War II. During the final months of the war, however, the NACA began opening its doors to groups of writers, servicemen, and aviation industry leaders. These events were the first exposure of the new engine laboratory to the outside world. Grandstands were built alongside the Altitude Wind Tunnel specifically for group photographs. George Lewis, Raymond Sharp, and Addison Rothrock (right to left) addressed this group of officers in the Administration Building auditorium. Lewis was the NACA’s Director of Aeronautical Research, Sharp was the lab’s manager, and Rothrock was the lab’s chief of research. Abe Silverstein, Jesse Hall and others watch from the rear of the room. The group toured several facilities after the talks, including the Altitude Wind Tunnel and a new small supersonic wind tunnel. The visit concluded with a NACA versus Army baseball game and cookout.

  4. SLS Flight Software Testing: Using a Modified Agile Software Testing Approach

    NASA Technical Reports Server (NTRS)

    Bolton, Albanie T.

    2016-01-01

    NASA's Space Launch System (SLS) is an advanced launch vehicle for a new era of exploration beyond earth's orbit (BEO). The world's most powerful rocket, SLS, will launch crews of up to four astronauts in the agency's Orion spacecraft on missions to explore multiple deep-space destinations. Boeing is developing the SLS core stage, including the avionics that will control vehicle during flight. The core stage will be built at NASA's Michoud Assembly Facility (MAF) in New Orleans, LA using state-of-the-art manufacturing equipment. At the same time, the rocket's avionics computer software is being developed here at Marshall Space Flight Center in Huntsville, AL. At Marshall, the Flight and Ground Software division provides comprehensive engineering expertise for development of flight and ground software. Within that division, the Software Systems Engineering Branch's test and verification (T&V) team uses an agile test approach in testing and verification of software. The agile software test method opens the door for regular short sprint release cycles. The idea or basic premise behind the concept of agile software development and testing is that it is iterative and developed incrementally. Agile testing has an iterative development methodology where requirements and solutions evolve through collaboration between cross-functional teams. With testing and development done incrementally, this allows for increased features and enhanced value for releases. This value can be seen throughout the T&V team processes that are documented in various work instructions within the branch. The T&V team produces procedural test results at a higher rate, resolves issues found in software with designers at an earlier stage versus at a later release, and team members gain increased knowledge of the system architecture by interfacing with designers. SLS Flight Software teams want to continue uncovering better ways of developing software in an efficient and project beneficial manner

  5. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology

    USGS Publications Warehouse

    Christie, Katherine S.; Gilbert, Sophie L.; Brown, Casey L.; Hatfield, Michael; Hanson, Leanne

    2016-01-01

    Unmanned aircraft systems (UAS) – also called unmanned aerial vehicles (UAVs) or drones – are an emerging tool that may provide a safer, more cost-effective, and quieter alternative to traditional research methods. We review examples where UAS have been used to document wildlife abundance, behavior, and habitat, and illustrate the strengths and weaknesses of this technology with two case studies. We summarize research on behavioral responses of wildlife to UAS, and discuss the need to understand how recreational and commercial applications of this technology could disturb certain species. Currently, the widespread implementation of UAS by scientists is limited by flight range, regulatory frameworks, and a lack of validation. UAS are most effective when used to examine smaller areas close to their launch sites, whereas manned aircraft are recommended for surveying greater distances. The growing demand for UAS in research and industry is driving rapid regulatory and technological progress, which in turn will make them more accessible and effective as analytical tools.

  6. Agility performance in high-level junior basketball players: the predictive value of anthropometrics and power qualities.

    PubMed

    Sisic, Nedim; Jelicic, Mario; Pehar, Miran; Spasic, Miodrag; Sekulic, Damir

    2016-01-01

    In basketball, anthropometric status is an important factor when identifying and selecting talents, while agility is one of the most vital motor performances. The aim of this investigation was to evaluate the influence of anthropometric variables and power capacities on different preplanned agility performances. The participants were 92 high-level, junior-age basketball players (16-17 years of age; 187.6±8.72 cm in body height, 78.40±12.26 kg in body mass), randomly divided into a validation and cross-validation subsample. The predictors set consisted of 16 anthropometric variables, three tests of power-capacities (Sargent-jump, broad-jump and medicine-ball-throw) as predictors. The criteria were three tests of agility: a T-Shape-Test; a Zig-Zag-Test, and a test of running with a 180-degree turn (T180). Forward stepwise multiple regressions were calculated for validation subsamples and then cross-validated. Cross validation included correlations between observed and predicted scores, dependent samples t-test between predicted and observed scores; and Bland Altman graphics. Analysis of the variance identified centres being advanced in most of the anthropometric indices, and medicine-ball-throw (all at P<0.05); with no significant between-position-differences for other studied motor performances. Multiple regression models originally calculated for the validation subsample were then cross-validated, and confirmed for Zig-zag-Test (R of 0.71 and 0.72 for the validation and cross-validation subsample, respectively). Anthropometrics were not strongly related to agility performance, but leg length is found to be negatively associated with performance in basketball-specific agility. Power capacities are confirmed to be an important factor in agility. The results highlighted the importance of sport-specific tests when studying pre-planned agility performance in basketball. The improvement in power capacities will probably result in an improvement in agility in basketball

  7. Research on the aircraft level measurement by laser tracker

    NASA Astrophysics Data System (ADS)

    Ye, Xiaowen; Tang, Wuzhong; Cao, Chun

    2014-09-01

    The measuring principle of laser tracking system was introduced. The aircraft level measurement was completed by establish the measurement datum mark, select public sites, set up the aircraft coordinate system and transfer stations. Laser tracking measurement technology improved the work efficiency and ensured the installation precision of key components.

  8. The NERV Methodology: Non-Functional Requirements Elicitation, Reasoning and Validation in Agile Processes

    ERIC Educational Resources Information Center

    Domah, Darshan

    2013-01-01

    Agile software development has become very popular around the world in recent years, with methods such as Scrum and Extreme Programming (XP). Literature suggests that functionality is the primary focus in Agile processes while non-functional requirements (NFR) are either ignored or ill-defined. However, for software to be of good quality both…

  9. The Impacts of Agile Development Methodology Use on Project Success: A Contingency View

    ERIC Educational Resources Information Center

    Tripp, John F.

    2012-01-01

    Agile Information Systems Development Methods have emerged in the past decade as an alternative manner of managing the work and delivery of information systems development teams, with a large number of organizations reporting the adoption & use of agile methods. The practitioners of these methods make broad claims as to the benefits of their…

  10. Early AGILE gamma-ray observations of the recent Glitch in the Crab Pulsar

    NASA Astrophysics Data System (ADS)

    Verrecchia, F.; Piano, G.; Tavani, M.; Pilia, M.; Pittori, C.; Lucarelli, F.; Bulgarelli, A.; Cardillo, M.; Fioretti, V.; Parmiggiani, N.; Striani, E.; Vercellone, S.; Donnarumma, I.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-11-01

    AGILE observed the Crab region in its spinning mode after the large glitch recently reported in the radio band (ATel #10939). At the glitch event time (T_0) the AGILE satellite was occulted by the Earth, and no observation of any relevant gamma-ray signal could be obtained by the GRID detector.

  11. Agile Data Curation: A conceptual framework and approach for practitioner data management

    NASA Astrophysics Data System (ADS)

    Young, J. W.; Benedict, K. K.; Lenhardt, W. C.

    2015-12-01

    Data management occurs across a range of science and related activities such as decision-support. Exemplars within the science community operate data management systems that are extensively planned before implementation, staffed with robust data management expertise, equipped with appropriate services and technologies, and often highly structured. However, this is not the only approach to data management and almost certainly not the typical experience. The other end of the spectrum is often an ad hoc practitioner team, with changing requirements, limited training in data management, and resource constrained for both equipment and human resources. Much of the existing data management literature serves the exemplar community and ignores the ad hoc practitioners. Somewhere in the middle are examples where data are repurposed for new uses thereby generating new data management challenges. This submission presents a conceptualization of an Agile Data Curation approach that provides foundational principles for data management efforts operating across the spectrum of data generation and use from large science systems to efforts with constrained resources, limited expertise, and evolving requirements. The underlying principles to Agile Data Curation are a reapplication of agile software development principles to data management. The historical reality for many data management efforts is operating in a practioner environment so Agile Data Curation utilizes historical and current case studies to validate the foundational principles and through comparison learn lessons for future application. This submission will provide an overview of the Agile Data Curation, cover the foundational principles to the approach, and introduce a framework for gathering, classifying, and applying lessons from case studies of practitioner data management.

  12. Frequency-agile wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Arms, Steven W.; Townsend, Christopher P.; Churchill, David L.; Hamel, Michael J.; Galbreath, Jacob H.; Mundell, Steven W.

    2004-07-01

    Our goal was to demonstrate a wireless communications system capable of simultaneous, high speed data communications from a variety of sensors. We have previously reported on the design and application of 2 KHz data logging transceiver nodes, however, only one node may stream data at a time, since all nodes on the network use the same communications frequency. To overcome these limitations, second generation data logging transceivers were developed with software programmable radio frequency (RF) communications. Each node contains on-board memory (2 Mbytes), sensor excitation, instrumentation amplifiers with programmable gains & offsets, multiplexer, 16 bit A/D converter, microcontroller, and frequency agile, bi-directional, frequency shift keyed (FSK) RF serial data link. These systems are capable of continuous data transmission from 26 distinct nodes (902-928 MHz band, 75 kbaud). The system was demonstrated in a compelling structural monitoring application. The National Parks Service requested a means for continual monitoring and recording of sensor data from the Liberty Bell during a move to a new location (Philadelphia, October 2003). Three distinct, frequency agile, wireless sensing nodes were used to detect visible crack shear/opening micromotions, triaxial accelerations, and hairline crack tip strains. The wireless sensors proved to be useful in protecting the Liberty Bell.

  13. Orders of C2 Agility and Implications for Information and Decision-Making

    DTIC Science & Technology

    2013-06-01

    of agility and, in particular, in discussions of resilience. Orders of agility also invite the re-examination of conceptions of value in informing...incompatible interpretations of decision-making and information. It also gives greater confidence that different conceptions of value and assessment...examination of conceptions of value in informing decision- making, leading to the exposition of a hierarchical model of nested decision-making and decision

  14. An updated history of NACA/NASA rotary-wing aircraft research 1915-1984

    NASA Technical Reports Server (NTRS)

    Ward, J.

    1984-01-01

    Highlights are drawn from 'A History of NACA/NASA Rotating-Wing Aircraft Research, 1915-1970' by F. Gustafson to build an historical base upon which to build an extension from 1970-1984. Fundamental changes in how NASA conducted rotary-wing research in the early 1970s included an increasing level of contract research and closer ties with research conducted by the U.S. Army. The work done at the Army Research Laboratories at Ames, Langley, and Lewis Research Centers during 1970-1976 is briefly reviewed. In 1976 the Ames Research Center was assigned the Lead Center responsibility for helicopter research, though Langley retained research roles in structures, noise, dynamics, and aeroelasticity in support of rotorcraft. By 1984, NASA Rotorcraft Program Funding reached $35 million per year.

  15. Applications of the Remotely Piloted Aircraft (RPA) 'MASC' in Atmospheric Boundary Layer Research

    NASA Astrophysics Data System (ADS)

    Wildmann, Norman; Platis, Andreas; Tupman, David-James; Bange, Jens

    2015-04-01

    The remotely piloted aircraft (RPA) MASC (Multipurpose Airborne Sensor Carrier) was developed at the University of Tübingen in cooperation with the University of Stuttgart, University of Applied Sciences Ostwestfalen-Lippe and 'ROKE-Modelle'. Its purpose is the investigation of thermodynamic processes in the atmospheric boundary layer (ABL), including observations of temperature, humidity and wind profiles, as well as the measurement of turbulent heat, moisture and momentum fluxes. The aircraft is electrically powered, has a maximum wingspan of 3.40~m and a total weight of 5-8~kg, depending on the battery- and payload. The standard meteorological payload consists of two temperature sensors, a humidity sensor, a flow probe, an inertial measurement unit and a GNSS. The sensors were optimized for the resolution of small-scale turbulence down to length scales in the sub-meter range. In normal operation, the aircraft is automatically controlled by the ROCS (Research Onboard Computer System) autopilot to be able to fly predefined paths at constant altitude and airspeed. Only take-off and landing are carried out by a human RC pilot. Since 2012, the system is operational and has since then been deployed in more than ten measurement campaigns, with more than 100 measurement flights. The fields of research that were tackled in these campaigns include sensor validation, fundamental boundary-layer research and wind-energy research. In 2014, for the first time, two MASC have been operated at the same time within a distance of a few kilometres, in order to investigate the wind field over an escarpment in the Swabian Alb. Furthermore, MASC was first deployed off-shore in October 2014, starting from the German island Heligoland in the North Sea, for the purpose of characterization of the marine boundary layer for offshore wind parks. Detailed descriptions of the experimental setup and first preliminary results will be presented.

  16. Development of EarthCube Governance: An Agile Approach

    NASA Astrophysics Data System (ADS)

    Pearthree, G.; Allison, M. L.; Patten, K.

    2013-12-01

    Governance of geosciences cyberinfrastructure is a complex and essential undertaking, critical in enabling distributed knowledge communities to collaborate and communicate across disciplines, distances, and cultures. Advancing science with respect to 'grand challenges," such as global climate change, weather prediction, and core fundamental science, depends not just on technical cyber systems, but also on social systems for strategic planning, decision-making, project management, learning, teaching, and building a community of practice. Simply put, a robust, agile technical system depends on an equally robust and agile social system. Cyberinfrastructure development is wrapped in social, organizational and governance challenges, which may significantly impede progress. An agile development process is underway for governance of transformative investments in geosciences cyberinfrastructure through the NSF EarthCube initiative. Agile development is iterative and incremental, and promotes adaptive planning and rapid and flexible response. Such iterative deployment across a variety of EarthCube stakeholders encourages transparency, consensus, accountability, and inclusiveness. A project Secretariat acts as the coordinating body, carrying out duties for planning, organizing, communicating, and reporting. A broad coalition of stakeholder groups comprises an Assembly (Mainstream Scientists, Cyberinfrastructure Institutions, Information Technology/Computer Sciences, NSF EarthCube Investigators, Science Communities, EarthCube End-User Workshop Organizers, Professional Societies) to serve as a preliminary venue for identifying, evaluating, and testing potential governance models. To offer opportunity for broader end-user input, a crowd-source approach will engage stakeholders not involved otherwise. An Advisory Committee from the Earth, ocean, atmosphere, social, computer and library sciences is guiding the process from a high-level policy point of view. Developmental

  17. Research on flight stability performance of rotor aircraft based on visual servo control method

    NASA Astrophysics Data System (ADS)

    Yu, Yanan; Chen, Jing

    2016-11-01

    control method based on visual servo feedback is proposed, which is used to improve the attitude of a quad-rotor aircraft and to enhance its flight stability. Ground target images are obtained by a visual platform fixed on aircraft. Scale invariant feature transform (SIFT) algorism is used to extract image feature information. According to the image characteristic analysis, fast motion estimation is completed and used as an input signal of PID flight control system to realize real-time status adjustment in flight process. Imaging tests and simulation results show that the method proposed acts good performance in terms of flight stability compensation and attitude adjustment. The response speed and control precision meets the requirements of actual use, which is able to reduce or even eliminate the influence of environmental disturbance. So the method proposed has certain research value to solve the problem of aircraft's anti-disturbance.

  18. Visual preference in a human-reared agile gibbon (Hylobates agilis).

    PubMed

    Tanaka, Masayuki; Uchikoshi, Makiko

    2010-01-01

    Visual preference was evaluated in a male agile gibbon. The subject was raised by humans immediately after birth, but lived with his biological family from one year of age. Visual preference was assessed using a free-choice task in which five or six photographs of different primate species, including humans, were presented on a touch-sensitive screen. The subject touched one of them. Food rewards were delivered irrespective of the subject's responses. We prepared two types of stimulus sets. With set 1, the subject touched photographs of humans more frequently than those of other species, recalling previous findings in human-reared chimpanzees. With set 2, photographs of nine species of gibbons were presented. Chimpanzees touched photographs of white-handed gibbons more than those of other gibbon species. The gibbon subject initially touched photographs of agile gibbons more than white-handed gibbons, but after one and two years his choice patterns resembled the chimpanzees'. The results suggest that, as in chimpanzees, visual preferences of agile gibbons are not genetically programmed but develop through social experience during infancy.

  19. Application of a cost/performance measurement system on a research aircraft project

    NASA Technical Reports Server (NTRS)

    Diehl, J. J.

    1978-01-01

    The fundamentals of the cost/performance management system used in the procurement of two tilt rotor aircraft for a joint NASA/Army research project are discussed. The contractor's reporting system and the GPO's analyses are examined. The use of this type of reporting system is assessed. Recommendations concerning the use of like systems on future projects are included.

  20. NASA Researcher Examines an Aircraft Model with a Four-Fan Thrust Reverser

    NASA Image and Video Library

    1972-03-21

    National Aeronautics and Space Administration (NASA) researcher John Carpenter inspects an aircraft model with a four-fan thrust reverser which would be studied in the 9- by 15-Foot Low Speed Wind Tunnel at the Lewis Research Center. Thrust reversers were introduced in the 1950s as a means for slowing high-speed jet aircraft during landing. Engineers sought to apply the technology to Vertical and Short Takeoff and Landing (VSTOL) aircraft in the 1970s. The new designs would have to take into account shorter landing areas, noise levels, and decreased thrust levels. A balance was needed between the thrust reverser’s efficiency, its noise generation, and the engine’s power setting. This model underwent a series of four tests in the 9- by 15-foot tunnel during April and May 1974. The model, with a high-wing configuration and no tail, was equipped with four thrust-reverser engines. The investigations included static internal aerodynamic tests on a single fan/reverser, wind tunnel isolated fan/reverser thrust tests, installation effects on a four-fan airplane model in a wind tunnel, and single reverser acoustic tests. The 9-by 15 was built inside the return leg of the 8- by 6-Foot Supersonic Wind Tunnel in 1968. The facility generates airspeeds from 0 to 175 miles per hour to evaluate the aerodynamic performance and acoustic characteristics of nozzles, inlets, and propellers, and investigate hot gas re-ingestion of advanced VSTOL concepts. John Carpenter was a technician in the Wind Tunnels Service Section of the Test Installations Division.

  1. Reliability and Validity of a New Test of Agility and Skill for Female Amateur Soccer Players

    PubMed Central

    Kutlu, Mehmet; Yapici, Hakan; Yilmaz, Abdullah

    2017-01-01

    Abstract The aim of this study was to evaluate the Agility and Skill Test, which had been recently developed to assess agility and skill in female athletes. Following a 10 min warm-up, two trials to test the reliability and validity of the test were conducted one week apart. Measurements were collected to compare soccer players’ physical performance in a 20 m sprint, a T-Drill test, the Illinois Agility Run Test, change-of-direction and acceleration, as well as agility and skill. All tests were completed following the same order. Thirty-four amateur female soccer players were recruited (age = 20.8 ± 1.9 years; body height = 166 ± 6.9 cm; body mass = 55.5 ± 5.8 kg). To determine the reliability and usefulness of these tests, paired sample t-tests, intra-class correlation coefficients, typical error, coefficient of variation, and differences between the typical error and smallest worthwhile change statistics were computed. Test results showed no significant differences between the two sessions (p > 0.01). There were higher intra-class correlations between the test and retest values (r = 0.94–0.99) for all tests. Typical error values were below the smallest worthwhile change, indicating ‘good’ usefulness for these tests. A near perfect Pearson correlation between the Agility and Skill Test (r = 0.98) was found, and there were moderate-to-large levels of correlation between the Agility and Skill Test and other measures (r = 0.37 to r = 0.56). The results of this study suggest that the Agility and Skill Test is a reliable and valid test for female soccer players and has significant value for assessing the integrative agility and skill capability of soccer players. PMID:28469760

  2. Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables

    DTIC Science & Technology

    2013-06-01

    1 18th ICCRTS Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables...AND SUBTITLE Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables 5a. CONTRACT...command in crisis management. C2 Agility Model Agility can be conceptualized at a number of different levels; for instance at the team

  3. The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing

    NASA Image and Video Library

    2001-03-15

    The X-43A hypersonic research aircraft and its modified Pegasus® booster rocket are nestled under the wing of NASA's NB-52B carrier aircraft during pre-flight systems testing at the Dryden Flight Research Center, Edwards, Calif. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  4. Increasing agility in unmanned ground vehicles using variable internal mass and inertial properties

    NASA Astrophysics Data System (ADS)

    Nie, Chenghui; Cusi Van Dooren, Simo; Shah, Jainam; Spenko, Matthew

    2009-05-01

    Unmanned Ground Vehicles (UGV) that possess agility, or the ability to quickly change directions without a significant loss in speed, would have several advantages in field operations over conventional UGVs. The agile UGVs would have greater maneuverability in cluttered environments and improved obstacle avoidance capabilities. The UGVs would also be able to better recover from unwanted dynamic behaviors. This paper presents a novel method of increasing UGV agility by actively altering the location of the vehicle's center of mass during locomotion. This allows the vehicle to execute extreme dynamic maneuvers by controlling the normal force acting on the wheels. A theoretical basis for this phenomenon is presented and experimental results are shown that validate the approach.

  5. Analysis on critical success factors for agile manufacturing evaluation in original equipment manufacturing industry-an AHP approach

    NASA Astrophysics Data System (ADS)

    Ajay Guru Dev, C.; Senthil Kumar, V. S.

    2016-09-01

    Manufacturing industries are facing challenges in the implementation of agile manufacturing in their products and processes. Agility is widely accepted as a new competitive concept in the manufacturing sector in fulfilling varying customer demand. Thus, evaluation of agile manufacturing in industries has become a necessity. The success of an organisation depends on its ability to manage finding the critical success factors and give them special and continued attention in order to bring about high performance. This paper proposes a set of critical success factors (CSFs) for evaluating agile manufacturing considered appropriate for the manufacturing sector. The analytical hierarchy process (AHP) method is applied for prioritizing the success factors, by summarizing the opinions of experts. It is believed that the proposed CSFs enable and assist manufacturing industries to achieve a higher performance in agile manufacturing so as to increase competitiveness.

  6. Flight Test Experience with an Electromechanical Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David; Flick, Brad (Technical Monitor)

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  7. Flight Test Experience With an Electromechanical Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  8. Aircraft modifications: Assessing the current state of Air Force aircraft modifications and the implications for future military capability

    NASA Astrophysics Data System (ADS)

    Hill, Owen Jacob

    How prepared is the U.S. Air Force to modify its aircraft fleet in upcoming years? Aircraft modernization is a complex interaction of new and legacy aircraft, organizational structure, and planning policy. This research will take one component of modernization: aircraft modification, and apply a new method of analysis in order to help formulate policy to promote modernization. Departing from previous small-sample studies dependent upon weight as a chief explanatory variable, this dissertation incorporates a comprehensive dataset that was constructed for this research of all aircraft modifications from 1996 through 2005. With over 700 modification programs, this dataset is used to examine changes to the current modification policy using policy-response regression models. These changes include separating a codependent procurement and installation schedule, reducing the documentation requirements for safety modifications, and budgeting for aging aircraft modifications. The research then concludes with predictive models for the F-15 and F-16 along with their replacements: the F-22 and F-35 Joint Strike Fighter.

  9. The SR-71 Test Bed Aircraft: A Facility for High-Speed Flight Research

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Moes, Timothy R.; Mizukami, Masashi; Hass, Neal E.; Jones, Daniel; Monaghan, Richard C.; Ray, Ronald J.; Jarvis, Michele L.; Palumbo, Nathan

    2000-01-01

    The SR-71 test bed aircraft is shown to be a unique platform to flight-test large experiments to supersonic Mach numbers. The test bed hardware mounted on the SR-71 upper fuselage is described. This test bed hardware is composed of a fairing structure called the "canoe" and a large "reflection plane" flat plate for mounting experiments. Total experiment weights, including the canoe and reflection plane, as heavy as 14,500 lb can be mounted on the aircraft and flight-tested to speeds as fast as Mach 3.2 and altitudes as high as 80,000 ft. A brief description of the SR-71 aircraft is given, including details of the structural modifications to the fuselage, modifications to the J58 engines to provide increased thrust, and the addition of a research instrumentation system. Information is presented based on flight data that describes the SR-71 test bed aerodynamics, stability and control, structural and thermal loads, the canoe internal environment, and reflection plane flow quality. Guidelines for designing SR-71 test bed experiments are also provided.

  10. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket mounted to NASA's NB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. One of the major goals of the Hyper-X program is flight validation of airframe-integrated, air-breathing propulsion system, which so far have only been tested in ground facilities, such as wind tunnels. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds above Mach 5 (five times the speed of sound). The X-43A design uses the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A/booster 'stack' is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  11. Biorobotics: using robots to emulate and investigate agile locomotion.

    PubMed

    Ijspeert, Auke J

    2014-10-10

    The graceful and agile movements of animals are difficult to analyze and emulate because locomotion is the result of a complex interplay of many components: the central and peripheral nervous systems, the musculoskeletal system, and the environment. The goals of biorobotics are to take inspiration from biological principles to design robots that match the agility of animals, and to use robots as scientific tools to investigate animal adaptive behavior. Used as physical models, biorobots contribute to hypothesis testing in fields such as hydrodynamics, biomechanics, neuroscience, and prosthetics. Their use may contribute to the design of prosthetic devices that more closely take human locomotion principles into account. Copyright © 2014, American Association for the Advancement of Science.

  12. The Combined Effects of Aircraft and Road Traffic Noise and Aircraft and Railway Noise on Noise Annoyance-An Analysis in the Context of the Joint Research Initiative NORAH.

    PubMed

    Wothge, Jördis; Belke, Christin; Möhler, Ulrich; Guski, Rainer; Schreckenberg, Dirk

    2017-08-02

    The Noise Related Annoyance Cognition and Health (NORAH) research initiative is one of the most extensive studies on the physiological and psychological long-term effects of transportation noise in Europe. It includes research on the quality of life and annoyance as well as cardiovascular effects, sleep disturbance, breast cancer, blood pressure, depression and the cognitive development of children. Within the realm of the annoyance module of the study approximately 10,000 residents of the Rhine-Main district were surveyed on the combined effects of transportation noise. This included combined noise from aircraft and road traffic noise ( N = 4905), or aircraft and railway noise ( N = 4777). Results show that judgment of the total noise annoyance of participants was strongly determined by the sound source which was judged as more annoying (in this case aircraft noise). To a lesser extent, the average sound pressure level of the two present sources was also of relevance.

  13. The Combined Effects of Aircraft and Road Traffic Noise and Aircraft and Railway Noise on Noise Annoyance—An Analysis in the Context of the Joint Research Initiative NORAH

    PubMed Central

    Wothge, Jördis; Belke, Christin; Möhler, Ulrich; Guski, Rainer; Schreckenberg, Dirk

    2017-01-01

    The Noise Related Annoyance Cognition and Health (NORAH) research initiative is one of the most extensive studies on the physiological and psychological long-term effects of transportation noise in Europe. It includes research on the quality of life and annoyance as well as cardiovascular effects, sleep disturbance, breast cancer, blood pressure, depression and the cognitive development of children. Within the realm of the annoyance module of the study approximately 10,000 residents of the Rhine-Main district were surveyed on the combined effects of transportation noise. This included combined noise from aircraft and road traffic noise (N = 4905), or aircraft and railway noise (N = 4777). Results show that judgment of the total noise annoyance of participants was strongly determined by the sound source which was judged as more annoying (in this case aircraft noise). To a lesser extent, the average sound pressure level of the two present sources was also of relevance. PMID:28767095

  14. Aircraft Capability Management

    NASA Technical Reports Server (NTRS)

    Mumaw, Randy; Feary, Mike

    2018-01-01

    This presentation presents an overview of work performed at NASA Ames Research Center in 2017. The work concerns the analysis of current aircraft system management displays, and the initial development of an interface for providing information about aircraft system status. The new interface proposes a shift away from current aircraft system alerting interfaces that report the status of physical components, and towards displaying the implications of degradations on mission capability. The proposed interface describes these component failures in terms of operational consequences of aircraft system degradations. The research activity was an effort to examine the utility of different representations of complex systems and operating environments to support real-time decision making of off-nominal situations. A specific focus was to develop representations that provide better integrated information to allow pilots to more easily reason about the operational consequences of the off-nominal situations. The work is also seen as a pathway to autonomy, as information is integrated and understood in a form that automated responses could be developed for the off-nominal situations in the future.

  15. The Mini-Calorimeter on-board AGILE: The first year in space

    NASA Astrophysics Data System (ADS)

    Marisaldi, M.; Labanti, C.; Fuschino, F.; Galli, M.; Argan, A.; Bulgarelli, A.; Di Cocco, G.; Gianotti, F.; Tavani, M.; Trifoglio, M.; Trois, A.

    2009-04-01

    AGILE, the Italian space mission dedicated to gamma-ray and hard-X astrophysics, was successfully launched on 23rd April 2007 and is currently fully operative. The Mini-Calorimeter (MCAL) on-board the AGILE satellite is a scintillation detector made of 20 kg of segmented CsI(Tl) scintillator with photodiode readout with a total geometrical area of 1400 cm2. MCAL can work both as a slave of the AGILE Silicon tracker and as an independent detector for gamma-ray bursts (GRB) detection in the 300 keV - 100 MeV energy range. Despite its limited thickness, due to weight constraints, MCAL has proven to successfully self-trigger GRBs at MeV energies providing photon-by-photon data with less than 2 μs time resolution and almost all-sky detection capabilities. The instrument design and characteristics, as well as the in-flight performance after one year of operation in space and the scientific results obtained so far are reviewed and discussed.

  16. Design and construction of the Mini-Calorimeter of the AGILE satellite

    NASA Astrophysics Data System (ADS)

    Labanti, C.; Marisaldi, M.; Fuschino, F.; Galli, M.; Argan, A.; Bulgarelli, A.; Di Cocco, G.; Gianotti, F.; Tavani, M.; Trifoglio, M.

    2009-01-01

    AGILE is a small space mission of the Italian Space Agency (ASI) devoted to gamma-ray and hard-X astrophysics, successfully launched on April 23, 2007. The AGILE Payload is composed of three instruments: a gamma-ray imager based on a tungsten-silicon tracker (ST), for observations in the gamma ray energy range 30 MeV-50 GeV, a Silicon based X-ray detector, SuperAGILE (SA), for imaging in the range 18-60 keV and a CsI(Tl) Mini-Calorimeter (MCAL) that detects gamma rays or charged particles energy loss in the range 300 keV-100 MeV. MCAL is composed of 30 CsI(Tl) scintillator bars with photodiode readout at both ends, arranged in two orthogonal layers. MCAL can work both as a slave of the ST and as an independent gamma-ray detector for transients and gamma-ray bursts detection. In this paper a detailed description of MCAL is presented together with its performance.

  17. The lift-fan aircraft: Lessons learned

    NASA Technical Reports Server (NTRS)

    Deckert, Wallace H.

    1995-01-01

    This report summarizes the highlights and results of a workshop held at NASA Ames Research Center in October 1992. The objective of the workshop was a thorough review of the lessons learned from past research on lift fans, and lift-fan aircraft, models, designs, and components. The scope included conceptual design studies, wind tunnel investigations, propulsion systems components, piloted simulation, flight of aircraft such as the SV-5A and SV-5B and a recent lift-fan aircraft development project. The report includes a brief summary of five technical presentations that addressed the subject The Lift-Fan Aircraft: Lessons Learned.

  18. NASA rotor systems research aircraft: Fixed-wing configuration flight-test results

    NASA Technical Reports Server (NTRS)

    Erickson, R. E.; Cross, J. L.; Kufeld, R. M.; Acree, C. W.; Nguyen, D.; Hodge, R. W.

    1986-01-01

    The fixed-wing, airplane configuration flight-test results of the Rotor System Research Aircraft (RSRA), NASA 740, at Ames/Dryden Flight Research Center are documented. Fourteen taxi and flight tests were performed from December 1983 to October 1984. This was the first time the RSRA was flown with the main rotor removed; the tail rotor was installed. These tests confirmed that the RSRA is operable as a fixed-wing aircraft. Data were obtained for various takeoff and landing distances, control sensitivity, trim and dynamics stability characteristics, performance rotor-hub drag, and acoustics signature. Stability data were obtained with the rotor hub both installed and removed. The speed envelope was developed to 261 knots true airspeed (KTAS), 226 knots calibrated airspeed (KCAS) at 10,000 ft density altitude. The airplane was configured at 5 deg. wing incidence with 5 deg. wing flaps as a normal configuration. Level-flight data were acquired at 167 KCAS for wing incidence from 0 to 10 deg. Step inputs and doublet inputs of various magnitudes were utilized to acquire dynamic stability and control sensitivity data. Sine-wave inputs of constantly increasing frequency were used to generate parameter identification data. The maximum load factor attained was 2.34 g at 206 KCAS.

  19. Small unmanned aircraft systems for remote sensing and Earth science research

    NASA Astrophysics Data System (ADS)

    Hugenholtz, Chris H.; Moorman, Brian J.; Riddell, Kevin; Whitehead, Ken

    2012-06-01

    To understand and predict Earth-surface dynamics, scientists often rely on access to the latest remote sensing data. Over the past several decades, considerable progress has been made in the development of specialized Earth observation sensors for measuring a wide range of processes and features. Comparatively little progress has been made, however, in the development of new platforms upon which these sensors can be deployed. Conventional platforms are still almost exclusively restricted to piloted aircraft and satellites. For many Earth science research questions and applications these platforms do not yet have the resolution or operational flexibility to provide answers affordably. The most effective remote sensing data match the spatiotemporal scale of the process or feature of interest. An emerging technology comprising unmanned aircraft systems (UAS), also known as unmanned aerial vehicles (UAV), is poised to offer a viable alternative to conventional platforms for acquiring high-resolution remote sensing data with increased operational flexibility, lower cost, and greater versatility (Figure 1).

  20. Experimental aerothermodynamic research of hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Cleary, Joseph W.

    1987-01-01

    The 2-D and 3-D advance computer codes being developed for use in the design of such hypersonic aircraft as the National Aero-Space Plane require comparison of the computational results with a broad spectrum of experimental data to fully assess the validity of the codes. This is particularly true for complex flow fields with control surfaces present and for flows with separation, such as leeside flow. Therefore, the objective is to provide a hypersonic experimental data base required for validation of advanced computational fluid dynamics (CFD) computer codes and for development of more thorough understanding of the flow physics necessary for these codes. This is being done by implementing a comprehensive test program for a generic all-body hypersonic aircraft model in the NASA/Ames 3.5 foot Hypersonic Wind Tunnel over a broad range of test conditions to obtain pertinent surface and flowfield data. Results from the flow visualization portion of the investigation are presented.

  1. GaAs/Ge Solar Powered Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Brinker, David J.

    1998-01-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration aircraft. Due to the weight, speed, and altitude constraints imposed on such an aircraft, solar array generated electric power can be a viable alternative to air-breathing engines for certain missions. Development of such an aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) has built a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office.

  2. A History of Full-Scale Aircraft and Rotorcraft Crash Testing and Simulation at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.

    2004-01-01

    This paper summarizes 2-1/2 decades of full-scale aircraft and rotorcraft crash testing performed at the Impact Dynamics Research Facility (IDRF) located at NASA Langley Research Center in Hampton, Virginia. The IDRF is a 240-ft.-high steel gantry that was built originally as a lunar landing simulator facility in the early 1960's. It was converted into a full-scale crash test facility for light aircraft and rotorcraft in the early 1970 s. Since the first full-scale crash test was preformed in February 1974, the IDRF has been used to conduct: 41 full-scale crash tests of General Aviation (GA) aircraft including landmark studies to establish baseline crash performance data for metallic and composite GA aircraft; 11 full-scale crash tests of helicopters including crash qualification tests of the Bell and Sikorsky Advanced Composite Airframe Program (ACAP) prototypes; 48 Wire Strike Protection System (WSPS) qualification tests of Army helicopters; 3 vertical drop tests of Boeing 707 transport aircraft fuselage sections; and, 60+ crash tests of the F-111 crew escape module. For some of these tests, nonlinear transient dynamic codes were utilized to simulate the impact response of the airframe. These simulations were performed to evaluate the capabilities of the analytical tools, as well as to validate the models through test-analysis correlation. In September 2003, NASA Langley closed the IDRF facility and plans are underway to demolish it in 2007. Consequently, it is important to document the contributions made to improve the crashworthiness of light aircraft and rotorcraft achieved through full-scale crash testing and simulation at the IDRF.

  3. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    NASA Astrophysics Data System (ADS)

    Rodi, A. R.; Leon, D. C.

    2012-05-01

    Geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system on the University of Wyoming King Air research aircraft are used to estimate acceleration effects on static pressure measurement. Using data collected during periods of accelerated flight, comparison of measured pressure with that derived from GNSS/IMU geometric altitude show that errors exceeding 150 Pa can occur which is significant in airspeed and atmospheric air motion determination. A method is developed to predict static pressure errors from analysis of differential pressure measurements from a Rosemount model 858 differential pressure air velocity probe. The method was evaluated with a carefully designed probe towed on connecting tubing behind the aircraft - a "trailing cone" - in steady flight, and shown to have a precision of about ±10 Pa over a wide range of conditions including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, compared to the GNSS/IMU data, this algorithm predicts corrections to a precision of better than ±20 Pa. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are examined.

  4. X-36 in Flight over Mojave Desert during 5th Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The unusual lines of the X-36 Tailless Fighter Agility Research Aircraft contrast sharply with the desert floor as the remotely-piloted aircraft flies over the Mojave Desert on a June 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  5. X-36 in Flight near Edge of Rogers Dry Lake during 5th Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows the X-36 Tailless Fighter Agility Research Aircraft passing over the edge of Rogers Dry Lake as the remotely-piloted aircraft flies over Edwards Air Force Base on a June 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  6. X-36 on Ramp Viewed from Above

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This look-down view of the X-36 Tailless Fighter Agility Research Aircraft on the ramp at NASA's Dryden Flight Research Center, Edwards, California, clearly shows the unusual wing and canard design of the remotely-piloted aircraft. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet

  7. X-36 arrival at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA and McDonnell Douglas Corporation (MDC) personnel steady the X-36 Tailless Fighter Agility Research Aircraft following arrival at NASA Dryden Flight Research Center, Edwards, California, on July 2, 1996. The aircraft is being hoisted out of it's shipping crate. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds

  8. Status of research into lightning effects on aircraft

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.

    1976-01-01

    Developments in aircraft lightning protection since 1938 are reviewed. Potential lightning problems resulting from present trends toward the use of electronic controls and composite structures are discussed, along with presently available lightning test procedures for problem assessment. The validity of some procedures is being questioned because of pessimistic results and design implications. An in-flight measurement program is needed to provide statistics on lightning severity at flight altitudes and to enable more realistic tests, and operators are urged to supply researchers with more details on electronic components damaged by lightning strikes. A need for review of certain aspects of fuel system vulnerability is indicated by several recent accidents, and specific areas for examination are identified. New educational materials and standardization activities are also noted.

  9. Aircraft to aircraft intercomparison during SEMAPHORE

    NASA Astrophysics Data System (ADS)

    Lambert, Dominique; Durand, Pierre

    1998-10-01

    During the Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE) experiment, performed in the Azores region in 1993, two French research aircraft were simultaneously used for in situ measurements in the atmospheric boundary layer. We present the results obtained from one intercomparison flight between the two aircraft. The mean parameters generally agree well, although the temperature has to be slightly shifted in order to be in agreement for the two aircraft. A detailed comparison of the turbulence parameters revealed no bias. The agreement is good for variances and is satisfactory for fluxes and skewness. A thorough study of the errors involved in flux computation revealed that the greatest accuracy is obtained for latent heat flux. Errors in sensible heat flux are considerably greater, and the worst results are obtained for momentum flux. The latter parameter, however, is more accurate than expected from previous parameterizations.

  10. Organizational Agility and Complex Enterprise System Innovations: A Mixed Methods Study of the Effects of Enterprise Systems on Organizational Agility

    ERIC Educational Resources Information Center

    Kharabe, Amol T.

    2012-01-01

    Over the last two decades, firms have operated in "increasingly" accelerated "high-velocity" dynamic markets, which require them to become "agile." During the same time frame, firms have increasingly deployed complex enterprise systems--large-scale packaged software "innovations" that integrate and automate…

  11. The Mediating Role of Organizational Learning in the Relationship of Organizational Intelligence and Organizational Agility.

    PubMed

    Bahrami, Mohammad Amin; Kiani, Mohammad Mehdi; Montazeralfaraj, Raziye; Zadeh, Hossein Fallah; Zadeh, Morteza Mohammad

    2016-06-01

    Organizational learning is defined as creating, absorbing, retaining, transferring, and application of knowledge within an organization. This article aims to examine the mediating role of organizational learning in the relationship of organizational intelligence and organizational agility. This analytical and cross-sectional study was conducted in 2015 at four teaching hospitals of Yazd city, Iran. A total of 370 administrative and medical staff contributed to the study. We used stratified-random method for sampling. Required data were gathered using three valid questionnaires including Alberkht (2003) organizational intelligence, Neefe (2001) organizational learning, and Sharifi and Zhang (1999) organizational agility questionnaires. Data analysis was done through R and SPSS 18 statistical software. The results showed that organizational learning acts as a mediator in the relationship of organizational intelligence and organizational agility (path coefficient = 0.943). Also, organizational learning has a statistical relationship with organizational agility (path coefficient = 0.382). Our findings suggest that the improvement of organizational learning abilities can affect an organization's agility which is crucial for its survival.

  12. In-flight control and communication architecture of the GLORIA imaging limb sounder on atmospheric research aircraft

    NASA Astrophysics Data System (ADS)

    Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.

    2015-06-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier-transform-spectrometer-based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  13. In-flight control and communication architecture of the GLORIA imaging limb-sounder on atmospheric research aircraft

    NASA Astrophysics Data System (ADS)

    Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.

    2015-02-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier transform spectrometer based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  14. Design Specification for a Thrust-Vectoring, Actuated-Nose-Strake Flight Control Law for the High-Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Bacon, Barton J.; Carzoo, Susan W.; Davidson, John B.; Hoffler, Keith D.; Lallman, Frederick J.; Messina, Michael D.; Murphy, Patrick C.; Ostroff, Aaron J.; Proffitt, Melissa S.; Yeager, Jessie C.; hide

    1996-01-01

    Specifications for a flight control law are delineated in sufficient detail to support coding the control law in flight software. This control law was designed for implementation and flight test on the High-Alpha Research Vehicle (HARV), which is an F/A-18 aircraft modified to include an experimental multi-axis thrust-vectoring system and actuated nose strakes for enhanced rolling (ANSER). The control law, known as the HARV ANSER Control Law, was designed to utilize a blend of conventional aerodynamic control effectors, thrust vectoring, and actuated nose strakes to provide increased agility and good handling qualities throughout the HARV flight envelope, including angles of attack up to 70 degrees.

  15. Short-term high intensity plyometric training program improves strength, power and agility in male soccer players.

    PubMed

    Váczi, Márk; Tollár, József; Meszler, Balázs; Juhász, Ivett; Karsai, István

    2013-03-01

    The aim of the present study was to investigate the effects of a short-term in-season plyometric training program on power, agility and knee extensor strength. Male soccer players from a third league team were assigned into an experimental and a control group. The experimental group, beside its regular soccer training sessions, performed a periodized plyometric training program for six weeks. The program included two training sessions per week, and maximal intensity unilateral and bilateral plyometric exercises (total of 40 - 100 foot contacts/session) were executed. Controls participated only in the same soccer training routine, and did not perform plyometrics. Depth vertical jump height, agility (Illinois Agility Test, T Agility Test) and maximal voluntary isometric torque in knee extensors using Multicont II dynamometer were evaluated before and after the experiment. In the experimental group small but significant improvements were found in both agility tests, while depth jump height and isometric torque increments were greater. The control group did not improve in any of the measures. Results of the study indicate that plyometric training consisting of high impact unilateral and bilateral exercises induced remarkable improvements in lower extremity power and maximal knee extensor strength, and smaller improvements in soccer-specific agility. Therefore, it is concluded that short-term plyometric training should be incorporated in the in-season preparation of lower level players to improve specific performance in soccer.

  16. Short-Term High Intensity Plyometric Training Program Improves Strength, Power and Agility in Male Soccer Players

    PubMed Central

    Váczi, Márk; Tollár, József; Meszler, Balázs; Juhász, Ivett; Karsai, István

    2013-01-01

    The aim of the present study was to investigate the effects of a short-term in-season plyometric training program on power, agility and knee extensor strength. Male soccer players from a third league team were assigned into an experimental and a control group. The experimental group, beside its regular soccer training sessions, performed a periodized plyometric training program for six weeks. The program included two training sessions per week, and maximal intensity unilateral and bilateral plyometric exercises (total of 40 – 100 foot contacts/session) were executed. Controls participated only in the same soccer training routine, and did not perform plyometrics. Depth vertical jump height, agility (Illinois Agility Test, T Agility Test) and maximal voluntary isometric torque in knee extensors using Multicont II dynamometer were evaluated before and after the experiment. In the experimental group small but significant improvements were found in both agility tests, while depth jump height and isometric torque increments were greater. The control group did not improve in any of the measures. Results of the study indicate that plyometric training consisting of high impact unilateral and bilateral exercises induced remarkable improvements in lower extremity power and maximal knee extensor strength, and smaller improvements in soccer-specific agility. Therefore, it is concluded that short-term plyometric training should be incorporated in the in-season preparation of lower level players to improve specific performance in soccer. PMID:23717351

  17. Research on motion model for the hypersonic boost-glide aircraft

    NASA Astrophysics Data System (ADS)

    Xu, Shenda; Wu, Jing; Wang, Xueying

    2015-11-01

    A motion model for the hypersonic boost-glide aircraft(HBG) was proposed in this paper, which also analyzed the precision of model through simulation. Firstly the trajectory of HBG was analyzed, and a scheme which divide the trajectory into two parts then build the motion model on each part. Secondly a restrained model of boosting stage and a restrained model of J2 perturbation were established, and set up the observe model. Finally the analysis of simulation results show the feasible and high-accuracy of the model, and raise a expectation for intensive research.

  18. Sprint, agility, strength and endurance capacity in wheelchair basketball players

    PubMed Central

    Granados, C; Otero, M; Badiola, A; Olasagasti, J; Bidaurrazaga-Letona, I; Iturricastillo, A; Gil, SM

    2014-01-01

    The aims of the present study were, firstly, to determine the reliability and reproducibility of an agility T-test and Yo-Yo 10 m recovery test; and secondly, to analyse the physical characteristics measured by sprint, agility, strength and endurance field tests in wheelchair basketball (WB) players. 16 WB players (33.06 ± 7.36 years, 71.89 ± 21.71 kg and sitting body height 86.07 ± 6.82 cm) belonging to the national WB league participated in this study. Wheelchair sprint (5 and 20 m without ball, and 5 and 20 m with ball) agility (T-test and pick-up test) strength (handgrip and maximal pass) and endurance (Yo-Yo 10 m recovery test) were performed. T-test and Yo-Yo 10 m recovery test showed good reproducibility values (intraclass correlation coefficient, ICC = 0.74-0.94). The WB players’ results in 5 and 20 m sprints without a ball were 1.87 ± 0.21 s and 5.70 ± 0.43 s and with a ball 2.10 ± 0.30 s and 6.59 ± 0.61 s, being better than those reported in the literature. Regarding the pick-up test results (16.05 ± 0.52 s) and maximal pass (8.39 ± 1.77 m), players showed worse values than those obtained in elite players. The main contribution of the present study is the characterization of the physical performance profile of WB players using a field test battery. Furthermore, we demonstrated that the agility T-test and the aerobic Yo-Yo 10 m recovery test are reliable; consequently they may be appropriate instruments for measuring physical fitness in WB. PMID:25729153

  19. A perspective on 15 years of proof-of-concept aircraft development and flight research at Ames-Moffett by the Rotorcraft and Powered-Lift Flight Projects Division, 1970-1985

    NASA Technical Reports Server (NTRS)

    Few, David D.

    1987-01-01

    A proof-of-concept (POC) aircraft is defined and the concept of interest described for each of the six aircraft developed by the Ames-Moffet Rotorcraft and Powered-Lift Flight Projects Division from 1970 through 1985; namely, the OV-10, the C-8A Augmentor Wing, the Quiet Short-Haul Research Aircraft (QSRA), the XV-15 Tilt Rotor Research Aircraft (TRRA), the Rotor Systems Research Aircraft (RSRA)-compound, and the yet-to-fly RSRA/X-Wing Aircraft. The program/project chronology and most noteworthy features of the concepts are reviewed. The paper discusses the significance of each concept and the project demonstrating it; it briefly looks at what concepts are on the horizon as potential POC research aircraft and emphasizes that no significant advanced concept in aviation technology has ever been accepted by civilian or military users without first completing a demonstration through flight testing.

  20. NARVAL North - Remote Sensing of Postfrontal Convective Clouds and Precipitation over the North Atlantic with the Research Aircraft HALO

    NASA Astrophysics Data System (ADS)

    Klepp, Christian; Ament, Felix; Bakan, Stephan; Crewell, Susanne; Hagen, Martin; Hirsch, Lutz; Jansen, Friedhelm; Konow, Heike; Mech, Mario; Pfeilsticker, Klaus; Schäfler, Andreas; Stevens, Bjorn

    2014-05-01

    The new German research aircraft HALO (High Altitude and Long Range Research Aircraft) became recently available for measurement flights in atmospheric research. It's capacity of measuring from a high altitude vertical profiles of all components of atmospheric water - like vapor, liquid and ice, in both cloud and precipitation forms, as well as the aerosol particles upon which cloud droplets form - makes it a unique research platform. The aircraft, equipped with advanced radiometers, radar and lidar technology, the HALO Microwave Package (HAMP), is an initiative by German climate and environmental research institutions and is operated by the German Aerospace Center (DLR). One of the first major missions to exploit the capabilities of HALO was conducted for the NARVAL project (Next-generation Aircraft Remote-Sensing for Validation Studies) during January 2014. After studying subtropical clouds one month before in the first NARVAL phase, the interest of NARVAL North focused on the study of cold air convection and precipitation in the form of rain and snow. Based at Keflavik airport (Iceland), several flights were conducted to examine the specific small-scale precipitation structures behind the backsides of cold fronts over the North Atlantic. This should help to narrow the gap in the understanding of substantial differences between satellite observations and model calculations in such situations. First data analysis of these measurements indicate promising results. The poster will describe the HALO instrument packages as well as the collected observations during the campaign and will present preliminary scientific findings.

  1. MicroCub Subscale Aircraft

    NASA Image and Video Library

    2018-01-18

    The MicroCub is the newest addition to NASA Armstrong's fleet of subscale research aircraft. The aircraft is a modified a Bill Hempel 60-percent-scale super cub, designed with a 21-foot wingspan, a Piccolo Autopilot guidance system and a JetCat SPT-15 Turboprop.

  2. X-36 Being Prepared on Lakebed for First Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lit by the rays of the morning sunrise on Rogers Dry Lake, adjacent to NASA's Dryden Flight Research Center, Edwards, California, technicians prepare the remotely-piloted X-36 Tailless Fighter Agility Research Aircraft for its first flight in May 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet

  3. X-36 Being Prepared on Lakebed for First Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lit by the rays of the morning sunrise on Rogers Dry Lake, adjacent to NASA's Dryden Flight Research Center, Edwards, California, a technician prepares the remotely-piloted X-36 Tailless Fighter Agility Research Aircraft for its first flight on May 17, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19

  4. X-36 Taking off during First Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The remotely-piloted X-36 Tailless Fighter Agility Research Aircraft lifts off from Rogers Dry Lake at the Dryden Flight Research Center on its first flight on May 17, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of just over 10 feet. A Williams

  5. X-36 Being Prepared on Lakebed for First Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lit by the rays of the morning sunrise on Rogers Dry Lake, adjacent to NASA's Dryden Flight Research Center, Edwards, California, technicians prepares the remotely-piloted X-36 Tailless Fighter Agility Research Aircraft for its first flight on May 17, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19

  6. X-36 Being Prepared on Lakebed for First Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    As the sun creeps above the horizon of Rogers Dry Lake at NASA's Dryden Flight Research Center, Edwards, California, technicians make final preparations for the first flight of the X-36 Tailless Fighter Agility Research Aircraft. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet

  7. Effect of core strength training on dynamic balance and agility in adolescent badminton players.

    PubMed

    Ozmen, Tarik; Aydogmus, Mert

    2016-07-01

    The aim of the present study was to investigate effect of core strength training (CST) on core endurance, dynamic balance and agility in adolescent badminton players. Twenty adolescent (age = 10.8 ± 0.3 years; height = 140.6 ± 4.4 cm, weight = 33.9 ± 5.8 kg) badminton players were randomly divided into two groups as training group (TG) and control (CG) group. All subjects were evaluated with Star Excursion Balance Test (SEBT), Illinois Agility Test, and the core endurance tests. The TG completed CST twice a week, for 6 weeks. There were significant increases in (p < 0.05) directions of SEBT and core endurance tests (p < 0.05). However, no significant change was observed for agility (p > 0.05). The CST resulted in significant gains in directions of the SEBT and core endurances in adolescent badminton players, but not in agility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Impact analysis of composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Pifko, Allan B.; Kushner, Alan S.

    1993-01-01

    The impact analysis of composite aircraft structures is discussed. Topics discussed include: background remarks on aircraft crashworthiness; comments on modeling strategies for crashworthiness simulation; initial study of simulation of progressive failure of an aircraft component constructed of composite material; and research direction in composite characterization for impact analysis.

  9. OVRhyp, Scramjet Test Aircraft

    NASA Technical Reports Server (NTRS)

    Aslan, J.; Bisard, T.; Dallinga, S.; Draper, K.; Hufford, G.; Peters, W.; Rogers, J.

    1990-01-01

    A preliminary design for an unmanned hypersonic research vehicle to test scramjet engines is presented. The aircraft will be launched from a carrier aircraft at an altitude of 40,000 feet at Mach 0.8. The vehicle will then accelerate to Mach 6 at an altitude of 100,000 feet. At this stage the prototype scramjet will be employed to accelerate the vehicle to Mach 10 and maintain Mach 10 flight for 2 minutes. The aircraft will then decelerate and safely land.

  10. Pilot Ed Lewis with T-34C aircraft on ramp

    NASA Image and Video Library

    1998-03-04

    NASA pilot Ed Lewis with the T-34C aircraft on the Dryden Flight Research Center Ramp. The aircraft was previously used at the Lewis Research Center in propulsion experiments involving turboprop engines, and was used as a chase aircraft at Dryden for smaller and slower research projects. Chase aircraft accompany research flights for photography and video purposes, and also as support for safety and research. At Dryden, the T-34 is used mainly for smaller remotely piloted vehicles which fly slower than NASA's F-18's, used for larger scale projects. This aircraft was returned to the U.S. Navy in May of 2002.

  11. An Agile Enterprise Regulation Architecture for Health Information Security Management

    PubMed Central

    Chen, Ying-Pei; Hsieh, Sung-Huai; Chien, Tsan-Nan; Chen, Heng-Shuen; Luh, Jer-Junn; Lai, Jin-Shin; Lai, Feipei; Chen, Sao-Jie

    2010-01-01

    Abstract Information security management for healthcare enterprises is complex as well as mission critical. Information technology requests from clinical users are of such urgency that the information office should do its best to achieve as many user requests as possible at a high service level using swift security policies. This research proposes the Agile Enterprise Regulation Architecture (AERA) of information security management for healthcare enterprises to implement as part of the electronic health record process. Survey outcomes and evidential experiences from a sample of medical center users proved that AERA encourages the information officials and enterprise administrators to overcome the challenges faced within an electronically equipped hospital. PMID:20815748

  12. An agile enterprise regulation architecture for health information security management.

    PubMed

    Chen, Ying-Pei; Hsieh, Sung-Huai; Cheng, Po-Hsun; Chien, Tsan-Nan; Chen, Heng-Shuen; Luh, Jer-Junn; Lai, Jin-Shin; Lai, Feipei; Chen, Sao-Jie

    2010-09-01

    Information security management for healthcare enterprises is complex as well as mission critical. Information technology requests from clinical users are of such urgency that the information office should do its best to achieve as many user requests as possible at a high service level using swift security policies. This research proposes the Agile Enterprise Regulation Architecture (AERA) of information security management for healthcare enterprises to implement as part of the electronic health record process. Survey outcomes and evidential experiences from a sample of medical center users proved that AERA encourages the information officials and enterprise administrators to overcome the challenges faced within an electronically equipped hospital.

  13. Perspectives on Industrial Innovation from Agilent, HP, and Bell Labs

    NASA Astrophysics Data System (ADS)

    Hollenhorst, James

    2014-03-01

    Innovation is the life blood of technology companies. I will give perspectives gleaned from a career in research and development at Bell Labs, HP Labs, and Agilent Labs, from the point of view of an individual contributor and a manager. Physicists bring a unique set of skills to the corporate environment, including a desire to understand the fundamentals, a solid foundation in physical principles, expertise in applied mathematics, and most importantly, an attitude: namely, that hard problems can be solved by breaking them into manageable pieces. In my experience, hiring managers in industry seldom explicitly search for physicists, but they want people with those skills.

  14. HAI: A new TDLAS hygrometer for the HALO research aircraft

    NASA Astrophysics Data System (ADS)

    Klostermann, Tim; Afchine, Armin; Barthel, Jochen; Höh, Matthias; Wagner, Steven; Witzel, Oliver; Saathoff, Harald; Schiller, Cornelius; Ebert, Volker

    2010-05-01

    Water vapor is the most important greenhouse gas in the Earth's atmosphere and a key component for several physical and chemical processes. Therefore it is a key parameter to be measured during most research campaigns. The Hygrometer for Atmospheric Investigations (HAI) is especially designed for operations on the research aircraft HALO (High Altitude and LOng range research aircraft). HAI permits both, the in-situ measurement of water vapor with an open-path cell and the measurement of total water with an extractive close-path absorption cell. We are using TDLAS (Tunable Diode Laser Absorption Spectroscopy) in two water absorption bands with different line strength to increase the dynamical range. With this concept it is possible to measure from the middle troposphere up to the stratosphere. The open-path cell outside of the fuselage consists of a robust, aerodynamically designed aluminum structure with a single integrated White-cell for both laser beams. Although the mirror separation is only 15cm the cell allows an open absorption path of 4.8m. The detection of higher H2O concentrations is realized with a fiber coupled 1.4µm DFB diode laser. Inside the UTLS layer were small concentrations in the low ppm range are common, we employ up to 20 times stronger fundamental ro-vibration lines of the water molecule near 2.6µm. To supply this, the fiber coupled 2.6µm laser setup was developed and is a part of the HAI. Both detection wavelengths are introduced in the same open path cell via glass fibers which provide water measurements with a minimum of parasitic absorption. We will present the spectrometer design for high-quality airborne water measurements. Furthermore, first laboratory measurements will be shown.

  15. Acceleration display system for aircraft zero-gravity research

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1987-01-01

    The features, design, calibration, and testing of Lewis Research Center's acceleration display system for aircraft zero-gravity research are described. Specific circuit schematics and system specifications are included as well as representative data traces from flown trajectories. Other observations learned from developing and using this system are mentioned where appropriate. The system, now a permanent part of the Lewis Learjet zero-gravity program, provides legible, concise, and necessary guidance information enabling pilots to routinely fly accurate zero-gravity trajectories. Regular use of this system resulted in improvements of the Learjet zero-gravity flight techniques, including a technique to minimize later accelerations. Lewis Gates Learjet trajectory data show that accelerations can be reliably sustained within 0.01 g for 5 consecutive seconds, within 0.02 g for 7 consecutive seconds, and within 0.04 g for up to 20 second. Lewis followed the past practices of acceleration measurement, yet focussed on the acceleration displays. Refinements based on flight experience included evolving the ranges, resolutions, and frequency responses to fit the pilot and the Learjet responses.

  16. System upgrades and performance evaluation of the spectrally agile, frequency incrementing reconfigurable (SAFIRE) radar system

    NASA Astrophysics Data System (ADS)

    Phelan, Brian R.; Ranney, Kenneth I.; Ressler, Marc A.; Clark, John T.; Sherbondy, Kelly D.; Kirose, Getachew A.; Harrison, Arthur C.; Galanos, Daniel T.; Saponaro, Philip J.; Treible, Wayne R.; Narayanan, Ram M.

    2017-05-01

    The U.S. Army Research Laboratory has developed the Spectrally Agile Frequency-Incrementing Reconfigurable (SAFIRE) radar, which is capable of imaging concealed/buried targets using forward- and side-looking configurations. The SAFIRE radar is vehicle-mounted and operates from 300 MHz-2 GHz; the step size can be adjusted in multiples of 1 MHz. It is also spectrally agile and capable of excising frequency bands, which makes it ideal for operation in congested and/or contested radio frequency (RF) environments. Furthermore, the SAFIRE radar receiver has a super-heterodyne architecture, which was designed so that intermodulation products caused by interfering signals could be easily filtered from the desired received signal. The SAFIRE system also includes electro-optical (EO) and infrared (IR) cameras, which can be fused with radar data and displayed in a stereoscopic augmented reality user interface. In this paper, recent upgrades to the SAFIRE system are discussed and results from the SAFIRE's initial field tests are presented.

  17. Autonomous Guidance of Agile Small-scale Rotorcraft

    NASA Technical Reports Server (NTRS)

    Mettler, Bernard; Feron, Eric

    2004-01-01

    This report describes a guidance system for agile vehicles based on a hybrid closed-loop model of the vehicle dynamics. The hybrid model represents the vehicle dynamics through a combination of linear-time-invariant control modes and pre-programmed, finite-duration maneuvers. This particular hybrid structure can be realized through a control system that combines trim controllers and a maneuvering control logic. The former enable precise trajectory tracking, and the latter enables trajectories at the edge of the vehicle capabilities. The closed-loop model is much simpler than the full vehicle equations of motion, yet it can capture a broad range of dynamic behaviors. It also supports a consistent link between the physical layer and the decision-making layer. The trajectory generation was formulated as an optimization problem using mixed-integer-linear-programming. The optimization is solved in a receding horizon fashion. Several techniques to improve the computational tractability were investigate. Simulation experiments using NASA Ames 'R-50 model show that this approach fully exploits the vehicle's agility.

  18. Fabrication methods for YF-12 wing panels for the Supersonic Cruise Aircraft Research Program

    NASA Technical Reports Server (NTRS)

    Hoffman, E. L.; Payne, L.; Carter, A. L.

    1975-01-01

    Advanced fabrication and joining processes for titanium and composite materials are being investigated by NASA to develop technology for the Supersonic Cruise Aircraft Research (SCAR) Program. With Lockheed-ADP as the prime contractor, full-scale structural panels are being designed and fabricated to replace an existing integrally stiffened shear panel on the upper wing surface of the NASA YF-12 aircraft. The program involves ground testing and Mach 3 flight testing of full-scale structural panels and laboratory testing of representative structural element specimens. Fabrication methods and test results for weldbrazed and Rohrbond titanium panels are discussed. The fabrication methods being developed for boron/aluminum, Borsic/aluminum, and graphite/polyimide panels are also presented.

  19. Agility - The Danish Way (Briefing Charts)

    DTIC Science & Technology

    2014-06-01

    unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 ‘A’ PLAN… • Theory ...Social Military Economic Infrastructure Assessment Planning Execution Knowledge Base PMESII SAS 050 C2 Model – Sensemaking (INTELLIGENCE) C2...Warfighting COMMANDER Intelligence manages the sensemaking (ex SA/SU) – it is the make or break for battlespace agility. How we ‘observe’ and

  20. Noise of High-Performance Aircraft at Afterburner

    DTIC Science & Technology

    2015-10-07

    Naval Research Project Title : Noise of High-Performance Aircraft at Afterburner Principal Investigator Dr. Christopher Tam Department...to 08/14/2015 Noise of High-Performance Aircraft at Afterburner Tam, Christopher Sponsored Research Administratiion Florida State University