Science.gov

Sample records for aging techniques applied

  1. Polymer Aging Techniques Applied to Degradation of a Polyurethane Propellant Binder

    SciTech Connect

    Assink, R.A.; Celina, M.; Graham, A.C.; Minier, L.M.

    1999-07-27

    The oxidative thermal aging of a crosslinked hydroxy-terminated polybutadiene (HTPB)/isophorone diisocyanate (IPDI) polyurethane rubber, commonly used as the polymeric binder matrix in solid rocket propellants, was studied at temperatures of RT to 125 C. We investigate changes in tensile elongation, mechanical hardening, polymer network properties, density, O{sub 2} permeation and molecular chain dynamics using a range of techniques including solvent swelling, detailed modulus profiling and NMR relaxation measurements. Using extensive data superposition and highly sensitive oxygen consumption measurements, we critically evaluate the Arrhenius methodology, which normally assumes a linear extrapolation of high temperature aging data. Significant curvature in the Arrhenius diagram of these oxidation rates was observed similar to previous results found for other rubber materials. Preliminary gel/network properties suggest that crosslinking is the dominant process at higher temperatures. We also assess the importance of other constituents such as ammonium perchlorate or aluminum powder in the propellant formulation.

  2. Applied ALARA techniques

    SciTech Connect

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  3. Diagnostic technique applied for FEL electron bunches

    NASA Astrophysics Data System (ADS)

    Brovko, O.; Grebentsov, A.; Morozov, N.; Syresin, E.; Yurkov, M.

    2016-05-01

    Diagnostic technique applied for FEL ultrashort electron bunches is developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects. Photon diagnostics are based on calorimetric measurements and detection of undulator radiation. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. The pump probe experiments with VUV and FIR undulators provide the bunch profile measurements with resolution of several femtosecond. The new three microchannel plates (MCP) detectors operated in X-ray range are under development now in JINR for SASE1-SASE 3 European XFEL.

  4. Flash Diffusivity Technique Applied to Individual Fibers

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian; Yowell, Leonard; Wang, Hsin

    2007-01-01

    A variant of the flash diffusivity technique has been devised for determining the thermal diffusivities, and thus the thermal conductivities, of individual aligned fibers. The technique is intended especially for application to nanocomposite fibers, made from narrower fibers of polyphenylene benzobisthiazole (PBZT) and carbon nanotubes. These highly aligned nanocomposite fibers could exploit the high thermal conductivities of carbon nanotubes for thermal-management applications. In the flash diffusivity technique as practiced heretofore, one or more heat pulse(s) is (are) applied to the front face of a plate or disk material specimen and the resulting time-varying temperature on the rear face is measured. Usually, the heat pulse is generated by use of a xenon flash lamp, and the variation of temperature on the rear face is measured by use of an infrared detector. The flash energy is made large enough to produce a usefully high temperature rise on the rear face, but not so large as to significantly alter the specimen material. Once the measurement has been completed, the thermal diffusivity of the specimen is computed from the thickness of the specimen and the time dependence of the temperature variation on the rear face. Heretofore, the infrared detector used in the flash diffusivity technique has been a single-point detector, which responds to a spatial average of the thermal radiation from the rear specimen surface. Such a detector cannot distinguish among regions of differing diffusivity within the specimen. Moreover, two basic assumptions of the thermaldiffusivity technique as practiced heretofore are that the specimen is homogeneous and that heat flows one-dimensionally from the front to the rear face. These assumptions are not valid for an inhomogeneous (composite) material.

  5. Digital techniques applied to sine test control

    NASA Astrophysics Data System (ADS)

    Westoby, T. J.

    1981-09-01

    Digital techniques are applied to solve problems experienced in analogue circuitry, enabling the design of a highly reliable sine control system. A sine wave is generated whose frequency is proportional to a digital number, held in the counters of the sweep generator, using the frequency related pulse stream. This pulse stream is used to generate a ramp by applying it to a count. The rate of rise is varied by using a rate multiplier arranged to slow the pulse stream as the ramp proceeds. Variation of frequency depends only on the frequency of the pulse stream entering the circuit, and the oscillator runs quite acceptably at 0.1 Hz and 10 kHz. The total distortion at this stage is less than 2%. Since the control signal is quantized, only discrete changes in control are experienced, and the control lines are static most of the time; the digital system can reduce the effects of a noisy return signal by as much as 64 times. The greatest advantage of digital techniques is its use in integrator stabilization. A tracking capacitor ensures that conversion is done to an accuracy of 1%, and residual ripple on the output is removed by a low pass filter.

  6. Novel techniques applied to polymer lifetime predictions

    SciTech Connect

    Gillen, K.T.; Wise, J.; Clough, R.L.

    1993-12-31

    A study aimed at testing the Arrhenius life prediction approach is described. After aging elastomeric materials at several elevated (accelerated) temperatures, a modulus profiling apparatus was used to demonstrate the complicated diffusion-limited oxidation anomalies are typically present under accelerated oven-aging conditions. By using surface modulus results (oxidation less to a monotonic increase in modulus), estimates are made of the true activation energy (E{sub a}) appropriate to the oxidation reactions dominating degradation. Even though macroscopic properties should be influenced by the diffusion-limited oxidation complications, ultimate tensile elongation results were found to be correlated to the true E{sub a}. This implies that cracks initiate at the hardened surface of the material and then quickly propagate through the less oxidized interior. If values of E{sub a} obtained from accelerated exposures can be determined and rationalized, another important question involves the Arrhenius assumption that E{sub a} remains constant in the extrapolation region. Preliminary data from two ultra-sensitive techniques (oxygen consumption and microcalorimetry) aimed at testing this fundamental assumption are described.

  7. Applying Renormalization Group Techniques to Nuclear Reactions

    NASA Astrophysics Data System (ADS)

    Eldredge, Zachary; Bogner, Scott; Nunes, Filomena

    2013-10-01

    Nuclear reactions are commonly used to explore the physics of unstable nuclei. Therefore, it is important that accurate, computationally favorable methods exist to describe them. Reaction models often make use of effective nucleon-nucleus potentials (optical potentials) which fit low-energy scattering data and include an imaginary component to account for the removal of flux from the elastic channel. When describing reactions in momentum space, the coupling between low- and high-momentum states can pose a technical challenge. We would like potentials which allow us to compute low-momentum interactions without including highly virtual momentum states. A solution to this problem is to apply renormalization group (RG) techniques to produce a new effective potential in which high and low momentum degrees of freedom are decoupled, so that we need only consider momenta below some cutoff. This poster will present results relating to an implementation of RG techniques on optical potentials, including complex potentials and spin-orbit effects. We show that our evolved optical potentials reproduce bound states and scattering phase shifts without the inclusion of any momenta above a selected cutoff, and compare new potentials to old ones to examine the effect of transformation.

  8. Magnetic Analysis Techniques Applied to Desert Varnish

    NASA Technical Reports Server (NTRS)

    Schmidgall, E. R.; Moskowitz, B. M.; Dahlberg, E. D.; Kuhlman, K. R.

    2003-01-01

    Desert varnish is a black or reddish coating commonly found on rock samples from arid regions. Typically, the coating is very thin, less than half a millimeter thick. Previous research has shown that the primary components of desert varnish are silicon oxide clay minerals (60%), manganese and iron oxides (20-30%), and trace amounts of other compounds [1]. Desert varnish is thought to originate when windborne particles containing iron and manganese oxides are deposited onto rock surfaces where manganese oxidizing bacteria concentrate the manganese and form the varnish [4,5]. If desert varnish is indeed biogenic, then the presence of desert varnish on rock surfaces could serve as a biomarker, indicating the presence of microorganisms. This idea has considerable appeal, especially for Martian exploration [6]. Magnetic analysis techniques have not been extensively applied to desert varnish. The only previous magnetic study reported that based on room temperature demagnetization experiments, there were noticeable differences in magnetic properties between a sample of desert varnish and the substrate sandstone [7]. Based upon the results of the demagnetization experiments, the authors concluded that the primary magnetic component of desert varnish was either magnetite (Fe3O4) or maghemite ( Fe2O3).

  9. Age, Personality, and the Holtzman Inkblot Technique.

    ERIC Educational Resources Information Center

    Costa, Paul T., Jr.; McCrae, Robert R.

    1986-01-01

    Investigated age changes and differences in personality as measured by the Holtzman Inkblot Technique (HIT). Concluded that the HIT measures perceptual-cognitive variables that are moderately stable in adulthood. (Author/ABB)

  10. Gender Relations and Applied Research on Aging

    ERIC Educational Resources Information Center

    Calasanti, Toni

    2010-01-01

    As a concept in gerontology, gender appears as lists of traits learned through socialization when theorized at all. I argue for a framework that theorizes the intersections of relations of gender inequality with those of age. This framework holds that men and women gain resources and bear responsibilities, in relation to one another, by virtue of…

  11. Nuclear techniques applied to dementia studies

    SciTech Connect

    Ehmann, W.D.

    1996-12-31

    Trace element imbalances have been implicated in the etiology and/or pathogenesis of several dementing disorders related to aging. Of these diseases, Alzheimer`s disease (AD) is by far the most prevalent. Many elemental imbalances have been reported in AD brain, compared to neurologically normal controls. Using instrumental neutron activation analysis (INAA), we have observed significant increases (p {le} 0.05) in bromine, chlorine, mercury, sodium, and phosphorus and decreased amounts of cesium, nitrogen, and rubidium in AD brain, compared to age-matched control brain. Because INAA is a simultaneous multielement method that does not require tissue dissolution, fewer opportunities for contamination exist than with otherwise powerful analytical methods, such as inductively coupled plasma mass spectrometry or atomic absorption spectrometry. Although INAA is a very important tool in the study of potential trace element involvement in dementia, we have often found it necessary to go beyond conventional INAA methods.

  12. Applying Cryopreservation Techniques to Diverse Biological Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing new cryopreservation protocols for each new plant or tissue is time consuming and often unnecessary. Existing standard protocols can be applied to many plants resulting in moderate to excellent results or protocols may require only a few changes for optimum recovery of plants. Protocols ...

  13. Gender relations and applied research on aging.

    PubMed

    Calasanti, Toni

    2010-12-01

    As a concept in gerontology, gender appears as lists of traits learned through socialization when theorized at all. I argue for a framework that theorizes the intersections of relations of gender inequality with those of age. This framework holds that men and women gain resources and bear responsibilities, in relation to one another, by virtue of mundane categorization into naturalized stratified groups. Current research shows that this approach allows explanation of gender differences, which appear in many reports but which usually go untheorized, as responses to social inequality. I illustrate applications to research and practice in relation to three areas of old age experiences: financial security, spousal care work, and health. Throughout, I discuss implications of focusing on inequality to enhance our abilities to engage in effective research, practice, and policy for older people, women and men alike. For instance, an understanding of the gender division of labor and workplace discrimination makes clear that financial status in later life cannot be reduced to individual choices concerning paid labor or retirement planning. And understanding that people orient their behaviors to gender ideals allows us to see that men and women perform spousal care in similar and different ways that require varied responses from practitioners; it also reveals contexts in which men engage in positive health behaviors. Finally, I argue that gerontologists interested in facilitating favorable outcomes for old people should consider research and practice that would disrupt, not reinforce, the bases of gender inequalities in later life. PMID:20956798

  14. Applying knowledge compilation techniques to model-based reasoning

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1991-01-01

    Researchers in the area of knowledge compilation are developing general purpose techniques for improving the efficiency of knowledge-based systems. In this article, an attempt is made to define knowledge compilation, to characterize several classes of knowledge compilation techniques, and to illustrate how some of these techniques can be applied to improve the performance of model-based reasoning systems.

  15. GENOMIC AND PROTEOMIC TECHNIQUES APPLIED TO REPRODUCTIVE BIOLOGY

    EPA Science Inventory

    Genomic and proteomic techniques applied to reproductive biology
    John C. Rockett
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Tria...

  16. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    Automated validation of flight-critical embedded systems is being done at ARC Dryden Flight Research Facility. The automated testing techniques are being used to perform closed-loop validation of man-rated flight control systems. The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 High Alpha Research Vehicle (HARV) automated test systems are discussed. Operationally applying automated testing techniques has accentuated flight control system features that either help or hinder the application of these techniques. The paper also discusses flight control system features which foster the use of automated testing techniques.

  17. Applying Parallel Processing Techniques to Tether Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    Wells, B. Earl

    1996-01-01

    The focus of this research has been to determine the effectiveness of applying parallel processing techniques to a sizable real-world problem, the simulation of the dynamics associated with a tether which connects two objects in low earth orbit, and to explore the degree to which the parallelization process can be automated through the creation of new software tools. The goal has been to utilize this specific application problem as a base to develop more generally applicable techniques.

  18. The Use of Video Tape as an Applied Research Technique.

    ERIC Educational Resources Information Center

    Deshler, J. David; Czaplewski, Ellen C.

    This report describes the application of videotape recordings as an applied research technique in a project directed toward the research and development of training designs and materials for human service agency professionals. The multiple applications of VTR and the types of data collection situations in which it has been utilized are briefly…

  19. Sensor Data Qualification Technique Applied to Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Simon, Donald L.

    2013-01-01

    This paper applies a previously developed sensor data qualification technique to a commercial aircraft engine simulation known as the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k). The sensor data qualification technique is designed to detect, isolate, and accommodate faulty sensor measurements. It features sensor networks, which group various sensors together and relies on an empirically derived analytical model to relate the sensor measurements. Relationships between all member sensors of the network are analyzed to detect and isolate any faulty sensor within the network.

  20. Digital image correlation techniques applied to LANDSAT multispectral imagery

    NASA Technical Reports Server (NTRS)

    Bonrud, L. O. (Principal Investigator); Miller, W. J.

    1976-01-01

    The author has identified the following significant results. Automatic image registration and resampling techniques applied to LANDSAT data achieved accuracies, resulting in mean radial displacement errors of less than 0.2 pixel. The process method utilized recursive computational techniques and line-by-line updating on the basis of feedback error signals. Goodness of local feature matching was evaluated through the implementation of a correlation algorithm. An automatic restart allowed the system to derive control point coordinates over a portion of the image and to restart the process, utilizing this new control point information as initial estimates.

  1. Probabilistic Analysis Techniques Applied to Complex Spacecraft Power System Modeling

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey S.; Rusick, Jeffrey J.

    2005-01-01

    Electric power system performance predictions are critical to spacecraft, such as the International Space Station (ISS), to ensure that sufficient power is available to support all the spacecraft s power needs. In the case of the ISS power system, analyses to date have been deterministic, meaning that each analysis produces a single-valued result for power capability because of the complexity and large size of the model. As a result, the deterministic ISS analyses did not account for the sensitivity of the power capability to uncertainties in model input variables. Over the last 10 years, the NASA Glenn Research Center has developed advanced, computationally fast, probabilistic analysis techniques and successfully applied them to large (thousands of nodes) complex structural analysis models. These same techniques were recently applied to large, complex ISS power system models. This new application enables probabilistic power analyses that account for input uncertainties and produce results that include variations caused by these uncertainties. Specifically, N&R Engineering, under contract to NASA, integrated these advanced probabilistic techniques with Glenn s internationally recognized ISS power system model, System Power Analysis for Capability Evaluation (SPACE).

  2. Effects of Applied Strain on Rates of Ageing: Project Overview

    NASA Technical Reports Server (NTRS)

    Campion, R. P.

    1997-01-01

    One of the stated intents of this project has been to make some assessment of effects of strain on rates of ageing of project thermoplastics exposed to project fluids. To this end, certain straining jigs which apply in various modes - tensile, four-point bending and crack growth using compact tension samples - were designed and made for holding samples during fluid exposures. During testing, features of the thermoplastics have been observed which have tended to confuse apparent strain effects on the polymers' aged performance, but recent assessments of the topic and its data have led to considerable progress being made in identifying test procedures necessary for strain and related effects on chemical deterioration to manifest themselves. It is the intent of this report to provide a summary of what has been determined on strain and related effects thus far, and provide recommendations for clarifying them in Phase 2 by means of further test procedures which will increase and focus the severity of the conditions applying. The choice of flexible pipe rather than umbilicals service for assessing service strain conditions reflects the major interest of project members. However, Tefzel data are still provided.

  3. Soil Moisture Estimation under Vegetation Applying Polarimetric Decomposition Techniques

    NASA Astrophysics Data System (ADS)

    Jagdhuber, T.; Schön, H.; Hajnsek, I.; Papathanassiou, K. P.

    2009-04-01

    Polarimetric decomposition techniques and inversion algorithms are developed and applied on the OPAQUE data set acquired in spring 2007 to investigate their potential and limitations for soil moisture estimation. A three component model-based decomposition is used together with an eigenvalue decomposition in a combined approach to invert for soil moisture over bare and vegetated soils at L-band. The applied approach indicates a feasible capability to invert soil moisture after decomposing volume and ground scattering components over agricultural land surfaces. But there are still deficiencies in modeling the volume disturbance. The results show a root mean square error below 8.5vol.-% for the winter crop fields (winter wheat, winter triticale and winter barley) and below 11.5Vol-% for the summer crop field (summer barley) whereas all fields have a distinct volume layer of 55-85cm height.

  4. Image reconstruction techniques applied to nuclear mass models

    NASA Astrophysics Data System (ADS)

    Morales, Irving O.; Isacker, P. Van; Velazquez, V.; Barea, J.; Mendoza-Temis, J.; Vieyra, J. C. López; Hirsch, J. G.; Frank, A.

    2010-02-01

    A new procedure is presented that combines well-known nuclear models with image reconstruction techniques. A color-coded image is built by taking the differences between measured masses and the predictions given by the different theoretical models. This image is viewed as part of a larger array in the (N,Z) plane, where unknown nuclear masses are hidden, covered by a “mask.” We apply a suitably adapted deconvolution algorithm, used in astronomical observations, to “open the window” and see the rest of the pattern. We show that it is possible to improve significantly mass predictions in regions not too far from measured nuclear masses.

  5. Applying field mapping refractive beam shapers to improve holographic techniques

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Williams, Gavin; McWilliam, Richard; Laskin, Vadim

    2012-03-01

    Performance of various holographic techniques can be essentially improved by homogenizing the intensity profile of the laser beam with using beam shaping optics, for example, the achromatic field mapping refractive beam shapers like πShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flattop one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with several laser sources with different wavelengths simultaneously. Applying of these beam shapers brings serious benefits to the Spatial Light Modulator based techniques like Computer Generated Holography or Dot-Matrix mastering of security holograms since uniform illumination of an SLM allows simplifying mathematical calculations and increasing predictability and reliability of the imaging results. Another example is multicolour Denisyuk holography when the achromatic πShaper provides uniform illumination of a field at various wavelengths simultaneously. This paper will describe some design basics of the field mapping refractive beam shapers and optical layouts of their applying in holographic systems. Examples of real implementations and experimental results will be presented as well.

  6. Hyperspectral-imaging-based techniques applied to wheat kernels characterization

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Cesare, Daniela; Bonifazi, Giuseppe

    2012-05-01

    Single kernels of durum wheat have been analyzed by hyperspectral imaging (HSI). Such an approach is based on the utilization of an integrated hardware and software architecture able to digitally capture and handle spectra as an image sequence, as they results along a pre-defined alignment on a surface sample properly energized. The study was addressed to investigate the possibility to apply HSI techniques for classification of different types of wheat kernels: vitreous, yellow berry and fusarium-damaged. Reflectance spectra of selected wheat kernels of the three typologies have been acquired by a laboratory device equipped with an HSI system working in near infrared field (1000-1700 nm). The hypercubes were analyzed applying principal component analysis (PCA) to reduce the high dimensionality of data and for selecting some effective wavelengths. Partial least squares discriminant analysis (PLS-DA) was applied for classification of the three wheat typologies. The study demonstrated that good classification results were obtained not only considering the entire investigated wavelength range, but also selecting only four optimal wavelengths (1104, 1384, 1454 and 1650 nm) out of 121. The developed procedures based on HSI can be utilized for quality control purposes or for the definition of innovative sorting logics of wheat.

  7. Applying machine learning classification techniques to automate sky object cataloguing

    NASA Astrophysics Data System (ADS)

    Fayyad, Usama M.; Doyle, Richard J.; Weir, W. Nick; Djorgovski, Stanislav

    1993-08-01

    We describe the application of an Artificial Intelligence machine learning techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Mt. Palomar Northern Sky Survey is nearly completed. This survey provides comprehensive coverage of the northern celestial hemisphere in the form of photographic plates. The plates are being transformed into digitized images whose quality will probably not be surpassed in the next ten to twenty years. The images are expected to contain on the order of 107 galaxies and 108 stars. Astronomers wish to determine which of these sky objects belong to various classes of galaxies and stars. Unfortunately, the size of this data set precludes analysis in an exclusively manual fashion. Our approach is to develop a software system which integrates the functions of independently developed techniques for image processing and data classification. Digitized sky images are passed through image processing routines to identify sky objects and to extract a set of features for each object. These routines are used to help select a useful set of attributes for classifying sky objects. Then GID3 (Generalized ID3) and O-B Tree, two inductive learning techniques, learns classification decision trees from examples. These classifiers will then be applied to new data. These developmnent process is highly interactive, with astronomer input playing a vital role. Astronomers refine the feature set used to construct sky object descriptions, and evaluate the performance of the automated classification technique on new data. This paper gives an overview of the machine learning techniques with an emphasis on their general applicability, describes the details of our specific application, and reports the initial encouraging results. The results indicate that our machine learning approach is well-suited to the problem. The primary benefit of the approach is increased data reduction throughput. Another benefit is

  8. Applying manifold learning techniques to the CAESAR database

    NASA Astrophysics Data System (ADS)

    Mendoza-Schrock, Olga; Patrick, James; Arnold, Gregory; Ferrara, Matthew

    2010-04-01

    Understanding and organizing data is the first step toward exploiting sensor phenomenology for dismount tracking. What image features are good for distinguishing people and what measurements, or combination of measurements, can be used to classify the dataset by demographics including gender, age, and race? A particular technique, Diffusion Maps, has demonstrated the potential to extract features that intuitively make sense [1]. We want to develop an understanding of this tool by validating existing results on the Civilian American and European Surface Anthropometry Resource (CAESAR) database. This database, provided by the Air Force Research Laboratory (AFRL) Human Effectiveness Directorate and SAE International, is a rich dataset which includes 40 traditional, anthropometric measurements of 4400 human subjects. If we could specifically measure the defining features for classification, from this database, then the future question will then be to determine a subset of these features that can be measured from imagery. This paper briefly describes the Diffusion Map technique, shows potential for dimension reduction of the CAESAR database, and describes interesting problems to be further explored.

  9. Applying machine learning techniques to DNA sequence analysis

    SciTech Connect

    Shavlik, J.W.

    1992-01-01

    We are developing a machine learning system that modifies existing knowledge about specific types of biological sequences. It does this by considering sample members and nonmembers of the sequence motif being learned. Using this information (which we call a domain theory''), our learning algorithm produces a more accurate representation of the knowledge needed to categorize future sequences. Specifically, the KBANN algorithm maps inference rules, such as consensus sequences, into a neural (connectionist) network. Neural network training techniques then use the training examples of refine these inference rules. We have been applying this approach to several problems in DNA sequence analysis and have also been extending the capabilities of our learning system along several dimensions.

  10. Extrapolation techniques applied to matrix methods in neutron diffusion problems

    NASA Technical Reports Server (NTRS)

    Mccready, Robert R

    1956-01-01

    A general matrix method is developed for the solution of characteristic-value problems of the type arising in many physical applications. The scheme employed is essentially that of Gauss and Seidel with appropriate modifications needed to make it applicable to characteristic-value problems. An iterative procedure produces a sequence of estimates to the answer; and extrapolation techniques, based upon previous behavior of iterants, are utilized in speeding convergence. Theoretically sound limits are placed on the magnitude of the extrapolation that may be tolerated. This matrix method is applied to the problem of finding criticality and neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron fluxes in a nuclear reactor with control rods. The two-dimensional finite-difference approximation to the two-group neutron-diffusion equations is treated. Results for this example are indicated.

  11. Vibration Monitoring Techniques Applied to Detect Damage in Rotating Disks

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Sawicki, Jerzy T.

    2002-01-01

    Rotor health monitoring and online damage detection are increasingly gaining the interest of the manufacturers of aircraft engines. This is primarily due to the need for improved safety during operation as well as the need for lower maintenance costs. Applied techniques for detecting damage in and monitoring the health of rotors are essential for engine safety, reliability, and life prediction. The goals of engine safety are addressed within the NASA-sponsored Aviation Safety Program (AvSP). AvSP provides research and technology products needed to help the Federal Aviation Administration and the aerospace industry improve aviation safety. The Nondestructive Evaluation Group at the NASA Glenn Research Center is addressing propulsion health management and the development of propulsion-system-specific technologies intended to detect potential failures prior to catastrophe.

  12. Image analysis technique applied to lock-exchange gravity currents

    NASA Astrophysics Data System (ADS)

    Nogueira, Helena I. S.; Adduce, Claudia; Alves, Elsa; Franca, Mário J.

    2013-04-01

    An image analysis technique is used to estimate the two-dimensional instantaneous density field of unsteady gravity currents produced by full-depth lock-release of saline water. An experiment reproducing a gravity current was performed in a 3.0 m long, 0.20 m wide and 0.30 m deep Perspex flume with horizontal smooth bed and recorded with a 25 Hz CCD video camera under controlled light conditions. Using dye concentration as a tracer, a calibration procedure was established for each pixel in the image relating the amount of dye uniformly distributed in the tank and the greyscale values in the corresponding images. The results are evaluated and corrected by applying the mass conservation principle within the experimental tank. The procedure is a simple way to assess the time-varying density distribution within the gravity current, allowing the investigation of gravity current dynamics and mixing processes.

  13. Applying machine learning techniques to DNA sequence analysis

    SciTech Connect

    Shavlik, J.W. . Dept. of Computer Sciences); Noordewier, M.O. . Dept. of Computer Science)

    1992-01-01

    We are primarily developing a machine teaming (ML) system that modifies existing knowledge about specific types of biological sequences. It does this by considering sample members and nonmembers of the sequence motif being teamed. Using this information, our teaming algorithm produces a more accurate representation of the knowledge needed to categorize future sequences. Specifically, our KBANN algorithm maps inference rules about a given recognition task into a neural network. Neural network training techniques then use the training examples to refine these inference rules. We call these rules a domain theory, following the convention in the machine teaming community. We have been applying this approach to several problems in DNA sequence analysis. In addition, we have been extending the capabilities of our teaming system along several dimensions. We have also been investigating parallel algorithms that perform sequence alignments in the presence of frameshift errors.

  14. Airflow measurement techniques applied to radon mitigation problems

    SciTech Connect

    Harrje, D.T.; Gadsby, K.J.

    1989-01-01

    During the past decade a multitude of diagnostic procedures associated with the evaluation of air infiltration and air leakage sites have been developed. The spirit of international cooperation and exchange of ideas within the AIC-AIVC conferences has greatly facilitated the adoption and use of these measurement techniques in the countries participating in Annex V. But wide application of such diagnostic methods are not limited to air infiltration alone. The subject of this paper concerns the ways to evaluate and improve radon reduction in buildings using diagnostic methods directly related to developments familiar to the AIVC. Radon problems are certainly not unique to the United States, and the methods described here have to a degree been applied by researchers of other countries faced with similar problems. The radon problem involves more than a harmful pollutant of the living spaces of our buildings -- it also involves energy to operate radon removal equipment and the loss of interior conditioned air as a direct result. The techniques used for air infiltration evaluation will be shown to be very useful in dealing with the radon mitigation challenge. 10 refs., 7 figs., 1 tab.

  15. Optical Trapping Techniques Applied to the Study of Cell Membranes

    NASA Astrophysics Data System (ADS)

    Morss, Andrew J.

    Optical tweezers allow for manipulating micron-sized objects using pN level optical forces. In this work, we use an optical trapping setup to aid in three separate experiments, all related to the physics of the cellular membrane. In the first experiment, in conjunction with Brian Henslee, we use optical tweezers to allow for precise positioning and control of cells in suspension to evaluate the cell size dependence of electroporation. Theory predicts that all cells porate at a transmembrane potential VTMof roughly 1 V. The Schwann equation predicts that the transmembrane potential depends linearly on the cell radius r, thus predicting that cells should porate at threshold electric fields that go as 1/r. The threshold field required to induce poration is determined by applying a low voltage pulse to the cell and then applying additional pulses of greater and greater magnitude, checking for poration at each step using propidium iodide dye. We find that, contrary to expectations, cells do not porate at a constant value of the transmembrane potential but at a constant value of the electric field which we find to be 692 V/cm for K562 cells. Delivering precise dosages of nanoparticles into cells is of importance for assessing toxicity of nanoparticles or for genetic research. In the second experiment, we conduct nano-electroporation—a novel method of applying precise doses of transfection agents to cells—by using optical tweezers in conjunction with a confocal microscope to manipulate cells into contact with 100 nm wide nanochannels. This work was done in collaboration with Pouyan Boukany of Dr. Lee's group. The small cross sectional area of these nano channels means that the electric field within them is extremely large, 60 MV/m, which allows them to electrophoretically drive transfection agents into the cell. We find that nano electroporation results in excellent dose control (to within 10% in our experiments) compared to bulk electroporation. We also find that

  16. Thermographic techniques applied to solar collector systems analysis

    SciTech Connect

    Eden, A.

    1980-02-01

    The use of thermography to analyze large solar collector array systems under dynamic operating conditions is discussed. The research at the Solar Energy Research Institute (SERI) in this area has focused on thermographic techniques and equipment to determine temperature distributions, flow patterns, and air blockages in solar collectors. The results of this extensive study, covering many sites and types of collectors, illustrate the capabilities of infrared (IR) analysis as a qualitative analysis tool and operation and maintenance procedure when applied to large arrays. Thermographic analysis of most collector systems qualitatively showed relative temperature distributions that indicated balanced flow patterns. In three significant cases, blocked or broken collector arrays, which previously had gone undetected, were discovered. Using this analysis, validation studies of large computer codes could examine collector arrays for flow patterns or blockages that could cause disagreement between actual and predicted performance. Initial operation and balancing of large systems could be accomplished without complicated sensor systems not needed for normal operations. Maintenance personnel could quickly check their systems without climbing onto the roof and without complicated sensor systems.

  17. Volcanic Monitoring Techniques Applied to Controlled Fragmentation Experiments

    NASA Astrophysics Data System (ADS)

    Kueppers, U.; Alatorre-Ibarguengoitia, M. A.; Hort, M. K.; Kremers, S.; Meier, K.; Scharff, L.; Scheu, B.; Taddeucci, J.; Dingwell, D. B.

    2010-12-01

    Volcanic eruptions are an inevitable natural threat. The range of eruptive styles is large and short term fluctuations of explosivity or vent position pose a large risk that is not necessarily confined to the immediate vicinity of a volcano. Explosive eruptions rather may also affect aviation, infrastructure and climate, regionally as well as globally. Multiparameter monitoring networks are deployed on many active volcanoes to record signs of magmatic processes and help elucidate the secrets of volcanic phenomena. However, our mechanistic understanding of many processes hiding in recorded signals is still poor. As a direct consequence, a solid interpretation of the state of a volcano is still a challenge. In an attempt to bridge this gap, we combined volcanic monitoring and experimental volcanology. We performed 15 well-monitored, field-based, experiments and fragmented natural rock samples from Colima volcano (Mexico) by rapid decompression. We used cylindrical samples of 60 mm height and 25 mm and 60 mm diameter, respectively, and 25 and 35 vol.% open porosity. The applied pressure range was from 4 to 18 MPa. Using different experimental set-ups, the pressurised volume above the samples ranged from 60 - 170 cm3. The experiments were performed at ambient conditions and at controlled sample porosity and size, confinement geometry, and applied pressure. The experiments have been thoroughly monitored with 1) Doppler Radar (DR), 2) high-speed and high-definition cameras, 3) acoustic and infrasound sensors, 4) pressure transducers, and 5) electrically conducting wires. Our aim was to check for common results achieved by the different approaches and, if so, calibrate state-of-the-art monitoring tools. We present how the velocity of the ejected pyroclasts was measured by and evaluated for the different approaches and how it was affected by the experimental conditions and sample characteristics. We show that all deployed instruments successfully measured the pyroclast

  18. Age estimation based on Kvaal's technique using digital panoramic radiographs

    PubMed Central

    Mittal, Samta; Nagendrareddy, Suma Gundareddy; Sharma, Manisha Lakhanpal; Agnihotri, Poornapragna; Chaudhary, Sunil; Dhillon, Manu

    2016-01-01

    Introduction: Age estimation is important for administrative and ethical reasons and also because of legal consequences. Dental pulp undergoes regression in size with increasing age due to secondary dentin deposition and can be used as a parameter of age estimation even beyond 25 years of age. Kvaal et al. developed a method for chronological age estimation based on the pulp size using periapical dental radiographs. There is a need for testing this method of age estimation in the Indian population using simple tools like digital imaging on living individuals not requiring extraction of teeth. Aims and Objectives: Estimation of the chronological age of subjects by Kvaal's method using digital panoramic radiographs and also testing the validity of regression equations as given by Kvaal et al. Materials and Methods: The study sample included a total of 152 subjects in the age group of 14-60 years. Measurements were performed on the standardized digital panoramic radiographs based on Kvaal's method. Different regression formulae were derived and the age was assessed. The assessed age was then correlated to the actual age of the patient using Student's t-test. Results: No significant difference between the mean of the chronological age and the estimated age was observed. However, the values of the mean age estimated by using regression equations as given previously in the study of Kvaal et al. significantly underestimated the chronological age in the present study sample. Conclusion: The results of the study give an inference for the feasibility of this technique by calculation of regression equations on digital panoramic radiographs. However, it negates the applicability of same regression equations as given by Kvaal et al. on the study population.

  19. Content-based image retrieval applied to bone age assessment

    NASA Astrophysics Data System (ADS)

    Fischer, Benedikt; Brosig, André; Welter, Petra; Grouls, Christoph; Günther, Rolf W.; Deserno, Thomas M.

    2010-03-01

    Radiological bone age assessment is based on local image regions of interest (ROI), such as the epiphysis or the area of carpal bones. These are compared to a standardized reference and scores determining the skeletal maturity are calculated. For computer-aided diagnosis, automatic ROI extraction and analysis is done so far mainly by heuristic approaches. Due to high variations in the imaged biological material and differences in age, gender and ethnic origin, automatic analysis is difficult and frequently requires manual interactions. On the contrary, epiphyseal regions (eROIs) can be compared to previous cases with known age by content-based image retrieval (CBIR). This requires a sufficient number of cases with reliable positioning of the eROI centers. In this first approach to bone age assessment by CBIR, we conduct leaving-oneout experiments on 1,102 left hand radiographs and 15,428 metacarpal and phalangeal eROIs from the USC hand atlas. The similarity of the eROIs is assessed by cross-correlation of 16x16 scaled eROIs. The effects of the number of eROIs, two age computation methods as well as the number of considered CBIR references are analyzed. The best results yield an error rate of 1.16 years and a standard deviation of 0.85 years. As the appearance of the hand varies naturally by up to two years, these results clearly demonstrate the applicability of the CBIR approach for bone age estimation.

  20. Photoacoustic technique applied to the study of skin and leather

    SciTech Connect

    Vargas, M.; Varela, J.; Hernandez, L.; Gonzalez, A.

    1998-08-28

    In this paper the photoacoustic technique is used in bull skin for the determination of thermal and optical properties as a function of the tanning process steps. Our results show that the photoacoustic technique is sensitive to the study of physical changes in this kind of material due to the tanning process.

  1. Photoacoustic technique applied to the study of skin and leather

    NASA Astrophysics Data System (ADS)

    Vargas, M.; Varela, J.; Hernández, L.; González, A.

    1998-08-01

    In this paper the photoacoustic technique is used in bull skin for the determination of thermal and optical properties as a function of the tanning process steps. Our results show that the photoacoustic technique is sensitive to the study of physical changes in this kind of material due to the tanning process.

  2. The surface age of Venus: Applying the terrestrial cratering rate

    NASA Technical Reports Server (NTRS)

    Schaber, Gerald G.; Shoemaker, Eugene M.; Kozak, Richard C.

    1987-01-01

    The population of Venusian craters having suspected impact crater morphology has been reported from 115 x 10 to the 6th power sq km of the northern hemisphere of the planet with the estimated average age of the surface to be approx. 1 b.y. (+ or - 0.5 b.y.) on the basis of lunar crater production curves corrected for Venus. Such an old average age is somewhat difficult to reconcile with the similarity in size and mass of Venus and Earth and with Earth's high heat flow and crustal resurfacing rate. Given the present uncertainties in the role of both active and inactive comet nuclei in the cratering history of Earth, it is concluded that the average age of the observed surface in the northern hemisphere of Venus could be as great as the 450 m.y. mean age of the Earth's crust. The surface of Venus might be even older, but no evidence from the crater observations support an age as great as 1 b.y.

  3. Signal detection techniques applied to the Chandler wobble

    NASA Technical Reports Server (NTRS)

    Gross, R. S.

    1985-01-01

    A sudden excitation event of the Chandler wobble should induce the earth's rotation pole to undergo damped harmonic motion. This type of motion has been searched for in the observations of the Chandler wobble using techniques based upon the concept of a matched filter. Although the signal detection techniques used here were not sensitive enough to detect any such isolated sudden excitation events, the result that was obtained is consistent with a randomly excited model of the Chandler wobble.

  4. Basics in paleodemography: a comparison of age indicators applied to the early medieval skeletal sample of Lauchheim.

    PubMed

    Wittwer-Backofen, Ursula; Buckberry, Jo; Czarnetzki, Alfred; Doppler, Stefanie; Grupe, Gisela; Hotz, Gerhard; Kemkes, Ariane; Larsen, Clark Spencer; Prince, Debbie; Wahl, Joachim; Fabig, Alexander; Weise, Svenja

    2008-12-01

    Recent advances in the methods of skeletal age estimation have rekindled interest in their applicability to paleodemography. The current study contributes to the discussion by applying several long established as well as recently developed or refined aging methods to a subsample of 121 adult skeletons from the early medieval cemetery of Lauchheim. The skeletal remains were analyzed by 13 independent observers using a variety of aging techniques (complex method and other multimethod approaches, Transition Analysis, cranial suture closure, auricular surface method, osteon density method, tooth root translucency measurement, and tooth cementum annulation counting). The age ranges and mean age estimations were compared and results indicate that all methods showed smaller age ranges for the younger individuals, but broader age ranges for the older age groups. PMID:18615503

  5. The 40Ar/39Ar dating technique applied to planetary sciences

    NASA Astrophysics Data System (ADS)

    Jourdan, F.

    2012-12-01

    The 40Ar/39Ar technique is a powerful geochronological method that can help to unravel the evolution of the solar system. The 40Ar/39Ar system can not only record the timing of volcanic and metamorphic processes on asteroids and planets, it finds domain of predilection in dating impact events throughout the solar system. However, the 40Ar/39Ar method is a robust analytical technique if, and only if, the events to be dated are well understood and data are not over interpreted. Yet, too many 'ages' reported in the literature are still based on over-interpretation of perturbed age spectra which tends to blur the big picture. This presentation is centred on the most recent applications of the 40Ar/39Ar technique applied to planetary material and through several examples, will attempt to demonstrate the benefit of focusing on statistically robust data. For example, 40Ar/39Ar dating of volcanic events on the Moon suggests that volcanism was mostly concentrated between ca. 3.8 and 3.1 Ga but statistical filtering of the data allow identifying a few well-defined eruptive events. The study of lunar volcanism would also benefit from dating of volcanic spherules. Rigorous filtering of the 40Ar/39Ar age database of lunar melt breccias yielded concordant and ages with high precision for two major basins (i.e. Imbrium & Serenitatis) of the Moon. 40Ar/39Ar dating of lunar impact spherules recovered from four different sites and with high- and low-K compositions shows an increase of ages younger than 400 Ma suggesting a recent increase in the impact flux. The impact history of the LL parent body (bodies?) has yet to be well constrained but may mimic the LHB observed on the Moon, which would indicate that the LL parent body was quite large. 40Ar/39Ar dating (in progress) of grains from the asteroid Itokawa recovered by the japanese Hayabusa mission have the potential to constrain the formation history and exposure age of Itokawa and will allow us to compare the results with the

  6. Gravimetry and Space Techniques Applied to Geodynamics and Ocean Dynamics

    NASA Astrophysics Data System (ADS)

    Schutz, Bob E.; Anderson, Allen; Froidevaux, Claude; Parke, Michael

    The variety of disciplines represented in this volume (including space geodesy, oceanography, geophysics, and celestial mechanics) attest to the interdisciplinary applications of gravimetry and space techniques. The relation to sea level is addressed within some of the papers and the contributions of the techniques to development of global gravity models are discussed. The space technique of satellite altimetry has become a prominent contributor to sea surface topography as well as ocean tide models and determination of gravity, especially in ocean areas. Ocean tides influence the motion of near-Earth satellites and the rotation of the Earth. Modern space geodesy is increasingly relying on the Global Positioning System for measuring geophysical phenomena manifested at the surface through crustal deformations. Furthermore, the geophysical interpretation of gravity anomalies has been facilitated by the introduction of modern techniques. This volume represents only a small "snapshot" of the interdisciplinary research being conducted. Modem space geodesy is one of the common links between the disciplines reflected in this volume. New developments in gravimetry and space techniques will further enhance and foster interdisciplinary work in coming years.

  7. Cognitive task analysis: Techniques applied to airborne weapons training

    SciTech Connect

    Terranova, M.; Seamster, T.L.; Snyder, C.E.; Treitler, I.E.; Carlow Associates, Inc., Fairfax, VA; Martin Marietta Energy Systems, Inc., Oak Ridge, TN; Tennessee Univ., Knoxville, TN )

    1989-01-01

    This is an introduction to cognitive task analysis as it may be used in Naval Air Systems Command (NAVAIR) training development. The focus of a cognitive task analysis is human knowledge, and its methods of analysis are those developed by cognitive psychologists. This paper explains the role that cognitive task analysis and presents the findings from a preliminary cognitive task analysis of airborne weapons operators. Cognitive task analysis is a collection of powerful techniques that are quantitative, computational, and rigorous. The techniques are currently not in wide use in the training community, so examples of this methodology are presented along with the results. 6 refs., 2 figs., 4 tabs.

  8. Machine-Learning Techniques Applied to Antibacterial Drug Discovery

    PubMed Central

    Durrant, Jacob D.; Amaro, Rommie E.

    2014-01-01

    The emergence of drug-resistant bacteria threatens to catapult humanity back to the pre-antibiotic era. Even now, multi-drug-resistant bacterial infections annually result in millions of hospital days, billions in healthcare costs, and, most importantly, tens of thousands of lives lost. As many pharmaceutical companies have abandoned antibiotic development in search of more lucrative therapeutics, academic researchers are uniquely positioned to fill the resulting vacuum. Traditional high-throughput screens and lead-optimization efforts are expensive and labor intensive. Computer-aided drug discovery techniques, which are cheaper and faster, can accelerate the identification of novel antibiotics in an academic setting, leading to improved hit rates and faster transitions to pre-clinical and clinical testing. The current review describes two machine-learning techniques, neural networks and decision trees, that have been used to identify experimentally validated antibiotics. We conclude by describing the future directions of this exciting field. PMID:25521642

  9. Machine-learning techniques applied to antibacterial drug discovery.

    PubMed

    Durrant, Jacob D; Amaro, Rommie E

    2015-01-01

    The emergence of drug-resistant bacteria threatens to revert humanity back to the preantibiotic era. Even now, multidrug-resistant bacterial infections annually result in millions of hospital days, billions in healthcare costs, and, most importantly, tens of thousands of lives lost. As many pharmaceutical companies have abandoned antibiotic development in search of more lucrative therapeutics, academic researchers are uniquely positioned to fill the pipeline. Traditional high-throughput screens and lead-optimization efforts are expensive and labor intensive. Computer-aided drug-discovery techniques, which are cheaper and faster, can accelerate the identification of novel antibiotics, leading to improved hit rates and faster transitions to preclinical and clinical testing. The current review describes two machine-learning techniques, neural networks and decision trees, that have been used to identify experimentally validated antibiotics. We conclude by describing the future directions of this exciting field. PMID:25521642

  10. Technology Assessment of Dust Suppression Techniques Applied During Structural Demolition

    SciTech Connect

    Boudreaux, J.F.; Ebadian, M.A.; Williams, P.T.; Dua, S.K.

    1998-10-20

    Hanford, Fernald, Savannah River, and other sites are currently reviewing technologies that can be implemented to demolish buildings in a cost-effective manner. In order to demolish a structure properly and, at the same time, minimize the amount of dust generated from a given technology, an evaluation must be conducted to choose the most appropriate dust suppression technology given site-specific conditions. Thus, the purpose of this research, which was carried out at the Hemispheric Center for Environmental Technology (HCET) at Florida International University, was to conduct an experimental study of dust aerosol abatement (dust suppression) methods as applied to nuclear D and D. This experimental study targeted the problem of dust suppression during the demolition of nuclear facilities. The resulting data were employed to assist in the development of mathematical correlations that can be applied to predict dust generation during structural demolition.

  11. Microwave de-embedding techniques applied to acoustics.

    PubMed

    Jackson, Charles M

    2005-07-01

    This paper describes the use of the microwave techniques of time domain reflectometry (TDR) and de-embedding in an acoustical application. Two methods of calibrating the reflectometer are presented to evaluate the consistency of the method. Measured and modeled S-parameters of woodwind instruments are presented. The raw measured data is de-embedded to obtain an accurate measurement. The acoustic TDR setup is described. PMID:16212248

  12. A comparative study of Quaternary dating techniques applied to sedimentary deposits in southwest Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Sherwood, J.; Barbetti, M.; Ditchburn, R.; Kimber, R. W. L.; McCabe, W.; Murray-Wallace, C. V.; Prescott, J. R.; Whitehead, N.

    At five sites in western Victoria a total of five Quaternary dating techniques have been applied to shell beds varying in age from Holocene to beyond the last interglacial. To examine the age concordancy of the methods, 89 analyses were conducted—16 by radiocarbon, 26 by uranium series disequilibrium, 26 by amino acid racemisation, 5 by thermoluminescence and 16 by electron spin resonance, the latter previously reported by Goede (1989). Uncertainties associated with diagenetic environments of samples precluded reliable numerical age assignments for beds older than Holocene. Instead, relative dating of shell beds was based on a reference site (Goose Lagoon) which was assigned to the last interglacial based on its morphostratigraphic setting and concordant results of three of the dating methods (amino acid racemisation, uranium series disequilibrium and electron spin resonance). Overall there was considerable agreement between methods although not all were applied to each site. Uranium series dating proved most problematical. Migration of radionuclides between groundwater and shells introduced large errors at one site and led to appreciable uncertainties at others.

  13. Analysis of soil images applying Laplacian Pyramidal techniques

    NASA Astrophysics Data System (ADS)

    Ballesteros, F.; de Castro, J.; Tarquis, A. M.; Méndez, A.

    2012-04-01

    The Laplacian pyramid is a technique for image encoding in which local operators of many scales but identical shape are the basis functions. Our work describes some properties of the filters of the Laplacian pyramid. Specially, we pay attention to Gaussian and fractal behaviour of these filters, and we determine the normal and fractal ranges in the case of single parameter filters, while studying the influence of these filters in soil image processing. One usual property of any image is that neighboring pixels are highly correlated. This property makes inefficient to represent the image directly in terms of the pixel values, because most of the encoded information would be redundant. Burt and Adelson designed a technique, named Laplacian pyramid, for removing image correlation which combines features of predictive and transform methods. This technique is non causal, and its computations are simple and local. The predicted value for each pixel is computed as a local weighted average, using a unimodal weighting function centred on the pixel itself. Pyramid construction is equivalent to convolving the original image with a set of weighting functions determined by a parameter that defines the filter. According to the parameter values, these filters have a behaviour that goes from the Gaussian shape to the fractal. Previous works only analyze Gaussian filters, but we determine the Gaussian and fractal intervals and study the energy of the Laplacian pyramid images according to the filter types. The different behaviour, qualitatively, involves a significant change in statistical characteristics at different levels of iteration, especially the fractal case, which can highlight specific information from the images. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010-21501/AGR is greatly appreciated.

  14. Low background techniques applied in the BOREXINO experiment

    SciTech Connect

    Zuzel, G.

    2015-08-17

    The BOREXINO detector, located in the Gran Sasso National Laboratory in Italy, has been designed for real-time spectroscopy of low-energy solar neutrinos. Within the experiment several novel background reduction and assay techniques have been established. In many cases they are still the most sensitive world-wide. Developed methods and apparatus provided tools for a strict quality control program during the construction phase of the BOREXINO detector, which was the key to meet the background requirements. Achievement of extremely low background rate opened the possibility to probe in realtime almost entire spectrum of the solar neutrinos.

  15. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  16. Unconventional Coding Technique Applied to Multi-Level Polarization Modulation

    NASA Astrophysics Data System (ADS)

    Rutigliano, G. G.; Betti, S.; Perrone, P.

    2016-05-01

    A new technique is proposed to improve information confidentiality in optical-fiber communications without bandwidth consumption. A pseudorandom vectorial sequence was generated by a dynamic system algorithm and used to codify a multi-level polarization modulation based on the Stokes vector. Optical-fiber birefringence, usually considered as a disturbance, was exploited to obfuscate the signal transmission. At the receiver end, the same pseudorandom sequence was generated and used to decode the multi-level polarization modulated signal. The proposed scheme, working at the physical layer, provides strong information security without introducing complex processing and thus latency.

  17. Boson mapping techniques applied to constant gauge fields in QCD

    NASA Technical Reports Server (NTRS)

    Hess, Peter Otto; Lopez, J. C.

    1995-01-01

    Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).

  18. Applied geophysical techniques to evaluate earth dams and foundations

    NASA Astrophysics Data System (ADS)

    Llopis, Jose L.; Sharp, Michael K.; Butler, Dwain K.; Yule, Donald E.

    1995-05-01

    Mill Creek Dam, near Walla Walla, Washington has experienced anomalous seepage since its first filling in 1941. Various attempts to abate and control the seepage, including construction of a concrete wall, have not been completely successful. Construction of the cutoff wall reduced the seepage by about 30 percent, from 33 cubic feet per second to 22 cubic feet per second, and downstream saturated farmland was reduced by 56 percent. However, there are indications of increased seepage pressures in a conglomerate formation in the right abutment. A comprehensive, integrated geophysics investigation of the right abutment area of the dam was conducted to detect and map anomalous conditions and assist in the evaluation of remedial measures. The geophysics program consisted of microgravity, ground penetrating radar, seismic reflection, electromagnetic conductivity, and electrical resistivity surveying. Results of the program indicate anomalous conditions extending from the reservoir area through the right abutment. The aspects of the program planning leading to technique selection and field procedures are emphasized, as well as the role of different geophysical techniques in defining the nature of anomalous condition.

  19. Image enhancement techniques applied to solar feature detection

    NASA Astrophysics Data System (ADS)

    Kowalski, Artur J.

    This dissertation presents the development of automatic image enhancement techniques for solar feature detection. The new method allows for detection and tracking of the evolution of filaments in solar images. Series of H-alpha full-disk images are taken in regular time intervals to observe the changes of the solar disk features. In each picture, the solar chromosphere filaments are identified for further evolution examination. The initial preprocessing step involves local thresholding to convert grayscale images into black-and-white pictures with chromosphere granularity enhanced. An alternative preprocessing method, based on image normalization and global thresholding is presented. The next step employs morphological closing operations with multi-directional linear structuring elements to extract elongated shapes in the image. After logical union of directional filtering results, the remaining noise is removed from the final outcome using morphological dilation and erosion with a circular structuring element. Experimental results show that the developed techniques can achieve excellent results in detecting large filaments and good detection rates for small filaments. The final chapter discusses proposed directions of the future research and applications to other areas of solar image processing, in particular to detection of solar flares, plages and sunspots.

  20. Flight control system design factors for applying automated testing techniques

    NASA Technical Reports Server (NTRS)

    Sitz, Joel R.; Vernon, Todd H.

    1990-01-01

    The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 high alpha research vehicle (HARV) automated test systems are discussed. It is noted that operational experiences in developing and using these automated testing techniques have highlighted the need for incorporating target system features to improve testability. Improved target system testability can be accomplished with the addition of nonreal-time and real-time features. Online access to target system implementation details, unobtrusive real-time access to internal user-selectable variables, and proper software instrumentation are all desirable features of the target system. Also, test system and target system design issues must be addressed during the early stages of the target system development. Processing speeds of up to 20 million instructions/s and the development of high-bandwidth reflective memory systems have improved the ability to integrate the target system and test system for the application of automated testing techniques. It is concluded that new methods of designing testability into the target systems are required.

  1. Object Detection Techniques Applied on Mobile Robot Semantic Navigation

    PubMed Central

    Astua, Carlos; Barber, Ramon; Crespo, Jonathan; Jardon, Alberto

    2014-01-01

    The future of robotics predicts that robots will integrate themselves more every day with human beings and their environments. To achieve this integration, robots need to acquire information about the environment and its objects. There is a big need for algorithms to provide robots with these sort of skills, from the location where objects are needed to accomplish a task up to where these objects are considered as information about the environment. This paper presents a way to provide mobile robots with the ability-skill to detect objets for semantic navigation. This paper aims to use current trends in robotics and at the same time, that can be exported to other platforms. Two methods to detect objects are proposed, contour detection and a descriptor based technique, and both of them are combined to overcome their respective limitations. Finally, the code is tested on a real robot, to prove its accuracy and efficiency. PMID:24732101

  2. Discrete filtering techniques applied to sequential GPS range measurements

    NASA Technical Reports Server (NTRS)

    Vangraas, Frank

    1987-01-01

    The basic navigation solution is described for position and velocity based on range and delta range (Doppler) measurements from NAVSTAR Global Positioning System satellites. The application of discrete filtering techniques is examined to reduce the white noise distortions on the sequential range measurements. A second order (position and velocity states) Kalman filter is implemented to obtain smoothed estimates of range by filtering the dynamics of the signal from each satellite separately. Test results using a simulated GPS receiver show a steady-state noise reduction, the input noise variance divided by the output noise variance, of a factor of four. Recommendations for further noise reduction based on higher order Kalman filters or additional delta range measurements are included.

  3. Object detection techniques applied on mobile robot semantic navigation.

    PubMed

    Astua, Carlos; Barber, Ramon; Crespo, Jonathan; Jardon, Alberto

    2014-01-01

    The future of robotics predicts that robots will integrate themselves more every day with human beings and their environments. To achieve this integration, robots need to acquire information about the environment and its objects. There is a big need for algorithms to provide robots with these sort of skills, from the location where objects are needed to accomplish a task up to where these objects are considered as information about the environment. This paper presents a way to provide mobile robots with the ability-skill to detect objets for semantic navigation. This paper aims to use current trends in robotics and at the same time, that can be exported to other platforms. Two methods to detect objects are proposed, contour detection and a descriptor based technique, and both of them are combined to overcome their respective limitations. Finally, the code is tested on a real robot, to prove its accuracy and efficiency. PMID:24732101

  4. Active Learning Techniques Applied to an Interdisciplinary Mineral Resources Course.

    NASA Astrophysics Data System (ADS)

    Aird, H. M.

    2015-12-01

    An interdisciplinary active learning course was introduced at the University of Puget Sound entitled 'Mineral Resources and the Environment'. Various formative assessment and active learning techniques that have been effective in other courses were adapted and implemented to improve student learning, increase retention and broaden knowledge and understanding of course material. This was an elective course targeted towards upper-level undergraduate geology and environmental majors. The course provided an introduction to the mineral resources industry, discussing geological, environmental, societal and economic aspects, legislation and the processes involved in exploration, extraction, processing, reclamation/remediation and recycling of products. Lectures and associated weekly labs were linked in subject matter; relevant readings from the recent scientific literature were assigned and discussed in the second lecture of the week. Peer-based learning was facilitated through weekly reading assignments with peer-led discussions and through group research projects, in addition to in-class exercises such as debates. Writing and research skills were developed through student groups designing, carrying out and reporting on their own semester-long research projects around the lasting effects of the historical Ruston Smelter on the biology and water systems of Tacoma. The writing of their mini grant proposals and final project reports was carried out in stages to allow for feedback before the deadline. Speakers from industry were invited to share their specialist knowledge as guest lecturers, and students were encouraged to interact with them, with a view to employment opportunities. Formative assessment techniques included jigsaw exercises, gallery walks, placemat surveys, think pair share and take-home point summaries. Summative assessment included discussion leadership, exams, homeworks, group projects, in-class exercises, field trips, and pre-discussion reading exercises

  5. Innovative Visualization Techniques applied to a Flood Scenario

    NASA Astrophysics Data System (ADS)

    Falcão, António; Ho, Quan; Lopes, Pedro; Malamud, Bruce D.; Ribeiro, Rita; Jern, Mikael

    2013-04-01

    The large and ever-increasing amounts of multi-dimensional, time-varying and geospatial digital information from multiple sources represent a major challenge for today's analysts. We present a set of visualization techniques that can be used for the interactive analysis of geo-referenced and time sampled data sets, providing an integrated mechanism and that aids the user to collaboratively explore, present and communicate visually complex and dynamic data. Here we present these concepts in the context of a 4 hour flood scenario from Lisbon in 2010, with data that includes measures of water column (flood height) every 10 minutes at a 4.5 m x 4.5 m resolution, topography, building damage, building information, and online base maps. Techniques we use include web-based linked views, multiple charts, map layers and storytelling. We explain two of these in more detail that are not currently in common use for visualization of data: storytelling and web-based linked views. Visual storytelling is a method for providing a guided but interactive process of visualizing data, allowing more engaging data exploration through interactive web-enabled visualizations. Within storytelling, a snapshot mechanism helps the author of a story to highlight data views of particular interest and subsequently share or guide others within the data analysis process. This allows a particular person to select relevant attributes for a snapshot, such as highlighted regions for comparisons, time step, class values for colour legend, etc. and provide a snapshot of the current application state, which can then be provided as a hyperlink and recreated by someone else. Since data can be embedded within this snapshot, it is possible to interactively visualize and manipulate it. The second technique, web-based linked views, includes multiple windows which interactively respond to the user selections, so that when selecting an object and changing it one window, it will automatically update in all the other

  6. Finite element techniques applied to cracks interacting with selected singularities

    NASA Technical Reports Server (NTRS)

    Conway, J. C.

    1975-01-01

    The finite-element method for computing the extensional stress-intensity factor for cracks approaching selected singularities of varied geometry is described. Stress-intensity factors are generated using both displacement and J-integral techniques, and numerical results are compared to those obtained experimentally in a photoelastic investigation. The selected singularities considered are a colinear crack, a circular penetration, and a notched circular penetration. Results indicate that singularities greatly influence the crack-tip stress-intensity factor as the crack approaches the singularity. In addition, the degree of influence can be regulated by varying the overall geometry of the singularity. Local changes in singularity geometry have little effect on the stress-intensity factor for the cases investigated.

  7. Status of text-mining techniques applied to biomedical text.

    PubMed

    Erhardt, Ramón A-A; Schneider, Reinhard; Blaschke, Christian

    2006-04-01

    Scientific progress is increasingly based on knowledge and information. Knowledge is now recognized as the driver of productivity and economic growth, leading to a new focus on the role of information in the decision-making process. Most scientific knowledge is registered in publications and other unstructured representations that make it difficult to use and to integrate the information with other sources (e.g. biological databases). Making a computer understand human language has proven to be a complex achievement, but there are techniques capable of detecting, distinguishing and extracting a limited number of different classes of facts. In the biomedical field, extracting information has specific problems: complex and ever-changing nomenclature (especially genes and proteins) and the limited representation of domain knowledge. PMID:16580973

  8. Security Verification Techniques Applied to PatchLink COTS Software

    NASA Technical Reports Server (NTRS)

    Gilliam, David P.; Powell, John D.; Bishop, Matt; Andrew, Chris; Jog, Sameer

    2006-01-01

    Verification of the security of software artifacts is a challenging task. An integrated approach that combines verification techniques can increase the confidence in the security of software artifacts. Such an approach has been developed by the Jet Propulsion Laboratory (JPL) and the University of California at Davis (UC Davis). Two security verification instruments were developed and then piloted on PatchLink's UNIX Agent, a Commercial-Off-The-Shelf (COTS) software product, to assess the value of the instruments and the approach. The two instruments are the Flexible Modeling Framework (FMF) -- a model-based verification instrument (JPL), and a Property-Based Tester (UC Davis). Security properties were formally specified for the COTS artifact and then verified using these instruments. The results were then reviewed to determine the effectiveness of the approach and the security of the COTS product.

  9. Applying Clustering Techniques to Reduce Complexity in Automated Planning Domains

    NASA Astrophysics Data System (ADS)

    Dicken, Luke; Levine, John

    Automated Planning is a very active area of research within Artificial Intelligence. Broadly this discipline deals with the methods by which an agent can independently determine the action sequence required to successfully achieve a set of objectives. In this paper, we will present initial work outlining a new approach to planning based on Clustering techniques, in order to group states of the world together and use the fundamental structure of the world to lift out more abstract representations. We will show that this approach can limit the combinatorial explosion of a typical planning problem in a way that is much more intuitive and reusable than has previously been possible, and outline ways that this approach can be developed further.

  10. Technology Assessment of Dust Suppression Techniques applied During Structural Demolition

    SciTech Connect

    Boudreaux, J.F.; Ebadian, M.A.; Dua, S.K.

    1997-08-06

    Hanford, Fernald, Savannah River, and other sites are currently reviewing technologies that can be implemented to demolish buildings in a cost-effective manner. In order to demolish a structure and, at the same time, minimize the amount of dust generated by a given technology, an evaluation must be conducted to choose the most appropriate dust suppression technology. Thus, the purpose of this research, which was conducted by the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), was to perform an experimental study of dust aerosol abatement (dust suppression) methods as applied to nuclear D and D. This experimental study specifically targeted the problem of dust suppression during demolition. The resulting data were used in the development of mathematical correlations that can be applied to structural demolition. In the Fiscal Year 1996 (FY96), the effectiveness of different dust suppressing agents was investigated for different types of concrete blocks. Initial tests were conducted in a broad particle size range. In Fiscal Year 1997 (FY97), additional tests were performed in the size range in which most of the particles were detected. Since particle distribution is an important parameter for predicting deposition in various compartments of the human respiratory tract, various tests were aimed at determining the particle size distribution of the airborne dust particles. The effectiveness of dust suppressing agents for particles of various size was studied. Instead of conducting experiments on various types of blocks, it was thought prudent to carry out additional tests on blocks of the same type. Several refinements were also incorporated in the test procedures and data acquisition system used in FY96.

  11. Sandia LSI accelerated aging and data acquisition techniques

    SciTech Connect

    Walker, J.E.

    1980-04-01

    The purpose of the Microelectronic Evaluation Laboratory at Sandia is to develop a program for evaluating CMOS LSI (complementary metal oxide silicon - large scale integrated) technology devices which are being used for the first time in a weapon system. These evaluations are based on accelerated aging studies and electrical tests to determine the reliability and life of the devices. In accelerated aging, specific, controlled stresses are applied to the device to accelerate time-to-failure. Data are used tin mathematical models to estimate life in acutal use. The stresses used for this technology are temperature and voltage. The devices are stored at temperatures with or without voltage applied (steady-state or cyclical) and periodically tested until at least 50% failures are encountered. Since most current technologies use epoxy-die-attachment, aging temperatures must be under 200/sup 0/C. This delays device failure, and a 16% failure level is used when this extrapolation is considered valid. Statistical analysis is performed on the resultant data to predict reliability with time. The equipment and procedures used for accelerated aging tests are described in detail. The data acquisition system and its use are discussed. All devices, after functional failure has occurred, are given to the failure analysis group for failure evaluations. In order to improve reliability predictions, failure analysis is most concerned with the separation of freak and main life mechanisms. Through these evaluations, higher reliability and longer device life have become a milestone of the future. (LCL)

  12. Evaluations of mosquito age grading techniques based on morphological changes.

    PubMed

    Hugo, L E; Quick-Miles, S; Kay, B H; Ryan, P A

    2008-05-01

    Evaluations were made of the accuracy and practicality of mosquito age grading methods based on changes to mosquito morphology; including the Detinova ovarian tracheation, midgut meconium, Polovodova ovariole dilatation, ovarian injection, and daily growth line methods. Laboratory maintained Aedes vigilax (Skuse) and Culex annulirostris (Skuse) females of known chronological and physiological ages were used for these assessments. Application of the Detinova technique to laboratory reared Ae. vigilax females in a blinded trial enabled the successful identification of nulliparous and parous females in 83.7-89.8% of specimens. The success rate for identifying nulliparous females increased to 87.8-98.0% when observations of ovarian tracheation were combined with observations of the presence of midgut meconium. However, application of the Polovodova method only enabled 57.5% of nulliparous, 1-parous, 2-parous, and 3-parous Ae. vigilax females to be correctly classified, and ovarian injections were found to be unfeasible. Poor correlation was observed between the number of growth lines per phragma and the calendar age of laboratory reared Ae. vigilax females. In summary, morphological age grading methods that offer simple two-category predictions (ovarian tracheation and midgut meconium methods) were found to provide high-accuracy classifications, whereas methods that offer the separation of multiple age categories (ovariolar dilatation and growth line methods) were found to be extremely difficult and of low accuracy. The usefulness of the morphology-based methods is discussed in view of the availability of new mosquito age grading techniques based on cuticular hydrocarbon and gene transcription changes. PMID:18533427

  13. APPLYING MACHINE LEARNING TECHNIQUES IN DETECTING BACTERIAL VAGINOSIS

    PubMed Central

    Baker, Yolanda S.; Agrawal, Rajeev; Foster, James A.; Beck, Daniel; Dozier, Gerry

    2014-01-01

    There are several diseases which arise because of changes in the microbial communities in the body. Scientists continue to conduct research in a quest to find the catalysts that provoke these changes in the naturally occurring microbiota. Bacterial Vaginosis (BV) is a disease that fits the above criteria. BV afflicts approximately 29% of women in child bearing age. Unfortunately, its causes are unknown. This paper seeks to uncover the most important features for diagnosis and in turn employ classification algorithms on those features. In order to fulfill our purpose, we conducted two experiments on the data. We isolated the clinical and medical features from the full set of raw data, we compared the accuracy, precision, recall and F-measure and time elapsed for each feature selection and classification grouping. We noticed that classification results were as good or better after performing feature selection although there was a wide range in the number of features produced from the feature selection process. After comparing the experiments, the algorithms performed best on the medical dataset. PMID:25914861

  14. Cleaning techniques for applied-B ion diodes

    SciTech Connect

    Cuneo, M.E.; Menge, P.R.; Hanson, D.L.

    1995-09-01

    Measurements and theoretical considerations indicate that the lithium-fluoride (LiF) lithium ion source operates by electron-assisted field-desorption, and provides a pure lithium beam for 10--20 ns. Evidence on both the SABRE (1 TW) and PBFA-II (20 TW) accelerators indicates that the lithium beam is replaced by a beam of protons, and carbon resulting from electron thermal desorption of hydrocarbon surface and bulk contamination with subsequent avalanche ionization. Appearance of contaminant ions in the beam is accompanied by rapid impedance collapse, possibly resulting from loss of magnetic insulation in the rapidly expanding and ionizing, neutral layer. Electrode surface and source substrate cleaning techniques are being developed on the SABRE accelerator to reduce beam contamination, plasma formation, and impedance collapse. We have increased lithium current density a factor of 3 and lithium energy a factor of 5 through a combination of in-situ surface and substrate coatings, impermeable substrate coatings, and field profile modifications.

  15. Digital prototyping technique applied for redesigning plastic products

    NASA Astrophysics Data System (ADS)

    Pop, A.; Andrei, A.

    2015-11-01

    After products are on the market for some time, they often need to be redesigned to meet new market requirements. New products are generally derived from similar but outdated products. Redesigning a product is an important part of the production and development process. The purpose of this paper is to show that using modern technology, like Digital Prototyping in industry is an effective way to produce new products. This paper tries to demonstrate and highlight the effectiveness of the concept of Digital Prototyping, both to reduce the design time of a new product, but also the costs required for implementing this step. The results of this paper show that using Digital Prototyping techniques in designing a new product from an existing one available on the market mould offers a significantly manufacturing time and cost reduction. The ability to simulate and test a new product with modern CAD-CAM programs in all aspects of production (designing of the 3D model, simulation of the structural resistance, analysis of the injection process and beautification) offers a helpful tool for engineers. The whole process can be realised by one skilled engineer very fast and effective.

  16. Remote sensing techniques applied to seismic vulnerability assessment

    NASA Astrophysics Data System (ADS)

    Juan Arranz, Jose; Torres, Yolanda; Hahgi, Azade; Gaspar-Escribano, Jorge

    2016-04-01

    Advances in remote sensing and photogrammetry techniques have increased the degree of accuracy and resolution in the record of the earth's surface. This has expanded the range of possible applications of these data. In this research, we have used these data to document the construction characteristics of the urban environment of Lorca, Spain. An exposure database has been created with the gathered information to be used in seismic vulnerability assessment. To this end, we have used data from photogrammetric flights at different periods, using both orthorectified images in the visible and infrared spectrum. Furthermore, the analysis is completed using LiDAR data. From the combination of these data, it has been possible to delineate the building footprints and characterize the constructions with attributes such as the approximate date of construction, area, type of roof and even building materials. To carry out the calculation, we have developed different algorithms to compare images from different times, segment images, classify LiDAR data, and use the infrared data in order to remove vegetation or to compute roof surfaces with height value, tilt and spectral fingerprint. In addition, the accuracy of our results has been validated with ground truth data. Keywords: LiDAR, remote sensing, seismic vulnerability, Lorca

  17. Time-resolved infrared spectroscopic techniques as applied to channelrhodopsin

    PubMed Central

    Ritter, Eglof; Puskar, Ljiljana; Bartl, Franz J.; Aziz, Emad F.; Hegemann, Peter; Schade, Ulrich

    2015-01-01

    Among optogenetic tools, channelrhodopsins, the light gated ion channels of the plasma membrane from green algae, play the most important role. Properties like channel selectivity, timing parameters or color can be influenced by the exchange of selected amino acids. Although widely used, in the field of neurosciences for example, there is still little known about their photocycles and the mechanism of ion channel gating and conductance. One of the preferred methods for these studies is infrared spectroscopy since it allows observation of proteins and their function at a molecular level and in near-native environment. The absorption of a photon in channelrhodopsin leads to retinal isomerization within femtoseconds, the conductive states are reached in the microsecond time scale and the return into the fully dark-adapted state may take more than minutes. To be able to cover all these time regimes, a range of different spectroscopical approaches are necessary. This mini-review focuses on time-resolved applications of the infrared technique to study channelrhodopsins and other light triggered proteins. We will discuss the approaches with respect to their suitability to the investigation of channelrhodopsin and related proteins. PMID:26217670

  18. Sputtering as a Technique for Applying Tribological Coatings

    NASA Technical Reports Server (NTRS)

    Ramalingam, S.

    1984-01-01

    Friction and wear-induced mechanical failures may be controlled to extend the life of tribological components through the interposition of selected solid materials between contacting surfaces. Thin solid films of soft and hard materials are appropriate to lower friction and enhance the wear resistance of precision tribo-elements. Tribological characteristics of thin hard coats deposited on a variety of ferrous and non-ferrous substrates were tested. The thin hard coats used were titanium nitride films deposited by reactive magnetron sputtering of metallic titanium. High contact stress, low speed tests showed wear rate reductions of one or more magnitude, even with films a few micrometers in thickness. Low contact stress, high speed tests carried out under rather severe test conditions showed that thin films of TiN afforded significant friction reduction and wear protection. Thin hard coats were shown to improve the friction and wear performance of rolling contacts. Satisfactory film-to-substrate adhesion strengths can be obtained with reactive magnetron sputtering. X-ray diffraction and microhardness tests were employed to assess the effectiveness of the sputtering technique.

  19. Direct Comparison of Monazite Ages Obtained By in situ Techniques: Ion-Probe Isotopic Ages Versus Electron Microprobe Chemical Ages

    NASA Astrophysics Data System (ADS)

    Tracy, R. J.; Loehn, C. W.; Dahl, P. S.; Aleinikoff, J. N.; Wooden, J. L.; Hamilton, M.; Mazdab, F.; Jones, C.

    2005-12-01

    In situ analytical techniques for geochronology are rapidly becoming the method of choice for characterizing compositionally and chronologically complex minerals, including monazite (mnz) and zircon (zrc). Two such techniques include Ion Microprobe (IMP) (esp. SHRIMP) for both mnz and zrc, and electron microprobe (EMP) for mnz. Debate remains concerning comparability of ages obtained by the two different techniques: U-Pb isotopic dating (IMP) versus Th-total U-total Pb (EMP). The IMP has an advantage in analytical precision whereas the EMP has an advantage in spatial resolution. We report 6 examples of individual monazite grains that have been dated by both techniques, covering a range of ages from 300 to 2850 Ma. Three of our examples are grains that have been used as IMP standards at the Geological Survey of Canada (GSC) or at the USGS-Stanford SHRIMP lab; the other grains are from research samples. Most grains display complex zoning in Y, Th and U, both in BSE images and in compositional maps, reflecting complex growth and recrystallization histories. In all cases, the ages obtained by the two techniques agree within their 2-sigma associated error, except where IMP ablation pits cross age boundaries and resolve a mixed age of the two domains, or where EMP spots fall near cracks or pits in the grain surface. One prominent example is a 100-micron mnz from the Tobacco Root Mountains, Montana. It contains a low-Th older core (ca. 2.85 Ga), a higher-Th mantle domain of about 2.45 Ga, and a low-Th rim of 1.78 Ga. This grain has 6 IMP spots that range in age from 1880 Ma (near-rim) to 2785 Ma (core). Only two IMP pits fall totally within a single chemical and age zone delineated by EMP analyses or compositional maps (the medial age zone): 2451 (+/-4) and 2432 (+/-10). The weighted mean EMP age of this domain is 2452 (+/-6). IMP spots aimed at the older core are 2619 (+/-11) and 2785 (+/-9); the weighted mean core age from EMP analyses is 2859 (+/-14). This suggests

  20. Semantic Data And Visualization Techniques Applied To Geologic Field Mapping

    NASA Astrophysics Data System (ADS)

    Houser, P. I. Q.; Royo-Leon, M.; Munoz, R.; Estrada, E.; Villanueva-Rosales, N.; Pennington, D. D.

    2015-12-01

    Geologic field mapping involves the use of technology before, during, and after visiting a site. Geologists utilize hardware such as Global Positioning Systems (GPS) connected to mobile computing platforms such as tablets that include software such as ESRI's ArcPad and other software to produce maps and figures for a final analysis and report. Hand written field notes contain important information and drawings or sketches of specific areas within the field study. Our goal is to collect and geo-tag final and raw field data into a cyber-infrastructure environment with an ontology that allows for large data processing, visualization, sharing, and searching, aiding in connecting field research with prior research in the same area and/or aid with experiment replication. Online searches of a specific field area return results such as weather data from NOAA and QuakeML seismic data from USGS. These results that can then be saved to a field mobile device and searched while in the field where there is no Internet connection. To accomplish this we created the GeoField ontology service using the Web Ontology Language (OWL) and Protégé software. Advanced queries on the dataset can be made using reasoning capabilities can be supported that go beyond a standard database service. These improvements include the automated discovery of data relevant to a specific field site and visualization techniques aimed at enhancing analysis and collaboration while in the field by draping data over mobile views of the site using augmented reality. A case study is being performed at University of Texas at El Paso's Indio Mountains Research Station located near Van Horn, Texas, an active multi-disciplinary field study site. The user can interactively move the camera around the study site and view their data digitally. Geologist's can check their data against the site in real-time and improve collaboration with another person as both parties have the same interactive view of the data.

  1. Applying Realtime Intelligence Acquisition Techniques To Problems In Resource Management

    NASA Astrophysics Data System (ADS)

    Greer, Jerry D.

    1989-02-01

    Most people see little similarity between a battlefield manager and a natural resource manager. However, except for the element of time, many striking similarities may be drawn. Indeed, there are more differences between the tranquil scenes of mountain scenery, forests, rivers or grasslands and bomb scarred battlefields where survival is often the prime objective. The similarities center around the basic need for information upon which good decisions may be made. Both managers of battlefields and of natural resources require accurate, timely, and continuous information about changing conditions. Based on this information, they each make decisions to conserve the materials and resources under their charge. Their common goal is to serve the needs of the people in their society. On the one hand, the goal is victory in battle to perpetuate a way of life or a political system. On the other, the goal is victory in an ongoing battle against fire, insects, disease, soil erosion, vandalism, theft, and misuse in general. Here, a desire to maintain natural resources in a productive and healthy condition prevails. The objective of the natural resource manager is to keep natural resources in such a condition that they will continue to meet the needs and wants of the people who claim them for their common good. In this paper, the different needs for information are compared and a little history of some of the quasi-military aspects of resource management is given. Needs for information are compared and current uses of data acquisition techniques are reviewed. Similarities and differences are discussed and future opportunities for cooperation in data acquisition are outlined.

  2. Robustness of speckle imaging techniques applied to horizontal imaging scenarios

    NASA Astrophysics Data System (ADS)

    Bos, Jeremy P.

    Atmospheric turbulence near the ground severely limits the quality of imagery acquired over long horizontal paths. In defense, surveillance, and border security applications, there is interest in deploying man-portable, embedded systems incorporating image reconstruction to improve the quality of imagery available to operators. To be effective, these systems must operate over significant variations in turbulence conditions while also subject to other variations due to operation by novice users. Systems that meet these requirements and are otherwise designed to be immune to the factors that cause variation in performance are considered robust. In addition to robustness in design, the portable nature of these systems implies a preference for systems with a minimum level of computational complexity. Speckle imaging methods are one of a variety of methods recently been proposed for use in man-portable horizontal imagers. In this work, the robustness of speckle imaging methods is established by identifying a subset of design parameters that provide immunity to the expected variations in operating conditions while minimizing the computation time necessary for image recovery. This performance evaluation is made possible using a novel technique for simulating anisoplanatic image formation. I find that incorporate as few as 15 image frames and 4 estimates of the object phase per reconstructed frame provide an average reduction of 45% reduction in Mean Squared Error (MSE) and 68% reduction in deviation in MSE. In addition, the Knox-Thompson phase recovery method is demonstrated to produce images in half the time required by the bispectrum. Finally, it is shown that certain blind image quality metrics can be used in place of the MSE to evaluate reconstruction quality in field scenarios. Using blind metrics rather depending on user estimates allows for reconstruction quality that differs from the minimum MSE by as little as 1%, significantly reducing the deviation in

  3. Accuracy and sampling error of two age estimation techniques using rib histomorphometry on a modern sample.

    PubMed

    García-Donas, Julieta G; Dyke, Jeffrey; Paine, Robert R; Nathena, Despoina; Kranioti, Elena F

    2016-02-01

    Most age estimation methods are proven problematic when applied in highly fragmented skeletal remains. Rib histomorphometry is advantageous in such cases; yet it is vital to test and revise existing techniques particularly when used in legal settings (Crowder and Rosella, 2007). This study tested Stout & Paine (1992) and Stout et al. (1994) histological age estimation methods on a Modern Greek sample using different sampling sites. Six left 4th ribs of known age and sex were selected from a modern skeletal collection. Each rib was cut into three equal segments. Two thin sections were acquired from each segment. A total of 36 thin sections were prepared and analysed. Four variables (cortical area, intact and fragmented osteon density and osteon population density) were calculated for each section and age was estimated according to Stout & Paine (1992) and Stout et al. (1994). The results showed that both methods produced a systemic underestimation of the individuals (to a maximum of 43 years) although a general improvement in accuracy levels was observed when applying the Stout et al. (1994) formula. There is an increase of error rates with increasing age with the oldest individual showing extreme differences between real age and estimated age. Comparison of the different sampling sites showed small differences between the estimated ages suggesting that any fragment of the rib could be used without introducing significant error. Yet, a larger sample should be used to confirm these results. PMID:26698389

  4. Improving Skill Development: An Exploratory Study Comparing a Philosophical and an Applied Ethical Analysis Technique

    ERIC Educational Resources Information Center

    Al-Saggaf, Yeslam; Burmeister, Oliver K.

    2012-01-01

    This exploratory study compares and contrasts two types of critical thinking techniques; one is a philosophical and the other an applied ethical analysis technique. The two techniques analyse an ethically challenging situation involving ICT that a recent media article raised to demonstrate their ability to develop the ethical analysis skills of…

  5. Electrochemical migration technique to accelerate ageing of cementitious materials

    NASA Astrophysics Data System (ADS)

    Babaahmadi, A.; Tang, L.; Abbas, Z.

    2013-07-01

    Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW) takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen's micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium.

  6. Applying Tep Measurements to Assess the Response of Hastelloy to Long Time Aging

    NASA Astrophysics Data System (ADS)

    Ifergane, S.; Gelbstein, Y.; Dahan, I.; Pinkas, M.; Landau, A.

    2009-03-01

    Hastelloy C-276 service temperature is restricted due to precipitation of the intermetallic compound μ. Time-temperature curves indicate that the highest precipitation rate is obtained at about 870° C. Thermoelectric Power (TEP) measurements were applied to monitor the precipitation kinetics during aging at 870° C. The TEP was found to be well correlated with the amount of μ phase formed during aging and with the reduction in impact energy and ductility. It was demonstrated that TEP measurements could be used to monitor aging of Hastelloy C-276.

  7. Dynamical properties of the Penna aging model applied to the population of wolves

    NASA Astrophysics Data System (ADS)

    Makowiec, Danuta

    1997-02-01

    The parameters of th Penna bit-string model of aging of biological systems are systematically tested to better understand the model itself as well as the results arising from applying this model to studies of the development of the stationary population of Alaska wolves.

  8. Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Price, D. Marvin

    1987-01-01

    Optimization techniques applied to passive measures for in-orbit spacecraft survivability, is a six-month study, designed to evaluate the effectiveness of the geometric programming (GP) optimization technique in determining the optimal design of a meteoroid and space debris protection system for the Space Station Core Module configuration. Geometric Programming was found to be superior to other methods in that it provided maximum protection from impact problems at the lowest weight and cost.

  9. Development of Promising Insulating Oil and Applied Techniques of EHD, ER·MR

    NASA Astrophysics Data System (ADS)

    Hanaoka, Ryoichi

    The development of an environment-friendly insulating liquid has been noticed for a new design of oil-filled power apparatus such as transformer from viewpoints of the protection of the environment. The dielectric liquids can also widely be applied to various fields which are concerned in the electromagnetic field. This article introduces the recent trend on promising new vegetable based oil as an electrical insulation, and EHD pumping, ER fluid and MR fluid as the applied techniques of dielectric liquids.

  10. The technique of linear prediction filters applied to studies of solar wind-magnetosphere coupling

    NASA Technical Reports Server (NTRS)

    Clauer, C. Robert

    1986-01-01

    Linear prediction filtering is a powerful empirical technique suitable for the study of stimulus-response behavior. The technique enables one to determine the most general linear relationship between multiple time-varying quantities, assuming that the physical systems relating the quantities are linear and time invariant. Several researchers have applied linear prediction analysis to investigate solar wind-magnetosphere interactions. This short review describes the method of linear prediction analysis, its application to solar wind-magnetosphere coupling studies both in terms of physical processes, and the results of investigations which have used this technique.

  11. Improving skill development: an exploratory study comparing a philosophical and an applied ethical analysis technique

    NASA Astrophysics Data System (ADS)

    Al-Saggaf, Yeslam; Burmeister, Oliver K.

    2012-09-01

    This exploratory study compares and contrasts two types of critical thinking techniques; one is a philosophical and the other an applied ethical analysis technique. The two techniques analyse an ethically challenging situation involving ICT that a recent media article raised to demonstrate their ability to develop the ethical analysis skills of ICT students and professionals. In particular the skill development focused on includes: being able to recognise ethical challenges and formulate coherent responses; distancing oneself from subjective judgements; developing ethical literacy; identifying stakeholders; and communicating ethical decisions made, to name a few.

  12. Management of Idiopathic Clubfoot by Ponseti Technique in Children Presenting After One Year of Age.

    PubMed

    Faizan, Mohammad; Jilani, Latif Zafar; Abbas, Mazhar; Zahid, Mohammad; Asif, Naiyer

    2015-01-01

    We conducted a study to determine the effectiveness of the Ponseti technique in the management of idiopathic congenital clubfoot in patients older than 1 year of age. A total of 19 patients with 28 clubfeet (16 males [84.2%], 3 females [15.8%]) were included in the present study. The mean age at presentation was 2.7 (range 1 to 3.5) years. The results of treatment using the Ponseti technique were evaluated using the Pirani and Dimeglio scoring systems. The mean precorrection total Pirani score was 4.84 (range 3.5 to 5.5) and the mean precorrection Dimeglio score was 12.96 (range 10 to 14). The mean postcorrection total Pirani score was 0.55 (range 0 to 1), and the mean postcorrection Dimeglio score was 2.32 (range 2 to 3). These differences were statistically significant (p < .001 and p < .001, respectively). In 92.8% of the feet, satisfactory correction of the deformity was achieved. The mean number of casts applied was 8 (range 5 to 12). All but 1 (3.6%) of the clubfeet required tenotomy to achieve correction. The mean follow-up duration was 2.7 (range 1.5 to 3.5) years. We have concluded that the Ponseti technique is an effective method for the management of idiopathic congenital clubfoot, even in toddlers. PMID:25128311

  13. Recreation in a Zoo Environment: Applying Animal Behavior Research Techniques to Understand How Visitors Allocate Time.

    ERIC Educational Resources Information Center

    Harris, Lisa

    1995-01-01

    A focal-animal sampling technique was applied to measure and quantify visitor behavior at an enclosed hummingbird aviary. The amount of time visitors stayed within the aviary and how they allocated time was measured. Results can be used by exhibit designers to create and modify museum exhibits. (LZ)

  14. FT-IR Photoacoustic Spectroscopy Applied to the Curing and Aging of Composites

    NASA Astrophysics Data System (ADS)

    Jones, Roger W.; Sweterlitsch, Jeffrey J.; Wagner, Anthony J.; McClelland, John F.; Hsu, David K.; Polis, Daniel L.; Sovinski, Marjorie F.

    2005-04-01

    Fourier-transform infrared photoacoustic spectroscopy has been applied to carbon-fiber composites to test whether bulk physical properties of the composites could be determined using the near-surface-sensitive photoacoustic approach. Both the cure levels of carbon fiber/cyanate ester composites and the interlaminar shear strengths of artificially aged carbon fiber/epoxy composites were successfully measured. Standard errors of cross validation were 3.46% cure for a sample set ranging from 8% to 95% cured and 1.60 MPa for aged samples with strengths ranging from 22 to 77 MPa.

  15. Applied potential tomography. A new noninvasive technique for measuring gastric emptying

    SciTech Connect

    Avill, R.; Mangnall, Y.F.; Bird, N.C.; Brown, B.H.; Barber, D.C.; Seagar, A.D.; Johnson, A.G.; Read, N.W.

    1987-04-01

    Applied potential tomography is a new, noninvasive technique that yields sequential images of the resistivity of gastric contents after subjects have ingested a liquid or semisolid meal. This study validates the technique as a means of measuring gastric emptying. Experiments in vitro showed an excellent correlation between measurements of resistivity and either the square of the radius of a glass rod or the volume of water in a spherical balloon when both were placed in an oval tank containing saline. Altering the lateral position of the rod in the tank did not alter the values obtained. Images of abdominal resistivity were also directly correlated with the volume of air in a gastric balloon. Profiles of gastric emptying of liquid meals obtained using applied potential tomography were very similar to those obtained using scintigraphy or dye dilution techniques, provided that acid secretion was inhibited by cimetidine. Profiles of emptying of a mashed potato meal using applied potential tomography were also very similar to those obtained by scintigraphy. Measurements of the emptying of a liquid meal from the stomach were reproducible if acid secretion was inhibited by cimetidine. Thus, applied potential tomography is an accurate and reproducible method of measuring gastric emptying of liquids and particulate food. It is inexpensive, well tolerated, easy to use, and ideally suited for multiple studies in patients, even those who are pregnant.

  16. Color metallography and electron microscopy techniques applied to the characterization of 413.0 aluminum alloys.

    PubMed

    Vander Voort, George; Asensio-Lozano, Juan; Suárez-Peña, Beatriz

    2013-08-01

    The influence on alloy 413.0 of the refinement and modification of its microstructure was analyzed by means of several microscopy techniques, as well as the effect of the application of high pressure during solidification. For each treatment and solidification pressure condition employed, the most suitable microscopy techniques for identifying and characterizing the phases present were investigated. Color metallography and electron microscopy techniques were applied to the qualitative microstructural analysis. Volume fraction and grain size of the primary α-Al were characterized by quantitative metallographic techniques. The results show that the effect caused by applying high pressure during solidification of the alloy is more pronounced than that caused by modification and refinement of the microstructure when it solidifies at atmospheric pressure. Furthermore, it has been shown that, for Al-Si alloy characterization, when aiming to characterize the primary α-Al phase, optical color metallography observed under crossed polarized light plus a sensitive tint filter is the most suitable technique. When the goal is to characterize the eutectic Si, the use of optical color metallography or electron microscopy is equally valid. The characterization of iron-rich intermetallic compounds should preferably be performed by means of backscattered electron imaging. PMID:23701972

  17. The origins of pure and applied science in Gilded Age America.

    PubMed

    Lucier, Paul

    2012-09-01

    "Pure science" and "applied science" have peculiar histories in the United States. Both terms were in use in the early part of the nineteenth century, but it was only in the last decades that they took on new meanings and became commonplace in the discourse of American scientists. The rise in their currency reflected an acute concern about the corruption of character and the real possibilities of commercializing scientific knowledge. "Pure" was the preference of scientists who wanted to emphasize their nonpecuniary motives and their distance from the marketplace. "Applied" was the choice of scientists who accepted patents and profits as other possible returns on their research. In general, the frequent conjoining of "pure" and "applied" bespoke the inseparable relations of science and capitalism in the Gilded Age. PMID:23286191

  18. An Optimized Integrator Windup Protection Technique Applied to a Turbofan Engine Control

    NASA Technical Reports Server (NTRS)

    Watts, Stephen R.; Garg, Sanjay

    1995-01-01

    This paper introduces a new technique for providing memoryless integrator windup protection which utilizes readily available optimization software tools. This integrator windup protection synthesis provides a concise methodology for creating integrator windup protection for each actuation system loop independently while assuring both controller and closed loop system stability. The individual actuation system loops' integrator windup protection can then be combined to provide integrator windup protection for the entire system. This technique is applied to an H(exp infinity) based multivariable control designed for a linear model of an advanced afterburning turbofan engine. The resulting transient characteristics are examined for the integrated system while encountering single and multiple actuation limits.

  19. A comparison of two conformal mapping techniques applied to an aerobrake body

    NASA Technical Reports Server (NTRS)

    Hommel, Mark J.

    1987-01-01

    Conformal mapping is a classical technique which has been utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping has been successfully applied in the construction of grids around airfoils, engine inlets and other aircraft configurations. Conformal mapping techniques were applied to an aerobrake body having an axis of symmetry. Two different approaches were utilized: (1) Karman-Trefftz transformation; and (2) Point Wise Schwarz Christoffel transformation. In both cases, the aerobrake body was mapped onto a near circle, and a grid was generated in the mapped plane. The mapped body and grid were then mapped back into physical space and the properties of the associated grids were examined. Advantages and disadvantages of both approaches are discussed.

  20. Managing Age Discrimination: An Examination of the Techniques Used when Seeking Employment

    ERIC Educational Resources Information Center

    Berger, Ellie D.

    2009-01-01

    Purpose: This article examines the age-related management techniques used by older workers in their search for employment. Design and Methods: Data are drawn from interviews with individuals aged 45-65 years (N = 30). Results: Findings indicate that participants develop "counteractions" and "concealments" to manage perceived age discrimination.…

  1. Non-Intrusive Measurement Techniques Applied to the Hybrid Solid Fuel Degradation

    NASA Astrophysics Data System (ADS)

    Cauty, F.

    2004-10-01

    The knowledge of the solid fuel regression rate and the time evolution of the grain geometry are requested for hybrid motor design and control of its operating conditions. Two non-intrusive techniques (NDT) have been applied to hybrid propulsion : both are based on wave propagation, the X-rays and the ultrasounds, through the materials. X-ray techniques allow local thickness measurements (attenuated signal level) using small probes or 2D images (Real Time Radiography), with a link between the size of field of view and accuracy. Beside the safety hazards associated with the high-intensity X-ray systems, the image analysis requires the use of quite complex post-processing techniques. The ultrasound technique is more widely used in energetic material applications, including hybrid fuels. Depending upon the transducer size and the associated equipment, the application domain is large, from tiny samples to the quad-port wagon wheel grain of the 1.1 MN thrust HPDP motor. The effect of the physical quantities has to be taken into account in the wave propagation analysis. With respect to the various applications, there is no unique and perfect experimental method to measure the fuel regression rate. The best solution could be obtained by combining two techniques at the same time, each technique enhancing the quality of the global data.

  2. The Atomic AXAFS and XANES Techniques as Applied to Heterogeneous Catalysis and Electrocatalysis

    SciTech Connect

    Ramaker, D.; Koningsberger, D

    2010-01-01

    X-Ray absorption spectroscopy (XAFS) is an attractive in situ and in operando technique. In recent years, the more conventional extended X-ray absorption fine structure (EXAFS) data analysis technique has been complemented by two newer analysis methods: the 'atomic' XAFS (AXAFS) technique, which analyzes the scattering from the absorber atom itself, and the {Delta}{mu} XANES technique, which uses a difference method to isolate the changes in the X-ray absorption near edge structure (XANES) due to adsorbates on a metal surface. With AXAFS it is possible to follow the electronic effect a support has on a metal particle; with {Delta}{mu} XANES it is possible to determine the adsorbate, the specific adsorption sites and adsorbate coverage on a metal catalyst. This unprecedented new information helps a great deal to unravel the complex kinetic mechanisms operating in working reactors or fuelcell systems. The fundamental principles and methodology for applying the AXAFS and {Delta}{mu} XANES techniques are given here, and then specific applications are summarized, including H adsorption on supported Pt in the gas phase, wateractivation at a Pt cathode and methanol oxidation at a Pt anode in an electrochemical cell, sulfur oxidation on Pt, and oxygenreduction on a Au/SnO{sub x} cathode. Finally, the future outlook for time and/or space resolved applications of these techniques is contemplated.

  3. Confirmation of standard error analysis techniques applied to EXAFS using simulations

    SciTech Connect

    Booth, Corwin H; Hu, Yung-Jin

    2009-12-14

    Systematic uncertainties, such as those in calculated backscattering amplitudes, crystal glitches, etc., not only limit the ultimate accuracy of the EXAFS technique, but also affect the covariance matrix representation of real parameter errors in typical fitting routines. Despite major advances in EXAFS analysis and in understanding all potential uncertainties, these methods are not routinely applied by all EXAFS users. Consequently, reported parameter errors are not reliable in many EXAFS studies in the literature. This situation has made many EXAFS practitioners leery of conventional error analysis applied to EXAFS data. However, conventional error analysis, if properly applied, can teach us more about our data, and even about the power and limitations of the EXAFS technique. Here, we describe the proper application of conventional error analysis to r-space fitting to EXAFS data. Using simulations, we demonstrate the veracity of this analysis by, for instance, showing that the number of independent dat a points from Stern's rule is balanced by the degrees of freedom obtained from a 2 statistical analysis. By applying such analysis to real data, we determine the quantitative effect of systematic errors. In short, this study is intended to remind the EXAFS community about the role of fundamental noise distributions in interpreting our final results.

  4. Applying data mining techniques to medical time series: an empirical case study in electroencephalography and stabilometry.

    PubMed

    Anguera, A; Barreiro, J M; Lara, J A; Lizcano, D

    2016-01-01

    One of the major challenges in the medical domain today is how to exploit the huge amount of data that this field generates. To do this, approaches are required that are capable of discovering knowledge that is useful for decision making in the medical field. Time series are data types that are common in the medical domain and require specialized analysis techniques and tools, especially if the information of interest to specialists is concentrated within particular time series regions, known as events. This research followed the steps specified by the so-called knowledge discovery in databases (KDD) process to discover knowledge from medical time series derived from stabilometric (396 series) and electroencephalographic (200) patient electronic health records (EHR). The view offered in the paper is based on the experience gathered as part of the VIIP project. Knowledge discovery in medical time series has a number of difficulties and implications that are highlighted by illustrating the application of several techniques that cover the entire KDD process through two case studies. This paper illustrates the application of different knowledge discovery techniques for the purposes of classification within the above domains. The accuracy of this application for the two classes considered in each case is 99.86% and 98.11% for epilepsy diagnosis in the electroencephalography (EEG) domain and 99.4% and 99.1% for early-age sports talent classification in the stabilometry domain. The KDD techniques achieve better results than other traditional neural network-based classification techniques. PMID:27293535

  5. Stellar acoustic radii, mean densities, and ages from seismic inversion techniques

    NASA Astrophysics Data System (ADS)

    Buldgen, G.; Reese, D. R.; Dupret, M. A.; Samadi, R.

    2015-01-01

    Context. Determining stellar characteristics such as the radius, mass or age is crucial when studying stellar evolution or exoplanetary systems, or when characterising stellar populations in the Galaxy. Asteroseismology is the golden path to accurately obtain these characteristics. In this context, a key question is how to make these methods less model-dependent. Aims: Building on the previous work of Daniel Reese, we wish to extend the Substractive Optimally Localized Averages (SOLA) inversion technique to new stellar global characteristics beyond the mean density. The goal is to provide a general framework in which to estimate these characteristics as accurately as possible in low-mass main-sequence stars. Methods: First, we describe our framework and discuss the reliability of the inversion technique and possible sources of error. We then apply this methodology to the acoustic radius, an age indicator based on the sound speed derivative and the mean density, and compare it to estimates based on the average large and small frequency separations. These inversions are carried out for several test cases including various metallicities, different mixing-lengths, non-adiabatic effects, and turbulent pressure. Results: We observe that the SOLA method yields accurate results in all test cases whereas results based on the large and small frequency separations are less accurate and more sensitive to surface effects and structural differences in the models. If we include the surface corrections of Kjeldsen et al. (2008, ApJ, 683, L175), we obtain results of comparable accuracy for the mean density. Overall, the mean density and acoustic radius inversions are more robust than the inversions for the age indicator. Moreover, the current approach is limited to relatively young stars with radiative cores. Increasing the number of observed frequencies improves the reliability and accuracy of the method. Appendices are available in electronic form at http://www.aanda.org

  6. The penetrometer - A technique for monitoring composite propellant ageing characteristics

    NASA Astrophysics Data System (ADS)

    Faulkner, G. S.

    The monitoring of the natural and accelerated aging of rubbery composite propellants by using a non-destructive mechanical properties tester, the 'penetrometer', is presented. This capability facilitates predictions of rocket-motor service life and also detects motors that may not have been stored correctly. The probe is inserted into the conduit of a motor and held in place by an integral, motor-specific, air-bag. The indenter is then driven into the charge in a low-stress region. Information obtained from the test is displayed graphically on a microcomputer, analyzed, and stored. It is concluded that, because not all of the rocket motors will have seen the same environment depending on the individual motor history, it will be possible to extend the lifetime before disposal since the charge can now be tested. This in turn will lead to financial savings if the charge's life can be said to have 'X' years of life left and does not need to be withdrawn from service.

  7. Comparison between different techniques applied to quartz CPO determination in granitoid mylonites

    NASA Astrophysics Data System (ADS)

    Fazio, Eugenio; Punturo, Rosalda; Cirrincione, Rosolino; Kern, Hartmut; Wenk, Hans-Rudolph; Pezzino, Antonino; Goswami, Shalini; Mamtani, Manish

    2016-04-01

    Since the second half of the last century, several techniques have been adopted to resolve the crystallographic preferred orientation (CPO) of major minerals constituting crustal and mantle rocks. To this aim, many efforts have been made to increase the accuracy of such analytical devices as well as to progressively reduce the time needed to perform microstructural analysis. It is worth noting that many of these microstructural studies deal with quartz CPO because of the wide occurrence of this mineral phase in crustal rocks as well as its quite simple chemical composition. In the present work, four different techniques were applied to define CPOs of dynamically recrystallized quartz domains from naturally deformed rocks collected from a ductile crustal scale shear zone in order to compare their advantages and limitation. The selected Alpine shear zone is located in the Aspromonte Massif (Calabrian Peloritani Orogen, southern Italy) representing granitoid lithotypes. The adopted methods span from "classical" universal stage (US), to image analysis technique (CIP), electron back-scattered diffraction (EBSD), and time of flight neutron diffraction (TOF). When compared, bulk texture pole figures obtained by means of these different techniques show a good correlation. Advances in analytical techniques used for microstructural investigations are outlined by discussing results of quartz CPO that are presented in this study.

  8. A comparative study of progressive versus successive spectrophotometric resolution techniques applied for pharmaceutical ternary mixtures.

    PubMed

    Saleh, Sarah S; Lotfy, Hayam M; Hassan, Nagiba Y; Salem, Hesham

    2014-11-11

    This work represents a comparative study of a novel progressive spectrophotometric resolution technique namely, amplitude center method (ACM), versus the well-established successive spectrophotometric resolution techniques namely; successive derivative subtraction (SDS); successive derivative of ratio spectra (SDR) and mean centering of ratio spectra (MCR). All the proposed spectrophotometric techniques consist of several consecutive steps utilizing ratio and/or derivative spectra. The novel amplitude center method (ACM) can be used for the determination of ternary mixtures using single divisor where the concentrations of the components are determined through progressive manipulation performed on the same ratio spectrum. Those methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the official BP methods, showing no significant difference with respect to accuracy and precision. PMID:24873889

  9. A comparative study of progressive versus successive spectrophotometric resolution techniques applied for pharmaceutical ternary mixtures

    NASA Astrophysics Data System (ADS)

    Saleh, Sarah S.; Lotfy, Hayam M.; Hassan, Nagiba Y.; Salem, Hesham

    2014-11-01

    This work represents a comparative study of a novel progressive spectrophotometric resolution technique namely, amplitude center method (ACM), versus the well-established successive spectrophotometric resolution techniques namely; successive derivative subtraction (SDS); successive derivative of ratio spectra (SDR) and mean centering of ratio spectra (MCR). All the proposed spectrophotometric techniques consist of several consecutive steps utilizing ratio and/or derivative spectra. The novel amplitude center method (ACM) can be used for the determination of ternary mixtures using single divisor where the concentrations of the components are determined through progressive manipulation performed on the same ratio spectrum. Those methods were applied for the analysis of the ternary mixture of chloramphenicol (CHL), dexamethasone sodium phosphate (DXM) and tetryzoline hydrochloride (TZH) in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the official BP methods, showing no significant difference with respect to accuracy and precision.

  10. Near-infrared spectroscopy and pattern recognition techniques applied to the identification of Jinhua ham

    NASA Astrophysics Data System (ADS)

    Li, Honglian; Zhao, Zhilei; Pang, Yanping; Wu, Guancheng; Wang, Yanfeng; Li, Xiaoting

    2009-11-01

    Near-infrared (NIR) diffuse reflectance spectroscopy and pattern recognition techniques are applied to develop a fast identification method of Jinhua ham. The samples are collected from different manufactures and they are nineteen Jinhua ham samples and four Xuanwei ham samples. NIR spectra are pretreated with second derivative calculation and vector normalization. The pattern recognition techniques which are cluster analysis, conformity test and principal component analysis (PCA) are separately used to qualify Jinhua ham. The three methods can all distinguish Jinhua ham successfully. The result indicated that a 100 % recognition ration is achieved by the methods and the PCA method is the best one. Overall, NIR reflectance spectroscopy using pattern recognition is shown to have significant potential as a rapid and accurate method for identification of ham.

  11. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    PubMed

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells. PMID:23458301

  12. Geophysical techniques applied to urban planning in complex near surface environments. Examples of Zaragoza, NE Spain

    NASA Astrophysics Data System (ADS)

    Pueyo-Anchuela, Ó.; Casas-Sainz, A. M.; Soriano, M. A.; Pocoví-Juan, A.

    Complex geological shallow subsurface environments represent an important handicap in urban and building projects. The geological features of the Central Ebro Basin, with sharp lateral changes in Quaternary deposits, alluvial karst phenomena and anthropic activity can preclude the characterization of future urban areas only from isolated geomechanical tests or from non-correctly dimensioned geophysical techniques. This complexity is here analyzed in two different test fields, (i) one of them linked to flat-bottomed valleys with irregular distribution of Quaternary deposits related to sharp lateral facies changes and irregular preconsolidated substratum position and (ii) a second one with similar complexities in the alluvial deposits and karst activity linked to solution of the underlying evaporite substratum. The results show that different geophysical techniques allow for similar geological models to be obtained in the first case (flat-bottomed valleys), whereas only the application of several geophysical techniques can permit to correctly evaluate the geological model complexities in the second case (alluvial karst). In this second case, the geological and superficial information permit to refine the sensitivity of the applied geophysical techniques to different indicators of karst activity. In both cases 3D models are needed to correctly distinguish alluvial lateral sedimentary changes from superimposed karstic activity.

  13. Contact Nd:YAG Laser Technique Applied To Head And Neck Reconstructive Surgery

    NASA Astrophysics Data System (ADS)

    Nobori, Takuo; Miyazaki, Yasuhiro; Moriyama, Ichiro; Sannikorn, Phakdee; Ohyama, Masaru

    1989-09-01

    The contact Nd:YAG laser system with ceramics tip was applied to head and neck reconstructive surgery. Plastic surgery was performed in 78 patients with head and neck diseases during the past 11 years. Since 1984 reconstructive surgery in these patients was made on 60 cases and on 45 cases(75%) of these cases the contact Nd:YAG laser surgery was used. Using this laser technique, half volume of bleeding in the operation was obtained as compared with that of the conventional procedure.

  14. A systems approach of the nondestructive evaluation techniques applied to Scout solid rocket motors.

    NASA Technical Reports Server (NTRS)

    Oaks, A. E.

    1971-01-01

    Review and appraisal of the status of the nondestructive tests applied to Scout solid-propellant rocket motors, using analytical techniques to evaluate radiography for detecting internal discontinuities such as voids and unbonds. Information relating to selecting, performing, controlling, and evaluating the results of NDE tests was reduced to a common simplified format. With these data and the results of the analytical studies performed, it was possible to make the basic appraisals of the ability of a test to meet all pertinent acceptance criteria and, where necessary, provide suggestions to improve the situation.

  15. Grid-based Moment Tensor Inversion Technique Apply for Earthquakes Offshore of Northeast Taiwan

    NASA Astrophysics Data System (ADS)

    Cheng, H.; Lee, S.; Ma, K.

    2010-12-01

    We use a grid-based moment tensor inversion technique and broadband continuous recordings to real-time monitoring the earthquakes offshore northeast Taiwan. The moment tensor inversion technique and a grid search scheme are applied to obtain the information of source parameters, including the hypocenter, moment magnitude, and focal mechanism. In Taiwan, the routine moment tensor solutions are reported by CWB(Central Weather Bureau) and BATS(Broadband Array in Taiwan for Seismology) which both require some lag time for the information on event time and location before doing CMT(Centroid Moment Tensor) analysis. By using the Grid-based moment tensor inversion technique, the event location and focal mechanism could be obtained simultaneously within about two minutes after the occurrence of the earthquake. This inversion procedure is based on a 1-D Green’s functions database calculated by frequency-wavenumber(fk) method. The northeast offshore of Taiwan has been taken into account as our first test area which covers the region of 121.5E to 123E, 23.5N to 25N, and the depth to 136 km. A 3D grid system is set in this study area with average grid size of 10 x 10 x 10 km3. We compare our results with the past earthquakes from 2008 to 2010 which had analyzed by BATS CMT. We also compare the event time detected by GridMT with the CWB earthquake reports. The results indicate that the grid-based moment tensor inversion system is efficient and realizable to be applied real-time on monitoring the local seismic activity. Our long-term goal is to use the GridMT technique with fully 3-D Green’s functions for the whole Taiwan in the future.

  16. Radiation-induced signals of gypsum crystals analysed by ESR and TL techniques applied to dating

    NASA Astrophysics Data System (ADS)

    Aydaş, Canan; Engin, Birol; Aydın, Talat

    2011-02-01

    Natural crystals of terrestrial gypsum were investigated concerning the radiation effects on Electron spin resonance (ESR) and Thermoluminescence (TL) properties and their application for geological dating. ESR signals of Fe 3+, Mn 2+, G1 ( SO3-, g = 2.003) and G2 ( SO4-, g∥=2.018g⊥=2.009) centers were observed. The thermal stability and dose response of the ESR signals were found to be suitable for an age determination using a signal at g = 2.009. The intensity of this center increased with γ-radiation and the additive dose method for this ESR center yielded accumulated dose GD of 67.4 ± 10.1 Gy. Using U, Th and K contents plus the cosmic-ray contribution, a dose rate of 1.92 ± 0.22 mGy/year has been obtained. We have determined the ESR age of the gypsums to be (35 ± 4) × 10 3 years. TL peaks at 157 and 278 °C were observed. By using initial rise method the thermal activation energy of 278 °C TL peak was found to be underestimated, probably due to the thermal quenching. Activation energies and frequency factors obtained by the method of varying the heating rate indicate lifetime of 4.09 × 10 7 years (at 15 °C) for 278 °C peak. The additive dose method applied to this TL peak yielded GD of 75 ± 11 Gy. The corresponding TL age using the 278 °C TL peak was found to be (39 ± 5) × 10 3 years for gypsum sample. The TL age of this sample is consistent with the ESR age within experimental error limits. The obtained ESR and TL ages are not consistent with the expectations of geologists. This contradiction is probably due to the repeatedly recrystallisation of gypsum samples under the environmental conditions after their formation in the upper Miocene-Pliocene Epoch.

  17. A New Change Detection Technique Applied to COSMO-SkyMed Stripmap Himage Data

    NASA Astrophysics Data System (ADS)

    Losurdo, A.; Marzo, C.; Guariglia, A.

    2015-05-01

    Change Detection techniques in SAR images is very relevant for the locationing and the monitoring of interesting land changes. At present, it is a very important topic due to the high repetitiveness and of the new SAR satellite instruments (e.g. COSMO-SkyMed and Sentinel-1). Geocart S.p.A. has reached important results about SAR change detection techniques within a technological project designed and implemented for the Italian Space Agency. The project's title is Integrated Monitoring System: application to the GAS pipeline". The aim of the project is the development of a new remote sensing service integrating aerial and satellite data for GAS pipeline monitoring. An important Work-Package of the project aims to develop algorithms regarding the change detection to be applied on COSMO-SkyMed Stripmap Himage data in order to identify heavy lorries on pipelines. Particularly, the paper presents a new change detection technique based on a probabilistic approach and the corresponding applicative results.

  18. Photothermal Techniques Applied to the Thermal Characterization of l-Cysteine Nanofluids

    NASA Astrophysics Data System (ADS)

    Alvarado, E. Maldonado; Ramón-Gallegos, E.; Jiménez Pérez, J. L.; Cruz-Orea, A.; Hernández Rosas, J.

    2013-05-01

    Thermal-diffusivity ( D) and thermal-effusivity ( e) measurements were carried out in l-cysteine nanoliquids l-cysteine in combination with Au nanoparticles and protoporphyrin IX (PpIX) nanofluid) by using thermal lens spectrometry (TLS) and photopyroelectric (PPE) techniques. The TLS technique was used in the two mismatched mode experimental configuration to obtain the thermal-diffusivity of the samples. On the other hand, the sample thermal effusivity ( e) was obtained by using the PPE technique where the temperature variation of a sample, exposed to modulated radiation, is measured with a pyrolectric sensor. From the obtained thermal-diffusivity and thermal-effusivity values, the thermal conductivity and specific heat capacity of the sample were calculated. The obtained thermal parameters were compared with the thermal parameters of water. The results of this study could be applied to the detection of tumors by using the l-cysteine in combination with Au nanoparticles and PpIX nanofluid, called conjugated in this study.

  19. Inverse problem solution techniques as applied to indirect in situ estimation of fish target strength.

    PubMed

    Stepnowski, A; Moszyński, M

    2000-05-01

    In situ indirect methods of fish target strength (TS) estimation are analyzed in terms of the inverse techniques recently applied to the problem in question. The solution of this problem requires finding the unknown probability density function (pdf) of fish target strength from acoustic echoes, which can be estimated by solving the integral equation, relating pdf's of echo variable, target strength, and beam pattern of the echosounder transducer. In the first part of the paper the review of existing indirect in situ TS-estimation methods is presented. The second part introduces the novel TS-estimation methods, viz.: Expectation, Maximization, and Smoothing (EMS), Windowed Singular Value Decomposition (WSVD), Regularization and Wavelet Decomposition, which are compared using simulations as well as actual data from acoustic surveys. The survey data, acquired by the dual-beam digital echosounder, were thoroughly analyzed by numerical algorithms and the target strength and acoustical backscattering length pdf's estimates were calculated from fish echoes received in the narrow beam channel of the echosounder. Simultaneously, the estimates obtained directly from the dual-beam system were used as a reference for comparison of the estimates calculated by the newly introduced inverse techniques. The TS estimates analyzed in the paper are superior to those obtained from deconvolution or other conventional techniques, as the newly introduced methods partly avoid the problem of ill-conditioned equations and matrix inversion. PMID:10830379

  20. Micropillar compression technique applied to micron-scale mudstone elasto-plastic deformation.

    SciTech Connect

    Michael, Joseph Richard; Chidsey, Thomas; Heath, Jason E.; Dewers, Thomas A.; Boyce, Brad Lee; Buchheit, Thomas Edward

    2010-12-01

    Mudstone mechanical testing is often limited by poor core recovery and sample size, preservation and preparation issues, which can lead to sampling bias, damage, and time-dependent effects. A micropillar compression technique, originally developed by Uchic et al. 2004, here is applied to elasto-plastic deformation of small volumes of mudstone, in the range of cubic microns. This study examines behavior of the Gothic shale, the basal unit of the Ismay zone of the Pennsylvanian Paradox Formation and potential shale gas play in southeastern Utah, USA. Precision manufacture of micropillars 5 microns in diameter and 10 microns in length are prepared using an ion-milling method. Characterization of samples is carried out using: dual focused ion - scanning electron beam imaging of nano-scaled pores and distribution of matrix clay and quartz, as well as pore-filling organics; laser scanning confocal (LSCM) 3D imaging of natural fractures; and gas permeability, among other techniques. Compression testing of micropillars under load control is performed using two different nanoindenter techniques. Deformation of 0.5 cm in diameter by 1 cm in length cores is carried out and visualized by a microscope loading stage and laser scanning confocal microscopy. Axisymmetric multistage compression testing and multi-stress path testing is carried out using 2.54 cm plugs. Discussion of results addresses size of representative elementary volumes applicable to continuum-scale mudstone deformation, anisotropy, and size-scale plasticity effects. Other issues include fabrication-induced damage, alignment, and influence of substrate.

  1. Fundamental and applied studies of helium ingrowth and aging in plutonium

    SciTech Connect

    Stevens, M.F.; Zocco, T.; Albers, R.; Becker, J.D.; Walter, K.; Cort, B.; Paisley, D.; Nastasi, M.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The purpose of this project was to develop new capabilities to assess the nucleation and growth of helium-associated defects in aged plutonium metal. This effort involved both fundamental and applied models to assist in predicting the transport and kinetics of helium in the metal lattice as well as ab initio calculations of the disposition of gallium in the fcc plutonium lattice and its resulting effects on phase stability. Experimentally this project aimed to establish experimental capabilities crucial to the prediction of helium effects in metals, such as transmission electron microscopy, thermal helium effusion, and the development of a laser-driven mini-flyer for understanding the role of helium and associated defects on shock response of plutonium surrogates.

  2. Morphological analysis of the flippers in the Franciscana dolphin, Pontoporia blainvillei, applying X-ray technique.

    PubMed

    Del Castillo, Daniela Laura; Panebianco, María Victoria; Negri, María Fernanda; Cappozzo, Humberto Luis

    2014-07-01

    Pectoral flippers of cetaceans function to provide stability and maneuverability during locomotion. Directional asymmetry (DA) is a common feature among odontocete cetaceans, as well as sexual dimorphism (SD). For the first time DA, allometry, physical maturity, and SD of the flipper skeleton--by X-ray technique--of Pontoporia blainvillei were analyzed. The number of carpals, metacarpals, phalanges, and morphometric characters from the humerus, radius, ulna, and digit two were studied in franciscana dolphins from Buenos Aires, Argentina. The number of visible epiphyses and their degree of fusion at the proximal and distal ends of the humerus, radius, and ulna were also analyzed. The flipper skeleton was symmetrical, showing a negative allometric trend, with similar growth patterns in both sexes with the exception of the width of the radius (P ≤ 0.01). SD was found on the number of phalanges of digit two (P ≤ 0.01), ulna and digit two lengths. Females showed a higher relative ulna length and shorter relative digit two length, and the opposite occurred in males (P ≤ 0.01). Epiphyseal fusion pattern proved to be a tool to determine dolphin's age; franciscana dolphins with a mature flipper were, at least, four years old. This study indicates that the flippers of franciscana dolphins are symmetrical; both sexes show a negative allometric trend; SD is observed in radius, ulna, and digit two; and flipper skeleton allows determine the age class of the dolphins. PMID:24700648

  3. Evolving medical service in the information age: a legal analysis of applying telemedicine programs in Taiwan.

    PubMed

    Wu, Hsing-Hao

    2008-12-01

    In the face of the information age, Internet and telecommunication technologies have been widely applied in various settings. These innovational technologies have been used in the areas of e-commerce, long distance learning programs, entertainment, e-government, and so on. In recent years, the evolution of Internet technology is also pervading the health care industry. This dramatic trend may significantly alter traditional medical practice as well as the means of delivery of health care. The idea of telemedicine is to use modern information technology as a means or platform to deliver health care service in remote areas and to manage medical information in digitalized forms. The progress of developing telemedicine, however, is rather slow. The main reason for this slow progress is not technological but rather legal. Health care providers are reluctant to promote this innovation in medical service mainly due to uncertain legal consequences and ethical concerns. Although there are many legal challenges surrounding telemedicine, this note will examine major legal issues including licensure, malpractice liability, and privacy protection. Furthermore, I will discuss the potential of applying telemedicine programs in Taiwan's National Health Insurance Program (hereinafter referred to as NHI). PMID:19202856

  4. Strategy for applying scaling technique to water retention curves of forest soils

    NASA Astrophysics Data System (ADS)

    Hayashi, Y.; Kosugi, K.; Mizuyama, T.

    2009-12-01

    Describing the infiltration of water in soils on a forested hillslope requires the information of spatial variability of water retention curve (WRC). By using a scaling technique, Hayashi et al. (2009), found that the porosity mostly characterizes the spatial variability of the WRCs on a forested hillslope. This scaling technique was based on a model, which assumes a lognormal pore size distribution and contains three parameters: the median of log-transformed pore radius, ψm, the variance of log-transformed pore radius, σ, and the effective porosity, θe. Thus, in the scaling method proposed by Hayashi et al. (2009), θe is a scaling factor, which should be determined for each individual soil, and that ψm and σ are reference parameter common for the whole data set. They examined this scaling method using θe calculated as a difference between the observed saturated water content and water content observed at ψ = -1000 cm for each sample and, ψm and σ derived from the whole data set of WRCs on the slope. Then it was showed that this scaling method could explain almost 90 % of the spatial variability in WRCs on the forested hillslope. However, this method requires the whole data set of WRCs for deriving the reference parameters (ψm and σ). For applying the scaling technique more practically, in this study, we tested a scaling method using the reference parameter derived from the WRCs at a small part of the slope. In order to examine the proposed scaling method, the WRCs for the 246 undisturbed forest soil samples, collected at 15 points distributed from downslope to upslope segments, were observed. In the proposed scaling method, we optimized the common ψm and σ to the WRCs for six soil samples, collected at one point on the middle-slope, and applied these parameters to a reference parameter for the whole data sets. The scaling method proposed by this study exhibited an increase of only 6 % in the residual sum of squares as compared with that of the method

  5. Applying Reflective Middleware Techniques to Optimize a QoS-enabled CORBA Component Model Implementation

    NASA Technical Reports Server (NTRS)

    Wang, Nanbor; Kircher, Michael; Schmidt, Douglas C.

    2000-01-01

    Although existing CORBA specifications, such as Real-time CORBA and CORBA Messaging, address many end-to-end quality-of-service (QoS) properties, they do not define strategies for configuring these properties into applications flexibly, transparently, and adaptively. Therefore, application developers must make these configuration decisions manually and explicitly, which is tedious, error-prone, and often sub-optimal. Although the recently adopted CORBA Component Model (CCM) does define a standard configuration frame-work for packaging and deploying software components, conventional CCM implementations focus on functionality rather than adaptive quality-of service, which makes them unsuitable for next-generation applications with demanding QoS requirements. This paper presents three contributions to the study of middleware for QoS-enabled component-based applications. It outlines reflective middleware techniques designed to adaptively: (1) select optimal communication mechanisms, (2) man- age QoS properties of CORBA components in their containers, and (3) (re)configure selected component executors dynamically. Based on our ongoing research on CORBA and the CCM, we believe the application of reflective techniques to component middleware will provide a dynamically adaptive and (re)configurable framework for COTS software that is well-suited for the QoS demands of next-generation applications.

  6. Applying machine learning techniques to DNA sequence analysis. Progress report, February 14, 1991--February 13, 1992

    SciTech Connect

    Shavlik, J.W.

    1992-04-01

    We are developing a machine learning system that modifies existing knowledge about specific types of biological sequences. It does this by considering sample members and nonmembers of the sequence motif being learned. Using this information (which we call a ``domain theory``), our learning algorithm produces a more accurate representation of the knowledge needed to categorize future sequences. Specifically, the KBANN algorithm maps inference rules, such as consensus sequences, into a neural (connectionist) network. Neural network training techniques then use the training examples of refine these inference rules. We have been applying this approach to several problems in DNA sequence analysis and have also been extending the capabilities of our learning system along several dimensions.

  7. A comparative assessment of texture analysis techniques applied to bone tool use-wear

    NASA Astrophysics Data System (ADS)

    Watson, Adam S.; Gleason, Matthew A.

    2016-06-01

    The study of bone tools, a specific class of artifacts often essential to perishable craft production, provides insight into industries otherwise largely invisible archaeologically. Building on recent breakthroughs in the analysis of microwear, this research applies confocal laser scanning microscopy and texture analysis techniques drawn from the field of surface metrology to identify use-wear patterns on experimental and archaeological bone artifacts. Our approach utilizes both conventional parameters and multi-scale geometric characterizations of the areas of worn surfaces to identify statistical similarities as a function of scale. The introduction of this quantitative approach to the study of microtopography holds significant potential for advancement in use-wear studies by reducing inter-observer variability and identifying new parameters useful in the detection of differential wear-patterns.

  8. Data compression techniques applied to high resolution high frame rate video technology

    NASA Technical Reports Server (NTRS)

    Hartz, William G.; Alexovich, Robert E.; Neustadter, Marc S.

    1989-01-01

    An investigation is presented of video data compression applied to microgravity space experiments using High Resolution High Frame Rate Video Technology (HHVT). An extensive survey of methods of video data compression, described in the open literature, was conducted. The survey examines compression methods employing digital computing. The results of the survey are presented. They include a description of each method and assessment of image degradation and video data parameters. An assessment is made of present and near term future technology for implementation of video data compression in high speed imaging system. Results of the assessment are discussed and summarized. The results of a study of a baseline HHVT video system, and approaches for implementation of video data compression, are presented. Case studies of three microgravity experiments are presented and specific compression techniques and implementations are recommended.

  9. A New Normalized Difference Cloud Retrieval Technique Applied to Landsat Radiances Over the Oklahoma ARM Site

    NASA Technical Reports Server (NTRS)

    Orepoulos, Lazaros; Cahalan, Robert; Marshak, Alexander; Wen, Guoyong

    1999-01-01

    We suggest a new approach to cloud retrieval, using a normalized difference of nadir reflectivities (NDNR) constructed from a non-absorbing and absorbing (with respect to liquid water) wavelength. Using Monte Carlo simulations we show that this quantity has the potential of removing first order scattering effects caused by cloud side illumination and shadowing at oblique Sun angles. Application of the technique to TM (Thematic Mapper) radiance observations from Landsat-5 over the Southern Great Plains site of the ARM (Atmospheric Radiation Measurement) program gives very similar regional statistics and histograms, but significant differences at the pixel level. NDNR can be also combined with the inverse NIPA (Nonlocal Independent Pixel Approximation) of Marshak (1998) which is applied for the first time on overcast Landsat scene subscenes. We demonstrate the sensitivity of the NIPA-retrieved cloud fields on the parameters of the method and discuss practical issues related to the optimal choice of these parameters.

  10. Feasibility Studies of Applying Kalman Filter Techniques to Power System Dynamic State Estimation

    SciTech Connect

    Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jarek

    2007-08-01

    Abstract—Lack of dynamic information in power system operations mainly attributes to the static modeling of traditional state estimation, as state estimation is the basis driving many other operations functions. This paper investigates the feasibility of applying Kalman filter techniques to enable the inclusion of dynamic modeling in the state estimation process and the estimation of power system dynamic states. The proposed Kalman-filter-based dynamic state estimation is tested on a multi-machine system with both large and small disturbances. Sensitivity studies of the dynamic state estimation performance with respect to measurement characteristics – sampling rate and noise level – are presented as well. The study results show that there is a promising path forward to implementation the Kalman-filter-based dynamic state estimation with the emerging phasor measurement technologies.

  11. Solar coronal magnetic fields derived using seismology techniques applied to omnipresent sunspot waves

    NASA Astrophysics Data System (ADS)

    Jess, David B.; Reznikova, Veronika E.; Ryans, Robert S. I.; Christian, Damian J.; Keys, Peter H.; Mathioudakis, Mihalis; Mackay, Duncan H.; Krishna Prasad, S.; Banerjee, Dipankar; Grant, Samuel D. T.; Yau, Sean; Diamond, Conor

    2016-02-01

    Sunspots on the surface of the Sun are the observational signatures of intense manifestations of tightly packed magnetic field lines, with near-vertical field strengths exceeding 6,000 G in extreme cases. It is well accepted that both the plasma density and the magnitude of the magnetic field strength decrease rapidly away from the solar surface, making high-cadence coronal measurements through traditional Zeeman and Hanle effects difficult as the observational signatures are fraught with low-amplitude signals that can become swamped with instrumental noise. Magneto-hydrodynamic (MHD) techniques have previously been applied to coronal structures, with single and spatially isolated magnetic field strengths estimated as 9-55 G (refs ,,,). A drawback with previous MHD approaches is that they rely on particular wave modes alongside the detectability of harmonic overtones. Here we show, for the first time, how omnipresent magneto-acoustic waves, originating from within the underlying sunspot and propagating radially outwards, allow the spatial variation of the local coronal magnetic field to be mapped with high precision. We find coronal magnetic field strengths of 32 +/- 5 G above the sunspot, which decrease rapidly to values of approximately 1 G over a lateral distance of 7,000 km, consistent with previous isolated and unresolved estimations. Our results demonstrate a new, powerful technique that harnesses the omnipresent nature of sunspot oscillations to provide magnetic field mapping capabilities close to a magnetic source in the solar corona.

  12. Shadowgraph Technique Applied to STARDUST Facility for Dust Tracking: First Results

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Malizia, A.; Camplani, M.; Barbato, F.; Antonelli, L.; Gelfusa, M.; Del Vecchio, M.; Salgado, L.; Bellecci, C.; Richetta, M.

    The problem of dust resuspension in case of Loss Of Vacuum Accident (LOVA) in a nuclear fusion plant (ITER or DEMO like) is an important issue for the safety of workers and the security of environment. The Quantum Electronics and Plasma Physics Research Group has implemented an optical set-up to track dust during a LOVA reproduction inside the experimental facility STARDUST. The shadowgraph technique, in this work, it is applied to track dark dust (like Tungsten). The shadowgraph technique is based on an expanded collimated beam of light emitted by a laser (or a lamp) transversely to the flow field direction. Inside STARDUST the dust moving in the air flow causes variations of refractive index of light that can be detected by the means of a CCD camera. A spatial modulation of the light-intensity distribution on the camera can be measured. The resulting pattern is a shadow of the refractive index field that prevails in the region of the disturbance. The authors use an incandescent white lamp to illuminate the vacuum vessel of STARDUST facility. The light-area passes through the test section that has to be investigated and the images of the dust shadows are collected with a fast CCD camera. The images are then elaborated with mathematical algorithms to obtain information about the velocity fields of dust during the accidents reproduction. The experimental set-up together with a critical analysis of the first results are presented in this paper.

  13. In vivo measurement of human skin absorption of topically applied substances by a photoacoustic technique.

    PubMed

    Gutiérrez-Juárez, G; Vargas-Luna, M; Córdova, T; Varela, J B; Bernal-Alvarado, J J; Sosa, M

    2002-08-01

    A photoacoustic technique is used for studying topically applied substance absorption in human skin. The proposed method utilizes a double-chamber PA cell. The absorption determination was obtained through the measurement of the thermal effusivity of the binary system substance-skin. The theoretical model assumes that the effective thermal effusivity of the binary system corresponds to that of a two-phase system. Experimental applications of the method employed different substances of topical application in different parts of the body of a volunteer. The method is demonstrated to be an easily used non-invasive technique for dermatology research. The relative concentrations as a function of time of substances such as ketoconazol and sunscreen were determined by fitting a sigmoidal function to the data, while an exponential function corresponds to the best fit for the set of data for nitrofurazona, vaseline and vaporub. The time constants associated with the rates of absorption, were found to vary in the range between 10 and 58 min, depending on the substance and the part of the body. PMID:12214760

  14. Film thickness measurement techniques applied to micro-scale two-phase flow systems

    SciTech Connect

    Tibirica, Cristiano Bigonha; do Nascimento, Francisco Julio; Ribatski, Gherhardt

    2010-05-15

    Recently semi-empirical models to estimate flow boiling heat transfer coefficient, saturated CHF and pressure drop in micro-scale channels have been proposed. Most of the models were developed based on elongated bubbles and annular flows in the view of the fact that these flow patterns are predominant in smaller channels. In these models, the liquid film thickness plays an important role and such a fact emphasizes that the accurate measurement of the liquid film thickness is a key point to validate them. On the other hand, several techniques have been successfully applied to measure liquid film thicknesses during condensation and evaporation under macro-scale conditions. However, although this subject has been targeted by several leading laboratories around the world, it seems that there is no conclusive result describing a successful technique capable of measuring dynamic liquid film thickness during evaporation inside micro-scale round channels. This work presents a comprehensive literature review of the methods used to measure liquid film thickness in macro- and micro-scale systems. The methods are described and the main difficulties related to their use in micro-scale systems are identified. Based on this discussion, the most promising methods to measure dynamic liquid film thickness in micro-scale channels are identified. (author)

  15. Micropillar Compression Technique Applied to Micron-Scale Mudstone Elasto-Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Boyce, B.; Buchheit, T.; Heath, J. E.; Chidsey, T.; Michael, J.

    2010-12-01

    Mudstone mechanical testing is often limited by poor core recovery and sample size, preservation and preparation issues, which can lead to sampling bias, damage, and time-dependent effects. A micropillar compression technique, originally developed by Uchic et al. 2004, here is applied to elasto-plastic deformation of small volumes of mudstone, in the range of cubic microns. This study examines behavior of the Gothic shale, the basal unit of the Ismay zone of the Pennsylvanian Paradox Formation and potential shale gas play in southeastern Utah, USA. Precision manufacture of micropillars 5 microns in diameter and 10 microns in length are prepared using an ion-milling method. Characterization of samples is carried out using: dual focused ion - scanning electron beam imaging of nano-scaled pores and distribution of matrix clay and quartz, as well as pore-filling organics; laser scanning confocal (LSCM) 3D imaging of natural fractures; and gas permeability, among other techniques. Compression testing of micropillars under load control is performed using two different nanoindenter techniques. Deformation of 0.5 cm in diameter by 1 cm in length cores is carried out and visualized by a microscope loading stage and laser scanning confocal microscopy. Axisymmetric multistage compression testing and multi-stress path testing is carried out using 2.54 cm plugs. Discussion of results addresses size of representative elementary volumes applicable to continuum-scale mudstone deformation, anisotropy, and size-scale plasticity effects. Other issues include fabrication-induced damage, alignment, and influence of substrate. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Bioclimatic and vegetation mapping of a topographically complex oceanic island applying different interpolation techniques

    NASA Astrophysics Data System (ADS)

    Garzón-Machado, Víctor; Otto, Rüdiger; del Arco Aguilar, Marcelino José

    2014-07-01

    Different spatial interpolation techniques have been applied to construct objective bioclimatic maps of La Palma, Canary Islands. Interpolation of climatic data on this topographically complex island with strong elevation and climatic gradients represents a challenge. Furthermore, meteorological stations are not evenly distributed over the island, with few stations at high elevations. We carried out spatial interpolations of the compensated thermicity index (Itc) and the annual ombrothermic Index (Io), in order to obtain appropriate bioclimatic maps by using automatic interpolation procedures, and to establish their relation to potential vegetation units for constructing a climatophilous potential natural vegetation map (CPNV). For this purpose, we used five interpolation techniques implemented in a GIS: inverse distance weighting (IDW), ordinary kriging (OK), ordinary cokriging (OCK), multiple linear regression (MLR) and MLR followed by ordinary kriging of the regression residuals. Two topographic variables (elevation and aspect), derived from a high-resolution digital elevation model (DEM), were included in OCK and MLR. The accuracy of the interpolation techniques was examined by the results of the error statistics of test data derived from comparison of the predicted and measured values. Best results for both bioclimatic indices were obtained with the MLR method with interpolation of the residuals showing the highest R 2 of the regression between observed and predicted values and lowest values of root mean square errors. MLR with correction of interpolated residuals is an attractive interpolation method for bioclimatic mapping on this oceanic island since it permits one to fully account for easily available geographic information but also takes into account local variation of climatic data.

  17. Bioclimatic and vegetation mapping of a topographically complex oceanic island applying different interpolation techniques.

    PubMed

    Garzón-Machado, Víctor; Otto, Rüdiger; del Arco Aguilar, Marcelino José

    2014-07-01

    Different spatial interpolation techniques have been applied to construct objective bioclimatic maps of La Palma, Canary Islands. Interpolation of climatic data on this topographically complex island with strong elevation and climatic gradients represents a challenge. Furthermore, meteorological stations are not evenly distributed over the island, with few stations at high elevations. We carried out spatial interpolations of the compensated thermicity index (Itc) and the annual ombrothermic Index (Io), in order to obtain appropriate bioclimatic maps by using automatic interpolation procedures, and to establish their relation to potential vegetation units for constructing a climatophilous potential natural vegetation map (CPNV). For this purpose, we used five interpolation techniques implemented in a GIS: inverse distance weighting (IDW), ordinary kriging (OK), ordinary cokriging (OCK), multiple linear regression (MLR) and MLR followed by ordinary kriging of the regression residuals. Two topographic variables (elevation and aspect), derived from a high-resolution digital elevation model (DEM), were included in OCK and MLR. The accuracy of the interpolation techniques was examined by the results of the error statistics of test data derived from comparison of the predicted and measured values. Best results for both bioclimatic indices were obtained with the MLR method with interpolation of the residuals showing the highest R2 of the regression between observed and predicted values and lowest values of root mean square errors. MLR with correction of interpolated residuals is an attractive interpolation method for bioclimatic mapping on this oceanic island since it permits one to fully account for easily available geographic information but also takes into account local variation of climatic data. PMID:23686111

  18. Effect of different aging techniques on the polysaccharide and phenolic composition and sensory characteristics of Syrah red wines fermented using different yeast strains.

    PubMed

    del Barrio-Galán, Rubén; Medel-Marabolí, Marcela; Peña-Neira, Álvaro

    2015-07-15

    The effect of high levels of the polysaccharide Saccharomyces cerevisiae yeast strain (HPS) and another conventional yeast strain (FERM) on the polysaccharide and phenolic composition of Syrah red wines during alcoholic fermentation and subsequent aging on lees, with or without oak wood chips, and on inactive dry yeast was investigated. The HPS yeast released higher amounts of polysaccharides during alcoholic fermentation than FERM yeast (485 g L(-1) and 403 g L(-1), respectively) and after the aging period (516 g L(-1) and 500 g L(-1), respectively). The different aging techniques increased the polysaccharide concentration; the concentration was dependent on the aging technique applied. The interaction of the polysaccharides with the phenolic compounds depended on the yeast strain, aging technique, aging period and compound analysed. The HPS wines exhibited better sensory characteristics than the FERM wines after alcoholic fermentation; however, during the aging period, it was difficult to determine which technique produced the best wine due to the interactions of aging technique, aging period and sensory attribute evaluated. PMID:25722146

  19. Dependency between treatment outcome in pseudarthrosis of the humeral shaft and the surgical technique applied.

    PubMed

    Piotrowski, Maciej; Baczkowski, Bogusław; Markowicz, Agnieszka; Pankowski, Rafał; Luczkiewicz, Piotr

    2005-08-30

    Background. Treatment of non-union has always been one of the most difficult problems in bone pathology. In the present study we compare outcomes using 9 different methods of non-union treatment. Material and methods. From 1976 to 2003, 70 patients with 85 cases of pseudoarthrosis in the humeral shaft were operated. During that period, 103 operations using 9 different methods were performed. The study group consisted of 17 females, 36 males and 17 children, ranging in age from 3 to 85 years. The operation techniques were compared based on the achievement of bone union and recovery of limb functional efficiency. Nonunion type was also taken into account. Results. A high percentage of bone union was obtained by using a perforated block of corticocancellous graft taken from the iliac crest. The most complete limb function recovery was achieved using this method, as well as Judet's decortication with cancellous grafting and firm osteosynthesis. Conclusions. In oligotrophic and non-viable humeral shaft non-union, the most effective method is pseudarthrosis excision, using a perforated block of corticocancellous graft from the iliac crest to fill the gap, and firm osteosynthesis. Judet's decortication with cancellous grafting and firm osteosynthesis secured good outcome in hypertrophic pseudarthrosis. PMID:17611455

  20. Remote field eddy current technique applied to the inspection of nonmagnetic steam generator tubes

    NASA Astrophysics Data System (ADS)

    Shin, Young-Kil; Chung, Tae-Eon; Lord, William

    2001-04-01

    As steam generator (SG) tubes have aged, new and subtle degradations have appeared. Most of them start growing from outside the tubes. Since outer diameter defects might not be detected by conventional eddy current testing due to skin effect phenomena, this paper studies the feasibility of using the remote field eddy current (RFEC) technique, which has shown equal sensitivity to inner diameter (ID) and outer diameter (OD) defects in ferromagnetic pipe inspection. Finite element modeling studies show that the operating frequency needs to be increased up to a few hundred kHz in order for RFEC effects to occur in the nonmagnetic SG tube. The proper distance between exciter and sensor coils is also found to be 1.5 OD, which is half of the distance used in ferromagnetic pipe inspection. The resulting defect signals show equal sensitivity to ID and OD defects. These results demonstrate superior capability of the proposed RFEC probe compared to the differential ECT probe in detecting OD defects.

  1. Testing the applicability of six macroscopic skeletal aging techniques on a modern Southeast Asian sample.

    PubMed

    Gocha, Timothy P; Ingvoldstad, Megan E; Kolatorowicz, Adam; Cosgriff-Hernandez, Meghan-Tomasita J; Sciulli, Paul W

    2015-04-01

    Most macroscopic skeletal aging techniques used by forensic anthropologists have been developed and tested only on reference material from western populations. This study examined the performance of six aging techniques on a known age sample of 88 Southeast Asian individuals. Methods examined included the Suchey-Brooks method of aging the symphyseal face of the os pubis (Brooks and Suchey, Hum. Evol. 5 (1990) 227), Buckberry and Chamberlain's, Am. J. Phys. Anthropol. 119 (2002) 231 and Osborne et al.'s, J. Forensic Sci. 49 (2004) 1 revisions of the Lovejoy et al., Am. J. Phys. Anthropol. 68 (1985) 15 method of aging the auricular surface of the ilium, İşcan et al.'s, J. Forensic Sci. 29 (1984) 1094, İşcan et al.'s, J. Forensic Sci. 30 (1985) 853 method of aging the sternal end of the fourth rib, and Meindl and Lovejoy's, Am. J. Phys. Anthropol. 68 (1985) 57 methods for aging both lateral-anterior and vault sutures on the cranium. The results of this study indicate that application of aging techniques commonly used in forensic anthropology to individuals identified as Asian, and more specifically Southeast Asian, should not be undertaken injudiciously. Of the six individual methods tested here, the Suchey-Brooks pubic symphysis aging method performs best, though average age estimates were still off by nearly 10 years or greater. Methods for aging the auricular surface perform next best, though the Osborne et al. method works better for individuals below 50 years and the Buckberry and Chamberlain method works better for those above 50 years. Methods for age estimation from the sternal ends of the fourth rib and vault and lateral-anterior cranial sutures perform poorly and are not recommended for use on remains of Southeast Asian ancestry. Combining age estimates from multiple indicators, specifically the pubic symphysis and one auricular surface method, was superior to individual methods. Data and a worked example are provided for calculating the conditional

  2. Unsteady vortex lattice techniques applied to wake formation and performance of the statically thrusting propeller

    NASA Technical Reports Server (NTRS)

    Hall, G. F.

    1975-01-01

    The application is considered of vortex lattice techniques to the problem of describing the aerodynamics and performance of statically thrusting propellers. A numerical lifting surface theory to predict the aerodynamic forces and power is performed. The chordwise and spanwise loading is modelled by bound vortices fixed to a twisted flat plate surface. In order to eliminate any apriori assumptions regarding the wake shape, it is assumed the propeller starts from rest. The wake is generated in time and allowed to deform under its own self-induced velocity field as the motion of the propeller progresses. The bound circulation distribution is then determined with time by applying the flow tangency boundary condition at certain selected control points on the blades. The aerodynamics of the infinite wing and finite wing are also considered. The details of wake formation and roll-up are investigated, particularly the localized induction effect. It is concluded that proper wake roll-up and roll-up rates can be established by considering the details of motion at the instant of start.

  3. A study and evaluation of image analysis techniques applied to remotely sensed data

    NASA Technical Reports Server (NTRS)

    Atkinson, R. J.; Dasarathy, B. V.; Lybanon, M.; Ramapriyan, H. K.

    1976-01-01

    An analysis of phenomena causing nonlinearities in the transformation from Landsat multispectral scanner coordinates to ground coordinates is presented. Experimental results comparing rms errors at ground control points indicated a slight improvement when a nonlinear (8-parameter) transformation was used instead of an affine (6-parameter) transformation. Using a preliminary ground truth map of a test site in Alabama covering the Mobile Bay area and six Landsat images of the same scene, several classification methods were assessed. A methodology was developed for automatic change detection using classification/cluster maps. A coding scheme was employed for generation of change depiction maps indicating specific types of changes. Inter- and intraseasonal data of the Mobile Bay test area were compared to illustrate the method. A beginning was made in the study of data compression by applying a Karhunen-Loeve transform technique to a small section of the test data set. The second part of the report provides a formal documentation of the several programs developed for the analysis and assessments presented.

  4. Formulation of indomethacin colon targeted delivery systems using polysaccharides as carriers by applying liquisolid technique.

    PubMed

    Elkhodairy, Kadria A; Elsaghir, Hanna A; Al-Subayiel, Amal M

    2014-01-01

    The present study aimed at the formulation of matrix tablets for colon-specific drug delivery (CSDD) system of indomethacin (IDM) by applying liquisolid (LS) technique. A CSDD system based on time-dependent polymethacrylates and enzyme degradable polysaccharides was established. Eudragit RL 100 (E-RL 100) was employed as time-dependent polymer, whereas bacterial degradable polysaccharides were presented as LS systems loaded with the drug. Indomethacin-loaded LS systems were prepared using different polysaccharides, namely, guar gum (GG), pectin (PEC), and chitosan (CH), as carriers separately or in mixtures of different ratios of 1:3, 1:1, and 3:1. Liquisolid systems that displayed promising results concerning drug release rate in both pH 1.2 and pH 6.8 were compressed into tablets after the addition of the calculated amount of E-RL 100 and lubrication with magnesium stearate and talc in the ratio of 1:9. It was found that E-RL 100 improved the flowability and compressibility of all LS formulations. The release data revealed that all formulations succeeded to sustain drug release over a period of 24 hours. Stability study indicated that PEC-based LS system as well as its matrix tablets was stable over the period of storage (one year) and could provide a minimum shelf life of two years. PMID:24971345

  5. Sampled-Data Techniques Applied to a Digital Controller for an Altitude Autopilot

    NASA Technical Reports Server (NTRS)

    Schmidt, Stanley F.; Harper, Eleanor V.

    1959-01-01

    Sampled-data theory, using the Z transformation, is applied to the design of a digital controller for an aircraft-altitude autopilot. Particular attention is focused on the sensitivity of the design to parameter variations and the abruptness of the response, that is, the normal acceleration required to carry out a transient maneuver. Consideration of these two characteristics of the system has shown that the finite settling time design method produces an unacceptable system, primarily because of the high sensitivity of the response to parameter variations, although abruptness can be controlled by increasing the sampling period. Also demonstrated is the importance of having well-damped poles or zeros if cancellation is attempted in the design methods. A different method of smoothing the response and obtaining a design which is not excessively sensitive is proposed, and examples are carried through to demonstrate the validity of the procedure. This method is based on design concepts of continuous systems, and it is shown that if no pole-zero cancellations are allowed in the design, one can obtain a response which is not too abrupt, is relatively insensitive to parameter variations, and is not sensitive to practical limits on control-surface rate. This particular design also has the simplest possible pulse transfer function for the digital controller. Simulation techniques and root loci are used for the verification of the design philosophy.

  6. A test of the 40Ar/39Ar age spectrum technique on some terrestrial materials

    USGS Publications Warehouse

    Lanphere, M.A.; Brent, Dalrymple G.

    1971-01-01

    40Ar/39Ar age spectra were determined for 10 terrestrial rock and mineral samples whose geologic history is known from independent evidence. The spectra for six mineral and whole rock samples, including biotite, feldspar, hornblende, muscovite, and granodiorite, that have experienced post-crystallization heating did not reveal the age of crystallization in any obvious way. Minima in the spectra, however, give reasonable maximum ages for reheating and high-temperature maxima can be interpreted as minimum crystallization ages. High-temperature ages of microcline and albite that have not been reheated are approximately 10% younger than the known crystallization age. Apparently there are no domains in these feldspars that have retained radiogenic 40Ar quantitatively. Spectra from two diabase samples that contain significant quantities of excess argon might mistakenly be interpreted as spectra from reheated samples and do not give the age of emplacement. The 40Ar/39Ar age spectrum technique may be a potentially valuable tool for the study of geologic areas with complex histories, but the interpretation of age spectra from terrestrial samples seems to be more difficult than suggested by some previous studies. ?? 1971.

  7. Multidisciplinary Design Techniques Applied to Conceptual Aerospace Vehicle Design. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Olds, John Robert; Walberg, Gerald D.

    1993-01-01

    Multidisciplinary design optimization (MDO) is an emerging discipline within aerospace engineering. Its goal is to bring structure and efficiency to the complex design process associated with advanced aerospace launch vehicles. Aerospace vehicles generally require input from a variety of traditional aerospace disciplines - aerodynamics, structures, performance, etc. As such, traditional optimization methods cannot always be applied. Several multidisciplinary techniques and methods were proposed as potentially applicable to this class of design problem. Among the candidate options are calculus-based (or gradient-based) optimization schemes and parametric schemes based on design of experiments theory. A brief overview of several applicable multidisciplinary design optimization methods is included. Methods from the calculus-based class and the parametric class are reviewed, but the research application reported focuses on methods from the parametric class. A vehicle of current interest was chosen as a test application for this research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit (SSTO) launch vehicle combines elements of rocket and airbreathing propulsion in an attempt to produce an attractive option for launching medium sized payloads into low earth orbit. The RBCC SSTO presents a particularly difficult problem for traditional one-variable-at-a-time optimization methods because of the lack of an adequate experience base and the highly coupled nature of the design variables. MDO, however, with it's structured approach to design, is well suited to this problem. The result of the application of Taguchi methods, central composite designs, and response surface methods to the design optimization of the RBCC SSTO are presented. Attention is given to the aspect of Taguchi methods that attempts to locate a 'robust' design - that is, a design that is least sensitive to uncontrollable influences on the design. Near-optimum minimum dry weight solutions are

  8. Final Aperture Superposition Technique applied to fast calculation of electron output factors and depth dose curves

    SciTech Connect

    Faddegon, B.A.; Villarreal-Barajas, J.E.

    2005-11-15

    The Final Aperture Superposition Technique (FAST) is described and applied to accurate, near instantaneous calculation of the relative output factor (ROF) and central axis percentage depth dose curve (PDD) for clinical electron beams used in radiotherapy. FAST is based on precalculation of dose at select points for the two extreme situations of a fully open final aperture and a final aperture with no opening (fully shielded). This technique is different than conventional superposition of dose deposition kernels: The precalculated dose is differential in position of the electron or photon at the downstream surface of the insert. The calculation for a particular aperture (x-ray jaws or MLC, insert in electron applicator) is done with superposition of the precalculated dose data, using the open field data over the open part of the aperture and the fully shielded data over the remainder. The calculation takes explicit account of all interactions in the shielded region of the aperture except the collimator effect: Particles that pass from the open part into the shielded part, or visa versa. For the clinical demonstration, FAST was compared to full Monte Carlo simulation of 10x10,2.5x2.5, and 2x8 cm{sup 2} inserts. Dose was calculated to 0.5% precision in 0.4x0.4x0.2 cm{sup 3} voxels, spaced at 0.2 cm depth intervals along the central axis, using detailed Monte Carlo simulation of the treatment head of a commercial linear accelerator for six different electron beams with energies of 6-21 MeV. Each simulation took several hours on a personal computer with a 1.7 Mhz processor. The calculation for the individual inserts, done with superposition, was completed in under a second on the same PC. Since simulations for the pre calculation are only performed once, higher precision and resolution can be obtained without increasing the calculation time for individual inserts. Fully shielded contributions were largest for small fields and high beam energy, at the surface, reaching a

  9. Novel computational and analytic techniques for nonlinear systems applied to structural and celestial mechanics

    NASA Astrophysics Data System (ADS)

    Elgohary, Tarek Adel Abdelsalam

    In this Dissertation, computational and analytic methods are presented to address nonlinear systems with applications in structural and celestial mechanics. Scalar Homotopy Methods (SHM) are first introduced for the solution of general systems of nonlinear algebraic equations. The methods are applied to the solution of postbuckling and limit load problems of solids and structures as exemplified by simple plane elastic frames, considering only geometrical nonlinearities. In many problems, instead of simply adopting a root solving method, it is useful to study the particular problem in more detail in order to establish an especially efficient and robust method. Such a problem arises in satellite geodesy coordinate transformation where a new highly efficient solution, providing global accuracy with a non-iterative sequence of calculations, is developed. Simulation results are presented to compare the solution accuracy and algorithm performance for applications spanning the LEO-to-GEO range of missions. Analytic methods are introduced to address problems in structural mechanics and astrodynamics. Analytic transfer functions are developed to address the frequency domain control problem of flexible rotating aerospace structures. The transfer functions are used to design a Lyapunov stable controller that drives the spacecraft to a target position while suppressing vibrations in the flexible appendages. In astrodynamics, a Taylor series based analytic continuation technique is developed to address the classical two-body problem. A key algorithmic innovation for the trajectory propagation is that the classical averaged approximation strategy is replaced with a rigorous series based solution for exactly computing the acceleration derivatives. Evidence is provided to demonstrate that high precision solutions are easily obtained with the analytic continuation approach. For general nonlinear initial value problems (IVPs), the method of Radial Basis Functions time domain

  10. Establishing a dynamic reconstruction of the Weichselian glaciation in north-eastern Germany by applying a process based approach for the interpretation of glacial landform ages

    NASA Astrophysics Data System (ADS)

    Lüthgens, Christopher; Böse, Margot

    2013-04-01

    Throughout the last decades, an increasing number of numerical ages dating the glacigenic landform record of the Scandinavian Ice Sheet (SIS) were published, in many cases spawning controversy as ages inferred from different dating methods often disagreed with each other and opposed the concepts of established age models primarily based on morphostratigraphical analyses. The two most commonly applied dating techniques for the dating of glacigenic deposits are optically stimulated luminescence (OSL) dating and surface exposure dating (SED) of erratic boulders using cosmogenic nuclides. With respect to the interpretation of numerical ages inferred from these dating techniques, it needs to be stressed, that they must be interpreted with respect to the specific processes in landscape development which are actually dated. Even when applied to glacial sediments associated with the same ice marginal position, the resulting ages of the two methods are strongly dependent on the sampling position within the geomorphological and stratigraphical framework. As a result, they theoretically must not be identical. To demonstrate this, the glacial landscape record of north-eastern Germany shaped by the Weichselian glaciation serves as an excellent example. Comprising three morphostratigraphically defined main ice marginal positions (IMPs), the area has been subject of a significant number of dating studies throughout the last years, making a solid database of numerical ages based on OSL dating of glaciofluvial sediments, as well as SED of glacigenic boulders, available. Here the OSL ages were mainly derived from sandur sediments and therefore represent the timing of the process of sediment aggradation linked to meltwater discharge from an active ice margin. In contrast, the SED ages from erratic boulders determine the age of the final stabilisation of the sampled boulders at the landscape surface after the downmelting of stagnant ice, landscape transformation under periglacial

  11. Applying Tep Measurements to Assess the Aging Stage of Maraging 250 Steel

    NASA Astrophysics Data System (ADS)

    Snir, Y.; Pinkas, M.; Gelbstein, Y.; Yeheskel, O.; Landau, A.

    2008-02-01

    Thermoelectric power (TEP) measurements had been proved as an effective method for evaluating the metallurgical state of various alloys. The current work was conducted in order to evaluate the influence of the aging state of Maraging 250 steel on TEP values. Commercial Maraging 250 steel was aged at 500 °C for 0.5-6 hours (hrs). TEP, hardness (Rc) and ultrasonic (US) measurements, were preformed on the as received and aged specimens. XRD measurements were used to identify the formation of precipitates (mainly Ni3(Ti,Mo)), reverted austenite and to evaluate changes in the microstrain caused by the precipitation process. A correlation was found between the TEP and the various measurements as a function of the aging time.

  12. APPLYING TEP MEASUREMENTS TO ASSESS THE AGING STAGE OF MARAGING 250 STEEL

    SciTech Connect

    Snir, Y.; Gelbstein, Y.; Pinkas, M.; Yeheskel, O.; Landau, A.

    2008-02-28

    Thermoelectric power (TEP) measurements had been proved as an effective method for evaluating the metallurgical state of various alloys. The current work was conducted in order to evaluate the influence of the aging state of Maraging 250 steel on TEP values. Commercial Maraging 250 steel was aged at 500 deg. C for 0.5-6 hours (hrs). TEP, hardness (Rc) and ultrasonic (US) measurements, were preformed on the as received and aged specimens. XRD measurements were used to identify the formation of precipitates (mainly Ni{sub 3}(Ti,Mo)), reverted austenite and to evaluate changes in the microstrain caused by the precipitation process. A correlation was found between the TEP and the various measurements as a function of the aging time.

  13. Element selective detection of molecular species applying chromatographic techniques and diode laser atomic absorption spectrometry.

    PubMed

    Kunze, K; Zybin, A; Koch, J; Franzke, J; Miclea, M; Niemax, K

    2004-12-01

    Tunable diode laser atomic absorption spectroscopy (DLAAS) combined with separation techniques and atomization in plasmas and flames is presented as a powerful method for analysis of molecular species. The analytical figures of merit of the technique are demonstrated by the measurement of Cr(VI) and Mn compounds, as well as molecular species including halogen atoms, hydrogen, carbon and sulfur. PMID:15561625

  14. Integrating Cognitive Behavioral and Applied Behavior Techniques With Dysfunctional Family Behavior.

    ERIC Educational Resources Information Center

    Barrish, I. J.

    Families experiencing severe conflict are often unable to effectively implement applied behavioral procedures due to interfering emotional responses (anger, blaming, anxiety and depression) and behavioral responses (yelling, crying and physical fighting), which often reduce effective implementation of applied behavioral procedures. Specific…

  15. Critical action research applied in clinical placement development in aged care facilities.

    PubMed

    Xiao, Lily D; Kelton, Moira; Paterson, Jan

    2012-12-01

    The aim of this study was to develop quality clinical placements in residential aged care facilities for undergraduate nursing students undertaking their nursing practicum topics. The proportion of people aged over 65 years is expected to increase steadily from 13% in 2006 to 26% of the total population in Australia in 2051. However, when demand is increasing for a nursing workforce competent in the care of older people, studies have shown that nursing students generally lack interest in working with older people. The lack of exposure of nursing students to quality clinical placements is one of the key factors contributing to this situation. Critical action research built on a partnership between an Australian university and five aged care organisations was utilised. A theoretical framework informed by Habermas' communicative action theory was utilised to guide the action research. Multiple research activities were used to support collaborative critical reflection and inform actions throughout the action research. Clinical placements in eight residential aged care facilities were developed to support 179 nursing students across three year-levels to complete their practicum topics. Findings were presented in three categories described as structures developed to govern clinical placement, learning and teaching in residential aged care facilities. PMID:23134277

  16. The Chemistry of Paper Preservation: Part 1. The Aging of Paper and Conservation Techniques

    NASA Astrophysics Data System (ADS)

    Carter, Henry A.

    1996-05-01

    This study provides an introduction to the problem of the aging of paper and the conservation techniques that are currently being employed in paper preservation. The chemical reactions that are responsible for the aging of paper are discussed with the conclusion that acid-catalyzed hydrolysis is the predominant mechanism for cellulose degradation and strength loss. A description and the chemistry of a number of mass deacidification methods are presented. The more viable deacidification methods include the DEZ, Wei T'o, FMC, Bookkeeper, Viennese, Book Preservation Associates, Sable and the Batelle processes. A summary of the literature on the evaluations of these processes is presented, and the benefits and limitations of the mass deacidification methods are discussed. Other conservation techniques such as paper strengthening, conservation bleaching, and pest control are briefly introduced, followed by an introduction to alkaline papermaking.

  17. A multiblock grid generation technique applied to a jet engine configuration

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    1992-01-01

    Techniques are presented for quickly finding a multiblock grid for a 2D geometrically complex domain from geometrical boundary data. An automated technique for determining a block decomposition of the domain is explained. Techniques for representing this domain decomposition and transforming it are also presented. Further, a linear optimization method may be used to solve the equations which determine grid dimensions within the block decomposition. These algorithms automate many stages in the domain decomposition and grid formation process and limit the need for human intervention and inputs. They are demonstrated for the meridional or throughflow geometry of a bladed jet engine configuration.

  18. Rigid Intramedullary Nailing of Femoral Shaft Fractures for Patients Age 12 and Younger: Indications and Technique.

    PubMed

    Martus, Jeffrey E

    2016-06-01

    Femoral shaft fractures are common injuries in the pediatric and adolescent age groups. Rigid intramedullary nailing is an excellent treatment option for older children and adolescents, particularly for length-unstable fractures and larger patients (>49 kg). Appropriate indications, contraindications, and preoperative assessment are described. The rigid nailing surgical technique is detailed including positioning, operative steps, pearls, and pitfalls. Complications and the reported outcomes of lateral trochanteric entry nailing are reviewed from the published series. PMID:27100036

  19. Nde of Advanced Automotive Composite Materials that Apply Ultrasound Infrared Thermography Technique

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Hyun; Park, Soo-Keun; Kim, Jae-Yeol

    The infrared thermographic nondestructive inspection technique is a quality inspection and stability assessment method used to diagnose the physical characteristics and defects by detecting the infrared ray radiated from the object without destructing it. Recently, the nondestructive inspection and assessment that use the ultrasound-infrared thermography technique are widely adopted in diverse areas. The ultrasound-infrared thermography technique uses the phenomenon that the ultrasound wave incidence to an object with cracks or defects on its mating surface generates local heat on the surface. The car industry increasingly uses composite materials for their lightweight, strength, and environmental resistance. In this study, the car piston passed through the ultrasound-infrared thermography technique for nondestructive testing, among the composite material car parts. This study also examined the effects of the frequency and power to optimize the nondestructive inspection.

  20. Applying image transformation and classification techniques to airborne hyperspectral imagery for mapping Ashe juniper infestations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ashe juniper (Juniperus ashei Buchholz), in excessive coverage, reduces forage production, interferes with livestock management, and degrades watersheds and wildlife habitat in infested rangelands. The objective of this study was to apply minimum noise fraction (MNF) transformation and different cla...

  1. Comparison of oxide measurement techniques applied to Ti6Al4V

    SciTech Connect

    Reissig, L.; Czubayko, U.; Wanderka, N.; Voelkl, R.; Glatzel, U. . E-mail: uwe.glatzel@uni-bayreuth.de

    2005-08-15

    Titanium and his alloys can solve high amounts of oxygen, which generally worsen mechanical properties. This paper compares energy dispersive X-ray analysis, three-dimensional-atom-probe and carrier-gas-hot-extraction as techniques in order to quantify the oxygen content in commercial grade titanium alloys. Assets and drawbacks of the techniques are pointed out. Oxygen enrichment by machining processes is verified in the drill hole of automotive connecting rod.

  2. Error analysis of the phase-shifting technique when applied to shadow moire

    SciTech Connect

    Han, Changwoon; Han Bongtae

    2006-02-20

    An exact solution for the intensity distribution of shadow moire fringes produced by a broad spectrum light is presented. A mathematical study quantifies errors in fractional fringe orders determined by the phase-shifting technique, and its validity is corroborated experimentally. The errors vary cyclically as the distance between the reference grating and the specimen increases. The amplitude of the maximum error is approximately 0.017 fringe, which defines the theoretical limit of resolution enhancement offered by the phase-shifting technique.

  3. The radiation techniques of tomotherapy & intensity-modulated radiation therapy applied to lung cancer

    PubMed Central

    Zhu, Zhengfei

    2015-01-01

    Radiotherapy (RT) plays an important role in the management of lung cancer. Development of radiation techniques is a possible way to improve the effect of RT by reducing toxicities through better sparing the surrounding normal tissues. This article will review the application of two forms of intensity-modulated radiation therapy (IMRT), fixed-field IMRT and helical tomotherapy (HT) in lung cancer, including dosimetric and clinical studies. The advantages and potential disadvantages of these two techniques are also discussed. PMID:26207214

  4. Fiber Bragg Gratings, IT Techniques and Strain Gauge Validation for Strain Calculation on Aged Metal Specimens

    PubMed Central

    Montero, Ander; de Ocariz, Idurre Saez; Lopez, Ion; Venegas, Pablo; Gomez, Javier; Zubia, Joseba

    2011-01-01

    This paper studies the feasibility of calculating strains in aged F114 steel specimens with Fiber Bragg Grating (FBG) sensors and infrared thermography (IT) techniques. Two specimens have been conditioned under extreme temperature and relative humidity conditions making comparative tests of stress before and after aging using different adhesives. Moreover, a comparison has been made with IT techniques and conventional methods for calculating stresses in F114 steel. Implementation of Structural Health Monitoring techniques on real aircraft during their life cycle requires a study of the behaviour of FBG sensors and their wiring under real conditions, before using them for a long time. To simulate aging, specimens were stored in a climate chamber at 70 °C and 90% RH for 60 days. This study is framed within the Structural Health Monitoring (SHM) and Non Destructuve Evaluation (NDE) research lines, integrated into the avionics area maintained by the Aeronautical Technologies Centre (CTA) and the University of the Basque Country (UPV/EHU). PMID:22346619

  5. Fiber Bragg Gratings, IT techniques and strain gauge validation for strain calculation on aged metal specimens.

    PubMed

    Montero, Ander; de Ocariz, Idurre Saez; Lopez, Ion; Venegas, Pablo; Gomez, Javier; Zubia, Joseba

    2011-01-01

    This paper studies the feasibility of calculating strains in aged F114 steel specimens with Fiber Bragg Grating (FBG) sensors and infrared thermography (IT) techniques. Two specimens have been conditioned under extreme temperature and relative humidity conditions making comparative tests of stress before and after aging using different adhesives. Moreover, a comparison has been made with IT techniques and conventional methods for calculating stresses in F114 steel. Implementation of Structural Health Monitoring techniques on real aircraft during their life cycle requires a study of the behaviour of FBG sensors and their wiring under real conditions, before using them for a long time. To simulate aging, specimens were stored in a climate chamber at 70 °C and 90% RH for 60 days. This study is framed within the Structural Health Monitoring (SHM) and Non Destructuve Evaluation (NDE) research lines, integrated into the avionics area maintained by the Aeronautical Technologies Centre (CTA) and the University of the Basque Country (UPV/EHU). PMID:22346619

  6. UPb ages of zircon rims: A new analytical method using the air-abrasion technique

    USGS Publications Warehouse

    Aleinikoff, J.N.; Winegarden, D.L.; Walter, M.

    1990-01-01

    We present a new technique for directly dating, by conventional techniques, the rims of zircons. Several circumstances, such as a xenocrystic or inherited component in igneous zircon and metamorphic overgrowths on igneous cores, can result in grains with physically distinct age components. Pneumatic abrasion has been previously shown by Krogh to remove overgrowths and damaged areas of zircon, leaving more resistant and isotopically less disturbed parts available for analysis. A new abrader design, which is capable of very gently grinding only tips and interfacial edges of even needle-like grains, permits easy collection of abraded material for dating. Five examples demonstrate the utility of the "dust-collecting" technique, including two studies that compare conventional, ion microprobe and abrader data. Common Pb may be strongly concentrated in the outermost zones of many zircons and this Pb is not easily removed by leaching (even in weak HF). Thus, the benefit of removing only the outermost zones (and avoiding mixing of age components) is somewhat compromised by the much higher common Pb contents which result in less precise age determinations. A very brief abrasion to remove the high common Pb zones prior to collection of material for dating is selected. ?? 1990.

  7. Image processing techniques applied to the detection of optic disk: a comparison

    NASA Astrophysics Data System (ADS)

    Kumari, Vijaya V.; Narayanan, Suriya N.

    2010-02-01

    In retinal image analysis, the detection of optic disk is of paramount importance. It facilitates the tracking of various anatomical features and also in the extraction of exudates, drusens etc., present in the retina of human eye. The health of retina crumbles with age in some people during the presence of exudates causing Diabetic Retinopathy. The existence of exudates increases the risk for age related macular Degeneration (AMRD) and it is the leading cause for blindness in people above the age of 50.A prompt diagnosis when the disease is at the early stage can help to prevent irreversible damages to the diabetic eye. Screening to detect diabetic retinopathy helps to prevent the visual loss. The optic disk detection is the rudimentary requirement for the screening. In this paper few methods for optic disk detection were compared which uses both the properties of optic disk and model based approaches. They are uniquely used to give accurate results in the retinal images.

  8. Synchroton and Simulations Techniques Applied to Problems in Materials Science: Catalysts and Azul Maya Pigments

    SciTech Connect

    Chianelli, R.

    2005-01-12

    Development of synchrotron techniques for the determination of the structure of disordered, amorphous and surface materials has exploded over the past twenty years due to the increasing availability of high flux synchrotron radiation and the continuing development of increasingly powerful synchrotron techniques. These techniques are available to materials scientists who are not necessarily synchrotron scientists through interaction with effective user communities that exist at synchrotrons such as the Stanford Synchrotron Radiation Laboratory (SSRL). In this article we review the application of multiple synchrotron characterization techniques to two classes of materials defined as ''surface compounds.'' One class of surface compounds are materials like MoS{sub 2-x}C{sub x} that are widely used petroleum catalysts used to improve the environmental properties of transportation fuels. These compounds may be viewed as ''sulfide supported carbides'' in their catalytically active states. The second class of ''surface compounds'' is the ''Maya Blue'' pigments that are based on technology created by the ancient Maya. These compounds are organic/inorganic ''surface complexes'' consisting of the dye indigo and palygorskite, a common clay. The identification of both surface compounds relies on the application of synchrotron techniques as described in this report.

  9. Pulsed remote field eddy current technique applied to non-magnetic flat conductive plates

    NASA Astrophysics Data System (ADS)

    Yang, Binfeng; Zhang, Hui; Zhang, Chao; Zhang, Zhanbin

    2013-12-01

    Non-magnetic metal plates are widely used in aviation and industrial applications. The detection of cracks in thick plate structures, such as multilayered structures of aircraft fuselage, has been challenging in nondestructive evaluation societies. The remote field eddy current (RFEC) technique has shown advantages of deep penetration and high sensitivity to deeply buried anomalies. However, the RFEC technique is mainly used to evaluate ferromagnetic tubes. There are many problems that should be fixed before the expansion and application of this technique for the inspection of non-magnetic conductive plates. In this article, the pulsed remote field eddy current (PRFEC) technique for the detection of defects in non-magnetic conducting plates was investigated. First, the principle of the PRFEC technique was analysed, followed by the analysis of the differences between the detection of defects in ferromagnetic and non-magnetic plain structures. Three different models of the PRFEC probe were simulated using ANSYS. The location of the transition zone, defect detection sensitivity and the ability to detect defects in thick plates using three probes were analysed and compared. The simulation results showed that the probe with a ferrite core had the highest detecting ability. The conclusions derived from the simulation study were also validated by conducting experiments.

  10. Reformulation linearization technique based branch-and-reduce approach applied to regional water supply system planning

    NASA Astrophysics Data System (ADS)

    Lan, Fujun; Bayraksan, Güzin; Lansey, Kevin

    2016-03-01

    A regional water supply system design problem that determines pipe and pump design parameters and water flows over a multi-year planning horizon is considered. A non-convex nonlinear model is formulated and solved by a branch-and-reduce global optimization approach. The lower bounding problem is constructed via a three-pronged effort that involves transforming the space of certain decision variables, polyhedral outer approximations, and the Reformulation Linearization Technique (RLT). Range reduction techniques are employed systematically to speed up convergence. Computational results demonstrate the efficiency of the proposed algorithm; in particular, the critical role range reduction techniques could play in RLT based branch-and-bound methods. Results also indicate using reclaimed water not only saves freshwater sources but is also a cost-effective non-potable water source in arid regions. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/0305215X.2015.1016508.

  11. Reliability of the Ultrasonic Technique Applied to Detection of Pipe Weld Defects

    NASA Astrophysics Data System (ADS)

    Rebello, J. M. A.; Carvalho, A. A.; Sagrilo, L. V. S.; Soares, S. D.

    2007-03-01

    The objective of this work is to evaluate the reliability of the ultrasonic nondestructive test technique (NDT), for specific test conditions, using POD (probability of detection) curves developed by experimental procedures. Two classes of defects, lack of penetration (LP) and lack of fusion (LF) were intentionally inserted in 24 weld beads belonging to 4 API X70 steel pipeline specimens with an outer diameter of 254mm and wall thickness of 19.05mm. These specimens were inspected using manual and automatic ultrasonic techniques. The results, besides producing real POD curves, showed the superiority of the automatic techniques over the manual test in the probability of detection of these two classes of defects.

  12. Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch

    SciTech Connect

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2010-01-15

    Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

  13. Monitoring gypsy moth defoliation by applying change detection techniques to Landsat imagery

    NASA Technical Reports Server (NTRS)

    Williams, D. L.; Stauffer, M. L.

    1978-01-01

    The overall objective of a research effort at NASA's Goddard Space Flight Center is to develop and evaluate digital image processing techniques that will facilitate the assessment of the intensity and spatial distribution of forest insect damage in Northeastern U.S. forests using remotely sensed data from Landsats 1, 2 and C. Automated change detection techniques are presently being investigated as a method of isolating the areas of change in the forest canopy resulting from pest outbreaks. In order to follow the change detection approach, Landsat scene correction and overlay capabilities are utilized to provide multispectral/multitemporal image files of 'defoliation' and 'nondefoliation' forest stand conditions.

  14. Innovative vibration technique applied to polyurethane foam as a viable substitute for conventional fatigue testing

    NASA Astrophysics Data System (ADS)

    Peralta, Alexander; Just-Agosto, Frederick; Shafiq, Basir; Serrano, David

    2012-12-01

    Lifetime prediction using three-point bending (TPB) can at times be prohibitively time consuming and costly, whereas vibration testing at higher frequency may potentially save time and revenue. A vibration technique that obtains lifetimes that reasonably match those determined under flexural TPB fatigue is developed. The technique designs the specimen with a procedure based on shape optimization and finite element analysis. When the specimen is vibrated in resonance, a stress pattern that mimics the stress pattern observed under conventional TPB fatigue testing is obtained. The proposed approach was verified with polyurethane foam specimens, resulting in an average error of 4.5% when compared with TPB.

  15. Validation and qualification of surface-applied fibre optic strain sensors using application-independent optical techniques

    NASA Astrophysics Data System (ADS)

    Schukar, Vivien G.; Kadoke, Daniel; Kusche, Nadine; Münzenberger, Sven; Gründer, Klaus-Peter; Habel, Wolfgang R.

    2012-08-01

    Surface-applied fibre optic strain sensors were investigated using a unique validation facility equipped with application-independent optical reference systems. First, different adhesives for the sensor's application were analysed regarding their material properties. Measurements resulting from conventional measurement techniques, such as thermo-mechanical analysis and dynamic mechanical analysis, were compared with measurements resulting from digital image correlation, which has the advantage of being a non-contact technique. Second, fibre optic strain sensors were applied to test specimens with the selected adhesives. Their strain-transfer mechanism was analysed in comparison with conventional strain gauges. Relative movements between the applied sensor and the test specimen were visualized easily using optical reference methods, digital image correlation and electronic speckle pattern interferometry. Conventional strain gauges showed limited opportunities for an objective strain-transfer analysis because they are also affected by application conditions.

  16. Applying Hypnosis to Treat Problems in School-Age Children: Reviewing Science and Debunking Myths

    ERIC Educational Resources Information Center

    Perfect, Michelle M.; McClung, Ashley A.; Bressette, Keri A.

    2013-01-01

    Clinical hypnosis, defined as a "therapeutic technique in which clinicians make suggestions to individuals who have undergone a procedure designed to relax them and focus their minds" (American Psychological Association, n.d.), is a relaxation-based tool that has uses in the treatment of anxiety, pain, and a range of stress-related…

  17. Applying Gaming and Simulation Techniques to the Design of Online Instruction

    ERIC Educational Resources Information Center

    Rude-Parkins, Carolyn; Miller, Karen Hughes; Ferguson, Karen; Bauer, Robert

    2006-01-01

    Critical in virtually all educational arenas, gaming and simulation techniques and distance learning are major areas of interest in today's U.S. Army training. The U.S. Army Armor School at Ft. Knox, KY contracted with the University of Louisville and Northrop Grumman Mission Systems in 2003 to develop online training for Army Captains. They…

  18. Eddy current technique applied to the nondestructive evaluation of turbine blade wall thickness

    NASA Astrophysics Data System (ADS)

    Le Bihan, Yann; Joubert, Pierre-Yves; Placko, Dominique

    2000-05-01

    The high pressure turbine blades of jet engines show internal channels designed for air cooling. These recesses define the internal walls (partitions) and external walls of the blade. The external wall thickness is a critical parameter which has to be systematically checked in order to ensure the blade strength. The thickness evaluation is usually lead by ultrasonic technique or by X-ray tomography. Nevertheless, both techniques present some drawbacks related to measurement speed and automation capability. These drawbacks are bypassed by the eddy current (EC) technique, well known for its robustness and reliability. However, the wall thickness evaluation is made difficult because of the complexity of the blade geometry. In particular, some disturbances appear in the thickness evaluation because of the partitions, which exclude the use of classical EC probes such as cup-core probe. In this paper, we show the main advantages of probes creating an uniformly oriented magnetic field in order to reduce the partition disturbances. Furthermore, we propose a measurement process allowing to separate the wall thickness parameter from the EC signals. Finally, we present some experimental results validating the proposed technique.

  19. X-ray micro-beam techniques and phase contrast tomography applied to biomaterials

    NASA Astrophysics Data System (ADS)

    Fratini, Michela; Campi, Gaetano; Bukreeva, Inna; Pelliccia, Daniele; Burghammer, Manfred; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Cedola, Alessia

    2015-12-01

    A deeper comprehension of the biomineralization (BM) process is at the basis of tissue engineering and regenerative medicine developments. Several in-vivo and in-vitro studies were dedicated to this purpose via the application of 2D and 3D diagnostic techniques. Here, we develop a new methodology, based on different complementary experimental techniques (X-ray phase contrast tomography, micro-X-ray diffraction and micro-X-ray fluorescence scanning technique) coupled to new analytical tools. A qualitative and quantitative structural investigation, from the atomic to the micrometric length scale, is obtained for engineered bone tissues. The high spatial resolution achieved by X-ray scanning techniques allows us to monitor the bone formation at the first-formed mineral deposit at the organic-mineral interface within a porous scaffold. This work aims at providing a full comprehension of the morphology and functionality of the biomineralization process, which is of key importance for developing new drugs for preventing and healing bone diseases and for the development of bio-inspired materials.

  20. A comparison of automatic filtering techniques applied to biomechanical walking data.

    PubMed

    Giakas, G; Baltzopoulos, V

    1997-08-01

    The purpose of this study was to compare and evaluate six automatic filtering techniques commonly used in biomechanics for filtering gait analysis kinematic signals namely: (1) power spectrum (signal-to-noise ratio) assessment; (2) generalised cross validation spline; (3) least-squares cubic splines; (4) regularisation of Fourier series; (5) regression model and (6) residual analysis. A battery of 1440 signals representing the displacements of seven markers attached upon the surface of the right lower limbs and one marker attached upon the surface of the sacrum during walking were used; their original signal and added noise characteristics were known a priori. The signals were filtered with every technique and the root mean square error between the filtered and reference signal was calculated for each derivative domain. Results indicated that among the investigated techniques there is not one that performs best in all the cases studied. Generally, the techniques of power spectrum estimation, least-squares cubic splines and generalised cross validation produced the most acceptable results. PMID:9239571

  1. Wavelet Techniques Applied to Modeling Transitional/Turbulent Flows in Turbomachinery

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Computer simulation is an essential part of the design and development of jet engines for the aeropropulsion industry. Engineers concerned with calculating the flow in jet engine components, such as compressors and turbines, need simple engineering models that accurately describe the complex flow of air and gases and that allow them to quickly estimate loads, losses, temperatures, and other design parameters. In this ongoing collaborative project, advanced wavelet analysis techniques are being used to gain insight into the complex flow phenomena. These insights, which cannot be achieved by commonly used methods, are being used to develop innovative new flow models and to improve existing ones. Wavelet techniques are very suitable for analyzing the complex turbulent and transitional flows pervasive in jet engines. These flows are characterized by intermittency and a multitude of scales. Wavelet analysis results in information about these scales and their locations. The distribution of scales is equivalent to the frequency spectrum provided by commonly used Fourier analysis techniques; however, no localization information is provided by Fourier analysis. In addition, wavelet techniques allow conditional sampling analyses of the individual scales, which is not possible by Fourier methods.

  2. PRACTICAL SENSITIVITY AND UNCERTAINTY ANALYSIS TECHNIQUES APPLIED TO AGRICULTURAL SYSTEMS MODELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present a practical evaluation framework for analysis of two complex, process-based agricultural system models, WEPP and RZWQM. The evaluation framework combines sensitivity analysis and the uncertainty analysis techniques of first order error analysis (FOA) and Monte Carlo simulation with Latin ...

  3. Applying Web Usability Techniques to Assess Student Awareness of Library Web Resources

    ERIC Educational Resources Information Center

    Krueger, Janice; Ray, Ron L.; Knight, Lorrie

    2004-01-01

    The authors adapted Web usability techniques to assess student awareness of their library's Web site. Students performed search tasks using a Web browser. Approaches were categorized according to a student's preference for, and success with, the library's Web resources. Forty-five percent of the students utilized the library's Web site as first…

  4. A comparison of model-based and hyperbolic localization techniques as applied to marine mammal calls

    NASA Astrophysics Data System (ADS)

    Tiemann, Christopher O.; Porter, Michael B.

    2003-10-01

    A common technique for the passive acoustic localization of singing marine mammals is that of hyperbolic fixing. This technique assumes straight-line, constant wave speed acoustic propagation to associate travel time with range, but in some geometries, these assumptions can lead to localization errors. A new localization algorithm based on acoustic propagation models can account for waveguide and multipath effects, and it has successfully been tested against real acoustic data from three different environments (Hawaii, California, and Bahamas) and three different species (humpback, blue, and sperm whales). Accuracy of the model-based approach has been difficult to verify given the absence of concurrent visual and acoustic observations of the same animal. However, the model-based algorithm was recently exercised against a controlled source of known position broadcasting recorded whale sounds, and location estimates were then compared to hyperbolic techniques and true source position. In geometries where direct acoustic paths exist, both model-based and hyperbolic techniques perform equally well. However, in geometries where bathymetric and refractive effects are important, such as at long range, the model-based approach shows improved accuracy.

  5. Time-lapse motion picture technique applied to the study of geological processes

    USGS Publications Warehouse

    Miller, R.D.; Crandell, D.R.

    1959-01-01

    Light-weight, battery-operated timers were built and coupled to 16-mm motion-picture cameras having apertures controlled by photoelectric cells. The cameras were placed adjacent to Emmons Glacier on Mount Rainier. The film obtained confirms the view that exterior time-lapse photography can be applied to the study of slow-acting geologic processes.

  6. Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM

    ERIC Educational Resources Information Center

    Warner, Rebecca M.

    2007-01-01

    This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…

  7. Applying the Management-by-Objectives Technique in an Industrial Library

    ERIC Educational Resources Information Center

    Stanton, Robert O.

    1975-01-01

    An experimental "management-by-objectives" performance system was operated by the Libraries and Information Systems Center of Bell Laboratories during 1973. It was found that, though the system was very effective for work planning and the development of people, difficulties were encountered in applying it to certain classes of employees. (Author)

  8. Impediments to applying the 'dignity of risk' principle in residential aged care services.

    PubMed

    Ibrahim, Joseph E; Davis, Marie-Claire

    2013-09-01

    This discussion paper identifies four core factors currently impeding the application of the dignity of risk principle in residential aged care settings in Victoria, Australia: the fluctuating decision-making ability of residents; multiple participants in decision-making; discordance between espoused values and actions; and confusion and fear around legal responsibilities of care providers. Potential solutions identified include a conceptual shift in approach and consensus between key stakeholders, as well as more tangible solutions such as education and point-of-care decision support tools. PMID:24028460

  9. CORDIC algorithm based digital detection technique applied in resonator fiber optic gyroscope

    NASA Astrophysics Data System (ADS)

    Yang, Zhihuai; Jin, Xiaojun; Ma, Huilian; Jin, Zhonghe

    2009-06-01

    A digital detection technique based on the coordinate rotation digital computer (CORDIC) algorithm is proposed for a resonator fiber optic gyroscope (R-FOG). It makes the generation of modulation signal, synchronous demodulation and signal processing in R-FOG to be realized in a single field programmable gate array (FPGA). The frequency synthesis and synchronous detection techniques based on the CORDIC algorithm have been analyzed and designed firstly. The experimental results indicate that the precision of the detection circuit satisfies the requirements for the closed-loop feedback in R-FOG system. The frequency of the laser is locked to the resonance frequency of the fiber ring resonator stably and the open-loop gyro output signal is observed successfully. The dynamic range and the bias drift of the R-FOG are ±1.91 rad/s and 0.005 rad/s over 10 s, respectively.

  10. Speckle interferometric techniques applied to the observation of the solar photosphere

    NASA Astrophysics Data System (ADS)

    Aime, C.; Ricort, G.

    1980-01-01

    Speckle interferometric techniques are used to study the solar granulation. Calibration of the effects of atmospheric turbulence is performed by using either the difference in behavior between redundant and non redundant apertures in presence of atmospheric turbulence, or by analysing moon-limb blurring during a solar eclipse, or by using the changes in seeing conditions during speckle-interferometric measurements. These techniques require a theoretical knowledge of the effects of atmospheric turbulence on the modulation transfer function (M.T.F.) of the image as it is impractical to use an unresolved star near the sun as a reference source during day time observations. The agreement between the experimental M.T.F. obtained with an unresolved star and the theoretical form deduced from Korff's log-normal assumptions is extended to day time conditions.

  11. Magnetic Resonance Techniques Applied to the Diagnosis and Treatment of Parkinson's Disease.

    PubMed

    de Celis Alonso, Benito; Hidalgo-Tobón, Silvia S; Menéndez-González, Manuel; Salas-Pacheco, José; Arias-Carrión, Oscar

    2015-01-01

    Parkinson's disease (PD) affects at least 10 million people worldwide. It is a neurodegenerative disease, which is currently diagnosed by neurological examination. No neuroimaging investigation or blood biomarker is available to aid diagnosis and prognosis. Most effort toward diagnosis using magnetic resonance (MR) has been focused on the use of structural/anatomical neuroimaging and diffusion tensor imaging (DTI). However, deep brain stimulation, a current strategy for treating PD, is guided by MR imaging (MRI). For clinical prognosis, diagnosis, and follow-up investigations, blood oxygen level-dependent MRI, DTI, spectroscopy, and transcranial magnetic stimulation have been used. These techniques represent the state of the art in the last 5 years. Here, we focus on MR techniques for the diagnosis and treatment of Parkinson's disease. PMID:26191037

  12. Modelling laser speckle photographs of decayed teeth by applying a digital image information technique

    NASA Astrophysics Data System (ADS)

    Ansari, M. Z.; da Silva, L. C.; da Silva, J. V. P.; Deana, A. M.

    2016-09-01

    We report on the application of a digital image model to assess early carious lesions on teeth. When decay is in its early stages, the lesions were illuminated with a laser and the laser speckle images were obtained. Due to the differences in the optical properties between healthy and carious tissue, both regions produced different scatter patterns. The digital image information technique allowed us to produce colour-coded 3D surface plots of the intensity information in the speckle images, where the height (on the z-axis) and the colour in the rendering correlate with the intensity of a pixel in the image. The quantitative changes in colour component density enhance the contrast between the decayed and sound tissue, and visualization of the carious lesions become significantly evident. Therefore, the proposed technique may be adopted in the early diagnosis of carious lesions.

  13. Magnetic Resonance Techniques Applied to the Diagnosis and Treatment of Parkinson’s Disease

    PubMed Central

    de Celis Alonso, Benito; Hidalgo-Tobón, Silvia S.; Menéndez-González, Manuel; Salas-Pacheco, José; Arias-Carrión, Oscar

    2015-01-01

    Parkinson’s disease (PD) affects at least 10 million people worldwide. It is a neurodegenerative disease, which is currently diagnosed by neurological examination. No neuroimaging investigation or blood biomarker is available to aid diagnosis and prognosis. Most effort toward diagnosis using magnetic resonance (MR) has been focused on the use of structural/anatomical neuroimaging and diffusion tensor imaging (DTI). However, deep brain stimulation, a current strategy for treating PD, is guided by MR imaging (MRI). For clinical prognosis, diagnosis, and follow-up investigations, blood oxygen level-dependent MRI, DTI, spectroscopy, and transcranial magnetic stimulation have been used. These techniques represent the state of the art in the last 5 years. Here, we focus on MR techniques for the diagnosis and treatment of Parkinson’s disease. PMID:26191037

  14. A fast technique applied to the analysis of Resistive Wall Modes with 3D conducting structures

    SciTech Connect

    Rubinacci, Guglielmo Liu, Yueqiang

    2009-03-20

    This paper illustrates the development of a 'fast' technique for the analysis of Resistive Wall Modes (RWMs) in fusion devices with three-dimensional conducting structures, by means of the recently developed CarMa code. Thanks to its peculiar features, the computational cost scales almost linearly with the number of discrete unknowns. Some large scale problems are solved in configurations of interest for the International Thermonuclear Experimental Reactor (ITER)

  15. Automated Boundary-Extraction and Region-Growing Techniques Applied to Solar Magnetograms

    NASA Technical Reports Server (NTRS)

    McAteer, R. T. James; Gallagher, Peter; Ireland, Jack; Young, C Alex

    2005-01-01

    We present an automated approach to active region extraction from full disc MDI longitudinal magnetograms. This uses a region-growing technique in conjunction with boundary-extraction to define a number of enclosed contours as belonging to separate regions of magnetic significance on the solar disc. This provides an objective definition of active regions and areas of plage on the Sun. A number of parameters relating to the flare-potential of each region is discussed.

  16. Vibrational techniques applied to photosynthesis: Resonance Raman and fluorescence line-narrowing.

    PubMed

    Gall, Andrew; Pascal, Andrew A; Robert, Bruno

    2015-01-01

    Resonance Raman spectroscopy may yield precise information on the conformation of, and the interactions assumed by, the chromophores involved in the first steps of the photosynthetic process. Selectivity is achieved via resonance with the absorption transition of the chromophore of interest. Fluorescence line-narrowing spectroscopy is a complementary technique, in that it provides the same level of information (structure, conformation, interactions), but in this case for the emitting pigment(s) only (whether isolated or in an ensemble of interacting chromophores). The selectivity provided by these vibrational techniques allows for the analysis of pigment molecules not only when they are isolated in solvents, but also when embedded in soluble or membrane proteins and even, as shown recently, in vivo. They can be used, for instance, to relate the electronic properties of these pigment molecules to their structure and/or the physical properties of their environment. These techniques are even able to follow subtle changes in chromophore conformation associated with regulatory processes. After a short introduction to the physical principles that govern resonance Raman and fluorescence line-narrowing spectroscopies, the information content of the vibrational spectra of chlorophyll and carotenoid molecules is described in this article, together with the experiments which helped in determining which structural parameter(s) each vibrational band is sensitive to. A selection of applications is then presented, in order to illustrate how these techniques have been used in the field of photosynthesis, and what type of information has been obtained. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. PMID:25268562

  17. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples

    NASA Technical Reports Server (NTRS)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.

    2015-01-01

    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  18. A photoacoustic technique applied to detection of ethylene emissions in edible coated passion fruit

    NASA Astrophysics Data System (ADS)

    Alves, G. V. L.; dos Santos, W. C.; Waldman, W. R.; Oliveira, J. G.; Vargas, H.; da Silva, M. G.

    2010-03-01

    Photoacoustic spectroscopy was applied to study the physiological behavior of passion fruit when coated with edible films. The results have shown a reduction of the ethylene emission rate. Weight loss monitoring has not shown any significant differences between the coated and uncoated passion fruit. On the other hand, slower color changes of coated samples suggest a slowdown of the ripening process in coated passion fruit.

  19. Computer Vision Techniques Applied to Space Object Detect, Track, ID, Characterize

    NASA Astrophysics Data System (ADS)

    Flewelling, B.

    2014-09-01

    Space-based object detection and tracking represents a fundamental step necessary for detailed analysis of space objects. Initial observations of a resident space object (RSO) may result from careful sensor tasking to observe an object with well understood dynamics, or measurements-of-opportunity on an object with poorly understood dynamics. Dim and eccentric objects present a particular challenge which requires more dynamic use of imaging systems. As a result of more stressing data acquisition strategies, advanced techniques for the accurate processing of both point and streaking sources are needed. This paper will focus on two key methods in computer vision used to determine interest points within imagery. The Harris Corner method and the method of Phase Congruency can be used to effectively extract static and streaking point sources and to indicate when apparent motion is present within an observation. The geometric inferences which can be made from the resulting detections will be discussed, including a method to evaluate the localization uncertainty of the extracted detections which is based on the computation of the Hessian of the detector response. Finally a technique which exploits the additional information found in detected streak endpoints to provide a better centroid in the presence of curved streaks is explained and additional applications for the presented techniques are discussed.

  20. Metal oxide collectors for storing matter technique applied in secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Miśnik, Maciej; Konarski, Piotr; Zawada, Aleksander

    2016-03-01

    We present results of the use of metal and metal oxide substrates that serve as collectors in 'storing matter', the quantitative technique of secondary ion mass spectrometry (SIMS). This technique allows separating the two base processes of secondary ion formation in SIMS. Namely, the process of ion sputtering is separated from the process of ionisation. The technique allows sputtering of the analysed sample and storing the sputtered material, with sub-monolayer coverage, onto a collector surface. Such deposits can be then analysed by SIMS, and as a result, the so called 'matrix effects' are significantly reduced. We perform deposition of the sputtered material onto Ti and Cu substrates and also onto metal oxide substrates as molybdenum, titanium, tin and indium oxides. The process of sputtering is carried within the same vacuum chamber where the SIMS analysis of the collected material is performed. For sputtering and SIMS analysis of the deposited material we use 5 keV Ar+ beam of 500 nA. The presented results are obtained with the use of stationary collectors. Here we present a case study of chromium. The obtained results show that the molybdenum and titanium oxide substrates used as collectors increase useful yield by two orders, with respect to such pure elemental collectors as Cu and Ti. Here we define useful yield as a ratio of the number of detected secondary ions during SIMS analysis and the number of atoms sputtered during the deposition process.

  1. Air flow measurement techniques applied to noise reduction of a centrifugal blower

    NASA Astrophysics Data System (ADS)

    Laage, John W.; Armstrong, Ashli J.; Eilers, Daniel J.; Olsen, Michael G.; Mann, J. Adin

    2005-09-01

    The air flow in a centrifugal blower was studied using a variety of flow and sound measurement techniques. The flow measurement techniques employed included Particle Image Velocimetry (PIV), pitot tubes, and a five hole spherical probe. PIV was used to measure instantaneous and ensemble-averaged velocity fields over large area of the outlet duct as a function of fan position, allowing for the visualization of the flow as it leave the fan blades and progressed downstream. The results from the flow measurements were reviewed along side the results of the sound measurements with the goal of identifying sources of noise and inefficiencies in flow performance. The radiated sound power was divided into broadband and tone noise and measures of the flow. The changes in the tone and broadband sound were compared to changes in flow quantities such as the turbulent kinetic energy and Reynolds stress. Results for each method will be presented to demonstrate the strengths of each flow measurement technique as well as their limitations. Finally, the role that each played in identifying noise sources is described.

  2. An efficient permeability scaling-up technique applied to the discretized flow equations

    SciTech Connect

    Urgelli, D.; Ding, Yu

    1997-08-01

    Grid-block permeability scaling-up for numerical reservoir simulations has been discussed for a long time in the literature. It is now recognized that a full permeability tensor is needed to get an accurate reservoir description at large scale. However, two major difficulties are encountered: (1) grid-block permeability cannot be properly defined because it depends on boundary conditions; (2) discretization of flow equations with a full permeability tensor is not straightforward and little work has been done on this subject. In this paper, we propose a new method, which allows us to get around both difficulties. As the two major problems are closely related, a global approach will preserve the accuracy. So, in the proposed method, the permeability up-scaling technique is integrated in the discretized numerical scheme for flow simulation. The permeability is scaled-up via the transmissibility term, in accordance with the fluid flow calculation in the numerical scheme. A finite-volume scheme is particularly studied, and the transmissibility scaling-up technique for this scheme is presented. Some numerical examples are tested for flow simulation. This new method is compared with some published numerical schemes for full permeability tensor discretization where the full permeability tensor is scaled-up through various techniques. Comparing the results with fine grid simulations shows that the new method is more accurate and more efficient.

  3. Applying Data-mining techniques to study drought periods in Spain

    NASA Astrophysics Data System (ADS)

    Belda, F.; Penades, M. C.

    2010-09-01

    Data-mining is a technique that it can be used to interact with large databases and to help in the discovery relations between parameters by extracting information from massive and multiple data archives. Drought affects many economic and social sectors, from agricultural to transportation, going through urban water deficit and the development of modern industries. With these problems and drought geographical and temporal distribution it's difficult to find a single definition of drought. Improving the understanding of the knowledge of climatic index is necessary to reduce the impacts of drought and to facilitate quick decisions regarding this problem. The main objective is to analyze drought periods from 1950 to 2009 in Spain. We use several kinds of information, different formats, sources and transmission mode. We use satellite-based Vegetation Index, dryness index for several temporal periods. We use daily and monthly precipitation and temperature data and soil moisture data from numerical weather model. We calculate mainly Standardized Precipitation Index (SPI) that it has been used amply in the bibliography. We use OLAP-Mining techniques to discovery of association rules between remote-sensing, numerical weather model and climatic index. Time series Data- Mining techniques organize data as a sequence of events, with each event having a time of recurrence, to cluster the data into groups of records or cluster with similar characteristics. Prior climatological classification is necessary if we want to study drought periods over all Spain.

  4. Quantification of material slippage in the iliotibial tract when applying the partial plastination clamping technique.

    PubMed

    Sichting, Freddy; Steinke, Hanno; Wagner, Martin F-X; Fritsch, Sebastian; Hädrich, Carsten; Hammer, Niels

    2015-09-01

    The objective of this study was to evaluate the potential of the partial plastination technique in minimizing material slippage and to discuss the effects on the tensile properties of thin dense connective tissue. The ends of twelve iliotibial tract samples were primed with polyurethane resin and covered by plastic plates to provide sufficient grip between the clamps. The central part of the samples remained in an anatomically unfixed condition. Strain data of twelve partially plastinated samples and ten samples in a completely anatomically unfixed state were obtained using uniaxial crosshead displacement and an optical image tracking technique. Testing of agreement between the strain data revealed ongoing but markedly reduced material slippage in partially plastinated samples compared to the unfixed samples. The mean measurement error introduced by material slippage was up to 18.0% in partially plastinated samples. These findings might complement existing data on measurement errors during material testing and highlight the importance of individual quantitative evaluation of errors that come along with self-made clamping techniques. PMID:26005842

  5. Assessment of ground-based monitoring techniques applied to landslide investigations

    NASA Astrophysics Data System (ADS)

    Uhlemann, S.; Smith, A.; Chambers, J.; Dixon, N.; Dijkstra, T.; Haslam, E.; Meldrum, P.; Merritt, A.; Gunn, D.; Mackay, J.

    2016-01-01

    A landslide complex in the Whitby Mudstone Formation at Hollin Hill, North Yorkshire, UK is periodically re-activated in response to rainfall-induced pore-water pressure fluctuations. This paper compares long-term measurements (i.e., 2009-2014) obtained from a combination of monitoring techniques that have been employed together for the first time on an active landslide. The results highlight the relative performance of the different techniques, and can provide guidance for researchers and practitioners for selecting and installing appropriate monitoring techniques to assess unstable slopes. Particular attention is given to the spatial and temporal resolutions offered by the different approaches that include: Real Time Kinematic-GPS (RTK-GPS) monitoring of a ground surface marker array, conventional inclinometers, Shape Acceleration Arrays (SAA), tilt meters, active waveguides with Acoustic Emission (AE) monitoring, and piezometers. High spatial resolution information has allowed locating areas of stability and instability across a large slope. This has enabled identification of areas where further monitoring efforts should be focused. High temporal resolution information allowed the capture of 'S'-shaped slope displacement-time behaviour (i.e. phases of slope acceleration, deceleration and stability) in response to elevations in pore-water pressures. This study shows that a well-balanced suite of monitoring techniques that provides high temporal and spatial resolutions on both measurement and slope scale is necessary to fully understand failure and movement mechanisms of slopes. In the case of the Hollin Hill landslide it enabled detailed interpretation of the geomorphological processes governing landslide activity. It highlights the benefit of regularly surveying a network of GPS markers to determine areas for installation of movement monitoring techniques that offer higher resolution both temporally and spatially. The small sensitivity of tilt meter measurements

  6. Comparison on three classification techniques for sex estimation from the bone length of Asian children below 19 years old: an analysis using different group of ages.

    PubMed

    Darmawan, M F; Yusuf, Suhaila M; Kadir, M R Abdul; Haron, H

    2015-02-01

    Sex estimation is used in forensic anthropology to assist the identification of individual remains. However, the estimation techniques tend to be unique and applicable only to a certain population. This paper analyzed sex estimation on living individual child below 19 years old using the length of 19 bones of left hand applied for three classification techniques, which were Discriminant Function Analysis (DFA), Support Vector Machine (SVM) and Artificial Neural Network (ANN) multilayer perceptron. These techniques were carried out on X-ray images of the left hand taken from an Asian population data set. All the 19 bones of the left hand were measured using Free Image software, and all the techniques were performed using MATLAB. The group of age "16-19" years old and "7-9" years old were the groups that could be used for sex estimation with as their average of accuracy percentage was above 80%. ANN model was the best classification technique with the highest average of accuracy percentage in the two groups of age compared to other classification techniques. The results show that each classification technique has the best accuracy percentage on each different group of age. PMID:25540897

  7. Effects of age, system experience, and navigation technique on driving with an advanced traveler information system.

    PubMed

    Dingus, T A; Hulse, M C; Mollenhauer, M A; Fleischman, R N; McGehee, D V; Manakkal, N

    1997-06-01

    This paper explores the effects of age, system experience, and navigation technique on driving, navigation performance, and safety for drivers who used TravTek, an Advanced Traveler Information System. The first two studies investigated various route guidance configurations on the road in a specially equipped instrumented vehicle with an experimenter present. The third was a naturalistic quasi-experimental field study that collected data unobtrusively from more than 1200 TravTek rental car drivers with no in-vehicle experimenter. The results suggest that with increased experience, drivers become familiar with the system and develop strategies for substantially more efficient and safer use. The results also showed that drivers over age 65 had difficulty driving and navigating concurrently. They compensated by driving slowly and more cautiously. Despite this increased caution, older drivers made more safety-related errors than did younger drivers. The results also showed that older drivers benefited substantially from a well-designed ATIS driver interface. PMID:9302887

  8. Applied Protein and Molecular Techniques for Characterization of B Cell Neoplasms in Horses

    PubMed Central

    Badial, Peres R.; Tallmadge, Rebecca L.; Miller, Steven; Stokol, Tracy; Richards, Kristy; Borges, Alexandre S.

    2015-01-01

    Mature B cell neoplasms cover a spectrum of diseases involving lymphoid tissues (lymphoma) or blood (leukemia), with an overlap between these two presentations. Previous studies describing equine lymphoid neoplasias have not included analyses of clonality using molecular techniques. The objective of this study was to use molecular techniques to advance the classification of B cell lymphoproliferative diseases in five adult equine patients with a rare condition of monoclonal gammopathy, B cell leukemia, and concurrent lymphadenopathy (lymphoma/leukemia). The B cell neoplasms were phenotypically characterized by gene and cell surface molecule expression, secreted immunoglobulin (Ig) isotype concentrations, Ig heavy-chain variable (IGHV) region domain sequencing, and spectratyping. All five patients had hyperglobulinemia due to IgG1 or IgG4/7 monoclonal gammopathy. Peripheral blood leukocyte immunophenotyping revealed high proportions of IgG1- or IgG4/7-positive cells and relative T cell lymphopenia. Most leukemic cells lacked the surface B cell markers CD19 and CD21. IGHG1 or IGHG4/7 gene expression was consistent with surface protein expression, and secreted isotype and Ig spectratyping revealed one dominant monoclonal peak. The mRNA expression of the B cell-associated developmental genes EBF1, PAX5, and CD19 was high compared to that of the plasma cell-associated marker CD38. Sequence analysis of the IGHV domain of leukemic cells revealed mutated Igs. In conclusion, the protein and molecular techniques used in this study identified neoplastic cells compatible with a developmental transition between B cell and plasma cell stages, and they can be used for the classification of equine B cell lymphoproliferative disease. PMID:26311245

  9. Enhanced nonlinear iterative techniques applied to a non-equilibrium plasma flow

    SciTech Connect

    Knoll, D.A.; McHugh, P.R.

    1996-12-31

    We study the application of enhanced nonlinear iterative methods to the steady-state solution of a system of two-dimensional convection-diffusion-reaction partial differential equations that describe the partially-ionized plasma flow in the boundary layer of a tokamak fusion reactor. This system of equations is characterized by multiple time and spatial scales, and contains highly anisotropic transport coefficients due to a strong imposed magnetic field. We use Newton`s method to linearize the nonlinear system of equations resulting from an implicit, finite volume discretization of the governing partial differential equations, on a staggered Cartesian mesh. The resulting linear systems are neither symmetric nor positive definite, and are poorly conditioned. Preconditioned Krylov iterative techniques are employed to solve these linear systems. We investigate both a modified and a matrix-free Newton-Krylov implementation, with the goal of reducing CPU cost associated with the numerical formation of the Jacobian. A combination of a damped iteration, one-way multigrid and a pseudo-transient continuation technique are used to enhance global nonlinear convergence and CPU efficiency. GMRES is employed as the Krylov method with Incomplete Lower-Upper(ILU) factorization preconditioning. The goal is to construct a combination of nonlinear and linear iterative techniques for this complex physical problem that optimizes trade-offs between robustness, CPU time, memory requirements, and code complexity. It is shown that a one-way multigrid implementation provides significant CPU savings for fine grid calculations. Performance comparisons of the modified Newton-Krylov and matrix-free Newton-Krylov algorithms will be presented.

  10. Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Helba, Michael J.; Hill, Janeil B.

    1992-01-01

    The purpose of this research is to provide Space Station Freedom protective structures design insight through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. The goals of the research are: (1) to develop a Monte Carlo simulation tool which will provide top level insight for Space Station protective structures designers; (2) to develop advanced shielding concepts relevant to Space Station Freedom using unique multiple bumper approaches; and (3) to investigate projectile shape effects on protective structures design.

  11. Full-field speckle correlation technique as applied to blood flow monitoring

    NASA Astrophysics Data System (ADS)

    Vilensky, M. A.; Agafonov, D. N.; Timoshina, P. A.; Shipovskaya, O. V.; Zimnyakov, D. A.; Tuchin, V. V.; Novikov, P. A.

    2011-03-01

    The results of experimental study of monitoring the microcirculation in tissue superficial layers of the internal organs at gastro-duodenal hemorrhage with the use of laser speckles contrast analysis technique are presented. The microcirculation monitoring was provided in the course of the laparotomy of rat abdominal cavity in the real time. Microscopic hemodynamics was analyzed for small intestine and stomach under different conditions (normal state, provoked ischemia, administration of vasodilative agents such as papaverine, lidocaine). The prospects and problems of internal monitoring of micro-vascular flow in clinical conditions are discussed.

  12. Sounding rocket thermal analysis techniques applied to GAS payloads. [Get Away Special payloads (STS)

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1979-01-01

    Simplified analytical techniques of sounding rocket programs are suggested as a means of bringing the cost of thermal analysis of the Get Away Special (GAS) payloads within acceptable bounds. Particular attention is given to two methods adapted from sounding rocket technology - a method in which the container and payload are assumed to be divided in half vertically by a thermal plane of symmetry, and a method which considers the container and its payload to be an analogous one-dimensional unit having the real or correct container top surface area for radiative heat transfer and a fictitious mass and geometry which model the average thermal effects.

  13. Evaluation of Bending Strength in Friction Welded Alumina/mild Steel Joints by Applying Factorial Technique

    NASA Astrophysics Data System (ADS)

    Jesudoss Hynes, N. Rajesh; Nagaraj, P.; Vivek Prabhu, M.

    Joining of metal with ceramics has become significant in many applications, because they combine properties like ductility with high hardness and wear resistance. By friction welding technique, alumina can be joined to mild steel with AA1100 sheet of 1mm thickness as interlayer. In the present work, investigation of the effect of friction time on interlayer thickness reduction and bending strength is carried out by factorial design. By using ANOVA, a statistical tool, regression modeling is done. The regression model predicts the bending strength of welded ceramic/metal joints accurately with ± 2% deviation from the experimental values.

  14. New twist on dating: radiocarbon dating techniques applied to air pollution studies

    SciTech Connect

    Porter, G.

    1981-05-01

    This paper deals with the problem of urban air pollution and to what extent it is caused by the burning of fossil fuels at factories or in cars, and to what extent it is due to the breathing processes of trees or the burning of natural fuels like wood. With the use of radiocarbon dating techniques the distinction between the pollutants can be made. The article describes the design of the gas proportional counter used to measure the extremely small samples of carbon in polluted air. (KRM)

  15. Zero order and signal processing spectrophotometric techniques applied for resolving interference of metronidazole with ciprofloxacin in their pharmaceutical dosage form

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2016-02-01

    Four rapid, simple, accurate and precise spectrophotometric methods were used for the determination of ciprofloxacin in the presence of metronidazole as interference. The methods under study are area under the curve, simultaneous equation in addition to smart signal processing techniques of manipulating ratio spectra namely Savitsky-Golay filters and continuous wavelet transform. All the methods were validated according to the ICH guidelines where accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can therefore be used for the routine analysis of ciprofloxacin in quality-control laboratories.

  16. In-place recalibration technique applied to a capacitance-type system for measuring rotor blade tip clearance

    NASA Technical Reports Server (NTRS)

    Barranger, J. P.

    1978-01-01

    The rotor blade tip clearance measurement system consists of a capacitance sensing probe with self contained tuning elements, a connecting coaxial cable, and remotely located electronics. Tests show that the accuracy of the system suffers from a strong dependence on probe tip temperature and humidity. A novel inplace recalibration technique was presented which partly overcomes this problem through a simple modification of the electronics that permits a scale factor correction. This technique, when applied to a commercial system significantly reduced errors under varying conditions of humidity and temperature. Equations were also found that characterize the important cable and probe design quantities.

  17. A review of post-modern management techniques as currently applied to Turkish forestry.

    PubMed

    Dölarslan, Emre Sahin

    2009-01-01

    This paper reviews the effects of six post-modern management concepts as applied to Turkish forestry. Up to now, Turkish forestry has been constrained, both in terms of its operations and internal organization, by a highly bureaucratic system. The application of new thinking in forestry management, however, has recently resulted in new organizational and production concepts that promise to address problems specific to this Turkish industry and bring about positive changes. This paper will elucidate these specific issues and demonstrate how post-modern management thinking is influencing the administration and operational capacity of Turkish forestry within its current structure. PMID:18194835

  18. Factors Associated with Age at Breastfeeding Cessation in Amazonian Infants: Applying a Proximal-Distal Framework.

    PubMed

    Kearns, Annie D; Castro, Marcia C; Lourenço, Bárbara H; Augusto, Rosângela A; Cardoso, Marly A

    2016-07-01

    Introduction Breastfeeding is an important determinant of child survival and normal growth and development, but breastfeeding prevalence is generally low in Brazil. Factors associated with infant feeding practices there are not well understood. This paper examines factors associated with breastfeeding cessation in a township in the western Brazilian Amazon. Methods A cross-sectional, population-based study was conducted among children younger than 25 months and collected information on maternal and child characteristics. Survival analysis based on a proximal-distal framework examined the association between breastfeeding duration and socioeconomic and maternal/child biological factors. Results The median breastfeeding duration among 101 children who were no longer breastfeeding was 120 days. Almost two-thirds (63 %) of these children stopped breastfeeding before 6 months of age. In the larger sample of 209 children, 74.6 % had previously been bottle-fed. Considering the full proximal-distal model, a child who had ever been bottle-fed was expected to cease breastfeeding about 88 % sooner than one who was never bottle-fed (p < 0.001). Children in the second-poorest wealth quartile stopped breastfeeding sooner than children in the poorest quartile (p < 0.05). Discussion Breastfeeding cessation in the study area occurred much earlier than the recommended 2 years of age. Factors associated with ending breastfeeding early included ever-use of a bottle, having a single mother, and belonging to the second-poorest wealth quartile. Further research is needed to better understand these factors and other barriers women face to continuing breastfeeding. PMID:27084366

  19. Techniques for lithium removal from 1040 C aged tantalum alloy, T-111

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.

    1973-01-01

    The liquid ammonia and vacuum distillation techniques were found to be satisfactory for removing lithium from 1040 C aged T-111 (tantalum - 8-percent tungsten- 2-percent hafnium). Results of ductility tests and chemical analysis show that these two methods are adequate for removing lithium without embrittlement or contamination of the T-111. Moist air exposure of T-111 with traces of lithium on the surface produced mixed results. Some specimens were ductile; others were brittle. Brittle T-111 had an increased hydrogen content. Water removal of lithium from T-111 caused brittleness and an increased hydrogen concentration.

  20. Hyphenated GC-FTIR and GC-MS techniques applied in the analysis of bioactive compounds

    NASA Astrophysics Data System (ADS)

    Gosav, Steluta; Paduraru, Nicoleta; Praisler, Mirela

    2014-08-01

    The drugs of abuse, which affect human nature and cause numerous crimes, have become a serious problem throughout the world. There are hundreds of amphetamine analogues on the black market. They consist of various alterations of the basic amphetamine molecular structure, which are yet not yet included in the lists of forbidden compounds although they retain or slightly modify the hallucinogenic effects of their parent compound. It is their important variety that makes their identification quite a challenge. A number of analytical procedures for the identification of amphetamines and their analogues have recently been reported. We are presenting the profile of the main hallucinogenic amphetamines obtained with the hyphenated techniques that are recommended for the identification of illicit amphetamines, i. e. gas chromatography combined with mass spectrometry (GC-MS) and gas chromatography coupled with Fourier transform infrared spectrometry (GC-FTIR). The infrared spectra of the analyzed hallucinogenic amphetamines present some absorption bands (1490 cm-1, 1440 cm-1, 1245 cm-1, 1050 cm-1 and 940 cm-1) that are very stable as position and shape, while their intensity depends of the side-chain substitution. The specific ionic fragment of the studied hallucinogenic compounds is the 3,4-methylenedioxybenzyl cation (m/e = 135) which has a small relative abundance (lesser than 20%). The complementarity of the above mentioned techniques for the identification of hallucinogenic compounds is discussed.

  1. A New Astrometric Technique Applied to the Likely Tidal Disruption Event, Swift J166+57

    NASA Astrophysics Data System (ADS)

    Alianora Hounsell, Rebekah; Fruchter, Andrew S.; Levan, Andrew J.

    2015-01-01

    We have developed a new technique to align Hubble Space Telescope (HST) data using background galaxies as astrometric markers. This technique involves the cross correlation of cutouts of regions about individual galaxies from different epochs, enabling the determination of an astrometric solution. The method avoids errors introduced by proper motion when the locations of stars are used to transform the images. We have used this approach to investigate the nature of the unusual gamma-ray source Sw J1644+57, which was initially classified as a long gamma ray burst (LGRB). However, due to the object's atypical behavior in the X-ray and optical, along with its location within the host (150 ± 150 pc, see Levan et al. 2011) it has been suggested that the transient may be caused by a tidal disruption event (TDE). Additional theories have also been suggested for its origin which remain based on the collapsar model for a long burst, such as the collapse of a red giant, rather than a stripped star as is typical in LGRBs, or the creation of a magnetar.Precise astrometry of the transient with respect to the galaxy can potentially distinguish between these scenarios. Here we show that our method of alignment dramatically reduces the astrometric error of the position of the transient with respect to the nucleus of the host. We therefore discuss the implication of our result on the astrophysical nature of the object.

  2. Random sets technique for information fusion applied to estimation of brain functional images

    NASA Astrophysics Data System (ADS)

    Smith, Therese M.; Kelly, Patrick A.

    1999-05-01

    A new mathematical technique for information fusion based on random sets, developed and described by Goodman, Mahler and Nguyen (The Mathematics of Data Fusion, Kluwer, 1997) can be useful for estimation of functional brian images. Many image estimation algorithms employ prior models that incorporate general knowledge about sizes, shapes and locations of brain regions. Recently, algorithms have been proposed using specific prior knowledge obtained from other imaging modalities (for example, Bowsher, et al., IEEE Trans. Medical Imaging, 1996). However, there is more relevant information than is presently used. A technique that permits use of additional prior information about activity levels would improve the quality of prior models, and hence, of the resulting image estimate. The use of random sets provides this capability because it allows seemingly non-statistical (or ambiguous) information such as that contained in inference rules to be represented and combined with observations in a single statistical model, corresponding to a global joint density. This paper illustrates the use of this approach by constructing an example global joint density function for brain functional activity from measurements of functional activity, anatomical information, clinical observations and inference rules. The estimation procedure is tested on a data phantom with Poisson noise.

  3. New seismic reflection techniques applied to gas recognition in the Rharb Basin, Morocco

    SciTech Connect

    Jabour, H.; Dakki, M. )

    1994-07-01

    The Rharb basin in Morocco is a Tertiary foreland filled by clastic series during the Miocene and Pliocene. This terrigenous influx, derived from the prerif to the northeast and the Meseta to the south, is characterized by a sandy episode during much of the Messinian and the Tortonian. The sand deposits were probably related to the uplift and major erosion of a part of the prerif during the sliding of an olistostrome (prerif nappe). Although most of the wells drilled in the basin have encountered biogenic gas accumulations, the problem still facing exploration in the area is seismic resolution and thin-bed tuning analysis. Recent studies using high seismic resolution techniques have permitted the authors to gain a deep insight into the stratigraphy and depositional environment of the thin sand reservoirs and their fluid content. AVO stratigraphy, inversion of seismic traces into acoustic impedance traces and seismic attributes calculation, and computing provide a remarkable example of the possibilities of depicting the lateral and vertical evolution of reservoir facies and localizing biogenic gas accumulations. Out of five recent exploratory wells drilled based on this new technique, three encountered gas-bearing sands with economic potential. Fifty-three amplitude anomalies have been identified and await processing.

  4. Applying Reflective Middleware Techniques to Optimize a QoS-enabled CORBA Component Model Implementation

    NASA Technical Reports Server (NTRS)

    Wang, Nanbor; Parameswaran, Kirthika; Kircher, Michael; Schmidt, Douglas

    2003-01-01

    Although existing CORBA specifications, such as Real-time CORBA and CORBA Messaging, address many end-to-end quality-of service (QoS) properties, they do not define strategies for configuring these properties into applications flexibly, transparently, and adaptively. Therefore, application developers must make these configuration decisions manually and explicitly, which is tedious, error-prone, and open sub-optimal. Although the recently adopted CORBA Component Model (CCM) does define a standard configuration framework for packaging and deploying software components, conventional CCM implementations focus on functionality rather than adaptive quality-of-service, which makes them unsuitable for next-generation applications with demanding QoS requirements. This paper presents three contributions to the study of middleware for QoS-enabled component-based applications. It outlines rejective middleware techniques designed to adaptively (1) select optimal communication mechanisms, (2) manage QoS properties of CORBA components in their contain- ers, and (3) (re)con$gure selected component executors dynamically. Based on our ongoing research on CORBA and the CCM, we believe the application of rejective techniques to component middleware will provide a dynamically adaptive and (re)configurable framework for COTS software that is well-suited for the QoS demands of next-generation applications.

  5. Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1998-01-01

    An overall goal of this research has been to enhance our understanding of the scientific principles necessary to develop advanced ultrasonic nondestructive techniques for the quantitative characterization of advanced composite structures. To this end, we have investigated a thin woven composite (5-harness biaxial weave). We have studied the effects that variations of the physical parameters of the experimental setup can have on the ultrasonic determination of the material properties for this thin composite. In particular, we have considered the variation of the nominal center frequency and the f-number of the transmitting transducer which in turn address issues such as focusing and beam spread of ultrasonic fields. This study has employed a planar, two-dimensional, receiving pseudo-array that has permitted investigation of the diffraction patterns of ultrasonic fields. Distortion of the ultrasonic field due to the spatial anisotropy of the thin composite has prompted investigation of the phenomenon of phase cancellation at the face of a finite-aperture, piezoelectric receiver. We have performed phase-sensitive and phase-insensitive analyses to provide a measure of the amount of phase cancellation at the face of a finite-aperture, piezoelectric receiver. The pursuit of robust measurements of received energy (i.e., those not susceptible to phase cancellation at the face of a finite-aperture, piezoelectric receiver) supports the development of robust techniques to determine material properties from measure ultrasonic parameters.

  6. Mass Movement Hazards in the Mediterranean; A review on applied techniques and methodologies

    NASA Astrophysics Data System (ADS)

    Ziade, R.; Abdallah, C.; Baghdadi, N.

    2012-04-01

    Emergent population and expansions of settlements and life-lines over hazardous areas in the Mediterranean region have largely increased the impact of Mass Movements (MM) both in industrialized and developing countries. This trend is expected to continue in the next decades due to increased urbanization and development, continued deforestation and increased regional precipitation in MM-prone areas due to changing climatic patterns. Consequently, and over the past few years, monitoring of MM has acquired great importance from the scientific community as well as the civilian one. This article begins with a discussion of the MM classification, and the different topographic, geologic, hydrologic and environmental impacting factors. The intrinsic (preconditioning) variables determine the susceptibility of MM and extrinsic factors (triggering) can induce the probability of MM occurrence. The evolution of slope instability studies is charted from geodetic or observational techniques, to geotechnical field-based origins to recent higher levels of data acquisition through Remote Sensing (RS) and Geographic Information System (GIS) techniques. Since MM detection and zoning is difficult in remote areas, RS and GIS have enabled regional studies to predominate over site-based ones where they provide multi-temporal images hence facilitate greatly MM monitoring. The unusual extent of the spectrum of MM makes it difficult to define a single methodology to establish MM hazard. Since the probability of occurrence of MM is one of the key components in making rational decisions for management of MM risk, scientists and engineers have developed physical parameters, equations and environmental process models that can be used as assessment tools for management, education, planning and legislative purposes. Assessment of MM is attained through various modeling approaches mainly divided into three main sections: quantitative/Heuristic (1:2.000-1:10.000), semi-quantitative/Statistical (1

  7. A comparison of new, old and future densiometic techniques as applied to volcanologic study.

    NASA Astrophysics Data System (ADS)

    Pankhurst, Matthew; Moreland, William; Dobson, Kate; Þórðarson, Þorvaldur; Fitton, Godfrey; Lee, Peter

    2015-04-01

    The density of any material imposes a primary control upon its potential or actual physical behaviour in relation to its surrounds. It follows that a thorough understanding of the physical behaviour of dynamic, multi-component systems, such as active volcanoes, requires knowledge of the density of each component. If we are to accurately predict the physical behaviour of synthesized or natural volcanic systems, quantitative densiometric measurements are vital. The theoretical density of melt, crystals and bubble phases may be calculated using composition, structure, temperature and pressure inputs. However, measuring the density of natural, non-ideal, poly-phase materials remains problematic, especially if phase specific measurement is important. Here we compare three methods; Archimedes principle, He-displacement pycnometry and X-ray micro computed tomography (XMT) and discuss the utility and drawbacks of each in the context of modern volcanologic study. We have measured tephra, ash and lava from the 934 AD Eldgjá eruption (Iceland), and the 2010 AD Eyjafjallajökull eruption (Iceland), using each technique. These samples exhibit a range of particle sizes, phases and textures. We find that while the Archimedes method remains a useful, low-cost technique to generate whole-rock density data, relative precision is problematic at small particles sizes. Pycnometry offers a more precise whole-rock density value, at a comparable cost-per-sample. However, this technique is based upon the assumption pore spaces within the sample are equally available for gas exchange, which may or may not be the case. XMT produces 3D images, at resolutions from nm to tens of µm per voxel where X-ray attenuation is a qualitative measure of relative electron density, expressed as greyscale number/brightness (usually 16-bit). Phases and individual particles can be digitally segmented according to their greyscale and other characteristics. This represents a distinct advantage over both

  8. Spectroscopic techniques applied to the characterization of decorated potteries from Caltagirone (Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Barilaro, D.; Barone, G.; Crupi, V.; Donato, M. G.; Majolino, D.; Messina, G.; Ponterio, R.

    2005-06-01

    The aim of the present work is the characterization of decorated pottery samples from Caltagirone (Sicily, Italy), a renowned production centre of this kind of artwork. These fragments were found during archaeological excavations and were attributed to historical periods extremely far in time from each other (from XVIII century b.C. to XVI a.C.). Therefore, we expect that the manufacture techniques result rather different over so long time. The measurements, performed by Fourier Transform-InfraRed (FT-IR) absorbance and micro-Raman scattering, allowed us a non-destructive study of so precious artefacts. Some pigments were identified, various elements of ceramic paste and glazed layer were characterized.

  9. FTIR techniques applied to the detection of gelatine in paper artifacts: from macroscopic to microscopic approach

    NASA Astrophysics Data System (ADS)

    Rouchon, Véronique; Pellizzi, Eleonora; Janssens, Koen

    2010-09-01

    In order to render paper hydrophobic for ink and thus adequate for writing, gelatine has been largely used. To this day, it is still employed in conservation workshops as an adhesive or a sizing agent, for instance, during the treatment of iron gall ink manuscripts. Various types and concentrations of gelatine are recommended, depending on the desired effect, but little information is available regarding to the physical distribution of gelatine in the paper. This aspect is however determinant for a better control of conservation treatments. In this work, we investigate the possibilities offered by FTIR microscopy for the measurement of the gelatine distribution in paper. Laboratory papers were preliminary treated with different types of gelatine and then embedded in a resin and cut in thin slices. Mapping techniques enable to compare the penetration of different types of gelatine in a semiquantitative way. The performance of conventional laboratory equipment and synchrotron radiation experimental setup are discussed.

  10. Pattern Recognition Techniques Applied to the Study of Leishmanial Glyceraldehyde-3-Phosphate Dehydrogenase Inhibition

    PubMed Central

    Lozano, Norka B. H.; Oliveira, Rafael F.; Weber, Karen C.; Honorio, Kathia M.; Guido, Rafael V. C.; Andricopulo, Adriano D.; de Sousa, Alexsandro G.; da Silva, Albérico B. F.

    2014-01-01

    Chemometric pattern recognition techniques were employed in order to obtain Structure-Activity Relationship (SAR) models relating the structures of a series of adenosine compounds to the affinity for glyceraldehyde 3-phosphate dehydrogenase of Leishmania mexicana (LmGAPDH). A training set of 49 compounds was used to build the models and the best ones were obtained with one geometrical and four electronic descriptors. Classification models were externally validated by predictions for a test set of 14 compounds not used in the model building process. Results of good quality were obtained, as verified by the correct classifications achieved. Moreover, the results are in good agreement with previous SAR studies on these molecules, to such an extent that we can suggest that these findings may help in further investigations on ligands of LmGAPDH capable of improving treatment of leishmaniasis. PMID:24566143

  11. A study of universal modulation techniques applied to satellite data collection

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A universal modulation and frequency control system for use with data collection platform (DCP) transmitters is examined. The final design discussed can, under software/firmwave control, generate all of the specific digital data modulation formats currently used in the NASA satellite data collection service and can simultaneously synthesize the proper RF carrier frequencies employed. A novel technique for DCP time and frequency control is presented. The emissions of NBS radio station WWV/WWVH are received, detected, and finally decoded in microcomputer software to generate a highly accurate time base for the platform; with the assistance of external hardware, the microcomputer also directs the recalibration of all DCP oscillators to achieve very high frequency accuracies and low drift rates versus temperature, supply voltage, and time. The final programmable DCP design also employs direct microcomputer control of data reduction, formatting, transmitter switching, and system power management.

  12. Optimization techniques applied to passive measures for in-orbit spacecraft survivability

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.; Price, D. Marvin

    1991-01-01

    Spacecraft designers have always been concerned about the effects of meteoroid impacts on mission safety. The engineering solution to this problem has generally been to erect a bumper or shield placed outboard from the spacecraft wall to disrupt/deflect the incoming projectiles. Spacecraft designers have a number of tools at their disposal to aid in the design process. These include hypervelocity impact testing, analytic impact predictors, and hydrodynamic codes. Analytic impact predictors generally provide the best quick-look estimate of design tradeoffs. The most complete way to determine the characteristics of an analytic impact predictor is through optimization of the protective structures design problem formulated with the predictor of interest. Space Station Freedom protective structures design insight is provided through the coupling of design/material requirements, hypervelocity impact phenomenology, meteoroid and space debris environment sensitivities, optimization techniques and operations research strategies, and mission scenarios. Major results are presented.

  13. Statistical damage identification techniques applied to the I-40 bridge over the Rio Grande River

    SciTech Connect

    Doebling, S.W.; Farrar, C.R.

    1998-03-01

    The statistical significance of vibration-based damage identification parameters is studied via application to the data from the tests performed on the Interstate 40 highway bridge in Albuquerque, New Mexico. A test of statistical significance is applied to the mean and confidence interval estimates of the modal properties and the corresponding damage indicators. The damage indicator used in this study is the change in the measured flexibility matrix. Previously presented deterministic results indicate that damage is detectable in all of the damage cases from these data sets. The results of this study indicate that the changes in both the modal properties and the damage indicators are statistically significant for all of the damage cases. However, these changes are distributed spatially for the first three damage cases and do not localize the damage until the fourth and final damage case.

  14. Contrast cancellation technique applied to digital x-ray imaging using silicon strip detectors.

    PubMed

    Avila, C; Lopez, J; Sanabria, J C; Baldazzi, G; Bollini, D; Gombia, M; Cabal, A E; Ceballos, C; Diaz Garcia, A; Gambaccini, M; Taibi, A; Sarnelli, A; Tuffanelli, A; Giubellino, P; Marzari-Chiesa, A; Prino, F; Tomassi, E; Grybos, P; Idzik, M; Swientek, K; Wiacek, P; Montaño, L M; Ramello, L; Sitta, M

    2005-12-01

    Dual-energy mammographic imaging experimental tests have been performed using a compact dichromatic imaging system based on a conventional x-ray tube, a mosaic crystal, and a 384-strip silicon detector equipped with full-custom electronics with single photon counting capability. For simulating mammal tissue, a three-component phantom, made of Plexiglass, polyethylene, and water, has been used. Images have been collected with three different pairs of x-ray energies: 16-32 keV, 18-36 keV, and 20-40 keV. A Monte Carlo simulation of the experiment has also been carried out using the MCNP-4C transport code. The Alvarez-Macovski algorithm has been applied both to experimental and simulated data to remove the contrast between two of the phantom materials so as to enhance the visibility of the third one. PMID:16475775

  15. Inverting travel times with a triplication. [spline fitting technique applied to lunar seismic data reduction

    NASA Technical Reports Server (NTRS)

    Jarosch, H. S.

    1982-01-01

    A method based on the use of constrained spline fits is used to overcome the difficulties arising when body-wave data in the form of T-delta are reduced to the tau-p form in the presence of cusps. In comparison with unconstrained spline fits, the method proposed here tends to produce much smoother models which lie approximately in the middle of the bounds produced by the extremal method. The method is noniterative and, therefore, computationally efficient. The method is applied to the lunar seismic data, where at least one triplication is presumed to occur in the P-wave travel-time curve. It is shown, however, that because of an insufficient number of data points for events close to the antipode of the center of the lunar network, the present analysis is not accurate enough to resolve the problem of a possible lunar core.

  16. Contrast cancellation technique applied to digital x-ray imaging using silicon strip detectors

    SciTech Connect

    Avila, C.; Lopez, J.; Sanabria, J. C.; Baldazzi, G.; Bollini, D.; Gombia, M.; Cabal, A.E.; Ceballos, C.; Diaz Garcia, A.; Gambaccini, M.; Taibi, A.; Sarnelli, A.; Tuffanelli, A.; Giubellino, P.; Marzari-Chiesa, A.; Prino, F.; Tomassi, E.; Grybos, P.; Idzik, M.; Swientek, K.

    2005-12-15

    Dual-energy mammographic imaging experimental tests have been performed using a compact dichromatic imaging system based on a conventional x-ray tube, a mosaic crystal, and a 384-strip silicon detector equipped with full-custom electronics with single photon counting capability. For simulating mammal tissue, a three-component phantom, made of Plexiglass, polyethylene, and water, has been used. Images have been collected with three different pairs of x-ray energies: 16-32 keV, 18-36 keV, and 20-40 keV. A Monte Carlo simulation of the experiment has also been carried out using the MCNP-4C transport code. The Alvarez-Macovski algorithm has been applied both to experimental and simulated data to remove the contrast between two of the phantom materials so as to enhance the visibility of the third one.

  17. Discrimination and classification techniques applied on Mallotus and Phyllanthus high performance liquid chromatography fingerprints.

    PubMed

    Viaene, J; Goodarzi, M; Dejaegher, B; Tistaert, C; Hoang Le Tuan, A; Nguyen Hoai, N; Chau Van, M; Quetin-Leclercq, J; Vander Heyden, Y

    2015-06-01

    Mallotus and Phyllanthus genera, both containing several species commonly used as traditional medicines around the world, are the subjects of this discrimination and classification study. The objective of this study was to compare different discrimination and classification techniques to distinguish the two genera (Mallotus and Phyllanthus) on the one hand, and the six species (Mallotus apelta, Mallotus paniculatus, Phyllanthus emblica, Phyllanthus reticulatus, Phyllanthus urinaria L. and Phyllanthus amarus), on the other. Fingerprints of 36 samples from the 6 species were developed using reversed-phase high-performance liquid chromatography with ultraviolet detection (RP-HPLC-UV). After fingerprint data pretreatment, first an exploratory data analysis was performed using Principal Component Analysis (PCA), revealing two outlying samples, which were excluded from the calibration set used to develop the discrimination and classification models. Models were built by means of Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Classification and Regression Trees (CART) and Soft Independent Modeling of Class Analogy (SIMCA). Application of the models on the total data set (outliers included) confirmed a possible labeling issue for the outliers. LDA, QDA and CART, independently of the pretreatment, or SIMCA after "normalization and column centering (N_CC)" or after "Standard Normal Variate transformation and column centering (SNV_CC)" were found best to discriminate the two genera, while LDA after column centering (CC), N_CC or SNV_CC; QDA after SNV_CC; and SIMCA after N_CC or after SNV_CC best distinguished between the 6 species. As classification technique, SIMCA after N_CC or after SNV_CC results in the best overall sensitivity and specificity. PMID:26002209

  18. Applying simple geostatistical techniques to a routine production geology problem - a case study

    SciTech Connect

    Norris, R.J.; Hewitt, A.; Massonnat, G.J. )

    1994-07-01

    A production geology reservoir description was shown to represent poorly the known dynamic reservoir behavior. The permeability field was originally generated from a general porosity-permeability law applied to a contoured porosity field. This resulted in unrealistically high permeability values in some layers and early water breakthrough in flow simulations. Furthermore, known well values of permeability were not honored. To improve the model, a geostatistical approach was used. The first step involved the use of a porosity-permeability law based on total layer porosity values. That is, with no cutoff applied, thereby allowing obtainment of values of k closer to the known reservoir values. This alone produces a permeability field, which although better represents the absolute permeability values is still too smooth-preferential pathways occurring as artifacts of contouring. A second step, therefore, involves the [open quotes]unsmoothing[close quotes] of the permeability field. At each point of the permeability field the permeability values are resampled from a distribution centered around the original value. This is a form of Monte-Carlo replacement, conditioned to well data and honoring the original trend to the data. In this case no correlation was included due to lack of information. This simple Gaussian simulation approach provides multiple realizations based on deterministic information. The advantages are clear, more realistic images (no artificial pathways), improved match of water breakthrough, and the honoring of all deterministic data (wells and trend). A subsequent step was the incorporation of further [open quotes]soft[close quotes] information. Geological analysis suggested that there was a degradation of reservoir properties along the east-west axis. This new information was rapidly assimilated into the model to produce final images of the reservoir.

  19. Age Determination by Back Length for African Savanna Elephants: Extending Age Assessment Techniques for Aerial-Based Surveys

    PubMed Central

    Trimble, Morgan J.; van Aarde, Rudi J.; Ferreira, Sam M.; Nørgaard, Camilla F.; Fourie, Johan; Lee, Phyllis C.; Moss, Cynthia J.

    2011-01-01

    Determining the age of individuals in a population can lead to a better understanding of population dynamics through age structure analysis and estimation of age-specific fecundity and survival rates. Shoulder height has been used to accurately assign age to free-ranging African savanna elephants. However, back length may provide an analog measurable in aerial-based surveys. We assessed the relationship between back length and age for known-age elephants in Amboseli National Park, Kenya, and Addo Elephant National Park, South Africa. We also compared age- and sex-specific back lengths between these populations and compared adult female back lengths across 11 widely dispersed populations in five African countries. Sex-specific Von Bertalanffy growth curves provided a good fit to the back length data of known-age individuals. Based on back length, accurate ages could be assigned relatively precisely for females up to 23 years of age and males up to 17. The female back length curve allowed more precise age assignment to older females than the curve for shoulder height does, probably because of divergence between the respective growth curves. However, this did not appear to be the case for males, but the sample of known-age males was limited to ≤27 years. Age- and sex-specific back lengths were similar in Amboseli National Park and Addo Elephant National Park. Furthermore, while adult female back lengths in the three Zambian populations were generally shorter than in other populations, back lengths in the remaining eight populations did not differ significantly, in support of claims that growth patterns of African savanna elephants are similar over wide geographic regions. Thus, the growth curves presented here should allow researchers to use aerial-based surveys to assign ages to elephants with greater precision than previously possible and, therefore, to estimate population variables. PMID:22028925

  20. Age validation of canary rockfish (Sebastes pinniger) using two independent otolith techniques: lead-radium and bomb radiocarbon dating.

    SciTech Connect

    Andrews, A H; Kerr, L A; Cailliet, G M; Brown, T A; Lundstrom, C C; Stanley, R D

    2007-11-04

    Canary rockfish (Sebastes pinniger) have long been an important part of recreational and commercial rockfish fishing from southeast Alaska to southern California, but localized stock abundances have declined considerably. Based on age estimates from otoliths and other structures, lifespan estimates vary from about 20 years to over 80 years. For the purpose of monitoring stocks, age composition is routinely estimated by counting growth zones in otoliths; however, age estimation procedures and lifespan estimates remain largely unvalidated. Typical age validation techniques have limited application for canary rockfish because they are deep dwelling and may be long lived. In this study, the unaged otolith of the pair from fish aged at the Department of Fisheries and Oceans Canada was used in one of two age validation techniques: (1) lead-radium dating and (2) bomb radiocarbon ({sup 14}C) dating. Age estimate accuracy and the validity of age estimation procedures were validated based on the results from each technique. Lead-radium dating proved successful in determining a minimum estimate of lifespan was 53 years and provided support for age estimation procedures up to about 50-60 years. These findings were further supported by {Delta}{sup 14}C data, which indicated a minimum estimate of lifespan was 44 {+-} 3 years. Both techniques validate, to differing degrees, age estimation procedures and provide support for inferring that canary rockfish can live more than 80 years.

  1. Large-timestep techniques for particle-in-cell simulation of systems with applied fields that vary rapidly in space

    SciTech Connect

    Friedman, A.; Grote, D.P.

    1996-10-01

    Under conditions which arise commonly in space-charge-dominated beam applications, the applied focusing, bending, and accelerating fields vary rapidly with axial position, while the self-fields (which are, on average, comparable in strength to the applied fields) vary smoothly. In such cases it is desirable to employ timesteps which advance the particles over distances greater than the characteristic scales over which the applied fields vary. Several related concepts are potentially applicable: sub-cycling of the particle advance relative to the field solution, a higher-order time-advance algorithm, force-averaging by integration along approximate orbits, and orbit-averaging. We report on our investigations into the utility of such techniques for systems typical of those encountered in accelerator studies for heavy-ion beam-driven inertial fusion.

  2. Time-reversal imaging techniques applied to tremor waveforms near Cholame, California to locate tectonic tremor

    NASA Astrophysics Data System (ADS)

    Horstmann, T.; Harrington, R. M.; Cochran, E. S.

    2012-12-01

    Frequently, the lack of distinctive phase arrivals makes locating tectonic tremor more challenging than locating earthquakes. Classic location algorithms based on travel times cannot be directly applied because impulsive phase arrivals are often difficult to recognize. Traditional location algorithms are often modified to use phase arrivals identified from stacks of recurring low-frequency events (LFEs) observed within tremor episodes, rather than single events. Stacking the LFE waveforms improves the signal-to-noise ratio for the otherwise non-distinct phase arrivals. In this study, we apply a different method to locate tectonic tremor: a modified time-reversal imaging approach that potentially exploits the information from the entire tremor waveform instead of phase arrivals from individual LFEs. Time reversal imaging uses the waveforms of a given seismic source recorded by multiple seismometers at discrete points on the surface and a 3D velocity model to rebroadcast the waveforms back into the medium to identify the seismic source location. In practice, the method works by reversing the seismograms recorded at each of the stations in time, and back-propagating them from the receiver location individually into the sub-surface as a new source time function. We use a staggered-grid, finite-difference code with 2.5 ms time steps and a grid node spacing of 50 m to compute the rebroadcast wavefield. We calculate the time-dependent curl field at each grid point of the model volume for each back-propagated seismogram. To locate the tremor, we assume that the source time function back-propagated from each individual station produces a similar curl field at the source position. We then cross-correlate the time dependent curl field functions and calculate a median cross-correlation coefficient at each grid point. The highest median cross-correlation coefficient in the model volume is expected to represent the source location. For our analysis, we use the velocity model of

  3. Cation-ratio dating: A new rock varnish age-determination technique

    NASA Astrophysics Data System (ADS)

    Dorn, Ronald I.

    1983-07-01

    Rock varnish coats many surfaces of geomorphic and archaeologic interest in arid lands. All varnish dating techniques are limited by the time lag between the exposure of a surface to subaerial processes and the onset of varnishing. They are valid only where manganese is not remobilized after deposition, for example, in most arid environments. The premise of a new age-determination method, cation-ratio dating, is that the ratio of the more mobile cations (e.g., K and Ca) to titanium in varnish decreases with time. Although there are many inherent assumptions and potential limitations, cation-ratio dating has been verified on relative age-sequences from a Death Valley debris cone, Negev Desert talus flatirons, and prehistoric lake levels at Searles Lake in California. Varnish cation ratios have been calibrated to independently dated surfaces in the Coso volcanic field and vicinity in California. Tentative absolute dates have been assigned to geomorphic surfaces in the Coso area. Cation ratios have been used to distinguish relative ages of archaeologic artifacts in southwestern North America and to demonstrate that varnish at the South Stoddard locality, Mojave Desert, did not form in 25 yr.

  4. Applying satellite remote sensing technique in disastrous rainfall systems around Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Gin-Rong; Chen, Kwan-Ru; Kuo, Tsung-Hua; Liu, Chian-Yi; Lin, Tang-Huang; Chen, Liang-De

    2016-05-01

    Many people in Asia regions have been suffering from disastrous rainfalls year by year. The rainfall from typhoons or tropical cyclones (TCs) is one of their key water supply sources, but from another perspective such TCs may also bring forth unexpected heavy rainfall, thereby causing flash floods, mudslides or other disasters. So far we cannot stop or change a TC route or intensity via present techniques. Instead, however we could significantly mitigate the possible heavy casualties and economic losses if we can earlier know a TC's formation and can estimate its rainfall amount and distribution more accurate before its landfalling. In light of these problems, this short article presents methods to detect a TC's formation as earlier and to delineate its rainfall potential pattern more accurate in advance. For this first part, the satellite-retrieved air-sea parameters are obtained and used to estimate the thermal and dynamic energy fields and variation over open oceans to delineate the high-possibility typhoon occurring ocean areas and cloud clusters. For the second part, an improved tropical rainfall potential (TRaP) model is proposed with better assumptions then the original TRaP for TC rainfall band rotations, rainfall amount estimation, and topographic effect correction, to obtain more accurate TC rainfall distributions, especially for hilly and mountainous areas, such as Taiwan.

  5. Comparison of motion correction techniques applied to functional near-infrared spectroscopy data from children

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Su; Arredondo, Maria M.; Gomba, Megan; Confer, Nicole; DaSilva, Alexandre F.; Johnson, Timothy D.; Shalinsky, Mark; Kovelman, Ioulia

    2015-12-01

    Motion artifacts are the most significant sources of noise in the context of pediatric brain imaging designs and data analyses, especially in applications of functional near-infrared spectroscopy (fNIRS), in which it can completely affect the quality of the data acquired. Different methods have been developed to correct motion artifacts in fNIRS data, but the relative effectiveness of these methods for data from child and infant subjects (which is often found to be significantly noisier than adult data) remains largely unexplored. The issue is further complicated by the heterogeneity of fNIRS data artifacts. We compared the efficacy of the six most prevalent motion artifact correction techniques with fNIRS data acquired from children participating in a language acquisition task, including wavelet, spline interpolation, principal component analysis, moving average (MA), correlation-based signal improvement, and combination of wavelet and MA. The evaluation of five predefined metrics suggests that the MA and wavelet methods yield the best outcomes. These findings elucidate the varied nature of fNIRS data artifacts and the efficacy of artifact correction methods with pediatric populations, as well as help inform both the theory and practice of optical brain imaging analysis.

  6. Correlation techniques as applied to pose estimation in space station docking

    NASA Astrophysics Data System (ADS)

    Rollins, John M.; Juday, Richard D.; Monroe, Stanley E., Jr.

    2002-08-01

    The telerobotic assembly of space-station components has become the method of choice for the International Space Station (ISS) because it offers a safe alternative to the more hazardous option of space walks. The disadvantage of telerobotic assembly is that it does not necessarily provide for direct arbitrary views of mating interfaces for the teleoperator. Unless cameras are present very close to the interface positions, such views must be generated graphically, based on calculated pose relationships derived from images. To assist in this photogrammetric pose estimation, circular targets, or spots, of high contrast have been affixed on each connecting module at carefully surveyed positions. The appearance of a subset of spots must form a constellation of specific relative positions in the incoming image stream in order for the docking to proceed. Spot positions are expressed in terms of their apparent centroids in an image. The precision of centroid estimation is required to be as fine as 1/20th pixel, in some cases. This paper presents an approach to spot centroid estimation using cross correlation between spot images and synthetic spot models of precise centration. Techniques for obtaining sub-pixel accuracy and for shadow and lighting irregularity compensation are discussed.

  7. Low temperature techniques applied for CTEM and STEM analysis of cellular components at a molecular level.

    PubMed

    Sjöstrand, F S

    1982-12-01

    One of the most important problems in tissue preparation for electron microscopic analysis at a molecular level involves the preservation of the tissue without introducing extensive denaturation of the proteins. Low temperature is a most efficient condition for the inhibition of protein denaturation and freeze-drying offers favourable conditions for transferring proteins to a dry state with minimal denaturation of the proteins. However, the embedding of the dried tissue in a plastic leads to extensive denaturation of the proteins when performed in the conventional way. This eliminates very efficiently the advantages of the method. The situation becomes even worse when subjecting the tissue to freeze-substitution. To eliminate as far as possible the denaturing effect of plastic embedding, freeze-drying can be combined with low temperature embedding in a plastic. Freeze-fracturing allows a most efficient use of low temperature to reduce conformation changes in proteins. The value of the freeze-fracturing technique depends entirely on a precise knowledge of the location of the fracture planes. Since this location is not known, it must be determined on the basis of a deduction. If this deduction is wrong, the method becomes misleading. Two methods which allow a certain testing of the correctness of the deduced location of the fracture planes are mentioned. PMID:6759657

  8. Experiences in applying optimization techniques to configurations for the Control of Flexible Structures (COFS) program

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.

    1989-01-01

    Optimization procedures are developed to systematically provide closely-spaced vibration frequencies. A general purpose finite-element program for eigenvalue and sensitivity analyses is combined with formal mathematical programming techniques. Results are presented for three studies. The first study uses a simple model to obtain a design with two pairs of closely-spaced frequencies. Two formulations are developed: an objective function-based formulation and constraint-based formulation for the frequency spacing. It is found that conflicting goals are handled better by a constraint-based formulation. The second study uses a detailed model to obtain a design with one pair of closely-spaced frequencies while satisfying requirements on local member frequencies and manufacturing tolerances. Two formulations are developed. Both the constraint-based and the objective function-based formulations perform reasonably well and converge to the same results. However, no feasible design solution exists which satisfies all design requirements for the choices of design variables and the upper and lower design variable values used. More design freedom is needed to achieve a fully satisfactory design. The third study is part of a redesign activity in which a detailed model is used.

  9. Experiences in applying optimization techniques to configurations for the Control Of Flexible Structures (COFS) Program

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.

    1988-01-01

    Optimization procedures are developed to systematically provide closely-spaced vibration frequencies. A general-purpose finite-element program for eigenvalue and sensitivity analyses is combined with formal mathematical programming techniques. Results are presented for three studies. The first study uses a simple model to obtain a design with two pairs of closely-spaced frequencies. Two formulations are developed: an objective function-based formulation and constraint-based formulation for the frequency spacing. It is found that conflicting goals are handled better by a constraint-based formulation. The second study uses a detailed model to obtain a design with one pair of closely-spaced frequencies while satisfying requirements on local member frequencies and manufacturing tolerances. Two formulations are developed. Both the constraint-based and the objective function-based formulations perform reasonably well and converge to the same results. However, no feasible design solution exists which satisfies all design requirements for the choices of design variables and the upper and lower design variable values used. More design freedom is needed to achieve a fully satisfactory design. The third study is part of a redesign activity in which a detailed model is used. The use of optimization in this activity allows investigation of numerous options (such as number of bays, material, minimum diagonal wall thicknesses) in a relatively short time. The procedure provides data for judgments on the effects of different options on the design.

  10. Machine Learning Techniques Applied to Sensor Data Correction in Building Technologies

    SciTech Connect

    Smith, Matt K; Castello, Charles C; New, Joshua Ryan

    2013-01-01

    Since commercial and residential buildings account for nearly half of the United States' energy consumption, making them more energy-efficient is a vital part of the nation's overall energy strategy. Sensors play an important role in this research by collecting data needed to analyze performance of components, systems, and whole-buildings. Given this reliance on sensors, ensuring that sensor data are valid is a crucial problem. Solutions being researched are machine learning techniques, namely: artificial neural networks and Bayesian Networks. Types of data investigated in this study are: (1) temperature; (2) humidity; (3) refrigerator energy consumption; (4) heat pump liquid pressure; and (5) water flow. These data are taken from Oak Ridge National Laboratory's (ORNL) ZEBRAlliance research project which is composed of four single-family homes in Oak Ridge, TN. Results show that for the temperature, humidity, pressure, and flow sensors, data can mostly be predicted with root-mean-square error (RMSE) of less than 10% of the respective sensor's mean value. Results for the energy sensor are not as good; RMSE are centered about 100% of the mean value and are often well above 200%. Bayesian networks have RSME of less than 5% of the respective sensor's mean value, but took substantially longer to train.