Science.gov

Sample records for agmatine inhibits hypoxia-induced

  1. Resveratrol attenuates hypoxia-induced neurotoxicity through inhibiting microglial activation.

    PubMed

    Zhang, Qun; Yuan, Lin; Zhang, Qingrui; Gao, Yan; Liu, Guangheng; Xiu, Meng; Wei, Xiang; Wang, Zhen; Liu, Dexiang

    2015-09-01

    Resveratrol is a natural polyphenol enriched in Polygonum cuspidatum and has been found to afford neuroprotective effects against neuroinflammation in the brain. Activated microglia can secrete various pro-inflammatory cytokines and neurotoxic mediators, which may contribute to hypoxic brain injuries. The aim of this study is to investigate the potential role of resveratrol in attenuating hypoxia-induced neurotoxicity via its anti-inflammatory actions through in vitro models of the BV-2 microglial cell line and primary microglia. We found that resveratrol significantly inhibited hypoxia-induced microglial activation and reduced subsequent release of pro-inflammatory factors. In addition, resveratrol inhibited the hypoxia-induced degradation of IκB-alpha and phosphorylation of p65 NF-κB protein. Hypoxia-induced ERK1/2 and JNK phosphorylation was also strongly inhibited by resveratrol, whereas resveratrol had no effect on hypoxia-stimulated p38 MAPK phosphorylation. Importantly, treating primary cortical neurons with conditioned medium (CM) from hypoxia-stimulated microglia induced neuronal apoptosis, which was reversed by CM co-treated with resveratrol. Taken together, resveratrol exerts neuroprotection against hypoxia-induced neurotoxicity through its anti-inflammatory effects in microglia. These effects were mediated, at least in part, by suppressing the activation of NF-ĸB, ERK and JNK MAPK signaling pathways. PMID:26225925

  2. PEBP4 silencing inhibits hypoxia-induced epithelial-to-mesenchymal transition in prostate cancer cells.

    PubMed

    Li, Weiping; Dong, Yongchao; Zhang, Bin; Kang, Yindong; Yang, Xukai; Wang, He

    2016-07-01

    Hypoxia induced epithelial-to-mesenchymal transition (EMT) to facilitate the tumor biology. Phosphatidylethanolamine-binding protein 4 (PEBP4) is a member of the PEBP family and has been reported to be upregulated in various cancer types. The definite function of PEBP4 in regulating the EMT of prostate cancer, however, is still unclear. Here, we examined the functional role of PEBP4 and the underlying molecular mechanisms in hypoxia-induced EMT in prostate cancer cells. Our results showed that PEBP4 mRNA and protein expression was markedly increased in the human prostate cancer tissues and cell lines. Knockdown of PEBP4 significantly inhibited hypoxia-induced migration/invasion and EMT program. Furthermore, knockdown of PEBP4 prevented hypoxia-induced the expression of p-Akt and p-mTOR in prostate cancer cells. Taken together, this study reported here provided evidence that knockdown of PEBP4 inhibited hypoxia-induced EMT in prostate cancer cells. Our study uncovered a novel role for PEBP4 in prostate cancer progression, which might support the potential for PEBP4 targeting in prostate cancer therapy. PMID:27261570

  3. Selective inhibition of the hypoxia-inducible factor prolyl hydroxylase PHD3 by Zn(II).

    PubMed

    Na, Yu-Ran; Woo, Dustin J; Choo, Hyunah; Chung, Hak Suk; Yang, Eun Gyeong

    2015-07-01

    We report herein that Zn(II) selectively inhibits the hypoxia-inducible factor prolyl hydroxylase PHD3 over PHD2, and does not compete with Fe(II). Independent of the oligomer formation induced by Zn(II), inhibition of the activity of PHD3 by Zn(II) involves Cys42 and Cys52 residues distantly located from the active site. PMID:26051901

  4. Baicalein Inhibits MCF-7 Cell Proliferation In Vitro, Induces Radiosensitivity, and Inhibits Hypoxia Inducible Factor.

    PubMed

    Gade, Shruti; Gandhi, Nitin Motilal

    2015-01-01

    Hypoxia inducible factor (HIF) is a key transcription factor responsible for imparting adaptability to the cancer cells growing in tumors. HIF induces the modulation of glucose metabolism, angiogenesis, and prosurvival signaling. Therefore, HIF is one of the attractive targets to treat solid tumors. Results presented in this study indicate that Baicalein (BA) inhibits HIF stabilization and also reduces its transcription activity in MCF-7 cells in vitro. Furthermore, BA was found to have antiproliferative ability as determined by the MTT assay and clonogenic survival. BA also induces apoptosis in MCF-7 cells at the concentration of 50 µM. We also report the radiosensitization of MCF-7 cells when they are treated with BA, resulting in higher γ-radiation-induced DNA damage. BA is extensively used in Chinese medicine and is known to be nontoxic at pharmacological doses. Our studies indicate that BA is one of the attractive natural compounds suitable for further evaluation as an adjuvant therapy. PMID:26756423

  5. Identification of approved and investigational drugs that inhibit hypoxia-inducible factor-1 signaling

    PubMed Central

    Hsu, Chia-Wen; Huang, Ruili; Khuc, Thai; Shou, David; Bullock, Joshua; Grooby, Suzanne; Griffin, Sue; Zou, Chaozhong; Little, Annette; Astley, Holly; Xia, Menghang

    2016-01-01

    One of the requirements for tumor development is blood supply, most often driven by hypoxia-induced angiogenesis. Hypoxia induces the stabilization of hypoxia-inducible factor-1 alpha (HIF-1α), which induces expression of an angiogenic factor, vascular endothelial growth factor (VEGF). The purpose of this study is to validate a new screening platform combined with orthogonal assays to rapidly identify HIF-1 inhibitors and to evaluate the effectiveness of approved drugs on modulating HIF-1 signaling. We generated an endogenous HIF-1α–NanoLuc luciferase reporter allele in the human HCT116 colon cancer cell line using genome editing and screened a panel of small interfering RNAs (siRNAs) to 960 druggable targets and approximately 2,500 drugs on a quantitative high-throughput screening (qHTS) platform. Selected compounds were further investigated with secondary assays to confirm their anti-HIF activity and to study their mode of action. The qHTS assay identified over 300 drugs that inhibited HIF-1α-NanoLuc expression. The siRNA screening results supported the effectiveness of several target-specific inhibitors. Moreover, the identified HIF-1 inhibitors, such as mycophenolate mofetil, niclosamide, and trametinib, were able to suppress cancer cell proliferation and angiogenesis. Our study indicates that blocking the mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K) pathways effectively inhibits hypoxia-induced HIF-1α accumulation and HIF-1α transactivation and that proteasome inhibitors induce accumulation and decrease transcriptional activity of HIF-1α. These findings underline the importance of developing a battery of robust assay platforms and confirmation studies that focus on endogenous protein targets so that only relevant and reliable data will be taken into pre-clinical and clinical studies. PMID:26882567

  6. Identification of approved and investigational drugs that inhibit hypoxia-inducible factor-1 signaling.

    PubMed

    Hsu, Chia-Wen; Huang, Ruili; Khuc, Thai; Shou, David; Bullock, Joshua; Grooby, Suzanne; Griffin, Sue; Zou, Chaozhong; Little, Annette; Astley, Holly; Xia, Menghang

    2016-02-16

    One of the requirements for tumor development is blood supply, most often driven by hypoxia-induced angiogenesis. Hypoxia induces the stabilization of hypoxia-inducible factor-1 alpha (HIF-1α), which induces expression of an angiogenic factor, vascular endothelial growth factor (VEGF). The purpose of this study is to validate a new screening platform combined with orthogonal assays to rapidly identify HIF-1 inhibitors and to evaluate the effectiveness of approved drugs on modulating HIF-1 signaling. We generated an endogenous HIF-1α-NanoLuc luciferase reporter allele in the human HCT116 colon cancer cell line using genome editing and screened a panel of small interfering RNAs (siRNAs) to 960 druggable targets and approximately 2,500 drugs on a quantitative high-throughput screening (qHTS) platform. Selected compounds were further investigated with secondary assays to confirm their anti-HIF activity and to study their mode of action. The qHTS assay identified over 300 drugs that inhibited HIF-1α-NanoLuc expression. The siRNA screening results supported the effectiveness of several target-specific inhibitors. Moreover, the identified HIF-1 inhibitors, such as mycophenolate mofetil, niclosamide, and trametinib, were able to suppress cancer cell proliferation and angiogenesis. Our study indicates that blocking the mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K) pathways effectively inhibits hypoxia-induced HIF-1α accumulation and HIF-1α transactivation and that proteasome inhibitors induce accumulation and decrease transcriptional activity of HIF-1α. These findings underline the importance of developing a battery of robust assay platforms and confirmation studies that focus on endogenous protein targets so that only relevant and reliable data will be taken into pre-clinical and clinical studies. PMID:26882567

  7. Midazolam inhibits the hypoxia-induced up-regulation of erythropoietin in the central nervous system.

    PubMed

    Matsuyama, Tomonori; Tanaka, Tomoharu; Tatsumi, Kenichiro; Daijo, Hiroki; Kai, Shinichi; Harada, Hiroshi; Fukuda, Kazuhiko

    2015-08-15

    Erythropoietin (EPO), a regulator of red blood cell production, is endogenously expressed in the central nervous system. It is mainly produced by astrocytes under hypoxic conditions and has proven to have neuroprotective and neurotrophic effects. In the present study, we investigated the effect of midazolam on EPO expression in primary cultured astrocytes and the mouse brain. Midazolam was administered to 6-week-old BALB/c male mice under hypoxic conditions and pregnant C57BL/6N mice under normoxic conditions. Primary cultured astrocytes were also treated with midazolam under hypoxic conditions. The expression of EPO mRNA in mice brains and cultured astrocytes was studied. In addition, the expression of hypoxia-inducible factor (HIF), known as the main regulator of EPO, was evaluated. Midazolam significantly reduced the hypoxia-induced up-regulation of EPO in BALB/c mice brains and primary cultured astrocytes and suppressed EPO expression in the fetal brain. Midazolam did not affect the total amount of HIF proteins but significantly inhibited the nuclear expression of HIF-1α and HIF-2α proteins. These results demonstrated the suppressive effects of midazolam on the hypoxia-induced up-regulation of EPO both in vivo and in vitro. PMID:26001375

  8. Resveratrol Inhibits Hypoxia-Induced Vascular Endothelial Growth Factor Expression and Pathological Neovascularization

    PubMed Central

    Lee, Christopher Seungkyu; Choi, Eun Young; Lee, Sung Chul; Koh, Hyoung Jun; Lee, Joon Haeng

    2015-01-01

    Purpose To investigate the effects of resveratrol on the expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) in human adult retinal pigment epithelial (ARPE-19) cells, and on experimental choroidal neovascularization (CNV) in mice. Materials and Methods ARPE-19 cells were treated with different concentrations of resveratrol and then incubated under hypoxic conditions with subsequent evaluation of cell viability, expression of HIF-1α, and expression of VEGF. The effects of resveratrol on the synthesis and degradation of hypoxia-induced HIF-1α were evaluated using inhibitors of the PI3K/Akt/mTOR and the ubiquitin proteasome pathways. In animal studies, CNV lesions were induced in C57BL/6 mice by laser photocoagulation. After 7 days of oral administration of resveratrol or vehicle, which began one day after CNV induction, image analysis was used to measure CNV areas on choroidal flat mounts stained with isolectin IB4. Results In ARPE-19 cells, resveratrol significantly inhibited HIF-1α and VEGF in a dose-dependent manner, by blocking the PI3K/Akt/mTOR signaling pathway and by promoting proteasomal HIF-1α degradation. In mice experiments, orally administered resveratrol significantly inhibited CNV growth in a dose-dependent manner. Conclusion Resveratrol may have therapeutic value in the management of diseases involving pathological neovascularization. PMID:26446654

  9. Overexpression of gankyrin in mouse hepatocytes induces hemangioma by suppressing factor inhibiting hypoxia-inducible factor-1 (FIH-1) and activating hypoxia-inducible factor-1.

    PubMed

    Liu, Yu; Higashitsuji, Hiroaki; Higashitsuji, Hisako; Itoh, Katsuhiko; Sakurai, Toshiharu; Koike, Kazuhiko; Hirota, Kiichi; Fukumoto, Manabu; Fujita, Jun

    2013-03-01

    Gankyrin (also called p28 or PSMD10) is an oncoprotein commonly overexpressed in hepatocellular carcinomas. It consists of 7 ankyrin repeats and interacts with multiple proteins including Rb, Cdk4, MDM2 and NF-κB. To assess the oncogenic activity in vivo, we produced transgenic mice that overexpress gankyrin specifically in the hepatocytes. Unexpectedly, 5 of 7 F2 transgenic mice overexpressing hepatitis B virus X protein (HBX) promoter-driven gankyrin, and one of 3 founder mice overexpressing serum amyloid P component (SAP) promoter-driven gankyrin developed hepatic vascular neoplasms (hemangioma/hemangiosarcomas) whereas none of the wild-type mice did. Endothelial overgrowth was more frequent in the livers of diethylnitrosamine-treated transgenic mice than wild-type mice. Mouse hepatoma Hepa1-6 cells overexpressing gankyrin formed tumors with more vascularity than parental Hepa1-6 cells in the transplanted mouse skin. We found that gankyrin binds to and sequester factor inhibiting hypoxia-inducible factor-1 (FIH-1), which results in decreased interaction between FIH-1 and hypoxia-inducible factor-1α (HIF-1α) and increased activity of HIF-1 to promote VEGF production. The effects of gankyrin were more prominent under 3% O2 than 1% or 20% O2 conditions. Thus, the present study clarified, at least partly, mechanisms of vascular tumorigenesis, and suggests that gankyrin might play a physiological role in hypoxic responses besides its roles as an oncoprotein. PMID:23376718

  10. Synthesis and Biological Evaluation of Manassantin Analogues for Hypoxia-Inducible Factor 1α Inhibition

    PubMed Central

    2015-01-01

    To cope with hypoxia, tumor cells have developed a number of adaptive mechanisms mediated by hypoxia-inducible factor 1 (HIF-1) to promote angiogenesis and cell survival. Due to significant roles of HIF-1 in the initiation, progression, metastasis, and resistance to treatment of most solid tumors, a considerable amount of effort has been made to identify HIF-1 inhibitors for treatment of cancer. Isolated from Saururus cernuus, manassantins A (1) and B (2) are potent inhibitors of HIF-1 activity. To define the structural requirements of manassantins for HIF-1 inhibition, we prepared and evaluated a series of manassantin analogues. Our SAR studies examined key regions of manassantin’s structure in order to understand the impact of these regions on biological activity and to define modifications that can lead to improved performance and drug-like properties. Our efforts identified several manassantin analogues with reduced structural complexity as potential lead compounds for further development. Analogues MA04, MA07, and MA11 down-regulated hypoxia-induced expression of the HIF-1α protein and reduced the levels of HIF-1 target genes, including cyclin-dependent kinase 6 (Cdk6) and vascular endothelial growth factor (VEGF). These findings provide an important framework to design potent and selective HIF-1α inhibitors, which is necessary to aid translation of manassantin-derived natural products to the clinic as novel therapeutics for cancers. PMID:26394152

  11. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    SciTech Connect

    Park, Choa; Lee, YoungJoo

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.

  12. Pyrithione Zn selectively inhibits hypoxia-inducible factor prolyl hydroxylase PHD3.

    PubMed

    Na, Yu-Ran; Woo, Dustin J; Kim, So Yeon; Yang, Eun Gyeong

    2016-04-01

    Increasing evidence emphasizes the role of the hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) isoforms in regulating non-HIF substrates, but isoform selective PHD inhibitors under physiological conditions have not yet been reported. Here we have identified pyrithione Zn (PZ) as a potent, isoform-selective PHD3 inhibitor. The IC50 value of PZ was determined as 0.98 μM for PHD3, while it did not show any inhibitory activity toward full length and truncated PHD2 up to 1 mM. The selective efficacy of PZ was further demonstrated at the cellular level by observing inhibition of the PHD3-dependent DNA damage response pathway without stabilization of HIF-1α. PMID:26940742

  13. Agmatine suppresses peripheral sympathetic tone by inhibiting N-type Ca(2+) channel activity via imidazoline I2 receptor activation.

    PubMed

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2016-08-26

    Agmatine, a putative endogenous ligand of imidazoline receptors, suppresses cardiovascular function by inhibiting peripheral sympathetic tone. However, the molecular identity of imidazoline receptor subtypes and its cellular mechanism underlying the agmatine-induced sympathetic suppression remains unknown. Meanwhile, N-type Ca(2+) channels are important for the regulation of NA release in the peripheral sympathetic nervous system. Therefore, it is possible that agmatine suppresses NA release in peripheral sympathetic nerve terminals by inhibiting Ca(2+) influx through N-type Ca(2+) channels. We tested this hypothesis by investigating agmatine effect on electrical field stimulation (EFS)-evoked contraction and NA release in endothelium-denuded rat superior mesenteric arterial strips. We also investigated the effect of agmatine on the N-type Ca(2+) current in superior cervical ganglion (SCG) neurons in rats. Our study demonstrates that agmatine suppresses peripheral sympathetic outflow via the imidazoline I2 receptor in rat mesenteric arteries. In addition, the agmatine-induced suppression of peripheral vascular sympathetic tone is mediated by modulating voltage-dependent N-type Ca(2+) channels in sympathetic nerve terminals. These results suggest a potential cellular mechanism for the agmatine-induced suppression of peripheral sympathetic tone. Furthermore, they provide basic and theoretical information regarding the development of new agents to treat hypertension. PMID:27320860

  14. Melatonin suppresses hypoxia-induced migration of HUVECs via inhibition of ERK/Rac1 activation.

    PubMed

    Yang, Ling; Zheng, Jianchao; Xu, Rui; Zhang, Yujie; Gu, Luo; Dong, Jing; Zhu, Yichao; Zhou, Ruijue; Zheng, Lu; Zhang, Xiaoying; Du, Jun

    2014-01-01

    Melatonin, a naturally-occurring hormone, possesses antioxidant properties and ameliorates vascular endothelial dysfunction. In this study, we evaluate the impact of melatonin on the migratory capability of human umbilical vein endothelial cells (HUVECs) to hypoxia and further investigate whether ERK/Rac1 signaling is involved in this process. Here, we found that melatonin inhibited hypoxia-stimulated hypoxia-inducible factor-1α (HIF-1α) expression and cell migration in a dose-dependent manner. Mechanistically, melatonin inhibited Rac1 activation and suppressed the co-localized Rac1 and F-actin on the membrane of HUVECs under hypoxic condition. In addition, the blockade of Rac1 activation with ectopic expression of an inactive mutant form of Rac1-T17N suppressed HIF-1α expression and cell migration in response to hypoxia, as well, but constitutive activation of Rac1 mutant Rac1-V12 restored HIF-1α expression, preventing the inhibition of melatonin on cell migration. Furthermore, the anti-Rac1 effect of melatonin in HUVECs appeared to be associated with its inhibition of ERK phosphorylation, but not that of the PI3k/Akt signaling pathway. Taken together, our work indicates that melatonin exerts an anti-migratory effect on hypoxic HUVECs by blocking ERK/Rac1 activation and subsequent HIF-1α upregulation. PMID:25123138

  15. Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha.

    PubMed

    Yuan, Yong; Hilliard, George; Ferguson, Tsuneo; Millhorn, David E

    2003-05-01

    The hypoxia-inducible factor (HIF) activates the expression of genes that contain a hypoxia response element. The alpha-subunits of the HIF transcription factors are degraded by proteasomal pathways during normoxia but are stabilized under hypoxic conditions. The von Hippel-Lindau protein (pVHL) mediates the ubiquitination and rapid degradation of HIF-alpha (including HIF-1alpha and HIF-2alpha). Post-translational hydroxylation of a proline residue in the oxygen-dependent degradation (ODD) domain of HIF-alpha is required for the interaction between HIF and VHL. It has previously been established that cobalt mimics hypoxia and causes accumulation of HIF-1alpha and HIF-2alpha. However, little is known about the mechanism by which this occurs. In an earlier study, we demonstrated that cobalt binds directly to the ODD domain of HIF-2alpha. Here we provide the first evidence that cobalt inhibits pVHL binding to HIF-alpha even when HIF-alpha is hydroxylated. Deletion of 17 amino acids within the ODD domain of HIF-2alpha that are required for pVHL binding prevented the binding of cobalt and stabilized HIF-2alpha during normoxia. These findings show that cobalt mimics hypoxia, at least in part, by occupying the VHL-binding domain of HIF-alpha and thereby preventing the degradation of HIF-alpha. PMID:12606543

  16. Emodin Decreases Hepatic Hypoxia-Inducible Factor-1[Formula: see text] by Inhibiting its Biosynthesis.

    PubMed

    Ma, Feifei; Hu, Lijuan; Yu, Ming; Wang, Feng

    2016-01-01

    Hypoxia-inducible factor-1 (HIF-1) is an [Formula: see text] dimeric transcription factor. Because HIF-1[Formula: see text] is instable with oxygen, HIF-1 is scarce in normal mammalian cells. However, HIF-1[Formula: see text] is expressed in pathological conditions such as cancer and obesity. Inhibiting HIF-1[Formula: see text] may be of therapeutic value for these pathologies. Here, we investigated whether emodin, derived from the herb of Rheum palmatum L, which is also known as Chinese rhubarb, and is native to China, regulates HIF-1[Formula: see text] expression. Male C57BL/6 mice without or with diet-induced obesity were treated with emodin for two weeks, while control mice were treated with vehicle. HIF-1[Formula: see text] expression was determined by Western blot. We found that emodin inhibited obesity-induced HIF-1[Formula: see text] expression in liver and skeletal muscle but did not regulate HIF-1[Formula: see text] expression in the kidneys or in intra-abdominal fat. In vitro, emodin inhibited HIF-1[Formula: see text] expression in human HepG2 hepatic cells and Y1 adrenocortical cells. Further, we investigated the mechanisms of HIF-1[Formula: see text] expression in emodin-treated HepG2 cells. First, we found that HIF-1[Formula: see text] had normal stability in the presence of emodin. Thus, emodin did not decrease HIF-1[Formula: see text] by stimulating its degradation. Importantly, emodin decreased the activity of the signaling pathways that led to HIF-1[Formula: see text] biosynthesis. Interestingly, emodin increased HIF-1[Formula: see text] mRNA in HepG2 cells. This may be a result of feedback in response to the emodin-induced decrease in the protein of HIF-1[Formula: see text]. In conclusion, emodin decreases hepatic HIF-1[Formula: see text] by inhibiting its biosynthesis. PMID:27430909

  17. Quantitative Mass Spectrometry Reveals Dynamics of Factor-inhibiting Hypoxia-inducible Factor-catalyzed Hydroxylation*

    PubMed Central

    Singleton, Rachelle S.; Trudgian, David C.; Fischer, Roman; Kessler, Benedikt M.; Ratcliffe, Peter J.; Cockman, Matthew E.

    2011-01-01

    The asparaginyl hydroxylase, factor-inhibiting hypoxia-inducible factor (HIF), is central to the oxygen-sensing pathway that controls the activity of HIF. Factor-inhibiting HIF (FIH) also catalyzes the hydroxylation of a large set of proteins that share a structural motif termed the ankyrin repeat domain (ARD). In vitro studies have defined kinetic properties of FIH with respect to different substrates and have suggested FIH binds more tightly to certain ARD proteins than HIF and that ARD hydroxylation may have a lower Km value for oxygen than HIF hydroxylation. However, regulation of asparaginyl hydroxylation on ARD substrates has not been systematically studied in cells. To address these questions, we employed isotopic labeling and mass spectrometry to monitor the accrual, inhibition, and decay of hydroxylation under defined conditions. Under the conditions examined, hydroxylation was not reversed but increased as the protein aged. The extent of hydroxylation on ARD proteins was increased by addition of ascorbate, whereas iron and 2-oxoglutarate supplementation had no significant effect. Despite preferential binding of FIH to ARD substrates in vitro, when expressed as fusion proteins in cells, hydroxylation was found to be more complete on HIF polypeptides compared with sites within the ARD. Furthermore, comparative studies of hydroxylation in graded hypoxia revealed ARD hydroxylation was suppressed in a site-specific manner and was as sensitive as HIF to hypoxic inhibition. These findings suggest that asparaginyl hydroxylation of HIF-1 and ARD proteins is regulated by oxygen over a similar range, potentially tuning the HIF transcriptional response through competition between the two types of substrate. PMID:21808058

  18. Thioredoxin-interacting protein inhibits hypoxia-inducible factor transcriptional activity.

    PubMed

    Farrell, Michael R; Rogers, Lynette K; Liu, Yusen; Welty, Stephen E; Tipple, Trent E

    2010-11-15

    Vascular endothelial growth factor (VEGF) is required for proper lung development and is transcriptionally regulated in alveolar epithelial cells by hypoxia-inducible factor (HIF). Previous findings in a newborn mouse model of bronchopulmonary dysplasia (BPD) suggest that thioredoxin-interacting protein (Txnip) is a novel regulator of VEGF expression. The present studies were designed to test the hypothesis that Txnip negatively regulates VEGF through effects on HIF-mediated gene expression. To test this hypothesis, we first examined the levels of VEGF and Txnip protein in the lungs of 1-day-old newborn mice and E19 embryos and detected a significant inverse correlation. To elucidate the mechanisms underlying this relationship, we studied the effects of Txnip overexpression on HIF-mediated transcription using murine lung epithelial (MLE-12) cells. Overexpression of Txnip inhibited HIF-mediated reporter activity in both hypoxia and room air. Suppression of HIF activity by Txnip seemed to be independent of the ability of Txnip to bind to thioredoxin. Thus, our studies support a model in which Txnip is a potentially critical regulator of HIF-mediated gene transcription in the murine lung. Alterations in Txnip expression could alter lung VEGF expression in prematurely born human infants and contribute to the development of BPD. PMID:20692333

  19. Curcumin inhibits hypoxia-induced epithelial‑mesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathway.

    PubMed

    Cao, Lei; Xiao, Xue; Lei, Jianjun; Duan, Wanxing; Ma, Qingyong; Li, Wei

    2016-06-01

    Hypoxic microenvironment, a common feature of pancreatic cancer, is associated with tumor proliferation, metastasis and epithelial-mesenchymal transition (EMT) changes. In recent years, many natural agents, including curcumin, have been proven to possess the ability to inhibit the progression of pancreatic cancer. However, whether curcumin is able to suppress hypoxia-induced pancreatic cancer progression and the underlying mechanisms are still not fully elucidated. The aim of the present study was to evaluate whether curcumin affects hypoxia-induced EMT and the activation of Hh signaling pathway in pancreatic cancer. The human pancreatic cancer cell line Panc-1, was treated with hypoxic condition and curcumin. Cell proliferation was assessed by the MTT assay. Wound healing assay and transwell invasion assay were used to detect the migratory and invasive activity of cancer cells. The EMT-related factors, E-cadherin, N-cadherin, vimentin were detected by QT-PCR, western blot analysis and immunofluorescence staining. The Hh signaling-related factors, SHH, SMO and GLI1 were detected by western blot analysis. The results of present study showed that curcumin could not only inhibit the hypoxia-induced cell proliferation, migration and invasion in pancreatic cancer, but also mediate the expression of EMT-related factors. In addition, curcumin remarkably inhibited hypoxia-mediated activation of Hh signaling pathway. Taken together, these data indicate that curcumin plays an important role in suppressing hypoxia-induced pancreatic cancer metastasis by inhibiting the Hh signaling pathway. Curcumin might be a potential candidate for chemoprevention of this severe disease. PMID:27035865

  20. Kamebakaurin inhibits the expression of hypoxia-inducible factor-1α and its target genes to confer antitumor activity.

    PubMed

    Wang, Ke Si; Ma, Juan; Mi, Chunliu; Li, Jing; Lee, Jung Joon; Jin, Xuejun

    2016-04-01

    Hypoxia-inducible factor 1 (HIF-1), a heterodimeric transcription factor that mediates the adaptation of tumor cells and tissues to the hypoxic microenvironment, has attracted considerable interest as a potential therapeutic target. Kamebakaurin is a diterpenoid compound isolated from Isodon excia (Maxin.) Hara, which has been used for anti-inflammatory activities. However, its antitumor activity along with molecular mechanism has not been reported. Kamebakaurin showed potent inhibitory activity against HIF-1 activation induced by hypoxia or CoCl2 in various human cancer cell lines. This compound significantly decreased the hypoxia-induced accumulation of HIF-1α protein, whereas it did not affect the expression of topoisomerase-I (Topo-I). Further analysis revealed that kamebakaurin inhibited HIF-1α protein synthesis, without affecting the expression level of HIF-1α mRNA or degradation of HIF-1α protein. Furthermore, kamebakaurin prevented hypoxia-induced expression of HIF-1 target genes for vascular endothelial growth factor (VEGF) and erythropoietin (EPO). However, kamebakaurin caused cell growth inhibition via cell cycle arrest at G1 phase in tumor cells. In vivo studies, we further confirmed the inhibitory effect of kamebakaurin on the expression of HIF-1α proteins, leading to growth inhibition of HCT116 cells in a xenograft tumor model. These results show that kamebakaurin is an effective inhibitor of HIF-1 and provide new perspectives into its anticancer activity. PMID:26781327

  1. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy

    PubMed Central

    Krekorian, Massis; Alles, Lindy K.; van Wijk, Albert C.; Mackaaij, Claire; Verheij, Joanne; van der Wal, Allard C.; van Gulik, Thomas M.; Storm, Gert; Heger, Michal

    2016-01-01

    Background: Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression levels of HIF-1-associated proteins in human perihilar cholangiocarcinomas, (2) investigate the role of HIF-1 in PDT-treated human perihilar cholangiocarcinoma cells, and (3) determine whether HIF-1 inhibition reduces survival signaling and enhances PDT efficacy. Results: Increased expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was confirmed in human perihilar cholangiocarcinomas. PDT with liposome-delivered zinc phthalocyanine caused HIF-1α stabilization in SK-ChA-1 cells and increased transcription of HIF-1α downstream genes. Acriflavine was taken up by SK-ChA-1 cells and translocated to the nucleus under hypoxic conditions. Importantly, pretreatment of SK-ChA-1 cells with acriflavine enhanced PDT efficacy via inhibition of HIF-1 and topoisomerases I and II. Methods: The expression of VEGF, CD105, CD31/Ki-67, and GLUT-1 was determined by immunohistochemistry in human perihilar cholangiocarcinomas. In addition, the response of human perihilar cholangiocarcinoma (SK-ChA-1) cells to PDT with liposome-delivered zinc phthalocyanine was investigated under both normoxic and hypoxic conditions. Acriflavine, a HIF-1α/HIF-1β dimerization inhibitor and a potential dual topoisomerase I/II inhibitor, was evaluated for its adjuvant effect on PDT efficacy. Conclusions: HIF-1, which is activated in human hilar cholangiocarcinomas, contributes to tumor cell survival following PDT in vitro. Combining PDT with acriflavine pretreatment improves PDT efficacy in cultured cells and therefore warrants further preclinical validation for therapy-recalcitrant perihilar cholangiocarcinomas. PMID:26657503

  2. Hypoxia-induced nitric oxide production and tumour perfusion is inhibited by pegylated arginine deiminase (ADI-PEG20)

    PubMed Central

    Burrows, Natalie; Cane, Gaelle; Robson, Mathew; Gaude, Edoardo; J. Howat, William; Szlosarek, Peter W.; Pedley, R. Barbara; Frezza, Christian; Ashcroft, Margaret; Maxwell, Patrick H.

    2016-01-01

    The hypoxic tumour microenvironment represents an aggressive, therapy-resistant compartment. As arginine is required for specific hypoxia-induced processes, we hypothesised that arginine-deprivation therapy may be useful in targeting hypoxic cancer cells. We explored the effects of the arginine-degrading agent ADI-PEG20 on hypoxia-inducible factor (HIF) activation, the hypoxia-induced nitric oxide (NO) pathway and proliferation using HCT116 and UMUC3 cells and xenografts. The latter lack argininosuccinate synthetase (ASS1) making them auxotrophic for arginine. In HCT116 cells, ADI-PEG20 inhibited hypoxic-activation of HIF-1α and HIF-2α, leading to decreased inducible-nitric oxide synthase (iNOS), NO-production, and VEGF. Interestingly, combining hypoxia and ADI-PEG20 synergistically inhibited ASS1. ADI-PEG20 inhibited mTORC1 and activated the unfolded protein response providing a mechanism for inhibition of HIF and ASS1. ADI-PEG20 inhibited tumour growth, impaired hypoxia-associated NO-production, and decreased vascular perfusion. Expression of HIF-1α/HIF-2α/iNOS and VEGF were reduced, despite an increased hypoxic tumour fraction. Similar effects were observed in UMUC3 xenografts. In summary, ADI-PEG20 inhibits HIF-activated processes in two tumour models with widely different arginine biology. Thus, ADI-PEG20 may be useful in the clinic to target therapy-resistant hypoxic cells in ASS1-proficient tumours and ASS1-deficient tumours. PMID:26972697

  3. Hydrogen sulfide inhibits the translational expression of hypoxia-inducible factor-1α

    PubMed Central

    Wu, Bo; Teng, Huajian; Yang, Guangdong; Wu, Lingyun; Wang, Rui

    2012-01-01

    BACKGROUND AND PURPOSE The accumulation of hypoxia-inducible factor-1α (HIF-1α) is under the influence of hydrogen sulfide (H2S), which regulates hypoxia responses. The regulation of HIF-1α accumulation by H2S has been shown, but the mechanisms for this effect are largely elusive and controversial. This study aimed at addressing the controversial mechanisms for and the functional importance of the interaction of H2S and HIF-1α protein. EXPERIMENTAL APPROACH HIF-1α protein levels and HIF-1α transcriptional activity were detected by Western blotting and luciferase assay. The mechanisms for H2S-regulated HIF-1α protein levels were determined using short interfering RNA transfection, co-immunoprecipitation and 7-methyl-GTP sepharose 4B pull-down assay. Angiogenic activity was evaluated using tube formation assay in EA.hy926 cells. KEY RESULTS The accumulation of HIF-1α protein under hypoxia (1% O2) or hypoxia-mimetic conditions was reversed by sodium hydrosulfide (NaHS). This effect of NaHS was not altered after blocking the ubiquitin-proteasomal pathway for HIF-1α degradation; however, blockade of protein translation with cycloheximide abolished the effect of NaHS on the half-life of HIF-1α protein. Knockdown of eukaryotic translation initiation factor 2α (eIF2α) suppressed the effect of NaHS on HIF-1α protein accumulation under hypoxia. NaHS inhibited the expression of VEGF under hypoxia. It also decreased in vitro capillary tube formation and cell proliferation of EA.hy926 cells under hypoxia, but stimulated the tube formation under normoxia. CONCLUSIONS AND IMPLICATIONS H2S suppresses HIF-1α translation by enhancing eIF2α phosphorylation under hypoxia. The interaction of H2S and HIF-1α inhibits the angiogenic activity of vascular endothelial cells under hypoxia through the down-regulation of VEGF. PMID:22831549

  4. Folic Acid Represses Hypoxia-Induced Inflammation in THP-1 Cells through Inhibition of the PI3K/Akt/HIF-1α Pathway

    PubMed Central

    Jiang, Xinwei; Hou, Mengjun; Tang, Zhihong; Zhen, Xiaozhou; Liang, Yuming; Ma, Jing

    2016-01-01

    Though hypoxia has been implicated as a cause of inflammation, the underlying mechanism is not well understood. Folic acid has been shown to provide protection against oxidative stress and inflammation in patients with cardiovascular disease and various models approximating insult to tissue via inflammation. It has been reported that hypoxia-induced inflammation is associated with oxidative stress, upregulation of hypoxia-inducible factor 1-alpha (HIF-1α), and production of pro-inflammatory molecules. Whether folic acid protects human monocytic cells (THP-1 cells) against hypoxia-induced damage, however, remains unknown. We used THP-1 cells to establish a hypoxia-induced cellular injury model. Pretreating THP-1 cells with folic acid attenuated hypoxia-induced inflammatory responses, including a decrease in protein and mRNA levels of interleukin (IL)-1β and tumor necrosis factor-alpha (TNF-α), coupled with increased levels of IL-10. Folic acid also reduced hypoxia-induced Akt phosphorylation and decreased nuclear accumulation of HIF-1α protein. Both LY294002 (a selective inhibitor of phosphatidyl inositol-3 kinase, PI3K) and KC7F2 (a HIF-1α inhibitor) reduced levels of hypoxia-induced inflammatory cytokines. We also found that insulin (an Akt activator) and dimethyloxallyl glycine (DMOG, a HIF-1α activator) induced over-expression of inflammatory cytokines, which could be blocked by folic acid. Taken together, these findings demonstrate how folic acid attenuates the hypoxia-induced inflammatory responses of THP-1 cells through inhibition of the PI3K/Akt/HIF-1α pathway. PMID:26974319

  5. TrxR1 inhibition overcomes both hypoxia-induced and acquired bortezomib resistance in multiple myeloma through NF-кβ inhibition.

    PubMed

    Raninga, Prahlad V; Di Trapani, Giovanna; Vuckovic, Slavica; Tonissen, Kathryn F

    2016-02-16

    Multiple myeloma (MM) is a B-cell malignancy characterized by an accumulation of abnormal clonal plasma cells in the bone marrow. Introduction of the proteasome-inhibitor bortezomib has improved MM prognosis and survival; however hypoxia-induced or acquired bortezomib resistance remains a clinical problem. This study highlighted the role of thioredoxin reductase 1 (TrxR1) in the hypoxia-induced and acquired bortezomib resistance in MM. Higher TrxR1 gene expression correlated with high-risk disease, adverse overall survival, and poor prognosis in myeloma patients. We demonstrated that hypoxia induced bortezomib resistance in myeloma cells and increased TrxR1 protein levels. Inhibition of TrxR1 using auranofin overcame hypoxia-induced bortezomib resistance and restored the sensitivity of hypoxic-myeloma cells to bortezomib. Hypoxia increased NF-кβ subunit p65 nuclear protein levels and TrxR1 inhibition decreased hypoxia-induced NF-кβ p65 protein levels in the nucleus and reduced the expression of NF-кβ-regulated genes. In addition, higher TrxR1 protein levels were observed in bortezomib-resistant myeloma cells compared to the naïve cells, and its inhibition using either auranofin or TrxR1-specific siRNAs reversed bortezomib resistance. TrxR1 inhibition reduced p65 mRNA and protein expression in bortezomib-resistant myeloma cells, and also decreased the expression of NF-кβ-regulated anti-apoptotic and proliferative genes. Thus, TrxR1 inhibition overcomes both hypoxia-induced and acquired bortezomib resistance by inhibiting the NF-кβ signaling pathway. Our findings demonstrate that elevated TrxR1 levels correlate with the acquisition of bortezomib resistance in MM. We propose considering TrxR1-inhibiting drugs, such as auranofin, either for single agent or combination therapy to circumvent bortezomib-resistance and improve survival outcomes of MM patients. PMID:26743692

  6. Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition.

    PubMed

    Han, Ning; Yu, Li; Song, Zhidu; Luo, Lifu; Wu, Yazhen

    2015-07-01

    Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims of the present study were to investigate whether agmatine protects Müller cells from glucose-induced damage and to explore the mechanisms underlying this process. Lactate dehydrogenase activity and tumor necrosis factor-α mRNA expression were significantly reduced in Müller cells exposed to a high glucose concentration, following agmatine treatment, compared with cells not treated with agmatine. In addition, agmatine treatment inhibited glucose-induced Müller cell apoptosis, which was associated with the regulation of Bax and Bcl-2 expression. Agmatine treatment suppressed glucose-induced phosphorylation of mitogen-activated protein kinase (MAPK) protein in Müller cells. The present study demonstrated that the protective effects of agmatine on Müller cells were inhibited by N-methyl-D-aspartic acid (NMDA). The results of the present study suggested that agmatine treatment protects Müller cells from high-concentration glucose-induced cell damage. The underlying mechanisms may relate to the anti-inflammatory and antiapoptotic effects of agmatine, as well as to the inhibition of the MAPK pathway, via NMDA receptor suppression. Agmatine may be of use in the development of novel therapeutic approaches for patients with diabetic retinopathy. PMID:25816073

  7. Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity

    PubMed Central

    Deep, Gagan; Kumar, Rahul; Jain, Anil K.; Dhar, Deepanshi; Panigrahi, Gati K.; Hussain, Anowar; Agarwal, Chapla; El-Elimat, Tamam; Sica, Vincent P.; Oberlies, Nicholas H.; Agarwal, Rajesh

    2016-01-01

    Prostate cancer (PCa) is the leading malignancy among men. Importantly, this disease is mostly diagnosed at early stages offering a unique chemoprevention opportunity. Therefore, there is an urgent need to identify and target signaling molecules with higher expression/activity in prostate tumors and play critical role in PCa growth and progression. Here we report that NADPH oxidase (NOX) expression is directly associated with PCa progression in TRAMP mice, suggesting NOX as a potential chemoprevention target in controlling PCa. Accordingly, we assessed whether NOX activity in PCa cells could be inhibited by Graviola pulp extract (GPE) that contains unique acetogenins with strong anti-cancer effects. GPE (1–5 μg/ml) treatment strongly inhibited the hypoxia-induced NOX activity in PCa cells (LNCaP, 22Rv1 and PC3) associated with a decrease in the expression of NOX catalytic and regulatory sub-units (NOX1, NOX2 and p47phox). Furthermore, GPE-mediated NOX inhibition was associated with a strong decrease in nuclear HIF-1α levels as well as reduction in the proliferative and clonogenic potential of PCa cells. More importantly, GPE treatment neither inhibited NOX activity nor showed any cytotoxicity against non-neoplastic prostate epithelial PWR-1E cells. Overall, these results suggest that GPE could be useful in the prevention of PCa progression via inhibiting NOX activity. PMID:26979487

  8. Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity.

    PubMed

    Deep, Gagan; Kumar, Rahul; Jain, Anil K; Dhar, Deepanshi; Panigrahi, Gati K; Hussain, Anowar; Agarwal, Chapla; El-Elimat, Tamam; Sica, Vincent P; Oberlies, Nicholas H; Agarwal, Rajesh

    2016-01-01

    Prostate cancer (PCa) is the leading malignancy among men. Importantly, this disease is mostly diagnosed at early stages offering a unique chemoprevention opportunity. Therefore, there is an urgent need to identify and target signaling molecules with higher expression/activity in prostate tumors and play critical role in PCa growth and progression. Here we report that NADPH oxidase (NOX) expression is directly associated with PCa progression in TRAMP mice, suggesting NOX as a potential chemoprevention target in controlling PCa. Accordingly, we assessed whether NOX activity in PCa cells could be inhibited by Graviola pulp extract (GPE) that contains unique acetogenins with strong anti-cancer effects. GPE (1-5 μg/ml) treatment strongly inhibited the hypoxia-induced NOX activity in PCa cells (LNCaP, 22Rv1 and PC3) associated with a decrease in the expression of NOX catalytic and regulatory sub-units (NOX1, NOX2 and p47(phox)). Furthermore, GPE-mediated NOX inhibition was associated with a strong decrease in nuclear HIF-1α levels as well as reduction in the proliferative and clonogenic potential of PCa cells. More importantly, GPE treatment neither inhibited NOX activity nor showed any cytotoxicity against non-neoplastic prostate epithelial PWR-1E cells. Overall, these results suggest that GPE could be useful in the prevention of PCa progression via inhibiting NOX activity. PMID:26979487

  9. Inactivated Pseudomonas aeruginosa inhibits hypoxia-induced pulmonary hypertension by preventing TGF-β1/Smad signaling

    PubMed Central

    Chai, S.D.; Liu, T.; Dong, M.F.; Li, Z.K.; Tang, P.Z.; Wang, J.T.; Ma, S.J.

    2016-01-01

    Pseudomonas aeruginosa is one of the common colonizing bacteria of the human body and is an opportunistic pathogen frequently associated with respiratory infections. Inactivated P. aeruginosa (IPA) have a variety of biological effects against inflammation and allergy. Transforming growth factor-β (TGF-β) signaling plays a critical role in the regulation of cell growth, differentiation, and development in a wide range of biological systems. The present study was designed to investigate the effects of IPA on TGF-β/Smad signaling in vivo, using a hypoxia-induced pulmonary hypertension (PH) rat model. Sprague Dawley rats (n=40) were exposed to 10% oxygen for 21 days to induce PH. At the same time, IPA was administered intravenously from day 1 to day 14. Mean pulmonary artery pressure (mPAP) and the right ventricle (RV) to left ventricle plus the interventricular septum (LV+S) mass ratio were used to evaluate the development of PH. Vessel thickness and density were measured using immunohistochemistry. Primary arterial smooth muscle cells (PASMCs) were isolated and the proliferation of PASMCs was assayed by flow cytometry. The production of TGF-β1 in cultured supernatant of PASMCs was assayed by ELISA. The expression levels of α-smooth muscle actin (α-SMA), TGF-β1 and phospho-Smad 2/3 in PASMCs were assayed by western blot. Our data indicated that IPA attenuated PH, RV hypertrophy and pulmonary vascular remodeling in rats, which was probably mediated by restraining the hypoxia-induced overactive TGF-β1/Smad signaling. In conclusion, IPA is a promising protective treatment in PH due to the inhibiting effects on TGF-β1/Smad 2/3 signaling. PMID:27580007

  10. Inactivated Pseudomonas aeruginosa inhibits hypoxia-induced pulmonary hypertension by preventing TGF-β1/Smad signaling.

    PubMed

    Chai, S D; Liu, T; Dong, M F; Li, Z K; Tang, P Z; Wang, J T; Ma, S J

    2016-01-01

    Pseudomonas aeruginosa is one of the common colonizing bacteria of the human body and is an opportunistic pathogen frequently associated with respiratory infections. Inactivated P. aeruginosa (IPA) have a variety of biological effects against inflammation and allergy. Transforming growth factor-β (TGF-β) signaling plays a critical role in the regulation of cell growth, differentiation, and development in a wide range of biological systems. The present study was designed to investigate the effects of IPA on TGF-β/Smad signaling in vivo, using a hypoxia-induced pulmonary hypertension (PH) rat model. Sprague Dawley rats (n=40) were exposed to 10% oxygen for 21 days to induce PH. At the same time, IPA was administered intravenously from day 1 to day 14. Mean pulmonary artery pressure (mPAP) and the right ventricle (RV) to left ventricle plus the interventricular septum (LV+S) mass ratio were used to evaluate the development of PH. Vessel thickness and density were measured using immunohistochemistry. Primary arterial smooth muscle cells (PASMCs) were isolated and the proliferation of PASMCs was assayed by flow cytometry. The production of TGF-β1 in cultured supernatant of PASMCs was assayed by ELISA. The expression levels of α-smooth muscle actin (α-SMA), TGF-β1 and phospho-Smad 2/3 in PASMCs were assayed by western blot. Our data indicated that IPA attenuated PH, RV hypertrophy and pulmonary vascular remodeling in rats, which was probably mediated by restraining the hypoxia-induced overactive TGF-β1/Smad signaling. In conclusion, IPA is a promising protective treatment in PH due to the inhibiting effects on TGF-β1/Smad 2/3 signaling. PMID:27580007

  11. Leptin counteracts the hypoxia-induced inhibition of spontaneously firing hippocampal neurons: a microelectrode array study.

    PubMed

    Gavello, Daniela; Rojo-Ruiz, Jonathan; Marcantoni, Andrea; Franchino, Claudio; Carbone, Emilio; Carabelli, Valentina

    2012-01-01

    Besides regulating energy balance and reducing body-weight, the adipokine leptin has been recently shown to be neuroprotective and antiapoptotic by promoting neuronal survival after excitotoxic and oxidative insults. Here, we investigated the firing properties of mouse hippocampal neurons and the effects of leptin pretreatment on hypoxic damage (2 hours, 3% O(2)). Experiments were carried out by means of the microelectrode array (MEA) technology, monitoring hippocampal neurons activity from 11 to 18 days in vitro (DIV). Under normoxic conditions, hippocampal neurons were spontaneously firing, either with prevailing isolated and randomly distributed spikes (11 DIV), or with patterns characterized by synchronized bursts (18 DIV). Exposure to hypoxia severely impaired the spontaneous activity of hippocampal neurons, reducing their firing frequency by 54% and 69%, at 11 and 18 DIV respectively, and synchronized their firing activity. Pretreatment with 50 nM leptin reduced the firing frequency of normoxic neurons and contrasted the hypoxia-induced depressive action, either by limiting the firing frequency reduction (at both ages) or by increasing it to 126% (in younger neurons). In order to find out whether leptin exerts its effect by activating large conductance Ca(2+)-activated K(+) channels (BK), as shown on rat hippocampal neurons, we applied the BK channel blocker paxilline (1 µM). Our data show that paxilline reversed the effects of leptin, both on normoxic and hypoxic neurons, suggesting that the adipokine counteracts hypoxia through BK channels activation in mouse hippocampal neurons. PMID:22848520

  12. Leptin Counteracts the Hypoxia-Induced Inhibition of Spontaneously Firing Hippocampal Neurons: A Microelectrode Array Study

    PubMed Central

    Gavello, Daniela; Rojo-Ruiz, Jonathan; Marcantoni, Andrea; Franchino, Claudio; Carbone, Emilio; Carabelli, Valentina

    2012-01-01

    Besides regulating energy balance and reducing body-weight, the adipokine leptin has been recently shown to be neuroprotective and antiapoptotic by promoting neuronal survival after excitotoxic and oxidative insults. Here, we investigated the firing properties of mouse hippocampal neurons and the effects of leptin pretreatment on hypoxic damage (2 hours, 3% O2). Experiments were carried out by means of the microelectrode array (MEA) technology, monitoring hippocampal neurons activity from 11 to 18 days in vitro (DIV). Under normoxic conditions, hippocampal neurons were spontaneously firing, either with prevailing isolated and randomly distributed spikes (11 DIV), or with patterns characterized by synchronized bursts (18 DIV). Exposure to hypoxia severely impaired the spontaneous activity of hippocampal neurons, reducing their firing frequency by 54% and 69%, at 11 and 18 DIV respectively, and synchronized their firing activity. Pretreatment with 50 nM leptin reduced the firing frequency of normoxic neurons and contrasted the hypoxia-induced depressive action, either by limiting the firing frequency reduction (at both ages) or by increasing it to 126% (in younger neurons). In order to find out whether leptin exerts its effect by activating large conductance Ca2+-activated K+ channels (BK), as shown on rat hippocampal neurons, we applied the BK channel blocker paxilline (1 µM). Our data show that paxilline reversed the effects of leptin, both on normoxic and hypoxic neurons, suggesting that the adipokine counteracts hypoxia through BK channels activation in mouse hippocampal neurons. PMID:22848520

  13. Tetrathiomolybdate inhibits mitochondrial complex IV and mediates degradation of hypoxia-inducible factor-1α in cancer cells

    PubMed Central

    Kwang Kim, Kyu; Abelman, Sarah; Yano, Naohiro; Ribeiro, Jennifer R.; Singh, Rakesh K.; Tipping, Marla; Moore, Richard G.

    2015-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor that triggers adaptive responses upon low oxygen conditions and plays a crucial role in cancer metabolism and therapy resistance. Tetrathiomolybdate (TM), a therapy option for copper overload disorder, has also been shown to be capable of limiting tumor angiogenesis, although its underlying mechanism remains unclear. Using ovarian and endometrial cancer cell lines, we observed that TM downregulates HIF-1α protein levels and HIF-transcriptional targets involved in tumor angiogenesis and glycolysis, but did not affect HIF-1α protein synthesis. TM-mediated HIF-1α downregulation was suppressed when HIF-prolyl hydroxylase activity was pharmacologically inhibited using deferoxamine or dimethyloxaloylglycine, and also when the oxygen-dependent degradation domains of HIF-1α, which are responsible for the interaction with HIF-prolyl hydroxylase, were deleted. These findings suggest that TM causes HIF-1α downregulation in a HIF-prolyl hydroxylase-dependent manner. Our studies showed that TM inhibits the activity of the copper-dependent mitochondrial complex IV and reduces mitochondrial respiration, thereby possibly increasing oxygen availability, which is crucial for HIF-prolyl hydroxylase activity. Pimonidazole staining also showed that TM elevates oxygen tension in hypoxic cells. Our studies provide mechanistic evidence for TM-mediated HIF-1α regulation and suggest its therapeutic potential as a method of blocking angiogenesis in ovarian and endometrial tumors. PMID:26469226

  14. LXY6090 – a novel manassantin A derivative – limits breast cancer growth through hypoxia-inducible factor-1 inhibition

    PubMed Central

    Lai, Fangfang; Liu, Qian; Liu, Xiaoyu; Ji, Ming; Xie, Ping; Chen, Xiaoguang

    2016-01-01

    Hypoxia-inducible factor-1 (HIF-1) represents a novel antitumor target owing to its involvement in vital processes considered hallmarks of cancer phenotypes. Manassantin A (MA) derived from Saururus cernuus has been reported as a selective HIF-1 inhibitor. Herein, the structure of MA was optimized to achieve new derivatives with simple chemical properties while retaining its activity. LXY6090 was designed to replace the central tetrahydrofuran moiety of MA with a cyclopentane ring and was identified as a potent HIF-1 inhibitor with an IC50 value of 4.11 nM. It not only inhibited the activity of HIF-1 in breast cancer cells but also downregulated the protein level of HIF-1α, which depended on von Hippel–Lindau for proteasome degradation. The related biological evaluation showed that the activity of HIF-1 target genes, VEGF and IGF-2, was decreased by LXY6090 in breast cancer cell lines. LXY6090 presented potent antitumor activity in vitro. Furthermore, LXY6090 showed in vivo anticancer efficacy by decreasing the HIF-1α expression in nude mice bearing MX-1 tumor xenografts. In conclusion, our data provide a basis for the future development of the novel compound LXY6090 as a potential therapeutic agent for breast cancer. PMID:27445487

  15. Inhibition of hypoxia inducible factors combined with all-trans retinoic acid treatment enhances glial transdifferentiation of neuroblastoma cells

    PubMed Central

    Cimmino, Flora; Pezone, Lucia; Avitabile, Marianna; Acierno, Giovanni; Andolfo, Immacolata; Capasso, Mario; Iolascon, Achille

    2015-01-01

    Neuroblastoma (NBL) is a heterogeneous tumor characterized by a wide range of clinical manifestations. A high tumor cell differentiation grade correlates to a favorable stage and positive outcome. Expression of the hypoxia inducible factors HIF1-α (HIF1A gene) and HIF2-α (EPAS1 gene) and/or hypoxia-regulated pathways has been shown to promote the undifferentiated phenotype of NBL cells. Our hypothesis is that HIF1A and EPAS1 expression represent one of the mechanisms responsible for the lack of responsiveness of NBL to differentiation therapy. Clinically, high levels of HIF1A and EPAS1 expression were associated with inferior survival in two NBL microarray datasets, and patient subgroups with lower expression of HIF1A and EPAS1 showed significant enrichment of pathways related to neuronal differentiation. In NBL cell lines, the combination of all-trans retinoic acid (ATRA) with HIF1A or EPAS1 silencing led to an acquired glial-cell phenotype and enhanced expression of glial-cell differentiation markers. Furthermore, HIF1A or EPAS1 silencing might promote cell senescence independent of ATRA treatment. Taken together, our data suggest that HIF inhibition coupled with ATRA treatment promotes differentiation into a more benign phenotype and cell senescence in vitro. These findings open the way for additional lines of attack in the treatment of NBL minimal residue disease. PMID:26057707

  16. Inhibition of hypoxia inducible factors combined with all-trans retinoic acid treatment enhances glial transdifferentiation of neuroblastoma cells.

    PubMed

    Cimmino, Flora; Pezone, Lucia; Avitabile, Marianna; Acierno, Giovanni; Andolfo, Immacolata; Capasso, Mario; Iolascon, Achille

    2015-01-01

    Neuroblastoma (NBL) is a heterogeneous tumor characterized by a wide range of clinical manifestations. A high tumor cell differentiation grade correlates to a favorable stage and positive outcome. Expression of the hypoxia inducible factors HIF1-α (HIF1A gene) and HIF2-α (EPAS1 gene) and/or hypoxia-regulated pathways has been shown to promote the undifferentiated phenotype of NBL cells. Our hypothesis is that HIF1A and EPAS1 expression represent one of the mechanisms responsible for the lack of responsiveness of NBL to differentiation therapy. Clinically, high levels of HIF1A and EPAS1 expression were associated with inferior survival in two NBL microarray datasets, and patient subgroups with lower expression of HIF1A and EPAS1 showed significant enrichment of pathways related to neuronal differentiation. In NBL cell lines, the combination of all-trans retinoic acid (ATRA) with HIF1A or EPAS1 silencing led to an acquired glial-cell phenotype and enhanced expression of glial-cell differentiation markers. Furthermore, HIF1A or EPAS1 silencing might promote cell senescence independent of ATRA treatment. Taken together, our data suggest that HIF inhibition coupled with ATRA treatment promotes differentiation into a more benign phenotype and cell senescence in vitro. These findings open the way for additional lines of attack in the treatment of NBL minimal residue disease. PMID:26057707

  17. Neutralizing S1P inhibits intratumoral hypoxia, induces vascular remodelling and sensitizes to chemotherapy in prostate cancer

    PubMed Central

    Ader, Isabelle; Golzio, Muriel; Andrieu, Guillaume; Zalvidea, Santiago; Richard, Sylvain; Sabbadini, Roger A.; Malavaud, Bernard; Cuvillier, Olivier

    2015-01-01

    Hypoxia promotes neovascularization, increased tumor growth, and therapeutic resistance. The transcription factor, hypoxia-inducible factor 1α (HIF-1α), has been reported as the master driver of adaptation to hypoxia. We previously identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway as a new modulator of HIF-1α under hypoxia. Taking advantage of a monoclonal antibody neutralizing extracellular S1P (sphingomab), we report that inhibition of S1P extracellular signaling blocks HIF-1α accumulation and activity in several cancer cell models exposed to hypoxia. In an orthotopic xenograft model of prostate cancer, we show that sphingomab reduces hypoxia and modifies vessel architecture within 5 days of treatment, leading to increased intratumoral blood perfusion. Supporting the notion that a transient vascular normalization of tumor vessels is the mechanism by which sphingomab exerts its effects, we demonstrate that administration of the antibody for 5 days before chemotherapy is more effective at local tumor control and metastatic dissemination than any other treatment scheduling. These findings validate sphingomab as a potential new normalization agent that could contribute to successful sensitization of hypoxic tumors to chemotherapy. PMID:25915662

  18. Neutralizing S1P inhibits intratumoral hypoxia, induces vascular remodelling and sensitizes to chemotherapy in prostate cancer.

    PubMed

    Ader, Isabelle; Gstalder, Cécile; Bouquerel, Pierre; Golzio, Muriel; Andrieu, Guillaume; Zalvidea, Santiago; Richard, Sylvain; Sabbadini, Roger A; Malavaud, Bernard; Cuvillier, Olivier

    2015-05-30

    Hypoxia promotes neovascularization, increased tumor growth, and therapeutic resistance. The transcription factor, hypoxia-inducible factor 1α (HIF-1α), has been reported as the master driver of adaptation to hypoxia. We previously identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) pathway as a new modulator of HIF-1α under hypoxia. Taking advantage of a monoclonal antibody neutralizing extracellular S1P (sphingomab), we report that inhibition of S1P extracellular signaling blocks HIF-1α accumulation and activity in several cancer cell models exposed to hypoxia. In an orthotopic xenograft model of prostate cancer, we show that sphingomab reduces hypoxia and modifies vessel architecture within 5 days of treatment, leading to increased intratumoral blood perfusion. Supporting the notion that a transient vascular normalization of tumor vessels is the mechanism by which sphingomab exerts its effects, we demonstrate that administration of the antibody for 5 days before chemotherapy is more effective at local tumor control and metastatic dissemination than any other treatment scheduling. These findings validate sphingomab as a potential new normalization agent that could contribute to successful sensitization of hypoxic tumors to chemotherapy. PMID:25915662

  19. Anthrax lethal toxin inhibits translation of hypoxia-inducible factor 1α and causes decreased tolerance to hypoxic stress.

    PubMed

    Ouyang, Weiming; Torigoe, Chikako; Fang, Hui; Xie, Tao; Frucht, David M

    2014-02-14

    Hypoxia is considered to be a contributor to the pathology associated with administration of anthrax lethal toxin (LT). However, we report here that serum lactate levels in LT-treated mice are reduced, a finding inconsistent with the anaerobic metabolism expected to occur during hypoxia. Reduced lactate levels are also observed in the culture supernatants of LT-treated cells. LT inhibits the accumulation of hypoxia-inducible factor (HIF)-1α, a subunit of HIF-1, the master regulator directing cellular responses to hypoxia. The toxin has no effect on the transcription or protein turnover of HIF-1α, but instead it acts to inhibit HIF-1α translation. LT treatment diminishes phosphorylation of eIF4B, eIF4E, and rpS6, critical components of the intracellular machinery required for HIF-1α translation. Moreover, blockade of MKK1/2-ERK1/2, but not p38 or JNK signaling, lowers HIF-1α protein levels in both normoxic and hypoxic conditions, consistent with a role for MKK1 and MKK2 as the major targets of LT responsible for the inhibition of HIF-1α translation. The physiological importance of the LT-induced translation blockade is demonstrated by the finding that LT treatment decreases the survival of hepatocyte cell lines grown in hypoxic conditions, an effect that is overcome by preinduction of HIF-1α. Taken together, these data support a role for LT in dysregulating HIF-1α and thereby disrupting homeostatic responses to hypoxia, an environmental characteristic of certain tissues at baseline and/or during disseminated infection with Bacillus anthracis. PMID:24366872

  20. IFN-α Induces Transcription of Hypoxia-Inducible Factor-1α to Inhibit Proliferation of Human Endothelial Cells1

    PubMed Central

    Gerber, Scott A.; Pober, Jordan S.

    2009-01-01

    Expression of hypoxia-inducible factor (HIF)-1α, a transcription factor subunit increased by protein stabilization in response to hypoxia, is increased in human endothelial cells (ECs) by IFN-α under normoxic conditions. IFN-α increases HIF-1α transcript levels within 2 h by up to 50% and doubles HIF-1α protein expression. Based on pharmacological inhibition studies, the increase in HIF-1α mRNA involves new transcription, is independent of new protein synthesis, and requires JAK signaling. Protein knockdown by small interfering RNA confirms the involvement of JAK1 and TYK2, as well of IFN-stimulated gene factor 3 (ISGF3). IFN-γ does not significantly induce HIF-1α mRNA, but increases the magnitude and duration of the IFN-α effect. IFN-α-induced HIF-1α protein translocates to the nucleus and can bind to hypoxia response elements in DNA. However, IFN-α treatment fails to induce transcription of several prototypic HIF-responsive genes (VEGF-A, PPARγ, and prostacyclin synthase) due to an insufficient increase in HIF-1α protein levels. Although certain other HIF-responsive genes (PHD3 and VEGF-C) are induced following IFN-α and/or IFN-γ treatment, these responses are not inhibited by siRNA knockdown of HIF-1α. Additionally, IFN-α induction of ISGF3-dependent genes involved in innate immunity (viperin, OAS2, and CXCL10) are also unaffected by knockdown of HIF-1α. Interestingly, knockdown of HIF-1α significantly reduces the capacity of IFN-α to inhibit endothelial cell proliferation. We conclude that IFN-α induces the transcription of HIF-1α in human endothelial cells though a JAK-ISGF3 pathway under normoxic conditions, and that this response contributes to the antiproliferative activity of this cytokine. PMID:18606657

  1. Volatile anesthetics suppress glucose-stimulated insulin secretion in MIN6 cells by inhibiting glucose-induced activation of hypoxia-inducible factor 1

    PubMed Central

    Suzuki, Kengo; Sato, Yoshifumi; Kai, Shinichi; Nishi, Kenichiro; Adachi, Takehiko; Matsuo, Yoshiyuki

    2015-01-01

    Proper glycemic control is one of the most important goals in perioperative patient management. Insulin secretion from pancreatic β-cells in response to an increased blood glucose concentration plays the most critical role in glycemic control. Several animal and human studies have indicated that volatile anesthetics impair glucose-stimulated insulin secretion (GSIS). A convincing GSIS model has been established, in which the activity of ATP-dependent potassium channels (KATP) under the control of intracellular ATP plays a critical role. We previously reported that pimonidazole adduct formation and stabilization of hypoxia-inducible factor-1α (HIF-1α) were detected in response to glucose stimulation and that MIN6 cells overexpressing HIF-1α were resistant to glucose-induced hypoxia. Genetic ablation of HIF-1α or HIF-1β significantly inhibited GSIS in mice. Moreover, we previously reported that volatile anesthetics suppressed hypoxia-induced HIF activation in vitro and in vivo.To examine the direct effect of volatile anesthetics on GSIS, we used the MIN6 cell line, derived from mouse pancreatic β-cells. We performed a series of experiments to examine the effects of volatile anesthetics (sevoflurane and isoflurane) on GSIS and demonstrated that these compounds inhibited the glucose-induced ATP increase, which is dependent on intracellular hypoxia-induced HIF-1 activity, and suppressed GSIS at a clinically relevant dose in these cells. PMID:26713247

  2. Hypoxia-induced inhibition of calcium channels in guinea-pig taenia caeci smooth muscle cells.

    PubMed

    Rekalov, V; Juránek, I; Máleková, L; Bauer, V

    1997-11-15

    1. The effects of hypoxia on whole-cell current in single smooth muscle cells and on a high K(+)-induced contraction of strips of the guinea-pig taenia caeci were studied. 2. In physiological salt solution (PSS) and K(+)-based pipette solution, hypoxia (PO2 = 20 mmHg) reversibly inhibited both the inward Ca2+ current (ICa) and outward Ca(2+)-activated K+ current (IK(Ca)) components of the whole-cell current. 3. In PSS and Cs(+)-based pipette solution, hypoxia reversibly suppressed ICa by 30 +/- 5% at 0 mV. 4. When Ba2+ was used as a charge carrier, the IBa was suppressed by hypoxia in a potential-dependent manner, with the maximum of 40 +/- 7% at +10 mV. Alterations of concentrations of EGTA, GDB beta S or ATP in the pipette solution did not change the inhibitory effects of hypoxia on ICa and IBa. 5. In PSS with 2 mM CaCl2 replaced by CoCl2, hypoxia did not affect the Ca2+ influx-independent potassium current. 6. In cells voltage clamped at -20 mV hypoxia reversibly inhibited the spontaneous transient outward currents. 7. The response of high K(+)-contracted taenia caeci to hypoxia was composed of an initial rapid relaxation followed by a small transient contraction and slow relaxation. The transient contraction was blocked by atropine (1-10 microM), while relaxations were unaffected by atropine and guanethidine (10 microM). 8. The results show that hypoxia reversibly inhibits ICa and secondarily suppresses IK(Ca) due to decreased Ca2+ influx through Ca2+ channels. 9. It is suggested that inhibition of ICa was responsible for the rapid relaxation, whereas transient contraction may have been due to release of acetylcholine from nerve terminals upon hypoxia. PMID:9409475

  3. Kinetic Investigations of the Role of Factor Inhibiting Hypoxia-inducible Factor (FIH) as an Oxygen Sensor*

    PubMed Central

    Tarhonskaya, Hanna; Hardy, Adam P.; Howe, Emily A.; Loik, Nikita D.; Kramer, Holger B.; McCullagh, James S. O.; Schofield, Christopher J.; Flashman, Emily

    2015-01-01

    The hypoxia-inducible factor (HIF) hydroxylases regulate hypoxia sensing in animals. In humans, they comprise three prolyl hydroxylases (PHD1–3 or EGLN1–3) and factor inhibiting HIF (FIH). FIH is an asparaginyl hydroxylase catalyzing post-translational modification of HIF-α, resulting in reduction of HIF-mediated transcription. Like the PHDs, FIH is proposed to have a hypoxia-sensing role in cells, enabling responses to changes in cellular O2 availability. PHD2, the most important human PHD isoform, is proposed to be biochemically/kinetically suited as a hypoxia sensor due to its relatively high sensitivity to changes in O2 concentration and slow reaction with O2. To ascertain whether these parameters are conserved among the HIF hydroxylases, we compared the reactions of FIH and PHD2 with O2. Consistent with previous reports, we found lower Kmapp(O2) values for FIH than for PHD2 with all HIF-derived substrates. Under pre-steady-state conditions, the O2-initiated FIH reaction is significantly faster than that of PHD2. We then investigated the kinetics with respect to O2 of the FIH reaction with ankyrin repeat domain (ARD) substrates. FIH has lower Kmapp(O2) values for the tested ARDs than HIF-α substrates, and pre-steady-state O2-initiated reactions were faster with ARDs than with HIF-α substrates. The results correlate with cellular studies showing that FIH is active at lower O2 concentrations than the PHDs and suggest that competition between HIF-α and ARDs for FIH is likely to be biologically relevant, particularly in hypoxic conditions. The overall results are consistent with the proposal that the kinetic properties of individual oxygenases reflect their biological capacity to act as hypoxia sensors. PMID:26112411

  4. Overexpression of Rcan1-1L inhibits hypoxia-induced cell apoptosis through induction of mitophagy.

    PubMed

    Sun, Lijun; Hao, Yuewen; An, Rui; Li, Haixun; Xi, Cong; Shen, Guohong

    2014-11-01

    Mitophagy, a cellular process that selectively targets dysfunctional mitochondria for degradation, is currently a hot topic in research into the pathogenesis and treatment of many human diseases. Considering that hypoxia causes mitochondrial dysfunction, which results in cell death, we speculated that selective activation of mitophagy might promote cell survival under hypoxic conditions. In the present study, we introduced the Regulator of calcineurin 1-1L (Rcan1-1L) to initiate the mitophagy pathway and aimed to evaluate the effect of Rcan1-1L-induced mitophagy on cell survival under hypoxic conditions. Recombinant adenovirus vectors carrying Rcan1-1L were transfected into human umbilical vein endothelial cells and human adult cardiac myocytes. Using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay and Trypan blue exclusion assay, Rcan1-1L overexpression was found to markedly reverse cell growth inhibition induced by hypoxia. Additionally, Rcan1-1L overexpression inhibited cell apoptosis under hypoxic conditions, as detected by annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) apoptosis assay. Meanwhile, the mitochondria-mediated cell apoptotic pathway was inhibited by Rcan1-1L. In contrast, knockdown of Rcan1-1L accelerated hypoxia-induced cell apoptosis. Moreover, Rcan1-1L overexpression significantly reduced mitochondrial mass, decreased depolarized mitochondria, and downregulated ATP and reactive oxygen species production. We further delineated that the loss of mitochondrial mass was due to the activation of mitophagy induced by Rcan1-1L. Rcan1-1L overexpression activated autophagy flux and promoted translocation of the specific mitophagy receptor Parkin into mitochondria from the cytosol, whereas inhibition of autophagy flux resulted in the accumulation of Parkin-loaded mitochondria. Finally, we demonstrated that mitochondrial permeability transition pore opening was significantly increased by Rcan1-1L overexpression

  5. Endothelin-1 Inhibits Prolyl Hydroxylase Domain 2 to Activate Hypoxia-Inducible Factor-1α in Melanoma Cells

    PubMed Central

    Spinella, Francesca; Rosanò, Laura; Del Duca, Martina; Di Castro, Valeriana; Nicotra, Maria Rita; Natali, Pier Giorgio; Bagnato, Anna

    2010-01-01

    Background The endothelin B receptor (ETBR) promotes tumorigenesis and melanoma progression through activation by endothelin (ET)-1, thus representing a promising therapeutic target. The stability of hypoxia-inducible factor (HIF)-1α is essential for melanomagenesis and progression, and is controlled by site-specific hydroxylation carried out by HIF-prolyl hydroxylase domain (PHD) and subsequent proteosomal degradation. Principal Findings Here we found that in melanoma cells ET-1, ET-2, and ET-3 through ETBR, enhance the expression and activity of HIF-1α and HIF-2α that in turn regulate the expression of vascular endothelial growth factor (VEGF) in response to ETs or hypoxia. Under normoxic conditions, ET-1 controls HIF-α stability by inhibiting its degradation, as determined by impaired degradation of a reporter gene containing the HIF-1α oxygen-dependent degradation domain encompassing the PHD-targeted prolines. In particular, ETs through ETBR markedly decrease PHD2 mRNA and protein levels and promoter activity. In addition, activation of phosphatidylinositol 3-kinase (PI3K)-dependent integrin linked kinase (ILK)-AKT-mammalian target of rapamycin (mTOR) pathway is required for ETBR-mediated PHD2 inhibition, HIF-1α, HIF-2α, and VEGF expression. At functional level, PHD2 knockdown does not further increase ETs-induced in vitro tube formation of endothelial cells and melanoma cell invasiveness, demonstrating that these processes are regulated in a PHD2-dependent manner. In human primary and metastatic melanoma tissues as well as in cell lines, that express high levels of HIF-1α, ETBR expression is associated with low PHD2 levels. In melanoma xenografts, ETBR blockade by ETBR antagonist results in a concomitant reduction of tumor growth, angiogenesis, HIF-1α, and HIF-2α expression, and an increase in PHD2 levels. Conclusions In this study we identified the underlying mechanism by which ET-1, through the regulation of PHD2, controls HIF-1α stability and

  6. Inhibition of hypoxia inducible factor-1α ameliorates lung injury induced by trauma and hemorrhagic shock in rats

    PubMed Central

    Jiang, Hong; Huang, Yan; Xu, Hui; Hu, Rong; Li, Qi-fang

    2012-01-01

    Aim: Ischemia/reperfusion is an initial triggering event that leads to gut-induced acute lung injury (ALI). In this study, we investigated whether hypoxia inducible factor-1α (HIF-1α) played a role in the pathogenesis of lung injury induced by trauma and hemorrhagic shock (T/HS). Methods: Male Wistar rats underwent laparotomy and hemorrhagic shock for 60 min. Sham-shock animals underwent laparotomy but without hemorrhagic shock. After resuscitation for 3 hr, the rats were sacrificed. Morphologic changes of the lungs and intestines were examined. Bronchoalveolar lavage fluid (BALF) was collected. Lung water content, pulmonary myeloperoxidase (MPO) activity and the levels of malondialdehyde (MDA), nitrite/nitrate, TNF-α, IL-1β, and IL-6 in the lungs were measured. The gene expression of pulmonary HIF-1α and iNOS, and HIF-1α transcriptional activity in the lungs were also assessed. The apoptosis in the lungs was determined using TUNEL assay and cleaved caspase-3 expression. Results: Lung and intestinal injuries induced by T/HS were characterized by histological damages and a significant increase in lung water content. Compared to the sham-shock group, the BALF cell counts, the pulmonary MPO activity and the MDA, nitrite/nitrate, TNF-α, IL-1β, and IL-6 levels in the T/HS group were significantly increased. Acute lung injury was associated with a higher degree of pulmonary HIF-1α and iNOS expression as well as apoptosis in the lungs. Intratracheal delivery of HIF-1α inhibitor YC-1 (1 mg/kg) significantly attenuated lung injury, and reduced pulmonary HIF-1α and iNOS expression and HIF-1α transcriptional activity in the T/HS group. Conclusion: Local inhibition of HIF-1α by YC-1 alleviates the lung injury induced by T/HS. Our results provide novel insight into the pathogenesis of T/HS-induced ALI and a potential therapeutic application. PMID:22465950

  7. Suppression of Akt1 phosphorylation by adenoviral transfer of the PTEN gene inhibits hypoxia-induced proliferation of rat pulmonary arterial smooth muscle cells

    SciTech Connect

    Luo, Chunxia; Yi, Bin; Bai, Li; Xia, Yongzhi; Wang, Guansong; Qian, Guisheng; Feng, Hua

    2010-07-02

    Recent findings identify the role of proliferation of pulmonary artery smooth muscle cells (PASMCs) in pulmonary vascular remodeling. Phosphoinositide 3 kinase (PI3K) and serine/threonine kinase (Akt) proteins are expressed in vascular smooth muscle cells. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been identified as a negative regulator of cytokine signaling that inhibits the PI3K-Akt pathway. However, little is known about the role of PTEN/Akt signaling in hypoxia-associated vascular remodeling. In this study, we found that hypoxia-induced the expression of Akt1 mRNA and phosphorylated protein by at least twofold in rat PASMCs. Phospho-PTEN significantly decreased in the nuclei of PASMCs after hypoxic stimulation. After forcing over-expression of PTEN by adenovirus-mediated PTEN (Ad-PTEN) transfection, the expression of phospho-Akt1 was significantly suppressed in PASMCs at all time-points measured. Additionally, we showed here that hypoxia increased proliferation of PASMCs by nearly twofold and over-expression of PTEN significantly inhibited hypoxia-induced PASMCs proliferation. These findings suggest that phospho-PTEN loss in the nuclei of PASMCs under hypoxic conditions may be the major cause of aberrant activation of Akt1 and may, therefore, play an important role in hypoxia-associated pulmonary arterial remodeling. Finally, the fact that transfection with Ad-PTEN inhibits the phosphorylation of Akt1 in PASMCs suggests a potential therapeutic effect on hypoxia-associated pulmonary arterial remodeling.

  8. Development of a Pseudomonas aeruginosa Agmatine Biosensor.

    PubMed

    Gilbertsen, Adam; Williams, Bryan

    2014-12-01

    Agmatine, decarboxylated arginine, is an important intermediary in polyamine production for many prokaryotes, but serves higher functions in eukaryotes such as nitric oxide inhibition and roles in neurotransmission. Pseudomonas aeruginosa relies on the arginine decarboxylase and agmatine deiminase pathways to convert arginine into putrescine. One of the two known agmatine deiminase operons, aguBA, contains an agmatine sensitive TetR promoter controlled by AguR. We have discovered that this promoter element can produce a titratable induction of its gene products in response to agmatine, and utilized this discovery to make a luminescent agmatine biosensor in P. aeruginosa. The genome of the P. aeruginosa lab strain UCBPP-PA14 was altered to remove both its ability to synthesize or destroy agmatine, and insertion of the luminescent reporter construct allows it to produce light in proportion to the amount of exogenous agmatine applied from ~100 nM to 1mM. Furthermore it does not respond to related compounds including arginine or putrescine. To demonstrate potential applications the biosensor was used to detect agmatine in spent supernatants, to monitor the development of arginine decarboxylase over time, and to detect agmatine in the spinal cords of live mice. PMID:25587430

  9. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    SciTech Connect

    Lee, Hae-June; Yoon, Changhwan; Park, Do Joong; Kim, Yeo-Jung; Schmidt, Benjamin; Lee, Yoon-Jin; Tap, William D.; Eisinger-Mathason, T.S. Karin; Choy, Edwin; Kirsch, David G.; Simon, M. Celeste; and others

    2015-03-01

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm{sup 3} within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm{sup 3} for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature.

  10. Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways.

    PubMed

    Siddiq, Ambreena; Aminova, Leila R; Troy, Carol M; Suh, Kyungsun; Messer, Zachary; Semenza, Gregg L; Ratan, Rajiv R

    2009-07-01

    Oxidative stress contributes to tissue injury in conditions ranging from cardiovascular disease to stroke, spinal cord injury, neurodegeneration, and perhaps even aging. Yet the efficacy of antioxidants in human disease has been mixed at best. We need a better understanding of the mechanisms by which established antioxidants combat oxidative stress. Iron chelators are well established inhibitors of oxidative death in both neural and non-neural tissues, but their precise mechanism of action remains elusive. The prevailing but not completely substantiated view is that iron chelators prevent oxidative injury by suppressing Fenton chemistry and the formation of highly reactive hydroxyl radicals. Here, we show that iron chelation protects, rather unexpectedly, by inhibiting the hypoxia-inducible factor prolyl 4-hydroxylase isoform 1 (PHD1), an iron and 2-oxoglutarate-dependent dioxygenase. PHD1 and its isoforms 2 and 3 are best known for stabilizing transcriptional regulators involved in hypoxic adaptation, such as HIF-1alpha and cAMP response element-binding protein (CREB). Yet we find that global hypoxia-inducible factor (HIF)-PHD inhibition protects neurons even when HIF-1alpha and CREB are directly suppressed. Moreover, two global HIF-PHD inhibitors continued to be neuroprotective even in the presence of diminished HIF-2alpha levels, which itself increases neuronal susceptibility to oxidative stress. Finally, RNA interference to PHD1 but not isoforms PHD2 or PHD3 prevents oxidative death, independent of HIF activation. Together, these studies suggest that iron chelators can prevent normoxic oxidative neuronal death through selective inhibition of PHD1 but independent of HIF-1alpha and CREB; and that HIF-2alpha, not HIF-1alpha, regulates susceptibility to normoxic oxidative neuronal death. PMID:19587290

  11. Knockdown of hypoxia inducible factor-2α inhibits cell invasion via the downregulation of MMP-2 expression in breast cancer cells

    PubMed Central

    LI, NA; WANG, HONGXING; ZHANG, JIE; ZHAO, ERCHEN

    2016-01-01

    Hypoxia inducible factors (HIFs) are important regulatory molecules of the intracellular oxygen-signaling pathway. The role of HIF-1α has been confirmed in breast carcinoma; however, little is understood concerning the function of HIF-2α. The present study treated human breast adenocarcinoma MCF-7 cells with the HIF activator cobalt chloride, and transfected HIF-2α small interfering RNAs (siRNAs) into MCF-7 cells to suppress HIF-2α expression. The siRNAs significantly reduced the levels of HIF-2α and matrix metalloproteinase (MMP)-2 in the treated MCF-7 cells. An invasion assay demonstrated that the siRNAs targeting HIF-2α inhibited the invasion potency of the cells. The present study concludes that loss of HIF-2α may be associated with a decreased risk for the progression of human breast cancer, due to the downregulation of the expression of MMP-2.

  12. Hypoxia inducible factor-1α inhibition produced anti-allodynia effect and suppressed inflammatory cytokine production in early stage of mouse complex regional pain syndrome model.

    PubMed

    Hsiao, Hung-Tsung; Lin, Ya-Chi; Wang, Jeffrey Chi-Fei; Tsai, Yu-Chuan; Liu, Yen-Chin

    2016-03-01

    Complex regional pain syndrome (CRPS) is related to microcirculation impairment associated with tissue hypoxia and peripheral cytokine overproduction in the affected limb. Previous studies suggest that the pathogenesis involves hypoxia inducible factor-1α (HIF-1α) and exaggerated regional inflammatory response. 1-methylpropyl 2-imidazolyl disulfide (PX-12) acts as the thioredoxin-1 (Trx-1) inhibitor and decreases the level of HIF-1α, and can rapidly be metabolized for Trx-1 redox inactivation. This study hypothesized that PX-12 can decrease the cytokine production for nociceptive sensitization in the hypoxia-induced pain model. CD1 mice weighing around 30 g were used. The animal CRPS model was developed via the chronic post-ischaemic pain (CPIP) model. The model was induced by using O-rings on the ankles of the mice hind limbs to produce 3-h ischaemia-reperfusion injury on the paw. PX-12 (25 mg/kg, 5 mg/kg) was given through tail vein injection immediately after ischaemia. Animal behaviour was tested using the von Frey method for 7 days. Local paw skin tissue was harvest from three groups (control, 5 mg/kg, 25 mg/kg) 2 h after injection of PX-12. The protein expression of interleukin-1β (IL-1β) and HIF-1α was analysed with the Western blotting method. Mice significantly present an anti-allodynia effect in a dose-related manner after the PX-12 administration. Furthermore, PX-12 not only decreased the expression of HIF-1α but also decreased the expression of IL-1β over the injured palm. This study, therefore, shows the first evidence of the anti-allodynia effect of PX-12 in a CPIP animal model for pain behaviour. The study concluded that inhibition of HIF-1α may produce an analgesic effect and the associated suppression of inflammatory cytokine IL-1β in a CPIP model. PMID:26711019

  13. Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases.

    PubMed

    Tsai, Shih-Hung; Huang, Po-Hsun; Hsu, Yu-Juei; Peng, Yi-Jen; Lee, Chien-Hsing; Wang, Jen-Chun; Chen, Jaw-Wen; Lin, Shing-Jong

    2016-01-01

    Hypoxia inducible factor-1α (HIF-1α) pathway is associated with many vascular diseases, including atherosclerosis, arterial aneurysms, pulmonary hypertension and chronic venous diseases. Significant HIF-1α expression could be found at the rupture edge at human abdominal aortic aneurysm (AAA) tissues. While our initial in vitro experiments had shown that deferoxamine (DFO) could attenuate angiotensin II (AngII) induced endothelial activations; we unexpectedly found that DFO augmented the severity of AngII-induced AAA, at least partly through increased accumulation of HIF-1α. The findings promoted us to test whether aneurysmal prone factors could up-regulate the expression of MMP-2 and MMP-9 through aberrantly increased HIF-1α and promote AAA development. AngII induced AAA in hyperlipidemic mice model was used. DFO, as a prolyl hydroxylase inhibitor, stabilized HIF-1α and augmented MMPs activities. Aneurysmal-prone factors induced HIF-1α can cause overexpression of MMP-2 and MMP-9 and promote aneurysmal progression. Pharmacological HIF-1α inhibitors, digoxin and 2-ME could ameliorate AngII induced AAA in vivo. HIF-1α is pivotal for the development of AAA. Our study provides a rationale for using HIF-1α inhibitors as an adjunctive medical therapy in addition to current cardiovascular risk-reducing regimens. PMID:27363580

  14. Inhibition of hypoxia inducible factor-1α attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases

    PubMed Central

    Tsai, Shih-Hung; Huang, Po-Hsun; Hsu, Yu-Juei; Peng, Yi-Jen; Lee, Chien-Hsing; Wang, Jen-Chun; Chen, Jaw-Wen; Lin, Shing-Jong

    2016-01-01

    Hypoxia inducible factor-1α (HIF-1α) pathway is associated with many vascular diseases, including atherosclerosis, arterial aneurysms, pulmonary hypertension and chronic venous diseases. Significant HIF-1α expression could be found at the rupture edge at human abdominal aortic aneurysm (AAA) tissues. While our initial in vitro experiments had shown that deferoxamine (DFO) could attenuate angiotensin II (AngII) induced endothelial activations; we unexpectedly found that DFO augmented the severity of AngII-induced AAA, at least partly through increased accumulation of HIF-1α. The findings promoted us to test whether aneurysmal prone factors could up-regulate the expression of MMP-2 and MMP-9 through aberrantly increased HIF-1α and promote AAA development. AngII induced AAA in hyperlipidemic mice model was used. DFO, as a prolyl hydroxylase inhibitor, stabilized HIF-1α and augmented MMPs activities. Aneurysmal-prone factors induced HIF-1α can cause overexpression of MMP-2 and MMP-9 and promote aneurysmal progression. Pharmacological HIF-1α inhibitors, digoxin and 2-ME could ameliorate AngII induced AAA in vivo. HIF-1α is pivotal for the development of AAA. Our study provides a rationale for using HIF-1α inhibitors as an adjunctive medical therapy in addition to current cardiovascular risk-reducing regimens. PMID:27363580

  15. HUMAN PAPILLOMAVIRUS E7 ENHANCES HYPOXIA-INDUCIBLE FACTOR 1 MEDIATED TRANSCRIPTION BY INHIBITING BINDING OF HISTONE DEACETYLASES

    PubMed Central

    Bodily, Jason M.; Mehta, Kavi P. M.; Laimins, Laimonis A.

    2010-01-01

    Infection by human papillomaviruses (HPVs) leads to the formation of benign lesions, warts, and in some cases, cervical cancer. The formation of these lesions is dependent upon increased expression of pro-angiogenic factors. Angiogenesis is linked to tissue hypoxia through the activity of the oxygen sensitive hypoxia inducible factor 1α (HIF-1α). Our studies indicate that the HPV E7 protein enhances HIF-1 transcriptional activity while E6 functions to counteract the repressive effects of p53. Both high and low risk HPV E7 proteins were found to bind to HIF-1α through a domain located in the the N terminus. Importantly, the ability of E7 to enhance HIF-1 activity mapped to the C terminus and correlated with the displacement of the histone deacetylases HDAC1, HDAC4, and HDAC7 from HIF-1α by E7. Our findings describe a novel role of the E7 oncoprotein in activating the function of a key transcription factor mediating hypoxic responses by blocking the binding of HDACs. PMID:21148070

  16. Novel agmatine analogue, {gamma}-guanidinooxypropylamine (GAPA) efficiently inhibits proliferation of Leishmania donovani by depletion of intracellular polyamine levels

    SciTech Connect

    Singh, Sushma; Jhingran, Anupam; Sharma, Ankur; Simonian, Alina R.; Soininen, Pasi; Vepsalainen, Jouko; Khomutov, Alex R.; Madhubala, Rentala

    2008-10-10

    The efficacy of {gamma}-guanidinooxypropylamine (GAPA), a novel agmatine analogue against protozoan parasite, Leishmaniadonovani was evaluated. Wild-type and ornithine decarboxylase-overexpressors of L. donovani were used to study the effect and mode of action of this inhibitor. GAPA inhibited the growth of both promastigotes and amastigotes. Ornithine decarboxylase (ODC) activity and polyamine levels were markedly lower in cells treated with GAPA and proliferation was rescued by addition of putrescine or spermidine. GAPA inhibited L. donovani recombinant ODC with K{sub i} value of {approx}60 {mu}M. The ODC-overexpressors showed significant resistance to GAPA. GAPA has pK{sub a} 6.71 and at physiological pH the analogue can mimic protonated state of putrescine and can probably use putrescine transport system. Transport of putrescine in wild-type L. donovani promastigotes was inhibited by GAPA. We for the first time report that GAPA is a potential antileishmanial lead compound and it possibly inhibits L. donovani growth by depletion of intracellular polyamine levels.

  17. A novel role for 3, 4-dichloropropionanilide (DCPA) in the inhibition of prostate cancer cell migration, proliferation, and hypoxia-inducible factor 1alpha expression

    PubMed Central

    Jiang, Bing-Hua; Liu, Ling-Zhi; Schafer, Rosana; Flynn, Daniel C; Barnett, John B

    2006-01-01

    Background The amide class compound, 3, 4-dichloropropionanilide (DCPA) is known to affect multiple signaling pathways in lymphocyte and macrophage including the inhibition of NF-κB ability. However, little is known about the effect of DCPA in cancer cells. Hypoxia-inducible factor 1 (HIF-1) regulates the expression of many genes including vascular endothelial growth factor (VEGF), heme oxygenase 1, inducible nitric oxide synthase, aldolase, enolase, and lactate dehydrogenase A. HIF-1 expression is associated with tumorigenesis and angiogenesis. Methods We used Transwell assay to study cell migration, and used immunoblotting to study specific protein expression in the cells. Results In this report, we demonstrate that DCPA inhibited the migration and proliferation of DU145 and PC-3 prostate cancer cells induced by serum, insulin, and insulin-like growth factor I (IGF-I). We found that DCPA inhibited HIF-1 expression in a subunit-specific manner in these cancer cell lines induced by serum and growth factors, and decreased HIF-1α expression by affecting its protein stability. Conclusion DCPA can inhibit prostate cancer cell migration, proliferation, and HIF-1α expression, suggesting that DCPA could be potentially used for therapeutic purpose for prostate cancer in the future. PMID:16884534

  18. Hypoxia-Inducible Hydrogels

    PubMed Central

    Park, Kyung Min; Gerecht, Sharon

    2014-01-01

    Oxygen is vital for the existence of all multicellular organisms, acting as a signaling molecule regulating cellular activities. Specifically, hypoxia, which occurs when the partial pressure of oxygen falls below 5%, plays a pivotal role during development, regeneration, and cancer. Here we report a novel hypoxia-inducible (HI) hydrogel composed of gelatin and ferulic acid that can form hydrogel networks via oxygen consumption in a laccase-mediated reaction. Oxygen levels and gradients within the hydrogels can be accurately controlled and precisely predicted. We demonstrate that HI hydrogels guide vascular morphogenesis in vitro via hypoxia-inducible factors activation of matrix metalloproteinases and promote rapid neovascularization from the host tissue during subcutaneous wound healing. The HI hydrogel is a new class of biomaterials that may prove useful in many applications, ranging from fundamental studies of developmental, regenerative and disease processes through the engineering of healthy and diseased tissue models towards the treatment of hypoxia-regulated disorders. PMID:24909742

  19. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α

    SciTech Connect

    Kim, Hyung Gyun; Han, Eun Hee; Im, Ji Hye; Lee, Eun Ji; Jin, Sun Woo; Jeong, Hye Gwang

    2015-09-25

    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Taken together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.

  20. Inhibition of hypoxia-inducible factor via upregulation of von Hippel-Lindau protein induces “angiogenic switch off” in a hepatoma mouse model

    PubMed Central

    Iwamoto, Hideki; Nakamura, Toru; Koga, Hironori; Izaguirre-Carbonell, Jesus; Kamisuki, Shinji; Sugawara, Fumio; Abe, Mitsuhiko; Iwabata, Kazuki; Ikezono, Yu; Sakaue, Takahiko; Masuda, Atsutaka; Yano, Hirohisa; Ohta, Keisuke; Nakano, Masahito; Shimose, Shigeo; Shirono, Tomotake; Torimura, Takuji

    2015-01-01

    “Angiogenic switch off” is one of the ideal therapeutic concepts in the treatment of cancer. However, the specific molecules which can induce “angiogenic switch off” in tumor have not been identified yet. In this study, we focused on von Hippel-Lindau protein (pVHL) in hepatocellular carcinoma (HCC) and investigated the effects of sulfoquinovosyl-acylpropanediol (SQAP), a novel synthetic sulfoglycolipid, for HCC. We examined mutation ratio of VHL gene in HCC using 30 HCC samples and we treated the HCC-implanted mice with SQAP. Thirty clinical samples showed no VHL genetic mutation in HCC. SQAP significantly inhibited tumor growth by inhibiting angiogenesis in a hepatoma mouse model. SQAP induced tumor “angiogenic switch off” by decreasing hypoxia-inducible factor (HIF)-1, 2α protein via pVHL upregulation. pVHL upregulation decreased HIFα protein levels through different multiple mechanisms: (i) increasing pVHL-dependent HIFα protein degradation; (ii) decreasing HIFα synthesis with decrease of NF-κB expression; and (iii) decrease of tumor hypoxia by vascular normalization. We confirmed these antitumor effects of SQAP by the loss-of-function experiments. We found that SQAP directly bound to and inhibited transglutaminase 2. This study provides evidence that upregulation of tumor pVHL is a promising target, which can induce “angiogenic switch off” in HCC. PMID:27119112

  1. Hypoxia-Inducible Factor Pathway Inhibition Resolves Tumor Hypoxia and Improves Local Tumor Control After Single-Dose Irradiation

    SciTech Connect

    Helbig, Linda; Koi, Lydia; Brüchner, Kerstin; Gurtner, Kristin; Hess-Stumpp, Holger; Unterschemmann, Kerstin; Pruschy, Martin; and others

    2014-01-01

    Purpose: To study the effects of BAY-84-7296, a novel orally bioavailable inhibitor of mitochondrial complex I and hypoxia-inducible factor 1 (HIF-1) activity, on hypoxia, microenvironment, and radiation response of tumors. Methods and Materials: UT-SCC-5 and UT-SCC-14 human squamous cell carcinomas were transplanted subcutaneously in nude mice. When tumors reached 4 mm in diameter BAY-84-7296 (Bayer Pharma AG) or carrier was daily administered to the animals. At 7 mm tumors were either excised for Western blot and immunohistologic investigations or were irradiated with single doses. After irradiation animals were randomized to receive BAY-84-7296 maintenance or carrier. Local tumor control was evaluated 150 days after irradiation, and the dose to control 50% of tumors (TCD{sub 50}) was calculated. Results: BAY-84-7296 decreased nuclear HIF-1α expression. Daily administration of inhibitor for approximately 2 weeks resulted in a marked decrease of pimonidazole hypoxic fraction in UT-SCC-5 (0.5% vs 21%, P<.0001) and in UT-SCC-14 (0.3% vs 19%, P<.0001). This decrease was accompanied by a significant increase in fraction of perfused vessels in UT-SCC-14 but not in UT-SCC-5. Bromodeoxyuridine and Ki67 labeling indices were significantly reduced only in UT-SCC-5. No significant changes were observed in vascular area or necrosis. BAY-84-7296 before single-dose irradiation significantly decreased TCD{sub 50}, with an enhancement ratio of 1.37 (95% confidence interval [CI] 1.13-1.72) in UT-SCC-5 and of 1.55 (95% CI 1.26-1.94) in UT-SCC-14. BAY-84-7296 maintenance after irradiation did not further decrease TCD{sub 50}. Conclusions: BAY-84-7296 resulted in a marked decrease in tumor hypoxia and substantially reduced radioresistance of tumor cells with the capacity to cause a local recurrence after irradiation. The data suggest that reduction of cellular hypoxia tolerance by BAY-84-7296 may represent the primary biological mechanism underlying the observed enhancement of

  2. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α.

    PubMed

    Kim, Hyung Gyun; Han, Eun Hee; Im, Ji Hye; Lee, Eun Ji; Jin, Sun Woo; Jeong, Hye Gwang

    2015-09-25

    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Taken together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. PMID:26296470

  3. Anthracycline inhibits recruitment of hypoxia-inducible transcription factors and suppresses tumor cell migration and cardiac angiogenic response in the host.

    PubMed

    Tanaka, Tetsuhiro; Yamaguchi, Junna; Shoji, Kumi; Nangaku, Masaomi

    2012-10-12

    Anthracycline chemotherapeutic agents of the topoisomerase inhibitor family are widely used for the treatment of various tumors. Although targeted tumor tissues are generally situated in a hypoxic environment, the connection between efficacy of anthracycline agents and cellular hypoxia response has not been investigated in depth. Here, we report that doxorubicin (DXR) impairs the transcriptional response of the hypoxia-inducible factor (HIF) by inhibiting the binding of the HIF heterodimer to the consensus -RCGTG- enhancer element. This pleiotropic effect retarded migration of von Hippel-Lindau (VHL)-defective renal cell carcinoma and that of VHL-competent renal cell carcinoma in hypoxia. This effect was accompanied by a coordinated down-regulation of HIF target lysyl oxidase (LOX) family members LOX, LOX-like2 (LOXL2), and LOXL4. Furthermore, DXR suppressed HIF target genes in tumor xenografts, inhibited cardiac induction of HIF targets in rats with acute anemia, and impaired the angiogenic response in the isoproterenol-induced heart failure model, which may account for the clinical fragility of doxorubicin cardiomyopathy. Collectively, these findings highlight the impaired hypoxia response by anthracycline agents affecting both tumors and organs of the cancer host and offer a promising opportunity to develop HIF inhibitors using DXR as a chemical template. PMID:22908232

  4. Inhibition of hypoxia inducible factor-1α downregulates the expression of epithelial to mesenchymal transition early marker proteins without undermining cell survival in hypoxic lens epithelial cells

    PubMed Central

    Neelam, Sudha; Brooks, Morgan M.

    2015-01-01

    Purpose The purpose of this study was to identify potential therapeutic strategies to slow down or prevent the expression of early-onset epithelial to mesenchymal transition (EMT) marker proteins (fibronectin and alpha smooth muscle actin, α-SMA) without sacrificing the synthesis and accumulation of the prosurvival protein vascular endothelial growth factor (VEGF) in cultured virally transformed human lens epithelial (HLE) cells. Methods HLE-B3 cells, maintained in a continuous hypoxic environment (1% oxygen), were treated with SB216763, a specific inhibitor of glycogen synthase kinase-3β (GSK-3β) catalytic activity. Western blot analysis was employed to detect the cytoplasmic and nuclear levels of β-catenin, as well as the total lysate content of fibronectin and α-SMA. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of VEGF in cell culture medium. A hypoxia-inducible factor-1α (HIF-1α) translation inhibitor and an HIF-2α translation inhibitor were independently employed to evaluate the effect of hypoxia inducible factor inhibition on EMT marker protein and VEGF expression. XAV932 was used to assess the suppression of nuclear β-catenin and its downstream effect on EMT marker proteins and VEGF expression. Results SB216763-treated HLE-B3 cells caused marked inhibition of GSK-3β activity prompting a significant increase in the translocation of cytoplasmic β-catenin to the nucleus. The enhancement of nuclear β-catenin looked as if it positively correlated with a significant increase in the basal expression of VEGF as well as increased expression of fibronectin and α-SMA. In conjunction with SB216763, coadministration of an HIF-1α translation inhibitor, but not an HIF-2α translation inhibitor, markedly suppressed the expression of fibronectin and α-SMA without affecting VEGF levels. Treatment with XAV932 significantly reduced the level of nuclear β-catenin, but the levels of neither the EMT marker proteins nor VEGF were changed

  5. CREB Negatively Regulates IGF2R Gene Expression and Downstream Pathways to Inhibit Hypoxia-Induced H9c2 Cardiomyoblast Cell Death

    PubMed Central

    Chen, Wei-Kung; Kuo, Wei-Wen; Hsieh, Dennis Jine-Yuan; Chang, Hsin-Nung; Pai, Pei-Ying; Lin, Kuan-Ho; Pan, Lung-Fa; Ho, Tsung-Jung; Viswanadha, Vijaya Padma; Huang, Chih-Yang

    2015-01-01

    During hypoxia, gene expression is altered by various transcription factors. Insulin-like growth factor-II (IGF2) is known to be induced by hypoxia, which binds to IGF2 receptor IGF2R that acts like a G protein-coupled receptor, might cause pathological hypertrophy or activation of the mitochondria-mediated apoptosis pathway. Cyclic adenosine monophosphate (cAMP) responsive element-binding protein (CREB) is central to second messenger-regulated transcription and plays a critical role in the cardiomyocyte survival pathway. In this study, we found that IGF2R level was enhanced in H9c2 cardiomyoblasts exposed to hypoxia in a time-dependent manner but was down-regulated by CREB expression. The over-expression of CREB in H9c2 cardiomyoblasts suppressed the induction of hypoxia-induced IGF2R expression levels and reduced cell apoptosis. Gel shift assay results further indicated that CREB binds to the promoter sequence of IGF2R. With a luciferase assay method, we further observed that CREB represses IGF2R promoter activity. These results suggest that CREB plays an important role in the inhibition of IGF2R expression by binding to the IGF2R promoter and further suppresses H9c2 cardiomyoblast cell apoptosis induced by IGF2R signaling under hypoxic conditions. PMID:26610485

  6. A new anti-angiogenic small molecule, G0811, inhibits angiogenesis via targeting hypoxia inducible factor (HIF)-1α signal transduction

    SciTech Connect

    Kim, Ki Hyun; Jung, Hye Jin; Kwon, Ho Jeong

    2013-11-15

    Highlights: •G0811 suppresses HIF-1α expression without cell toxicity. •G0811 exhibits anti-angiogenic activity both in vitro and in vivo. •G0811 provides a new molecular scaffold for the development of therapeutics targeting angiogenesis. -- Abstract: Regulation of hypoxia inducible factor (HIF)-1α stabilization, which in turn contributes to adaptation of tumor cells to hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. We have identified a new small molecule, G0811, as a potent angiogenesis inhibitor that targets HIF-1α signal transduction. G0811 suppressed HIF-1α stability in cancer cells and inhibited in vitro and in vivo angiogenesis, as validated by tube formation, chemoinvasion, and chorioallantoic membrane (CAM) assays. In addition, G0811 effectively decreased the expression of vascular endothelial growth factor (VEGF), which is one of target genes of HIF-1α. However, G0811 did not exhibit anti-proliferative activities or toxicity in human umbilical vein endothelial cells (HUVECs) at effective doses. These results demonstrate that G0811 could be a new angiogenesis inhibitor that acts by targeting HIF-1α signal transduction pathway.

  7. Neuroprotective Effects of Dexmedetomidine Against Hypoxia-Induced Nervous System Injury are Related to Inhibition of NF-κB/COX-2 Pathways.

    PubMed

    Pan, Wanying; Lin, Lin; Zhang, Nan; Yuan, Fuli; Hua, Xiaoxiao; Wang, Yueting; Mo, Liqiu

    2016-10-01

    Dexmedetomidine has been reported to provide neuroprotection against hypoxia-induced damage. However, the underlying mechanisms remain unclear. We examined whether dexmedetomidine's neuroprotective effects were mediated by the NF-κB/COX-2 pathways. Adult male C57BL/6 mice were subjected to a 30-min hypoxic treatment followed by recovery to normal conditions. They received dexmedetomidine (16 or 160 μg/kg) or 25 mg/kg atipamezole, an α2-adrenoreceptor antagonist, intraperitoneally before exposure to hypoxia. The whole brain was harvested 6, 18, or 36 h after the hypoxia to determine the histopathological outcome and cleaved caspase-3, Bax/Bcl, NF-κB, and COX-2 levels. Hypoxia treatment induced significant neurotoxicity, including destruction of the tissue structure and upregulation of the protein levels of caspase-3, the ratio of Bax/Bcl-2, NF-κB, and COX-2. Dexmedetomidine pretreatment effectively improved histological outcome and restored levels of caspase-3, the Bax/Bcl-2 ratio, NF-κB, and COX-2. Atipamezole reversed the neuroprotection induced by dexmedetomidine. Neuroprotection was achieved by PDTC and NS-398, inhibitors of NF-κB and COX-2, respectively. Dexmedetomidine use before hypoxia provides neuroprotection. Inhibition of NF-κB/COX-2 pathways activation may contribute to the neuroprotection of dexmedetomidine. PMID:26683659

  8. MiR-338-3p Inhibits Hepatocarcinoma Cells and Sensitizes These Cells to Sorafenib by Targeting Hypoxia-Induced Factor 1α

    PubMed Central

    Fang, Qiuju; Sun, Jianmin; Zhang, Songyan; Zhan, Chao; Liu, Shujie; Zhang, Yubao

    2014-01-01

    Hypoxia is a common feature of solid tumors and an important contributor to anti-tumor drug resistance. Hypoxia inducible factor-1 (HIF-1) is one of the key mediators of the hypoxia signaling pathway, and was recently proven to be required for sorafenib resistance in hepatocarcinoma (HCC). MicroRNAs have emerged as important posttranslational regulators in HCC. It was reported that miR-338-3p levels are associated with clinical aggressiveness of HCC. However, the roles of miR-338-3p in HCC disease and resistance to its therapeutic drugs are unknown. In this study, we found that miR-338-3p was frequently down-regulated in 14 HCC clinical samples and five cell lines. Overexpression of miR-338-3p inhibited HIF-1α 3′-UTR luciferase activity and HIF-1α protein levels in HepG2, SMMC-7721, and Huh7 cells. miR-338-3p significantly reduced cell viability and induced cell apoptosis of HCC cells. Additionally, HIF-1α overexpression rescued and HIF-1α knock-down abrogated the anti-HCC activity of miR-338-3p. Furthermore, miR-338-3p sensitized HCC cells to sorafenib in vitro and in a HCC subcutaneous nude mice tumor model by inhibiting HIF-1α. Collectively, miR-338-3p inhibits HCC tumor growth and sensitizes HCC cells to sorafenib by down-regulating HIF-1α. Our data indicate that miR-338-3p could be a potential candidate for HCC therapeutics. PMID:25531114

  9. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1{alpha} targeted gene expression

    SciTech Connect

    Miyake, Kotaro; Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan; Uto, Yoshihiro; Nagasawa, Hideko; Hori, Hitoshi; Shimada, Mitsuo

    2012-08-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1{alpha} (HIF-1{alpha}), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: Black-Right-Pointing-Pointer We designed and synthesized novel hypoxic cytoxin, TX-2098. Black-Right-Pointing-Pointer TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. Black-Right-Pointing-Pointer TX-2098 reduced VEGF protein level than TPZ. Black-Right-Pointing-Pointer TX-2098

  10. Tanshinone IIA exerts antitumor activity against vestibular schwannoma cells by inhibiting the expression of hypoxia-inducible factor-1α.

    PubMed

    Kim, Ju Yeon; Song, Jae-Jun; Kwon, Byoung-Mog; Lee, Jong Dae

    2015-09-01

    The aim of the present study was to evaluate the effect of the herbal medicine, tanshinone IIA (Tan IIA), on vestibular schwannoma (VS) cells and assess the functional targets of Tan IIA. HEI‑193 cells and Nf2‑/‑mouse Schwann (SC4) cells were used to investigate the inhibitory effects of Tan IIA on VS. Cell viability was measured using an MTT assay and apoptosis was assessed by flow cytometry. Western blot analysis and reverse transcription quantitative polymerase chain reaction (RT‑qPCR) were performed to assess the expression of hypoxia‑inducible factor‑1α (HIF‑1α) and its signaling pathways. In addition, the effect of Tan IIA on HIF‑1α transcription was determined using a luciferase reporter assay. Schwannoma cell proliferation was observed to be inhibited as the Tan IIA concentration increased under normoxic and hypoxic conditions. Furthermore, Tan IIA induced apoptosis in the HEI‑193 cells and inhibited the protein expression of HIF‑1α in the HEI‑193 cells under hypoxia, thus repressing the transcriptional activity of HIF‑1α. The present study demonstrated that HIF‑1α is expressed in hypoxic VS cells and Tan IIA inhibits VS cells by suppressing the activity of HIF‑1α. In conclusion, these results indicate that Tan IIA is a potential chemotherapeutic agent for the treatment of VS. PMID:26080622

  11. SNAIL gene inhibited by hypoxia-inducible factor 1α (HIF-1α) in epithelial ovarian cancer.

    PubMed

    Zhang, Pengnan; Liu, Yanmei; Feng, Youji; Gao, Shujun

    2016-09-01

    The aim of this study was to investigate the relationship between HIF-1α and SNAIL gene expression in the epithelial ovarian cancer (EOC) cell line. EOC cells were treated with hypoxia, hypoxia combined with rapamycin, and control. The expression of HIF-1α and E-cad were assessed by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. The gene expression of SNAIL was studied by RT-PCR and real-time PCR. RNA interference technology was used to determine the relationship between HIF-1α and SNAIL. The present study indicated that the HIF-1α protein was expressed and increased in EOC cell line. SNAIL mRNA was found to increase and E-cad expression decreased with the time of hypoxia prolonged. Hypoxia increased invasion abilities of EOC cell line, but compared with cells exposed to hypoxia, the change of invasive ability of cells with rapamycin had no effect. The expression of HIF-1α protein and SNAIL mRNA could be inhibited gradually by rapamycin. siRNA of HIF-1α could suppress the expression of SNAIL while siRNA of SNAIL had no influence on HIF-1α protein expression. HIF-1α may be the upstream of the SNAIL gene in EOC. Our data suggested that HIF-1α might be an upregulator of the SNAIL gene and HIF-1α-SNAIL-E-cad pathway may play an important role in EOC invasion and metastasis. PMID:27044634

  12. Adenosine 2A Receptor Inhibition Enhances Intermittent Hypoxia-Induced Diaphragm but Not Intercostal Long-Term Facilitation

    PubMed Central

    Navarrete-Opazo, Angela A.; Vinit, Stéphane

    2014-01-01

    Abstract Acute intermittent hypoxia (AIH) elicits diaphragm (Dia) and second external intercostal (T2 EIC) long-term facilitation (LTF) in normal unanesthetized rats. Although AIH-induced phrenic LTF is serotonin dependent, adenosine constrained in anesthetized rats, this has not been tested in unanesthetized animals. Cervical (C2) spinal hemisection (C2HS) abolishes phrenic LTF because of loss of serotonergic inputs 2 weeks post-injury, but LTF returns 8 weeks post-injury. We tested three hypotheses in unanesthetized rats: (1) systemic adenosine 2aA (A2A) receptor inhibition with intraperitoneal (IP) KW6002 enhances Dia and T2 EIC LTF in normal rats; (2) Dia and T2 EIC LTF are expressed after chronic (8 weeks), but not acute (1 week) C2HS; and (3) KW6002 enhances Dia and T2 EIC LTF after chronic (not acute) C2HS. Electromyography radiotelemetry was used to record Dia and T2 EIC activity during normoxia (21% O2), before and after AIH (10, 5-min 10.5% O2, 5-min intervals). In normal rats, KW6002 enhanced DiaLTF versus AIH alone (33.1±4.6% vs. 22.1±6.4% baseline, respectively; p<0.001), but had no effect on T2 EIC LTF (p>0.05). Although Dia and T2 EIC LTF were not observed 2 weeks post-C2HS, LTF was observed in contralateral (uninjured) Dia and T2 EIC 8 weeks post-C2HS (18.7±2.7% and 34.9±4.9% baseline, respectively; p<0.05), with variable ipsilateral expression. KW6002 had no significant effects on contralateral Dia (p=0.447) or T2 EIC LTF (p=0.796). We conclude that moderate AIH induces Dia and T2 EIC LTF after chronic, but not acute cervical spinal injuries. A single A2A receptor antagonist dose enhances AIH-induced Dia LTF in normal rats, but this effect is not significant in chronic (8 weeks) C2HS unanesthetized rats. PMID:25003645

  13. Valproic Acid Treatment Inhibits Hypoxia-Inducible Factor 1α Accumulation and Protects against Burn-Induced Gut Barrier Dysfunction in a Rodent Model

    PubMed Central

    Luo, Hong-Min; Du, Ming-Hua; Lin, Zhi-Long; Zhang, Lin; Ma, Li; Wang, Huan; Yu, Wen; Lv, Yi; Lu, Jiang-Yang; Pi, Yu-Li; Hu, Sen; Sheng, Zhi-Yong

    2013-01-01

    Objective Burn-induced gut dysfunction plays an important role in the development of sepsis and multiple organ dysfunction. Emerging evidence suggests that hypoxia-inducible factor-1α (HIF-1α) is critical in paracelluar barrier functions via regulating vascular endothelial growth factor (VEGF) and myosin light chain kinase (MLCK) expression. Previous studies have also demonstrated that histone deacetylase inhibitors (HDACIs) can repress HIF-1α. This study aims to examine whether valproic acid (VPA), a HDACI, protects against burn-induced gut barrier dysfunction via repressing HIF-1α-dependent upregulation of VEGF and MLCK expression. Methods Rats were subjected to third degree 55% TBSA burns and treated with/ without VPA (300mg/kg). Intestinal barrier dysfunction was evaluated by permeability of intestinal mucosa to fluorescein isothiocyanate (FITC)-dextran and histologic evaluation. Histone acetylation, tight junction protein zonula occludens 1 (ZO-1), VEGF, MLCK and HIF-1α were measured. In addition, CaCO2 cells were transfected with siRNA directed against HIF-1α and were stimulated with CoCl2 (1mM) for 24 hours with/without VPA (2mM) followed by analysis of HIF-1α, MLCK, VEGF and ZO-1. Results Burn insults resulted in a significant increase in intestinal permeability and mucosal damage, accompanied by a significant reduction in histone acetylation, ZO-1, upregulation of VEGF, MLCK expression, and an increase in HIF-1α accumulation. VPA significantly attenuated the increase in intestinal permeability, mucosa damage, histone deacetylation and changes in ZO-1 expression. VPA also attenuated the increased VEGF, MLCK and HIF-1α protein levels. VPA reduced HIF-1α, MLCK and VEGF production and prevented ZO-1 loss in CoCl2-stimulated Caco-2 cells. Moreover, transfection of siRNA directed against HIF-1α led to inhibition of MLCK and VEGF production, accompanied by upregulation of ZO-1. Conclusions These results indicate that VPA can protect against burn

  14. Ursolic acid inhibits proliferation and reverses drug resistance of ovarian cancer stem cells by downregulating ABCG2 through suppressing the expression of hypoxia-inducible factor-1α in vitro.

    PubMed

    Wang, Wen-Jing; Sui, Hua; Qi, Cong; Li, Qi; Zhang, Jie; Wu, Shao-Fei; Mei, Ming-Zhu; Lu, Ying-Yu; Wan, Yi-Ting; Chang, Hannah; Guo, Piao-Ting

    2016-07-01

    Hypoxia in tumors is closely related to drug resistance. It has not been verified whether hypoxia-inducible factor-1α (HIF-1α) or ABCG2 is related to hypoxia-induced resistance. Ursolic acid (UA), when used in combination with cisplatin can significantly increase the sensitivity of ovarian cancer stem cells (CSCs) to cisplatin, but the exact mechanism is unknown. The cell growth inhibitory rate of cisplatin under different conditions was evaluated using Cell Counting Kit-8 (CCK-8) in adherence and sphere cells (SKOV3, A2780, and HEY). The expression of HIF-1α and ABCG2 was tested using quantitative PCR, western blotting, and immuno-fluorescence under different culture conditions and treated with UA. Knockdown of HIF-1α by shRNA and LY294002 was used to inhibit the activity of PI3K/Akt pathway. Ovarian CSCs express stemness-related genes and drug resistance significantly higher than normal adherent cells. Under hypoxic conditions, the ovarian CSCs grew faster and were more drug resistant than under normoxia. UA could inhibit proliferation and reverse the drug resistance of ovarian CSC by suppressing ABCG2 and HIF-1α under different culture conditions. HIF-1α inhibitor YC-1 combined with UA suppressed the stemness genes and ABCG2 under hypoxic condition. The PI3K/Akt signaling pathway activation plays an important functional role in UA-induced downregulation of HIF-1α and reduction of ABCG2. UA inhibits the proliferation and reversal of drug resistance in ovarian CSCs by suppressing the expression of downregulation of HIF-1α and ABCG2. PMID:27221674

  15. Characterization and Inactivation of an Agmatine Deiminase from Helicobacter Pylori†||

    PubMed Central

    Jones, Justin E.; Causey, Corey P.; Lovelace, Leslie; Knuckley, Bryan; Flick, Heather; Lebioda, Lukasz; Thompson, Paul R.

    2010-01-01

    Helicobacter pylori encodes a potential virulence factor, agmatine deiminase (HpAgD), which catalyzes the conversion of agmatine to N-carbamoyl putrescine (NCP) and ammonia - agmatine is decarboxylated arginine. Agmatine is an endogenous human cell signaling molecule that triggers the innate immune response in humans. Unlike H. pylori, humans do not encode an AgD; it is hypothesized that inhibition of this enzyme would increase the levels of agmatine, and thereby enhance the innate immune response. Taken together, these facts suggest that HpAgD is a potential drug target. Herein we describe the optimized expression, isolation, and purification of HpAgD (10–30 mg/L media). The initial kinetic characterization of this enzyme has also been performed. Additionally, the crystal structure of wild-type HpAgD has been determined at 2.1 Å resolution. This structure provides a molecular basis for the preferential deimination of agmatine, and identifies Asp198 as a key residue responsible for agmatine recognition, which has been confirmed experimentally. Information gathered from these studies led to the development and characterization of a novel class of haloacetamidine based HpAgD inactivators. These compounds are the most potent AgD inhibitors ever described. PMID:20036411

  16. Characterization and inactivation of an agmatine deiminase from Helicobacter pylori

    SciTech Connect

    Jones, Justin E.; Causey, Corey P.; Lovelace, Leslie; Knuckley, Bryan; Flick, Heather; Lebioda, Lukasz; Thompson, Paul R.

    2010-11-12

    Helicobacter pylori encodes a potential virulence factor, agmatine deiminase (HpAgD), which catalyzes the conversion of agmatine to N-carbamoyl putrescine (NCP) and ammonia - agmatine is decarboxylated arginine. Agmatine is an endogenous human cell signaling molecule that triggers the innate immune response in humans. Unlike H. pylori, humans do not encode an AgD; it is hypothesized that inhibition of this enzyme would increase the levels of agmatine, and thereby enhance the innate immune response. Taken together, these facts suggest that HpAgD is a potential drug target. Herein we describe the optimized expression, isolation, and purification of HpAgD (10-30 mg/L media). The initial kinetic characterization of this enzyme has also been performed. Additionally, the crystal structure of wild-type HpAgD has been determined at 2.1 {angstrom} resolution. This structure provides a molecular basis for the preferential deimination of agmatine, and identifies Asp198 as a key residue responsible for agmatine recognition, which has been confirmed experimentally. Information gathered from these studies led to the development and characterization of a novel class of haloacetamidine-based HpAgD inactivators. These compounds are the most potent AgD inhibitors ever described.

  17. Anti-tumor activity of the novel hexahydrocannabinol analog LYR-8 in Human colorectal tumor xenograft is mediated through the inhibition of Akt and hypoxia-inducible factor-1α activation.

    PubMed

    Thapa, Dinesh; Kang, Youra; Park, Pil-Hoon; Noh, Seok Kyun; Lee, Yong Rok; Han, Sung Soo; Ku, Sae Kwang; Jung, Yunjin; Kim, Jung-Ae

    2012-01-01

    Cannabinoid compounds have been shown to exert anti-tumor effects by affecting angiogenesis, invasion, and metastasis. In the present study, we examined the action mechanism by which LYR-8, a novel hexahydrocannabinol analog, exerts anti-angiogenic and anti-tumor activity in human cancer xenografts. In the xenografted tumor tissues, LYR-8 significantly reduced the expression of hypoxia-inducible factor-1 alpha (HIF-1α), a transcription factor responsible for induction of angiogenesis-promoting factors, and its target genes, vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2). In HT-29 human colon cancer cells treated with a hypoxia-inducing agent (CoCl(2)), LYR-8 dose-dependently suppressed the induction of HIF-1α and subsequently its targets, VEGF and COX-2. In addition, highly elevated prostaglandin E(2) (PGE(2)) concentrations in CoCl(2)-treated HT-29 cells were also significantly suppressed by LYR-8. However, LYR-8 alone in the absence of CoCl(2) did not alter the basal expression of VEGF and COX-2, or PGE(2) production. Furthermore, LYR-8 effectively suppressed Akt signaling, which corresponded to the suppression of CoCl(2)-induced HIF-1α accumulation. Taken together, LYR-8 exerts anti-tumor effects through the inhibition of Akt and HIF-1α activation, and subsequently suppressing factors regulating tumor microenvironment, such as VEGF and COX-2. These results indicate a novel function of cannabinoid-like compound LYR-8 as an anti-tumor agent with a HIF-1α inhibitory activity. PMID:22687485

  18. Molecular characterization and mRNA expression of hypoxia inducible factor-1 and cognate inhibiting factor in Macrobrachium nipponense in response to hypoxia.

    PubMed

    Sun, Shengming; Xuan, Fujun; Fu, Hongtuo; Ge, Xianping; Zhu, Jian; Qiao, Hui; Jin, Shubo; Zhang, Wenyi

    2016-01-01

    Hypoxia inducible factors (HIFs) are considered to be the master switches of oxygen-dependent gene expression in mammalian species. Currently, very little is known about the function of this important pathway or the molecular structures of key players in the hypoxia-sensitive Oriental River Prawn Macrobrachium nipponense. In this study, HIFs-1α (HIF-1α), -1β (HIF-1β) and HIF 1-alpha inhibitor (FIH-1) from M. nipponense were cloned. The 4903-bp cDNA of M. nipponense HIF-1α (MnHIF-1α) encodes a protein of 1088 aa, M. nipponense HIF-1β (MnHIF-1β) spans 2042bp encoding 663 aa and the 1163bp M. nipponense FIH-1 (MnFIH-1) specifies a polypeptide of 345 aa. MnHIF-1 and MnFIH-1 homologs exhibit significant sequence similarity and share key functional domains with previously described vertebrate and invertebrate isoforms. Phylogenetic analysis identifies that genetic diversification of HIF-1 and FIH-1 occurred within the invertebrate lineage, indicating functional specialization of the oxygen sensing pathways in this group. Quantitative real-time RT-PCR demonstrated that MnHIF-1 and MnFIH-1 mRNA are expressed in different tissues and exhibit transcriptional responses to severe hypoxia in gill and muscle tissue, consistent with their putative role in oxygen sensing and the adaptive response to hypoxia. The role of HIF-1α in response to hypoxia was further investigated in the gills and muscles of prawns using in situ hybridization. These results suggested that HIF-1α plays an important role in oxygen sensing and homeostasis in M. nipponense. PMID:26883381

  19. Dual effect of agmatine in the bisected rat vas deferens.

    PubMed

    Santos, Wilson C; Smaili, Soraya S; Jurkiewicz, Aron; Piçarro, Ivan; Garcez-do-Carmo, Lúcia

    2003-03-01

    The functional effects of the amine agmatine, the putative endogenous ligand for alpha(2)-adrenoceptors and imidazoline receptors, in rat vas deferens were investigated by using the epididymal and prostatic portions. Tissues were contracted by electrical stimulation or by exogenous drugs. In electrically stimulated portions, agmatine caused a dual effect on contractions. In the epididymal portion an inhibition on twitch contractions was observed, which was partially antagonised by idazoxan and yohimbine, indicating the involvement of at least a presynaptic alpha(2)-adrenoceptor-mediated mechanism, without the interference of imidazoline receptors. In the prostatic portion, agmatine enhanced the amplitude of twitches. In contractions induced by exogenous drugs, agmatine potentiated, only in the prostatic segment, the effects of noradrenaline (norepinephrine) or ATP; it also enhanced the effect of low concentrations of KCl and blocked the maximum effect of the higher concentrations. Effects induced by agmatine on the exogenous ATP in the prostatic portion were blocked by cromakalim, suggesting a blocking action on the postsynaptic K(+) channels, which explains, in part, the potentiation of the twitch amplitude. It was concluded that agmatine interferes with sympathetic neurotransmission, but the physiological relevance of this needs to be better understood because of the high doses employed to induce its effects. PMID:12724044

  20. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    PubMed Central

    Leszczynska, Katarzyna B.; Foskolou, Iosifina P.; Abraham, Aswin G.; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N.; O’Neill, Eric E.; Buffa, Francesca M.; Hammond, Ester M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage–induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain–containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors. PMID:25961455

  1. Agmatine Ameliorates High Glucose-Induced Neuronal Cell Senescence by Regulating the p21 and p53 Signaling

    PubMed Central

    Song, Juhyun; Lee, Byeori; Kang, Somang; Oh, Yumi; Kim, Eosu; Kim, Chul-Hoon; Song, Ho-Taek

    2016-01-01

    Neuronal senescence caused by diabetic neuropathy is considered a common complication of diabetes mellitus. Neuronal senescence leads to the secretion of pro-inflammatory cytokines, the production of reactive oxygen species, and the alteration of cellular homeostasis. Agmatine, which is biosynthesized by arginine decarboxylation, has been reported in previous in vitro to exert a protective effect against various stresses. In present study, agmatine attenuated the cell death and the expression of pro-inflammatory cytokines such as IL-6, TNF-alpha and CCL2 in high glucose in vitro conditions. Moreover, the senescence associated-β-galatosidase's activity in high glucose exposed neuronal cells was reduced by agmatine. Increased p21 and reduced p53 in high glucose conditioned cells were changed by agmatine. Ultimately, agmatine inhibits the neuronal cell senescence through the activation of p53 and the inhibition of p21. Here, we propose that agmatine may ameliorate neuronal cell senescence in hyperglycemia. PMID:26924930

  2. Agmatine Ameliorates High Glucose-Induced Neuronal Cell Senescence by Regulating the p21 and p53 Signaling.

    PubMed

    Song, Juhyun; Lee, Byeori; Kang, Somang; Oh, Yumi; Kim, Eosu; Kim, Chul-Hoon; Song, Ho-Taek; Lee, Jong Eun

    2016-02-01

    Neuronal senescence caused by diabetic neuropathy is considered a common complication of diabetes mellitus. Neuronal senescence leads to the secretion of pro-inflammatory cytokines, the production of reactive oxygen species, and the alteration of cellular homeostasis. Agmatine, which is biosynthesized by arginine decarboxylation, has been reported in previous in vitro to exert a protective effect against various stresses. In present study, agmatine attenuated the cell death and the expression of pro-inflammatory cytokines such as IL-6, TNF-alpha and CCL2 in high glucose in vitro conditions. Moreover, the senescence associated-β-galatosidase's activity in high glucose exposed neuronal cells was reduced by agmatine. Increased p21 and reduced p53 in high glucose conditioned cells were changed by agmatine. Ultimately, agmatine inhibits the neuronal cell senescence through the activation of p53 and the inhibition of p21. Here, we propose that agmatine may ameliorate neuronal cell senescence in hyperglycemia. PMID:26924930

  3. Hypoxic Preconditioning Inhibits Hypoxia-induced Apoptosis of Cardiac Progenitor Cells via the PI3K/Akt-DNMT1-p53 Pathway.

    PubMed

    Xu, Rongfeng; Sun, Yuning; Chen, Zhongpu; Yao, Yuyu; Ma, Genshan

    2016-01-01

    Research has demonstrated that hypoxic preconditioning (HP) can enhance the survival and proliferation of cardiac progenitor cells (CPCs); however, the underlying mechanisms are not fully understood. Here, we report that HP of c-kit (+) CPCs inhibits p53 via the PI3K/Akt-DNMT1 pathway. First, CPCs were isolated from the hearts of C57BL/6 mice and further purified by magnetic-activated cell sorting. Next, these cells were cultured under either normoxia (H0) or HP for 6 hours (H6) followed by oxygen-serum deprivation for 24 hours (24h). Flow cytometric analysis and MTT assays revealed that hypoxia-preconditioned CPCs exhibited an increased survival rate. Western blot and quantitative real-time PCR assays showed that p53 was obviously inhibited, while DNMT1 and DNMT3β were both significantly up-regulated by HP. Bisulphite sequencing analysis indicated that DNMT1 and DNMT3β did not cause p53 promoter hypermethylation. A reporter gene assay and chromatin immunoprecipitation analysis further demonstrated that DNMT1 bound to the promoter locus of p53 in hypoxia-preconditioned CPCs. Together, these observations suggest that HP of CPCs could lead to p53 inhibition by up-regulating DNMT1 and DNMT3β, which does not result in p53 promoter hypermethylation, and that DNMT1 might directly repress p53, at least in part, by binding to the p53 promoter locus. PMID:27488808

  4. Hypoxic Preconditioning Inhibits Hypoxia-induced Apoptosis of Cardiac Progenitor Cells via the PI3K/Akt-DNMT1-p53 Pathway

    PubMed Central

    Xu, Rongfeng; Sun, Yuning; Chen, Zhongpu; Yao, Yuyu; Ma, Genshan

    2016-01-01

    Research has demonstrated that hypoxic preconditioning (HP) can enhance the survival and proliferation of cardiac progenitor cells (CPCs); however, the underlying mechanisms are not fully understood. Here, we report that HP of c-kit (+) CPCs inhibits p53 via the PI3K/Akt-DNMT1 pathway. First, CPCs were isolated from the hearts of C57BL/6 mice and further purified by magnetic-activated cell sorting. Next, these cells were cultured under either normoxia (H0) or HP for 6 hours (H6) followed by oxygen–serum deprivation for 24 hours (24h). Flow cytometric analysis and MTT assays revealed that hypoxia-preconditioned CPCs exhibited an increased survival rate. Western blot and quantitative real-time PCR assays showed that p53 was obviously inhibited, while DNMT1 and DNMT3β were both significantly up-regulated by HP. Bisulphite sequencing analysis indicated that DNMT1 and DNMT3β did not cause p53 promoter hypermethylation. A reporter gene assay and chromatin immunoprecipitation analysis further demonstrated that DNMT1 bound to the promoter locus of p53 in hypoxia-preconditioned CPCs. Together, these observations suggest that HP of CPCs could lead to p53 inhibition by up-regulating DNMT1 and DNMT3β, which does not result in p53 promoter hypermethylation, and that DNMT1 might directly repress p53, at least in part, by binding to the p53 promoter locus. PMID:27488808

  5. Inhibition of Hypoxia Inducible Factor Alpha and Astrocyte-Elevated Gene-1 Mediates Cryptotanshinone Exerted Antitumor Activity in Hypoxic PC-3 Cells

    PubMed Central

    Lee, Hyo-Jeong; Jung, Deok-Beom; Sohn, Eun Jung; Kim, Hanna Hyun; Park, Moon Nyeo; Lew, Jae-Hwan; Lee, Seok Geun; Kim, Bonglee; Kim, Sung-Hoon

    2012-01-01

    Although cryptotanshinone (CT) was known to exert antitumor activity in several cancers, its molecular mechanism under hypoxia still remains unclear. Here, the roles of AEG-1 and HIF-1α in CT-induced antitumor activity were investigated in hypoxic PC-3 cells. CT exerted cytotoxicity against prostate cancer cells and suppressed HIF-1α accumulation and AEG-1 expression in hypoxic PC-3 cells. Also, AEG-1 was overexpressed in prostate cancer cells. Interestingly, HIF-1α siRNA transfection enhanced the cleavages of caspase-9,3, and PAPR and decreased expression of Bcl-2 and AEG1 induced by CT in hypoxic PC-3 cells. Of note, DMOG enhanced the stability of AEG-1 and HIF-1α during hypoxia. Additionally, CT significantly reduced cellular level of VEGF in PC-3 cells and disturbed tube formation of HUVECs. Consistently, ChIP assay revealed that CT inhibited the binding of HIF-1α to VEGF promoter. Furthermore, CT at 10 mg/kg suppressed the growth of PC-3 cells in BALB/c athymic nude mice by 46.4% compared to untreated control. Consistently, immunohistochemistry revealed decreased expression of Ki-67, CD34, VEGF, carbonic anhydrase IX, and AEG-1 indices in CT-treated group compared to untreated control. Overall, our findings suggest that CT exerts antitumor activity via inhibition of HIF-1α, AEG1, and VEGF as a potent chemotherapeutic agent. PMID:23243443

  6. Blockade of hypoxia-induced CXCR4 with AMD3100 inhibits production of OA-associated catabolic mediators IL-1β and MMP-13.

    PubMed

    Li, Pengcui; Deng, Jin; Wei, Xiaochun; Jayasuriya, Chathuraka T; Zhou, Jingming; Chen, Qian; Zhang, Jianzhong; Wei, Lei; Wei, Fangyuan

    2016-08-01

    Binding of the chemokine stromal cell-derived factor-1 (SDF-1) to its receptor C-X-C chemokine receptor type 4 (CXCR4) results in receptor activation and the subsequent release of matrix metalloproteinases (MMPs) that contribute to osteoarthritis (OA) cartilage degradation. As hypoxia is a defining feature of the chondrocyte microenvironment, the present study investigated the possible mechanism through which SDF‑1 induces cartilage degradation under hypoxic conditions. To do this, OA chondrocyte cultures and patient tissue explants pretreated with the CXCR4 inhibitor, AMD3100 were incubated with SDF‑1. It was identified that hypoxic conditions significantly elevated the expression of CXCR4 in osteoarthritic chondrocytes relative to normoxic conditions. Furthermore, SDF‑1 elevated MMP‑13 mRNA levels and proteinase activity. It also elevated the mRNA and protein levels of runt‑related transcription factor 2, and induced the release of glycosaminoglycans and the inflammatory cytokine, interleukin‑1β. By contrast, such changes did not occur to an appreciable degree in cells that were pretreated with AMD3100. The results of the present study demonstrate that even under hypoxic conditions, where CXCR4 expression is significantly elevated in chondrocytes, AMD3100 effectively blocks this receptor and protects chondrocytes from OA‑induced catabolism, suggesting that the successful inhibition of CXCR4 may be an effective approach for OA treatment. PMID:27356492

  7. Blockade of hypoxia-induced CXCR4 with AMD3100 inhibits production of OA-associated catabolic mediators IL-1β and MMP-13

    PubMed Central

    Li, Pengcui; Deng, Jin; Wei, Xiaochun; Jayasuriya, Chathuraka T.; Zhou, Jingming; Chen, Qian; Zhang, Jianzhong; Wei, Lei; Wei, Fangyuan

    2016-01-01

    Binding of the chemokine stromal cell-derived factor-1 (SDF-1) to its receptor C-X-C chemokine receptor type 4 (CXCR4) results in receptor activation and the subsequent release of matrix metalloproteinases (MMPs) that contribute to osteoarthritis (OA) cartilage degradation. As hypoxia is a defining feature of the chondrocyte microenvironment, the present study investigated the possible mechanism through which SDF-1 induces cartilage degradation under hypoxic conditions. To do this, OA chondrocyte cultures and patient tissue explants pretreated with the CXCR4 inhibitor, AMD3100 were incubated with SDF-1. It was identified that hypoxic conditions significantly elevated the expression of CXCR4 in osteoarthritic chondrocytes relative to normoxic conditions. Furthermore, SDF-1 elevated MMP-13 mRNA levels and proteinase activity. It also elevated the mRNA and protein levels of runt-related transcription factor 2, and induced the release of glycosaminoglycans and the inflammatory cytokine, interleukin-1β. By contrast, such changes did not occur to an appreciable degree in cells that were pretreated with AMD3100. The results of the present study demonstrate that even under hypoxic conditions, where CXCR4 expression is significantly elevated in chondrocytes, AMD3100 effectively blocks this receptor and protects chondrocytes from OA-induced catabolism, suggesting that the successful inhibition of CXCR4 may be an effective approach for OA treatment. PMID:27356492

  8. Neuroprotective Effects of Agmatine Against Cell Damage Caused by Glucocorticoids in Cultured Rat Hippocampal Neurons

    PubMed Central

    Zhu, M.-Y.; Wang, W.-P.; Bissette, G.

    2010-01-01

    In the present study the neuroprotective effects of agmatine against neuronal damage caused by glucocorticoids were examined in cultured rat hippocampal neurons. Spectrophotometric measurements of lactate dehydrogenase activities, β-tubulin III immunocytochemical staining, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end-labeling assay (TUNEL) labeling and caspase-3 assays were carried out to detect cell damage or possible involved mechanisms. Our results show that dexamethasone and corticosterone produced a concentration-dependent increase of lactate dehydrogenase release in 12-day hippocampal cultures. Addition of 100 μM agmatine into media prevented the glucocorticoid-induced increase of lactate dehydrogenase release, an effect also shared with the specific N-methyl-d-aspartate receptor antagonist MK801 and glucocorticoid receptor antagonists mifepristone and spironolactone. Arcaine, an analog of agmatine with similar structure as agmatine, also blocked glucocorticoid-induced increase of lactate dehydrogenase release. Spermine and putrescine, the endogenous polyamine and metabolic products of agmatine without the guanidino moiety of agmatine, have no appreciable effect on glucocorticoid-induced injuries, indicating a structural relevance for this neuroprotection. Immunocytochemical staining with β-tubulin III confirmed the substantial neuronal injuries caused by glucocorticoids and the neuroprotective effects of agmatine against these neuronal injuries. TUNEL labeling demonstrated that agmatine significantly reduced TUNEL-positive cell numbers induced by exposure of cultured neurons to dexamethasone. Moreover, exposure of hippocampal neurons to dexamethasone significantly increased caspase-3 activity, which was inhibited by co-treatment with agmatine. Taken together, these results demonstrate that agmatine can protect cultured hippocampal neurons from glucocorticoid-induced neurotoxicity, through a possible blockade of

  9. Hypoxia inducible factor pathway inhibitors as anticancer therapeutics

    PubMed Central

    Burroughs, Sarah K; Kaluz, Stefan; Wang, Danzhu; Wang, Ke

    2013-01-01

    Hypoxia is a significant feature of solid tumor cancers. Hypoxia leads to a more malignant phenotype that is resistant to chemotherapy and radiation, is more invasive and has greater metastatic potential. Hypoxia activates the hypoxia inducible factor (HIF) pathway, which mediates the biological effects of hypoxia in tissues. The HIF complex acts as a transcription factor for many genes that increase tumor survival and proliferation. To date, many HIF pathway inhibitors indirectly affect HIF but there have been no clinically approved direct HIF inhibitors. This can be attributed to the complexity of the HIF pathway, as well as to the challenges of inhibiting protein–protein interactions. PMID:23573973

  10. Paeoniflorin prevents hypoxia-induced epithelial–mesenchymal transition in human breast cancer cells

    PubMed Central

    Zhou, Zhenyu; Wang, Shunchang; Song, Caijuan; Hu, Zhuang

    2016-01-01

    Paeoniflorin (PF) is a monoterpene glycoside extracted from the root of Paeonia lactiflora Pall. Previous studies have demonstrated that PF inhibits the growth, invasion, and metastasis of tumors in vivo and in vitro. However, the effect of PF on hypoxia-induced epithelial–mesenchymal transition (EMT) in breast cancer cells remains unknown. Therefore, the objective of this study was to investigate the effect of PF on hypoxia-induced EMT in breast cancer cells, as well as characterize the underlying mechanism. The results presented in this study demonstrate that PF blocks the migration and invasion of breast cancer cells by repressing EMT under hypoxic conditions. PF also significantly attenuated the hypoxia-induced increase in HIF-1α level. Furthermore, PF prevented hypoxia-induced expression of phosphorylated PI3K and Akt in MDA-MB-231 cells. In conclusion, PF prevented hypoxia-induced EMT in breast cancer cells by inhibiting HIF-1α expression via modulation of PI3K/Akt signaling pathway. This finding provides evidence that PF can serve as a therapeutic agent for the treatment of breast cancer. PMID:27175085

  11. Intracrine prostaglandin E(2) signalling regulates hypoxia-inducible factor-1α expression through retinoic acid receptor-β.

    PubMed

    Fernández-Martínez, Ana B; Jiménez, María I Arenas; Manzano, Victoria Moreno; Lucio-Cazaña, Francisco J

    2012-12-01

    We have previously found in human renal proximal tubular HK-2 cells that hypoxia- and all-trans retinoic acid-induced hypoxia-inducible factor-1α up-regulation is accompanied by retinoic acid receptor-β up-regulation. Here we first investigated whether hypoxia-inducible factor-1α expression is dependent on retinoic acid receptor-β and our results confirmed it since (i) hypoxia-inducible factor-1α-inducing agents hypoxia, hypoxia-mimetic agent desferrioxamine, all-trans retinoic acid and interleukin-1β increased retinoic acid receptor-β expression, (ii) hypoxia-inducible factor-1α up-regulation was prevented by retinoic acid receptor-β antagonist LE-135 or siRNA retinoic acid receptor-β and (iii) there was direct binding of retinoic acid receptor-β to the retinoic acid response element in hypoxia-inducible factor-1α promoter upon treatment with all-trans retinoic acid and 16,16-dimethyl-prostaglandin E(2). Since intracellular prostaglandin E(2) mediates hypoxia-inducible factor-1α up-regulation in normoxia in HK-2 cells, we next investigated and confirmed, its role in the up-regulation of retinoic acid receptor-β in normoxia by hypoxia-inducible factor-1α-inducing agents all-trans retinoic acid, interleukin-1β and 16,16-dimethyl-prostaglandin E(2) by inhibiting cyclooxygenases, prostaglandin influx transporter or EP receptors. Interestingly, the hypoxia-induced increase in retinoic acid receptor-β expression and accumulation of hypoxia-inducible factor-1α was also blocked by the inhibitors tested. This is the first time, to our knowledge, that retinoic acid receptor-β signalling is involved in the control of the expression of transcription factor hypoxia-inducible factor-1α in both normoxia and hypoxia and that retinoic acid receptor-β expression is found to be strictly regulated by intracellular prostaglandin E(2). Given the relevance of hypoxia-inducible factor-1α in the kidney in terms of tumorigenesis, progressive renal failure, production

  12. Hypoxia induces voltage-gated K+ (Kv) channel expression in pulmonary arterial smooth muscle cells through hypoxia-inducible factor-1 (HIF-1)

    PubMed Central

    Dong, Qian; Zhao, Ning; Xia, Cheng-kun; Du, Li-li; Fu, Xiao-xing; Du, Yi-mei

    2012-01-01

    Hypoxia-inducible factor-1 (HIF-1) regulates the expression of hypoxia-inducible genes by binding erythropoietin (EPO) enhancer fragments. Of these genes, HIF-1 upregulates voltage-gated K+1.2 channels (Kv1.2) in rat PC12 cells. Whether HIF-1 regulates hypoxia-induced Kv channel expression in cultured pulmonary artery smooth muscle cells (PASMCs), however, has not been determined. In this study, we investigated the effects of hypoxia on the expression of Kv1.2 Kv1.5, Kv2.1, and Kv9.3 channels in PASMCs and examined the direct role of HIF-1 by transfecting either wild type or mutant EPO enhancer fragments. Our results showed that 18 h exposure to hypoxia significantly increased the expression of Kv1.2, Kv1.5, Kv2.1, and Kv9.3; and this hypoxia-induced upregulation was completely inhibited after transfection with the wild type but not mutant EPO enhancer fragment. These results indicate that HIF-1 regulates hypoxia-stimulated induction of Kv1.2, Kv1.5, Kv2.1, and Kv9.3 channels in cultured PASMCs. PMID:22938542

  13. Targeting the hypoxia inducible factor pathway with mitochondrial uncouplers.

    PubMed

    Thomas, Rusha; Kim, Myoung H

    2007-02-01

    Hypoxia inducible factor-1 (HIF-1) is central to most adaptation responses of tumors to hypoxia, and consists of a hypoxia inducible HIF-1alpha or -2alpha subunit, and a constitutively expressed HIF-1beta subunit. Previously, mitochondrial uncouplers, rottlerin and FCCP, were shown to increase the rate of cellular O(2 )consumption. In this study, we determined that mitochondrial uncouplers, rottlerin and FCCP, significantly decreased hypoxic as well as normoxic HIF-1 transcriptional activity which was in part mediated by down-regulation of the oxygen labile HIF-1alpha and HIF-2alpha protein levels in PC-3 and DU-145 prostate cancer cells. Our results also revealed that mitochondrial uncouplers decreased the expression of HIF target genes, VEGF and VEGF receptor-2. Taken together, our results indicate that functional mitochondria are important in HIF-1alpha and HIF-2alpha protein stability and transcriptional activity during normoxia as well as in hypoxia, and that mitochondrial uncouplers may be useful in the inhibition of HIF pathway in tumors. PMID:16924414

  14. Hypoxia-inducible factor (HIF) network: insights from mathematical models.

    PubMed

    Cavadas, Miguel As; Nguyen, Lan K; Cheong, Alex

    2013-01-01

    Oxygen is a crucial molecule for cellular function. When oxygen demand exceeds supply, the oxygen sensing pathway centred on the hypoxia inducible factor (HIF) is switched on and promotes adaptation to hypoxia by up-regulating genes involved in angiogenesis, erythropoiesis and glycolysis. The regulation of HIF is tightly modulated through intricate regulatory mechanisms. Notably, its protein stability is controlled by the oxygen sensing prolyl hydroxylase domain (PHD) enzymes and its transcriptional activity is controlled by the asparaginyl hydroxylase FIH (factor inhibiting HIF-1).To probe the complexity of hypoxia-induced HIF signalling, efforts in mathematical modelling of the pathway have been underway for around a decade. In this paper, we review the existing mathematical models developed to describe and explain specific behaviours of the HIF pathway and how they have contributed new insights into our understanding of the network. Topics for modelling included the switch-like response to decreased oxygen gradient, the role of micro environmental factors, the regulation by FIH and the temporal dynamics of the HIF response. We will also discuss the technical aspects, extent and limitations of these models. Recently, HIF pathway has been implicated in other disease contexts such as hypoxic inflammation and cancer through crosstalking with pathways like NFκB and mTOR. We will examine how future mathematical modelling and simulation of interlinked networks can aid in understanding HIF behaviour in complex pathophysiological situations. Ultimately this would allow the identification of new pharmacological targets in different disease settings. PMID:23758895

  15. Lysyl oxidase mediates hypoxia-induced radioresistance in non-small cell lung cancer A549 cells.

    PubMed

    Gong, Chongwen; Gu, Runxia; Jin, Honglin; Sun, Yao; Li, Zhenyu; Chen, Jing; Wu, Gang

    2016-02-01

    Hypoxia-induced radioresistance has been well known as the main obstacle in cancer radiotherapy. Lysyl oxidase (LOX) was previously demonstrated to play an important role in hypoxia-induced biological behaviors, such as metastasis and angiogenesis, through hypoxia-inducible factor-1α (HIF-1α), which is an important contributing factor to radioresistance in tumor cells. However, how LOX plays a role in hypoxia-induced radioresistance has yet to be determined. Here, we found that LOX expression was in accordance with HIF-1α expression, and LOX expression at the mRNA and protein level, and enzymatic activity were remarkably upregulated in the hypoxic A549 cells, compared with normoxic A549 cells. Inhibition of LOX resulted in the reduction of the ability to repair double-stranded breaks (DSBs), promotion of apoptosis, relief of G2/M cycle arrest, and eventually reduction of hypoxia-induced radioresistance in the hypoxic A549 cells. This suggests that LOX may play an important role in hypoxia-induced radioresistance. Together, our results might suggest a novel potential therapeutic target in the management of non-small cell lung cancer (NSCLC). PMID:26515140

  16. Agmatine improves renal function in gentamicin-induced nephrotoxicity in rats.

    PubMed

    El-Kashef, Dalia H; El-Kenawi, Asmaa E; Abdel Rahim, Mona; Suddek, Ghada M; Salem, Hatem A

    2016-03-01

    The present study was designed to explore the possible protective effects of agmatine, a known nitric oxide (NO) synthase inhibitor, against gentamicin-induced nephrotoxicity in rats. For this purpose, we quantitatively evaluated gentamicin-induced renal structural and functional alterations using histopathological and biochemical approaches. Furthermore, the effect of agmatine on gentamicin-induced hypersensitivity of urinary bladder rings to acetylcholine (ACh) was evaluated. Twenty-four male Wistar albino rats were randomly divided into 3 groups, namely control, gentamicin (100 mg/kg, i.p.), and gentamicin plus agmatine (40 mg/kg, orally). At the end of the study, all rats were sacrificed and then blood and urine samples and kidneys were taken. Administration of agmatine significantly decreased kidney/body mass ratio, serum creatinine, lactate dehydrogenase (LDH), renal malondialdehyde (MDA), myeloperoxidase (MPO), NO, and tumor necrosis factor-alpha (TNF-α) while it significantly increased creatinine clearance and renal superoxide dismutase (SOD) activity when compared with the gentamicin-treated group. Additionally, agmatine ameliorated tissue morphology as evidenced by histological evaluation and reduced the responses of isolated bladder rings to ACh. Our study indicates that agmatine administration with gentamicin attenuates oxidative-stress associated renal injury by reducing oxygen free radicals and lipid peroxidation, restoring NO level and inhibiting inflammatory mediators such as TNF-α. PMID:26641937

  17. Neonatal epithelial hypoxia inducible factor-1α expression regulates the response of the lung to experimental asthma.

    PubMed

    Greenwood, Krista K; Proper, Steven P; Saini, Yogesh; Bramble, Lori A; Jackson-Humbles, Daven N; Wagner, James G; Harkema, Jack R; LaPres, John J

    2012-03-01

    Allergic airway disease is characterized by a T helper type 2 cell-mediated airway inflammation and airway hyperresponsiveness. Little is known about the role of hypoxia-mediated signaling in the progression of the disease. To address this knowledge gap, a mouse model was created in which doxycycline exposure induces the functional deletion of hypoxia inducible factor-1α from alveolar type II and Clara cells of the lung. When hypoxia inducible factor-1α deletion was induced during the early postnatal development period of the lung, the mice displayed an enhanced response to the ovalbumin model of allergic airway disease. These hypoxia inducible factor-1α-deficient mice exhibit increased cellular infiltrates, eosinophilia in the lavage fluid and parenchyma, and T helper type 2 cytokines, as compared with ovalbumin-treated control mice. Moreover, these hypoxia inducible factor-1α-deficient mice display increased airway resistance when compared with their control counterparts. Interestingly, if the loss of hypoxia inducible factor-1α was induced in early adulthood, the exacerbated phenotype was not observed. Taken together, these results suggest that epithelial hypoxia inducible factor-1α plays an important role in establishing the innate immunity of the lung and epithelial-specific deficiency in the transcription factor, during early postnatal development, increases the severity of inflammation and functional airway resistance, following ovalbumin challenge. Finally, these results might explain some of the chronic respiratory pathology observed in premature infants, especially those that receive supplemental oxygen. This early hyperoxic exposure, from normal ambient and supplemental oxygen, would presumably inhibit normal hypoxia inducible factor-1α signaling, mimicking the functional deletion described. PMID:22180657

  18. Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1

    PubMed Central

    Zhou, Guofei; Dada, Laura A.; Wu, Minghua; Kelly, Aileen; Trejo, Humberto; Zhou, Qiyuan; Varga, John

    2009-01-01

    Patients with acute lung injury develop hypoxia, which may lead to lung dysfunction and aberrant tissue repair. Recent studies have suggested that epithelial-mesenchymal transition (EMT) contributes to pulmonary fibrosis. We sought to determine whether hypoxia induces EMT in alveolar epithelial cells (AEC). We found that hypoxia induced the expression of α-smooth muscle actin (α-SMA) and vimentin and decreased the expression of E-cadherin in transformed and primary human, rat, and mouse AEC, suggesting that hypoxia induces EMT in AEC. Both severe hypoxia and moderate hypoxia induced EMT. The reactive oxygen species (ROS) scavenger Euk-134 prevented hypoxia-induced EMT. Moreover, hypoxia-induced expression of α-SMA and vimentin was prevented in mitochondria-deficient ρ0 cells, which are incapable of ROS production during hypoxia. CoCl2 and dimethyloxaloylglycine, two compounds that stabilize hypoxia-inducible factor (HIF)-α under normoxia, failed to induce α-SMA expression in AEC. Furthermore, overexpression of constitutively active HIF-1α did not induce α-SMA. However, loss of HIF-1α or HIF-2α abolished induction of α-SMA mRNA during hypoxia. Hypoxia increased the levels of transforming growth factor (TGF)-β1, and preincubation of AEC with SB431542, an inhibitor of the TGF-β1 type I receptor kinase, prevented the hypoxia-induced EMT, suggesting that the process was TGF-β1 dependent. Furthermore, both ROS and HIF-α were necessary for hypoxia-induced TGF-β1 upregulation. Accordingly, we have provided evidence that hypoxia induces EMT of AEC through mitochondrial ROS, HIF, and endogenous TGF-β1 signaling. PMID:19801454

  19. Mechanistic studies of the agmatine deiminase from Listeria monocytogenes.

    PubMed

    Soares, Charles A; Knuckley, Bryan

    2016-06-01

    Listeria monocytogenes is a Gram-positive food-borne pathogen that is capable of living within extreme environments (i.e. low temperatures and pH). This ability to survive in such conditions may arise, at least in part, from agmatine catabolism via the agmatine deiminase system (AgDS). This catabolic pathway utilizes an agmatine deiminase (AgD) to hydrolyse agmatine into N-carbamoylputrescine (NCP), with concomitant release of ammonia, which increases the pH, thus mitigating the ill effects of the acidic environment. Given the potential significance of this pathway for cell survival, we set out to study the catalytic mechanism of the AgD encoded by L. monocytogenes In the present paper, we describe the catalytic mechanism employed by this enzyme based on pH profiles, pKa measurements of the active site cysteine and solvent isotope effects (SIE). In addition, we report inhibition of this enzyme by two novel AgD inhibitors, i.e. N-(4-aminobutyl)-2-fluoro-ethanimidamide (ABFA) and N-(4-aminobutyl)-2-chloro-ethanimidamide (ABCA). In contrast with other orthologues, L. monocytogenes AgD does not use the reverse protonation or substrate-assisted mechanism, which requires an active site cysteine with a high pKa and has been commonly seen in other members of the guanidinium-modifying enzyme (GME) superfamily. Instead, the L. monocytogenes AgD has a low pKa cysteine in the active site leading to an alternative mechanism of catalysis. This is the first time that this mechanism has been observed in the GME superfamily and is significant because it explains why previously developed mechanism-based inactivators of AgDs are ineffective against this orthologue. PMID:27034081

  20. Mechanistic studies of the agmatine deiminase from Listeria monocytogenes

    PubMed Central

    Soares, Charles A.; Knuckley, Bryan

    2016-01-01

    Listeria monocytogenes is a Gram-positive food-borne pathogen that is capable of living within extreme environments (i.e. low temperatures and pH). This ability to survive in such conditions may arise, at least in part, from agmatine catabolism via the agmatine deiminase system (AgDS). This catabolic pathway utilizes an agmatine deiminase (AgD) to hydrolyse agmatine into N-carbamoylputrescine (NCP), with concomitant release of ammonia, which increases the pH, thus mitigating the ill effects of the acidic environment. Given the potential significance of this pathway for cell survival, we set out to study the catalytic mechanism of the AgD encoded by L. monocytogenes. In the present paper, we describe the catalytic mechanism employed by this enzyme based on pH profiles, pKa measurements of the active site cysteine and solvent isotope effects (SIE). In addition, we report inhibition of this enzyme by two novel AgD inhibitors, i.e. N-(4-aminobutyl)-2-fluoro-ethanimidamide (ABFA) and N-(4-aminobutyl)-2-chloro-ethanimidamide (ABCA). In contrast with other orthologues, L. monocytogenes AgD does not use the reverse protonation or substrate-assisted mechanism, which requires an active site cysteine with a high pKa and has been commonly seen in other members of the guanidinium-modifying enzyme (GME) superfamily. Instead, the L. monocytogenes AgD has a low pKa cysteine in the active site leading to an alternative mechanism of catalysis. This is the first time that this mechanism has been observed in the GME superfamily and is significant because it explains why previously developed mechanism-based inactivators of AgDs are ineffective against this orthologue. PMID:27034081

  1. Salidroside exerts protective effects against chronic hypoxia-induced pulmonary arterial hypertension via AMPKα1-dependent pathways

    PubMed Central

    Chen, Mayun; Cai, Hui; Yu, Chang; Wu, Peiliang; Fu, Yangyang; Xu, Xiaomei; Fan, Rong; Xu, Cunlai; Chen, Yanfan; Wang, Liangxing; Huang, Xiaoying

    2016-01-01

    Salidroside, an active ingredient isolated from Rhodiola rosea, has shown to exert protective effects against chronic hypoxia-induced pulmonary arterial hypertension (PAH). However, the underlying mechanisms were not well known. Based on our recent reports, we predicted the involvement of adenosine monophosphate-activated protein kinase (AMPK) mediated effects in salidroside regulation of PAH. Firstly, to prove the hypothesis, rats were exposed to chronic hypoxia and treated with increasing concentrations of salidroside or a selective AMPK activator-5’-aminoimidazole-4-carboxamide ribonucleoside (AICAR) for 4 weeks. After salidroside or AICAR treatment, the chronic hypoxia-induced right ventricular hypertrophy and pulmonary artery remodeling were attenuated. Then the effects of salidroside or AICAR on hypoxia-induced excess cellular proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs), which contributed to pulmonary arterial remodeling, were investigated. Our results suggested salidroside, as well as AICAR, reversed hypoxia-induced PASMCs proliferation and apoptosis resistance while AMPK inhibitor Compound C enhanced the effects of hypoxia. To reveal the potential cellular mechanisms, activation of AMPKα1 and expression of the genes related to proliferation and apoptosis were analyzed in PASMCs after salidroside treatment under hypoxia conditions. The results demonstrated salidroside as well as AICAR might inhibit chronic hypoxia-induced PASMCs proliferation via AMPKα1-P53-P27/P21 pathway and reverse apoptosis resistance via AMPKα1-P53-Bax/Bcl-2-caspase 9-caspase 3 pathway. PMID:27069536

  2. Silencing of hypoxia inducible factor-1α by RNA interference inhibits growth of SK-NEP-1 Wilms tumour cells in vitro, and suppresses tumourigenesis and angiogenesis in vivo.

    PubMed

    Shi, Bo; Li, Ying; Wang, Xiuli; Yang, Yi; Li, Dan; Liu, Xin; Yang, Xianghong

    2016-06-01

    Wilms tumour is the most common tumour of the pediatric kidney. Elevation of hypoxia-inducible factor 1α (HIF-1α) has been detected in 93% to 100% of human Wilms tumour specimens, suggesting a potential value of HIF-1α as a therapeutic target for Wilms tumour. In the present study, a stable HIF-1α-silenced Wilms tumour cell strain was established by introducing HIF-1α short-hairpin RNA (shRNA) into SK-NEP-1 cells. Silencing of HIF-1α significantly reduced single-cell growth capacity, suppressed proliferation and arrested cell cycle of SK-NEP-1 cells. In addition, reduction of HIF-1α expression induced apoptosis in SK-NEP-1 cells, which was accompanied by increased levels of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP) and Bax as well as downregulation of Bcl-2 in the cells. Furthermore, when inoculated subcutaneously in nude mice, HIF-1α-silenced SK-NEP-1 cells displayed retarded tumour growth and impaired tumour angiogenesis. In summary, the findings of this study suggest that HIF-1α plays a critical role in the development of Wilms tumour, and it may serve as a candidate target of gene therapy for Wilms tumour. PMID:27015631

  3. Genome-Wide Transcriptional Analysis Reveals the Protection against Hypoxia-Induced Oxidative Injury in the Intestine of Tibetans via the Inhibition of GRB2/EGFR/PTPN11 Pathways

    PubMed Central

    Gesang, Luobu; Dan, Zeng; Gusang, Lamu

    2016-01-01

    The molecular mechanisms for hypoxic environment causing the injury of intestinal mucosal barrier (IMB) are widely unknown. To address the issue, Han Chinese from 100 m altitude and Tibetans from high altitude (more than 3650 m) were recruited. Histological and transcriptome analyses were performed. The results showed intestinal villi were reduced and appeared irregular, and glandular epithelium was destroyed in the IMB of Tibetans when compared with Han Chinese. Transcriptome analysis revealed 2573 genes with altered expression. The levels of 1137 genes increased and 1436 genes decreased in Tibetans when compared with Han Chinese. Gene ontology (GO) analysis indicated most immunological responses were reduced in the IMB of Tibetans when compared with Han Chinese. Gene microarray showed that there were 25-, 22-, and 18-fold downregulation for growth factor receptor-bound protein 2 (GRB2), epidermal growth factor receptor (EGFR), and tyrosine-protein phosphatase nonreceptor type 11 (PTPN11) in the IMB of Tibetans when compared with Han Chinese. The downregulation of EGFR, GRB2, and PTPN11 will reduce the production of reactive oxygen species and protect against oxidative stress-induced injury for intestine. Thus, the transcriptome analysis showed the protecting functions of IMB patients against hypoxia-induced oxidative injury in the intestine of Tibetans via affecting GRB2/EGFR/PTPN11 pathways. PMID:27594973

  4. Genome-Wide Transcriptional Analysis Reveals the Protection against Hypoxia-Induced Oxidative Injury in the Intestine of Tibetans via the Inhibition of GRB2/EGFR/PTPN11 Pathways.

    PubMed

    Li, Kang; Gesang, Luobu; Dan, Zeng; Gusang, Lamu

    2016-01-01

    The molecular mechanisms for hypoxic environment causing the injury of intestinal mucosal barrier (IMB) are widely unknown. To address the issue, Han Chinese from 100 m altitude and Tibetans from high altitude (more than 3650 m) were recruited. Histological and transcriptome analyses were performed. The results showed intestinal villi were reduced and appeared irregular, and glandular epithelium was destroyed in the IMB of Tibetans when compared with Han Chinese. Transcriptome analysis revealed 2573 genes with altered expression. The levels of 1137 genes increased and 1436 genes decreased in Tibetans when compared with Han Chinese. Gene ontology (GO) analysis indicated most immunological responses were reduced in the IMB of Tibetans when compared with Han Chinese. Gene microarray showed that there were 25-, 22-, and 18-fold downregulation for growth factor receptor-bound protein 2 (GRB2), epidermal growth factor receptor (EGFR), and tyrosine-protein phosphatase nonreceptor type 11 (PTPN11) in the IMB of Tibetans when compared with Han Chinese. The downregulation of EGFR, GRB2, and PTPN11 will reduce the production of reactive oxygen species and protect against oxidative stress-induced injury for intestine. Thus, the transcriptome analysis showed the protecting functions of IMB patients against hypoxia-induced oxidative injury in the intestine of Tibetans via affecting GRB2/EGFR/PTPN11 pathways. PMID:27594973

  5. Hypoxia induces adipocyte differentiation of adipose-derived stem cells by triggering reactive oxygen species generation.

    PubMed

    Kim, Ji Hye; Kim, Seok-Ho; Song, Seung Yong; Kim, Won-Serk; Song, Sun U; Yi, TacGhee; Jeon, Myung-Shin; Chung, Hyung-Min; Xia, Ying; Sung, Jong-Hyuk

    2014-01-01

    Generation of reactive oxygen species (ROS) by NADPH oxidase 4 (Nox4) induces the proliferation and migration of adipose-derived stem cells (ASCs). However, the functional role of mitochondrial ROS (mtROS) generation in ASCs is unknown. Therefore, we have investigated whether hypoxia induces the differentiation of ASCs via ROS generation. We also have tried to identify the cellular mechanisms of ROS generation underlying adipocyte differentiation. Hypoxia (2%) and ROS generators, such as antimycin and rotenone, induced adipocyte differentiation, which was attenuated by an ROS scavenger. Although Nox4 generates ROS and regulates proliferation of ASCs, Nox4 inhibition or Nox4 silencing did not inhibit adipocyte differentiation; indeed fluorescence intensity of mito-SOX increased in hypoxia, and treatment with mito-CP, a mtROS scavenger, significantly reduced hypoxia-induced adipocyte differentiation. Phosphorylation of Akt and mTOR was induced by hypoxia, while inhibition of these molecules prevented adipocyte differentiation. Thus hypoxia induces adipocyte differentiation by mtROS generation, and the PI3K/Akt/mTOR pathway is involved. PMID:23956071

  6. Sub-chronic agmatine treatment modulates hippocampal neuroplasticity and cell survival signaling pathways in mice.

    PubMed

    Freitas, Andiara E; Bettio, Luis E B; Neis, Vivian B; Moretti, Morgana; Ribeiro, Camille M; Lopes, Mark W; Leal, Rodrigo B; Rodrigues, Ana Lúcia S

    2014-11-01

    Agmatine is an endogenous neuromodulator which, based on animal and human studies, is a putative novel antidepressant drug. In this study, we investigated the ability of sub-chronic (21 days) p.o. agmatine administration to produce an antidepressant-like effect in the tail suspension test and examined the hippocampal cell signaling pathways implicated in such an effect. Agmatine at doses of 0.01 and 0.1 mg/kg (p.o.) produced a significant antidepressant-like effect in the tail suspension test and no effect in the open-field test. Additionally, agmatine (0.001-0.1 mg/kg, p.o.) increased the phosphorylation of protein kinase A substrates (237-258% of control), protein kinase B/Akt (Ser(473)) (116-127% of control), glycogen synthase kinase-3β (Ser(9)) (110-113% of control), extracellular signal-regulated kinases 1/2 (119-137% and 121-138% of control, respectively) and cAMP response elements (Ser(133)) (127-152% of control), and brain-derived-neurotrophic factor (137-175% of control) immunocontent in a dose-dependent manner in the hippocampus. Agmatine (0.001-0.1 mg/kg, p.o.) also reduced the c-jun N-terminal kinase 1/2 phosphorylation (77-71% and 65-51% of control, respectively). Neither protein kinase C nor p38(MAPK) phosphorylation was altered under any experimental conditions. Taken together, the present study extends the available data on the mechanisms that underlie the antidepressant action of agmatine by showing an antidepressant-like effect following sub-chronic administration. In addition, our results are the first to demonstrate the ability of agmatine to elicit the activation of cellular signaling pathways associated with neuroplasticity/cell survival and the inhibition of signaling pathways associated with cell death in the hippocampus. PMID:25161097

  7. Peroxiredoxin-5 targeted to the mitochondrial intermembrane space attenuates hypoxia-induced reactive oxygen species signalling.

    PubMed

    Sabharwal, Simran S; Waypa, Gregory B; Marks, Jeremy D; Schumacker, Paul T

    2013-12-15

    The ability to adapt to acute and chronic hypoxia is critical for cellular survival. Two established functional responses to hypoxia include the regulation of gene transcription by HIF (hypoxia-inducible factor), and the constriction of pulmonary arteries in response to alveolar hypoxia. The mechanism of O2 sensing in these responses is not established, but some studies implicate hypoxia-induced mitochondrial ROS (reactive oxygen species) signalling. To further test this hypothesis, we expressed PRDX5 (peroxiredoxin-5), a H2O2 scavenger, in the IMS (mitochondrial intermembrane space), reasoning that the scavenging of ROS in that compartment should abrogate cellular responses triggered by the release of mitochondrial oxidants to the cytosol. Using adenoviral expression of IMS-PRDX5 (IMS-targeted PRDX5) in PASMCs (pulmonary artery smooth muscle cells) we show that IMS-PRDX5 inhibits hypoxia-induced oxidant signalling in the IMS and cytosol. It also inhibits HIF-1α stabilization and HIF activity in a dose-dependent manner without disrupting cellular oxygen consumption. IMS-PRDX5 expression also attenuates the increase in cytosolic [Ca(2+)] in PASMCs during hypoxia. These results extend previous work by demonstrating the importance of IMS-derived ROS signalling in both the HIF and lung vascular responses to hypoxia. PMID:24044889

  8. HDAC6 Deacetylase Activity Is Required for Hypoxia-Induced Invadopodia Formation and Cell Invasion

    PubMed Central

    Arsenault, Dominique; Brochu-Gaudreau, Karine; Charbonneau, Martine; Dubois, Claire M.

    2013-01-01

    Despite significant progress in the cancer field, tumor cell invasion and metastasis remain a major clinical challenge. Cell invasion across tissue boundaries depends largely on extracellular matrix degradation, which can be initiated by formation of actin-rich cell structures specialized in matrix degradation called invadopodia. Although the hypoxic microenvironment within solid tumors has been increasingly recognized as an important driver of local invasion and metastasis, little is known about how hypoxia influences invadopodia biogenesis. Here, we show that histone deacetylase 6 (HDAC6), a cytoplasmic member of the histone deacetylase family, is a novel modulator of hypoxia-induced invadopodia formation. Hypoxia was found to enhance HDAC6 tubulin deacetylase activity through activation of the EGFR pathway. Activated HDAC6, in turn, triggered Smad3 phosphorylation resulting in nuclear accumulation. Inhibition of HDAC6 activity or knockdown of the protein inhibited both hypoxia-induced Smad3 activation and invadopodia formation. Our data provide evidence that hypoxia influences invadopodia formation in a biphasic manner, which involves the activation of HDAC6 deacetylase activity by EGFR, resulting in enhanced Smad phosphorylation and nuclear accumulation. The identification of HDAC6 as a key participant of hypoxia-induced cell invasion may have important therapeutic implications for the treatment of metastasis in cancer patients. PMID:23405166

  9. Hypoxia-Inducible Factor in Thyroid Carcinoma

    PubMed Central

    Burrows, Natalie; Babur, Muhammad; Resch, Julia; Williams, Kaye J.; Brabant, Georg

    2011-01-01

    Intratumoural hypoxia (low oxygen tension) is associated with aggressive disease and poor prognosis. Hypoxia-inducible factor-1 is a transcription factor activated by hypoxia that regulates the expression of genes that promote tumour cell survival, progression, metastasis, and resistance to chemo/radiotherapy. In addition to hypoxia, HIF-1 can be activated by growth factor-signalling pathways such as the mitogen-activated protein kinases- (MAPK-) and phosphatidylinositol-3-OH kinases- (PI3K-) signalling cascades. Mutations in these pathways are common in thyroid carcinoma and lead to enhanced HIF-1 expression and activity. Here, we summarise current data that highlights the potential role of both hypoxia and MAPK/PI3K-induced HIF-1 signalling in thyroid carcinoma progression, metastatic characteristics, and the potential role of HIF-1 in thyroid carcinoma response to radiotherapy. Direct or indirect targeting of HIF-1 using an MAPK or PI3K inhibitor in combination with radiotherapy may be a new potential therapeutic target to improve the therapeutic response of thyroid carcinoma to radiotherapy and reduce metastatic burden. PMID:21765994

  10. Structural integration in hypoxia-inducible factors

    SciTech Connect

    Wu, Dalei; Potluri, Nalini; Lu, Jingping; Kim, Youngchang; Rastinejad, Fraydoon

    2015-08-20

    The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1 beta) subunits. Here we describe crystal structures for each of mouse HIF-2 alpha-ARNT and HIF-1 alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2 alpha-ARNT and HIF-1 alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinct pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.

  11. Inhibitory effect of Bailing capsule on hypoxia-induced proliferation of rat pulmonary arterial smooth muscle cells

    PubMed Central

    Li, Xiaohui; Peng, Kejun; Zhou, Yutian; Deng, Fengmei; Ma, Jiao

    2016-01-01

    Objectives: To investigated the effects of Bailing capsule on hypoxia-induced proliferation of pulmonary arterial smooth muscle cells (PASMCs). Methods: This prospective study was performed at the Central Laboratory, Chengdu Medical College, Chengdu, China between April 2012 and November 2014. Ten healthy adult male Wistar rats were administrated with gastric perfusion of Bailing capsule to obtain serum containing the tested drugs. Proliferation of pulmonary arterial smooth muscle cells proliferation was measured using cell counting kit-8 assay. Production of reactive oxygen species (ROS) in rat PASMCs was determined through a fluorometric assay, whereas production of endothelin-1 (ET-1) was detected by ELISA and quantitative real-time PCR (qRT-PCR). Expression of proliferating cell nuclear antigen (PCNA), c-fos, and c-jun in PASMCs was also determined using immunohistochemistry staining and qRT-PCR. Results: We observed that the medicated serum obviously inhibited hypoxia-induced cell proliferation in a concentration-dependent manner. Moreover, the medicated serum significantly reduced hypoxia-induced production of ROS and ET-1, as well as expression of PCNA, c-fos, and c-jun, in PASMCs. Conclusion: Results demonstrated that Bailing capsule can inhibit hypoxia-induced PASMC proliferation possibly by suppressing ET-1 and ROS production and by inhibiting expression of PCNA, c-fos, and c-jun. These results suggest that Bailing possess antiproliferative property, which is probably one of the underlying mechanisms of Bailing capsule for the clinical treatment of chronic obstructive pulmonary disease. PMID:27146611

  12. The Hypoxia-Inducible Factor 1/NOR-1 Axis Regulates the Survival Response of Endothelial Cells to Hypoxia▿

    PubMed Central

    Martorell, Lluis; Gentile, Maurizio; Rius, Jordi; Rodríguez, Cristina; Crespo, Javier; Badimon, Lina; Martínez-González, José

    2009-01-01

    Hypoxia induces apoptosis but also triggers adaptive mechanisms to ensure cell survival. Here we show that the prosurvival effects of hypoxia-inducible factor 1 (HIF-1) in endothelial cells are mediated by neuron-derived orphan receptor 1 (NOR-1). The overexpression of NOR-1 decreased the rate of endothelial cells undergoing apoptosis in cultures exposed to hypoxia, while the inhibition of NOR-1 increased cell apoptosis. Hypoxia upregulated NOR-1 mRNA levels in a time- and dose-dependent manner. Blocking antibodies against VEGF or SU5614 (a VEGF receptor 2 inhibitor) did not prevent hypoxia-induced NOR-1 expression, suggesting that NOR-1 is not induced by the autocrine secretion of VEGF in response to hypoxia. The reduction of HIF-1α protein levels by small interfering RNAs, or by inhibitors of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway or mTOR, significantly counteracted hypoxia-induced NOR-1 upregulation. Intracellular Ca2+ was involved in hypoxia-induced PI3K/Akt activation and in the downstream NOR-1 upregulation. A hypoxia response element mediated the transcriptional activation of NOR-1 induced by hypoxia as we show by transient transfection and chromatin immunoprecipitation assays. Finally, the attenuation of NOR-1 expression reduced both basal and hypoxia-induced cIAP2 (cellular inhibitor of apoptosis protein 2) mRNA levels, while NOR-1 overexpression upregulated cIAP2. Therefore, NOR-1 is a downstream effector of HIF-1 signaling involved in the survival response of endothelial cells to hypoxia. PMID:19720740

  13. Chronic exposure to agmatine results in the selection of agmatine-resistant hepatoma cells.

    PubMed

    Bandino, Andrea; Andrea, Bandino; Battaglia, Valentina; Valentina, Battaglia; Bravoco, Vittoria; Vittoria, Bravoco; Busletta, Chiara; Chiara, Busletta; Compagnone, Alessandra; Alessandra, Compagnone; Cravanzola, Carlo; Carlo, Cravanzola; Meli, Floriana; Floriana, Meli; Agostinelli, Enzo; Enzo, Agostinelli; Parola, Maurizio; Maurizio, Parola; Colombatto, Sebastiano; Sebastiano, Colombatto

    2012-02-01

    During our study of the cytostatic effect of agmatine, we were able to isolate an agmatine resistant clone from a parental hepatoma cell line, HTC. These cells, called Agres, had slower growth rate than the parental cells when cultured in normal medium. The modification in polyamine content induced by agmatine was much lower in these cells and ornithine decarboxylase, S-adenosylmethionine decarboxylase and spermidine/spermine acetyltransferase activities were much less affected. By investigating the mechanism responsible for these modifications, it was shown that agmatine and polyamines were not taken up by Agres cells. Their resistance to the antiproliferative effects of agmatine may thus arise from a lack of the polyamine transport system. Moreover, Agres cells were able to take up both glutamic acid and arginine at a rate significantly higher than that detected for HTC cells, most likely to provide components for compensatory increase of PA synthesis. These results emphasize the importance of polyamine transport for cell growth. PMID:21901471

  14. Hypoxia-induced Bcl-2 expression in endothelial cells via p38 MAPK pathway

    SciTech Connect

    Zhang, Cui-Li; Song, Fei; Zhang, Jing; Song, Q.H.

    2010-04-16

    Angiogenesis and apoptosis are reciprocal processes in endothelial cells. Bcl-2, an anti-apoptotic protein, has been found to have angiogenic activities. The purpose of this study was to determine the role of Bcl-2 in hypoxia-induced angiogenesis in endothelial cells and to investigate the underlying mechanisms. Human aortic endothelial cells (HAECs) were exposed to hypoxia followed by reoxygenation. Myocardial ischemia and reperfusion mouse model was used and Bcl-2 expression was assessed. Bcl-2 expression increased in a time-dependent manner in response to hypoxia from 2 to 72 h. Peak expression occurred at 12 h (3- to 4-fold, p < 0.05). p38 inhibitor (SB203580) blocked hypoxia-induced Bcl-2 expression, whereas PKC, ERK1/2 and PI3K inhibitors did not. Knockdown of Bcl-2 resulted in decreased HAECs' proliferation and migration. Over-expression of Bcl-2 increased HAECs' tubule formation, whereas knockdown of Bcl-2 inhibited this process. In this model of myocardial ischemia and reperfusion, Bcl-2 expression was increased and was associated with increased p38 MAPK activation. Our results showed that hypoxia induces Bcl-2 expression in HAECs via p38 MAPK pathway.

  15. STAT3 regulates hypoxia-induced epithelial mesenchymal transition in oesophageal squamous cell cancer

    PubMed Central

    CUI, YAO; LI, YUN-YUN; LI, JIAN; ZHANG, HONG-YAN; WANG, FENG; BAI, XUE; LI, SHAN-SHAN

    2016-01-01

    Hypoxia plays a key role in tumour initiation and metastasis; one of the mechanisms is to induce epithelial-mesenchymal transition (EMT). Signal transducer and activator of transcription 3 (STAT3) is involved in EMT by regulating the transcriptional regulators of E-cadherin, the biomarker of EMT. Until now, however, few studies have focused on the effects of STAT3 in hypoxia-induced EMT in tumour cells. The goal of this study was to investigate the roles of STAT3 in hypoxia-induced EMT in oesophageal squamous cell carcinoma (ESCC). The ESCC cells, TE-1 and EC-1, were incubated in normoxia, or in CoCl2, which was used to mimic hypoxia. With CoCl2, the ESCC cells showed increased migration and invasion abilities, accompanied with upregulation of HIF-1α, STAT3, and vimentin, and downregulation of E-cadherin. Knockdown of STAT3 inhibited EMT of ESCC cells and downregulated HIF-1α in vitro and in vivo. In ChIP assays, STAT3 bound to the promoter of HIF-1α, suggesting that STAT3 regulates transcription of HIF-1α. In conclusion, hypoxia induces EMT of ESCC, and STAT3 regulates this process by promoting HIF-1α expression. PMID:27220595

  16. Hypoxia-induced alterations of G2 checkpoint regulators.

    PubMed

    Hasvold, Grete; Lund-Andersen, Christin; Lando, Malin; Patzke, Sebastian; Hauge, Sissel; Suo, ZhenHe; Lyng, Heidi; Syljuåsen, Randi G

    2016-05-01

    Hypoxia promotes an aggressive tumor phenotype with increased genomic instability, partially due to downregulation of DNA repair pathways. However, genome stability is also surveilled by cell cycle checkpoints. An important issue is therefore whether hypoxia also can influence the DNA damage-induced cell cycle checkpoints. Here, we show that hypoxia (24 h 0.2% O2) alters the expression of several G2 checkpoint regulators, as examined by microarray gene expression analysis and immunoblotting of U2OS cells. While some of the changes reflected hypoxia-induced inhibition of cell cycle progression, the levels of several G2 checkpoint regulators, in particular Cyclin B, were reduced in G2 phase cells after hypoxic exposure, as shown by flow cytometric barcoding analysis of individual cells. These effects were accompanied by decreased phosphorylation of a Cyclin dependent kinase (CDK) target in G2 phase cells after hypoxia, suggesting decreased CDK activity. Furthermore, cells pre-exposed to hypoxia showed increased G2 checkpoint arrest upon treatment with ionizing radiation. Similar results were found following other hypoxic conditions (∼0.03% O2 20 h and 0.2% O2 72 h). These results demonstrate that the DNA damage-induced G2 checkpoint can be altered as a consequence of hypoxia, and we propose that such alterations may influence the genome stability of hypoxic tumors. PMID:26791779

  17. Hypoxia-induced phrenic long-term facilitation: emergent properties

    PubMed Central

    Devinney, Michael J.; Huxtable, Adrianne G.; Nichols, Nicole L.; Mitchell, Gordon S.

    2013-01-01

    Just as in other neural systems, plasticity is a hallmark of the neural system controlling breathing. One spinal mechanism of respiratory plasticity is phrenic long-term facilitation (pLTF) following acute intermittent hypoxia. Although cellular mechanisms giving rise to pLTF occur within the phrenic motor nucleus, different signaling cascades elicit pLTF in different conditions. These cascades, referred to as “Q” and “S" pathways to phrenic motor facilitation (pMF), interact via cross-talk inhibition. Whereas the Q pathway dominates pLTF after mild to moderate hypoxic episodes, the S pathway dominates after severe hypoxic episodes. The biological significance of multiple pathways to pMF is not known. We discuss the possibility that interactions between pathways confer emergent properties to pLTF, including: 1) pattern sensitivity and 2) metaplasticity. Understanding these mechanisms and their interactions may enable us to optimize intermittent hypoxia induced plasticity as a treatment for patients that suffer from ventilatory impairment or other motor deficits. PMID:23531012

  18. ortho-Carboranylphenoxyacetanilides as inhibitors of hypoxia-inducible factor (HIF)-1 transcriptional activity and heat shock protein (HSP) 60 chaperon activity.

    PubMed

    Li, Guangzhe; Azuma, Soyoko; Sato, Shinichi; Minegishi, Hidemitsu; Nakamura, Hiroyuki

    2015-07-01

    ortho-Carboranylphenoxy derivatives were synthesized and evaluated for their ability to inhibit hypoxia-induced HIF-1 transcriptional activity using a cell-based reporter gene assay. Among the compounds synthesized, compound 1d showed the most significant inhibition of hypoxia-induced HIF-1 transcriptional activity with the IC50 of 0.53μM. Furthermore, compound 1h was found to possess the most significant inhibition of heat shock protein (HSP) 60 chaperon activity among the reported inhibitors: the IC50 toward the porcine heart malate dehydrogenase (MDH) refolding assay was 0.35μM. PMID:25981686

  19. Hypoxia inducible factor-1 alpha and multiple myeloma

    PubMed Central

    Tiwary, Bhupendra Nath

    2016-01-01

    Rapid tumor growth creates a state of hypoxia in the tumor microenvironment and results in release of hypoxia inducible factor-1 alpha (HiF-1α) in the local milieu. Hypoxia inducible factor activity is deregulated in many human cancers, especially those that are highly hypoxic. In multiple myeloma (MM) in initial stages of disease establishment, the hypoxic bone marrow microenvironment supports the initial survival and growth of the myeloma cells. Hypoxic tumour cells are usually resistant to radiotherapy and most conventional chemotherapeutic agents, rendering them highly aggressive and metastatic. Therefore, HIF is an attractive, although challenging, therapeutic target in MM directly or indirectly in recent years. PMID:26900575

  20. Hypoxia-Inducible Factor as an Angiogenic Master Switch

    PubMed Central

    Hashimoto, Takuya; Shibasaki, Futoshi

    2015-01-01

    Hypoxia-inducible factors (HIFs) regulate the transcription of genes that mediate the response to hypoxia. HIFs are constantly expressed and degraded under normoxia, but stabilized under hypoxia. HIFs have been widely studied in physiological and pathological conditions and have been shown to contribute to the pathogenesis of various vascular diseases. In clinical settings, the HIF pathway has been studied for its role in inhibiting carcinogenesis. HIFs might also play a protective role in the pathology of ischemic diseases. Clinical trials of therapeutic angiogenesis after the administration of a single growth factor have yielded unsatisfactory or controversial results, possibly because the coordinated activity of different HIF-induced factors is necessary to induce mature vessel formation. Thus, manipulation of HIF activity to simultaneously induce a spectrum of angiogenic factors offers a superior strategy for therapeutic angiogenesis. Because HIF-2α plays an essential role in vascular remodeling, manipulation of HIF-2α is a promising approach to the treatment of ischemic diseases caused by arterial obstruction, where insufficient development of collateral vessels impedes effective therapy. Eukaryotic initiation factor 3 subunit e (eIF3e)/INT6 interacts specifically with HIF-2α and induces the proteasome inhibitor-sensitive degradation of HIF-2α, independent of hypoxia and von Hippel-Lindau protein. Treatment with eIF3e/INT6 siRNA stabilizes HIF-2α activity even under normoxic conditions and induces the expression of several angiogenic factors, at levels sufficient to produce functional arteries and veins in vivo. We have demonstrated that administration of eIF3e/INT6 siRNA to ischemic limbs or cold-injured brains reduces ischemic damage in animal models. This review summarizes the current understanding of the relationship between HIFs and vascular diseases. We also discuss novel oxygen-independent regulatory proteins that bind HIF-α and the implications

  1. An oxidative DNA "damage" and repair mechanism localized in the VEGF promoter is important for hypoxia-induced VEGF mRNA expression.

    PubMed

    Pastukh, Viktor; Roberts, Justin T; Clark, David W; Bardwell, Gina C; Patel, Mita; Al-Mehdi, Abu-Bakr; Borchert, Glen M; Gillespie, Mark N

    2015-12-01

    In hypoxia, mitochondria-generated reactive oxygen species not only stimulate accumulation of the transcriptional regulator of hypoxic gene expression, hypoxia inducible factor-1 (Hif-1), but also cause oxidative base modifications in hypoxic response elements (HREs) of hypoxia-inducible genes. When the hypoxia-induced base modifications are suppressed, Hif-1 fails to associate with the HRE of the VEGF promoter, and VEGF mRNA accumulation is blunted. The mechanism linking base modifications to transcription is unknown. Here we determined whether recruitment of base excision DNA repair (BER) enzymes in response to hypoxia-induced promoter modifications was required for transcription complex assembly and VEGF mRNA expression. Using chromatin immunoprecipitation analyses in pulmonary artery endothelial cells, we found that hypoxia-mediated formation of the base oxidation product 8-oxoguanine (8-oxoG) in VEGF HREs was temporally associated with binding of Hif-1α and the BER enzymes 8-oxoguanine glycosylase 1 (Ogg1) and redox effector factor-1 (Ref-1)/apurinic/apyrimidinic endonuclease 1 (Ape1) and introduction of DNA strand breaks. Hif-1α colocalized with HRE sequences harboring Ref-1/Ape1, but not Ogg1. Inhibition of BER by small interfering RNA-mediated reduction in Ogg1 augmented hypoxia-induced 8-oxoG accumulation and attenuated Hif-1α and Ref-1/Ape1 binding to VEGF HRE sequences and blunted VEGF mRNA expression. Chromatin immunoprecipitation-sequence analysis of 8-oxoG distribution in hypoxic pulmonary artery endothelial cells showed that most of the oxidized base was localized to promoters with virtually no overlap between normoxic and hypoxic data sets. Transcription of genes whose promoters lost 8-oxoG during hypoxia was reduced, while those gaining 8-oxoG was elevated. Collectively, these findings suggest that the BER pathway links hypoxia-induced introduction of oxidative DNA modifications in promoters of hypoxia-inducible genes to transcriptional

  2. Suppression of tumor growth by designed dimeric epidithiodiketopiperazine targeting hypoxia-inducible transcription factor complex.

    PubMed

    Dubey, Ramin; Levin, Michael D; Szabo, Lajos Z; Laszlo, Csaba F; Kushal, Swati; Singh, Jason B; Oh, Philip; Schnitzer, Jan E; Olenyuk, Bogdan Z

    2013-03-20

    Hypoxia is a hallmark of solid tumors, is associated with local invasion, metastatic spread, resistance to chemo- and radiotherapy, and is an independent, negative prognostic factor for a diverse range of malignant neoplasms. The cellular response to hypoxia is primarily mediated by a family of transcription factors, among which hypoxia-inducible factor 1 (HIF1) plays a major role. Under normoxia, the oxygen-sensitive α subunit of HIF1 is rapidly and constitutively degraded but is stabilized and accumulates under hypoxia. Upon nuclear translocation, HIF1 controls the expression of over 100 genes involved in angiogenesis, altered energy metabolism, antiapoptotic, and pro-proliferative mechanisms that promote tumor growth. A designed transcriptional antagonist, dimeric epidithiodiketopiperazine (ETP 2), selectively disrupts the interaction of HIF1α with p300/CBP coactivators and downregulates the expression of hypoxia-inducible genes. ETP 2 was synthesized via a novel homo-oxidative coupling of the aliphatic primary carbons of the dithioacetal precursor. It effectively inhibits HIF1-induced activation of VEGFA, LOX, Glut1, and c-Met genes in a panel of cell lines representing breast and lung cancers. We observed an outstanding antitumor efficacy of both (±)-ETP 2 and meso-ETP 2 in a fully established breast carcinoma model by intravital microscopy. Treatment with either form of ETP 2 (1 mg/kg) resulted in a rapid regression of tumor growth that lasted for up to 14 days. These results suggest that inhibition of HIF1 transcriptional activity by designed dimeric ETPs could offer an innovative approach to cancer therapy with the potential to overcome hypoxia-induced tumor growth and resistance. PMID:23448368

  3. KNK437, abrogates hypoxia-induced radioresistance by dual targeting of the AKT and HIF-1{alpha} survival pathways

    SciTech Connect

    Oommen, Deepu; Prise, Kevin M.

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer KNK437, a benzylidene lactam compound, is a novel radiosensitizer. Black-Right-Pointing-Pointer KNK437 inhibits AKT signaling and abrogates the accumulation of HIF-1{alpha} under hypoxia. Black-Right-Pointing-Pointer KNK437 abrogates hypoxia induced resistance to radiation. -- Abstract: KNK437 is a benzylidene lactam compound known to inhibit stress-induced synthesis of heat shock proteins (HSPs). HSPs promote radioresistance and play a major role in stabilizing hypoxia inducible factor-1{alpha} (HIF-1{alpha}). HIF-1{alpha} is widely responsible for tumor resistance to radiation under hypoxic conditions. We hypothesized that KNK437 sensitizes cancer cells to radiation and overrides hypoxia-induced radioresistance via destabilizing HIF-1{alpha}. Treatment of human cancer cells MDA-MB-231 and T98G with KNK437 sensitized them to ionizing radiation (IR). Surprisingly, IR did not induce HSPs in these cell lines. As hypothesized, KNK437 abrogated the accumulation of HIF-1{alpha} in hypoxic cells. However, there was no induction of HSPs under hypoxic conditions. Moreover, the proteosome inhibitor MG132 did not restore HIF-1{alpha} levels in KNK437-treated cells. This suggested that the absence of HIF-1{alpha} in hypoxic cells was not due to the enhanced protein degradation. HIF-1{alpha} is mainly regulated at the level of post-transcription and AKT is known to modulate the translation of HIF-1{alpha} mRNA. Interestingly, pre-treatment of cells with KNK437 inhibited AKT signaling. Furthermore, down regulation of AKT by siRNA abrogated HIF-1{alpha} levels under hypoxia. Interestingly, KNK437 reduced cell survival in hypoxic conditions and inhibited hypoxia-induced resistance to radiation. Taken together, these data suggest that KNK437 is an effective radiosensitizer that targets multiple pro-survival stress response pathways.

  4. Suppression of endothelial PGC-1α is associated with hypoxia-induced endothelial dysfunction and provides a new therapeutic target in pulmonary arterial hypertension.

    PubMed

    Ye, Jia-Xin; Wang, Shan-Shan; Ge, Min; Wang, Dong-Jin

    2016-06-01

    Endothelial dysfunction plays a principal role in the pathogenesis of pulmonary arterial hypertension (PAH), which is a fatal disease with limited effective clinical treatments. Mitochondrial dysregulation and oxidative stress are involved in endothelial dysfunction. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a key regulator of cellular energy metabolism and a master regulator of mitochondrial biogenesis. However, the roles of PGC-1α in hypoxia-induced endothelial dysfunction are not completely understood. We hypothesized that hypoxia reduces PGC-1α expression and leads to endothelial dysfunction in hypoxia-induced PAH. We confirmed that hypoxia has a negative impact on endothelial PGC-1α in experimental PAH in vitro and in vivo. Hypoxia-induced PGC-1α inhibited the oxidative metabolism and mitochondrial function, whereas sustained PGC-1α decreased reactive oxygen species (ROS) formation, mitochondrial swelling, and NF-κB activation and increased ATP formation and endothelial nitric oxide synthase (eNOS) phosphorylation. Furthermore, hypoxia-induced changes in the mean pulmonary arterial pressure and right heart hypertrophy were nearly normal after intervention. These results suggest that PGC-1α is associated with endothelial function in hypoxia-induced PAH and that improved endothelial function is associated with improved cellular mitochondrial respiration, reduced inflammation and oxygen stress, and increased PGC-1α expression. Taken together, these findings indicate that PGC-1α may be a new therapeutic target in PAH. PMID:27084848

  5. Hypoxia-induced hypothermia mediated by GABA in the rostral parapyramidal area of the medulla oblongata.

    PubMed

    Osaka, T

    2014-05-16

    Hypoxia evokes a regulated decrease in the body core temperature (Tc) in a variety of animals. The neuronal mechanisms of this response include, at least in part, glutamatergic activation in the lateral preoptic area (LPO) of the hypothalamus. As the sympathetic premotor neurons in the medulla oblongata constitute a cardinal relay station in the descending neuronal pathway from the hypothalamus for thermoregulation, their inhibition can also be critically involved in the mechanisms of the hypoxia-induced hypothermia. Here, I examined the hypothesis that hypoxia-induced hypothermia is mediated by glutamate-responsive neurons in the LPO that activate GABAergic transmission in the rostral raphe pallidus (rRPa) and neighboring parapyramidal region (PPy) of the medulla oblongata in urethane-chloralose-anesthetized, neuromuscularly blocked, artificially ventilated rats. Unilateral microinjection of GABA (15nmol) into the rRPa and PPy regions elicited a prompt increase in tail skin temperature (Ts) and decreases in Tc, oxygen consumption rate (VO2), and heart rate. Next, when the GABAA receptor blocker bicuculline methiodide (bicuculline methiodide (BMI), 10pmol) alone was microinjected into the rRPa, it elicited unexpected contradictory responses: simultaneous increases in Ts, VO2 and heart rate and a decrease in Tc. Then, when BMI was microinjected bilaterally into the PPy, no direct effect on Ts was seen; and thermogenic and tachycardic responses were slight. However, pretreatment of the PPy with BMI, but not vehicle saline, greatly attenuated the hypothermic responses evoked by hypoxic (10%O2-90%N2, 5min) ventilation or bilateral microinjections of glutamate (5nmol, each side) into the LPO. The results suggest that hypoxia-induced hypothermia was mediated, at least in part, by the activation of GABAA receptors in the PPy. PMID:24607346

  6. Chronic Normobaric Hypoxia Induces Pulmonary Hypertension in Rats: Role of NF-κB.

    PubMed

    Fan, Junming; Fan, Xiaofang; Li, Yang; Ding, Lu; Zheng, Qingqing; Guo, Jinbin; Xia, Dongmei; Xue, Feng; Wang, Yongyu; Liu, Shufang; Gong, Yongsheng

    2016-03-01

    Junming Fan, Xiaofang Fan, Yang Li, Lu Ding, Qingqing Zheng, Jinbin Guo, Dongmei Xia, Feng Xue, Yongyu Wang, Shufang Liu, and Yongsheng Gong. Chronic normobaric hypoxia induces pulmonary hypertension in rats: role of NF-κB. High Alt Med Biol 17:43-49, 2016.-To investigate whether nuclear factor-kappa B (NF-κB) activation is involved in chronic normobaric hypoxia-induced pulmonary hypertension (PH), rats were treated with saline or an NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC, 150 mg/kg, sc, twice daily), and exposed to normoxia or chronic normobaric hypoxia with a fraction of inspired oxygen of ∼0.1 for 14 days. Lung tissue levels of NF-κB activity, and interleukin (IL)-1β, IL-6, and cyclooxygenase-2 mRNAs, were determined, and mean pulmonary arterial pressure, right ventricular hypertrophy, and right heart function were evaluated. Compared to the normoxia exposure group, rats exposed to chronic normobaric hypoxia showed an increased NF-κB activity, measured by increased nuclear translocation of p50 and p65 proteins, an increased inflammatory gene expression in the lungs, elevated mean pulmonary arterial blood pressure and mean right ventricular pressure, right ventricular hypertrophy, as assessed by right ventricle-to-left ventricle plus septum weight ratio, and right heart dysfunction. Treatment of hypoxia-exposed rats with PDTC inhibited NF-κB activity, decreased pulmonary arterial blood pressure and right ventricular pressure, and ameliorated right ventricular hypertrophy and right heart dysfunction. Hypoxia exposure increased protein kinase C activity and promoted pulmonary artery smooth muscle cell proliferation in vitro. Our data suggest that NF-κB activation may contribute to chronic normobaric hypoxia-induced PH. PMID:26788753

  7. Agmatine produces antidepressant-like effects by activating AMPA receptors and mTOR signaling.

    PubMed

    Neis, Vivian Binder; Moretti, Morgana; Bettio, Luis Eduardo B; Ribeiro, Camille M; Rosa, Priscila Batista; Gonçalves, Filipe Marques; Lopes, Mark William; Leal, Rodrigo Bainy; Rodrigues, Ana Lúcia S

    2016-06-01

    The activation of AMPA receptors and mTOR signaling has been reported as mechanisms underlying the antidepressant effects of fast-acting agents, specially the NMDA receptor antagonist ketamine. In the present study, oral administration of agmatine (0.1mg/kg), a neuromodulator that has been reported to modulate NMDA receptors, caused a significant reduction in the immobility time of mice submitted to the tail suspension test (TST), an effect prevented by the administration of DNQX (AMPA receptor antagonist, 2.5μg/site, i.c.v.), BDNF antibody (1μg/site, i.c.v.), K-252a (TrkB receptor antagonist, 1μg/site, i.c.v.), LY294002 (PI3K inhibitor, 10nmol/site, i.c.v.) or rapamycin (selective mTOR inhibitor, 0.2nmol/site, i.c.v.). Moreover, the administration of lithium chloride (non-selective GSK-3β inhibitor, 10mg/kg, p.o.) or AR-A014418 (selective GSK-3β inhibitor, 0.01μg/site, i.c.v.) in combination with a sub-effective dose of agmatine (0.0001mg/kg, p.o.) reduced the immobility time in the TST when compared with either drug alone. Furthermore, increased immunocontents of BDNF, PSD-95 and GluA1 were found in the prefrontal cortex of mice just 1h after agmatine administration. These results indicate that the antidepressant-like effect of agmatine in the TST may be dependent on the activation of AMPA and TrkB receptors, PI3K and mTOR signaling as well as inhibition of GSK-3β, and increase in synaptic proteins. The results contribute to elucidate the complex signaling pathways involved in the antidepressant effect of agmatine and reinforce the pivotal role of these molecular targets for antidepressant responses. PMID:27061850

  8. Apelin Protects Primary Rat Retinal Pericytes from Chemical Hypoxia-Induced Apoptosis

    PubMed Central

    Chen, Li; Tao, Yong; Feng, Jing; Jiang, Yan Rong

    2015-01-01

    Pericytes are a population of cells that participate in normal vessel architecture and regulate permeability. Apelin, as the endogenous ligand of G protein-coupled receptor APJ, participates in a number of physiological and pathological processes. To date, the effect of apelin on pericyte is not clear. Our study aimed to investigate the potential protection mechanisms of apelin, with regard to primary rat retinal pericytes under hypoxia. Immunofluorescence staining revealed that pericytes colocalized with APJ in the fibrovascular membranes dissected from proliferative diabetic retinopathy patients. In the in vitro studies, we first demonstrated that the expression of apelin/APJ was upregulated in pericytes under hypoxia, and apelin increased pericytes proliferation and migration. Moreover, knockdown of apelin in pericyte was achieved via lentivirus-mediated RNA interference. After the inhibition of apelin, pericytes proliferation was inhibited significantly in hypoxia culture condition. Furthermore, exogenous recombinant apelin effectively prevented hypoxia-induced apoptosis through downregulating active-caspase 3 expression and increasing the ratio of B cell lymphoma-2 (Bcl-2)/Bcl-2 associated X protein (Bax) in pericytes. These results suggest that apelin suppressed hypoxia-induced pericytes injury, which indicated that apelin could be a potential therapeutic target for retinal angiogenic diseases. PMID:26491547

  9. Hypoxia Induces Autophagy through Translational Up-Regulation of Lysosomal Proteins in Human Colon Cancer Cells

    PubMed Central

    Lai, Ming-Chih; Chang, Chiao-May; Sun, H. Sunny

    2016-01-01

    Hypoxia occurs in a wide variety of physiological and pathological conditions, including tumorigenesis. Tumor cells have to adapt to hypoxia by altering their gene expression and protein synthesis. Here, we showed that hypoxia inhibits translation through activation of PERK and inactivation of mTOR in human colon cancer HCT116 cells. Prolonged hypoxia (1% O2, 16 h) dramatically inhibits general translation in HCT116 cells, yet selected mRNAs remain efficiently translated under such a condition. Using microarray analysis of polysome- associated mRNAs, we identified a large number of hypoxia-regulated genes at the translational level. Efficiently translated mRNAs during hypoxia were validated by polysome profiling and quantitative real-time RT-PCR. Pathway enrichment analysis showed that many of the up-regulated genes are involved in lysosome, glycan and lipid metabolism, antigen presentation, cell adhesion, and remodeling of the extracellular matrix and cytoskeleton. The majority of down-regulated genes are involved in apoptosis, ubiquitin-mediated proteolysis, and oxidative phosphorylation. Further investigation showed that hypoxia induces lysosomal autophagy and mitochondrial dysfunction through translational regulation in HCT116 cells. The abundance of several translation factors and the mTOR kinase activity are involved in hypoxia-induced mitochondrial autophagy in HCT116 cells. Our studies highlight the importance of translational regulation for tumor cell adaptation to hypoxia. PMID:27078027

  10. Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α

    PubMed Central

    Han, Hyeong-jun; Kwon, Nayoung; Choi, Min-A; Jung, Kyung Oh; Piao, Juan-Yu; Ngo, Hoang Kieu Chi; Kim, Su-Jung; Kim, Do-Hee; Chung, June-Key; Cha, Young-Nam; Youn, Hyewon; Choi, Bu Young; Min, Sang-Hyun; Surh, Young-Joon

    2016-01-01

    Peptidyl prolyl isomerase (PIN1) regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF)-1α in human colon cancer (HCT116) cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target. PMID:26784107

  11. Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α.

    PubMed

    Han, Hyeong-Jun; Kwon, Nayoung; Choi, Min-A; Jung, Kyung Oh; Piao, Juan-Yu; Ngo, Hoang Kieu Chi; Kim, Su-Jung; Kim, Do-Hee; Chung, June-Key; Cha, Young-Nam; Youn, Hyewon; Choi, Bu Young; Min, Sang-Hyun; Surh, Young-Joon

    2016-01-01

    Peptidyl prolyl isomerase (PIN1) regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF)-1α in human colon cancer (HCT116) cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target. PMID:26784107

  12. Metronomic vinorelbine: Anti-angiogenic activity in vitro in normoxic and severe hypoxic conditions, and severe hypoxia-induced resistance to its anti-proliferative effect with reversal by Akt inhibition.

    PubMed

    Mavroeidis, L; Sheldon, H; Briasoulis, E; Marselos, M; Pappas, P; Harris, A L

    2015-08-01

    Metronomic chemotherapy is the protracted, dense administration of low sub-toxic doses of chemotherapy, to inhibit tumor angiogenesis. Vinorelbine is an orally bioavailable vinca alkaloid shown to be useable for metronomic administration. In clinical trials, metronomic vinorelbine has been demonstrated to generate sustainable antitumor efficacy at low nanomolar (nM) concentrations with negligible toxicity. We sought to determine whether the clinically relevant metronomic concentration of vinorelbine is anti-angiogenic in vitro and whether hypoxia, often induced by anti-angiogenic therapy, modifies its effectiveness. We found that the metronomic concentration of 10 nM vinorelbine inhibited human umbilical vein endothelial cell (HUVEC) proliferation, migration, tube formation and sprouting. Severe hypoxia, did not affect the inhibitory effect of metronomic vinorelbine on migration, tube formation and sprouting. However, severe hypoxia reduced its anti-proliferative effect by decreasing its ability to induce G2/M block as it shifted the cell population to the G1 phase and decreased the fraction of the cells in the DNA synthesis S phase. Furthermore, the pro-apoptotic effects of 10 nM vinorelbine were also decreased. Metronomic vinorelbine decreased the Bcl-2/Bax ratio in normoxia whereas the ratio was reduced in severe hypoxia but unaltered by vinorelbine treatment. Akt signals to an anti-apoptotic pathway and we demonstrated that the Akt inhibitor V reversed the protective effect of severe hypoxia. Thus, we provide evidence for the anti-angiogenic basis of metronomic vinorelbine and we show that severe hypoxia mediates resistance to its anti-proliferative effect on endothelial cells. Akt warrants further investigation as a potential target to circumvent this hypoxic resistance. PMID:26095084

  13. Regulation of cell proliferation by hypoxia-inducible factors.

    PubMed

    Hubbi, Maimon E; Semenza, Gregg L

    2015-12-15

    Hypoxia is a physiological cue that impacts diverse physiological processes, including energy metabolism, autophagy, cell motility, angiogenesis, and erythropoiesis. One of the key cell-autonomous effects of hypoxia is as a modulator of cell proliferation. For most cell types, hypoxia induces decreased cell proliferation, since an increased number of cells, with a consequent increase in O2 demand, would only exacerbate hypoxic stress. However, certain cell populations maintain cell proliferation in the face of hypoxia. This is a common pathological hallmark of cancers, but can also serve a physiological function, as in the maintenance of stem cell populations that reside in a hypoxic niche. This review will discuss major molecular mechanisms by which hypoxia regulates cell proliferation in different cell populations, with a particular focus on the role of hypoxia-inducible factors. PMID:26491052

  14. Intermittent hypoxia induces functional recovery following cervical spinal injury

    PubMed Central

    Vinit, Stéphane; Lovett-Barr, Mary Rachael; Mitchell, Gordon S.

    2009-01-01

    Respiratory-related complications are the leading cause of death in spinal cord injury (SCI) patients. Few effective SCI treatments are available after therapeutic interventions are performed in the period shortly after injury (e.g. spine stabilization and prevention of further spinal damage). In this review we explore the capacity to harness endogenous spinal plasticity induced by intermittent hypoxia to optimize function of surviving (spared) neural pathways associated with breathing. Two primary questions are addressed: 1) does intermittent hypoxia induce plasticity in spinal synaptic pathways to respiratory motor neurons following experimental SCI? and 2) can this plasticity improve respiratory function? In normal rats, intermittent hypoxia induces serotonin-dependent plasticity in spinal pathways to respiratory motor neurons. Early experiments suggest that intermittent hypoxia also enhances respiratory motor output in experimental models of cervical SCI, (cervical hemisection) and that the capacity to induce functional recovery is greater with longer durations post-injury. Available evidence suggests that intermittent hypoxia-induced spinal plasticity has considerable therapeutic potential to treat respiratory insufficiency following chronic cervical spinal injury. PMID:19651247

  15. Hypoxia induces TFE3 expression in head and neck squamous cell carcinoma.

    PubMed

    Sun, Zhi-Jun; Yu, Guang-Tao; Huang, Cong-Fa; Bu, Lin-Lin; Liu, Jian-Feng; Ma, Si-Rui; Zhang, Wen-Feng; Liu, Bing; Zhang, Lu

    2016-03-01

    To assess the role of transcription factor μE3 (TFE3) in the tumorigenesis of head and neck squamous cell carcinoma (HNSCC), human HNSCC tissue arrays were investigated for TFE3 expression. Human HNSCC tissues with neoadjuvant inductive chemotherapey (docetaxel, cisplatin and fluorouracil, TPF) and mice HNSCC tissues from transgenic mice model were evaluated for TFE3 expression and the hypoxia pathway. The roles of EGF/EGFR mediated hypoxia in TFE3 nuclear expression were analyzed in vitro and in vivo. TFE3 expression was higher in human HNSCC tissues compared with that in normal oral mucosa. Moreover, high TFE3 expression was related to HIF-1α, PAI-1, and EGFR, which demonstrated the activation of the hypoxia pathway in HNSCC tissues. Furthermore, elevated TFE3 expression was observed in HNSCC after cisplatin-based chemotherapy, and high TFE3 expression may indicate poor response to TPF inductive chemotherapy. Furthermore, similar changes with increased TFE3 were observed in HNSCC of the transgenic mouse HNSCC model. Hypoxic culture in the human HNSCC cell line increased TFE3 expression, which promoted cell survival under hypoxia. EGFR inhibiton by cetuximab could attenuate hypoxia-induced TFE3 in the HNSCC cell line and transgenic mouse HNSCC model. These findings indicated that TFE3 was an important hypoxia-induced transcriptional factor in HNSCC. TFE3 could be regarded as a durgable therapeutic oncotarget by EGFR inhibition. PMID:26872381

  16. Hypoxia induces TFE3 expression in head and neck squamous cell carcinoma

    PubMed Central

    Sun, Zhi-Jun; Yu, Guang-Tao; Huang, Cong-Fa; Bu, Lin-Lin; Liu, Jian-Feng; Ma, Si-Rui; Zhang, Wen-Feng; Liu, Bing; Zhang, Lu

    2016-01-01

    To assess the role of transcription factor μE3 (TFE3) in the tumorigenesis of head and neck squamous cell carcinoma (HNSCC), human HNSCC tissue arrays were investigated for TFE3 expression. Human HNSCC tissues with neoadjuvant inductive chemotherapey (docetaxel, cisplatin and fluorouracil, TPF) and mice HNSCC tissues from transgenic mice model were evaluated for TFE3 expression and the hypoxia pathway. The roles of EGF/EGFR mediated hypoxia in TFE3 nuclear expression were analyzed in vitro and in vivo. TFE3 expression was higher in human HNSCC tissues compared with that in normal oral mucosa. Moreover, high TFE3 expression was related to HIF-1α, PAI-1, and EGFR, which demonstrated the activation of the hypoxia pathway in HNSCC tissues. Furthermore, elevated TFE3 expression was observed in HNSCC after cisplatin-based chemotherapy, and high TFE3 expression may indicate poor response to TPF inductive chemotherapy. Furthermore, similar changes with increased TFE3 were observed in HNSCC of the transgenic mouse HNSCC model. Hypoxic culture in the human HNSCC cell line increased TFE3 expression, which promoted cell survival under hypoxia. EGFR inhibiton by cetuximab could attenuate hypoxia-induced TFE3 in the HNSCC cell line and transgenic mouse HNSCC model. These findings indicated that TFE3 was an important hypoxia-induced transcriptional factor in HNSCC. TFE3 could be regarded as a durgable therapeutic oncotarget by EGFR inhibition. PMID:26872381

  17. miR-1236 regulates hypoxia-induced epithelial-mesenchymal transition and cell migration/invasion through repressing SENP1 and HDAC3.

    PubMed

    Chen, Sung-Yuan; Teng, Shu-Chun; Cheng, Tzu-Hao; Wu, Kou-Juey

    2016-08-01

    Intratumoral hypoxia induces epithelial-mesenchymal transition and promotes cancer metastasis. MicroRNAs (miRNAs) are endogenous, single-strand RNA molecules that regulate gene expression. MiRNAs control cell growth, proliferation, differentiation and cell death and may function as oncogenes or tumor suppressors. HDAC3 and SENP1 are two molecules involved in hypoxia-induced EMT and HIF-1α stability, respectively. In this report, we show that miR-1236 plays a critical role in hypoxia-induced EMT and metastasis. MiRNA prediction programs TargetScan and miRanda show that miR-1236 may target HDAC3 and SENP1. MiR-1236 represses the luciferase activity of reporter constructs containing 3'UTR of HDAC3 and SENP1 as well as the expression levels of HDAC3 and SENP1. MiR-1236 abolishes hypoxia-induced EMT and inhibits migration and invasion activity of tumor cells. Hypoxia represses miR-1236 expression. The promoter region of miR-1236 is identified as the NELFE promoter. Twist1, an EMT regulator activated by hypoxia/HIF-1α, is shown to repress the reporter construct driven by the NELFE promoter. The binding site of Twist1 in the NELFE promoter is identified and chromatin immunoprecipitation assays show the direct binding of Twist1 to this site. Overexpression or knockdown of Twist1 in stable cell lines shows the inverse correlation between Twist1 and miR-1236 expression. These results identify a miRNA that regulates hypoxia-induced EMT and metastasis through repressing HDAC3 and SENP1 expression and present a regulatory network that involves many key players in hypoxia-induced EMT. PMID:27177472

  18. Protective effect of salidroside against bone loss via hypoxia-inducible factor-1α pathway-induced angiogenesis

    PubMed Central

    Li, Ling; Qu, Ye; Jin, Xin; Guo, Xiao Qin; Wang, Yue; Qi, Lin; Yang, Jing; Zhang, Peng; Li, Ling Zhi

    2016-01-01

    Hypoxia-inducible factor (HIF)-1α plays a critical role in coupling angiogenesis with osteogenesis during bone development and regeneration. Salidroside (SAL) has shown anti-hypoxic effects in vitro and in vivo. However, the possible roles of SAL in the prevention of hypoxia-induced osteoporosis have remained unknown. Two osteoblast cell lines, MG-63 and ROB, were employed to evaluate the effects of SAL on cell viability, apoptosis, differentiation and mineralization in vitro. Rats subjected to ovariectomy-induced bone loss were treated with SAL in vivo. Our results showed that pre-treatment with SAL markedly attenuated the hypoxia-induced reductions in cell viability, apoptosis, differentiation and mineralization. SAL down-regulated HIF-1α expression and inhibited its translocation; however, SAL increased its transcriptional activity and, consequently, up-regulated vascular endothelial growth factor (VEGF). In vivo studies further demonstrated that SAL caused decreases in the mineral, alkaline phosphatase (ALP), and BGP concentrations in the blood of ovariectomized (OVX) rats. Moreover, SAL improved the trabecular bone microarchitecture and increased bone mineral density in the distal femur. Additionally, SAL administration partially ameliorated this hypoxia via the HIF-1α-VEGF signalling pathway. Our results indicate that SAL prevents bone loss by enhancing angiogenesis and osteogenesis and that these effects are associated with the activation of HIF-1α signalling. PMID:27558909

  19. Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway

    PubMed Central

    Wan, Gang; Xie, Weidong; Liu, Zhenyan; Xu, Wei; Lao, Yuanzhi; Huang, Nunu; Cui, Kai; Liao, Meijian; He, Jie; Jiang, Yuyang; Yang, Burton B; Xu, Hongxi; Xu, Naihan; Zhang, Yaou

    2014-01-01

    Hypoxia activates autophagy, an evolutionarily conserved cellular catabolic process. Dysfunction in the autophagy pathway has been implicated in an increasing number of human diseases, including cancer. Hypoxia induces upregulation of a specific set of microRNAs (miRNAs) in a variety of cell types. Here, we describe hypoxia-induced MIR155 as a potent inducer of autophagy. Enforced expression of MIR155 increases autophagic activity in human nasopharyngeal cancer and cervical cancer cells. Knocking down endogenous MIR155 inhibits hypoxia-induced autophagy. We demonstrated that MIR155 targets multiple players in MTOR signaling, including RHEB, RICTOR, and RPS6KB2. MIR155 suppresses target-gene expression by directly interacting with their 3′ untranslated regions (UTRs), mutations of the binding sites abolish their MIR155 responsiveness. Furthermore, by downregulating MTOR signaling, MIR155 also attenuates cell proliferation and induces G1/S cell cycle arrest. Collectively, these data present a new role for MIR155 as a key regulator of autophagy via dysregulation of MTOR pathway. PMID:24262949

  20. Antagonism of Stem Cell Factor/c-kit Signaling Attenuates Neonatal Chronic Hypoxia-Induced Pulmonary Vascular Remodeling

    PubMed Central

    Young, Karen C; Torres, Eneida; Hehre, Dorothy; Wu, Shu; Suguihara, Cleide; Hare, Joshua M.

    2015-01-01

    Background Accumulating evidence suggests that c-kit positive cells are present in the remodeled pulmonary vasculature bed of patients with pulmonary hypertension (PH). Whether stem cell factor (SCF)/ c-kit regulated pathways potentiate pulmonary vascular remodeling is unknown. Here, we tested the hypothesis that attenuated c-kit signaling would decrease chronic hypoxia-induced pulmonary vascular remodeling by decreasing pulmonary vascular cell mitogenesis. Methods Neonatal FVB/NJ mice treated with non-immune IgG (PL), or c-kit neutralizing antibody (ACK2) as well as c-kit mutant mice (WBB6F1- Kit W− v/ +) and their congenic controls, were exposed to normoxia (FiO2=0.21) or hypoxia (FiO2=0.12) for two weeks. Following this exposure, right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH), pulmonary vascular cell proliferation and remodeling were evaluated. Results As compared to chronically hypoxic controls, c-kit mutant mice had decreased RVSP, RVH, pulmonary vascular remodeling and proliferation. Consistent with these findings, administration of ACK2 to neonatal mice with chronic hypoxia-induced PH decreased RVSP, RVH, pulmonary vascular cell proliferation and remodeling. This attenuation in PH was accompanied by decreased extracellular signal-regulated protein kinase (ERK) 1/2 activation. Conclusion SCF/c-kit signaling may potentiate chronic hypoxia-induced vascular remodeling by modulating ERK activation. Inhibition of c-kit activity may be a potential strategy to alleviate PH. PMID:26705118

  1. Protective effect of salidroside against bone loss via hypoxia-inducible factor-1α pathway-induced angiogenesis.

    PubMed

    Li, Ling; Qu, Ye; Jin, Xin; Guo, Xiao Qin; Wang, Yue; Qi, Lin; Yang, Jing; Zhang, Peng; Li, Ling Zhi

    2016-01-01

    Hypoxia-inducible factor (HIF)-1α plays a critical role in coupling angiogenesis with osteogenesis during bone development and regeneration. Salidroside (SAL) has shown anti-hypoxic effects in vitro and in vivo. However, the possible roles of SAL in the prevention of hypoxia-induced osteoporosis have remained unknown. Two osteoblast cell lines, MG-63 and ROB, were employed to evaluate the effects of SAL on cell viability, apoptosis, differentiation and mineralization in vitro. Rats subjected to ovariectomy-induced bone loss were treated with SAL in vivo. Our results showed that pre-treatment with SAL markedly attenuated the hypoxia-induced reductions in cell viability, apoptosis, differentiation and mineralization. SAL down-regulated HIF-1α expression and inhibited its translocation; however, SAL increased its transcriptional activity and, consequently, up-regulated vascular endothelial growth factor (VEGF). In vivo studies further demonstrated that SAL caused decreases in the mineral, alkaline phosphatase (ALP), and BGP concentrations in the blood of ovariectomized (OVX) rats. Moreover, SAL improved the trabecular bone microarchitecture and increased bone mineral density in the distal femur. Additionally, SAL administration partially ameliorated this hypoxia via the HIF-1α-VEGF signalling pathway. Our results indicate that SAL prevents bone loss by enhancing angiogenesis and osteogenesis and that these effects are associated with the activation of HIF-1α signalling. PMID:27558909

  2. Mice lacking the Raf-1 kinase inhibitor protein exhibit exaggerated hypoxia-induced pulmonary hypertension

    PubMed Central

    Morecroft, I; Doyle, B; Nilsen, M; Kolch, W; Mair, K; MacLean, MR

    2011-01-01

    BACKGROUND AND PURPOSE Increased pulmonary vascular remodelling, pulmonary arterial pressure and pulmonary vascular resistance characterize the development of pulmonary arterial hypertension (PAH). Activation of the Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK)1/2 is thought to play an important role in PAH and Raf-1 kinase inhibitor protein (RKIP), negatively regulates this pathway. This study investigated whether genetic deletion of RKIP (and hence ERK1/2 up-regulation) resulted in a pulmonary hypertensive phenotype in mice and investigated a role for RKIP in mitogen-regulated proliferative responses in lung fibroblasts. EXPERIMENTAL APPROACH Pulmonary vascular haemodynamics and remodelling were assessed in mice genetically deficient in RKIP (RKIP−/−) after 2 weeks of either normoxia or hypoxia. Immunoblotting and immunohistochemistry were used to examine phosphorylation of Raf-1, RKIP and ERK1/2 in mouse pulmonary arteries. In vitro, RKIP inhibition of mitogen signalling was analysed in CCL39 hamster lung fibroblasts. KEY RESULTS RKIP−/− mice demonstrated elevated indices of PAH and ERK1/2 phosphorylation compared with wild-type (WT) mice. Hypoxic RKIP−/− mice exhibited exaggerated PAH indices. Hypoxia increased phosphorylation of Raf-1, RKIP and ERK1/2 in WT mouse pulmonary arteries and Raf-1 phosphorylation in RKIP−/− mouse pulmonary arteries. In CCL39 cells, inhibition of RKIP potentiated mitogen-induced proliferation and phosphorylation of RKIP, and Raf-1. CONCLUSIONS AND IMPLICATIONS The lack of RKIP protein resulted in a pulmonary hypertensive phenotype, exaggerated in hypoxia. Hypoxia induced phosphorylation of RKIP signalling elements in WT pulmonary arteries. RKIP inhibition potentiated mitogen-induced proliferation in lung fibroblasts. These results provide evidence for the involvement of RKIP in suppressing the development of hypoxia-induced PAH in mice. PMID:21385176

  3. Proline-rich tyrosine kinase 2 downregulates peroxisome proliferator-activated receptor gamma to promote hypoxia-induced pulmonary artery smooth muscle cell proliferation.

    PubMed

    Bijli, Kaiser M; Kang, Bum-Yong; Sutliff, Roy L; Hart, C Michael

    2016-06-01

    Hypoxia stimulates pulmonary hypertension (PH), in part by increasing the proliferation of human pulmonary artery smooth muscle cells (HPASMCs) via sustained activation of mitogen-activated protein kinase, extracellular signal-regulated kinases 1 and 2 (ERK 1/2), and nuclear factor-kappa B (NF-κB); elevated expression of NADPH oxidase 4 (Nox4); and downregulation of peroxisome proliferator-activated receptor gamma (PPARγ) levels. However, the upstream mediators that control these responses remain largely unknown. We hypothesized that proline-rich tyrosine kinase 2 (Pyk2) plays a critical role in the mechanism of hypoxia-induced HPASMC proliferation. To test this hypothesis, HPASMCs were exposed to normoxia or hypoxia (1% O2) for 72 hours. Hypoxia activated Pyk2 (detected as Tyr402 phosphorylation), and inhibition of Pyk2 with small interfering RNA (siRNA) or tyrphostin A9 attenuated hypoxia-induced HPASMC proliferation. Pyk2 inhibition attenuated ERK 1/2 activation as early as 24 hours after the onset of hypoxia, suggesting a proximal role for Pyk2 in this response. Pyk2 inhibition also attenuated hypoxia-induced NF-κB activation, reduced HPASMC PPARγ messenger RNA levels and activity, and increased NF-κB-mediated Nox4 levels. The siRNA-mediated PPARγ knockdown enhanced Pyk2 activation, whereas PPARγ overexpression reduced Pyk2 activation in HPASMCs, confirming a reciprocal relationship between Pyk2 and PPARγ. Pyk2 depletion also attenuated hypoxia-induced NF-κB p65 activation and reduced PPARγ protein levels in human pulmonary artery endothelial cells. These in vitro findings suggest that Pyk2 plays a central role in the proliferative phenotype of pulmonary vascular wall cells under hypoxic conditions. Coupled with recent reports that hypoxia-induced PH is attenuated in Pyk2 knockout mice, these findings suggest that Pyk2 may represent a novel therapeutic target in PH. PMID:27252847

  4. Proline-rich tyrosine kinase 2 downregulates peroxisome proliferator–activated receptor gamma to promote hypoxia-induced pulmonary artery smooth muscle cell proliferation

    PubMed Central

    2016-01-01

    Abstract Hypoxia stimulates pulmonary hypertension (PH), in part by increasing the proliferation of human pulmonary artery smooth muscle cells (HPASMCs) via sustained activation of mitogen-activated protein kinase, extracellular signal–regulated kinases 1 and 2 (ERK 1/2), and nuclear factor-kappa B (NF-κB); elevated expression of NADPH oxidase 4 (Nox4); and downregulation of peroxisome proliferator–activated receptor gamma (PPARγ) levels. However, the upstream mediators that control these responses remain largely unknown. We hypothesized that proline-rich tyrosine kinase 2 (Pyk2) plays a critical role in the mechanism of hypoxia-induced HPASMC proliferation. To test this hypothesis, HPASMCs were exposed to normoxia or hypoxia (1% O2) for 72 hours. Hypoxia activated Pyk2 (detected as Tyr402 phosphorylation), and inhibition of Pyk2 with small interfering RNA (siRNA) or tyrphostin A9 attenuated hypoxia-induced HPASMC proliferation. Pyk2 inhibition attenuated ERK 1/2 activation as early as 24 hours after the onset of hypoxia, suggesting a proximal role for Pyk2 in this response. Pyk2 inhibition also attenuated hypoxia-induced NF-κB activation, reduced HPASMC PPARγ messenger RNA levels and activity, and increased NF-κB-mediated Nox4 levels. The siRNA-mediated PPARγ knockdown enhanced Pyk2 activation, whereas PPARγ overexpression reduced Pyk2 activation in HPASMCs, confirming a reciprocal relationship between Pyk2 and PPARγ. Pyk2 depletion also attenuated hypoxia-induced NF-κB p65 activation and reduced PPARγ protein levels in human pulmonary artery endothelial cells. These in vitro findings suggest that Pyk2 plays a central role in the proliferative phenotype of pulmonary vascular wall cells under hypoxic conditions. Coupled with recent reports that hypoxia-induced PH is attenuated in Pyk2 knockout mice, these findings suggest that Pyk2 may represent a novel therapeutic target in PH. PMID:27252847

  5. Upregulated Copper Transporters in Hypoxia-Induced Pulmonary Hypertension

    PubMed Central

    Zimnicka, Adriana M.; Tang, Haiyang; Guo, Qiang; Kuhr, Frank K.; Oh, Myung-Jin; Wan, Jun; Chen, Jiwang; Smith, Kimberly A.; Fraidenburg, Dustin R.; Choudhury, Moumita S. R.; Levitan, Irena; Machado, Roberto F.; Kaplan, Jack H.; Yuan, Jason X.-J.

    2014-01-01

    Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu) plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX), a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2) also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC). In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α) with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness. PMID:24614111

  6. Hypoxia-Inducible Factors in Cancer Stem Cells and Inflammation

    PubMed Central

    Peng, Gong; Liu, Yang

    2015-01-01

    Hypoxia-inducible factors (HIF) mediate metabolic switch in cells in hypoxic environments, including those in both normal and malignant tissues with limited supplies of oxygen. Paradoxically, recent studies have shown that cancer stem cells and activated immune effector cells exhibit high HIF activity in normoxic environments and that HIF activity is critical in maintenance of cancer stem cells as well as differentiation and function of inflammatory cells. Since inflammation and cancer stem cells are two major barriers to effective cancer therapy, targeting HIF may provide a new approach for the ultimate challenges. PMID:25857287

  7. Hypoxia-inducible factor 1 and cardiovascular disease.

    PubMed

    Semenza, Gregg L

    2014-01-01

    Cardiac function is required for blood circulation and systemic oxygen delivery. However, the heart has intrinsic oxygen demands that must be met to maintain effective contractility. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that functions as a master regulator of oxygen homeostasis in all metazoan species. HIF-1 controls oxygen delivery, by regulating angiogenesis and vascular remodeling, and oxygen utilization, by regulating glucose metabolism and redox homeostasis. Analysis of animal models suggests that by activation of these homeostatic mechanisms, HIF-1 plays a critical protective role in the pathophysiology of ischemic heart disease and pressure-overload heart failure. PMID:23988176

  8. Hypoxia-Inducible Factor 1 and Cardiovascular Disease

    PubMed Central

    Semenza, Gregg L.

    2015-01-01

    Cardiac function is required for blood circulation and systemic oxygen delivery. However, the heart has intrinsic oxygen demands that must be met to maintain effective contractility. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that functions as a master regulator of oxygen homeostasis in all metazoan species. HIF-1 controls oxygen delivery, by regulating angiogenesis and vascular remodeling, and oxygen utilization, by regulating glucose metabolism and redox homeostasis. Analysis of animal models suggests that by activation of these homeostatic mechanisms, HIF-1 plays a critical protective role in the pathophysiology of ischemic heart disease and pressure-overload heart failure. PMID:23988176

  9. Targeted genes and interacting proteins of hypoxia inducible factor-1

    PubMed Central

    Liu, Wei; Shen, Shao-Ming; Zhao, Xu-Yun; Chen, Guo-Qiang

    2012-01-01

    Heterodimeric transcription factor hypoxia inducible factor-1 (HIF-1) functions as a master regulator of oxygen homeostasis in almost all nucleated mammalian cells. The fundamental process adapted to cellular oxygen alteration largely depends on the refined regulation on its alpha subunit, HIF-1α. Recent studies have unraveled expanding and critical roles of HIF-1α, involving in a multitude of developmental, physiological, and pathophysiological processes. This review will focus on the current knowledge of HIF-1α-targeting genes and its interacting proteins, as well as the concomitant functional relationships between them. PMID:22773957

  10. Integrin-linked kinase: a hypoxia-induced anti-apoptotic factor exploited by cancer cells.

    PubMed

    Abboud, Elizabeth R; Coffelt, Seth B; Figueroa, Yanira G; Zwezdaryk, Kevin J; Nelson, Anne B; Sullivan, Deborah E; Morris, Cindy B; Tang, Yan; Beckman, Barbara S; Scandurro, Aline B

    2007-01-01

    Based on cDNA microarray results, integrin-linked kinase (ILK) emerged as an interesting candidate in hypoxia-mediated survival mechanisms employed by cancer cells. This notion was confirmed here by the following observations: the 5' promoter region of the ilk gene contains hypoxia responsive elements (HRE) that bind hypoxia-inducible factor (HIF) transcription factor complexes and drive HRE-luciferase gene expression in reporter assays; ILK protein and kinase activity are induced following hypoxia; downstream targets of ILK signaling are induced following hypoxia treatment; inhibition of ILK leads to increased apoptosis; and HIF and ILK are co-localized within human cancer tissues. The identification of ILK as a player in hypoxia survival signaling employed by cancer cells further validates ILK as a unique target for cancer therapy. PMID:17143519

  11. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy

    PubMed Central

    Semenza, Gregg L.

    2012-01-01

    Hypoxia-inducible factors (HIFs) mediate adaptive physiological responses to hypoxia. In human cancers that are accessible for O2 electrode measurements, intratumoral hypoxia is common and is associated with increased risk of mortality. HIF activity in regions of intratumoral hypoxia mediates angiogenesis, epithelial-mesenchymal transition, stem cell maintenance, invasion, metastasis, and resistance to radiation therapy and chemotherapy. A growing number of drugs have been identified that inhibit HIF activity by a variety of molecular mechanisms. Because many of these drugs are already FDA-approved for other indications, clinical trials can (and should) be initiated to test the hypothesis that incorporation of HIF inhibitors into current standard-of-care therapy will increase the survival of cancer patients. PMID:22398146

  12. Retinal hypoxia induces vascular endothelial growth factor through induction of estrogen-related receptor γ

    SciTech Connect

    Do, Ji Yeon; Choi, Young Keun; Kook, Hyun; Suk, Kyoungho; Lee, In-Kyu; Park, Dong Ho

    2015-05-01

    Ischemic retinopathies causing overexpression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), are the most common cause of blindness. Thus, understanding the pathophysiology of targetable pathways that regulate retinal VEGF is of great interest. A conserved binding site for estrogen-related receptor γ (ERRγ) has been identified in the promoter of the Vegfa gene. ERRγ is a constitutively active orphan nuclear receptor and its expression is increased by hypoxic stimuli in metabolically active tissues. This study evaluated the role of ERRγ in the ischemic retina and the anti-VEGF potential of GSK5182, a selective inverse agonist of ERRγ. In an oxygen-induced retinopathy (OIR) mouse model, immunohistochemistry showed significantly increased ERRγ expression in the ganglion cell layer at postnatal day (P) 17. In a ganglion cell line (RGC-5), mRNA and protein levels of ERRγ were increased by desferrioxamine treatment and hypoxic conditions (1% O{sub 2}). Transient transfection of RGC-5 cells revealed that ERRγ regulated Vegfa expression and this was inhibited by GSK5182. Intravitreal injection of GSK5182 into the OIR model at P14 inhibited retinal Vegfa mRNA expression at P17. GSK5182 suppresses hypoxia-induced VEGF expression via ERRγ; therefore, ERRγ could be a treatment target for ischemic retinopathies. - Highlights: • OIR mice exhibited increased ERRγ expression in the ganglion cell layer. • Hypoxia-induced ERRγ expression was observed in retinal ganglion cells. • ERRγ overexpression increased VEGFA expression in retinal ganglion cells. • An ERRγ inverse agonist suppressed VEGFA expression in retinal ganglion cells. • Intravitreal injection of an ERRγ inverse agonist suppressed VEGFA in OIR mice.

  13. Novel Pathway for Hypoxia-Induced Proliferation and Migration in Human Mesenchymal Stem Cells: Involvement of HIF-1α, FASN, and mTORC1.

    PubMed

    Lee, Hyun Jik; Ryu, Jung Min; Jung, Young Hyun; Oh, Sang Yub; Lee, Sei-Jung; Han, Ho Jae

    2015-07-01

    The control of stem cells by oxygen signaling is an important way to improve various stem cell physiological functions and metabolic nutrient alteration. Lipid metabolism alteration via hypoxia is thought to be a key factor in controlling stem cell fate and function. However, the interaction between hypoxia and the metabolic and functional changes to stem cells is incompletely described. This study aimed to identify hypoxia-inducible lipid metabolic enzymes that can regulate umbilical cord blood (UCB)-derived human mesenchymal stem cell (hMSC) proliferation and migration and to demonstrate the signaling pathway that controls functional change in UCB-hMSCs. Our results indicate that hypoxia treatment stimulates UCB-hMSC proliferation, and expression of two lipogenic enzymes: fatty acid synthase (FASN) and stearoyl-CoA desaturase-1 (SCD1). FASN but not SCD1 is a key enzyme for regulation of UCB-hMSC proliferation and migration. Hypoxia-induced FASN expression was controlled by the hypoxia-inducible factor-1 alpha (HIF-1α)/SCAP/SREBP1 pathway. Mammalian target of rapamycin (mTOR) was phosphorylated by hypoxia, whereas inhibition of FASN by cerulenin suppressed hypoxia-induced mTOR phosphorylation as well as UCB-hMSC proliferation and migration. RAPTOR small interfering RNA transfection significantly inhibited hypoxia-induced proliferation and migration. Hypoxia-induced mTOR also regulated CDK2, CDK4, cyclin D1, cyclin E, and F-actin expression as well as that of c-myc, p-cofilin, profilin, and Rho GTPase. Taken together, the results suggest that mTORC1 mainly regulates UCB-hMSC proliferation and migration under hypoxia conditions via control of cell cycle and F-actin organization modulating factors. In conclusion, the HIF-1α/FASN/mTORC1 axis is a key pathway linking hypoxia-induced lipid metabolism with proliferation and migration in UCB-hMSCs. Stem Cells 2015;33:2182-2195. PMID:25825864

  14. Dexamethasone impairs hypoxia-inducible factor-1 function

    SciTech Connect

    Wagner, A.E.; Huck, G.; Stiehl, D.P.; Jelkmann, W.; Hellwig-Buergel, T.

    2008-07-25

    Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription-factor composed of {alpha}- and {beta}-subunits. HIF-1 is not only necessary for the cellular adaptation to hypoxia, but it is also involved in inflammatory processes and wound healing. Glucocorticoids (GC) are therapeutically used to suppress inflammatory responses. Herein, we investigated whether GC modulate HIF-1 function using GC receptor (GR) possessing (HepG2) and GR deficient (Hep3B) human hepatoma cell cultures as model systems. Dexamethasone (DEX) treatment increased HIF-1{alpha} levels in the cytosol of HepG2 cells, while nuclear HIF-1{alpha} levels and HIF-1 DNA-binding was reduced. In addition, DEX dose-dependently lowered the hypoxia-induced luciferase activity in a reporter gene system. DEX suppressed the hypoxic stimulation of the expression of the HIF-1 target gene VEGF (vascular endothelial growth factor) in HepG2 cultures. DEX did not reduce hypoxically induced luciferase activity in HRB5 cells, a Hep3B derivative lacking GR. Transient expression of the GR in HRB5 cells restored the susceptibility to DEX. Our study discloses the inhibitory action of GC on HIF-1 dependent gene expression, which may be important with respect to the impaired wound healing in DEX-treated patients.

  15. Diastolic dysfunction precedes hypoxia-induced mortality in dystrophic mice

    PubMed Central

    Townsend, DeWayne

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a progressive striated muscle disease that is characterized by skeletal muscle weakness with progressive respiratory and cardiac failure. Together respiratory and cardiac disease account for the majority of mortality in the DMD patient population. However, little is known regarding the effects of respiratory dysfunction on the dystrophic heart. The studies described here examine the effects of acute hypoxia on cardiac function. These studies demonstrate, for the first time, that a mouse model of DMD displays significant mortality following acute exposure to hypoxia. This mortality is characterized by a steady decline in systolic function. Retrospective analysis reveals that significant decreases in diastolic dysfunction, especially in the right ventricle, precede the decline in systolic pressure. The initial hemodynamic response to acute hypoxia in the mouse is similar to that observed in larger species, with significant increases in right ventricular afterload and decreases in left ventricular preload being observed. Significant increases in heart rate and contractility suggest hypoxia-induced activation of the sympathetic nervous system. These studies provide evidence that while hypoxia presents significant hemodynamic challenges to the dystrophic right ventricle, global cardiac dysfunction precedes hypoxia-induced mortality in the dystrophic heart. These findings are clinically relevant as the respiratory insufficiency evident in patients with DMD results in significant bouts of hypoxia. The results of these studies indicate that hypoxia may contribute to the acceleration of the heart disease in DMD patients. Importantly, hypoxia can be avoided through the use of ventilatory support. PMID:26311833

  16. Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the beta-carbon of asparagine-803.

    PubMed Central

    McNeill, Luke A; Hewitson, Kirsty S; Claridge, Timothy D; Seibel, Jürgen F; Horsfall, Louise E; Schofield, Christopher J

    2002-01-01

    Asparagine-803 in the C-terminal transactivation domain of human hypoxia-inducible factor (HIF)-1 alpha-subunit is hydroxylated by factor inhibiting HIF-1 (FIH-1) under normoxic conditions causing abrogation of the HIF-1alpha/p300 interaction. NMR and other analyses of a hydroxylated HIF fragment produced in vitro demonstrate that hydroxylation occurs at the beta-carbon of Asn-803 and imply production of the threo -isomer, in contrast with other known aspartic acid/asparagine hydroxylases that produce the erythro -isomer. PMID:12215170

  17. Thrombospondin-1 null mice are resistant to hypoxia-induced pulmonary hypertension

    PubMed Central

    2010-01-01

    Background and objective Chronic hypoxia induces pulmonary hypertension in mice. Smooth muscle cell hyperplasia and medial thickening characterize the vasculature of these animals. Thrombospondin-1 null (TSP-1-/-) mice spontaneously develop pulmonary smooth muscle cell hyperplasia and medial thickening. In addition, TSP-1 produced by the pulmonary endothelium inhibits pulmonary artery smooth muscle cell growth. Based on these observations we sought to describe the pulmonary vascular changes in TSP-1-/- mice exposed to chronic hypoxia. Methods We exposed TSP-1-/- and wild type (WT) mice to a fraction of inspired oxygen (FiO2) of 0.1 for up to six weeks. Pulmonary vascular remodeling was evaluated using tissue morphometrics. Additionally, right ventricle systolic pressures (RVSP) and right ventricular hypertrophy by right ventricle/left ventricle + septum ratios (RV/LV+S) were measured to evaluate pulmonary hypertensive changes. Finally, acute pulmonary vasoconstriction response in both TSP-1-/- and WT mice was evaluated by acute hypoxia and U-46619 (a prostaglandin F2 analog) response. Results In hypoxia, TSP-1-/- mice had significantly lower RVSP, RV/LV+S ratios and less pulmonary vascular remodeling when compared to WT mice. TSP-1-/- mice also had significantly lower RVSP in response to acute pulmonary vasoconstriction challenges than their WT counterparts. Conclusion TSP-1-/- mice had diminished pulmonary vasoconstriction response and were less responsive to hypoxia-induced pulmonary hypertension than their wild type counterparts. This observation suggests that TSP-1 could play an active role in the pathogenesis of pulmonary hypertension associated with hypoxia. PMID:20441584

  18. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1.

    PubMed Central

    Forsythe, J A; Jiang, B H; Iyer, N V; Agani, F; Leung, S W; Koos, R D; Semenza, G L

    1996-01-01

    Expression of vascular endothelial growth factor (VEGF) is induced in cells exposed to hypoxia or ischemia. Neovascularization stimulated by VEGF occurs in several important clinical contexts, including myocardial ischemia, retinal disease, and tumor growth. Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix protein that activates transcription of the human erythropoietin gene in hypoxic cells. Here we demonstrate the involvement of HIF-1 in the activation of VEGF transcription. VEGF 5'-flanking sequences mediated transcriptional activation of reporter gene expression in hypoxic Hep3B cells. A 47-bp sequence located 985 to 939 bp 5' to the VEGF transcription initiation site mediated hypoxia-inducible reporter gene expression directed by a simian virus 40 promoter element that was otherwise minimally responsive to hypoxia. When reporters containing VEGF sequences, in the context of the native VEGF or heterologous simian virus 40 promoter, were cotransfected with expression vectors encoding HIF-1alpha and HIF-1beta (ARNT [aryl hydrocarbon receptor nuclear translocator]), reporter gene transcription was much greater in both hypoxic and nonhypoxic cells than in cells transfected with the reporter alone. A HIF-1 binding site was demonstrated in the 47-bp hypoxia response element, and a 3-bp substitution eliminated the ability of the element to bind HIF-1 and to activate transcription in response to hypoxia and/or recombinant HIF-1. Cotransfection of cells with an expression vector encoding a dominant negative form of HIF-1alpha inhibited the activation of reporter transcription in hypoxic cells in a dose-dependent manner. VEGF mRNA was not induced by hypoxia in mutant cells that do not express the HIF-1beta (ARNT) subunit. These findings implicate HIF-1 in the activation of VEGF transcription in hypoxic cells. PMID:8756616

  19. Surface Phosphatidylserine Is Responsible for the Internalization on Microvesicles Derived from Hypoxia-Induced Human Bone Marrow Mesenchymal Stem Cells into Human Endothelial Cells

    PubMed Central

    Liu, Chaozhong; Wang, Lisheng; Xiao, Fengjun; Zhang, Hongchao

    2016-01-01

    Background Previous data have proven that microvesicles derived from hypoxia-induced mesenchymal stem cells (MSC-MVs) can be internalized into endothelial cells, enhancing their proliferation and vessel structure formation and promoting in vivo angiogenesis. However, there is a paucity of information about how the MSC-MVs are up-taken by endothelial cells. Methods MVs were prepared from the supernatants of human bone marrow MSCs that had been exposed to a hypoxic and/or serum-deprivation condition. The incorporation of hypoxia-induced MSC-MVs into human umbilical cord endothelial cells (HUVECs) was observed by flow cytometry and confocal microscopy in the presence or absence of recombinant human Annexin-V (Anx-V) and antibodies against human CD29 and CD44. Further, small interfering RNA (siRNA) targeted at Anx-V and PSR was delivered into HUVECs, or HUVECs were treated with a monoclonal antibody against phosphatidylserine receptor (PSR) and the cellular internalization of MVs was re-assessed. Results The addition of exogenous Anx-V could inhibit the uptake of MVs isolated from hypoxia-induced stem cells by HUVECs in a dose- and time-dependent manner, while the anti-CD29 and CD44 antibodies had no effect on the internalization process. The suppression was neither observed in Anx-V siRNA-transfected HUVECs, however, addition of anti-PSR antibody and PSR siRNA-transfected HUVECs greatly blocked the incorporation of MVs isolated from hypoxia-induced stem cells into HUVECs. Conclusion PS on the MVs isolated from hypoxia-induced stem cells is the critical molecule in the uptake by HUVECs. PMID:26808539

  20. Rutaecarpine attenuates hypoxia-induced right ventricular remodeling in rats.

    PubMed

    Li, Wen-Qun; Li, Xiao-Hui; Du, Jie; Zhang, Wang; Li, Dai; Xiong, Xiao-Ming; Li, Yuan-Jian

    2016-07-01

    Rutaecarpine has been shown to exhibit wide pharmacological effects in the cardiovascular system via stimulation of calcitonin gene-related peptide (CGRP) release. In the present study, the effect of rutaecarpine on hypoxia-induced right ventricular (RV) remodeling and the underlying mechanisms were evaluated. RV remodeling was induced by hypoxia (10 % O2, 3 weeks) in rats. Rats were treated with rutaecarpine (20 or 40 mg/kg) by intragastric administration. Proliferation of cardiac fibroblasts was induced by TGF-β1 (5 ng/mL) and determined by MTS and EdU incorporation method. Cardiac fibroblasts were treated with exogenous CGRP (10 or 100 nM). The concentrations of CGRP and TGF-β1 in plasma were measured by ELISA. The expression of eIF3a, p27, α-SMA, collagen-I/III, ANP, and BNP were measured by real-time PCR or western blot. Hypoxia induced an increase of right ventricle systolic pressure (RVSP), ration of RV/LV+S, and RV/tibial length in rats, while cardiac hypertrophy, apoptosis, and fibrosis were detected. The expression of ANP, BNP, α-SMA, collagen-I, collagen-III, eIF3a, and TGF-β1 was up-regulated, and the expression of p27 was down-regulated in the right ventricle of hypoxia-treated rats. The plasma concentration of CGRP was decreased and TGF-β1 was increased in hypoxia-treated rats. All of these effects induced by hypoxia were attenuated by rutaecarpine in a dose-dependent manner. In cultured cardiac fibroblasts, TGF-β1 significantly promoted the proliferation and up-regulated the expression of α-SMA and collagen-I/III, while the expression of eIF3a was up-regulated and the expression of p27 was down-regulated. The effects of TGF-β1 were attenuated by CGRP. CGRP8-37, a selective CGRP receptor antagonist, abolished the effects of CGRP. Rutaecarpine attenuates hypoxia-induced RV remodeling via stimulation of CGRP release, and the effects of rutaecarpine involve the eIF3a/p27 pathway. PMID:27052575

  1. Cobalt chloride attenuates hypobaric hypoxia induced vascular leakage in rat brain: Molecular mechanisms of action of cobalt chloride

    SciTech Connect

    Kalpana, S.; Dhananjay, S.; Anju, B. Lilly, G.; Sai Ram, M.

    2008-09-15

    This study reports the efficacy of cobalt preconditioning in preventing hypobaric hypoxia induced vascular leakage (an indicator of cerebral edema) using male Sprague-Dawley rats as model system. Exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, reactive oxygen species (ROS), nitric oxide (NO), and vascular endothelial growth factor (VEGF) levels. There was a marked increase in Nuclear Factor {kappa}B (NF{kappa}B) DNA binding activity and levels of pro-inflammatory cytokines such as Monocyte chemoattractant protein (MCP-1), Interferon-{gamma} (IFN-{gamma}), Interleukin-1 (IL-1), and Tumor Necrosis Factor-{alpha} (TNF-{alpha}) and cell adhesion molecules such as Vascular Cell Adhesion Molecule-1 (VCAM-1), and P-selectin. Chemical preconditioning by cobalt for 7 days (12.5 mg Co/kg b.w., oral) significantly attenuated cerebral vascular leakage and the expression of inflammatory mediators induced by hypoxia. Administration of NF{kappa}B inhibitor, curcumin (50 mg/kg b.w.; i.p.) appreciably inhibited hypoxia induced vascular leakage indicating the involvement of NF{kappa}B in causing vascular leakage. Interestingly, cobalt when administered at 12.5 mg Co/kg b.w. (i.p.), 1 h before hypoxia could not prevent the vascular leakage indicating that cobalt per se did not have an effect on NF{kappa}B. The lower levels of NF{kappa}B observed in the brains of cobalt administered animals might be due to higher levels of antioxidant and anti-inflammatory proteins (hemeoxygenase-1 and metallothionein). To conclude cobalt preconditioning inhibited hypobaric hypoxia induced cerebral vascular leakage by lowering NF{kappa}B DNA binding activity and its regulated pro-inflammatory mediators. This is contemplated to be mediated by cobalt induced reduction in ROS/NO and increase in HO-1 and MT.

  2. Involvement of nitric oxide in anticompulsive-like effect of agmatine on marble-burying behaviour in mice.

    PubMed

    Gawali, Nitin B; Chowdhury, Amrita A; Kothavade, Pankaj S; Bulani, Vipin D; Nagmoti, Dnyaneshwar M; Juvekar, Archana R

    2016-01-01

    In view of the reports that nitric oxide modulates the neurotransmitters implicated in obsessive-compulsive disorder (OCD), patients with OCD exhibit higher plasma nitrate levels, and drugs useful in OCD influence nitric oxide. Agmatine is a polyamine and widely distributed in mammalian brain which interacts with nitrergic systems. Hence, the present study was carried out to understand the involvement of nitrergic systems in the anticompulsive-like effect of agmatine. We used marble-burying behaviour (MBB) of mice as the animal model of OCD, and nitric oxide levels in hippocampus (HC) and cortex homogenate were measured. Results revealed that, agmatine (20 and 40mg/kg, i.p) significantly inhibited the MBB. Intraperitoneal administration of nitric oxide enhancers viz. nitric oxide precursor - l-arginine (l-ARG) (400mg/kg and 800mg/kg) increased MBB as well as brain nitrites levels, whereas treatment with N(G)-nitro-l-arginine methyl ester (l-NAME) neuronal nitric oxide synthase inhibitor (30mg/kg and 50mg/kg, i.p.) and 7-nitroindazole (7-NI) (20mg/kg and 40mg/kg) attenuated MBB and nitrites levels in brain. Further, in combination studies, the anticompulsive-like effect of agmatine (20mg/kg, ip) was exacerbated by prior administration of l-ARG (400mg/kg) and conversely l-NAME (15mg/kg) or 7-NI (10.0mg/kg) attenuated OCD-like behaviour with HC and cortex changes in the levels of NO. None of the above treatment had any significant influence on locomotor activity. In conclusion, Agmatine is effective in ameliorating the compulsive-like behaviour in mice which appears to be related to nitric oxide in brain. PMID:26593708

  3. Hypoxia-induced expression of RTEF-1 (related transcriptional enhancer factor-1) in endothelial cells is independent of HIF-1 (hypoxia-inducible factor-1)

    SciTech Connect

    Zhang, Cuili; Song, Q.H.; Li, Jian; Tian, Ye

    2009-04-10

    Related transcriptional enhancer factor-1 (RTEF-1) plays an important role in transcriptional regulation of angiogenic genes in hypoxic endothelial cells. The mechanisms involved in the induction of RTEF-1 expression in hypoxia are poorly understood. In bovine aortic endothelial cells (BAEC) subjected to hypoxia, Western blot and quantitative PCR analysis revealed that RTEF-1 protein and mRNA levels were significantly increased by hypoxia. To address the potential role of the hypoxia-inducible factor-1 (HIF-1) in RTEF-1 induction, a hepatoma cell line deficient in HIF-1 (c4) and a control HIF-1 positive cell line (vT{l_brace}2{r_brace}) were exposed to hypoxia. We report that RTEF-1 protein expression assessed by either Western blotting or immunofluorescence was increased in both cell lines. This demonstrates that HIF-1 is not required for RTEF-1 upregulation by hypoxia. Conversely, RTEF-1 appeared to regulate the expression of HIF-1: HIF-1{alpha} promoter activity was increased (3.6-fold) by RTEF-1 overexpression in BAEC. Furthermore, RTEF-1 enhanced BAEC proliferation and tubule formation; these were inhibited by RTEF-1 knockdown with siRNA. We propose that RTEF-1, acting via HIF-1, is a key regulator of angiogenesis in response to hypoxia.

  4. Hypoxia-inducible factor 1 in autoimmune diseases.

    PubMed

    Deng, Wei; Feng, Xuebing; Li, Xia; Wang, Dandan; Sun, Lingyun

    2016-05-01

    Autoimmune disorders are a complicated and varied group of diseases arising from inappropriate immune responses. Recent studies have demonstrated that ongoing inflammatory and immune responses are associated with increased oxygen consumption, a process resulting in localized tissue hypoxia within inflammatory lesions ("inflammatory hypoxia"), in which hypoxia-inducible factor 1 (HIF-1), an oxygen-sensitive transcription factor that allows adaptation to hypoxia environments, has been shown to play an important function. HIF-1 is a regulator of angiogenesis and immune system. Besides, HIF-1-mediated metabolic shift and fibrosis may also play crucial roles in some autoimmune disorders. Firstly, we briefly summarize the role of HIF-1 in angiogenesis, immune responses and fibrosis. Secondly, we will show the major recent findings demonstrating a role for HIF-1 signaling in autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, systemic sclerosis and multiple sclerosis. The growing evidences may prompt HIF-1 to be a new target for treatment of autoimmune diseases. PMID:27071377

  5. Hypoxia-inducible factors as molecular targets for liver diseases.

    PubMed

    Ju, Cynthia; Colgan, Sean P; Eltzschig, Holger K

    2016-06-01

    Liver disease is a growing global health problem, as deaths from end-stage liver cirrhosis and cancer are rising across the world. At present, pharmacologic approaches to effectively treat or prevent liver disease are extremely limited. Hypoxia-inducible factor (HIF) is a transcription factor that regulates diverse signaling pathways enabling adaptive cellular responses to perturbations of the tissue microenvironment. HIF activation through hypoxia-dependent and hypoxia-independent signals have been reported in liver disease of diverse etiologies, from ischemia-reperfusion-induced acute liver injury to chronic liver diseases caused by viral infection, excessive alcohol consumption, or metabolic disorders. This review summarizes the evidence for HIF stabilization in liver disease, discusses the mechanistic involvement of HIFs in disease development, and explores the potential of pharmacological HIF modifiers in the treatment of liver disease. PMID:27094811

  6. Hypoxia-inducible factors and sphingosine 1-phosphate signaling.

    PubMed

    Cuvillier, Olivier; Ader, Isabelle

    2011-11-01

    Hypoxia, defined as reduced tissue oxygen concentration, is a characteristic of solid tumors and is an indicator of unfavorable diagnosis in patients. At the cellular level, the adaptation to hypoxia is under the control of two related transcription factors, HIF-1α and HIF-2α (Hypoxia-Inducible Factor), which activate expression of genes promoting angiogenesis, metastasis, increased tumor growth and resistance to treatments. A role for HIF-1α and HIF-2α is also emerging in hematologic malignancies such as lymphoma and l eukemia. Recent studies have identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway - which elicits various cellular processes including cell proliferation, cell survival or angiogenesis - as a new regulator of HIF-1α or HIF-2α activity. This review will consider how targeting the SphK1/S1P signaling could represent an attractive strategy for therapeutic intervention in cancer. PMID:21707486

  7. Hypoxia-inducible factors as key regulators of tumor inflammation.

    PubMed

    Mamlouk, Soulafa; Wielockx, Ben

    2013-06-15

    Low levels of oxygen or hypoxia is often an obstacle in health, particularly in pathological disorders like cancer. The main family of transcription factors responsible for cell survival and adaptation under strenuous conditions of hypoxia are the "hypoxia-inducible factors" (HIFs). Together with prolyl hydroxylase domain enzymes (PHDs), HIFs regulates tumor angiogenesis, proliferation, invasion, metastasis, in addition to resistance to radiation and chemotherapy. Additionally, the entire HIF transcription cascade is involved in the "seventh" hallmark of cancer; inflammation. Studies have shown that hypoxia can influence tumor associated immune cells toward assisting in tumor proliferation, differentiation, vessel growth, distant metastasis and suppression of the immune response via cytokine expression alterations. These changes are not necessarily analogous to HIF's role in non-cancer immune responses, where hypoxia often encourages a strong inflammatory response. PMID:23055435

  8. The Role of Hypoxia Inducible Factor-1 in Hepatocellular Carcinoma

    PubMed Central

    Luo, Dongjun; Wang, Zhongxia; Wu, Junyi; Jiang, Chunping

    2014-01-01

    Hypoxia is a common feature of many solid tumors, including hepatocellular carcinoma (HCC). Hypoxia can promote tumor progression and induce radiation and chemotherapy resistance. As one of the major mediators of hypoxic response, hypoxia inducible factor-1 (HIF-1) has been shown to activate hypoxia-responsive genes, which are involved in multiple aspects of tumorigenesis and cancer progression, including proliferation, metabolism, angiogenesis, invasion, metastasis and therapy resistance. It has been demonstrated that a high level of HIF-1 in the HCC microenvironment leads to enhanced proliferation and survival of HCC cells. Accordingly, overexpression, of HIF-1 is associated with poor prognosis in HCC. In this review, we described the mechanism by which HIF-1 is regulated and how HIF-1 mediates the biological effects of hypoxia in tissues. We also summarized the latest findings concerning the role of HIF-1 in the development of HCC, which could shed light on new therapeutic approaches for the treatment of HCC. PMID:25101278

  9. Hypoxia Inducible Factors and Hypertension: Lessons from Sleep Apnea Syndrome

    PubMed Central

    Nanduri, Jayasri; Peng, Ying-Jie; Yuan, Guoxiang; Kumar, Ganesh K.; Prabhakar, Nanduri R.

    2015-01-01

    Systemic hypertension is one of the most prevalent cardiovascular diseases. Sleep disordered breathing (SDB) with recurrent apnea is a major risk factor for developing essential hypertension. Chronic intermittent hypoxia (CIH) is a hallmark manifestation of recurrent apnea. Rodent models patterned after the O2 profiles seen with SDB patients showed that CIH is the major stimulus for causing systemic hypertension. This article reviews the physiological and molecular basis of CIH-induced hypertension. Physiological studies have identified that augmented carotid body chemosensory reflex and the resulting increase in sympathetic nerve activity is a major contributor to CIH-induced hypertension. Analysis of molecular mechanisms revealed that CIH activates hypoxia-inducible factor (HIF)-1 and suppresses HIF-2- mediated transcription. Dysregulation of HIF-1- and HIF-2- mediated transcription leads to imbalance of pro-oxidant and anti-oxidant enzyme gene expression resulting in increased reactive species (ROS) generation in the chemosensory reflex which is central for developing hypertension. PMID:25772710

  10. Vitamin C Supplementation Does not Improve Hypoxia-Induced Erythropoiesis

    PubMed Central

    Sanchis-Gomar, Fabian; Martinez-Bello, Daniel; Olaso-Gonzalez, Gloria; Gomez-Cabrera, Mari Carmen; Viña, Jose

    2012-01-01

    Abstract Martinez-Bello,Vladimir E., Fabian Sanchis-Gomar, Daniel Martinez-Bello, Gloria Olaso-Gonzalez, Mari Carmen Gomez-Cabrera, and Jose Viña. Vitamin C Supplementation Does Not Improve Hypoxia-Induced Erythropoiesis. High Alt Med Biol 13:269–274, 2012.—Hypoxia induces reactive oxygen species production. Supplements with antioxidant mixtures can compensate for the decline in red cell membrane stability following intermittent hypobaric hypoxia by decreasing protein and lipid oxidation. We aimed to determine whether supplementation with vitamin C is implicated in the regulation of erythropoiesis and in the oxygen-carrying capacity of the blood, and also whether antioxidant supplementation prevents the oxidative stress associated to intermittent hypoxia. Twenty-four male Wistar rats were randomly divided into four experimental groups: normoxia control (n=6), normoxia + vitamin C (n=6), hypoxia control (12 h pO2 12%/12 h pO2 21%) (n=6), and hypoxia + vitamin C (n=6). Animals were supplemented with vitamin C at a dose of 250 mg·kg−1·day−1 for 21 days. Red blood cell count, hemoglobin, hematocrit, reticulocytes, erythropoietin, and oxidative stress parameters such as malondialdehyde and protein oxidation in plasma were analyzed at two different time points: basal sample (day zero) and final sample (day 21). Similar RBC, Hb, Hct, and Epo increments were observed in both hypoxic groups regardless of the vitamin C supplementation. There was no change on MDA levels after intermittent hypoxic exposure in any experimental group. However, we found an increase in plasma protein oxidation in both hypoxic groups. Vitamin C does not affect erythropoiesis and protein oxidation in rats submitted to intermittent hypoxic exposure. PMID:23270444

  11. A Novel Malate Dehydrogenase 2 Inhibitor Suppresses Hypoxia-Inducible Factor-1 by Regulating Mitochondrial Respiration.

    PubMed

    Ban, Hyun Seung; Xu, Xuezhen; Jang, Kusik; Kim, Inhyub; Kim, Bo-Kyung; Lee, Kyeong; Won, Misun

    2016-01-01

    We previously reported that hypoxia-inducible factor (HIF)-1 inhibitor LW6, an aryloxyacetylamino benzoic acid derivative, inhibits malate dehydrogenase 2 (MDH2) activity during the mitochondrial tricarboxylic acid (TCA) cycle. In this study, we present a novel MDH2 inhibitor compound 7 containing benzohydrazide moiety, which was identified through structure-based virtual screening of chemical library. Similar to LW6, compound 7 inhibited MDH2 activity in a competitive fashion, thereby reducing NADH level. Consequently, compound 7 reduced oxygen consumption and ATP production during the mitochondrial respiration cycle, resulting in increased intracellular oxygen concentration. Therefore, compound 7 suppressed the accumulation of HIF-1α and expression of its target genes, vascular endothelial growth factor (VEGF) and glucose transporter 1 (GLUT1). Moreover, reduction in ATP content activated AMPK, thereby inactivating ACC and mTOR the downstream pathways. As expected, compound 7 exhibited significant growth inhibition of human colorectal cancer HCT116 cells. Compound 7 demonstrated substantial anti-tumor efficacy in an in vivo xenograft assay using HCT116 mouse model. Taken together, a novel MDH2 inhibitor, compound 7, suppressed HIF-1α accumulation via reduction of oxygen consumption and ATP production, integrating metabolism into anti-cancer efficacy in cancer cells. PMID:27611801

  12. Salternamide A Suppresses Hypoxia-Induced Accumulation of HIF-1α and Induces Apoptosis in Human Colorectal Cancer Cells.

    PubMed

    Bach, Duc-Hiep; Kim, Seong-Hwan; Hong, Ji-Young; Park, Hyen Joo; Oh, Dong-Chan; Lee, Sang Kook

    2015-11-01

    Hypoxia inducible factor-1α (HIF-1α) is an essential regulator of the cellular response to low oxygen concentrations, activating a broad range of genes that provide adaptive responses to oxygen deprivation. HIF-1α is overexpressed in various cancers and therefore represents a considerable chemotherapeutic target. Salternamide A (SA), a novel small molecule that is isolated from a halophilic Streptomyces sp., is a potent cytotoxic agent against a variety of human cancer cell lines. However, the mechanisms by which SA inhibits tumor growth remain to be elucidated. In the present study, we demonstrate that SA efficiently inhibits the hypoxia-induced accumulation of HIF-1α in a time- and concentration-dependent manner in various human cancer cells. In addition, SA suppresses the upstream signaling of HIF-1α, such as PI3K/Akt/mTOR, p42/p44 MAPK, and STAT3 signaling under hypoxic conditions. Furthermore, we found that SA induces cell death by stimulating G2/M cell cycle arrest and apoptosis in human colorectal cancer cells. Taken together, SA was identified as a novel small molecule HIF-1α inhibitor from marine natural products and is potentially a leading candidate in the development of anticancer agents. PMID:26610526

  13. Salternamide A Suppresses Hypoxia-Induced Accumulation of HIF-1α and Induces Apoptosis in Human Colorectal Cancer Cells

    PubMed Central

    Bach, Duc-Hiep; Kim, Seong-Hwan; Hong, Ji-Young; Park, Hyen Joo; Oh, Dong-Chan; Lee, Sang Kook

    2015-01-01

    Hypoxia inducible factor-1α (HIF-1α) is an essential regulator of the cellular response to low oxygen concentrations, activating a broad range of genes that provide adaptive responses to oxygen deprivation. HIF-1α is overexpressed in various cancers and therefore represents a considerable chemotherapeutic target. Salternamide A (SA), a novel small molecule that is isolated from a halophilic Streptomyces sp., is a potent cytotoxic agent against a variety of human cancer cell lines. However, the mechanisms by which SA inhibits tumor growth remain to be elucidated. In the present study, we demonstrate that SA efficiently inhibits the hypoxia-induced accumulation of HIF-1α in a time- and concentration-dependent manner in various human cancer cells. In addition, SA suppresses the upstream signaling of HIF-1α, such as PI3K/Akt/mTOR, p42/p44 MAPK, and STAT3 signaling under hypoxic conditions. Furthermore, we found that SA induces cell death by stimulating G2/M cell cycle arrest and apoptosis in human colorectal cancer cells. Taken together, SA was identified as a novel small molecule HIF-1α inhibitor from marine natural products and is potentially a leading candidate in the development of anticancer agents. PMID:26610526

  14. KV7 channels are involved in hypoxia-induced vasodilatation of porcine coronary arteries

    PubMed Central

    Hedegaard, E R; Nielsen, B D; Kun, A; Hughes, A D; Krøigaard, C; Mogensen, S; Matchkov, V V; Fröbert, O; Simonsen, U

    2014-01-01

    BACKGROUND AND PURPOSE Hypoxia causes vasodilatation of coronary arteries, but the underlying mechanisms are poorly understood. We hypothesized that hypoxia reduces intracellular Ca2+ concentration ([Ca2+]i) by opening of K channels and release of H2S. EXPERIMENTAL APPROACH Porcine coronary arteries without endothelium were mounted for measurement of isometric tension and [Ca2+]i, and the expression of voltage-gated K channels KV7 channels (encoded by KCNQ genes) and large-conductance calcium-activated K channels (KCa1.1) was examined. Voltage clamp assessed the role of KV7 channels in hypoxia. KEY RESULTS Gradual reduction of oxygen concentration from 95 to 1% dilated the precontracted coronary arteries and this was associated with reduced [Ca2+]i in PGF2α (10 μM)-contracted arteries whereas no fall in [Ca2+]i was observed in 30 mM K-contracted arteries. Blockers of ATP-sensitive voltage-gated potassium channels and KCa1.1 inhibited hypoxia-induced dilatation in PGF2α-contracted arteries; this inhibition was more marked in the presence of the Kv7 channel blockers, XE991 and linopirdine, while a KV7.1 blocker, failed to change hypoxic vasodilatation. XE991 also inhibited H2S- and adenosine-induced vasodilatation. PCR revealed the expression of KV7.1, KV7.4, KV7.5 and KCa1.1 channels, and KCa1.1, KV7.4 and KV7.5 were also identified by immunoblotting. Voltage clamp studies showed the XE991-sensitive current was more marked in hypoxic conditions. CONCLUSION The KV7.4 and KV7.5 channels, which we identified in the coronary arteries, appear to have a major role in hypoxia-induced vasodilatation. The voltage clamp results further support the involvement of KV7 channels in this vasodilatation. Activation of these KV7 channels may be induced by H2S and adenosine. PMID:24111896

  15. Activation of Hypoxia Inducible Factor 1 Is a General Phenomenon in Infections with Human Pathogens

    PubMed Central

    Werth, Nadine; Beerlage, Christiane; Rosenberger, Christian; Yazdi, Amir S.; Edelmann, Markus; Amr, Amro; Bernhardt, Wanja; von Eiff, Christof; Becker, Karsten; Schäfer, Andrea; Peschel, Andreas; Kempf, Volkhard A. J.

    2010-01-01

    Background Hypoxia inducible factor (HIF)-1 is the key transcriptional factor involved in the adaptation process of cells and organisms to hypoxia. Recent findings suggest that HIF-1 plays also a crucial role in inflammatory and infectious diseases. Methodology/Principal Findings Using patient skin biopsies, cell culture and murine infection models, HIF-1 activation was determined by immunohistochemistry, immunoblotting and reporter gene assays and was linked to cellular oxygen consumption. The course of a S. aureus peritonitis was determined upon pharmacological HIF-1 inhibition. Activation of HIF-1 was detectable (i) in all ex vivo in biopsies of patients suffering from skin infections, (ii) in vitro using cell culture infection models and (iii) in vivo using murine intravenous and peritoneal S. aureus infection models. HIF-1 activation by human pathogens was induced by oxygen-dependent mechanisms. Small colony variants (SCVs) of S. aureus known to cause chronic infections did not result in cellular hypoxia nor in HIF-1 activation. Pharmaceutical inhibition of HIF-1 activation resulted in increased survival rates of mice suffering from a S. aureus peritonitis. Conclusions/Significance Activation of HIF-1 is a general phenomenon in infections with human pathogenic bacteria, viruses, fungi and protozoa. HIF-1-regulated pathways might be an attractive target to modulate the course of life-threatening infections. PMID:20644645

  16. Retinal hypoxia induces vascular endothelial growth factor through induction of estrogen-related receptor γ.

    PubMed

    Do, Ji Yeon; Choi, Young Keun; Kook, Hyun; Suk, Kyoungho; Lee, In-Kyu; Park, Dong Ho

    2015-05-01

    Ischemic retinopathies causing overexpression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), are the most common cause of blindness. Thus, understanding the pathophysiology of targetable pathways that regulate retinal VEGF is of great interest. A conserved binding site for estrogen-related receptor γ (ERRγ) has been identified in the promoter of the Vegfa gene. ERRγ is a constitutively active orphan nuclear receptor and its expression is increased by hypoxic stimuli in metabolically active tissues. This study evaluated the role of ERRγ in the ischemic retina and the anti-VEGF potential of GSK5182, a selective inverse agonist of ERRγ. In an oxygen-induced retinopathy (OIR) mouse model, immunohistochemistry showed significantly increased ERRγ expression in the ganglion cell layer at postnatal day (P) 17. In a ganglion cell line (RGC-5), mRNA and protein levels of ERRγ were increased by desferrioxamine treatment and hypoxic conditions (1% O2). Transient transfection of RGC-5 cells revealed that ERRγ regulated Vegfa expression and this was inhibited by GSK5182. Intravitreal injection of GSK5182 into the OIR model at P14 inhibited retinal Vegfa mRNA expression at P17. GSK5182 suppresses hypoxia-induced VEGF expression via ERRγ; therefore, ERRγ could be a treatment target for ischemic retinopathies. PMID:25796334

  17. Repression of hypoxia-inducible factor α signaling by Set7-mediated methylation.

    PubMed

    Liu, Xing; Chen, Zhu; Xu, Chenxi; Leng, Xiaoqian; Cao, Hong; Ouyang, Gang; Xiao, Wuhan

    2015-05-26

    Hypoxia-inducible factor (HIF)-1α and HIF-2α are the main regulators of cellular responses to hypoxia. Post-translational modifications of HIF-1α and 2α are necessary to modulate their functions. The methylation of non-histone proteins by Set7, an SET domain-containing lysine methyltransferase, is a novel regulatory mechanism to control cell protein function in response to various cellular stresses. In this study, we show that Set7 methylates HIF-1α at lysine 32 and HIF-2α at lysine K29; this methylation inhibits the expression of HIF-1α/2α targets by impairing the occupancy of HIF-α on hypoxia response element of HIF target gene promoter. Set7-null fibroblasts and the cells with shRNA-knocked down Set7 exhibit upregulated HIF target genes. Set7 inhibitor blocks HIF-1α/2α methylation to enhance HIF target gene expression. Set7-null fibroblasts and the cells with shRNA-knocked down Set7 or inhibition of Set7 by the inhibitor subjected to hypoxia display an increased glucose uptake and intracellular adenosine triphosphate levels. These findings define a novel modification of HIF-1α/2α and demonstrate that Set7-medited lysine methylation negatively regulates HIF-α transcriptional activity and HIF-1α-mediated glucose homeostasis. PMID:25897119

  18. Hypoxia inducible factor-1 alpha as a therapeutic target in multiple myeloma

    PubMed Central

    Terragna, Carolina; Martello, Marina; Dico, Angela F.; Solaini, Giancarlo; Baracca, Alessandra; Sgarbi, Gianluca; Pasquinelli, Gianandrea; Valente, Sabrina; Zamagni, Elena; Tacchetti, Paola; Martinelli, Giovanni; Cavo, Michele

    2014-01-01

    The increasing importance of hypoxia-inducible factor-1α (HIF-1α) in tumorigenesis raises the possibility that agents which specifically inhibit this transcription factor, would provide significant therapeutic benefit. The constitutive expression of HIF-1α in about 35% of Multiple Myeloma (MM) patients suggests HIF-1α suppression might be part of a therapeutic strategy. Accordingly, we explored the effect of EZN-2968, a small 3rd generation antisense oligonucleotide against HIF-1α, in a panel of MM cell lines and primary patients samples. Here, we demonstrated that EZN-2968 is highly specific for HIF-1α mRNA and that exposure of MM cells to EZN-2968 resulted in an efficient and homogeneous loading of the cells showing a long lasting low HIF-1α protein level. In MM cells, HIF-1α suppression induced a permanent cell cycle arrest by prolonging S-phase through cyclin A modulation and in addition it induced a mild apoptotic cell death. Moreover, HIF-1α suppression caused a metabolic shift that leaded to increased production of ATP by oxidative phosphorylation (i.e. Warburg effect reversion), that was confirmed by the observed mitochondrial membrane potential decrease. These results show that HIF-1α is an important player in MM homeostasis and that its inhibition by small antisense oligonucleotides provides a rationale for novel therapeutic strategy to improving MM treatment. PMID:24732040

  19. Erythropoietin is a hypoxia inducible factor-induced protective molecule in experimental autoimmune neuritis.

    PubMed

    Luo, Bangwei; Jiang, Man; Yang, Xiaofeng; Zhang, Zhiyuan; Xiong, Jian; Schluesener, Hermann J; Zhang, Zhiren; Wu, Yuzhang

    2013-08-01

    Experimental autoimmune neuritis (EAN), an autoantigen-specific T-cell-mediated disease model for human demyelinating inflammatory disease of the peripheral nervous system, is characterized by self-limitation. Here we investigated the regulation and contribution of erythropoietin (EPO) in EAN self-limitation. In EAN sciatic nerves, hypoxia, and protein and mRNA levels of hypoxia-inducible factor 1α (HIF-1α), HIF-2α, EPO and EPO receptor (EPOR) were induced in parallel at disease peak phase but reduced at recovery periods. Further, the deactivation of HIF reduced EAN-induced EPO/EPOR upregulation in EAN, suggesting the central contribution of HIF to EPO/EPOR induction. The deactivation of EPOR signalling exacerbated EAN progression, implying that endogenous EPO contributed to EAN recovery. Exogenous EPO treatment greatly improved EAN recovery. In addition, EPO was shown to promote Schwann cell survival and myelin production. In EAN, EPO treatment inhibited lymphocyte proliferation and altered helper T cell differentiation by inducing increase of Foxp3(+)/CD4(+) regulatory T cells and decrease of IFN-γ(+)/CD4(+) Th1 cells. Furthermore, EPO inhibited inflammatory macrophage activation and promoted its phagocytic activity. In summary, our data demonstrated that EPO was induced in EAN by HIF and contributed to EAN recovery, and endogenous and exogenous EPO could effectively suppress EAN by attenuating inflammation and exerting direct cell protection, indicating that EPO contributes to the self-recovery of EAN and could be a potent candidate for treatment of autoimmune neuropathies. PMID:23603807

  20. Hypoxia-induced autophagy as an additional mechanism in human osteosarcoma radioresistance.

    PubMed

    Feng, Helin; Wang, Jin; Chen, Wei; Shan, Baoen; Guo, Yin; Xu, Jianfa; Wang, Ling; Guo, Peng; Zhang, Yingze

    2016-06-01

    Osteosarcoma (OS) responds poorly to radiotherapy, but the mechanism is unclear. We found OS tumor tissues expressed high level of protein HIF-1α, a common biological marker indicative of hypoxia. It is known that hypoxic cells are generally radioresistant because of reduced production of irradiation-induced DNA-damaging reactive oxygen species (ROS) in the anaerobic condition. Here we report another mechanism how hypoxia induces radioresistance. In MG-63 human osteosarcoma cells, hypoxic pretreatment increased the cellular survival in irradiation. These hypoxia-exposed cells displayed compartmental recruitment of GFP-tagged LC3 and expression of protein LC3-II, and restored the radiosensitivity upon autophagy inhibition. The following immunohistochemistry of OS tumor tissue sections revealed upregulated LC3 expression in a correlation with HIF-1α protein level, implying the possibly causative link between hypoxia and autophagy. Further studies in MG-63 cells demonstrated hypoxic pretreatment reduced cellular and mitochondrial ROS production during irradiation, while inhibition of autophagy re-elicited them. Taken together, our study suggests hypoxia can confer cells resistance to irradiation through activated autophagy to accelerate the clearance of cellular ROS products. This might exist in human osteosarcoma as an additional mechanism for radioresistance. PMID:27335774

  1. Evaluation of aspirin metabolites as inhibitors of hypoxia-inducible factor hydroxylases.

    PubMed

    Lienard, Benoit M; Conejo-García, Ana; Stolze, Ineke; Loenarz, Christoph; Oldham, Neil J; Ratcliffe, Peter J; Schofield, Christopher J

    2008-12-21

    Known and potential aspirin metabolites were evaluated as inhibitors of oxygen-sensing hypoxia-inducible transcription factor (HIF) hydroxylases; some of the metabolites were found to stabilise HIF-alpha in cells. PMID:19048166

  2. Inhibitory role of TRIP-Br1 oncoprotein in hypoxia-induced apoptosis in breast cancer cell lines.

    PubMed

    Li, Chengping; Jung, Samil; Yang, Young; Kim, Keun-Il; Lim, Jong-Seok; Cheon, Chung-Il; Lee, Myeong-Sok

    2016-06-01

    TRIP-Br1 oncoprotein is known to be involved in many vital cellular functions. In this study, we examined the role of TRIP-Br1 in hypoxia-induced cell death. Exposure to the overcrowded and CoCl2-induced hypoxic conditions increased TRIP-Br1 expression at the protein level in six breast cancer cell lines (MCF7, MDA-MB-231, T47D, Hs578D, BT549, and MDA-MB-435) but resulted in no significant change in three normal cell lines (MCF10A, MEF and NIH3T3). Our result revealed that CoCl2-induced hypoxia stimulated apoptosis and autophagy, in which TRIP-Br1 expression was found to be upregulated. Interestingly, TRIP-Br1 silencing in the MCF7 and MDA-MB-231 cancer cells accelerated apoptosis and destabilization of XIAP under the CoCl2-induced hypoxic condition, implying that TRIP-Br1 may render cancer cells resistant to apoptosis through the stabilization of XIAP. We also propose that TRIP-Br1 seems to be upregulated at least partly as a result of the inhibition of PI3K/AKT signaling pathway and the overexpression of HIF-1α. In conclusion, our findings suggest that TRIP-Br1 functions as an oncogenic protein by providing cancer cells resistance to the hypoxia-induced cell death. PMID:27035851

  3. Hypoxia-induced regulation of MAPK phosphatase-1 as identified by subtractive suppression hybridization and cDNA microarray analysis.

    PubMed

    Seta, K A; Kim, R; Kim, H W; Millhorn, D E; Beitner-Johnson, D

    2001-11-30

    Subtractive suppression hybridization was used to generate a cDNA library enriched in cDNA sequences corresponding to mRNA species that are specifically up-regulated by hypoxia (6 h, 1% O(2)) in the oxygen-responsive pheochromocytoma cell line. The dual specificity protein-tyrosine phosphatase MAPK phosphatase-1 (MKP-1) was highly represented in this library. Clones were arrayed on glass slides to create a hypoxia-specific cDNA microarray chip. Microarray, northern blot, and western blot analyses confirmed that MKP-1 mRNA and protein levels were up-regulated by hypoxia by approximately 8-fold. The magnitude of the effect of hypoxia on MKP-1 was approximately equal to that induced by KCl depolarization and much larger than the effects of either epidermal growth factor or nerve growth factor on MKP-1 mRNA levels. In contrast to the calcium-dependent induction of MKP-1 by KCl depolarization, the effect of hypoxia on MKP-1 persisted under calcium-free conditions. Cobalt and deferoxamine also increased MKP-1 mRNA levels, suggesting that hypoxia-inducible factor proteins may play a role in the regulation of MKP-1 by hypoxia. Pretreatment of cells with SB203580, which inhibits p38 kinase activity, significantly reduced the hypoxia-induced increase in MKP-1 RNA levels. Thus, hypoxia robustly increases MKP-1 levels, at least in part through a p38 kinase-mediated mechanism. PMID:11577072

  4. Hypoxia-induced compensatory effect as related to Shh and HIF-1alpha in ischemia embryo rat heart.

    PubMed

    Hwang, Jin-Ming; Weng, Yi-Jiun; Lin, James A; Bau, Da-Tian; Ko, Fu-Yang; Tsai, Fuu-Jen; Tsai, Chang-Hai; Wu, Chieh-Hsi; Lin, Pei-Cheng; Huang, Chih-Yang; Kuo, Wei-Wen

    2008-04-01

    Chronic cardiac ischemia/hypoxia induces coronary collateral formation and cardiomyocyte proliferation. Hypoxia can induce cellular adaptive responses, such as synthesis of VEGF for angiogenesis and IGF-2 for proliferation. Both reduce apoptotic effects to minimize injury or damage. To investigate the mechanism of neoangiogenesis and proliferation of fetal heart under umbilical cord compression situation, we used H9c2 cardiomyoblast cell culture, and in vivo embryonic hearts as our study models. Results showed hypoxia induced not only the increase of IGF-2 and VEGF expression but also the activation of their upstream regulatory genes, HIF-1alpha and Shh. The relationship between HIF-1alpha and Shh was further studied by using cyclopamine and 2-ME2, inhibitor of Shh and HIF-1alpha signaling, respectively, in the cardiomyoblast cell culture under hypoxia. We found that the two inhibitors not only blocked their own signal pathway, but also inhibited each other. The observations revealed when fetal heart under hypoxia that HIF-1alpha and Shh pathways maybe involve in cell proliferation and neoangiogenesis to minimize injury or damage, whereas the complex cross-talk between the two pathways remains unknown. PMID:18228117

  5. Guanfacine ameliorates hypobaric hypoxia induced spatial working memory deficits.

    PubMed

    Kauser, H; Sahu, S; Kumar, S; Panjwani, U

    2014-01-17

    Hypobaric hypoxia (HH) observed at high altitude causes mild cognitive impairment specifically affecting attention and working memory. Adrenergic dysregulation and neuronal damage in prefrontal cortex (PFC) has been implicated in hypoxia induced memory deficits. Optimal stimulation of alpha 2A adrenergic receptor in PFC facilitates the spatial working memory (SWM) under the conditions of adrenergic dysregulation. Therefore the present study was designed to test the efficacy of alpha 2A adrenergic agonist, Guanfacine (GFC), to restore HH induced SWM deficits and PFC neuronal damage. The rats were exposed to chronic HH equivalent to 25,000ft for 7days in an animal decompression chamber and received daily treatment of GFC at a dose of 1mg/kg body weight via the intramuscular route during the period of exposure. The cognitive performance was assessed by Delayed Alternation Task (DAT) using T-Maze and PFC neuronal damage was studied by apoptotic and neurodegenerative markers. Percentage of correct choice decreased significantly while perseverative errors showed a significant increase after 7days HH exposure, GFC significantly ameliorated the SWM deficits and perseveration. There was a marked and significant increase in chromatin condensation, DNA fragmentation, neuronal pyknosis and fluoro Jade positive cells in layer II of the medial PFC in hypoxia exposed group, administration of GFC significantly reduced the magnitude of these changes. Modulation of adrenergic mechanisms by GFC may serve as an effective countermeasure in amelioration of prefrontal deficits and neurodegenerative changes during HH. PMID:24184415

  6. Snail1 Mediates Hypoxia-Induced Melanoma Progression

    PubMed Central

    Liu, Shujing; Kumar, Suresh M.; Martin, James S.; Yang, Ruifeng; Xu, Xiaowei

    2011-01-01

    Tumor hypoxia is a known adverse prognostic factor, and the hypoxic dermal microenvironment participates in melanomagenesis. High levels of hypoxia inducible factor (HIF) expression in melanoma cells, particularly HIF-2α, is associated with poor prognosis. The mechanism underlying the effect of hypoxia on melanoma progression, however, is not fully understood. We report evidence that the effects of hypoxia on melanoma cells are mediated through activation of Snail1. Hypoxia increased melanoma cell migration and drug resistance, and these changes were accompanied by increased Snail1 and decreased E-cadherin expression. Snail1 expression was regulated by HIF-2α in melanoma. Snail1 overexpression led to more aggressive tumor phenotypes and features associated with stem-like melanoma cells in vitro and increased metastatic capacity in vivo. In addition, we found that knockdown of endogenous Snail1 reduced melanoma proliferation and migratory capacity. Snail1 knockdown also prevented melanoma metastasis in vivo. In summary, hypoxia up-regulates Snail1 expression and leads to increased metastatic capacity and drug resistance in melanoma cells. Our findings support that the effects of hypoxia on melanoma are mediated through Snail1 gene activation and suggest that Snail1 is a potential therapeutic target for the treatment of melanoma. PMID:21996677

  7. Vitamin C supplementation does not improve hypoxia-induced erythropoiesis.

    PubMed

    Martinez-Bello, Vladimir E; Sanchis-Gomar, Fabian; Martinez-Bello, Daniel; Olaso-Gonzalez, Gloria; Gomez-Cabrera, Mari Carmen; Viña, Jose

    2012-12-01

    Hypoxia induces reactive oxygen species production. Supplements with antioxidant mixtures can compensate for the decline in red cell membrane stability following intermittent hypobaric hypoxia by decreasing protein and lipid oxidation. We aimed to determine whether supplementation with vitamin C is implicated in the regulation of erythropoiesis and in the oxygen-carrying capacity of the blood, and also whether antioxidant supplementation prevents the oxidative stress associated to intermittent hypoxia. Twenty-four male Wistar rats were randomly divided into four experimental groups: normoxia control (n=6), normoxia + vitamin C (n=6), hypoxia control (12 h pO(2) 12%/12 h pO(2) 21%) (n=6), and hypoxia + vitamin C (n=6). Animals were supplemented with vitamin C at a dose of 250 mg·kg(-1)·day(-1) for 21 days. Red blood cell count, hemoglobin, hematocrit, reticulocytes, erythropoietin, and oxidative stress parameters such as malondialdehyde and protein oxidation in plasma were analyzed at two different time points: basal sample (day zero) and final sample (day 21). Similar RBC, Hb, Hct, and Epo increments were observed in both hypoxic groups regardless of the vitamin C supplementation. There was no change on MDA levels after intermittent hypoxic exposure in any experimental group. However, we found an increase in plasma protein oxidation in both hypoxic groups. Vitamin C does not affect erythropoiesis and protein oxidation in rats submitted to intermittent hypoxic exposure. PMID:23270444

  8. Regulation of erythropoiesis by hypoxia-inducible factors.

    PubMed

    Haase, Volker H

    2013-01-01

    A classic physiologic response to systemic hypoxia is the increase in red blood cell production. Hypoxia-inducible factors (HIFs) orchestrate this response by inducing cell-type specific gene expression changes that result in increased erythropoietin (EPO) production in kidney and liver, in enhanced iron uptake and utilization and in adjustments of the bone marrow microenvironment that facilitate erythroid progenitor maturation and proliferation. In particular HIF-2 has emerged as the transcription factor that regulates EPO synthesis in the kidney and liver and plays a critical role in the regulation of intestinal iron uptake. Its key function in the hypoxic regulation of erythropoiesis is underscored by genetic studies in human populations that live at high-altitude and by mutational analysis of patients with familial erythrocytosis. This review provides a perspective on recent insights into HIF-controlled erythropoiesis and iron metabolism, and examines cell types that have EPO-producing capability. Furthermore, the review summarizes clinical syndromes associated with mutations in the O(2)-sensing pathway and the genetic changes that occur in high altitude natives. The therapeutic potential of pharmacologic HIF activation for the treatment of anemia is discussed. PMID:23291219

  9. The tumour hypoxia induced non-coding transcriptome.

    PubMed

    Choudhry, Hani; Harris, Adrian L; McIntyre, Alan

    2016-01-01

    Recent investigations have highlighted the importance of the non-coding genome in regions of hypoxia in tumours. Such regions are frequently found in solid tumours, and are associated with worse patient survival and therapy resistance. Hypoxia stabilises the transcription factors, hypoxia inducible factors (HIF1α and HIF2α) which coordinate transcriptomic changes that occur in hypoxia. The changes in gene expression induced by HIF1α and HIF2α contribute to many of the hallmarks of cancer phenotypes and enable tumour growth, survival and invasion in the hypoxic tumour microenvironment. Non-coding RNAs, in particular microRNAs (miRNAs), which regulate mRNA stability and translation, and long-non-coding RNAs (lncRNAs), which have diverse functions including chromatin modification and transcriptional regulation, are also important in enabling the key hypoxia regulated processes. They have roles in the regulation of metabolism, angiogenesis, autophagy, invasion and metastasis in the hypoxic microenvironment. Furthermore, HIF1α and HIF2α expression and stabilisation are also regulated by both miRNAs and lncRNAs. Here we review the recent developments in the expression, regulation and functions of miRNAs, lncRNAs and other non-coding RNA classes in tumour hypoxia. PMID:26806607

  10. Influence of ornithine decarboxylase antizymes and antizyme inhibitors on agmatine uptake by mammalian cells.

    PubMed

    Ramos-Molina, Bruno; López-Contreras, Andrés J; Lambertos, Ana; Dardonville, Christophe; Cremades, Asunción; Peñafiel, Rafael

    2015-05-01

    Agmatine (4-aminobutylguanidine), a dicationic molecule at physiological pH, exerts relevant modulatory actions at many different molecular target sites in mammalian cells, having been suggested that the administration of this compound may have therapeutic interest. Several plasma membrane transporters have been implicated in agmatine uptake by mammalian cells. Here we report that in kidney-derived COS-7 cell line, at physiological agmatine levels, the general polyamine transporter participates in the plasma membrane translocation of agmatine, with an apparent Km of 44 ± 7 µM and Vmax of 17.3 ± 3.3 nmol h(-1) mg(-1) protein, but that at elevated concentrations, agmatine can be also taken up by other transport systems. In the first case, the physiological polyamines (putrescine, spermidine and spermine), several diguanidines and bis(2-aminoimidazolines) and the polyamine transport inhibitor AMXT-1501 markedly decreased agmatine uptake. In cells transfected with any of the three ornithine decarboxylase antizymes (AZ1, AZ2 and AZ3), agmatine uptake was dramatically reduced. On the contrary, transfection with antizyme inhibitors (AZIN1 and AZIN2) markedly increased the transport of agmatine. Furthermore, whereas putrescine uptake was significantly decreased in cells transfected with ornithine decarboxylase (ODC), the accumulation of agmatine was stimulated, suggesting a trans-activating effect of intracellular putrescine on agmatine uptake. All these results indicate that ODC and its regulatory proteins (antizymes and antizyme inhibitors) may influence agmatine homeostasis in mammalian tissues. PMID:25655388

  11. Physcion 8-O-β-glucopyranoside prevents hypoxia-induced epithelial-mesenchymal transition in colorectal cancer HCT116 cells by modulating EMMPRIN.

    PubMed

    Ding, Z; Xu, F; Tang, J; Li, G; Jiang, P; Tang, Z; Wu, H

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is considered as the most important mechanism that underlies the initiation of cancer metastasis. Here we report that Physicon 8-O-β-glucopyranoside (PG), a major active ingredient from a traditional Chinese herbal medicine Rumex japonicus Houtt, is capable of preventing human colorectal cancer cells from hypoxia-induced EMT. The treatment of the cells with PG reversed the EMT-related phenotype that has the morphological changes, down-regulation of E-cadherin, and hypoxia-induced cell migration and invasion. The effect was mediated at least in part by inhibiting the mRNA and protein expressions of EMMPRIN via modulation of PTEN/Akt/HIF-1α pathway. In addition, we found that PG-mediated prevention of EMT involved blockade of the hypoxia-induced up-regulation of Snail, Slug and Twist. In summary, this study showed that PG can prevent EMT induced by hypoxia, the environment that commonly exists in the center of a solid tumor. Given the low toxicity of PG to the healthy tissues, our study suggests that PG can serve as a safe therapeutic agent for suppressing cancer metastasis. PMID:26925795

  12. Severe hypoxia induces complete antifolate resistance in carcinoma cells due to cell cycle arrest

    PubMed Central

    Raz, S; Sheban, D; Gonen, N; Stark, M; Berman, B; Assaraf, Y G

    2014-01-01

    Antifolates have a crucial role in the treatment of various cancers by inhibiting key enzymes in purine and thymidylate biosynthesis. However, the frequent emergence of inherent and acquired antifolate resistance in solid tumors calls for the development of novel therapeutic strategies to overcome this chemoresistance. The core of solid tumors is highly hypoxic due to poor blood circulation, and this hypoxia is considered to be a major contributor to drug resistance. However, the cytotoxic activity of antifolates under hypoxia is poorly characterized. Here we show that under severe hypoxia, gene expression of ubiquitously expressed key enzymes and transporters in folate metabolism and nucleoside homeostasis is downregulated. We further demonstrate that carcinoma cells become completely refractory, even at sub-millimolar concentrations, to all hydrophilic and lipophilic antifolates tested. Moreover, tumor cells retained sensitivity to the proteasome inhibitor bortezomib and the topoisomerase II inhibitor doxorubicin, which are independent of cell cycle. We provide evidence that this antifolate resistance, associated with repression of folate metabolism, is a result of the inability of antifolates to induce DNA damage under hypoxia, and is attributable to a hypoxia-induced cell cycle arrest, rather than a general anti-apoptotic mechanism. Our findings suggest that solid tumors harboring a hypoxic core of cell cycle-arrested cells may display antifolate resistance while retaining sensitivity to the chemotherapeutics bortezomib and doxorubicin. This study bears important implications for the molecular basis underlying antifolate resistance under hypoxia and its rational overcoming in solid tumors. PMID:24556682

  13. Cancer drug troglitazone stimulates the growth and response of renal cells to hypoxia inducible factors.

    PubMed

    Taub, Mary

    2016-03-11

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10(-5) M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibited the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. PMID:26869517

  14. Histone Deacetylase Inhibitors: The Epigenetic Therapeutics That Repress Hypoxia-Inducible Factors

    PubMed Central

    Chen, Shuyang; Sang, Nianli

    2011-01-01

    Histone deacetylase inhibitors (HDACIs) have been actively explored as a new generation of chemotherapeutics for cancers, generally known as epigenetic therapeutics. Recent findings indicate that several types of HDACIs repress angiogenesis, a process essential for tumor metabolism and progression. Accumulating evidence supports that this repression is mediated by disrupting the function of hypoxia-inducible factors (HIF-1, HIF-2, and collectively, HIF), which are the master regulators of angiogenesis and cellular adaptation to hypoxia. Since HIF also regulate glucose metabolism, cell survival, microenvironment remodeling, and other alterations commonly required for tumor progression, they are considered as novel targets for cancer chemotherapy. Though the precise biochemical mechanism underlying the HDACI-triggered repression of HIF function remains unclear, potential cellular factors that may link the inhibition of deacetylase activity to the repression of HIF function have been proposed. Here we review published data that inhibitors of type I/II HDACs repress HIF function by either reducing functional HIF-1α levels, or repressing HIF-α transactivation activity. In addition, underlying mechanisms and potential proteins involved in the repression will be discussed. A thorough understanding of HDACI-induced repression of HIF function may facilitate the development of future therapies to either repress or promote angiogenesis for cancer or chronic ischemic disorders, respectively. PMID:21151670

  15. Hypoxia induces PDK4 gene expression through induction of the orphan nuclear receptor ERRγ.

    PubMed

    Lee, Ja Hee; Kim, Eun-Jin; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Lee, In-Kyu; Harris, Robert A; Lee, Mi-Ock; Choi, Hueng-Sik

    2012-01-01

    Multiple cellular signaling pathways that control metabolism and survival are activated when cell are incubated under hypoxic conditions. Activation of the hypoxia inducible factor (HIF)-1 promotes expression of genes that increase the capacity to cope with the stress imposed by a reduced oxygen environment. Here we show that the orphan nuclear receptor estrogen related receptor γ (ERRγ) plays a critical role in hypoxia-mediated activation of pyruvate dehydrogenase kinase 4 (PDK4) gene expression. ERRγ mRNA and protein levels were increased by hypoxia or desferrioxamine (DFO) treatment in hepatoma cell lines. Co-expression of HIF-1α and β increased ERRγ promoter activity as well as mRNA expression, while knockdown of endogenous HIF-1α reduced the hypoxia-mediated induction of ERRγ. In addition, hypoxia also increased the promoter activity and mRNA level of PDK4 in HepG2 cells. Adenovirus mediated-overexpression of ERRγ specifically increased PDK4 gene expression, while ablation of endogenous ERRγ significantly decreased hypoxia-mediated induction of PDK4 gene expression. Finally, GSK5182, an inverse agonist of ERRγ, strongly inhibited the hypoxia-mediated induction of PDK4 protein and promoter activity. Regulation of the transcriptional activity of ERRγ may provide a therapeutic approach for the regulation of PDK4 gene expression under hypoxia. PMID:23050013

  16. Hypoxia Induces PDK4 Gene Expression through Induction of the Orphan Nuclear Receptor ERRγ

    PubMed Central

    Lee, Ji-Min; Park, Seung Bum; Lee, In-Kyu; Harris, Robert A.; Lee, Mi-Ock; Choi, Hueng-Sik

    2012-01-01

    Multiple cellular signaling pathways that control metabolism and survival are activated when cell are incubated under hypoxic conditions. Activation of the hypoxia inducible factor (HIF)-1 promotes expression of genes that increase the capacity to cope with the stress imposed by a reduced oxygen environment. Here we show that the orphan nuclear receptor estrogen related receptor γ (ERRγ) plays a critical role in hypoxia–mediated activation of pyruvate dehydrogenase kinase 4 (PDK4) gene expression. ERRγ mRNA and protein levels were increased by hypoxia or desferrioxamine (DFO) treatment in hepatoma cell lines. Co-expression of HIF-1α and β increased ERRγ promoter activity as well as mRNA expression, while knockdown of endogenous HIF-1α reduced the hypoxia-mediated induction of ERRγ. In addition, hypoxia also increased the promoter activity and mRNA level of PDK4 in HepG2 cells. Adenovirus mediated-overexpression of ERRγ specifically increased PDK4 gene expression, while ablation of endogenous ERRγ significantly decreased hypoxia-mediated induction of PDK4 gene expression. Finally, GSK5182, an inverse agonist of ERRγ, strongly inhibited the hypoxia-mediated induction of PDK4 protein and promoter activity. Regulation of the transcriptional activity of ERRγ may provide a therapeutic approach for the regulation of PDK4 gene expression under hypoxia. PMID:23050013

  17. Fucoidan Suppresses Hypoxia-Induced Lymphangiogenesis and Lymphatic Metastasis in Mouse Hepatocarcinoma

    PubMed Central

    Teng, Hongming; Yang, Yazong; Wei, Hengyun; Liu, Zundong; Liu, Zhichao; Ma, Yanhong; Gao, Zixiang; Hou, Lin; Zou, Xiangyang

    2015-01-01

    Metastasis, the greatest clinical challenge associated with cancer, is closely connected to multiple biological processes, including invasion and adhesion. The hypoxic environment in tumors is an important factor that causes tumor metastasis by activating HIF-1α. Fucoidan, extracted from brown algae, is a sulfated polysaccharide and, as a novel marine biological material, has been used to treat various disorders in China, Korea, Japan and other countries. In the present study, we demonstrated that fucoidan derived from Undaria pinnatifida sporophylls significantly inhibits the hypoxia-induced expression, nuclear translocation and activity of HIF-1α, the synthesis and secretion of VEGF-C and HGF, cell invasion and lymphatic metastasis in a mouse hepatocarcinoma Hca-F cell line. Fucoidan also suppressed lymphangiogenesis in vitro and in vivo. In addition, accompanied by a reduction in the HIF-1α nuclear translocation and activity, fucoidan significantly reduced the levels of p-PI3K, p-Akt, p-mTOR, p-ERK, NF-κB, MMP-2 and MMP-9, but increased TIMP-1 levels. These results indicate strongly that the anti-metastasis and anti-lymphangiogenesis activities of fucoidan are mediated by suppressing HIF-1α/VEGF-C, which attenuates the PI3K/Akt/mTOR signaling pathways. PMID:26047481

  18. Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum

    PubMed Central

    Staudacher, Jonas J.; Naarmann-de Vries, Isabel S.; Ujvari, Stefanie J.; Klinger, Bertram; Kasim, Mumtaz; Benko, Edgar; Ostareck-Lederer, Antje; Ostareck, Dirk H.; Bondke Persson, Anja; Lorenzen, Stephan; Meier, Jochen C.; Blüthgen, Nils; Persson, Pontus B.; Henrion-Caude, Alexandra; Mrowka, Ralf; Fähling, Michael

    2015-01-01

    Protein synthesis is a primary energy-consuming process in the cell. Therefore, under hypoxic conditions, rapid inhibition of global mRNA translation represents a major protective strategy to maintain energy metabolism. How some mRNAs, especially those that encode crucial survival factors, continue to be efficiently translated in hypoxia is not completely understood. By comparing specific transcript levels in ribonucleoprotein complexes, cytoplasmic polysomes and endoplasmic reticulum (ER)-bound ribosomes, we show that the synthesis of proteins encoded by hypoxia marker genes is favoured at the ER in hypoxia. Gene expression profiling revealed that transcripts particularly increased by the HIF-1 transcription factor network show hypoxia-induced enrichment at the ER. We found that mRNAs favourably translated at the ER have higher conservation scores for both the 5′- and 3′-untranslated regions (UTRs) and contain less upstream initiation codons (uAUGs), indicating the significance of these sequence elements for sustained mRNA translation under hypoxic conditions. Furthermore, we found enrichment of specific cis-elements in mRNA 5′- as well as 3′-UTRs that mediate transcript localization to the ER in hypoxia. We conclude that transcriptome partitioning between the cytoplasm and the ER permits selective mRNA translation under conditions of energy shortage. PMID:25753659

  19. Cellular Oxygen Sensing: Crystal Structure of Hypoxia-Inducible Factor Prolyl Hydroxylase (PHD2)

    SciTech Connect

    McDonough,M.; Li, V.; Flashman, E.; Chowdhury, R.; Mohr, C.; Lienard, B.; Zondlo, J.; Oldham, N.; Clifton, I.; et al.

    2006-01-01

    Cellular and physiological responses to changes in dioxygen levels in metazoans are mediated via the posttranslational oxidation of hypoxia-inducible transcription factor (HIF). Hydroxylation of conserved prolyl residues in the HIF-{alpha} subunit, catalyzed by HIF prolyl-hydroxylases (PHDs), signals for its proteasomal degradation. The requirement of the PHDs for dioxygen links changes in dioxygen levels with the transcriptional regulation of the gene array that enables the cellular response to chronic hypoxia; the PHDs thus act as an oxygen-sensing component of the HIF system, and their inhibition mimics the hypoxic response. We describe crystal structures of the catalytic domain of human PHD2, an important prolyl-4-hydroxylase in the human hypoxic response in normal cells, in complex with Fe(II) and an inhibitor to 1.7 Angstroms resolution. PHD2 crystallizes as a homotrimer and contains a double-stranded {beta}-helix core fold common to the Fe(II) and 2-oxoglutarate-dependant dioxygenase family, the residues of which are well conserved in the three human PHD enzymes (PHD 1-3). The structure provides insights into the hypoxic response, helps to rationalize a clinically observed mutation leading to familial erythrocytosis, and will aid in the design of PHD selective inhibitors for the treatment of anemia and ischemic disease.

  20. Hypoxia inducible factor signaling and experimental persistent pulmonary hypertension of the newborn

    PubMed Central

    Wedgwood, Stephen; Lakshminrusimha, Satyan; Schumacker, Paul T.; Steinhorn, Robin H.

    2015-01-01

    Background: Mitochondrial reactive oxygen species (ROS) levels and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) activity are increased in a lamb model of persistent pulmonary hypertension of the newborn (PPHN). These events can trigger hypoxia inducible factor (HIF) signaling in response to hypoxia, which has been shown to contribute to pulmonary vascular remodeling in rodent models of pulmonary hypertension. However, the role of HIF signaling in chronic intrauterine pulmonary hypertension is not well understood. Aim: To determine if HIF signaling is increased in the lamb model of PPHN, and to identify the underlying mechanisms. Results: PPHN was induced in lambs by antenatal ligation of the ductus arteriosus at 128 days gestation. After 9 days, lungs and pulmonary artery smooth muscle cells (PASMC) were isolated from control and PPHN lambs. HIF-1α expression was increased in PPHN lungs and HIF activity was increased in PPHN PASMC relative to controls. Hypoxia increased HIF activity to a greater degree in PPHN vs. control PASMC. Control PASMC were exposed to cyclic stretch at 1 Hz and 15% elongation for 24 h, as an in vitro model of vascular stress. Stretch increased HIF activity, which was attenuated by inhibition of mitochondrial complex III and NFκB. Conclusion: Increased HIF signaling in PPHN is triggered by stretch, via mechanisms involving mitochondrial ROS and NFκB. Hypoxia substantially amplifies HIF activity in PPHN vascular cells. Targeting these signaling molecules may attenuate and reverse pulmonary vascular remodeling associated with PPHN. PMID:25814954

  1. Loss of epithelial hypoxia-inducible factor prolyl hydroxylase 2 accelerates skin wound healing in mice.

    PubMed

    Kalucka, Joanna; Ettinger, Andreas; Franke, Kristin; Mamlouk, Soulafa; Singh, Rashim Pal; Farhat, Katja; Muschter, Antje; Olbrich, Susanne; Breier, Georg; Katschinski, Dörthe M; Huttner, Wieland; Weidemann, Alexander; Wielockx, Ben

    2013-09-01

    Skin wound healing in mammals is a complex, multicellular process that depends on the precise supply of oxygen. Hypoxia-inducible factor (HIF) prolyl hydroxylase 2 (PHD2) serves as a crucial oxygen sensor and may therefore play an important role during reepithelialization. Hence, this study was aimed at understanding the role of PHD2 in cutaneous wound healing using different lines of conditionally deficient mice specifically lacking PHD2 in inflammatory, vascular, or epidermal cells. Interestingly, PHD2 deficiency only in keratinocytes and not in myeloid or endothelial cells was found to lead to faster wound closure, which involved enhanced migration of the hyperproliferating epithelium. We demonstrate that this effect relies on the unique expression of β3-integrin in the keratinocytes around the tip of the migrating tongue in an HIF1α-dependent manner. Furthermore, we show enhanced proliferation of these cells in the stratum basale, which is directly related to their attenuated transforming growth factor β signaling. Thus, loss of the central oxygen sensor PHD2 in keratinocytes stimulates wound closure by prompting skin epithelial cells to migrate and proliferate. Inhibition of PHD2 could therefore offer novel therapeutic opportunities for the local treatment of cutaneous wounds. PMID:23798557

  2. Hypoxia-inducible factor-1alpha: A promising therapeutic target in endometriosis.

    PubMed

    Zhan, Lei; Wang, Wenyan; Zhang, Yu; Song, Enxue; Fan, Yijun; Wei, Bing

    2016-04-01

    Endometriosis is a common gynecologic disease defined as the presence of ectopic endometrial tissues on the ovaries and pelvic peritoneum, and it is a significant cause of pelvic pain, dysmenorrhea and infertility of women in their reproductive age. However, the etiology of endometriosis remains obscure. In recent years, a growing body of evidence validated that hypoxia developed a close relationship with endometriosis and the expression of hypoxia-inducible factor-1alpha (HIF-1α) was increased significantly in the development of endometriosis. Furthermore, inhibiting the expression of HIF-1α contributed to suppress endometriosis progression, suggesting HIF-1α plays a critical function in endometriosis. Nevertheless, the mechanisms by which HIF-1α associates with endometriosis are still undefined. In this brief review, we had a general understanding of HIF-1α firstly, and then we tried to sum up the collective knowledge of HIF-1α in endometriosis. Finally, we will discuss kinds of novel therapeutic approaches to endometriosis based on the functions of HIF-1α. PMID:26898675

  3. AB246. Effect of hypoxia inducible factor mediated EMT in the mechanism of detrusor instability

    PubMed Central

    Wei, Wei; Yang, Jinyi

    2016-01-01

    Background To detect the effect of hypoxia inducible factor mediated EMT in the mechanism of detrusor instability. Methods A total of 49 patients with detrusor instability (DI) secondary to bladder outlet obstruction (BOO) were randomly chosen according to the urodynamic result as the study group. 36 patients with BOO proved with detrusor instability (DS) by urodynamic as control group. The detrusor specimens were obtained in operation. The expression of E-cadherin, detrusor collagen content and HIF were determined in the detrusor muscle of two groups respectively. Statistical analysis was carried out on the measured results by compute. Changes of E-cadherin, collagen content and HIF were compared. Results The expression of E-cadherin was in the DI group was significantly lower than the DS group, collagen and HIF were significantly increased than the DS group (P<0.05). Conclusions The histology and molecular biology were changed caused by the BOO, may through mediated the EMT, inhibited the activity of calcium mucin, lead to E-cadherin as the main constituent of intercellular adhesion failure, and then epithelial cells transferred into mesenchymal cells. Therefore we suggest that the interaction between them may represent a novel therapeutic target for the development of novel target based therapies of DI.

  4. Loss of Epithelial Hypoxia-Inducible Factor Prolyl Hydroxylase 2 Accelerates Skin Wound Healing in Mice

    PubMed Central

    Kalucka, Joanna; Ettinger, Andreas; Franke, Kristin; Mamlouk, Soulafa; Singh, Rashim Pal; Farhat, Katja; Muschter, Antje; Olbrich, Susanne; Breier, Georg; Katschinski, Dörthe M.; Huttner, Wieland; Weidemann, Alexander

    2013-01-01

    Skin wound healing in mammals is a complex, multicellular process that depends on the precise supply of oxygen. Hypoxia-inducible factor (HIF) prolyl hydroxylase 2 (PHD2) serves as a crucial oxygen sensor and may therefore play an important role during reepithelialization. Hence, this study was aimed at understanding the role of PHD2 in cutaneous wound healing using different lines of conditionally deficient mice specifically lacking PHD2 in inflammatory, vascular, or epidermal cells. Interestingly, PHD2 deficiency only in keratinocytes and not in myeloid or endothelial cells was found to lead to faster wound closure, which involved enhanced migration of the hyperproliferating epithelium. We demonstrate that this effect relies on the unique expression of β3-integrin in the keratinocytes around the tip of the migrating tongue in an HIF1α-dependent manner. Furthermore, we show enhanced proliferation of these cells in the stratum basale, which is directly related to their attenuated transforming growth factor β signaling. Thus, loss of the central oxygen sensor PHD2 in keratinocytes stimulates wound closure by prompting skin epithelial cells to migrate and proliferate. Inhibition of PHD2 could therefore offer novel therapeutic opportunities for the local treatment of cutaneous wounds. PMID:23798557

  5. Hypoxia inducible factor in hepatocellular carcinoma: A therapeutic target

    PubMed Central

    Lin, Daniel; Wu, Jennifer

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed and deadly cancers worldwide; its incidence has been rising in the United States due to the increase in hepatitis C associated cirrhosis and the growing epidemic of obesity. There have been no effective therapeutic options in the advanced disease setting beyond sorafenib, a multi-targeted tyrosine kinase inhibitor that showed significant survival benefit. Because of this, there is an urgent need to search for novel pathways in sorafenib experienced patients. This review will focus on the role of hypoxia and hypoxia-inducible factor alpha (HIF-1α) in cancer development, specifically in HCC. We will discuss the biology of HIF-1α, the pathways with which it interacts, and the function of HIF-1α in HCC. Furthermore, we will review studies highlighting the relevance of HIF-1α in the clinical setting, as well as the pre-clinical data supporting its further investigation. Finally, we will conclude with a discussion of the potential role of a HIF-1α mRNA antagonist for the treatment of HCC, and hypothesize the ways in which such an inhibitor may be best utilized in the management of advanced HCC. Hypoxia plays a significant role in the development of HCC. HIF-1α is a key transcription factor involved in the hypoxic response of cancer cells. It activates transcription of genes responsible for angiogenesis, glucose metabolism, proliferation, invasion and metastasis in HCC. Its involvement in multiple, essential tumor pathways makes it an attractive potential therapeutic target in HCC. PMID:26576101

  6. Hypoxia-Induced Alternative Splicing in Endothelial Cells

    PubMed Central

    Weigand, Julia E.; Boeckel, Jes-Niels; Gellert, Pascal; Dimmeler, Stefanie

    2012-01-01

    Background Adaptation to low oxygen by changing gene expression is vitally important for cell survival and tissue development. The sprouting of new blood vessels, initiated from endothelial cells, restores the oxygen supply of ischemic tissues. In contrast to the transcriptional response induced by hypoxia, which is mainly mediated by members of the HIF family, there are only few studies investigating alternative splicing events. Therefore, we performed an exon array for the genome-wide analysis of hypoxia-related changes of alternative splicing in endothelial cells. Methodology/Principal findings Human umbilical vein endothelial cells (HUVECs) were incubated under hypoxic conditions (1% O2) for 48 h. Genome-wide transcript and exon expression levels were assessed using the Affymetrix GeneChip Human Exon 1.0 ST Array. We found altered expression of 294 genes after hypoxia treatment. Upregulated genes are highly enriched in glucose metabolism and angiogenesis related processes, whereas downregulated genes are mainly connected to cell cycle and DNA repair. Thus, gene expression patterns recapitulate known adaptations to low oxygen supply. Alternative splicing events, until now not related to hypoxia, are shown for nine genes: six which are implicated in angiogenesis-mediated cytoskeleton remodeling (cask, itsn1, larp6, sptan1, tpm1 and robo1); one, which is involved in the synthesis of membrane-anchors (pign) and two universal regulators of gene expression (cugbp1 and max). Conclusions/Significance For the first time, this study investigates changes in splicing in the physiological response to hypoxia on a genome-wide scale. Nine alternative splicing events, until now not related to hypoxia, are reported, considerably expanding the information on splicing changes due to low oxygen supply. Therefore, this study provides further knowledge on hypoxia induced gene expression changes and presents new starting points to study the hypoxia adaptation of endothelial cells

  7. Hypoxia and Hypoxia-Inducible Factors in Leukemias.

    PubMed

    Deynoux, Margaux; Sunter, Nicola; Hérault, Olivier; Mazurier, Frédéric

    2016-01-01

    Despite huge improvements in the treatment of leukemia, the percentage of patients suffering relapse still remains significant. Relapse most often results from a small number of leukemic stem cells (LSCs) within the bone marrow, which are able to self-renew, and therefore reestablish the full tumor. The marrow microenvironment contributes considerably in supporting the protection and development of leukemic cells. LSCs share specific niches with normal hematopoietic stem cells with the niche itself being composed of a variety of cell types, including mesenchymal stem/stromal cells, bone cells, immune cells, neuronal cells, and vascular cells. A hallmark of the hematopoietic niche is low oxygen partial pressure, indeed this hypoxia is necessary for the long-term maintenance of hematopoietic stem/progenitor cells. Hypoxia is a strong signal, principally maintained by members of the hypoxia-inducible factor (HIF) family. In solid tumors, it has been well established that hypoxia triggers intrinsic metabolic changes and microenvironmental modifications, such as the stimulation of angiogenesis, through activation of HIFs. As leukemia is not considered a "solid" tumor, the role of oxygen in the disease was presumed to be inconsequential and remained long overlooked. This view has now been revised since hypoxia has been shown to influence leukemic cell proliferation, differentiation, and resistance to chemotherapy. However, the role of HIF proteins remains controversial with HIFs being considered as either oncogenes or tumor suppressor genes, depending on the study and model. The purpose of this review is to highlight our knowledge of hypoxia and HIFs in leukemic development and therapeutic resistance and to discuss the recent hypoxia-based strategies proposed to eradicate leukemias. PMID:26955619

  8. Hypoxia and Hypoxia-Inducible Factors in Leukemias

    PubMed Central

    Deynoux, Margaux; Sunter, Nicola; Hérault, Olivier; Mazurier, Frédéric

    2016-01-01

    Despite huge improvements in the treatment of leukemia, the percentage of patients suffering relapse still remains significant. Relapse most often results from a small number of leukemic stem cells (LSCs) within the bone marrow, which are able to self-renew, and therefore reestablish the full tumor. The marrow microenvironment contributes considerably in supporting the protection and development of leukemic cells. LSCs share specific niches with normal hematopoietic stem cells with the niche itself being composed of a variety of cell types, including mesenchymal stem/stromal cells, bone cells, immune cells, neuronal cells, and vascular cells. A hallmark of the hematopoietic niche is low oxygen partial pressure, indeed this hypoxia is necessary for the long-term maintenance of hematopoietic stem/progenitor cells. Hypoxia is a strong signal, principally maintained by members of the hypoxia-inducible factor (HIF) family. In solid tumors, it has been well established that hypoxia triggers intrinsic metabolic changes and microenvironmental modifications, such as the stimulation of angiogenesis, through activation of HIFs. As leukemia is not considered a “solid” tumor, the role of oxygen in the disease was presumed to be inconsequential and remained long overlooked. This view has now been revised since hypoxia has been shown to influence leukemic cell proliferation, differentiation, and resistance to chemotherapy. However, the role of HIF proteins remains controversial with HIFs being considered as either oncogenes or tumor suppressor genes, depending on the study and model. The purpose of this review is to highlight our knowledge of hypoxia and HIFs in leukemic development and therapeutic resistance and to discuss the recent hypoxia-based strategies proposed to eradicate leukemias. PMID:26955619

  9. Adenosine modulates hypoxia-induced responses in rat PC12 cells via the A2A receptor.

    PubMed

    Kobayashi, S; Conforti, L; Pun, R Y; Millhorn, D E

    1998-04-01

    1. The present study was undertaken to determine the role of adenosine in mediating the cellular responses to hypoxia in rat phaeochromocytoma (PC12) cells, an oxygen-sensitive clonal cell line. 2. Reverse transcriptase polymerase chain reaction studies revealed that PC12 cells express adenosine deaminase (the first catalysing enzyme of adenosine degradation) and the A2A and A2B adenosine receptors, but not the A1 or A3 adenosine receptors. 3. Whole-cell current- and voltage-clamp experiments showed that adenosine attenuated the hypoxia-induced membrane depolarization. The hypoxia-induced suppression of the voltage-sensitive potassium current (IK(V)) was markedly reduced by adenosine. Furthermore, extracellularly applied adenosine increased the peak amplitudes of IK(V) in a concentration-dependent manner. This increase was blocked by pretreatment not only with a non-specific adenosine receptor antagonist, 8-phenyltheophylline (8-PT), but also with a selective A2A receptor antagonist, ZM241385. 4. Ca2+ imaging studies using fura-2 acetoxymethyl ester (fura-2 AM) revealed that the increase in intracellular free Ca2+ during hypoxic exposure was attenuated significantly by adenosine. Voltage-clamp studies showed that adenosine inhibited the voltage-dependent Ca2+ currents (ICa) in a concentration-dependent fashion. This inhibition was also abolished by both 8-PT and ZM241385. 5. The modulation of both IK(V) and ICa by adenosine was prevented by intracellular application of an inhibitor of protein kinase A (PKA), PKA inhibitor fragment (6-22) amide. In addition, the effect of adenosine on either IK(V) or ICa was absent in PKA-deficient PC12 cells. 6. These results indicate that the modulatory effects of adenosine on the hypoxia-induced membrane responses of PC12 cells are likely to be mediated via activation of the A2A receptor, and that the PKA pathway is required for these modulatory actions. We propose that this modulation serves to regulate membrane excitability in

  10. Adenosine modulates hypoxia-induced responses in rat PC12 cells via the A2A receptor

    PubMed Central

    Kobayashi, Shuichi; Conforti, Laura; Pun, Raymund Y K; Millhorn, David E

    1998-01-01

    The present study was undertaken to determine the role of adenosine in mediating the cellular responses to hypoxia in rat phaeochromocytoma (PC12) cells, an oxygen-sensitive clonal cell line. Reverse transcriptase polymerase chain reaction studies revealed that PC12 cells express adenosine deaminase (the first catalysing enzyme of adenosine degradation) and the A2A and A2B adenosine receptors, but not the A1 or A3 adenosine receptors. Whole-cell current- and voltage-clamp experiments showed that adenosine attenuated the hypoxia-induced membrane depolarization. The hypoxia-induced suppression of the voltage-sensitive potassium current (IK(V)) was markedly reduced by adenosine. Furthermore, extracellularly applied adenosine increased the peak amplitudes of IK(V) in a concentration-dependent manner. This increase was blocked by pretreatment not only with a non-specific adenosine receptor antagonist, 8-phenyltheophylline (8-PT), but also with a selective A2A receptor antagonist, ZM241385. Ca2+ imaging studies using fura-2 acetoxymethyl ester (fura-2 AM) revealed that the increase in intracellular free Ca2+ during hypoxic exposure was attenuated significantly by adenosine. Voltage-clamp studies showed that adenosine inhibited the voltage-dependent Ca2+ currents (ICa) in a concentration-dependent fashion. This inhibition was also abolished by both 8-PT and ZM241385. The modulation of both IK(V) and ICa by adenosine was prevented by intracellular application of an inhibitor of protein kinase A (PKA), PKA inhibitor fragment (6–22) amide. In addition, the effect of adenosine on either IK(V) or ICa was absent in PKA-deficient PC12 cells. These results indicate that the modulatory effects of adenosine on the hypoxia-induced membrane responses of PC12 cells are likely to be mediated via activation of the A2A receptor, and that the PKA pathway is required for these modulatory actions. We propose that this modulation serves to regulate membrane excitability in PC12 cells and

  11. Sodium hydrosulfide prevents hypoxia-induced pulmonary arterial hypertension in broilers.

    PubMed

    Yang, Y; Zhang, B K; Liu, D; Nie, W; Yuan, J M; Wang, Z; Guo, Y M

    2012-01-01

    1. The aim of the study was to determine if H(2)S is involved in the development of hypoxia-induced pulmonary hypertension in broilers, a condition frequently observed in a variety of cardiac and pulmonary diseases. 2. Two-week-old broilers were reared under normoxic conditions or exposed to normobaric hypoxia (6 h/day) with tissue levels of H(2)S adjusted by administering sodium hydrosulfide (NaHS, 10 µmol/kg body weight/day). Mean pulmonary arterial pressure, right ventricular mass, plasma and tissue H(2)S levels, the expression of cystathionine-β-synthase (CSE) and vascular remodeling were determined at 35 d of age. 3. Exposure to hypoxia-induced pulmonary arterial hypertension was characterized by elevated pulmonary pressure, right ventricular hypertrophy and vascular remodeling. This was accompanied by decreased expression of CSE and decreased concentrations of plasma and tissue H(2)S. 4. Hypoxia-induced pulmonary hypertension was significantly reduced by administration of NaHS but this protective effect was largely abolished by D, L-propargylglycerine, an inhibitor of CSE. 5. The results indicate that H(2)S is involved in the development of hypoxia-induced pulmonary hypertension. Supplementing NaHS or H(2)S could be a strategy for reducing hypoxia-induced hypertension in broilers. PMID:23281754

  12. Hypoxia-induced force increase (HIFI) is a novel mechanism underlying the strengthening of labor contractions, produced by hypoxic stresses

    PubMed Central

    Alotaibi, Mohammed; Arrowsmith, Sarah; Wray, Susan

    2015-01-01

    For successful birth, contractions need to become progressively stronger. The underlying mechanisms are unknown, however. We have found that a novel mechanism, hypoxia-induced force increase (HIFI), is switched on selectively, at term, and is essential to strengthening contractions. HIFI is initiated as contractions cyclically reduce blood flow and produce repeated hypoxic stresses, with associated metabolic and transcriptomic changes. The increases in contractility are a long-lasting, oxytocin-independent, intrinsic mechanism present only in the full-term pregnant uterus. HIFI is inhibited by adenosine receptor antagonism and blockade of cyclooxygenase-2 signaling, and partially reproduced by brief episodes of acidic (but not alkalotic) pH. HIFI explains how labor can progress despite paradoxical metabolic challenge, and provides a new mechanistic target for the 1 in 10 women suffering dysfunctional labor because of poor contractions. PMID:26195731

  13. Hypoxia-induced force increase (HIFI) is a novel mechanism underlying the strengthening of labor contractions, produced by hypoxic stresses.

    PubMed

    Alotaibi, Mohammed; Arrowsmith, Sarah; Wray, Susan

    2015-08-01

    For successful birth, contractions need to become progressively stronger. The underlying mechanisms are unknown, however. We have found that a novel mechanism, hypoxia-induced force increase (HIFI), is switched on selectively, at term, and is essential to strengthening contractions. HIFI is initiated as contractions cyclically reduce blood flow and produce repeated hypoxic stresses, with associated metabolic and transcriptomic changes. The increases in contractility are a long-lasting, oxytocin-independent, intrinsic mechanism present only in the full-term pregnant uterus. HIFI is inhibited by adenosine receptor antagonism and blockade of cyclooxygenase-2 signaling, and partially reproduced by brief episodes of acidic (but not alkalotic) pH. HIFI explains how labor can progress despite paradoxical metabolic challenge, and provides a new mechanistic target for the 1 in 10 women suffering dysfunctional labor because of poor contractions. PMID:26195731

  14. Wortmannin influences hypoxia-inducible factor-1 alpha expression and glycolysis in esophageal carcinoma cells

    PubMed Central

    Zeng, Ling; Zhou, Hai-Yun; Tang, Na-Na; Zhang, Wei-Feng; He, Gui-Jun; Hao, Bo; Feng, Ya-Dong; Zhu, Hong

    2016-01-01

    AIM: To investigate the influence of phosphatidylinositol-3-kinase protein kinase B (PI3K/AKT)-HIF-1α signaling pathway on glycolysis in esophageal carcinoma cells under hypoxia. METHODS: Esophageal carcinoma cell lines Eca109 and TE13 were cultured under hypoxia environment, and the protein, mRNA and activity levels of hypoxia inducible factor-1 alpha (HIF-1α), glucose transporter 1, hexokinase-II, phosphofructokinase 2 and lactate dehydrogenase-A were determined. Supernatant lactic acid concentrations were also detected. The PI3K/AKT signaling pathway was then inhibited with wortmannin, and the effects of hypoxia on the expression or activities of HIF-1α, associated glycolytic enzymes and lactic acid concentrations were observed. Esophageal carcinoma cells were then transfected with interference plasmid with HIF-1α-targeting siRNA to assess impact of the high expression of HIF-1α on glycolysis. RESULTS: HIF-1α is highly expressed in the esophageal carcinoma cell lines tested, and with decreasing levels of oxygen, the expression of HIF-1α and the associated glycolytic enzymes and the extracellular lactic acid concentration were enhanced in the esophageal carcinoma cell lines Eca109 and TE13. In both normoxia and hypoxic conditions, the level of glycolytic enzymes and the secretion of lactic acid were both reduced by wortmannin. The expression and activities of glycolytic enzymes and the lactic acid concentration in cells were reduced by inhibiting HIF-1α, especially the decreasing level of glycolysis was significant under hypoxic conditions. CONCLUSION: The PI3K/AKT pathway and HIF-1α are both involved in the process of glycolysis in esophageal cancer cells. PMID:27239113

  15. NOX2 Antisense Attenuates Hypoxia-Induced Oxidative Stress and Apoptosis in Cardiomyocyte

    PubMed Central

    Yu, Bo; Meng, Fanbo; Yang, Yushuang; Liu, Dongna; Shi, Kaiyao

    2016-01-01

    Heart ischemia is a hypoxia related disease. NOX2 and HIF-1α proteins were increased in cardiomyocytes after acute myocardial infarction. However, the relationship of the hypoxia-induced HIF-1α. NOX2-derived oxidative stress and apoptosis in cardiomyocyte remains unclear. In the current study, we use NOX2 antisense strategy to investigate the role of NOX2 in hypoxia-induced oxidative stress and apoptosis in rat cardiomyocytes. Here, we show that transduction of ADV-NOX2-AS induces potent silencing of NOX2 in cardiomyocytes, and resulting in attenuation of hypoxia-induced oxidative stress and apoptosis. This study indicates the potential of antisense-based therapies and validates NOX2 as a potent therapeutic candidate for heart ischemia. PMID:27499697

  16. Focused Review: Agmatine in Fermented Foods

    PubMed Central

    Galgano, Fernanda; Caruso, Marisa; Condelli, Nicola; Favati, Fabio

    2012-01-01

    Polyamines (PAs) are ubiquitous substances considered to be bioregulators of numerous cell functions; they take part in cell growth, division, and differentiation. These biogenic amines are also involved in tissue repair and in intracellular signaling; in fact, because of their polycationic character, they interact to a large extent with membrane phospholipids and may play an important role in the regulation of membrane-linked enzymes. The intracellular polyamine content derives from the simultaneous regulation of the synthesis, catabolism, uptake, and elimination of the polyamines; furthermore, PAs are present in all cell types at different concentrations, but the highest levels are found in rapid-turnover tissues. In addition to spermidine, spermine, and putrescine, also agmatine (AGM), deriving from arginine and identified in mammals in the 1990s, is a polyamine and several studies have reported its potentially positive role in the production of secretagogues, and in neuronal, vascular, metabolic, and therapeutic functions. Because of the low arginine decarboxylase (ADC) activity in mammalians, the amounts of AGM found in their tissues can be only minimally ascribed to an endogenous de novo synthesis by ADC, while a substantial quantity of AGM may be of dietary origin. Several food products contain only small amounts of polyamines, while higher concentrations can be found in fermented foods. PAs could also be considered as indicators of freshness in fish and meat products; as these moieties are produced during food storage, it would seem to confirm the main role of microorganisms in their synthesis. In particular, high levels of AGM are present in alcoholic beverages, such as wine, beer, sake, which would seem to confirm the role of yeasts in AGM production. Although many biological functions have been attributed to polyamines, high levels of these compounds in foodstuffs can have toxicological effects; however, no safe level for the intake of polyamines in a

  17. MicroRNA-322 protects hypoxia-induced apoptosis in cardiomyocytes via BDNF gene

    PubMed Central

    Yang, Liguo; Song, Shigang; Lv, Hang

    2016-01-01

    Background: Cardiomyocytes apoptosis under hypoxia condition contributes significantly to various cardiovascular diseases. In this study, we investigated the role of microRNA-322 (miR-322) in regulating hypoxia-induced apoptosis in neonatal murine cardiomyocytes in vitro. Method: Cardiomyocytes of C57BL/6J mice were treated with hypoxia condition in vitro. Cardiomyocyte apoptosis was measured by TUNEL assay. Gene expression pattern of miR-322 was measured by qRT-PCR. Stable downregulation of miR-322 in cardiomyocytes were achieved by lentiviral transduction, and the effect of miR-322 downregulation on hypoxia-induced cardiomyocyte apoptosis was investigated. Possible regulation of miR-322 on its downstream target gene, brain derived neurotrophic factor (BDNF) was investigated in cardiomyocytes. BDNF was then genetically silenced by siRNA to evaluate its role in miR-137 mediated cardiomyocyte apoptosis protection under hypoxia condition. Results: Under hypoxia condition, significant apoptosis was induced and miR-322 was significantly upregulated in cardiomyocytes in vitro. Through lentiviral transduction, miR-322 was efficiently knocked down in cardiomyocytes. Downregulation of miR-322 protected hypoxia-induced cardiomyocyte apoptosis. Luciferase assay showed BDNF was the target gene of miR-322. QRT-PCR showed BDNF expression was associated with miR-322 regulation on hypoxia-induced cardiomyocyte apoptosis. Silencing BDNF in cardiomyocyte through siRNA transfection reversed the protective effect of miR-322 downregulation on hypoxia-induced apoptosis. Conclusion: Our study revealed that miR-322, in association with BDNF, played important role in regulating hypoxia-induced apoptosis in cardiomyocyte. PMID:27398164

  18. Expression of hypoxia-inducible factor 3α in hepatocellular carcinoma and its association with other hypoxia-inducible factors

    PubMed Central

    LIU, PING; FANG, XIEFAN; SONG, YANG; JIANG, JIAN-XIN; HE, QIAN-JIN; LIU, XIANG-JIE

    2016-01-01

    The functional role of hypoxia-inducible factor (HIF)-3α in the development of hepatocellular carcinoma (HCC) is not yet fully understood. The aim of the present study was to elucidate the association between HIF-3α expression and the clinicopathological features as well as prognosis of HCC patients. In addition, we investigated the association between HIF-3α expression and the expression of HIF-1α and HIF-2α in tumor tissues. The protein levels of HIF-3α were determined using immunohistochemical analysis of paraffin sections of 126 paired HCC and peritumoral tissues. PLC/PRF/5 cells, a human HCC cell line, were transfected with HIF-1α and HIF-2α vectors and HIF-3α mRNA and protein expression was detected using quantitative polymerase chain reaction and western blot analysis, respectively. The expression of HIF-3α was upregulated in 46.0% (58/126) and downregulated in 42.9% (54/126) of tumor tissues, respectively, when compared to peritumoral tissues. HIF-3α protein expression was not associated with peripheral blood vessel invasion, overall survival, or disease-free survival in HCC patients (P>0.05). In HCC tissues, the levels of HIF-3α protein were positively correlated with HIF-2α, but not with HIF-1α expression in HCC tissues. HIF-3α was upregulated in PLC/PRF/5 and Hep3B cells overexpressed with HIF-1α or HIF-2α. The hypoxic microenvironment of liver cancer did not lead to elevated HIF-3α protein expression, indicating that HIF-3α is regulated differently from HIF-1α in vivo. The correlation between HIF-3α and HIF-2α expression at the cellular and tissue levels indicated that HIF-3α may be a target gene of HIF-2α. The hypoxic microenvironment did not lead to elevation of HIF-3α protein expression in liver cancer; thus, HIF-3α may be a target gene of HIF-2α. PMID:27284334

  19. Progress toward overcoming hypoxia-induced resistance to solid tumor therapy

    PubMed Central

    Karakashev, Sergey V; Reginato, Mauricio J

    2015-01-01

    Hypoxic tumors are associated with poor clinical outcome for multiple types of human cancer. This may be due, in part, to hypoxic cancer cells being resistant to anticancer therapy, including radiation therapy, chemotherapy, and targeted therapy. Hypoxia inducible factor 1, a major regulator of cellular response to hypoxia, regulates the expression of genes that are involved in multiple aspects of cancer biology, including cell survival, proliferation, metabolism, invasion, and angiogenesis. Here, we review multiple pathways regulated by hypoxia/hypoxia inducible factor 1 in cancer cells and discuss the latest advancements in overcoming hypoxia-mediated tumor resistance. PMID:26316817

  20. Gene expression of cyclin-dependent kinase inhibitors and effect of heparin on their expression in mice with hypoxia-induced pulmonary hypertension

    SciTech Connect

    Yu Lunyin; Quinn, Deborah A.; Garg, Hari G.; Hales, Charles A. . E-mail: chales@partners.org

    2006-07-14

    The balance between cell proliferation and cell quiescence is regulated delicately by a variety of mediators, in which cyclin-dependent kinases (CDK) and CDK inhibitors (CDKI) play a very important role. Heparin which inhibits pulmonary artery smooth muscle cell (PASMC) proliferation increases the levels of two CDKIs, p21 and p27, although only p27 is important in inhibition of PASMC growth in vitro and in vivo. In the present study we investigated the expression profile of all the cell cycle regulating genes, including all seven CDKIs (p21, p27, p57, p15, p16, p18, and p19), in the lungs of mice with hypoxia-induced pulmonary hypertension. A cell cycle pathway specific gene microarray was used to profile the 96 genes involved in cell cycle regulation. We also observed the effect of heparin on gene expression. We found that (a) hypoxic exposure for two weeks significantly inhibited p27 expression and stimulated p18 activity, showing a 98% decrease in p27 and 81% increase in p18; (b) other CDKIs, p21, p57, p15, p16, and p19 were not affected significantly in response to hypoxia; (c) heparin treatment restored p27 expression, but did not influence p18; (d) ERK1/2 and p38 were mediators in heparin upregulation of p27. This study provides an expression profile of cell cycle regulating genes under hypoxia in mice with hypoxia-induced pulmonary hypertension and strengthens the previous finding that p27 is the only CDKI involved in heparin regulation of PASMC proliferation and hypoxia-induced pulmonary hypertension.

  1. Development of a clickable activity-based protein profiling (ABPP) probe for agmatine deiminases.

    PubMed

    Marchenko, Mikhail; Thomson, Andrew; Ellis, Terri N; Knuckley, Bryan; Causey, Corey P

    2015-05-01

    Agmatine deiminases (AgDs) catalyze the hydrolytic conversion of agmatine (decarboxylated arginine) to N-carbamoylputrescine with concomitant release of ammonia. These enzymes, which are encoded by some pathogenic bacterial species, confer a competitive survival advantage by virtue of energy production and acid tolerance through agmatine catabolism. Herein we report the development of a clickable activity-based protein profiling (ABPP) probe that targets the AgD encoded by Streptococcus mutans with high selectivity and sensitivity. PMID:25819331

  2. Hypoxia Induces Epithelial-Mesenchymal Transition in Follicular Thyroid Cancer: Involvement of Regulation of Twist by Hypoxia Inducible Factor-1α

    PubMed Central

    Yang, Yeon Ju; Na, Hwi Jung; Suh, Michelle J.; Ban, Myung Jin; Byeon, Hyung Kwon; Kim, Won Shik; Kim, Jae Wook; Choi, Eun Chang; Kwon, Hyeong Ju; Chang, Jae Won

    2015-01-01

    Purpose Although follicular thyroid cancer (FTC) has a relatively fair prognosis, distant metastasis sometimes results in poor prognosis and survival. There is little understanding of the mechanisms contributing to the aggressiveness potential of thyroid cancer. We showed that hypoxia inducible factor-1α (HIF-1α) induced aggressiveness in FTC cells and identified the underlying mechanism of the HIF-1α-induced invasive characteristics. Materials and Methods Cells were cultured under controlled hypoxic environments (1% O2) or normoxic conditions. The effect of hypoxia on HIF-1α, and epithelial-to-mesenchymal transition (EMT) related markers were evaluated by quantitative real-time PCR, Western blot analysis and immunocytochemistry. Invasion and wound healing assay were conducted to identify functional character of EMT. The involvement of HIF-1α and Twist in EMT were studied using gene overexpression or silencing. After orthotopic nude mouse model was established using the cells transfected with lentiviral shHIF-1α, tissue analysis was done. Results Hypoxia induces HIF-1α expression and EMT, including typical morphologic changes, cadherin shift, and increased vimentin expression. We showed that overexpression of HIF-1α via transfection resulted in the aforementioned changes without hypoxia, and repression of HIF-1α with RNA interference suppressed hypoxia-induced HIF-1α and EMT. Furthermore, we also observed that Twist expression was regulated by HIF-1α. These were confirmed in the orthotopic FTC model. Conclusion Hypoxia induced HIF-1α, which in turn induced EMT, resulting in the increased capacity for invasion and migration of cells via regulation of the Twist signal pathway in FTC cells. These findings provide insight into a possible therapeutic strategy to prevent invasive and metastatic FTC. PMID:26446630

  3. Exogenous agmatine has neuroprotective effects against restraint-induced structural changes in the rat brain

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Cai, Zheng-Wei; Regunathan, Soundar; Ordway, Gregory

    2009-01-01

    Agmatine is an endogenous amine derived from decarboxylation of arginine catalysed by arginine decarboxylase. Agmatine is considered a novel neuromodulator and possesses neuroprotective properties in the central nervous system. The present study examined whether agmatine has neuroprotective effects against repeated restraint stress-induced morphological changes in rat medial prefrontal cortex and hippocampus. Sprague-Dawley rats were subjected to 6 h of restraint stress daily for 21 days. Immunohistochemical staining with β-tubulin III showed that repeated restraint stress caused marked morphological alterations in the medial prefrontal cortex and hippocampus. Stress-induced alterations were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Interestingly, endogenous agmatine levels, as measured by high-performance liquid chromatography, in the prefrontal cortex and hippocampus as well as in the striatum and hypothalamus of repeated restraint rats were significantly reduced as compared with the controls. Reduced endogenous agmatine levels in repeated restraint animals were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. Moreover, administration of exogenous agmatine to restrained rats abolished increases of arginine decarboxylase protein levels. Taken together, these results demonstrate that exogenously administered agmatine has neuroprotective effects against repeated restraint-induced structural changes in the medial prefrontal cortex and hippocampus. These findings indicate that stress-induced reductions in endogenous agmatine levels in the rat brain may play a permissive role in neuronal pathology induced by repeated restraint stress. PMID:18364017

  4. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase.

    PubMed

    Kumar, Sunil; Saragadam, Tejaswani; Punekar, Narayan S

    2015-08-15

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome. PMID:26048930

  5. Novel Route for Agmatine Catabolism in Aspergillus niger Involves 4-Guanidinobutyrase

    PubMed Central

    Kumar, Sunil; Saragadam, Tejaswani

    2015-01-01

    Agmatine, a significant polyamine in bacteria and plants, mostly arises from the decarboxylation of arginine. The functional importance of agmatine in fungi is poorly understood. The metabolism of agmatine and related guanidinium group-containing compounds in Aspergillus niger was explored through growth, metabolite, and enzyme studies. The fungus was able to metabolize and grow on l-arginine, agmatine, or 4-guanidinobutyrate as the sole nitrogen source. Whereas arginase defined the only route for arginine catabolism, biochemical and bioinformatics approaches suggested the absence of arginine decarboxylase in A. niger. Efficient utilization by the parent strain and also by its arginase knockout implied an arginase-independent catabolic route for agmatine. Urea and 4-guanidinobutyrate were detected in the spent medium during growth on agmatine. The agmatine-grown A. niger mycelia contained significant levels of amine oxidase, 4-guanidinobutyraldehyde dehydrogenase, 4-guanidinobutyrase (GBase), and succinic semialdehyde dehydrogenase, but no agmatinase activity was detected. Taken together, the results support a novel route for agmatine utilization in A. niger. The catabolism of agmatine by way of 4-guanidinobutyrate to 4-aminobutyrate into the Krebs cycle is the first report of such a pathway in any organism. A. niger GBase peptide fragments were identified by tandem mass spectrometry analysis. The corresponding open reading frame from the A. niger NCIM 565 genome was located and cloned. Subsequent expression of GBase in both Escherichia coli and A. niger along with its disruption in A. niger functionally defined the GBase locus (gbu) in the A. niger genome. PMID:26048930

  6. Hypoxia induces expression of connective tissue growth factor in scleroderma skin fibroblasts

    PubMed Central

    Hong, K-H; Yoo, S-A; Kang, S-S; Choi, J-J; Kim, W-U; Cho, C-S

    2006-01-01

    Connective tissue growth factor (CTGF) plays a role in the fibrotic process of systemic sclerosis (SSc). Because hypoxia is associated with fibrosis in several profibrogenic conditions, we investigated whether CTGF expression in SSc fibroblasts is regulated by hypoxia. Dermal fibroblasts from patients with SSc and healthy controls were cultured in the presence of hypoxia or cobalt chloride (CoCl2), a chemical inducer of hypoxia-inducible factor (HIF)-1α. Expression of CTGF was evaluated by Northern and Western blot analyses. Dermal fibroblasts exposed to hypoxia (1% O2) or CoCl2 (1–100 µM) enhanced expression of CTGF mRNA. Skin fibroblasts transfected with HIF-1α showed the increased levels of CTGF protein and mRNA, as well as nuclear staining of HIF-1α, which was enhanced further by treatment of CoCl2. Simultaneous treatment of CoCl2 and transforming growth factor (TGF)-β additively increased CTGF mRNA in dermal fibroblasts. Interferon-γ inhibited the TGF-β-induced CTGF mRNA expression dose-dependently in dermal fibroblasts, but they failed to hamper the CoCl2-induced CTGF mRNA expression. In addition, CoCl2 treatment increased nuclear factor (NF)-κB binding activity for CTGF mRNA, while decreasing IκBα expression in dermal fibroblasts. Our data suggest that hypoxia, caused possibly by microvascular alterations, up-regulates CTGF expression through the activation of HIF-1α in dermal fibroblasts of SSc patients, and thereby contributes to the progression of skin fibrosis. PMID:17034590

  7. Severe hypoxia induces chemo-resistance in clinical cervical tumors through MVP over-expression

    PubMed Central

    Lara, Pedro C; Lloret, Marta; Clavo, Bernardino; Apolinario, Rosa M; Henríquez-Hernández, Luis Alberto; Bordón, Elisa; Fontes, Fausto; Rey, Agustín

    2009-01-01

    Oxygen molecule modulates tumour response to radiotherapy. Higher radiation doses are required under hypoxic conditions to induce cell death. Hypoxia may inhibit the non-homologous end-joining DNA repair through down regulating Ku70/80 expression. Hypoxia induces drug resistance in clinical tumours, although the mechanism is not clearly elucidated. Vaults are ribonucleoprotein particles with a hollow barrel-like structure composed of three proteins: major vault protein (MVP), vault poly(ADP-ribose) polymerase, and telomerase associated protein-1 and small untranslated RNA. Over-expression of MVP has been associated with chemotherapy resistance. Also, it has been related to poor outcome in patients treated with radiotherapy alone. The aim of the present study was to assess the relation of Major Vault Protein expression and tumor hypoxia in clinical cervical tumors. MVP, p53 and angiogenesis, together with tumor oxygenation, were determined in forty-three consecutive patients suffering from localized cervix carcinoma. High MVP expression was related to severe hypoxia compared to low MVP expressing tumors (p = 0.022). Tumors over-expressing MVP also showed increased angiogenesis (p = 0.003). Besides it, in this study we show for the first time that severe tumor hypoxia is associated with high MVP expression in clinical cervical tumors. Up-regulation of MVP by hypoxia is of critical relevance as chemotherapy is currently a standard treatment for those patients. From our results it could be suggested that hypoxia not only induces increased genetic instability, oncogenic properties and metastatization, but through the correlation observed with MVP expression, another pathway of chemo and radiation resistance could be developed. PMID:19660100

  8. Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

    SciTech Connect

    Satwiko, Muhammad Gahan; Ikeda, Koji; Nakayama, Kazuhiko; Yagi, Keiko; Hocher, Berthold; Hirata, Ken-ichi; Emoto, Noriaki

    2015-09-25

    Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formation in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in

  9. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer.

    PubMed

    Lv, Yingqian; Zhao, Shan; Han, Jinzhu; Zheng, Likang; Yang, Zixin; Zhao, Li

    2015-01-01

    Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF)-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1) were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at -378 to -373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. PMID:26251616

  10. Ketosis may promote brain macroautophagy by activating Sirt1 and hypoxia-inducible factor-1.

    PubMed

    McCarty, Mark F; DiNicolantonio, James J; O'Keefe, James H

    2015-11-01

    Ketogenic diets are markedly neuroprotective, but the basis of this effect is still poorly understood. Recent studies demonstrate that ketone bodies increase neuronal levels of hypoxia-inducible factor-1α (HIF-1α), possibly owing to succinate-mediated inhibition of prolyl hydroxylase activity. Moreover, there is reason to suspect that ketones can activate Sirt1 in neurons, in part by increasing cytoplasmic and nuclear levels of Sirt1's obligate cofactor NAD(+). Another recent study has observed reduced activity of mTORC1 in the hippocampus of rats fed a ketogenic diet - an effect plausibly attributable to Sirt1 activation. Increased activities of HIF-1 and Sirt1, and a decrease in mTORC1 activity, could be expected to collaborate in the induction of neuronal macroautophagy. Considerable evidence points to moderate up-regulation of neuronal autophagy as a rational strategy for prevention of neurodegenerative disorders; elimination of damaged mitochondria that overproduce superoxide, as well as clearance of protein aggregates that mediate neurodegeneration, presumably contribute to this protection. Hence, autophagy may mediate some of the neuroprotective benefits of ketogenic diets. Brain-permeable agents which activate AMP-activated kinase, such as metformin and berberine, as well as the Sirt1 activator nicotinamide riboside, can also boost neuronal autophagy, and may have potential for amplifying the impact of ketogenesis on this process. Since it might not be practical for most people to adhere to ketogenic diets continuously, alternative strategies are needed to harness the brain-protective potential of ketone bodies. These may include ingestion of medium-chain triglycerides or coconut oil, intermittent ketogenic dieting, and possibly the use of supplements that promote hepatic ketogenesis - notably carnitine and hydroxycitrate - in conjunction with dietary regimens characterized by long daily episodes of fasting or carbohydrate avoidance. PMID:26306884

  11. Severe hypoxia induces chemo-resistance in clinical cervical tumors through MVP over-expression.

    PubMed

    Lara, Pedro C; Lloret, Marta; Clavo, Bernardino; Apolinario, Rosa M; Henríquez-Hernández, Luis Alberto; Bordón, Elisa; Fontes, Fausto; Rey, Agustín

    2009-01-01

    Oxygen molecule modulates tumour response to radiotherapy. Higher radiation doses are required under hypoxic conditions to induce cell death. Hypoxia may inhibit the non-homologous end-joining DNA repair through down regulating Ku70/80 expression. Hypoxia induces drug resistance in clinical tumours, although the mechanism is not clearly elucidated. Vaults are ribonucleoprotein particles with a hollow barrel-like structure composed of three proteins: major vault protein (MVP), vault poly(ADP-ribose) polymerase, and telomerase associated protein-1 and small untranslated RNA. Over-expression of MVP has been associated with chemotherapy resistance. Also, it has been related to poor outcome in patients treated with radiotherapy alone. The aim of the present study was to assess the relation of Major Vault Protein expression and tumor hypoxia in clinical cervical tumors. MVP, p53 and angiogenesis, together with tumor oxygenation, were determined in forty-three consecutive patients suffering from localized cervix carcinoma. High MVP expression was related to severe hypoxia compared to low MVP expressing tumors (p = 0.022). Tumors over-expressing MVP also showed increased angiogenesis (p = 0.003). Besides it, in this study we show for the first time that severe tumor hypoxia is associated with high MVP expression in clinical cervical tumors. Up-regulation of MVP by hypoxia is of critical relevance as chemotherapy is currently a standard treatment for those patients. From our results it could be suggested that hypoxia not only induces increased genetic instability, oncogenic properties and metastatization, but through the correlation observed with MVP expression, another pathway of chemo and radiation resistance could be developed. PMID:19660100

  12. p300 relieves p53-evoked transcriptional repression of hypoxia-inducible factor-1 (HIF-1).

    PubMed

    Schmid, Tobias; Zhou, Jie; Köhl, Roman; Brüne, Bernhard

    2004-05-15

    HIF-1 (hypoxia-inducible factor-1), a heterodimeric transcription factor comprising HIF-1alpha and HIF-1beta subunits, serves as a key regulator of metabolic adaptation to hypoxia. HIF-1 activity largely increases during hypoxia by attenuating pVHL (von Hippel-Lindau protein)-dependent ubiquitination and subsequent 26 S-proteasomal degradation of HIF-1alpha. Besides HIF-1, the transcription factor and tumour suppressor p53 accumulates and is activated under conditions of prolonged/severe hypoxia. Recently, the interaction between p53 and HIF-1alpha was reported to evoke HIF-1alpha degradation. Destruction of HIF-1alpha by p53 was corroborated in the present study by using pVHL-deficient RCC4 (renal carcinoma) cells, supporting the notion of a pVHL-independent degradation process. In addition, low p53 expression repressed HIF-1 transactivation without affecting HIF-1alpha protein amount. Establishing that p53-evoked inhibition of HIF-1 reporter activity was relieved upon co-transfection of p300 suggested competition between p53 and HIF-1 for limiting amounts of the shared co-activator p300. This assumption was confirmed by showing competitive binding of in vitro transcription/translation-generated p53 and HIF-1alpha to the CH1 domain of p300 in vitro. We conclude that low p53 expression attenuates HIF-1 transactivation by competing for p300, whereas high p53 expression destroys the HIF-1alpha protein and thereby eliminates HIF-1 reporter activity. Thus once p53 becomes activated under conditions of severe hypoxia/anoxia, it contributes to terminating HIF-1 responses. PMID:14992692

  13. Lack of Bcr and Abr Promotes Hypoxia-Induced Pulmonary Hypertension in Mice

    PubMed Central

    Lim, Min; Arutyunyan, Anna; Groffen, John; Heisterkamp, Nora

    2012-01-01

    Background Bcr and Abr are GTPase activating proteins that specifically downregulate activity of the small GTPase Rac in restricted cell types in vivo. Rac1 is expressed in smooth muscle cells, a critical cell type involved in the pathogenesis of pulmonary hypertension. The molecular mechanisms that underlie hypoxia-associated pulmonary hypertension are not well-defined. Methodology/Principal Findings Bcr and abr null mutant mice were compared to wild type controls for the development of pulmonary hypertension after exposure to hypoxia. Also, pulmonary arterial smooth muscle cells from those mice were cultured in hypoxia and examined for proliferation, p38 activation and IL-6 production. Mice lacking Bcr or Abr exposed to hypoxia developed increased right ventricular pressure, hypertrophy and pulmonary vascular remodeling. Perivascular leukocyte infiltration in the lungs was increased, and under hypoxia bcr−/− and abr−/− macrophages generated more reactive oxygen species. Consistent with a contribution of inflammation and oxidative stress in pulmonary hypertension-associated vascular damage, Bcr and Abr-deficient animals showed elevated endothelial leakage after hypoxia exposure. Hypoxia-treated pulmonary arterial smooth muscle cells from Bcr- or Abr-deficient mice also proliferated faster than those of wild type mice. Moreover, activated Rac1, phosphorylated p38 and interleukin 6 were increased in these cells in the absence of Bcr or Abr. Inhibition of Rac1 activation with Z62954982, a novel Rac inhibitor, decreased proliferation, p38 phosphorylation and IL-6 levels in pulmonary arterial smooth muscle cells exposed to hypoxia. Conclusions Bcr and Abr play a critical role in down-regulating hypoxia-induced pulmonary hypertension by deactivating Rac1 and, through this, reducing both oxidative stress generated by leukocytes as well as p38 phosphorylation, IL-6 production and proliferation of pulmonary arterial smooth muscle cells. PMID:23152932

  14. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer

    PubMed Central

    Lv, Yingqian; Zhao, Shan; Han, Jinzhu; Zheng, Likang; Yang, Zixin; Zhao, Li

    2015-01-01

    Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF)-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1) were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at −378 to −373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. PMID:26251616

  15. Hypoxia-induced endothelial NO synthase gene transcriptional activation is mediated through the tax-responsive element in endothelial cells.

    PubMed

    Min, Jiho; Jin, Yoon-Mi; Moon, Je-Sung; Sung, Min-Sun; Jo, Sangmee Ahn; Jo, Inho

    2006-06-01

    Although hypoxia is known to induce upregulation of endothelial NO synthase (eNOS) gene expression, the underlying mechanism is largely unclear. In this study, we show that hypoxia increases eNOS gene expression through the binding of phosphorylated cAMP-responsive element binding (CREB) protein (pCREB) to the eNOS gene promoter. Hypoxia (1% O2) increased both eNOS expression and NO production, peaking at 24 hours, in bovine aortic endothelial cells, and these increases were accompanied by increases in pCREB. Treatment with the protein kinase A inhibitor H-89 or transfection with dominant-negative inhibitor of CREB reversed the hypoxia-induced increases in eNOS expression and NO production, with concomitant inhibition of the phosphorylation of CREB induced by hypoxia, suggesting an involvement of protein kinase A/pCREB-mediated pathway. To map the regulatory elements of the eNOS gene responsible for pCREB binding under hypoxia, we constructed an eNOS gene promoter (-1600 to +22 nucleotides) fused with a luciferase reporter gene [pGL2-eNOS(-1600)]. Hypoxia (for 24-hour incubation) increased the promoter activity by 2.36+/-0.18-fold in the bovine aortic endothelial cells transfected with pGL2-eNOS(-1600). However, progressive 5'-deletion from -1600 to -873 completely attenuated the hypoxia-induced increase in promoter activity. Electrophoretic mobility shift, anti-pCREB antibody supershift, and site-specific mutation analyses showed that pCREB is bound to the Tax-responsive element (TRE) site, a cAMP-responsive element-like site, located at -924 to -921 of the eNOS promoter. Our data demonstrate that the interaction between pCREB and the Tax-responsive element site within the eNOS promoter may represent a novel mechanism for the mediation of hypoxia-stimulated eNOS gene expression. PMID:16651461

  16. Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1

    PubMed Central

    Chou, Chii-Wen; Wang, Chi-Chung; Wu, Chung-Pu; Lin, Yu-Jung; Lee, Yu-Chun; Cheng, Ya-Wen; Hsieh, Chia-Hung

    2012-01-01

    Tumor cycling hypoxia is now a well-recognized phenomenon in animal and human solid tumors. However, how tumor cycling hypoxia impacts chemotherapy is unclear. In the present study, we explored the impact and the mechanism of cycling hypoxia on tumor microenvironment-mediated chemoresistance. Hoechst 33342 staining and hypoxia-inducible factor–1 (HIF-1) activation labeling together with immunofluorescence imaging and fluorescence-activated cell sorting were used to isolate hypoxic tumor subpopulations from human glioblastoma xenografts. ABCB1 expression, P-glycoprotein function, and chemosensitivity in tumor cells derived from human glioblastoma xenografts or in vitro cycling hypoxic stress-treated glioblastoma cells were determined using Western blot analysis, drug accumulation and efflux assays, and MTT assay, respectively. ABCB1 expression and P-glycoprotein function were upregulated under cycling hypoxia in glioblastoma cells concomitant with decreased responses to doxorubicin and BCNU. However, ABCB1 knockdown inhibited these effects. Moreover, immunofluorescence imaging and flow cytometric analysis for ABCB1, HIF-1 activation, and Hoechst 3342 in glioblastoma revealed highly localized ABCB1 expression predominantly in potentially cycling hypoxic areas with HIF-1 activation and blood perfusion in the solid tumor microenvironment. The cycling hypoxic tumor cells derived from glioblastoma xenografts exhibited higher ABCB1 expression, P-glycoprotein function, and chemoresistance, compared with chronic hypoxic and normoxic cells. Tumor-bearing mice that received YC-1, an HIF-1α inhibitor, exhibited suppressed tumor microenvironment-induced ABCB1 induction and enhanced survival rate in BCNU chemotherapy. Cycling hypoxia plays a vital role in tumor microenvironment-mediated chemoresistance through the HIF-1–dependent induction of ABCB1. HIF-1 blockade before and concurrent with chemotherapy could suppress cycling hypoxia-induced chemoresistance. PMID:22946104

  17. Hepatitis B virus induces hypoxia-inducible factor-2α expression through hepatitis B virus X protein.

    PubMed

    Hu, Jian-Li; Liu, Li-Ping; Yang, Sheng-Li; Fang, Xiefan; Wen, Lu; Ren, Quan-Guang; Yu, Chao

    2016-03-01

    A growing number of studies suggest that the hepatitis B virus X protein (HBx) enhances the protein stability of the hypoxia-inducible factor-1α (HIF-1α). However, the relationship between hepatitis B virus (HBV), HBx and hypoxia-inducible factor-2α (HIF-2α) has not yet been fully elucidated. Immunohistochemical analysis was employed to detect the expression of HIF-2α in normal liver, HBV-related chronic hepatitis, and HBV-related and non-HBV-related hepatocellular carcinoma (HCC) tissues. Quantitative real‑time PCR (qPCR) and western blotting were used to investigate the impact of HBV and HBx on the expression of HIF‑2α. Immunoprecipitation and immunofluorescence were applied to explore the underlying mechanisms. The HIF‑2α expression was found to be higher in HBV‑related chronic hepatitis tissues than in normal liver tissues. Furthermore, it was higher in HBV‑related HCC tissues and HBV‑integrated HepG2 cells than in the corresponding non‑HBV‑related HCC tissues and HepG2 cells. Both HBV and HBx enhanced the protein stability of HIF‑2α. HBx‑mediated upregulation of HIF‑2α resulted mainly from an inhibition of the degradation of HIF‑2α due to the binding of HBx to the von Hippel‑Lindau protein (pVHL). In addition, HBx upregulated the expression of HIF‑2α by activating the NF‑κB signaling pathway. Thus, the present study identified that HBV induces the HIF‑2α expression through its encoded protein HBx. This upregulates the HIF-2α expression by binding to the pVHL activating the NF-κB signaling pathway. PMID:26647960

  18. Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through Toll Like Receptor 9

    PubMed Central

    Liu, Yao; Yan, Wei; Tohme, Samer; Chen, Man; Fu, Yu; Tian, Dean; Lotze, Michael; Tang, Daolin; Tsung, Allan

    2015-01-01

    Background and aims The mechanisms of hypoxia-induced tumor growth remain unclear. Hypoxia induces intracellular translocation and release of a variety of damage associated molecular patterns (DAMPs) such as nuclear HMGB1 and mitochondrial DNA (mtDNA). In inflammation, Toll-like receptor (TLR)-9 activation by DNA-containing immune complexes has been shown to be mediated by HMGB1. We thus hypothesize that HMGB1 binds mtDNA in the cytoplasm of hypoxic tumor cells and promotes tumor growth through activating TLR9 signaling pathways. Methods C57BL6 mice were injected with Hepa1-6 cancer cells. TLR9 and HMGB1 were inhibited using shRNA or direct antagonists. Huh7 and Hepa1-6 cancer cells were investigated in vitro to investigate how the interaction of HMGB1 and mtDNA activates TLR9 signaling pathways. Results During hypoxia, HMGB1 translocates from the nucleus to the cytosol and binds to mtDNA released from damaged mitochondria. This complex subsequently activates TLR9 signaling pathways to promote tumor cell proliferation. Loss of HMGB1 or mtDNA leads to a defect in TLR9 signaling pathways in response to hypoxia, resulting in decreased tumor cell proliferation. Also, the addition of HMGB1 and mtDNA leads to the activation of TLR-9 and subsequent tumor cell proliferation. Moreover, TLR9 is overexpressed in both hypoxic tumor cells in vitro and in human hepatocellular cancer (HCC) specimens; and, knockdown of either HMGB1 or TLR9 from HCC cells suppressed tumor growth in vivo after injection in mice. Conclusions Our data reveals a novel mechanism by which the interactions of HMGB1 and mtDNA activate TLR9 signaling during hypoxia to induce tumor growth. PMID:25681553

  19. Protective effect of allicin on high glucose/hypoxia-induced aortic endothelial cells via reduction of oxidative stress

    PubMed Central

    WANG, SHU-LI; LIU, DE-SHAN; LIANG, ER-SHUN; GAO, YAN-HUA; CUI, YING; LIU, YU-ZHAO; GAO, WEI

    2015-01-01

    This study was designed to explore the protective effect of allicin on aortic endothelial cell injury induced by high glucose/hypoxia and to investigate the corresponding mechanisms. The primary-cultured murine aortic endothelial cells were subcultured. The third passage of cells was adopted and randomly divided into five groups: The normal group (NG), the mannitol group (MG), the high-glucose/hypoxia group (HG), the allicin group (AG) and the protein kinase C (PKC) inhibitor group (GG). The general morphology was observed under an inverted phase-contrast microscope and cell viability was assessed using the MTT assay. Intracellular reactive oxygen species (ROS) levels in the endothelial cells were quantified using dihydroethidium staining. The levels of 8-hydroxydeoxyguanosine (8-OHdG), nuclear factor-κB (NF-κB), NADPH oxidase 4 (Nox4) and hypoxia-inducible factor-1α (HIF-1α) and the activity of PKC were measured using ELISA. A quantitative polymerase chain reaction (qPCR) was adopted to evaluate the mRNA expression of Nox4, HIF-1α and NF-κB. The altered cell morphology observed in HG was notably ameliorated in the AG and GG. The protein levels of 8-OHdG, NF-κB, Nox4, HIF-1α and PKC in the HG were higher than those in the other groups. Furthermore, the cell viability in the AG was significantly increased and the protein levels of 8-OHdG, NF-κB, Nox4, HIF-1α and PKC were significantly decreased compared with those in the HG. The ROS production was found to be increased in the HG cells, while there was a significant decrease in the AG cells. These data indicate that allicin exerts a protective effect against high glucose/hypoxia-induced injury in aortic endothelial cells through its antioxidative action, which may involve the inhibition of the PKC pathway and regulation of HIF-1α. PMID:26622496

  20. A Critical Role of the mTOR/eIF2α Pathway in Hypoxia-Induced Pulmonary Hypertension

    PubMed Central

    Wang, Ai-ping; Li, Xiao-hui; Yang, Yong-mei; Li, Wen-qun; Zhang, Wang; Hu, Chang-ping; Zhang, Zheng; Li, Yuan-jian

    2015-01-01

    Enhanced proliferation of pulmonary arterial vascular smooth muscle cells (PASMCs) is a key pathological component of vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Mammalian targeting of rapamycin (mTOR) signaling has been shown to play a role in protein translation and participate in the progression of pulmonary hypertension. Eukaryotic translation initiation factor-2α (eIF2α) is a key factor in regulation of cell growth and cell cycle, but its role in mTOR signaling and PASMCs proliferation remains unknown. Pulmonary hypertension (PH) rat model was established by hypoxia. Rapamycin was used to treat rats as an mTOR inhibitor. Proliferation of primarily cultured rat PASMCs was induced by hypoxia, rapamycin and siRNA of mTOR and eIF2α were used in loss-of-function studies. The expression and activation of eIF2α, mTOR and c-myc were analyzed. Results showed that mTOR/eIF2α signaling was significantly activated in pulmonary arteries from hypoxia exposed rats and PASMCs cultured under hypoxia condition. Treatment with mTOR inhibitor for 21 days attenuated vascular remodeling, suppressed mTOR and eIF2α activation, inhibited c-myc expression in HPH rats. In hypoxia-induced PASMCs, rapamycin and knockdown of mTOR and eIF2α by siRNA significantly abolished proliferation and increased c-myc expression. These results suggest a critical role of the mTOR/eIF2αpathway in hypoxic vascular remodeling and PASMCs proliferation of HPH. PMID:26120832

  1. Hypoxia induces tumor and endothelial cell migration in a semaphorin 3F- and VEGF-dependent manner via transcriptional repression of their common receptor neuropilin 2.

    PubMed

    Coma, Silvia; Shimizu, Akio; Klagsbrun, Michael

    2011-01-01

    Neuropilin-2 (NRP2) is a receptor expressed by tumor cells and endothelial cells (EC) that binds both semaphorin 3F (SEMA3F), a potent inhibitor of tumor angiogenesis and metastasis, and vascular endothelial growth factor (VEGF), a potent stimulator of tumor angiogenesis. It was found that glioblastoma and melanoma cells repressed NRP2 expression when maintained under hypoxic conditions and after treatment with the hypoxia-mimetic agent desferrioxamine (DFO), at both the mRNA and protein levels. Silencing of HIF1-α, the hypoxia-induced subunit of the hypoxia inducible factor (HIF), abrogated DFO-induced NRP2 repression. Conversely, ectopic expression of HIF1-α directly repressed NRP2 promoter activity and expression. NRP2 is the sole receptor for SEMA3F. Loss of NRP2 expression in tumor cells inhibited SEMA3F-dependent activities, such as inactivation of RhoA, depolymerization of F-actin, and inhibition of tumor cell migration. On the other hand, loss of NRP2 expression in tumor cells increased VEGF protein levels in conditioned media, with no effects on VEGF mRNA levels. This increase in VEGF protein levels promoted paracrine activation of EC, including VEGF receptor-2 phosphorylation, and activation of downstream signaling proteins such as p44/42 MAPK and p38 MAPK. In addition, the elevated VEGF levels induced EC migration and sprouting, two key steps of tumor angiogenesis in vivo. It was concluded that hypoxia regulates VEGF and SEMA3F activities through transcriptional repression of their common receptor NRP2, providing a novel mechanism by which hypoxia induces tumor angiogenesis, growth and metastasis. PMID:21610314

  2. Members Only: Hypoxia-Induced Cell-Cycle Activation in Cardiomyocytes.

    PubMed

    Sharma, Arun; Wu, Sean M

    2015-09-01

    A low level of cardiomyocyte turnover occurs in the adult mammalian heart, but the source of these new cells remains unknown. Kimura et al., 2015 utilized a novel hypoxia-induced fate mapping system to identify a rare population of adult cardiomyocytes undergoing cell-cycle entry and expansion in healthy adult hearts and following ischemic injury. PMID:26331604

  3. PRDX2 and PRDX4 are negative regulators of hypoxia-inducible factors under conditions of prolonged hypoxia

    PubMed Central

    Luo, Weibo; Chen, Ivan; Chen, Yan; Alkam, Duah; Wang, Yingfei; Semenza, Gregg L.

    2016-01-01

    Hypoxia-inducible factors (HIFs) control the transcription of genes that are crucial for the pathogenesis of cancer and other human diseases. The transcriptional activity of HIFs is rapidly increased upon exposure to hypoxia, but expression of some HIF target genes decreases during prolonged hypoxia. However, the underlying mechanism for feedback inhibition is not completely understood. Here, we report that peroxiredoxin 2 (PRDX2) and PRDX4 interact with HIF-1α and HIF-2α in vitro and in hypoxic HeLa cells. Prolonged hypoxia increases the nuclear translocation of PRDX2 and PRDX4. As a result, PRDX2 and PRDX4 impair HIF-1 and HIF-2 binding to the hypoxia response elements of a subset of HIF target genes, thereby inhibiting gene transcription in cells exposed to prolonged hypoxia. PRDX2 and PRDX4 have no effect on the recruitment of p300 and RNA polymerase II to HIF target genes and the enzymatic activity of PRDX2 and PRDX4 is not required for inhibition of HIF-1 and HIF-2. We also demonstrate that PRDX2 is a direct HIF target gene and that PRDX2 expression is induced by prolonged hypoxia. These findings uncover a novel feedback mechanism for inhibition of HIF transcriptional activity under conditions of prolonged hypoxia. PMID:26837221

  4. Modulatory effects of seabuckthorn (Hippophae rhamnoides L.) in hypobaric hypoxia induced cerebral vascular injury.

    PubMed

    Purushothaman, Jayamurthy; Suryakumar, Geetha; Shukla, Dhananjay; Malhotra, Anand Swaroop; Kasiganesan, Harinath; Kumar, Ratan; Sawhney, Ramesh Chand; Chami, Arumughan

    2008-11-25

    Cerebral edema caused by vascular leakage is a major problem in various injuries of the CNS, such as stroke, head injury and high-altitude illness. A common feature of all these disorders is the fact that they are associated with tissue hypoxia. Hypoxia has been suggested to be a major pathogenic factor for the induction of vascular leakage in the brain. The objective of the present study was to evaluate potential of seabuckthorn (SBT) (Hippophae rhamnoides L.) seed oil in curtailing hypoxia induced transvascular fluid leakage in brain of hypoxia-exposed rats. Exposure of animals to hypobaric hypoxia (9144 m, 5h) caused a significant increase in the transvascular leakage studied by measuring water content and leakage of sodium fluorescein dye in the brain. Hypoxic stress also significantly enhanced the oxidative stress markers such as free radicals and malondialdehyde and it accompanied with decreased levels of antioxidants such as glutathione, glutathione peroxidase and superoxide dismutase. Pretreatment of animals with SBT seed oil significantly restricted the hypoxia induced increase in fluorescein dye leakage suggesting protection against hypoxia induced transvascular leakage in the brain. Hypoxia induced increase in the levels of free radicals and malondialdehyde were significantly lowered after SBT pretreatment. The SBT seed oil pretreatment also resulted in the significantly improved hypoxic tolerance as evidenced by increased hypoxic gasping time and survival time and decreased plasma catecholamine levels, as compared to hypoxic animals. These observations suggest that SBT seed oil possesses significant hypoxia protection activity and curtailed hypoxia induced enhanced vascular leakage in the brain. PMID:18824077

  5. The mRNA-binding protein HuR promotes hypoxia-induced chemoresistance through posttranscriptional regulation of the proto-oncogene PIM1 in pancreatic cancer cells.

    PubMed

    Blanco, F F; Jimbo, M; Wulfkuhle, J; Gallagher, I; Deng, J; Enyenihi, L; Meisner-Kober, N; Londin, E; Rigoutsos, I; Sawicki, J A; Risbud, M V; Witkiewicz, A K; McCue, P A; Jiang, W; Rui, H; Yeo, C J; Petricoin, E; Winter, J M; Brody, J R

    2016-05-01

    Previously, it has been shown that pancreatic ductal adenocarcinoma (PDA) tumors exhibit high levels of hypoxia, characterized by low oxygen pressure (pO2) and decreased O2 intracellular perfusion. Chronic hypoxia is strongly associated with resistance to cytotoxic chemotherapy and chemoradiation in an understudied phenomenon known as hypoxia-induced chemoresistance. The hypoxia-inducible, pro-oncogenic, serine-threonine kinase PIM1 (Proviral Integration site for Moloney murine leukemia virus 1) has emerged as a key regulator of hypoxia-induced chemoresistance in PDA and other cancers. Although its role in therapeutic resistance has been described previously, the molecular mechanism behind PIM1 overexpression in PDA is unknown. Here, we demonstrate that cis-acting AU-rich elements (ARE) present within a 38-base pair region of the PIM1 mRNA 3'-untranslated region mediate a regulatory interaction with the mRNA stability factor HuR (Hu antigen R) in the context of tumor hypoxia. Predominantly expressed in the nucleus in PDA cells, HuR translocates to the cytoplasm in response to hypoxic stress and stabilizes the PIM1 mRNA transcript, resulting in PIM1 protein overexpression. A reverse-phase protein array revealed that HuR-mediated regulation of PIM1 protects cells from hypoxic stress through phosphorylation and inactivation of the apoptotic effector BAD and activation of MEK1/2. Importantly, pharmacological inhibition of HuR by MS-444 inhibits HuR homodimerization and its cytoplasmic translocation, abrogates hypoxia-induced PIM1 overexpression and markedly enhances PDA cell sensitivity to oxaliplatin and 5-fluorouracil under physiologic low oxygen conditions. Taken together, these results support the notion that HuR has prosurvival properties in PDA cells by enabling them with growth advantages in stressful tumor microenvironment niches. Accordingly, these studies provide evidence that therapeutic disruption of HuR's regulation of PIM1 may be a key strategy in

  6. Agmatine enhances antidepressant potency of MK-801 and conventional antidepressants in mice.

    PubMed

    Neis, Vivian Binder; Moretti, Morgana; Manosso, Luana Meller; Lopes, Mark W; Leal, Rodrigo Bainy; Rodrigues, Ana Lúcia S

    2015-03-01

    Agmatine, an endogenous guanidine amine, has been shown to produce antidepressant-like effects in animal studies. This study investigated the effects of the combined administration of agmatine with either conventional monoaminergic antidepressants or the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 in the tail suspension test (TST) in mice. The aim was to evaluate the extent of the antidepressant synergism by examining the ability of a fixed dose of agmatine to shift the antidepressant potency of fluoxetine, imipramine, bupropion and MK-801. A sub-effective dose of agmatine (0.0001 mg/kg, p.o.) significantly increased the potency by which fluoxetine, imipramine, bupropion and MK-801 decreased immobility time in the TST by 2-fold (fluoxetine), 10-fold (imipramine and bupropion) and 100-fold (MK-801). Combined with previous evidence indicating a role of monoaminergic systems in the effect of agmatine, the current data suggest that agmatine may modulate monoaminergic neurotransmission and augment the activity of conventional antidepressants. Moreover, this study found that agmatine substantially augmented the antidepressant-like effect of MK-801, reinforcing the notion that this compound modulates NMDA receptor activation. These preclinical data may stimulate future clinical studies testing the effects of augmentation therapy with agmatine for the management of depressive disorders. PMID:25553821

  7. Expression of angiopoietin-1 in hypoxic pericytes: Regulation by hypoxia-inducible factor-2α and participation in endothelial cell migration and tube formation.

    PubMed

    Park, Yoon Shin; Kim, Gyungah; Jin, Yoon Mi; Lee, Jee Young; Shin, Jong Wook; Jo, Inho

    2016-01-01

    We previously reported that hypoxia increases angiopoietin-1 (Ang1), but not Ang2, mRNA expression in bovine retinal pericytes (BRP). However, the mechanism underlying Ang1 expression is unknown. Here, we report that Ang1 protein expression increased in hypoxic BRP in a dose- and time-dependent manner. This increase was accompanied by an increase in hypoxia-inducible factor-2α (HIF2α) expression. Transfection with an antisense oligonucleotide for HIF2α partially inhibited the hypoxia-induced increase in Ang1 expression. HIF2α overexpression further potentiated hypoxia-stimulated Ang1 expression, suggesting that HIF2α plays an important role in Ang1 regulation in BRP. When fused the Ang1 promoter (-3040 to +199) with the luciferase reporter gene, we found that hypoxia significantly increased promoter activity by 4.02 ± 1.68 fold. However, progressive 5'-deletions from -3040 to -1799, which deleted two putative hypoxia response elements (HRE), abolished the hypoxia-induced increase in promoter activity. An electrophoretic mobility shift assay revealed that HIF2α was predominantly bound to a HRE site, located specifically at nucleotides -2715 to -2712. Finally, treatment with conditioned medium obtained from hypoxic pericytes stimulated endothelial cell migration and tube formation, which was completely blocked by co-treatment with anti-Ang1 antibody. This study is the first to demonstrate that hypoxia upregulates Ang1 expression via HIF2α-mediated transcriptional activation in pericytes, which plays a key role in angiogenesis. PMID:26655815

  8. TRPC6 is required for hypoxia-induced basal intracellular calcium concentration elevation, and for the proliferation and migration of rat distal pulmonary venous smooth muscle cells.

    PubMed

    Wang, Qingjie; Wang, Dong; Yan, Gaoling; Sun, Ling; Tang, Chengchun

    2016-02-01

    Hypoxia induces pulmonary vasoconstriction and reconstruction in the pulmonary arteries and pulmonary veins (PVs), and elevation of intracellular calcium concentration ([Ca2+]i) is a primary factor of these processes. In the present study, the role of transient receptor potential cation channels (TRPCs) in mediating the hypoxia-induced elevation of [Ca2+]i in rat distal pulmonary venous smooth muscle cells (PVSMCs) was investigated. Rats with chronic hypoxic pulmonary hypertension (CHPH) were used for in vivo experiments, and PVSMCs were isolated for in vitro experiments. [Ca2+]i was measured using fura-2-based fluorescence calcium imaging. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to detect the mRNA and protein expression levels of TRPCs. Methyl thiazolyl tetrazolium and Transwell assays were used to investigate the proliferation and migration of PVSMCs, respectively. The results of the present study demonstrated that TRPC6 was increased in the distal PVs of CHPH rats, and in PVSMCs exposed to hypoxic conditions (4% O2, 72 h); however, TRPC1 was not. The 1-oleoyl-2-acetyl-sn-glycerol-induced [Ca2+]i elevation was increased in PVSMCs isolated from CHPH rats and in PVSMCs cultured under hypoxic conditions (4% O2, 72 h). Hypoxia induced PVSMC [Ca2+]i elevation, proliferation and migration. These alterations were inhibited following TRPC6 knockdown. Results from the present study suggest that TRPC6 expression is increased during chronic hypoxia, which contributes to Ca2+ entry into the cell, thus promoting proliferation and migration of PVSMCs. PMID:26718737

  9. TRPC6 is required for hypoxia-induced basal intracellular calcium concentration elevation, and for the proliferation and migration of rat distal pulmonary venous smooth muscle cells

    PubMed Central

    WANG, QINGJIE; WANG, DONG; YAN, GAOLING; SUN, LING; TANG, CHENGCHUN

    2016-01-01

    Hypoxia induces pulmonary vasoconstriction and reconstruction in the pulmonary arteries and pulmonary veins (PVs), and elevation of intracellular calcium concentration ([Ca2+]i) is a primary factor of these processes. In the present study, the role of transient receptor potential cation channels (TRPCs) in mediating the hypoxia-induced elevation of [Ca2+]i in rat distal pulmonary venous smooth muscle cells (PVSMCs) was investigated. Rats with chronic hypoxic pulmonary hypertension (CHPH) were used for in vivo experiments, and PVSMCs were isolated for in vitro experiments. [Ca2+]i was measured using fura-2-based fluorescence calcium imaging. Reverse transcription-quantitative polymerase chain reaction and western blotting were used to detect the mRNA and protein expression levels of TRPCs. Methyl thiazolyl tetrazolium and Transwell assays were used to investigate the proliferation and migration of PVSMCs, respectively. The results of the present study demonstrated that TRPC6 was increased in the distal PVs of CHPH rats, and in PVSMCs exposed to hypoxic conditions (4% O2, 72 h); however, TRPC1 was not. The 1-oleoyl-2-acetyl-sn-glycerol-induced [Ca2+]i elevation was increased in PVSMCs isolated from CHPH rats and in PVSMCs cultured under hypoxic conditions (4% O2, 72 h). Hypoxia induced PVSMC [Ca2+]i elevation, proliferation and migration. These alterations were inhibited following TRPC6 knockdown. Results from the present study suggest that TRPC6 expression is increased during chronic hypoxia, which contributes to Ca2+ entry into the cell, thus promoting proliferation and migration of PVSMCs. PMID:26718737

  10. NECAB3 Promotes Activation of Hypoxia-inducible factor-1 during Normoxia and Enhances Tumourigenicity of Cancer Cells

    PubMed Central

    Nakaoka, Hiroki J.; Hara, Toshiro; Yoshino, Seiko; Kanamori, Akane; Matsui, Yusuke; Shimamura, Teppei; Sato, Hiroshi; Murakami, Yoshinori; Seiki, Motoharu; Sakamoto, Takeharu

    2016-01-01

    Unlike most cells, cancer cells activate hypoxia inducible factor-1 (HIF-1) to use glycolysis even at normal oxygen levels, or normoxia. Therefore, HIF-1 is an attractive target in cancer therapy. However, the regulation of HIF-1 during normoxia is not well characterised, although Mint3 was recently found to activate HIF-1 in cancer cells and macrophages by suppressing the HIF-1 inhibitor, factor inhibiting HIF-1 (FIH-1). In this study, we analysed Mint3-binding proteins to investigate the mechanism by which Mint3 regulates HIF-1. Yeast two-hybrid screening using Mint3 as bait identified N-terminal EF-hand calcium binding protein 3 (NECAB3) as a novel factor regulating HIF-1 activity via Mint3. NECAB3 bound to the phosphotyrosine-binding domain of Mint3, formed a ternary complex with Mint3 and FIH-1, and co-localised with Mint3 at the Golgi apparatus. Depletion of NECAB3 decreased the expression of HIF-1 target genes and reduced glycolysis in normoxic cancer cells. NECAB3 mutants that binds Mint3 but lacks an intact monooxygenase domain also inhibited HIF-1 activation. Inhibition of NECAB3 in cancer cells by either expressing shRNAs or generating a dominant negative mutant reduced tumourigenicity. Taken together, the data indicate that NECAB3 is a promising new target for cancer therapy. PMID:26948053

  11. von Hippel-Lindau β-domain-luciferase fusion protein as a bioluminescent hydroxyproline sensor for a hypoxia-inducible factor prolyl hydroxylase assay.

    PubMed

    Hong, Sungchae; Yum, Soohwan; Ha, Nam-Chul; Jung, Yunjin

    2010-12-15

    Hypoxia-inducible factor prolyl hydroxylases (HPHs) are responsible for hydroxylation of proline residues in hypoxia-inducible factor-α (HIF-α), resulting in von Hippel-Lindau (VHL)-mediated proteasome degradation of the hydroxylated proteins. Pharmacological inhibition of the enzyme leads to stabilization of HIF-α proteins and consequent activation of HIF, which provides therapeutic benefit for a variety of tissues undergoing ischemic stress. In an effort to develop a new assay for measuring HPH activity, we designed a fusion protein, VHL β-domain-luciferase. Recombinant fusion protein with a glutathione S-transferase (GST) tag was purified from Escherichia coli. GST-VHL β-domain-luciferase with C-terminal deletion (GVbL-CD) was obtained as a major product and found to have luciferase activity. In a GVbL-CD capture assay using HIF peptide-bound beads, at least a 13-fold increase in luciferase activity was elicited for HIF peptide with hydroxyproline compared with unhydroxylated HIF peptide. HPH inhibitory activities of known HPH inhibitors or HIF-1α inducers were assessed using this assay, whose results were in good agreement with those obtained from conventional methods. The competitive effect of 2-ketoglutarate on dimethyloxalylglycine-mediated HPH inhibition was assessed very well in the new assay. Taken together, the VHL β-domain protein with luciferase activity is of use for HPH activity assay. PMID:20705044

  12. Hypoxia-inducible factor-1 modulates upregulation of mutT homolog-1 in colorectal cancer

    PubMed Central

    Qiu, Yuan; Zheng, Hong; Sun, Li-Hua; Peng, Ke; Xiao, Wei-Dong; Yang, Hua

    2015-01-01

    AIM: To investigate the roles and interactions of mutT homolog (MTH)-1 and hypoxia-inducible factor (HIF)-1α in human colorectal cancer (CRC). METHODS: The expression and distribution of HIF-1α and MTH-1 proteins were detected in human CRC tissues by immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). SW480 and HT-29 cells were exposed to normoxia or hypoxia. Protein and mRNA levels of HIF-1α and MTH-1 were analyzed by western blotting and qRT-PCR, respectively. In order to determine the effect of HIF-1α on the expression of MTH-1 and the amount of 8-oxo-deoxyguanosine triphosphate (dGTP) in SW480 and HT-29 cells, HIF-1α was silenced with small interfering RNA (siRNA). Growth studies were conducted on cells with HIF-1α inhibition using a xenograft tumor model. Finally, MTH-1 protein was detected by western blotting in vivo. RESULTS: High MTH-1 mRNA expression was detected in 64.2% of cases (54/84), and this was significantly correlated with tumor stage (P = 0.023) and size (P = 0.043). HIF-1α protein expression was correlated significantly with MTH-1 expression (R = 0.640; P < 0.01) in human CRC tissues. Hypoxic stress induced mRNA and protein expression of MTH-1 in SW480 and HT-29 cells. Inhibition of HIF-1α by siRNA decreased the expression of MTH-1 and led to the accumulation of 8-oxo-dGTP in SW480 and HT-29 cells. In the in vivo xenograft tumor model, expression of MTH-1 was decreased in the HIF-1α siRNA group, and the tumor volume was much smaller than that in the mock siRNA group. CONCLUSION: MTH-1 expression in CRC cells was upregulated via HIF-1α in response to hypoxic stress, emphasizing the crucial role of HIF-1α-induced MTH-1 in tumor growth. PMID:26730155

  13. Nonhypoxic regulation and role of hypoxia-inducible factor 1 in aromatase inhibitor resistant breast cancer

    PubMed Central

    2014-01-01

    Introduction Although aromatase inhibitors (AIs; for example, letrozole) are highly effective in treating estrogen receptor positive (ER+) breast cancer, a significant percentage of patients either do not respond to AIs or become resistant to them. Previous studies suggest that acquired resistance to AIs involves a switch from dependence on ER signaling to dependence on growth factor-mediated pathways, such as human epidermal growth factor receptor-2 (HER2). However, the role of HER2, and the identity of other relevant factors that may be used as biomarkers or therapeutic targets remain unknown. This study investigated the potential role of transcription factor hypoxia inducible factor 1 (HIF-1) in acquired AI resistance, and its regulation by HER2. Methods In vitro studies using AI (letrozole or exemestane)-resistant and AI-sensitive cells were conducted to investigate the regulation and role of HIF-1 in AI resistance. Western blot and RT-PCR analyses were conducted to compare protein and mRNA expression, respectively, of ERα, HER2, and HIF-1α (inducible HIF-1 subunit) in AI-resistant versus AI-sensitive cells. Similar expression analyses were also done, along with chromatin immunoprecipitation (ChIP), to identify previously known HIF-1 target genes, such as breast cancer resistance protein (BCRP), that may also play a role in AI resistance. Letrozole-resistant cells were treated with inhibitors to HER2, kinase pathways, and ERα to elucidate the regulation of HIF-1 and BCRP. Lastly, cells were treated with inhibitors or inducers of HIF-1α to determine its importance. Results Basal HIF-1α protein and BCRP mRNA and protein are higher in AI-resistant and HER2-transfected cells than in AI-sensitive, HER2- parental cells under nonhypoxic conditions. HIF-1α expression in AI-resistant cells is likely regulated by HER2 activated-phosphatidylinositide-3-kinase/Akt-protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway, as its expression was inhibited

  14. Stanniocalcin-1 is induced by hypoxia inducible factor in rat alveolar epithelial cells.

    PubMed

    Ito, Yoko; Zemans, Rachel; Correll, Kelly; Yang, Ivana V; Ahmad, Aftab; Gao, Bifeng; Mason, Robert J

    2014-10-01

    Alveolar type II (ATII) cells remain differentiated and express surfactant proteins when cultured at an air-liquid (A/L) interface. When cultured under submerged conditions, ATII cells dedifferentiate and change their gene expression profile. We have previously shown that gene expression under submerged conditions is regulated by hypoxia inducible factor (HIF) signaling due to focal hypoxia resulting from ATII cell metabolism. Herein, we sought to further define gene expression changes in ATII cells cultured under submerged conditions. We performed a genome wide microarray on RNA extracted from rat ATII cells cultured under submerged conditions for 24-48h after switching from an A/L interface. We found significant alterations in gene expression, including upregulation of the HIF target genes stanniocalcin-1 (STC1), tyrosine hydroxylase (Th), enolase (Eno) 2, and matrix metalloproteinase (MMP) 13, and we verified upregulation of these genes by RT-PCR. Because STC1, a highly evolutionarily conserved glycoprotein with anti-inflammatory, anti-apoptotic, anti-oxidant, and wound healing properties, is widely expressed in the lung, we further explored the potential functions of STC1 in the alveolar epithelium. We found that STC1 was induced by hypoxia and HIF in rat ATII cells, and this induction occurred rapidly and reversibly. We also showed that recombinant human STC1 (rhSTC1) enhanced cell motility with extended lamellipodia formation in alveolar epithelial cell (AEC) monolayers but did not inhibit the oxidative damage induced by LPS. We also confirmed that STC1 was upregulated by hypoxia and HIF in human lung epithelial cells. In this study, we have found that several HIF target genes including STC1 are upregulated in AECs by a submerged condition, that STC1 is regulated by hypoxia and HIF, that this regulation is rapidly and reversibly, and that STC1 enhances wound healing moderately in AEC monolayers. However, STC1 did not inhibit oxidative damage in rat AECs

  15. Circulating factors are involved in hypoxia-induced hepcidin suppression.

    PubMed

    Ravasi, Giulia; Pelucchi, Sara; Greni, Federico; Mariani, Raffaella; Giuliano, Andrea; Parati, Gianfranco; Silvestri, Laura; Piperno, Alberto

    2014-12-01

    Hepcidin transcription is strongly down-regulated under hypoxic conditions, however whether hypoxia inhibits hepcidin directly or indirectly is still unknown. We investigated the time course of hypoxia-mediated hepcidin down-regulation in vivo in healthy volunteers exposed to hypobaric hypoxia at high altitude and, based on the hypothesis that circulating factors are implicated in hepcidin inhibition, we analyzed the effect of sera of these volunteers exposed to normoxia and hypoxia on hepcidin expression in Huh-7 cell lines. Hypoxia led to a significant hepcidin down-regulation in vivo that was almost complete within 72h of exposure and followed erythropoietin induction. This delay in hepcidin down-regulation suggests the existence of soluble factor/s regulating hepcidin production. We then stimulated HuH-7 cells with normoxic and hypoxic sera to analyze the effects of sera on hepcidin regulation. Hypoxic sera had a significant inhibitory effect on hepcidin promoter activity assessed by a luciferase assay, although the amount of such decrease was not as relevant as that observed in vivo. Cellular mRNA analysis showed that a number of volunteers' sera inhibited hepcidin expression, concurrently with ID1 inhibition, suggesting that inhibitory factor(s) may act through the SMAD-pathway. PMID:25065484

  16. Sphingosine kinase 1: a new modulator of hypoxia inducible factor 1alpha during hypoxia in human cancer cells.

    PubMed

    Ader, Isabelle; Brizuela, Leyre; Bouquerel, Pierre; Malavaud, Bernard; Cuvillier, Olivier

    2008-10-15

    Here, we provide the first evidence that sphingosine kinase 1 (SphK1), an oncogenic lipid kinase balancing the intracellular level of key signaling sphingolipids, modulates the transcription factor hypoxia inducible factor 1alpha (HIF-1alpha), master regulator of hypoxia. SphK1 activity is stimulated under low oxygen conditions and regulated by reactive oxygen species. The SphK1-dependent stabilization of HIF-1alpha levels is mediated by the Akt/glycogen synthase kinase-3beta signaling pathway that prevents its von Hippel-Lindau protein-mediated degradation by the proteasome. The pharmacologic and RNA silencing inhibition of SphK1 activity prevents the accumulation of HIF-1alpha and its transcriptional activity in several human cancer cell lineages (prostate, brain, breast, kidney, and lung), suggesting a canonical pathway. Therefore, we propose that SphK1 can act as a master regulator for hypoxia, giving support to its inhibition as a valid strategy to control tumor hypoxia and its molecular consequences. PMID:18922940

  17. Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency.

    PubMed

    Mathieu, Julie; Zhou, Wenyu; Xing, Yalan; Sperber, Henrik; Ferreccio, Amy; Agoston, Zsuzsa; Kuppusamy, Kavitha T; Moon, Randall T; Ruohola-Baker, Hannele

    2014-05-01

    Pluripotent stem cells have distinct metabolic requirements, and reprogramming cells to pluripotency requires a shift from oxidative to glycolytic metabolism. Here, we show that this shift occurs early during reprogramming of human cells and requires hypoxia-inducible factors (HIFs) in a stage-specific manner. HIF1α and HIF2α are both necessary to initiate this metabolic switch and for the acquisition of pluripotency, and the stabilization of either protein during early phases of reprogramming is sufficient to induce the switch to glycolytic metabolism. In contrast, stabilization of HIF2α during later stages represses reprogramming, partly because of the upregulation of TNF-related apoptosis-inducing ligand (TRAIL). TRAIL inhibits induced pluripotent stem cell (iPSC) generation by repressing apoptotic caspase 3 activity specifically in cells undergoing reprogramming but not human embryonic stem cells (hESCs), and inhibiting TRAIL activity enhances human iPSC generation. These results shed light on the mechanisms underlying the metabolic shifts associated with the acquisition of a pluripotent identity during reprogramming. PMID:24656769

  18. Neuron-derived orphan receptor 1 transduces survival signals in neuronal cells in response to hypoxia-induced apoptotic insults.

    PubMed

    Chio, Chung-Ching; Wei, Li; Chen, Tyng Guey; Lin, Chien-Min; Shieh, Ja-Ping; Yeh, Poh-Shiow; Chen, Ruei-Ming

    2016-06-01

    OBJECT Hypoxia can induce cell death or trigger adaptive mechanisms to guarantee cell survival. Neuron-derived orphan receptor 1 (NOR-1) works as an early-response protein in response to a variety of environmental stresses. In this study, the authors evaluated the roles of NOR-1 in hypoxia-induced neuronal insults. METHODS Neuro-2a cells were exposed to oxygen/glucose deprivation (OGD). Cell viability, cell morphology, cas-pase-3 activity, DNA fragmentation, and cell apoptosis were assayed to determine the mechanisms of OGD-induced neuronal insults. RNA and protein analyses were carried out to evaluate the effects of OGD on expressions of NOR-1, cAMP response element-binding (CREB), and cellular inhibitor of apoptosis protein 2 (cIAP2) genes. Translations of these gene expressions were knocked down using RNA interference. Mice subjected to traumatic brain injury (TBI) and NOR-1 was immunodetected. RESULTS Exposure of neuro-2a cells to OGD decreased cell viability in a time-dependent manner. Additionally, OGD led to cell shrinkage, DNA fragmentation, and cell apoptosis. In parallel, treatment of neuro-2a cells with OGD time dependently increased cellular NOR-1 mRNA and protein expressions. Interestingly, administration of TBI also augmented NOR-1 levels in the impacted regions of mice. As to the mechanism, exposure to OGD increased nuclear levels of the transcription factor CREB protein. Downregulating CREB expression using RNA interference simultaneously inhibited OGD-induced NOR-1 mRNA expression. Also, levels of cIAP2 mRNA and protein in neuro-2a cells were augmented by OGD. After reducing cIAP2 translation, OGD-induced cell death was reduced. Sequentially, application of NOR-1 small interfering RNA to neuro-2a cells significantly inhibited OGD-induced cIAP2 mRNA expression and concurrently alleviated hypoxia-induced alterations in cell viability, caspase-3 activation, DNA damage, and cell apoptosis. CONCLUSIONS This study shows that NOR-1 can transduce survival

  19. Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis.

    PubMed

    Wong, Carmen Chak-Lui; Zhang, Huafeng; Gilkes, Daniele M; Chen, Jasper; Wei, Hong; Chaturvedi, Pallavi; Hubbi, Maimon E; Semenza, Gregg L

    2012-07-01

    Intratumoral hypoxia, a frequent finding in metastatic cancer, results in the activation of hypoxia-inducible factors (HIFs). HIFs are implicated in many steps of breast cancer metastasis, including metastatic niche formation through increased expression of lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) proteins, enzymes that remodel collagen at the metastatic site and recruit bone marrow-derived cells (BMDCs) to the metastatic niche. We investigated the effect of two chemically and mechanistically distinct HIF inhibitors, digoxin and acriflavine, on breast cancer metastatic niche formation. Both drugs blocked the hypoxia-induced expression of LOX and LOXL proteins, collagen cross-linking, CD11b⁺ BMDC recruitment, and lung metastasis in an orthotopic breast cancer model. Patients with HIF-1 α-overexpressing breast cancers are at increased risk of metastasis and mortality and our results suggest that such patients may benefit from aggressive therapy that includes a HIF inhibitor. PMID:22231744

  20. Protective effects of thoracic epidural anesthesia on hypoxia-induced acute lung injury in rabbits

    PubMed Central

    WANG, LIJUN; CANG, JING; XUE, ZHANGGANG

    2016-01-01

    The mechanism underlying the effect of thoracic epidural anesthesia (TEA) on hypoxia-induced acute lung injury (ALI) is currently unknown. In the present study, a rabbit acute lung injury model was established to investigate the effects of TEA on inflammatory factors, pulmonary surfactant and ultrastructure. A total of 56 rabbits were randomly assigned to four groups (n=14 per group): Control group (Group C), hypoxia group (Group H), sevoflurane group (Group S) and combined sevoflurane-epidural anesthesia group (Group ES). The ALI model was considered to have been successfully induced when the ratio of arterial oxygen partial pressure to fractional inspired oxygen was <300. The correct placement of a catheter for TEA was confirmed using epidurography. ALI was maintained for 3 h. Arterial blood samples were collected from all groups during spontaneous breathing (T0) and at 3 h after ALI induction (T5) in order to evaluate the serum levels of interleukin (IL)-6, IL-8 and IL-10. Bronchoalveolar lavage fluid was harvested to determine the total phospholipid, saturated phosphatidylcholine and total protein levels. Furthermore, the dry/wet weight ratio and the mRNA expression levels of IL-6, IL-8 and IL-10 in the lung tissue were determined using ELISA. In addition, light and transmission electron microscopy and histological techniques were used to examine the morphology of alveolar type II cells in the rat lung tissue. The results indicate that changes of serum IL-6, IL-8 and IL-10 levels following ALI were consistent with the changes in the mRNA expression levels of IL-6, IL-8 and IL-10 in the lung tissue. TEA attenuated these changes and thus reduced the severity of the ALI. In addition, TEA improved the alveolar structure, reduced the number of polymorphonuclear cells and mitigated the damage of lamellar bodies. In summary, the results of the present study indicate that TEA reduces lung tissue damage by inhibiting systemic and local inflammation, decreasing the

  1. Hypoxia inducible BHLHB2 is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma

    SciTech Connect

    Wang, Weibin; Reiser-Erkan, Carolin; Michalski, Christoph W.; Raggi, Matthias C.; Quan, Liao; Yupei, Zhao; Friess, Helmut; Erkan, Mert; Kleeff, Joerg

    2010-10-22

    cells. Patients with weak/absent nuclear BHLHB2 staining had significantly worse median survival compared to those with strong staining (13 months vs. 27 months, p = 0.03). In a multivariable analysis, BHLHB2 staining was an independent prognostic factor (Hazard-Ratio = 2.348, 95% CI = 1.250-4.411, p = 0.008). Conclusions: Hypoxia-inducible BHLHB2 expression is a novel independent prognostic marker in pancreatic cancer patients and indicates increased chemosensitivity towards gemcitabine.

  2. Structural and functional prevention of hypoxia-induced pulmonary hypertension by individualized exercise training in mice.

    PubMed

    Weissmann, Norbert; Peters, Dorothea M; Klöpping, Christina; Krüger, Karsten; Pilat, Christian; Katta, Susmitha; Seimetz, Michael; Ghofrani, Hossein A; Schermuly, Ralph T; Witzenrath, Martin; Seeger, Werner; Grimminger, Friedrich; Mooren, Frank C

    2014-06-01

    Pulmonary hypertension (PH) is a disease with a poor prognosis characterized by a vascular remodeling process and an increase in pulmonary vascular resistance. While a variety of reports demonstrated that exercise training exerts beneficial effects on exercise performance and quality of life in PH patients, it is not known how physical exercise affects vascular remodeling processes occurring in hypoxia-induced PH. Therefore, we investigated the effect of individualized exercise training on the development of hypoxia-induced PH in mice. Training effects were compared with pharmacological treatment with the phosphodiesterase 5 inhibitor Sildenafil or a combination of training plus Sildenafil. Trained mice who received Sildenafil showed a significantly improved walking distance (from 88.9 ± 8.1 to 146.4 ± 13.1 m) and maximum oxygen consumption (from 93.3 ± 2.9 to 105.5 ± 2.2% in combination with Sildenafil, to 102.2 ± 3.0% with placebo) compared with sedentary controls. Right ventricular systolic pressure, measured by telemetry, was at the level of healthy normoxic animals, whereas right heart hypertrophy did not benefit from training. Most interestingly, the increase in small pulmonary vessel muscularization was prevented by training. Respective counterregulatory processes were detected for the nitric oxide-soluble guanylate cyclase-phosphodiesterase system. We conclude that individualized daily exercise can prevent vascular remodeling in hypoxia-induced PH. PMID:24705723

  3. Global hypoxia induced impairment in learning and spatial memory is associated with precocious hippocampal aging.

    PubMed

    Biswal, Suryanarayan; Sharma, Deepti; Kumar, Kushal; Nag, Tapas Chandra; Barhwal, Kalpana; Hota, Sunil Kumar; Kumar, Bhuvnesh

    2016-09-01

    Both chronological aging and chronic hypoxia stress have been reported to cause degeneration of hippocampal CA3 neurons and spatial memory impairment through independent pathways. However, the possible occurrence of precocious biological aging on exposure to single episode of global hypoxia resulting in impairment of learning and memory remains to be established. The present study thus aimed at bridging this gap in existing literature on hypoxia induced biological aging. Male Sprague Dawley rats were exposed to simulated hypobaric hypoxia (25,000ft) for different durations and were compared with aged rats. Behavioral studies in Morris Water Maze showed decline in learning abilities of both chronologically aged as well as hypoxic rats as evident from increased latency and pathlength to reach target platform. These behavioral changes in rats exposed to global hypoxia were associated with deposition of lipofuscin and ultrastructural changes in the mitochondria of hippocampal neurons that serve as hallmarks of aging. A single episode of chronic hypobaric hypoxia exposure also resulted in the up-regulation of pro-aging protein, S100A9 and down regulation of Tau, SNAP25, APOE and Sod2 in the hippocampus similar to that in aged rats indicating hypoxia induced accelerated aging. The present study therefore provides evidence for role of biological aging of hippocampal neurons in hypoxia induced impairment of learning and memory. PMID:27246251

  4. Hypoxia Inducible Factor-1 (HIF-1) Independent Microvascular Angiogenesis in the Aged Rat Brain

    PubMed Central

    Ndubuizu, Obinna I.; Tsipis, Constantinos P.; Li, Ang; LaManna, Joseph C.

    2010-01-01

    Angiogenesis is a critical component of mammalian brain adaptation to prolonged hypoxia. Hypoxia-induced angiogenesis is mediated by hypoxia inducible factor-1 (HIF-1) dependent transcriptional activation of growth factors, such as vascular endothelial growth factor (VEGF). Microvascular angiogenesis occurs over a three week period in the rodent brain. We have recently reported that HIF-1α accumulation and transcriptional activation of HIF target genes in the aged cortex of 24 month F344 rats is significantly attenuated during acute hypoxic exposure. In the present study, we show that cortical HIF-1α accumulation and HIF-1 activation remains absent during chronic hypoxic exposure in the aged rat brain (24 month F344). Despite this lack of HIF-1 activation, there is no significant difference in baseline or post-hypoxic brain capillary density counts between the young (3 month F344) and old age groups. VEGF mRNA and protein levels are significantly elevated in the aged cortex despite the lack of HIF-1 activation. Other HIF-independent mediators of hypoxia inducible genes could be involved during chronic hypoxia in the aged brain. PPAR-γ coactivator (PGC)-1α, a known regulator of VEGF gene transcription, is elevated in the young and aged cortex during the chronic hypoxic exposure. Overall, our results suggest a compensatory HIF-1 independent preservation of hypoxic-induced microvascular angiogenesis in the aged rat brain. PMID:20875806

  5. HIF-1 and NDRG2 contribute to hypoxia-induced radioresistance of cervical cancer Hela cells

    SciTech Connect

    Liu, Junye; Zhang, Jing; Wang, Xiaowu; Li, Yan; Chen, Yongbin; Li, Kangchu; Zhang, Jian; Yao, Libo; Guo, Guozhen

    2010-07-15

    Hypoxia inducible factor 1 (HIF-1), the key mediator of hypoxia signaling pathways, has been shown involved in hypoxia-induced radioresistance. However, the underlying mechanisms are unclear. The present study demonstrated that both hypoxia and hypoxia mimetic cobalt chloride could increase the radioresistance of human cervical cancer Hela cells. Meanwhile, ectopic expression of HIF-1 could enhance the resistance of Hela cells to radiation, whereas knocking-down of HIF-1 could increase the sensitivity of Hela cells to radiation in the presence of hypoxia. N-Myc downstream-regulated gene 2 (NDRG2), a new HIF-1 target gene identified in our lab, was found to be upregulated by hypoxia and radiation in a HIF-1-dependent manner. Overexpression of NDRG2 resulted in decreased sensitivity of Hela cells to radiation while silencing NDRG2 led to radiosensitization. Moreover, NDRG2 was proved to protect Hela cells from radiation-induced apoptosis and abolish radiation-induced upregulation of Bax. Taken together, these data suggest that both HIF-1 and NDRG2 contribute to hypoxia-induced tumor radioresistance and that NDRG2 acts downstream of HIF-1 to promote radioresistance through suppressing radiation-induced Bax expression. It would be meaningful to further explore the clinical application potential of HIF-1 and NDRG2 blockade as radiosensitizer for tumor therapy.

  6. Erythropoietin gene expression: developmental-stage specificity, cell-type specificity, and hypoxia inducibility.

    PubMed

    Suzuki, Norio

    2015-01-01

    Erythrocytes play an essential role in the delivery of oxygen from the lung to every organ; a decrease in erythrocytes (anemia) causes hypoxic stress and tissue damage. To maintain oxygen homeostasis in adult mammals, when the kidney senses hypoxia, it secretes an erythroid growth factor, erythropoietin (Epo), which stimulates erythropoiesis in the bone marrow. Recently, studies using genetically modified mice have shown that the in vivo expression profile of the Epo gene changes dramatically during development. The first Epo-producing cells emerge in the neural crest and neuroepithelium of mid-stage embryos and support primitive erythropoiesis in the yolk sac. Subsequently, Epo from the hepatocytes stimulates erythropoiesis in the fetal liver of later stage embryos in a paracrine manner. In fact, erythroid lineage cells comprise the largest cell population in the fetal liver, and hepatocytes are distributed among the erythroid cell clusters. Adult erythropoiesis in the bone marrow requires Epo that is secreted by renal Epo-producing cells (REP cells). REP cells are widely distributed in the renal cortex and outer medulla. Hypoxia-inducible Epo production both in hepatocytes and REP cells is controlled at the gene transcription level that is mainly mediated by the hypoxia-inducible transcription factor (HIF) pathway. These mouse studies further provide insights into the molecular mechanisms of the cell-type specific, hypoxia-inducible expression of the Epo gene, which involves multiple sets of cis- and trans-regulatory elements. PMID:25786542

  7. A novel hypoxia-induced miR-147a regulates cell proliferation through a positive feedback loop of stabilizing HIF-1α

    PubMed Central

    Wang, Fan; Zhang, Haoxiang; Xu, Naihan; Huang, Nunu; Tian, Caiming; Ye, Anlin; Hu, Guangnan; He, Jie; Zhang, Yaou

    2016-01-01

    ABSTRACT Hypoxia is a general event in solid tumor growth. Therefore, induced cellular responses by hypoxia are important for tumorigenesis and tumor growth. MicroRNAs (miRNAs) have recently emerged as important regulators of hypoxia induced cellular responses. Here we report that miR-147a is a novel and crucial hypoxia induced miRNA. HIF-1α up-regulates the expression of miR-147a, and miR-147a in turn stabilizes and accumulates HIF-1α protein via directly targeting HIF-3α, a dominant negative regulator of HIF-1α. Subsequent studies in xenograft mouse model reveal that miR-147a is capable of inhibiting tumor growth. Collectively, these data demonstrate a positive feedback loop between HIF-1α, miR-147a and HIF-3α, which provide a new insight into the mechanism of miR-147a induced cell proliferation arrest under hypoxia. PMID:27260617

  8. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    SciTech Connect

    Itoigawa, Yoshiaki; Kishimoto, Koshi N.; Okuno, Hiroshi; Sano, Hirotaka; Kaneko, Kazuo; Itoi, Eiji

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes. We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.

  9. Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine.

    PubMed

    Del Rio, Beatriz; Redruello, Begoña; Martin, M Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P; Ladero, Victor; Alvarez, Miguel A

    2016-03-01

    The dairy strain Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC, which encodes the proteins necessary for agmatine uptake and its conversion into putrescine [1], [2]. The first gene of the cluster, aguR, encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2]. The catabolic operon aguBDAC is transcriptionally activated by agmatine [2] and transcriptionally regulated by carbon catabolite repression (CCR) via glucose, but not by other sugars such as lactose or galactose [1], [3]. On the contrary, the transcription of the aguR regulatory gene is not subject to CCR regulation [1], [3] nor is regulated by agmatine [2]. In this study we report the transcriptional profiling of L. lactis subsp. cremoris CECT 8666 grown in M17 medium with galactose (GalM17) as carbon source and supplemented with agmatine, compared to that of the strain grown in the same culture medium without agmatine. The transcriptional profiling data of agmatine-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under Accession no. GSE74808. PMID:26981381

  10. Transcriptome profiling of Lactococcus lactis subsp. cremoris CECT 8666 in response to agmatine

    PubMed Central

    del Rio, Beatriz; Redruello, Begoña; Martin, M. Cruz; Fernandez, Maria; de Jong, Anne; Kuipers, Oscar P.; Ladero, Victor; Alvarez, Miguel A.

    2015-01-01

    The dairy strain Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14) synthesizes the biogenic amine putrescine from agmatine via the agmatine deiminase (AGDI) pathway [1]. The AGDI cluster of L. lactis is composed by five genes aguR, aguB, aguD, aguA and aguC. The last four genes are co-transcribed as a single policistronic mRNA forming the catabolic operon aguBDAC, which encodes the proteins necessary for agmatine uptake and its conversion into putrescine [1], [2]. The first gene of the cluster, aguR, encodes a transmembrane protein that functions as a one-component signal transduction system that senses the agmatine concentration of the medium and accordingly regulates the transcription of aguBDAC[2]. The catabolic operon aguBDAC is transcriptionally activated by agmatine [2] and transcriptionally regulated by carbon catabolite repression (CCR) via glucose, but not by other sugars such as lactose or galactose [1], [3]. On the contrary, the transcription of the aguR regulatory gene is not subject to CCR regulation [1], [3] nor is regulated by agmatine [2]. In this study we report the transcriptional profiling of L. lactis subsp. cremoris CECT 8666 grown in M17 medium with galactose (GalM17) as carbon source and supplemented with agmatine, compared to that of the strain grown in the same culture medium without agmatine. The transcriptional profiling data of agmatine-regulated genes were deposited in the Gene Expression Omnibus (GEO) database under Accession no. GSE74808. PMID:26981381

  11. Regulation and clinical significance of the hypoxia-induced expression of ANGPTL4 in gastric cancer

    PubMed Central

    KUBO, HIROSHI; KITAJIMA, YOSHIHIKO; KAI, KEITA; NAKAMURA, JUN; MIYAKE, SHUUSUKE; YANAGIHARA, KAZUYOSHI; MORITO, KIYOTO; TANAKA, TOMOKAZU; SHIDA, MASAAKI; NOSHIRO, HIROKAZU

    2016-01-01

    Solid tumors are often exposed to hypoxia. Hypoxia inducible factor (HIF)-1α upregulates numerous target genes associated with the malignant behavior of hypoxic cancer cells. A member of the angiopoietin family, angiopoietin-like protein 4 (ANGPTL4) is a hypoxia-inducible gene. The present study aimed to clarify whether ANGPTL4 is regulated by HIF-1α in gastric cancer cells. The study also assessed whether ANGPTL4 expression is associated with clinicopathological factors or HIF-1α expression in gastric cancer tissues. Hypoxia-induced ANGPTL4 expression was quantitatively analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in 10 gastric cancer cell lines. RT-qPCR was further employed to investigate the HIF-1α dependency of ANGPTL4 expression using HIF-1α-knockdown transfectant 58As9-KD and control 58As9-SC gastric cancer cells. The HIF-1α and ANGPTL4 expression levels were immunohistochemically analyzed in 170 gastric cancer tissue specimens and were assessed for any correlations with the clinicopathological factors and/or patient survival. Subsequently, hypoxia-induced ANGPTL4 expression was observed in 7 out of 10 gastric cancer cell lines. The hypoxic induction of ANGPTL4 was almost preserved in the 58As9-KD cells compared with that observed in the 58As9-SC cells, while the induction of known HIF-1α target gene, carbonic anhydrase 9, was completely suppressed in the 58As9-KD cells. In the gastric cancer tissues, ANGPTL4 expression was inversely correlated with the tumor depth, whereas HIF-1α expression was positively correlated with venous invasion. A survival analysis revealed that the expression of ANGPTL4 was significantly correlated with a longer survival time, whereas that of HIF-1α was correlated with a shorter survival time. In conclusion, the present findings indicate that hypoxia-induced ANGPTL4 expression is independent of HIF-1α in hypoxic gastric cancer cells. ANGPTL4 may be a favorable marker for predicting

  12. Role of posterior hypothalamus in hypobaric hypoxia induced pulmonary edema.

    PubMed

    Sharma, R K; Choudhary, R C; Reddy, M K; Ray, A; Ravi, K

    2015-01-01

    To investigate the role of posterior hypothalamus and central neurotransmitters in the pulmonary edema due to hypobaric hypoxia, rats were placed in a high altitude simulation chamber (barometric pressure-294.4 mmHg) for 24 h. Exposure to hypobaric hypoxia resulted in increases in mean arterial blood pressure, renal sympathetic nerve activity, right ventricular systolic pressure, lung wet to dry weight ratio and Evans blue dye leakage. There was a significant attenuation in these responses to hypobaric hypoxia (a) after lesioning posterior hypothalamus and (b) after chronic infusion of GABAA receptor agonist muscimol into posterior hypothalamus. No such attenuation was evident with the chronic infusion of the nitric oxide donor SNAP into the posterior hypothalamus. It is concluded that in hypobaric hypoxia, there is over-activity of posterior hypothalamic neurons probably due to a local decrease in GABA-ergic inhibition which increases the sympathetic drive causing pulmonary hypertension and edema. PMID:25448396

  13. Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease

    PubMed Central

    Sabaa, Nathalie; de Franceschi, Lucia; Bonnin, Philippe; Castier, Yves; Malpeli, Giorgio; Debbabi, Haythem; Galaup, Ariane; Maier-Redelsperger, Micheline; Vandermeersch, Sophie; Scarpa, Aldo; Janin, Anne; Levy, Bernard; Girot, Robert; Beuzard, Yves; Leboeuf, Christophe; Henri, Annie; Germain, Stéphane; Dussaule, Jean-Claude; Tharaux, Pierre-Louis

    2008-01-01

    Patients with sickle-cell disease (SCD) suffer from tissue damage and life-threatening complications caused by vasoocclusive crisis (VOC). Endothelin receptors (ETRs) are mediators of one of the most potent vasoconstrictor pathways in mammals, but the relationship between vasoconstriction and VOC is not well understood. We report here that pharmacological inhibition of ETRs prevented hypoxia-induced acute VOC and organ damage in a mouse model of SCD. An in vivo ultrasonographic study of renal hemodynamics showed a substantial increase in endothelin-mediated vascular resistance during hypoxia/reoxygenation-induced VOC. This increase was reversed by administration of the dual ETR antagonist (ETRA) bosentan, which had pleiotropic beneficial effects in vivo. It prevented renal and pulmonary microvascular congestion, systemic inflammation, dense rbc formation, and infiltration of activated neutrophils into tissues with subsequent nitrative stress. Bosentan also prevented death of sickle-cell mice exposed to a severe hypoxic challenge. These findings in mice suggest that ETRA could be a potential new therapy for SCD, as it may prevent acute VOC and limit organ damage in sickle-cell patients. PMID:18382768

  14. 14-3-3ζ promotes hepatocellular carcinoma venous metastasis by modulating hypoxia-inducible factor-1α

    PubMed Central

    Shi, Jie; Yu, Hongming; Zhang, Long; Wang, Kang; Liu, Shangrong; Cheng, Shuqun

    2016-01-01

    Portal vein tumor thrombus (PVTT) is a type of intrahepatic metastasis arising from hepatocellular carcinoma (HCC) and is highly correlated with a poor prognosis. Hypoxia is common in solider tumors, including HCC, where it alters the behavior of HCC cells. We asked whether and how hypoxia contributes to PVTT formation. We demonstrated that increased intratumoral hypoxia is strongly associated with PVTT formation in HCC. We also showed that 14-3-3ζ is induced by hypoxia in HCC cells and correlates with PVTT formation in clinical HCC samples. In addition, 14-3-3ζ up-regulates HIF-1α expression by recruiting HDAC4, which prevents HIF-1α acetylation, thereby stabilizing the protein. Under hypoxic conditions in vitro, 14-3-3ζ knockdown inhibits hypoxia-induced HCC invasion by the HIF-1α/EMT pathway. Blockade of 14-3-3ζ in HCC cells reduces PVTT formation and distant lung metastasis in vivo. Moreover, a combination of 14-3-3ζ and HIF-1α expression is more prognostic for HCC patients than either protein alone. These results suggest that the hypoxia/14-3-3ζ/HIF-1α pathway plays an important role in PVTT formation and HCC metastasis. PMID:26910835

  15. Steroid receptor coactivator-3 regulates glucose metabolism in bladder cancer cells through coactivation of hypoxia inducible factor 1α.

    PubMed

    Zhao, Wei; Chang, Cunjie; Cui, Yangyan; Zhao, Xiaozhi; Yang, Jun; Shen, Lan; Zhou, Ji; Hou, Zhibo; Zhang, Zhen; Ye, Changxiao; Hasenmayer, Donald; Perkins, Robert; Huang, Xiaojing; Yao, Xin; Yu, Like; Huang, Ruimin; Zhang, Dianzheng; Guo, Hongqian; Yan, Jun

    2014-04-18

    Cancer cell proliferation is a metabolically demanding process, requiring high glycolysis, which is known as "Warburg effect," to support anabolic growth. Steroid receptor coactivator-3 (SRC-3), a steroid receptor coactivator, is overexpressed and/or amplified in multiple cancer types, including non-steroid targeted cancers, such as urinary bladder cancer (UBC). However, whether SRC-3 regulates the metabolic reprogramming for cancer cell growth is unknown. Here, we reported that overexpression of SRC-3 accelerated UBC cell growth, accompanied by the increased expression of genes involved in glycolysis. Knockdown of SRC-3 reduced the UBC cell glycolytic rate under hypoxia, decreased tumor growth in nude mice, with reduction of proliferating cell nuclear antigen and lactate dehydrogenase expression levels. We further revealed that SRC-3 could interact with hypoxia inducible factor 1α (HIF1α), which is a key transcription factor required for glycolysis, and coactivate its transcriptional activity. SRC-3 was recruited to the promoters of HIF1α-target genes, such as glut1 and pgk1. The positive correlation of expression levels between SRC-3 and Glut1 proteins was demonstrated in human UBC patient samples. Inhibition of glycolysis through targeting HK2 or LDHA decelerated SRC-3 overexpression-induced cell growth. In summary, overexpression of SRC-3 promoted glycolysis in bladder cancer cells through HIF1α to facilitate tumorigenesis, which may be an intriguing drug target for bladder cancer therapy. PMID:24584933

  16. Induction of WNT11 by hypoxia and hypoxia-inducible factor-1α regulates cell proliferation, migration and invasion

    PubMed Central

    Mori, Hiroyuki; Yao, Yao; Learman, Brian S.; Kurozumi, Kazuhiko; Ishida, Joji; Ramakrishnan, Sadeesh K.; Overmyer, Katherine A.; Xue, Xiang; Cawthorn, William P.; Reid, Michael A.; Taylor, Matthew; Ning, Xiaomin; Shah, Yatrik M.; MacDougald, Ormond A.

    2016-01-01

    Changes in cellular oxygen tension play important roles in physiological processes including development and pathological processes such as tumor promotion. The cellular adaptations to sustained hypoxia are mediated by hypoxia-inducible factors (HIFs) to regulate downstream target gene expression. With hypoxia, the stabilized HIF-α and aryl hydrocarbon receptor nuclear translocator (ARNT, also known as HIF-β) heterodimer bind to hypoxia response elements (HREs) and regulate expression of target genes. Here, we report that WNT11 is induced by hypoxia in many cell types, and that transcription of WNT11 is regulated primarily by HIF-1α. We observed induced WNT11 expression in the hypoxic area of allograft tumors. In addition, in mice bearing orthotopic malignant gliomas, inhibition with bevacizumab of vascular endothelial growth factor, which is an important stimulus for angiogenesis, increased nuclear HIF-1α and HIF-2α, and expression of WNT11. Gain- and loss-of-function approaches revealed that WNT11 stimulates proliferation, migration and invasion of cancer-derived cells, and increases activity of matrix metalloproteinase (MMP)-2 and 9. Since tumor hypoxia has been proposed to increase tumor aggressiveness, these data suggest WNT11 as a possible target for cancer therapies, especially for tumors treated with antiangiogenic therapy. PMID:26861754

  17. The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy

    PubMed Central

    Wu, Hao; Xue, Danfeng; Chen, Guo; Han, Zhe; Huang, Li; Zhu, Chongzhuo; Wang, Xiaohui; Jin, Haijing; Wang, Jun; Zhu, Yushan; Liu, Lei; Chen, Quan

    2014-01-01

    Receptor-mediated mitophagy is one of the major mechanisms of mitochondrial quality control essential for cell survival. We previously have identified FUNDC1 as a mitophagy receptor for selectively removing damaged mitochondria in mammalian systems. A critical unanswered question is how receptor-mediated mitophagy is regulated in response to cellular and environmental cues. Here, we report the striking finding that BCL2L1/Bcl-xL, but not BCL2, suppresses mitophagy mediated by FUNDC1 through its BH3 domain. Mechanistically, we demonstrate that BCL2L1, but not BCL2, interacts with and inhibits PGAM5, a mitochondrially localized phosphatase, to prevent the dephosphorylation of FUNDC1 at serine 13 (Ser13), which activates hypoxia-induced mitophagy. Our results showed that the BCL2L1-PGAM5-FUNDC1 axis is critical for receptor-mediated mitophagy in response to hypoxia and that BCL2L1 possesses unique functions distinct from BCL2. PMID:25126723

  18. Steroid Receptor Coactivator-3 Regulates Glucose Metabolism in Bladder Cancer Cells through Coactivation of Hypoxia Inducible Factor 1α*

    PubMed Central

    Zhao, Wei; Chang, Cunjie; Cui, Yangyan; Zhao, Xiaozhi; Yang, Jun; Shen, Lan; Zhou, Ji; Hou, Zhibo; Zhang, Zhen; Ye, Changxiao; Hasenmayer, Donald; Perkins, Robert; Huang, Xiaojing; Yao, Xin; Yu, Like; Huang, Ruimin; Zhang, Dianzheng; Guo, Hongqian; Yan, Jun

    2014-01-01

    Cancer cell proliferation is a metabolically demanding process, requiring high glycolysis, which is known as “Warburg effect,” to support anabolic growth. Steroid receptor coactivator-3 (SRC-3), a steroid receptor coactivator, is overexpressed and/or amplified in multiple cancer types, including non-steroid targeted cancers, such as urinary bladder cancer (UBC). However, whether SRC-3 regulates the metabolic reprogramming for cancer cell growth is unknown. Here, we reported that overexpression of SRC-3 accelerated UBC cell growth, accompanied by the increased expression of genes involved in glycolysis. Knockdown of SRC-3 reduced the UBC cell glycolytic rate under hypoxia, decreased tumor growth in nude mice, with reduction of proliferating cell nuclear antigen and lactate dehydrogenase expression levels. We further revealed that SRC-3 could interact with hypoxia inducible factor 1α (HIF1α), which is a key transcription factor required for glycolysis, and coactivate its transcriptional activity. SRC-3 was recruited to the promoters of HIF1α-target genes, such as glut1 and pgk1. The positive correlation of expression levels between SRC-3 and Glut1 proteins was demonstrated in human UBC patient samples. Inhibition of glycolysis through targeting HK2 or LDHA decelerated SRC-3 overexpression-induced cell growth. In summary, overexpression of SRC-3 promoted glycolysis in bladder cancer cells through HIF1α to facilitate tumorigenesis, which may be an intriguing drug target for bladder cancer therapy. PMID:24584933

  19. Role of hypoxia-inducible factor-{alpha} in hepatitis-B-virus X protein-mediated MDR1 activation

    SciTech Connect

    Han, Hyo-Kyung; Han, Chang Yeob; Cheon, Eun-Pa; Lee, Jaewon; Kang, Keon Wook . E-mail: kwkang@chosun.ac.kr

    2007-06-01

    The transition from chemotherapy-responsive cancer cells to chemotherapy-resistant cancer cells is mainly accompanied by the increased expression of multi-drug resistance 1 (MDR1). We found that hepatitis-B-virus X protein (HBx) increases the transcriptional activity and protein level of MDR1 in a hepatoma cell line, H4IIE. In addition, HBx overexpression made H4IIE cells more resistant to verapamil-uptake. HBx stabilized hypoxia-inducible factor-1{alpha} (HIF-1{alpha}) and induced the nuclear translocation of C/EBP{beta}. Reporter gene analyses showed that HBx increased the reporter activity in the cells transfected with the reporter containing MDR1 gene promoter. Moreover, the luciferase reporter gene activity was significantly inhibited by HIF-1{alpha} siRNA but not by overexpression of C/EBP dominant negative mutant. These results imply that HBx increases the MDR1 transporter activity through the transcriptional activation of the MDR1 gene with HIF-1{alpha} activation, and suggest HIF-1{alpha} for the therapeutic target of HBV-mediated chemoresistance.

  20. mRNA expression levels of hypoxia-induced and stem cell-associated genes in human glioblastoma.

    PubMed

    Bache, Matthias; Rot, Swetlana; Keßler, Jacqueline; Güttler, Antje; Wichmann, Henri; Greither, Thomas; Wach, Sven; Taubert, Helge; Söling, Ariane; Bilkenroth, Udo; Kappler, Matthias; Vordermark, Dirk

    2015-06-01

    The roles of hypoxia-induced and stem cell-associated genes in the development of malignancy and tumour progression are well known. However, there are a limited number of studies analysing the impact of mRNA expression levels of hypoxia-induced and stem cell-associated genes in the tissues of brain tumours and glioblastoma patients. In this study, tumour tissues from patients with glioblastoma multiforme and tumour adjacent tissues were analysed. We investigated mRNA expression levels of hypoxia-inducible factor-1α (HIF-1α), hypoxia-inducible factor-2α (HIF-2α), carbonic anhydrase 9 (CA9), vascular endothelial growth factor (VEGF), glucose transporter-1 (GLUT-1) and osteopontin (OPN), and stem cell-associated genes survivin, epidermal growth factor receptor (EGFR), human telomerase reverse transcriptase (hTERT), Nanog and octamer binding transcription factor 4 (OCT4) using quantitative real-time polymerase chain reaction (qRT-PCR). Our data revealed higher mRNA expression levels of hypoxia-induced and stem cell-associated genes in tumour tissue than levels in the tumour adjacent tissues in patients with glioblastoma multiforme. A strong positive correlation between the mRNA expression levels of HIF-2α, CA9, VEGF, GLUT-1 and OPN suggests a specific hypoxia-associated profile of mRNA expression in glioblastoma multiforme. Additionally, the results indicate the role of stem-cell-related genes in tumour hypoxia. Kaplan-Maier analysis revealed that high mRNA expression levels of hypoxia-induced markers showed a trend towards shorter overall survival in glioblastoma patients (P=0.061). Our data suggest that mRNA expression levels of hypoxia-induced genes are important tumour markers in patients with glioblastoma multiforme. PMID:25963717

  1. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair

    PubMed Central

    He, Qiling; Wang, Jianqi; Shiu, Hoi Ting; Shu, Yinglan; Tsang, Wing Pui; Liang, Shuang; Zhao, Kai; Wan, Chao

    2016-01-01

    Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10−6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes

  2. Flavonoid Compound Icariin Activates Hypoxia Inducible Factor-1α in Chondrocytes and Promotes Articular Cartilage Repair.

    PubMed

    Wang, Pengzhen; Zhang, Fengjie; He, Qiling; Wang, Jianqi; Shiu, Hoi Ting; Shu, Yinglan; Tsang, Wing Pui; Liang, Shuang; Zhao, Kai; Wan, Chao

    2016-01-01

    Articular cartilage has poor capability for repair following trauma or degenerative pathology due to avascular property, low cell density and migratory ability. Discovery of novel therapeutic approaches for articular cartilage repair remains a significant clinical need. Hypoxia is a hallmark for cartilage development and pathology. Hypoxia inducible factor-1alpha (HIF-1α) has been identified as a key mediator for chondrocytes to response to fluctuations of oxygen availability during cartilage development or repair. This suggests that HIF-1α may serve as a target for modulating chondrocyte functions. In this study, using phenotypic cellular screen assays, we identify that Icariin, an active flavonoid component from Herba Epimedii, activates HIF-1α expression in chondrocytes. We performed systemic in vitro and in vivo analysis to determine the roles of Icariin in regulation of chondrogenesis. Our results show that Icariin significantly increases hypoxia responsive element luciferase reporter activity, which is accompanied by increased accumulation and nuclear translocation of HIF-1α in murine chondrocytes. The phenotype is associated with inhibiting PHD activity through interaction between Icariin and iron ions. The upregulation of HIF-1α mRNA levels in chondrocytes persists during chondrogenic differentiation for 7 and 14 days. Icariin (10-6 M) increases the proliferation of chondrocytes or chondroprogenitors examined by MTT, BrdU incorporation or colony formation assays. Icariin enhances chondrogenic marker expression in a micromass culture including Sox9, collagen type 2 (Col2α1) and aggrecan as determined by real-time PCR and promotes extracellular matrix (ECM) synthesis indicated by Alcian blue staining. ELISA assays show dramatically increased production of aggrecan and hydroxyproline in Icariin-treated cultures at day 14 of chondrogenic differentiation as compared with the controls. Meanwhile, the expression of chondrocyte catabolic marker genes

  3. Hypoxia-induced sensitisation of TRPA1 in painful dysesthesia evoked by transient hindlimb ischemia/reperfusion in mice

    PubMed Central

    So, Kanako; Tei, Yuna; Zhao, Meng; Miyake, Takahito; Hiyama, Haruka; Shirakawa, Hisashi; Imai, Satoshi; Mori, Yasuo; Nakagawa, Takayuki; Matsubara, Kazuo; Kaneko, Shuji

    2016-01-01

    Dysesthesia is an unpleasant abnormal sensation, which is often accompanied by peripheral neuropathy or vascular impairment. Here, we examined the roles of transient receptor potential ankyrin 1 (TRPA1) in dysesthesia-like behaviours elicited by transient hindlimb ischemia (15–60 min) by tightly compressing the hindlimb, and reperfusion by releasing the ligature. The paw-withdrawal responses to tactile stimulation were reduced during ischemia and lasted for a while after reperfusion. Hindlimb ischemia/reperfusion elicited spontaneous licking of the ischemic hindpaw that peaked within 10 min. The licking was inhibited by reactive oxygen species (ROS) scavengers, a TRPA1 antagonist, or TRPA1 deficiency, but not by TRPV1 deficiency. In human TRPA1-expressing cells as well as cultured mouse dorsal root ganglion neurons, the H2O2-evoked TRPA1 response was significantly increased by pretreatment with hypoxia (80 mmHg) for 30 min. This hypoxia-induced TRPA1 sensitisation to H2O2 was inhibited by overexpressing a catalytically-inactive mutant of prolyl hydroxylase (PHD) 2 or in a TRPA1 proline mutant resistant to PHDs. Consistent with these results, a PHD inhibitor increased H2O2-evoked nocifensive behaviours through TRPA1 activation. Our results suggest that transient hindlimb ischemia/reperfusion-evoked spontaneous licking, i.e. painful dysesthesia, is caused by ROS-evoked activation of TRPA1 sensitised by hypoxia through inhibiting PHD-mediated hydroxylation of a proline residue in TRPA1. PMID:26983498

  4. Hypoxia-induced sensitisation of TRPA1 in painful dysesthesia evoked by transient hindlimb ischemia/reperfusion in mice.

    PubMed

    So, Kanako; Tei, Yuna; Zhao, Meng; Miyake, Takahito; Hiyama, Haruka; Shirakawa, Hisashi; Imai, Satoshi; Mori, Yasuo; Nakagawa, Takayuki; Matsubara, Kazuo; Kaneko, Shuji

    2016-01-01

    Dysesthesia is an unpleasant abnormal sensation, which is often accompanied by peripheral neuropathy or vascular impairment. Here, we examined the roles of transient receptor potential ankyrin 1 (TRPA1) in dysesthesia-like behaviours elicited by transient hindlimb ischemia (15-60 min) by tightly compressing the hindlimb, and reperfusion by releasing the ligature. The paw-withdrawal responses to tactile stimulation were reduced during ischemia and lasted for a while after reperfusion. Hindlimb ischemia/reperfusion elicited spontaneous licking of the ischemic hindpaw that peaked within 10 min. The licking was inhibited by reactive oxygen species (ROS) scavengers, a TRPA1 antagonist, or TRPA1 deficiency, but not by TRPV1 deficiency. In human TRPA1-expressing cells as well as cultured mouse dorsal root ganglion neurons, the H2O2-evoked TRPA1 response was significantly increased by pretreatment with hypoxia (80 mmHg) for 30 min. This hypoxia-induced TRPA1 sensitisation to H2O2 was inhibited by overexpressing a catalytically-inactive mutant of prolyl hydroxylase (PHD) 2 or in a TRPA1 proline mutant resistant to PHDs. Consistent with these results, a PHD inhibitor increased H2O2-evoked nocifensive behaviours through TRPA1 activation. Our results suggest that transient hindlimb ischemia/reperfusion-evoked spontaneous licking, i.e. painful dysesthesia, is caused by ROS-evoked activation of TRPA1 sensitised by hypoxia through inhibiting PHD-mediated hydroxylation of a proline residue in TRPA1. PMID:26983498

  5. Region-specific changes in presynaptic agmatine and glutamate levels in the aged rat brain.

    PubMed

    Jing, Y; Liu, P; Leitch, B

    2016-01-15

    During the normal aging process, the brain undergoes a range of biochemical and structural alterations, which may contribute to deterioration of sensory and cognitive functions. Age-related deficits are associated with altered efficacy of synaptic neurotransmission. Emerging evidence indicates that levels of agmatine, a putative neurotransmitter in the mammalian brain, are altered in a region-specific manner during the aging process. The gross tissue content of agmatine in the prefrontal cortex (PFC) of aged rat brains is decreased whereas levels in the temporal cortex (TE) are increased. However, it is not known whether these changes in gross tissue levels are also mirrored by changes in agmatine levels at synapses and thus could potentially contribute to altered synaptic function with age. In the present study, agmatine levels in presynaptic terminals in the PFC and TE regions (300 terminals/region) of young (3month; n=3) and aged (24month; n=3) brains of male Sprague-Dawley rats were compared using quantitative post-embedding immunogold electron-microscopy. Presynaptic levels of agmatine were significantly increased in the TE region (60%; p<0.001) of aged rats compared to young rats, however no significant differences were detected in synaptic levels in the PFC region. Double immunogold labeling indicated that agmatine and glutamate were co-localized in the same synaptic terminals, and quantitative analyses revealed significantly reduced glutamate levels in agmatine-immunopositive synaptic terminals in both regions in aged rats compared to young animals. This study, for the first time, demonstrates differential effects of aging on agmatine and glutamate in the presynaptic terminals of PFC and TE. Future research is required to understand the functional significance of these changes and the underlying mechanisms. PMID:26548412

  6. Cancer cell-associated cytoplasmic B7–H4 is induced by hypoxia through hypoxia-inducible factor-1α and promotes cancer cell proliferation

    SciTech Connect

    Jeon, You-Kyoung; Park, Sae-Gwang; Choi, Il-Whan; Lee, Soo-Woong; Lee, Sang Min

    2015-04-03

    Aberrant B7–H4 expression in cancer tissues serves as a novel prognostic biomarker for poor survival in patients with cancer. However, the factor(s) that induce cancer cell-associated B7–H4 remain to be fully elucidated. We herein demonstrate that hypoxia upregulates B7–H4 transcription in primary CD138{sup +} multiple myeloma cells and cancer cell lines. In support of this finding, analysis of the Multiple Myeloma Genomics Portal (MMGP) data set revealed a positive correlation between the mRNA expression levels of B7–H4 and the endogenous hypoxia marker carbonic anhydrogenase 9. Hypoxia-induced B7–H4 expression was detected in the cytoplasm, but not in cancer cell membranes. Chromatin immunoprecipitation analysis demonstrated binding of hypoxia-inducible factor-1α (HIF-1α) to proximal hypoxia-response element (HRE) sites within the B7–H4 promoter. Knockdown of HIF-1α and pharmacological inhibition of HIF-1α diminished B7–H4 expression. Furthermore, knockdown of cytoplasmic B7–H4 in MCF-7 decreased the S-phase cell population under hypoxia. Finally, MMGP analysis revealed a positive correlation between the transcript levels of B7–H4 and proliferation-related genes including MKI67, CCNA1, and Myc in several patients with multiple myeloma. Our results provide insight into the mechanisms underlying B7–H4 upregulation and its role in cancer cell proliferation in a hypoxic tumor microenvironment. - Highlights: • Hypoxia upregulates B7–H4 transcription and protein expression. • Hypoxia-induced B7–H4 is detected in the cytoplasm, but not on membrane. • ChIP assay reveals a binding of HIF-1α to B7–H4 promoter at HRE site. • Knockdown and pharmacological inhibition of HIF-1α reduce B7–H4 expression. • B7–H4 knockdown decrease the number of cells in S-phase of cell cycle.

  7. Differential sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy.

    PubMed

    de Theije, C C; Langen, R C J; Lamers, W H; Gosker, H R; Schols, A M W J; Köhler, S E

    2015-01-15

    Hypoxia as a consequence of acute and chronic respiratory disease has been associated with muscle atrophy. This study investigated the sensitivity of oxidative and glycolytic muscles to hypoxia-induced muscle atrophy. Male mice were exposed to 8% normobaric oxygen for up to 21 days. Oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles were isolated, weighed, and assayed for expression profiles of the ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway (ALP), and glucocorticoid receptor (GR) and hypoxia-inducible factor-1α (HIF1α) signaling. Fiber-type composition and the capillary network were investigated. Hypoxia-induced muscle atrophy was more prominent in the EDL than the soleus muscle. Although increased expression of HIF1α target genes showed that both muscle types sensed hypoxia, their adaptive responses differed. Atrophy consistently involved a hypoxia-specific effect (i.e., not attributable to a hypoxia-mediated reduction of food intake) in the EDL only. Hypoxia-specific activation of the UPS and ALP and increased expression of the glucocorticoid receptor (Gr) and its target genes were also mainly observed in the EDL. In the soleus, stimulation of gene expression of those pathways could be mimicked to a large extent by food restriction alone. Hypoxia increased the number of capillary contacts per fiber cross-sectional area in both muscles. In the EDL, this was due to type II fiber atrophy, whereas in the soleus the absolute number of capillary contacts increased. These responses represent two distinct modes to improve oxygen supply to muscle fibers, but may aggravate muscle atrophy in chronic obstructive pulmonary disease patients who have a predominance of type II fibers. PMID:25429096

  8. Hypoxic preconditioning with cobalt attenuates hypobaric hypoxia-induced oxidative damage in rat lungs.

    PubMed

    Shukla, Dhananjay; Saxena, Saurabh; Jayamurthy, Purushotman; Sairam, Mustoori; Singh, Mrinalini; Jain, Swatantra Kumar; Bansal, Anju; Ilavazaghan, Govindaswamy

    2009-01-01

    Shukla, Dhananjay, Saurabh Saxena, Purushotman Jayamurthy, Mustoori Sairam, Mrinalini, Singh, Swatantra Kumar Jain, Anju Bansal, and Govindaswamy Ilavazaghan. High Alt. Med. Biol. 10:57-69, 2009.-Hypoxic preco759nditioning (HPC) provides robust protection against injury from subsequent prolonged hypobaric hypoxia, which is a characteristic of high altitude and is known to induce oxidative injury in lung by increasing the generation of reactive oxygen species (ROS) and decreasing the effectiveness of the antioxidant defense system. We hypothesize that HPC with cobalt might protect the lung from subsequent hypobaric hypoxia-induced lung injury. HPC with cobalt can be achieved by oral feeding of CoCl(2) (12.5 mg kg(-1)) in rats for 7 days. Nonpreconditioned rats responded to hypobaric hypoxia (7619 m) by increased reactive oxygen species (ROS) generation and a decreased GSH/GSSG ratio. They also showed a marked increase in lipid peroxidation, heat-shock proteins (HSP32, HSP70), metallothionins (MT), levels of inflammatory cytokines (TNF-alpha, IFN-gamma, MCP-1), and SOD, GPx, and GST enzyme activity. In contrast, rats preconditioned with cobalt were far less impaired by severe hypobaric hypoxia, as observed by decreased ROS generation, lipid peroxidation, and inflammatory cytokine release and an inceased GSH/GSSG ratio. Increased expression of antioxidative proeins Nrf-1, HSP-32, and MT was also observed in cobalt- preconditioned animals. A marked increase in the protein expression and DNA binding activity of hypoxia-inducible transcriptional factor (HIF-1alpha) and its regulated genes, such as erythropoietin (EPO) and glucose transporter-1 (glut-1), was observed after HPC with cobalt. We conclude that HPC with cobalt enhances antioxidant status in the lung and protects from subsequent hypobaric hypoxia-induced oxidative stress. PMID:19278353

  9. Interactions between Nitric Oxide and Hypoxia-Inducible Factor Signaling Pathways in Inflammatory Disease

    PubMed Central

    Olson, Nels; van der Vliet, Albert

    2011-01-01

    Induction and activation of nitric oxide (NO) synthases (NOS) and excessive production of NO are common features of almost all diseases associated with infection and acute or chronic inflammation, although the contribution of NO to the pathophysiology of these diseases is highly multifactorial and often still a matter of controversy. Because of its direct impact on tissue oxygenation and cellular oxygen (O2) consumption and redistribution, the ability of NO to regulate various aspects of hypoxia-induced signaling has received widespread attention. Conditions of tissue hypoxia and the activation of hypoxia-inducible factors (HIF) have been implicated in hypoxia or in cancer biology, but are also being increasingly recognized as important features of acute and chronic inflammation. Thus, the activation of HIF transcription factors has been increasingly implicated in inflammatory diseases, and recent studies have indicated its critical importance in regulating phagocyte function, inflammatory mediator production, and regulation of epithelial integrity and repair processes. Finally, HIF also appears to contribute to important features of tissue fibrosis and epithelial-to-mesenchymal transition, processes that are associated with tissue remodeling in various non-malignant chronic inflammatory disorders. In this review, we briefly summarize the current state of knowledge with respect to the general mechanisms involved in HIF regulation and the impact of NO on HIF activation. Secondly, we will summarize the major recent findings demonstrating a role for HIF signaling in infection, inflammation, and tissue repair and remodeling, and will address the involvement of NO. The growing interest in hypoxia-induced signaling and its relation with NO biology is expected to lead to further insights into the complex roles of NO in acute or chronic inflammatory diseases and may point to the importance of HIF signaling as key feature of NO-mediated events during these disorders. PMID

  10. Hypoxia-induced Deoxycytidine Kinase Contributes to Epithelial Proliferation in Pulmonary Fibrosis

    PubMed Central

    Weng, Tingting; Poth, Jens M.; Karmouty-Quintana, Harry; Garcia-Morales, Luis J.; Melicoff, Ernestina; Luo, Fayong; Chen, Ning-yuan; Evans, Christopher M.; Bunge, Raquel R.; Bruckner, Brian A.; Loebe, Matthias; Volcik, Kelly A.; Eltzschig, Holger K.

    2014-01-01

    Rationale: Idiopathic pulmonary fibrosis (IPF) is a deadly lung disease with few therapeutic options. Apoptosis of alveolar epithelial cells, followed by abnormal tissue repair characterized by hyperplastic epithelial cell formation, is a pathogenic process that contributes to the progression of pulmonary fibrosis. However, the signaling pathways responsible for increased proliferation of epithelial cells remain poorly understood. Objectives: To investigate the role of deoxycytidine kinase (DCK), an important enzyme for the salvage of deoxynucleotides, in the progression of pulmonary fibrosis. Methods: DCK expression was examined in the lungs of patients with IPF and mice exposed to bleomycin. The regulation of DCK expression by hypoxia was studied in vitro and the importance of DCK in experimental pulmonary fibrosis was examined using a DCK inhibitor and alveolar epithelial cell-specific knockout mice. Measurements and Main Results: DCK was elevated in hyperplastic alveolar epithelial cells of patients with IPF and in mice exposed to bleomycin. Increased DCK was localized to cells associated with hypoxia, and hypoxia directly induced DCK in alveolar epithelial cells in vitro. Hypoxia-induced DCK expression was abolished by silencing hypoxia-inducible factor 1α and treatment of bleomycin-exposed mice with a DCK inhibitor attenuated pulmonary fibrosis in association with decreased epithelial cell proliferation. Furthermore, DCK expression, and proliferation of epithelial cells and pulmonary fibrosis was attenuated in mice with conditional deletion of hypoxia-inducible factor 1α in the alveolar epithelium. Conclusions: Our findings suggest that the induction of DCK after hypoxia plays a role in the progression of pulmonary fibrosis by contributing to alveolar epithelial cell proliferation. PMID:25358054

  11. Intermedin/adrenomedullin-2 is a hypoxia-induced endothelial peptide that stabilizes pulmonary microvascular permeability

    PubMed Central

    Aslam, Muhammad; Paddenberg, Renate; Quanz, Karin; Chang, Chia L.; Park, Jae-Il; Gries, Barbara; Rafiq, Amir; Faulhammer, Petra; Goldenberg, Anna; Papadakis, Tamara; Noll, Thomas; Hsu, Sheau Y. T.; Weissmann, Norbert; Kummer, Wolfgang

    2009-01-01

    Accumulating evidence suggests a pivotal role of the calcitonin receptor-like receptor (CRLR) signaling pathway in preventing damage of the lung by stabilizing pulmonary barrier function. Intermedin (IMD), also termed adrenomedullin-2, is the most recently identified peptide targeting this receptor. Here we investigated the effect of hypoxia on the expression of IMD in the murine lung and cultured murine pulmonary microvascular endothelial cells (PMEC) as well as the role of IMD in regulating vascular permeability. Monoclonal IMD antibodies were generated, and transcript levels were assayed by quantitative RT-PCR. The promoter region of IMD gene was analyzed, and the effect of hypoxia-inducible factor (HIF)-1α on IMD expression was investigated in HEK293T cells. Isolated murine lungs and a human lung microvascular endothelial cell monolayer model were used to study the effect of IMD on vascular permeability. IMD was identified as a pulmonary endothelial peptide by immunohistochemistry and RT-PCR. Hypoxia caused an upregulation of IMD mRNA in the murine lung and PMEC. As shown by these results, HIF-1α enhances IMD promoter activity. Our functional studies showed that IMD abolished the increase in pressure-induced endothelial permeability. Moreover, IMD decreased basal and thrombin-induced hyperpermeability of an endothelial cell monolayer in a receptor-dependent manner and activated PKA in these cells. In conclusion, IMD is a novel hypoxia-induced gene and a potential interventional agent for the improvement of endothelial barrier function in systemic inflammatory responses and hypoxia-induced vascular leakage. PMID:19684198

  12. Agmatine attenuates the discriminative stimulus and hyperthermic effects of methamphetamine in male rats.

    PubMed

    Thorn, David A; Li, Jiuzhou; Qiu, Yanyan; Li, Jun-Xu

    2016-09-01

    Methamphetamine abuse remains an alarming public heath challenge, with no approved pharmacotherapies available. Agmatine is a naturally occurring cationic polyamine that has previously been shown to attenuate the rewarding and psychomotor-sensitizing effects of methamphetamine. This study examined the effects of agmatine on the discriminative stimulus and hyperthermic effects of methamphetamine. Adult male rats were trained to discriminate 0.32 mg/kg methamphetamine from saline. Methamphetamine dose dependently increased drug-associated lever responding. The nonselective dopamine receptor antagonist haloperidol (0.1 mg/kg) significantly attenuated the discriminative stimulus effects of methamphetamine (5.9-fold rightward shift). Agmatine (10-100 mg/kg) did not substitute for methamphetamine, but significantly attenuated the stimulus effects of methamphetamine, leading to a maximum of a 3.5-fold rightward shift. Acute 10 mg/kg methamphetamine increased the rectal temperature by a maximum of 1.96±0.17°C. Agmatine (10-32 mg/kg) pretreatment significantly attenuated the hyperthermic effect of methamphetamine. Agmatine (10 mg/kg) also significantly reversed methamphetamine-induced temperature increase. Together, these results support further exploration of the value that agmatine may have for the treatment of methamphetamine abuse and overdose. PMID:27232669

  13. Agmatine induces Nrf2 and protects against corticosterone effects in hippocampal neuronal cell line.

    PubMed

    Freitas, Andiara E; Egea, Javier; Buendía, Izaskun; Navarro, Elisa; Rada, Patricia; Cuadrado, Antonio; Rodrigues, Ana Lúcia S; López, Manuela G

    2015-01-01

    Hyperactivation of the hypothalamic-pituitary-adrenal axis is a common finding in major depression; this may lead to increased levels of cortisol, which are known to cause oxidative stress imbalance and apoptotic neuronal cell death, particularly in the hippocampus, a key region implicated in mood regulation. Agmatine, an endogenous metabolite of L-arginine, has been proposed for the treatment of major depression. Corticosterone induced apoptotic cell death and increased ROS production in cultured hippocampal neuronal cells, effects that were abolished in a concentration- and time-dependent manner by agmatine. Interestingly, the combination of sub-effective concentrations of agmatine with fluoxetine or imipramine afforded synergic protection. The neuroprotective effect of agmatine was abolished by yohimbine (α2-adrenoceptor antagonist), ketanserin (5-HT2A receptor antagonist), LY294002 (PI3K inhibitor), PD98059 (MEK1/2 inhibitor), SnPP (HO-1 inhibitor), and cycloheximide (protein synthesis inhibitor). Agmatine increased Akt and ERK phosphorylation and induced the transcription factor Nrf2 and the proteins HO-1 and GCLc; induction of these proteins was prevented by yohimbine, ketanserin, LY294002, and PD98059. In conclusion, agmatine affords neuroprotection against corticosterone effects by a mechanism that implicates Nrf2 induction via α2-adrenergic and 5-HT2A receptors, Akt and ERK pathways, and HO-1 and GCLc expression. PMID:25084759

  14. Chronic agmatine treatment prevents behavioral manifestations of nicotine withdrawal in mice.

    PubMed

    Kotagale, Nandkishor R; Chopde, Chandrabhan T; Umekar, Milind J; Taksande, Brijesh G

    2015-05-01

    Smoking cessation exhibits an aversive withdrawal syndrome characterized by both increases in somatic signs and affective behaviors including anxiety and depression. In present study, abrupt withdrawal of daily nicotine injections (2mg/kg, s.c., four times daily, for 10 days) significantly increased somatic signs viz. rearing, grooming, jumping, genital licking, leg licking, head shakes with associated depression (increased immobility in forced swim test) as well as anxiety (decreased the number of entries and time spent in open arm in elevated plus maze) in nicotine dependent animals. The peak effect was observed at 24h time point of nicotine withdrawal. Repeated administration of agmatine (40-80µg/mouse, i.c.v.) before the first daily dose of nicotine from day 5 to 10 attenuated the elevated scores of somatic signs and abolished the depression and anxiety like behavior induced by nicotine withdrawal in dependent animals. However, in separate groups, its acute administration 30min before behavior analysis of nicotine withdrawal was ineffective. This result clearly shows the role of agmatine in development of nicotine dependence and its withdrawal. In extension to behavioral experiments, brain agmatine analyses, carried out at 24h time point of nicotine withdrawal demonstrated marked decrease in basal brain agmatine concentration as compared to control animals. Taken together, these data support the role of agmatine as common biological substrate for somatic signs and affective symptoms of nicotine withdrawal. This data may project therapies based on agmatine in anxiety, depression and mood changes associated with tobacco withdrawal. PMID:25744879

  15. Regulation of the breast cancer stem cell phenotype by hypoxia-inducible factors.

    PubMed

    Semenza, Gregg L

    2015-12-01

    The small subpopulation of breast cancer cells that possess the capability for self-renewal and formation of secondary tumours that recapitulate the heterogeneity of the primary tumour are referred to as tumour-initiating cells or BCSCs (breast cancer stem cells). The hypoxic tumour microenvironment and chemotherapy actively induce the BCSC phenotype. HIFs (hypoxia-inducible factors) are required and molecular mechanisms by which they promote the BCSC phenotype have recently been delineated. HIF inhibitors block chemotherapy-induced enrichment of BCSCs, suggesting that their use may improve the response to chemotherapy and increase the survival of breast cancer patients. PMID:26405042

  16. Hypoxia inducible factors in liver disease and hepatocellular carcinoma: current understanding and future directions.

    PubMed

    Wilson, Garrick K; Tennant, Daniel A; McKeating, Jane A

    2014-12-01

    Hypoxia inducible transcription factors (HIFs) activate diverse pathways that regulate cellular metabolism, angiogenesis, proliferation, and migration, enabling a cell to respond to a low oxygen or hypoxic environment. HIFs are regulated by oxygen-dependent and independent signals including: mitochondrial dysfunction, reactive oxygen species, endoplasmic reticular stress, and viral infection. HIFs have been reported to play a role in the pathogenesis of liver disease of diverse aetiologies. This review explores the impact of HIFs on hepatocellular biology and inflammatory responses, highlighting the therapeutic potential of targeting HIFs for an array of liver pathologies. PMID:25157983

  17. Targeting mitochondrial reactive oxygen species to modulate hypoxia-induced pulmonary hypertension.

    PubMed

    Adesina, Sherry E; Kang, Bum-Yong; Bijli, Kaiser M; Ma, Jing; Cheng, Juan; Murphy, Tamara C; Michael Hart, C; Sutliff, Roy L

    2015-10-01

    Pulmonary hypertension (PH) is characterized by increased pulmonary vascular remodeling, resistance, and pressures. Reactive oxygen species (ROS) contribute to PH-associated vascular dysfunction. NADPH oxidases (Nox) and mitochondria are major sources of superoxide (O(2)(•-)) and hydrogen peroxide (H(2)O(2)) in pulmonary vascular cells. Hypoxia, a common stimulus of PH, increases Nox expression and mitochondrial ROS (mtROS) production. The interactions between these two sources of ROS generation continue to be defined. We hypothesized that mitochondria-derived O(2)(•-) (mtO(2)(•-)) and H(2)O(2) (mtH(2)O(2)) increase Nox expression to promote PH pathogenesis and that mitochondria-targeted antioxidants can reduce mtROS, Nox expression, and hypoxia-induced PH. Exposure of human pulmonary artery endothelial cells to hypoxia for 72 h increased mtO(2)(•-) and mtH(2)O(2). To assess the contribution of mtO(2)(•-) and mtH(2)O(2) to hypoxia-induced PH, mice that overexpress superoxide dismutase 2 (Tg(hSOD2)) or mitochondria-targeted catalase (MCAT) were exposed to normoxia (21% O(2)) or hypoxia (10% O(2)) for three weeks. Compared with hypoxic control mice, MCAT mice developed smaller hypoxia-induced increases in RVSP, α-SMA staining, extracellular H(2)O(2) (Amplex Red), Nox2 and Nox4 (qRT-PCR and Western blot), or cyclinD1 and PCNA (Western blot). In contrast, Tg(hSOD2) mice experienced exacerbated responses to hypoxia. These studies demonstrate that hypoxia increases mtO(2)(•-) and mtH(2)O(2). Targeting mtH(2)O(2) attenuates PH pathogenesis, whereas targeting mtO(2)(•-) exacerbates PH. These differences in PH pathogenesis were mirrored by RVSP, vessel muscularization, levels of Nox2 and Nox4, proliferation, and H(2)O(2) release. These studies suggest that targeted reductions in mtH(2)O(2) generation may be particularly effective in preventing hypoxia-induced PH. PMID:26073127

  18. Potent and Selective Triazole-Based Inhibitors of the Hypoxia-Inducible Factor Prolyl-Hydroxylases with Activity in the Murine Brain

    PubMed Central

    Chan, Mun Chiang; Atasoylu, Onur; Hodson, Emma; Tumber, Anthony; Leung, Ivanhoe K. H.; Chowdhury, Rasheduzzaman; Gómez-Pérez, Verónica; Demetriades, Marina; Rydzik, Anna M.; Holt-Martyn, James; Tian, Ya-Min; Bishop, Tammie; Claridge, Timothy D. W.; Kawamura, Akane; Pugh, Christopher W.; Ratcliffe, Peter J.; Schofield, Christopher J.

    2015-01-01

    As part of the cellular adaptation to limiting oxygen availability in animals, the expression of a large set of genes is activated by the upregulation of the hypoxia-inducible transcription factors (HIFs). Therapeutic activation of the natural human hypoxic response can be achieved by the inhibition of the hypoxia sensors for the HIF system, i.e. the HIF prolyl-hydroxylases (PHDs). Here, we report studies on tricyclic triazole-containing compounds as potent and selective PHD inhibitors which compete with the 2-oxoglutarate co-substrate. One compound (IOX4) induces HIFα in cells and in wildtype mice with marked induction in the brain tissue, revealing that it is useful for studies aimed at validating the upregulation of HIF for treatment of cerebral diseases including stroke. PMID:26147748

  19. Repeated immobilization stress alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Feng, Yang-Zheng; Regunathan, Soundar; Bissette, Garth

    2008-01-01

    Agmatine, an endogenous amine derived from decarboxylation of L-arginine catalyzed by arginine decarboxylase, has been proposed as a neurotransmitter or neuromodulator in the brain. In the present study we examined whether agmatine has neuroprotective effects against repeated immobilization-induced morphological changes in brain tissues and possible effects of immobilization stress on endogenous agmatine levels and arginine decarboxylase expression in rat brains. Sprague-Dawley rats were subjected to two hour immobilization stress daily for seven days. This paradigm significantly increased plasma corticosterone levels, and the glutamate efflux in the hippocampus as measured by in vivo microdialysis. Immunohistochemical staining with β-tubulin III showed that repeated immobilization caused marked morphological alterations in the hippocampus and medial prefrontal cortex that were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Likewise, endogenous agmatine levels measured by high performance liquid chromatography in the prefrontal cortex, hippocampus, striatum and hypothalamus were significantly increased by immobilization, as compared to controls. The increased endogenous agmatine levels, ranging from 92% to 265% of controls, were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. These results demonstrate that administration of exogenous agmatine protects the hippocampus and medial prefrontal cortex against neuronal insults caused by repeated immobilization. The parallel increase in endogenous brain agmatine and arginine decarboxylase protein levels triggered by repeated immobilization indicates that the endogenous agmatine system may play an important role in adaptation to stress as a potential neuronal self-protection mechanism. PMID:18832001

  20. Effect of agmatine on experimental vascular endothelial dysfunction.

    PubMed

    Nader, M A; Gamiel, N M; El-Kashef, H; Zaghloul, M S

    2016-05-01

    This study was designed to investigate the effect of agmatine sulfate (AG, CAS2482-00-0) in nicotine (NIC)-induced vascular endothelial dysfunction (VED) in rabbits. NIC was administered to produce VED in rabbits with or without AG for 6 weeks. Serum lipid profile, serum thiobarbituric acid reactive substances, reduced glutathione, superoxide dismutase generation, serum nitrite/nitrate, serum vascular cellular adhesion molecule-1 (VCAM-1), and aortic nuclear factor κB (NF-κB) levels were analyzed.Treatment with AG markedly improves lipid profile and prevented NIC-induced VED and oxidative stress. The mechanism of AG in improving NIC-induced VED may be due to the significant reduction in serum VCAM-1 levels and aortic NF-κB. Thus, it may be concluded that AG reduces the oxidative stress, nitric oxide production, VCAM-1 levels, and aortic NF-κB expression, thereby consequently improving the integrity of vascular endothelium. PMID:26424770

  1. Systemic oxygenation weakens the hypoxia and Hypoxia Inducible Factor 1α-dependent and extracellular adenosine-mediated tumor protection

    PubMed Central

    Hatfield, Stephen M.; Kjaergaard, Jorgen; Lukashev, Dmitriy; Belikoff, Bryan; Schreiber, Taylor H.; Sethumadhavan, Shalini; Abbott, Robert; Philbrook, Phaethon; Thayer, Molly; Shujia, Dai; Rodig, Scott; Kutok, Jeffrey L.; Ren, Jin; Ohta, Akio; Podack, Eckhard R.; Karger, Barry; Jackson, Edwin K.; Sitkovsky, Michail

    2014-01-01

    Intratumoral hypoxia and Hypoxia Inducible Factor-1α (HIF-1α)-dependent CD39/CD73 ecto-enzymes may govern the accumulation of tumor-protecting extracellular adenosine and signaling through the A2A adenosine receptors (A2AR) in tumor microenvironments (TME). Here, we explored the conceptually novel motivation to use supplemental oxygen as a treatment to inhibit the hypoxia/HIF-1α-CD39/CD73-driven accumulation of extracellular adenosine in the TME in order to weaken the tumor protection. We report that hyperoxic breathing (60% O2) decreased the TME hypoxia, as well as levels of HIF-1α and downstream target proteins of HIF-1α in the TME according to proteomics studies in mice. Importantly, oxygenation also down-regulated the expression of adenosine-generating ecto-enzymes and significantly lowered levels of tumor-protecting extracellular adenosine in the TME. Using supplemental oxygen as a tool in studies of the TME, we also identified FHL-1 as a potentially useful marker for the conversion of hypoxic into normoxic TME. Hyperoxic breathing resulted in the up-regulation of antigen-presenting MHC-class I molecules on tumor cells and in the better recognition and increased susceptibility to killing by tumor-reactive cytotoxic T cells. Therapeutic breathing of 60% oxygen resulted in the significant inhibition of growth of established B16.F10 melanoma tumors and prolonged survival of mice. Taken together, the data presented here provide proof-of principle for the therapeutic potential of systemic oxygenation to convert the hypoxic, adenosine-rich and tumor-protecting TME into a normoxic and extracellular adenosine-poor TME that, in turn, may facilitate tumor regression. We propose to explore the combination of supplemental oxygen with existing immunotherapies of cancer. PMID:25120128

  2. Polyamine metabolism-based dual functional gene delivery system to synergistically inhibit the proliferation of cancer.

    PubMed

    Cui, Peng-Fei; Xing, Lei; Qiao, Jian-Bin; Zhang, Jia-Liang; He, Yu-Jing; Zhang, Mei; Lyu, Jin-Yuan; Luo, Cheng-Qiong; Jin, Liang; Jiang, Hu-Lin

    2016-06-15

    Polyamine content, which is associated with tumor growth, can be regulated by ornithine decarboxylase (ODC) and S-adenosyl methionine decarboxylase (SAMDC), two key enzymes in polyamine biosynthesis. Here we aim to develop a pH-responsive cationic poly(agmatine) based on a polyamine analogue-agmatine that can dually function as a gene delivery vector as well as an anticancer agent by inhibiting ODC after intracellular degradation. The core-shell nanoparticles, formed by poly(agmatine)/SAMDC siRNA complex as a core, were coated with bovine serum albumin for better in vivo circulation stability and tumor targeting. When the nanoparticles were taken up by tumor cells via endocytosis and degraded in endosome, the released agmatine and SAMDC siRNA can synergistically inhibit polyamines biosynthesis, inducing inhibition of tumor proliferation. Our study offered a potential way in tumor therapy based on polyamine metabolism. PMID:27102990

  3. Hypoxia induced the differentiation of Tbx18-positive epicardial cells to CoSMCs.

    PubMed

    Jing, Xiaodong; Gao, Yulin; Xiao, Songlin; Qin, Qin; Wei, Xiaoming; Yan, Yuling; Wu, Ling; Deng, Songbai; Du, Jianlin; Liu, Yajie; She, Qiang

    2016-01-01

    Understanding the origin and differentiation mechanism of coronary vascular smooth muscle cells (CoSMCs) is very important to cardiovascular biology. The early cardiovascular system is formed in a hypoxic microenvironment, and Tbx18-positive epicardial cells are a source of CoSMCs. However, the effects of hypoxia on the differentiation of Tbx18-positive epicardial cells to CoSMCs and the primary regulatory mechanism are insufficiently understood. Using Tbx18:Cre/R26R(EYFP/LacZ) fate-tracing mice, we cultured highly purified Tbx18-positive epicardial cells. We further showed that hypoxia induced Tbx18-positive epicardial cells to differentiate into CoSMCs and promoted the epithelial-mesenchymal transition (EMT) process of the cells in vitro. The induction of differentiation was primarily achieved via the hypoxia inducible factor-1α (HIF-1α)-mediated effects exerted on Snail. Using a cell migration assay, we showed that hypoxia enhanced the motility of Tbx18-positive epicardial cells. By constructing a hypoxic model of the embryonic epicardium in vivo, we showed that hypoxia led to premature in situ differentiation of Tbx18-positive epicardial cells to CoSMCs. Furthermore, hypoxia was sufficient to induce Snail expression in Tbx18-positive epicardial cells in vivo. Our study suggests that hypoxia intervention was sufficient to induce the differentiation of Tbx18-positive epicardial cells to CoSMCs. Furthermore, this differentiation was achieved primarily via HIF-1α-mediated regulation of Snail. PMID:27456656

  4. Hypoxia-induced and calpain-dependent cleavage of filamin A regulates the hypoxic response.

    PubMed

    Zheng, Xiaowei; Zhou, Alex-Xianghua; Rouhi, Pegah; Uramoto, Hidetaka; Borén, Jan; Cao, Yihai; Pereira, Teresa; Akyürek, Levent M; Poellinger, Lorenz

    2014-02-18

    The cellular response to hypoxia is regulated by hypoxia-inducible factor-1α and -2α (HIF-1α and -2α). We have discovered that filamin A (FLNA), a large cytoskeletal actin-binding protein, physically interacts with HIF-1α and promotes tumor growth and angiogenesis. Hypoxia induces a calpain-dependent cleavage of FLNA to generate a naturally occurring C-terminal fragment that accumulates in the cell nucleus. This fragment interacts with the N-terminal portion of HIF-1α spanning amino acid residues 1-390 but not with HIF-2α. In hypoxia this fragment facilitates the nuclear localization of HIF-1α, is recruited to HIF-1α target gene promoters, and enhances HIF-1α function, resulting in up-regulation of HIF-1α target gene expression in a hypoxia-dependent fashion. These results unravel an important mechanism that selectively regulates the nuclear accumulation and function of HIF-1α and potentiates angiogenesis and tumor progression. PMID:24550283

  5. Effect of hypoxia inducible factor-1 antisense oligonucleotide on liver cancer

    PubMed Central

    Li, Hongzhang; Chen, Jiaoe; Zen, Wanli; Xu, Xuehua; Xu, Yanjun; Chen, Qiang; Yang, Tiangan

    2015-01-01

    Hepatocellular carcinoma (HCC) is one of the most frequent primary malignancies of the liver and is resistant to anticancer drugs. Hypoxia is a master cause of tumor resistance to chemotherapy. Hypoxia-inducible factor-one alpha (HIF-1α) plays a key role in the adaptive responses to hypoxic environments. HIF-1α is constitutively up-regulated in several tumor types might thus be implicated in tumor therapy resistance. We hypothesized that disruption of HIF-1α pathway could reverse the hypoxia-induced resistance to chemotherapy. In this report, we prepared DOTAP (a liposome formulation of a mono-cationic lipid N-[1-(2,3-Dioleoyloxy)]- N,N,N-trimethylammonium propane methylsulfate in sterile water) cationic liposomes containing an antisense oligonucleotide (AsODN) against HIF-1α. Gene transfer of antisense HIF-1α was effective in suppressing tumor growth, angiogenesis, and cell proliferation, and inducing cell apoptosis. Our results suggested that antisense HIF-1α therapy could be a therapeutic strategy for treating HCC. PMID:26550178

  6. Hypoxia-induced fibroblast growth factor 11 stimulates capillary-like endothelial tube formation.

    PubMed

    Yang, Jimin; Kim, Woo Jean; Jun, Hyoung Oh; Lee, Eun Ju; Lee, Kyeong Won; Jeong, Jae-Yeon; Lee, Sae-Won

    2015-11-01

    Low oxygen or hypoxia can be observed in the central region of solid tumors. Hypoxia is a strong stimulus for new blood vessel formation or angiogenesis, which is essential for tumor growth and progression. Fibroblast growth factor 11 (FGF11) is an intracellular non-secretory FGF whose function has not yet been fully characterized. In the present study, we demonstrated that FGF11 expression is upregulated under hypoxic conditions in human umbilical vein endothelial cells (HUVECs). FGF11 overexpression stimulated capillary-like tube formation, yet did not affect cell migration. Notably, FGF11 markedly increased the levels of tight junction proteins including occludin, zonula occludens-1 (ZO-1) and claudin-5 in HUVECs. The FGF11 promoter contains hypoxia response elements (HREs), and hypoxia-inducible factor-1 (HIF-1) binds to HREs to activate hypoxia-related genes. We demonstrated that hypoxia or HIF-1 expression under normoxic conditions increased the luciferase activity driven by the FGF11 promoter. However, deletion of the HREs from the FGF11 promoter rendered reporter gene activity unresponsive to hypoxia or HIF-1. Taken together, we propose that FGF11 may be involved in the stabilization of capillary-like tube structures associated with angiogenesis and may act as a modulator of hypoxia-induced pathological processes such as tumorigenesis. PMID:26323829

  7. Neuroprotective effect of cobalt chloride on hypobaric hypoxia-induced oxidative stress.

    PubMed

    Shrivastava, Kalpana; Shukla, Dhananjay; Bansal, Anju; Sairam, Mustoori; Banerjee, P K; Ilavazhagan, Govindaswamy

    2008-02-01

    Hypobaric hypoxia, characteristic of high altitude is known to increase the formation of reactive oxygen and nitrogen species (RONS), and decrease effectiveness of antioxidant enzymes. RONS are involved and may even play a causative role in high altitude related ailments. Brain is highly susceptible to hypoxic stress and is involved in physiological responses that follow. Exposure of rats to hypobaric hypoxia (7619 m) resulted in increased oxidation of lipids and proteins due to increased RONS and decreased reduced to oxidized glutathione (GSH/GSSG) ratio. Further, there was a significant increase in superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) levels. Increase in heme oxygenase 1 (HO-1) and heat shock protein 70 (HSP70) was also noticed along with metallothionein (MT) II and III. Administration of cobalt appreciably attenuated the RONS generation, oxidation of lipids and proteins and maintained GSH/GSSH ratio similar to that of control cells via induction of HO-1 and MT offering efficient neuroprotection. It can be concluded that cobalt reduces hypoxia oxidative stress by maintaining higher cellular HO-1 and MT levels via hypoxia inducible factor 1alpha (HIF-1alpha) signaling mechanisms. These findings provide a basis for possible use of cobalt for prevention of hypoxia-induced oxidative stress. PMID:17706837

  8. A possible role for hypoxia-induced apelin expression in enteric cell proliferation.

    PubMed

    Han, Song; Wang, Guiyun; Qi, Xiang; Lee, Heung M; Englander, Ella W; Greeley, George H

    2008-06-01

    Apelin is the endogenous ligand for the APJ receptor, and apelin and APJ are expressed in the gastrointestinal (GI) tract. Intestinal inflammation increases intestinal hypoxia-inducible factor (HIF) and apelin expression. Hypoxia and inflammation are closely linked cellular insults. The purpose of these studies was to investigate the influence of hypoxia on enteric apelin expression. Exposure of rat pups to acute hypoxia increased hepatic, stomach-duodenal, and colonic apelin mRNA levels 10-, 2-, and 2-fold, respectively (P < 0.05 vs. controls). Hypoxia also increased colonic APJ mRNA levels, and apelin treatment during hypoxia exposure enhanced colonic APJ mRNA levels further. In vitro hypoxia also increased apelin and APJ mRNA levels. The hypoxia-induced elevation in apelin expression is most likely mediated by HIF, since HIF-activated apelin transcriptional activity is dependent on an intact, putative HIF binding site in the rat apelin promoter. Acute exposure of rat pups to hypoxia lowered gastric and colonic epithelial cell proliferation; hypoxia in combination with apelin treatment increased epithelial proliferation by 50%. In vitro apelin treatment of enteric cells exposed to hypoxia increased cell proliferation. Apelin treatment during normoxia was ineffective. Our studies imply that the elevation in apelin expression during hypoxia and inflammation in the GI tract functions in part to stimulate epithelial cell proliferation. PMID:18367654

  9. Involvement of Hypoxia-Inducible Factors in the Dysregulation of Oxygen Homeostasis in Sepsis

    PubMed Central

    Hirota, Kiichi

    2015-01-01

    Sepsis is a state of infection with serious systemic manifestations, and if severe enough, can be associated with multiple organ dysfunction and systemic hypotension, which can cause tissues to be hypoxic. Inflammation, as part of the multifaceted biological response to injurious stimuli, such as pathogens or damaged tissues and cells, underlies these biological processes. Prolonged and persistent inflammation, also known as chronic inflammation, results in progressive alteration in the various types of cells at the site of inflammation and is characterized by the simultaneous destruction and healing of tissue during the process. Tissue hypoxia during inflammation is not just a simple bystander process, but can considerably affect the development or attenuation of inflammation by causing the regulation of hypoxia-dependent gene expression. Indeed, the study of transcriptionally regulated tissue adaptation to hypoxia requires intense investigation to help control hypoxia-induced inflammation and organ failure. In this review, I have described the pathophysiology of sepsis with respect to oxygen metabolism and expression of hypoxia-inducible factor 1. PMID:25567333

  10. Inactivation of hypoxia-induced YAP by statins overcomes hypoxic resistance tosorafenib in hepatocellular carcinoma cells

    PubMed Central

    Zhou, Tian-yi; Zhuang, Lin-han; Hu, Yan; Zhou, Yu-lu; Lin, Wen-kai; Wang, Dan-dan; Wan, Zi-qian; Chang, Lin-lin; Chen, Ying; Ying, Mei-dan; Chen, Zi-bo; Ye, Song; Lou, Jian-shu; He, Qiao-jun; Zhu, Hong; Yang, Bo

    2016-01-01

    Sorafenib is a multikinase inhibitor used as a first-line treatment for advanced hepatocellular carcinoma (HCC), but it has shown modest to low response rates. The characteristic tumour hypoxia of advanced HCC maybe a major factor underlying hypoxia-mediated treatment failure. Thus, it is urgent to elucidate the mechanisms of hypoxia-mediated sorafenib resistance in HCC. In this study, we found that hypoxia induced the nuclear translocation of Yes associate-Protein (YAP) and the subsequent transactivation of target genes that promote cell survival and escape apoptosis, thereby leading to sorafenib resistance. Statins, the inhibitors of hydroxymethylglutaryl-CoA reductase, could ameliorate hypoxia-induced nuclear translocation of YAP and suppress mRNA levels of YAP target genes both in vivo and in vitro. Combined treatment of statins with sorafenib greatly rescued the loss of anti-proliferative effects of sorafenib under hypoxia and improved the inhibitory effects on HepG2 xenograft tumour growth, accompanied by enhanced apoptosis as evidenced by the increased sub-G1 population and PARP cleavage. The expression levels of YAP and its target genes were highly correlated with poor prognosis and predicted a high risk of HCC patients. These findings collectively suggest that statins utilization maybe a promising new strategy to counteract hypoxia-mediated resistance to sorafenib in HCC patients. PMID:27476430

  11. Hypoxia induced the differentiation of Tbx18-positive epicardial cells to CoSMCs

    PubMed Central

    Jing, Xiaodong; Gao, Yulin; Xiao, Songlin; Qin, Qin; Wei, Xiaoming; Yan, Yuling; Wu, Ling; Deng, Songbai; Du, Jianlin; Liu, Yajie; She, Qiang

    2016-01-01

    Understanding the origin and differentiation mechanism of coronary vascular smooth muscle cells (CoSMCs) is very important to cardiovascular biology. The early cardiovascular system is formed in a hypoxic microenvironment, and Tbx18-positive epicardial cells are a source of CoSMCs. However, the effects of hypoxia on the differentiation of Tbx18-positive epicardial cells to CoSMCs and the primary regulatory mechanism are insufficiently understood. Using Tbx18:Cre/R26REYFP/LacZ fate-tracing mice, we cultured highly purified Tbx18-positive epicardial cells. We further showed that hypoxia induced Tbx18-positive epicardial cells to differentiate into CoSMCs and promoted the epithelial-mesenchymal transition (EMT) process of the cells in vitro. The induction of differentiation was primarily achieved via the hypoxia inducible factor-1α (HIF-1α)-mediated effects exerted on Snail. Using a cell migration assay, we showed that hypoxia enhanced the motility of Tbx18-positive epicardial cells. By constructing a hypoxic model of the embryonic epicardium in vivo, we showed that hypoxia led to premature in situ differentiation of Tbx18-positive epicardial cells to CoSMCs. Furthermore, hypoxia was sufficient to induce Snail expression in Tbx18-positive epicardial cells in vivo. Our study suggests that hypoxia intervention was sufficient to induce the differentiation of Tbx18-positive epicardial cells to CoSMCs. Furthermore, this differentiation was achieved primarily via HIF-1α-mediated regulation of Snail. PMID:27456656

  12. Hypoxia Promotes Glycogen Accumulation through Hypoxia Inducible Factor (HIF)-Mediated Induction of Glycogen Synthase 1

    PubMed Central

    Pescador, Nuria; Garcia-Rocha, Mar; Ortiz-Barahona, Amaya; Vazquez, Silvia; Ordoñez, Angel; Cuevas, Yolanda; Saez-Morales, David; Garcia-Bermejo, Maria Laura; Landazuri, Manuel O.; Guinovart, Joan; del Peso, Luis

    2010-01-01

    When oxygen becomes limiting, cells reduce mitochondrial respiration and increase ATP production through anaerobic fermentation of glucose. The Hypoxia Inducible Factors (HIFs) play a key role in this metabolic shift by regulating the transcription of key enzymes of glucose metabolism. Here we show that oxygen regulates the expression of the muscle glycogen synthase (GYS1). Hypoxic GYS1 induction requires HIF activity and a Hypoxia Response Element within its promoter. GYS1 gene induction correlated with a significant increase in glycogen synthase activity and glycogen accumulation in cells exposed to hypoxia. Significantly, knockdown of either HIF1α or GYS1 attenuated hypoxia-induced glycogen accumulation, while GYS1 overexpression was sufficient to mimic this effect. Altogether, these results indicate that GYS1 regulation by HIF plays a central role in the hypoxic accumulation of glycogen. Importantly, we found that hypoxia also upregulates the expression of UTP:glucose-1-phosphate urydylyltransferase (UGP2) and 1,4-α glucan branching enzyme (GBE1), two enzymes involved in the biosynthesis of glycogen. Therefore, hypoxia regulates almost all the enzymes involved in glycogen metabolism in a coordinated fashion, leading to its accumulation. Finally, we demonstrated that abrogation of glycogen synthesis, by knock-down of GYS1 expression, impairs hypoxic preconditioning, suggesting a physiological role for the glycogen accumulated during chronic hypoxia. In summary, our results uncover a novel effect of hypoxia on glucose metabolism, further supporting the central importance of metabolic reprogramming in the cellular adaptation to hypoxia. PMID:20300197

  13. Hypoxia-Induced Vascular Endothelial Growth Factor Expression Precedes Neovascularization after Cerebral Ischemia

    PubMed Central

    Marti, Hugo J. H.; Bernaudin, Myriam; Bellail, Anita; Schoch, Heike; Euler, Monika; Petit, Edwige; Risau, Werner

    2000-01-01

    We investigated the hypothesis that hypoxia induces angiogenesis and thereby may counteract the detrimental neurological effects associated with stroke. Forty-eight to seventy-two hours after permanent middle cerebral artery occlusion we found a strong increase in the number of newly formed vessels at the border of the infarction. Using the hypoxia marker nitroimidazole EF5, we detected hypoxic cells in the ischemic border of the neocortex. Expression of vascular endothelial growth factor (VEGF), which is the main regulator of angiogenesis and is inducible by hypoxia, was strongly up-regulated in the ischemic border, at times between 6 and 24 hours after occlusion. In addition, both VEGF receptors (VEGFRs) were up-regulated at the border after 48 hours and later in the ischemic core. Finally, the two transcription factors, hypoxia-inducible factor-1 (HIF-1) and HIF-2, known to be involved in the regulation of VEGF and VEGFR gene expression, were increased in the ischemic border after 72 hours, suggesting a regulatory function for these factors. These results strongly suggest that the VEGF/VEGFR system, induced by hypoxia, leads to the growth of new vessels after cerebral ischemia. Exogenous support of this natural protective mechanism might lead to enhanced survival after stroke. PMID:10702412

  14. Hypoxia-Induced Endothelial Progenitor Cell Function Is Blunted in Angiotensinogen Knockout Mice

    PubMed Central

    Choi, Jin-Hwa; Nguyen, Minh-Phuong; Lee, Dongjin; Oh, Goo-Taeg; Lee, You-Mie

    2014-01-01

    Angiotensinogen (AGT), the precursor of angiotensin I, is known to be involved in tumor angiogenesis and associated with the pathogenesis of coronary atherosclerosis. This study was undertaken to determine the role played by AGT in endothelial progenitor cells (EPCs) in tumor progression and metastasis. It was found that the number of EPC colonies formed by AGT heterozygous knockout (AGT+/−) cells was less than that formed by wild-type (WT) cells, and that the migration and tube formation abilities of AGT+/− EPCs were significantly lower than those of WT EPCs. In addition, the gene expressions of vascular endothelial growth factor (VEGF), Flk1, angiopoietin (Ang)-1, Ang-2, Tie-2, stromal derived factor (SDF)-1, C-X-C chemokine receptor type 4 (CXCR4), and of endothelial nitric oxide synthase (eNOS) were suppressed in AGT+/− EPCs. Furthermore, the expressions of hypoxia-inducible factor (HIF)-1α and -2α were downregulated in AGT+/− early EPCs under hypoxic conditions, suggesting a blunting of response to hypoxia. Moreover, the activation of Akt/eNOS signaling pathways induced by VEGF, epithelial growth factor (EGF), or SDF-1α were suppressed in AGT+/− EPCs. In AGT+/− mice, the incorporation of EPCs into the tumor vasculature was significantly reduced, and lung tumor growth and melanoma metastasis were attenuated. In conclusion, AGT is required for hypoxia-induced vasculogenesis. PMID:24938229

  15. Regulation of endothelial nitric oxide synthase by agmatine after transient global cerebral ischemia in rat brain.

    PubMed

    Mun, Chin Hee; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2010-09-01

    Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) plays a protective role in cerebral ischemia by maintaining vascular permeability, whereas NO derived from neuronal and inducible NOS is neurotoxic and can participate in neuronal damage occurring in ischemia. Matrix metalloproteinases (MMPs) are up-regulated by ischemic injury and degrade the basement membrane if brain vessels to promote cell death and tissue injury. We previously reported that agmatine, synthesized from L-arginine by arginine decarboxylase (ADC) which is expressed in endothelial cells, has shown a direct increased eNOS expression and decreased MMPs expression in bEnd3 cells. But, there are few reports about the regulation of eNOS by agmatine in ischemic animal model. In the present study, we examined the expression of eNOS and MMPs by agmatine treatment after transient global ischemia in vivo. Global ischemia was induced with four vessel occlusion (4-VO) and agmatine (100 mg/kg) was administered intraperitoneally at the onset of reperfusion. The animals were euthanized at 6 and 24 hours after global ischemia and prepared for other analysis. Global ischemia led severe neuronal damage in the rat hippocampus and cerebral cortex, but agmatine treatment protected neurons from ischemic injury. Moreover, the level and expression of eNOS was increased by agmatine treatment, whereas inducible NOS (iNOS) and MMP-9 protein expressions were decreased in the brain. These results suggest that agmatine protects microvessels in the brain by activation eNOS as well as reduces extracellular matrix degradation during the early phase of ischemic insult. PMID:21212863

  16. Hypoxia-inducible factor 1 upregulation of both VEGF and ANGPTL4 is required to promote the angiogenic phenotype in uveal melanoma

    PubMed Central

    Rodrigues, Murilo; Deshpande, Monika; Puchner, Brooks; Kashiwabuchi, Fabiana; Hassan, Syed Junaid; Asnaghi, Laura; Handa, James T.; Merbs, Shannath; Eberhart, Charles G.; Semenza, Gregg L.; Montaner, Silvia; Sodhi, Akrit

    2016-01-01

    Purpose Expression of the hypoxia-inducible factor (HIF)-1-regulated gene product, vascular endothelial growth factor (VEGF), correlates with tumor vascularity in patients with uveal melanoma (UM). While the relationship between HIF-1 and VEGF in cancer is well-studied, their relative contribution to the angiogenic phenotype in UM has not previously been interrogated. Here we evaluate the contribution of HIF-1, VEGF, and a second HIF-1-regulated gene product, angiopoietin-like 4 (ANGPTL4), to angiogenesis in UM. Experimental Design UM cells were examined for expression of HIF-1α, VEGF, and ANGPTL4. Their contribution to the angiogenic potential of UM cells was assessed using the endothelial cell tubule formation and directed in vivo angiogenesis assays. These results were corroborated in tissue from UM animal models and in tissue from patients with UM. Results Inhibition of VEGF partially reduced tubule formation promoted by conditioned medium from UM cells. Inhibition of ANGPTL4, which was highly expressed in hypoxic UM cells, a UM orthotopic transplant model, a UM tumor array, and vitreous samples from UM patients, inhibited the angiogenic potential of UM cells in vitro and in vivo; this effect was additive to VEGF inhibition. Conclusions Targeting both ANGPTL4 and VEGF may be required for the effective inhibition of angiogenesis in UM. PMID:26761211

  17. Unsaturation of very-long-chain ceramides protects plant from hypoxia-induced damages by modulating ethylene signaling in Arabidopsis.

    PubMed

    Xie, Li-Juan; Chen, Qin-Fang; Chen, Mo-Xian; Yu, Lu-Jun; Huang, Li; Chen, Liang; Wang, Feng-Zhu; Xia, Fan-Nv; Zhu, Tian-Ren; Wu, Jian-Xin; Yin, Jian; Liao, Bin; Shi, Jianxin; Zhang, Jian-Hua; Aharoni, Asaph; Yao, Nan; Shu, Wensheng; Xiao, Shi

    2015-03-01

    Lipid remodeling is crucial for hypoxic tolerance in animals, whilst little is known about the hypoxia-induced lipid dynamics in plants. Here we performed a mass spectrometry-based analysis to survey the lipid profiles of Arabidopsis rosettes under various hypoxic conditions. We observed that hypoxia caused a significant increase in total amounts of phosphatidylserine, phosphatidic acid and oxidized lipids, but a decrease in phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Particularly, significant gains in the polyunsaturated species of PC, PE and phosphatidylinositol, and losses in their saturated and mono-unsaturated species were evident during hypoxia. Moreover, hypoxia led to a remarkable elevation of ceramides and hydroxyceramides. Disruption of ceramide synthases LOH1, LOH2 and LOH3 enhanced plant sensitivity to dark submergence, but displayed more resistance to submergence under light than wild type. Consistently, levels of unsaturated very-long-chain (VLC) ceramide species (22:1, 24:1 and 26:1) predominantly declined in the loh1, loh2 and loh3 mutants under dark submergence. In contrast, significant reduction of VLC ceramides in the loh1-1 loh3-1 knockdown double mutant and lacking of VLC unsaturated ceramides in the ads2 mutants impaired plant tolerance to both dark and light submergences. Evidence that C24:1-ceramide interacted with recombinant CTR1 protein and inhibited its kinase activity in vitro, enhanced ER-to-nucleus translocation of EIN2-GFP and stabilization of EIN3-GFP in vivo, suggests a role of ceramides in modulating CTR1-mediated ethylene signaling. The dark submergence-sensitive phenotypes of loh mutants were rescued by a ctr1-1 mutation. Thus, our findings demonstrate that unsaturation of VLC ceramides is a protective strategy for hypoxic tolerance in Arabidopsis. PMID:25822663

  18. Hypoxia-induced production of 12-hydroxyeicosanoids in the corneal epithelium: involvement of a cytochrome P-4504B1 isoform.

    PubMed

    Mastyugin, V; Aversa, E; Bonazzi, A; Vafaes, C; Mieyal, P; Schwartzman, M L

    1999-06-01

    The corneal epithelium metabolizes arachidonic acid by a cytochrome P-450 (CYP)-mediated activity to 12-hydroxy-5,8,11, 14-eicosatetraenoic acid (12(R)-HETE) and 12-hydroxy-5,8, 14-eicosatrienoic acid (12(R)-HETrE ). Both metabolites possess potent inflammatory properties, with 12(R)-HETrE being a powerful angiogenic factor, and they assume the role of inflammatory mediators in hypoxia- and chemical-induced injury in the cornea in vivo and in vitro. We used a model of corneal organ culture that exhibits hypoxia-induced epithelial CYP-dependent 12(R)-HETE and 12(R)-HETrE synthesis for isolating, identifying, and characterizing the CYP protein responsible for these eicosanoid syntheses. Northern analysis revealed the presence of a CYP4A-hybridizable mRNA, the levels of which were increased after hypoxia. Reverse transcription-polymerase chain reaction analysis with primers specific for the CYP4A family led to the isolation of a 671-base pair fragment with a 98.8% sequence homology to the rabbit lung CYP4B1 isoform, of which the levels in the corneal epithelium were greatly increased under hypoxic conditions. Moreover, phenobarbital, an inducer of hepatic CYP4B1 in the rabbit, also induced 12-HETE and 12-HETrE synthesis. Antibodies against CYP4B1, but not against CYP4A1, inhibited hypoxia-, clofibrate-, and phenobarbital-induced 12-HETE and 12-HETrE synthesis. These results suggest the involvement of a CYP4B1 isoform in the corneal epithelial synthesis of these eicosanoids in response to hypoxia. PMID:10336559

  19. Peroxisome Proliferator-Activated Receptor γ and microRNA 98 in Hypoxia-Induced Endothelin-1 Signaling.

    PubMed

    Kang, Bum-Yong; Park, Kathy K; Kleinhenz, Jennifer M; Murphy, Tamara C; Green, David E; Bijli, Kaiser M; Yeligar, Samantha M; Carthan, Kristal A; Searles, Charles D; Sutliff, Roy L; Hart, C Michael

    2016-01-01

    Endothelin-1 (ET-1) plays a critical role in endothelial dysfunction and contributes to the pathogenesis of pulmonary hypertension (PH). We hypothesized that peroxisome proliferator-activated receptor γ (PPARγ) stimulates microRNAs that inhibit ET-1 and pulmonary artery endothelial cell (PAEC) proliferation. The objective of this study was to clarify molecular mechanisms by which PPARγ regulates ET-1 expression in vitro and in vivo. In PAECs isolated from patients with pulmonary arterial hypertension, microRNA (miR)-98 expression was reduced, and ET-1 protein levels and proliferation were increased. Similarly, hypoxia reduced miR-98 and increased ET-1 levels and PAEC proliferation in vitro. In vivo, hypoxia reduced miR-98 expression and increased ET-1 and proliferating cell nuclear antigen (PCNA) levels in mouse lung, derangements that were aggravated by treatment with the vascular endothelial growth factor receptor antagonist Sugen5416. Reporter assays confirmed that miR-98 binds directly to the ET-1 3'-untranslated region. Compared with littermate control mice, miR-98 levels were reduced and ET-1 and PCNA expression were increased in lungs from endothelial-targeted PPARγ knockout mice, whereas miR-98 levels were increased and ET-1 and PCNA expression was reduced in lungs from endothelial-targeted PPARγ-overexpression mice. Gain or loss of PPARγ function in PAECs in vitro confirmed that alterations in PPARγ were sufficient to regulate miR-98, ET-1, and PCNA expression. Finally, PPARγ activation with rosiglitazone regimens that attenuated hypoxia-induced PH in vivo and human PAEC proliferation in vitro restored miR-98 levels. The results of this study show that PPARγ regulates miR-98 to modulate ET-1 expression and PAEC proliferation. These results further clarify molecular mechanisms by which PPARγ participates in PH pathogenesis and therapy. PMID:26098770

  20. TCDD Induces the Hypoxia-Inducible Factor (HIF)-1α Regulatory Pathway in Human Trophoblastic JAR Cells

    PubMed Central

    Liao, Tien-Ling; Chen, Su-Chee; Tzeng, Chii-Reuy; Kao, Shu-Huei

    2014-01-01

    The exposure to dioxin can compromise pregnancy outcomes and increase the risk of preterm births. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been demonstrated to induce placental hypoxia at the end of pregnancy in a rat model, and hypoxia has been suggested to be the cause of abnormal trophoblast differentiation and placental insufficiency syndromes. In this study, we demonstrate that the non-hypoxic stimulation of human trophoblastic cells by TCDD strongly increased hypoxia inducible factor-1 alpha (HIF-1α) stabilization. TCDD exposure induced the generation of reactive oxygen species (ROS) and nitric oxide. TCDD-induced HIF-1α stabilization and Akt phosphorylation was inhibited by pretreatment with wortmannin (a phosphatidylinositol 3-kinase (PI3K) inhibitor) or N-acetylcysteine (a ROS scavenger). The augmented HIF-1α stabilization by TCDD occurred via the ROS-dependent activation of the PI3K/Akt pathway. Additionally, a significant increase in invasion and metallomatrix protease-9 activity was found in TCDD-treated cells. The gene expression of vascular endothelial growth factor and placental growth factor was induced upon TCDD stimulation, whereas the protein levels of peroxisome proliferator-activated receptor γ (PPARγ), PPARγ coactivator-1α, mitochondrial transcription factor, and uncoupling protein 2 were decreased. Our results indicate that an activated HIF-1α pathway, elicited oxidative stress, and induced metabolic stress contribute to TCDD-induced trophoblastic toxicity. These findings may provide molecular insight into the TCDD-induced impairment of trophoblast function and placental development. PMID:25272228

  1. The hypoxia-inducible factor-1α activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia

    PubMed Central

    Zhang, Qian; Doucet, Michele; Tomlinson, Ryan E; Han, Xiaobin; Quarles, L Darryl; Collins, Michael T; Clemens, Thomas L

    2016-01-01

    Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome in which ectopic production of fibroblast growth factor 23 (FGF23) by non-malignant mesenchymal tumors causes phosphate wasting and bone fractures. Recent studies have implicated the hypoxia-inducible factor-1α (HIF-1α) in other phosphate wasting disorders caused by elevated FGF23, including X-linked hypophosphatemic rickets and autosomal dominant hypophosphatemia. Here we provide evidence that HIF-1α mediates aberrant FGF23 in TIO by transcriptionally activating its promoter. Immunohistochemical studies in phosphaturic mesenchymal tumors resected from patients with documented TIO showed that HIF-1α and FGF23 were co-localized in spindle-shaped cells adjacent to blood vessels. Cultured tumor tissue produced high levels of intact FGF23 and demonstrated increased expression of HIF-1α protein. Transfection of MC3T3-E1 and Saos-2 cells with a HIF-1α expression construct induced the activity of a FGF23 reporter construct. Prior treatment of tumor organ cultures with HIF-1α inhibitors decreased HIF-1α and FGF23 protein accumulation and inhibited HIF-1α-induced luciferase reporter activity in transfected cells. Chromatin immunoprecipitation assays confirmed binding to a HIF-1α consensus sequence within the proximal FGF23 promoter, which was eliminated by treatment with a HIF-1α inhibitor. These results show for the first time that HIF-1α is a direct transcriptional activator of FGF23 and suggest that upregulation of HIF-1α activity in TIO contributes to the aberrant FGF23 production in these patients. PMID:27468359

  2. TCDD induces the hypoxia-inducible factor (HIF)-1α regulatory pathway in human trophoblastic JAR cells.

    PubMed

    Liao, Tien-Ling; Chen, Su-Chee; Tzeng, Chii-Reuy; Kao, Shu-Huei

    2014-01-01

    The exposure to dioxin can compromise pregnancy outcomes and increase the risk of preterm births. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been demonstrated to induce placental hypoxia at the end of pregnancy in a rat model, and hypoxia has been suggested to be the cause of abnormal trophoblast differentiation and placental insufficiency syndromes. In this study, we demonstrate that the non-hypoxic stimulation of human trophoblastic cells by TCDD strongly increased hypoxia inducible factor-1 alpha (HIF-1α) stabilization. TCDD exposure induced the generation of reactive oxygen species (ROS) and nitric oxide. TCDD-induced HIF-1α stabilization and Akt phosphorylation was inhibited by pretreatment with wortmannin (a phosphatidylinositol 3-kinase (PI3K) inhibitor) or N-acetylcysteine (a ROS scavenger). The augmented HIF-1α stabilization by TCDD occurred via the ROS-dependent activation of the PI3K/Akt pathway. Additionally, a significant increase in invasion and metallomatrix protease-9 activity was found in TCDD-treated cells. The gene expression of vascular endothelial growth factor and placental growth factor was induced upon TCDD stimulation, whereas the protein levels of peroxisome proliferator-activated receptor γ (PPARγ), PPARγ coactivator-1α, mitochondrial transcription factor, and uncoupling protein 2 were decreased. Our results indicate that an activated HIF-1α pathway, elicited oxidative stress, and induced metabolic stress contribute to TCDD-induced trophoblastic toxicity. These findings may provide molecular insight into the TCDD-induced impairment of trophoblast function and placental development. PMID:25272228

  3. Activation of aryl hydrocarbon receptor mediates suppression of hypoxia-inducible factor-dependent erythropoietin expression by indoxyl sulfate.

    PubMed

    Asai, Hirobumi; Hirata, Junya; Hirano, Ayumi; Hirai, Kazuya; Seki, Sayaka; Watanabe-Akanuma, Mie

    2016-01-15

    Indoxyl sulfate (IS) is a representative uremic toxin that accumulates in the blood of patients with chronic kidney disease (CKD). In addition to the involvement in the progression of CKD, a recent report indicates that IS suppresses hypoxia-inducible factor (HIF)-dependent erythropoietin (EPO) production, suggesting that IS may also contribute to the progression of renal anemia. In this report, we provide evidence that aryl hydrocarbon receptor (AhR) mediates IS-induced suppression of HIF activation and subsequent EPO production. In HepG2 cells, IS at concentrations similar to the blood levels in CKD patients suppressed hypoxia- or cobalt chloride-induced EPO mRNA expression and transcriptional activation of HIF. IS also induced AhR activation, and AhR blockade resulted in abolishment of IS-induced suppression of HIF activation. The HIF transcription factor is a heterodimeric complex composed of HIF-α subunits (HIF-1α and HIF-2α) and AhR nuclear translocator (ARNT). IS suppressed nuclear accumulation of the HIF-α-ARNT complex accompanied by an increase of the AhR-ARNT complex in the nucleus, implying the involvement of interactions among AhR, HIF-α, and ARNT in the suppression mechanism. In rats, oral administration of indole, a metabolic precursor of IS, inhibited bleeding-induced elevation of renal EPO mRNA expression and plasma EPO concentration and strongly induced AhR activation in the liver and renal cortex tissues. Collectively, this study is the first to elucidate the detailed mechanism by which AhR plays an indispensable role in the suppression of HIF activation by IS. Hence, IS-induced activation of AhR may be a potential therapeutic target for treating renal anemia. PMID:26561638

  4. NADPH oxidases and reactive oxygen species at different stages of chronic hypoxia-induced pulmonary hypertension in newborn piglets

    PubMed Central

    Dennis, Kathleen E.; Aschner, J. L.; Milatovic, D.; Schmidt, J. W.; Aschner, M.; Kaplowitz, M. R.; Zhang, Y.

    2009-01-01

    Recently, we reported that reactive oxygen species (ROS) generated by NADPH oxidase (NOX) contribute to aberrant responses in pulmonary resistance arteries (PRAs) of piglets exposed to 3 days of hypoxia (Am J Physiol Lung Cell Mol Physiol 295: L881–L888, 2008). An objective of the present study was to determine whether NOX-derived ROS also contribute to altered PRA responses at a more advanced stage of pulmonary hypertension, after 10 days of hypoxia. We further wished to advance knowledge about the specific NOX and antioxidant enzymes that are altered at early and later stages of pulmonary hypertension. Piglets were raised in room air (control) or hypoxia for 3 or 10 days. Using a cannulated artery technique, we found that treatments with agents that inhibit NOX (apocynin) or remove ROS [an SOD mimetic (M40403) + polyethylene glycol-catalase] diminished responses to ACh in PRAs from piglets exposed to 10 days of hypoxia. Western blot analysis showed an increase in expression of NOX1 and the membrane fraction of p67phox. Expression of NOX4, SOD2, and catalase were unchanged, whereas expression of SOD1 was reduced, in arteries from piglets raised in hypoxia for 3 or 10 days. Markers of oxidant stress, F2-isoprostanes, measured by gas chromatography-mass spectrometry, were increased in PRAs from piglets raised in hypoxia for 3 days, but not 10 days. We conclude that ROS derived from some, but not all, NOX family members, as well as alterations in the antioxidant enzyme SOD1, contribute to aberrant PRA responses at an early and a more progressive stage of chronic hypoxia-induced pulmonary hypertension in newborn piglets. PMID:19592458

  5. Unsaturation of Very-Long-Chain Ceramides Protects Plant from Hypoxia-Induced Damages by Modulating Ethylene Signaling in Arabidopsis

    PubMed Central

    Yu, Lu-Jun; Huang, Li; Chen, Liang; Wang, Feng-Zhu; Xia, Fan-Nv; Zhu, Tian-Ren; Wu, Jian-Xin; Yin, Jian; Liao, Bin; Shi, Jianxin; Zhang, Jian-Hua; Aharoni, Asaph; Yao, Nan; Shu, Wensheng; Xiao, Shi

    2015-01-01

    Lipid remodeling is crucial for hypoxic tolerance in animals, whilst little is known about the hypoxia-induced lipid dynamics in plants. Here we performed a mass spectrometry-based analysis to survey the lipid profiles of Arabidopsis rosettes under various hypoxic conditions. We observed that hypoxia caused a significant increase in total amounts of phosphatidylserine, phosphatidic acid and oxidized lipids, but a decrease in phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Particularly, significant gains in the polyunsaturated species of PC, PE and phosphatidylinositol, and losses in their saturated and mono-unsaturated species were evident during hypoxia. Moreover, hypoxia led to a remarkable elevation of ceramides and hydroxyceramides. Disruption of ceramide synthases LOH1, LOH2 and LOH3 enhanced plant sensitivity to dark submergence, but displayed more resistance to submergence under light than wild type. Consistently, levels of unsaturated very-long-chain (VLC) ceramide species (22:1, 24:1 and 26:1) predominantly declined in the loh1, loh2 and loh3 mutants under dark submergence. In contrast, significant reduction of VLC ceramides in the loh1-1 loh3-1 knockdown double mutant and lacking of VLC unsaturated ceramides in the ads2 mutants impaired plant tolerance to both dark and light submergences. Evidence that C24:1-ceramide interacted with recombinant CTR1 protein and inhibited its kinase activity in vitro, enhanced ER-to-nucleus translocation of EIN2-GFP and stabilization of EIN3-GFP in vivo, suggests a role of ceramides in modulating CTR1-mediated ethylene signaling. The dark submergence-sensitive phenotypes of loh mutants were rescued by a ctr1-1 mutation. Thus, our findings demonstrate that unsaturation of VLC ceramides is a protective strategy for hypoxic tolerance in Arabidopsis. PMID:25822663

  6. Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-lα in rats.

    PubMed

    Zhu, Zeng-Yan; Gao, Tian; Huang, Yan; Xue, Jie; Xie, Mei-Lin

    2016-04-20

    Apigenin is a natural flavonoid compound that can inhibit hypoxia-inducible factor (HIF)-1α expression in cultured tumor cells under hypoxic conditions. Hypertension-induced cardiac hypertrophy is always accompanied by abnormal myocardial glucolipid metabolism due to an increase of HIF-1α. However, whether or not apigenin may ameliorate the cardiac hypertrophy and abnormal myocardial glucolipid metabolism remains unknown. This study aimed to examine the effects of apigenin. Rats with cardiac hypertrophy induced by renovascular hypertension were treated with apigenin 50-100 mg kg(-1) (the doses can be achieved by pharmacological or dietary supplementation for an adult person) by gavage for 4 weeks. The results showed that after treatment with apigenin, the blood pressure, heart weight, heart weight index, cardiomyocyte cross-sectional area, serum angiotensin II, and serum and myocardial free fatty acids were reduced. It is important to note that apigenin decreased the expression level of myocardial HIF-1α protein. Moreover, apigenin simultaneously increased the expression levels of myocardial peroxisome proliferator-activated receptor (PPAR) α, carnitine palmitoyltransferase (CPT)-1, and pyruvate dehydrogenase kinase (PDK)-4 proteins and decreased the expression levels of myocardial PPARγ, glycerol-3-phosphate acyltransferase genes (GPAT), and glucose transporter (GLUT)-4 proteins. These findings demonstrated that apigenin could improve hypertensive cardiac hypertrophy and abnormal myocardial glucolipid metabolism in rats, and its mechanisms might be associated with the down-regulation of myocardial HIF-1α expression and, subsequently increasing the expressions of myocardial PPARα and its target genes CPT-1 and PDK-4, and decreasing the expressions of myocardial PPARγ and its target genes GPAT and GLUT-4. PMID:26987380

  7. Interactions of adenosine, prostaglandins and nitric oxide in hypoxia-induced vasodilatation: in vivo and in vitro studies

    PubMed Central

    Ray, Clare J; Abbas, Mark R; Coney, Andrew M; Marshall, Janice M

    2002-01-01

    Adenosine, prostaglandins (PG) and nitric oxide (NO) have all been implicated in hypoxia-evoked vasodilatation. We investigated whether their actions are interdependent. In anaesthetised rats, the PG synthesis inhibitors diclofenac or indomethacin reduced muscle vasodilatation evoked by systemic hypoxia or adenosine, but not that evoked by iloprost, a stable analogue of prostacyclin (PGI2), or by an NO donor. After diclofenac, the A1 receptor agonist CCPA evoked no vasodilatation: we previously showed that A1, but not A2A, receptors mediate the hypoxia-induced muscle vasodilatation. Further, in freshly excised rat aorta, adenosine evoked a release of NO, detected with an NO-sensitive electrode, that was abolished by NO synthesis inhibition, or endothelium removal, and reduced by ≈50 % by the A1 antagonist DPCPX, the remainder being attenuated by the A2A antagonist ZM241385. Diclofenac reduced adenosine-evoked NO release by ≈50 % under control conditions, abolished that evoked in the presence of ZM241385, but did not affect that evoked in the presence of DPCPX. Adenosine-evoked NO release was also abolished by the adenyl cyclase inhibitor 2′,5′-dideoxyadenosine, while dose-dependent NO release was evoked by iloprost. Finally, stimulation of A1, but not A2A, receptors caused a release of PGI2 from rat aorta, assessed by radioimmunoassay of its stable metabolite, 6-keto PGF1α, that was abolished by diclofenac. These results suggest that during systemic hypoxia, adenosine acts on endothelial A1 receptors to increase PG synthesis, thereby generating cAMP, which increases the synthesis and release of NO and causes muscle vasodilatation. This pathway may be important in other situations involving these autocoids. PMID:12356892

  8. Early Macrophage Recruitment and Alternative Activation Are Critical for the Later Development of Hypoxia-induced Pulmonary Hypertension

    PubMed Central

    Vergadi, Eleni; Chang, Mun Seog; Lee, Changjin; Liang, Olin; Liu, Xianlan; Fernandez-Gonzalez, Angeles; Mitsialis, S. Alex; Kourembanas, Stella

    2011-01-01

    Background Lung inflammation precedes the development of hypoxia-induced pulmonary hypertension (HPH); however its role in the pathogenesis of HPH is poorly understood. We sought to characterize the hypoxic inflammatory response and elucidate its role in the development of HPH. We also aimed to investigate the mechanisms by which heme oxygenase-1 (HO-1), an anti-inflammatory enzyme, is protective in HPH. Methods and Results We generated bitransgenic mice that overexpress human HO-1 under doxycycline (dox) control in an inducible, lung-specific manner. Hypoxic exposure of mice in the absence of dox resulted in early transient accumulation of monocytes/macrophages in the bronchoalveolar lavage. Alveolar macrophages acquired an alternatively activated phenotype (M2) in response to hypoxia, characterized by the expression of Found in Inflammatory Zone-1, Arginase-1 and Chitinase-3-like-3. A brief, two-day pulse of dox delayed but did not prevent the peak of hypoxic inflammation, and could not protect from HPH. In contrast, a seven-day dox treatment sustained high HO-1 levels during the entire period of hypoxic inflammation, inhibited macrophage accumulation and activation, induced macrophage IL-10 expression, and prevented the development of HPH. Supernatants from hypoxic M2 macrophages promoted proliferation of pulmonary artery smooth muscle cells while treatment with carbon monoxide, a HO-1 enzymatic product, abrogated this effect. Conclusions Early recruitment and alternative activation of macrophages in hypoxic lungs is critical for the later development of HPH. HO-1 may confer protection from HPH by effectively modifing macrophage activation state in hypoxia. PMID:21518986

  9. Estradiol-17beta protects against hypoxia-induced hepatocyte injury through ER-mediated upregulation of Bcl-2 as well as ER-independent antioxidant effects.

    PubMed

    Lee, Min Young; Jung, Sun Chul; Lee, Jang Hern; Han, Ho Jae

    2008-04-01

    Although many previous studies have suggested that estrogen functions as a cytoprotective agent under oxidative stress conditions, the underlying mechanism by which this effect is exerted remains to be elucidated. This study assessed the effects of estradiol-17beta (E(2)) (10(-8) M) on hypoxia-induced cell injury and its related signaling in primary cultured chicken hepatocytes. Hypoxic conditions were found to augment the level of DNA damage and to reduce cell viability and the level of [(3)H]-thymidine incorporation, and these phenomena were prevented through treatment with E(2). Hypoxia also increased caspase-3 expression, but showed no evidence of an influence on the expression of Bcl-2. However, E(2) induced an increase in the level of Bcl-2 expression under hypoxic conditions and reduced the level of caspase-3 expression. The effects of E(2) on Bcl-2 and caspase expression were blocked by ICI 182780 (E(2) receptor (ER) antagonist, 10(-7) M). In addition, hypoxia resulted in an increase in the intracellular reactive oxygen species (ROS) generated. These effects were blocked by E(2), but not by E(2)-BSA and ICI 182780. Hypoxia also activated p38 mitogen-activated protein kinase (MAPK), c-JUN N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and nuclear factor-kappaB (NF-kappaB). These effects were blocked by E(2), but not by ICI 182780. The inhibition of p38 MAPK and JNK/SAPK blocked NF-kappaB activation. In conclusion, E(2) was found to protect against hypoxia-induced cell injury in chicken hepatocytes through ER-mediated upregulation of Bcl-2 expression and through reducing the activity of ROS-dependent p38 MAPK, JNK/SAPK and NF-kappaB. PMID:18379592

  10. Notch signaling represses hypoxia-inducible factor-1α-induced activation of Wnt/β-catenin signaling in osteoblasts under cobalt-mimicked hypoxia

    PubMed Central

    LI, CHEN-TIAN; LIU, JIAN-XIU; YU, BO; LIU, RUI; DONG, CHAO; LI, SONG-JIAN

    2016-01-01

    The modification of Wnt and Notch signaling pathways by hypoxia, and its association with osteoblast proliferation and apoptosis remain to be fully elucidated. To investigate Wnt-Notch crosstalk, and its role in hypoxia-induced osteoblast proliferation and apoptosis regulation, the present study investigated the effects of cobalt-mimicked hypoxia on the mouse pre-osteoblast-like cell line, MC3T3-E1, when the Notch signals were repressed using a γ-secretase inhibitor DAPT. The data showed that the cobalt-mimicked hypoxia suppressed cell proliferation under normal conditions, but increased cell proliferation under conditions of Notch repression, in a concentration-dependent manner. The results of western blot and reverse transcription-quantitative polymerase chain reaction analyses showed that the cobalt treatment increased the levels of activated β-catenin protein and the expression levels of the target genes, axis inhibition protein 2 and myelocytomatosis oncogene, under DAPT-induced Notch repression. However, no significant changes were found in the expression levels of the Notch intracellular domain protein or the Notch target gene, hes1. In a β-catenin gene-knockdown experiment, the proliferation of the MC3T3-E1 cells under hypoxia were decreased by DAPT treatment, and knockdown of the expression of hypoxia-inducible factor-1α (HIF-1α) suppressed the cobalt-induced increase in Wnt target gene levels. No significant difference in cell proliferation rate was found following DAPT treatment when the expression of HIF-1α was knocked down. The results of the present study showed the opposing effects of Wnt and Notch signaling under cobalt-mimicked hypoxia, which were partially regulated by HIF-1α, The results also showed that osteoblast proliferation was dependent on Wnt-Notch signal crosstalk. PMID:27220406

  11. Two splice variants of the hypoxia-inducible factor HIF-1alpha as potential dimerization partners of ARNT2 in neurons.

    PubMed

    Drutel, G; Kathmann, M; Héron, A; Gros, C; Macé, S; Schwartz, J C; Arrang, J M

    2000-10-01

    The hypoxia-inducible factor (HIF-1alpha), a basic helix-loop-helix transcription factor, is known to heterodimerize with ARNT1, a nuclear translocator, to trigger the overexpression in many cells of genes involved in resistance to hypoxia. Although HIF-1alpha and ARNT1 are both expressed in brain, their cellular localization and function therein are unknown. Here, using in situ hybridization and immunocytochemistry, we show that HIF-1alpha is expressed in normoxic cerebral neurons together with not only ARNT1 but also ARNT2, a cerebral translocator homologous to ARNT1 but displaying, unlike ARNT1, a selective neuronal expression. In contrast, other potential partners of the translocators, i.e. the aryl hydrocarbon receptor (AHR) and the single-minded protein 2 (SIM2), are not expressed in the adult brain. We also identify two splice variants of HIF-1alpha in brain, one of which dimerizes with ARNT2 even more avidly than with ARNT1. The resulting heterodimer, in contrast with the HIF-1alpha/ARNT1 complex, does not recognize the HIF-1-binding site of the hypoxia-induced erythropoietin (Epo) gene, suggesting that it controls transcription of a distinct set of genes. We therefore propose that HIF-1alpha and ARNT2 function as preferential dimerization partners in neurons to control specific responses, some of which may not be triggered by hypoxia. In support of this proposal, in nonhypoxic PC12 cells constitutively coexpressing HIF-1alpha, ARNT1 and ARNT2, downregulation of either HIF-1alpha or ARNT2, obtained with selective antisense nucleotides, resulted in inhibition of [3H]thymidine incorporation. PMID:11029639

  12. Octreotide, a Somatostatin Analogue, Fails to Inhibit Hypoxia-induced Retinal Neovascularization in the Neonatal Rat

    PubMed Central

    Averbukh, Edward; Halpert, Michael; Yanko, Ravit; Yanko, Lutza; Peèr, Jacob; Levinger, Samuel; Flyvbjerg, Allan

    2000-01-01

    Objective: Octreotide, a somatostatin analogue, has been shown to prevent angiogenesis in diverse in vitro models. We evaluated its effect on retinal neovascularization in vivo, using a neonatal rat retinopathy model. Methods: We used, on alternating days, hypoxia (10% O2) and hyperoxia (50% O2) during the first 14 days of neonatal rats, to induce retinal neovascularization. Half of the rats were injected subcutaneously with octreotide 0.7 μg/g BW twice daily. At day 18 the eyes were evaluated for the presence of epiretinal and vitreal hemorrhage, neovascularization and epiretinal proliferation. Octreotide pharmacokinetics and its effect on serum growth hormone (GH) and insulin-like growth factor I (IGF-I) were examined in 28 rats. Results: Serum octreotide levels were 667 μg/1 two hours after injection, 26.4 μg/1 after nine hours and 3.2 μg/1 after 14 hours. GH levels were decreased by 40% (p = 0.002) two hours after injection but thereafter returned to baseline. IGF-I levels were unchanged two hours after injection and were elevated by 26% 14 hours after injection (p = 0.02). Epiretinal membranes were highly associated with epiretinal hemorrhages (p < 0.001), while retinal neovascularization was notably associated with vitreal hemorrhages (p < 0.001). Conclusions: Twice-daily injections of octreotide failed to produce sustained decrease in serum GH, but produced rebound elevation of serum IGF-I. Accordingly, no statistically significant effect of injections on retinal pathology was noted. This finding, however, does not contradict our assumption that GH suppression may decrease the severity of retinopathy. PMID:11469389

  13. Long-term (5 years), high daily dosage of dietary agmatine--evidence of safety: a case report.

    PubMed

    Gilad, Gad M; Gilad, Varda H

    2014-11-01

    There is presently a great interest in the therapeutic potential of agmatine, decarboxylated arginine, for various diseases. Recent clinical studies have already shown that oral agmatine sulfate given for up to 3 weeks provides a safe and, as compared with current therapeutics, more effective treatment for neuropathic pain. These studies have ushered in the use of dietary agmatine as a nutraceutical. However, in view of information paucity, assessment of long-term safety of oral agmatine treatment is now clearly required. The authors of this report undertook to assess their own health status during ongoing consumption of a high daily dosage of oral agmatine over a period of 4-5 years. A daily dose of 2.67 g agmatine sulfate was encapsulated in gelatin capsules; the regimen consists of six capsules daily, each containing 445 mg, three in the morning and three in the evening after meals. Clinical follow-up consists of periodic physical examinations and laboratory blood and urine analyses. All measurements thus far remain within normal values and good general health status is sustained throughout the study period, up to 5 years. This case study shows for the first time that the recommended high dosage of agmatine may be consumed for at least 5 years without evidence of any adverse effects. These initial findings are highly important as they provide significant evidence for the extended long-term safety of a high daily dosage of dietary agmatine--a cardinal advantage for its utility as a nutraceutical. PMID:25247837

  14. Identification of crucial microRNAs and genes in hypoxia-induced human lung adenocarcinoma cells

    PubMed Central

    Geng, Ying; Deng, Lili; Su, Dongju; Xiao, Jinling; Ge, Dongjie; Bao, Yongxia; Jing, Hui

    2016-01-01

    Background Variations of microRNA (miRNA) expression profile in hypoxic lung cancer cells have not been studied so far. Therefore, using miRNA microarray technology, this study aimed to study the miRNA expression profile and investigate the potential crucial miRNAs and their target genes in hypoxia-induced human lung adenocarcinoma cells. Materials and methods Based on miRNA microarray, miRNA expression profiling of hypoxia-induced lung adenocarcinoma A549 cells was obtained. After identification of differentially expressed miRNAs (DE-miRNAs) in hypoxic cells, target genes of DE-miRNAs were predicted, and functional enrichment analysis of targets was conducted. Furthermore, the expression levels of DE-miRNAs and their target genes were validated by real-time quantitative polymerase chain reaction. In addition, using miRNA mimics, the effect of overexpressed DE-miRNAs on A549 cell behaviors (cell proliferation, cell cycle, and apoptosis) was evaluated. Results In total, 14 DE-miRNAs (nine upregulated miRNAs and five downregulated miRNAs) were identified in hypoxic cells, compared with normoxic cells. Target genes of both upregulated and downregulated miRNAs were enriched in the functions such as chromatin modification, and pathways such as Wnt signaling pathway and transforming growth factor (TGF)-β signaling pathway. The expression levels of several miRNAs and their target genes were confirmed, including hsa-miR-301b/FOXF2, hsa-miR-148b-3p/WNT10B, hsa-miR-769-5p/(SMAD2, ARID1A), and hsa-miR-622. Among them, hsa-miR-301b was verified to regulate FOXF2, and hsa-miR-769-5p was verified to modulate ARID1A. In addition, the overexpression of hsa-miR-301b and hsa-miR-769-5p significantly affected the cell cycle of A549 cells, but not cell proliferation and apoptosis. Conclusion miRNA expression profile was changed in hypoxia-induced lung cancer cells. Those validated miRNAs and genes may play crucial roles in the response of lung cancer cells to hypoxia. PMID:27524914

  15. Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.

    PubMed

    Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-07-01

    Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases. PMID:26130959

  16. Adipose differentiation-related protein is not involved in hypoxia inducible factor-1-induced lipid accumulation under hypoxia

    PubMed Central

    SHEN, GUOMIN; NING, NING; ZHAO, XINGSHENG; LIU, XI; WANG, GUANGYU; WANG, TIANZHEN; ZHAO, RAN; YANG, CHAO; WANG, DONGMEI; GONG, PINGYUAN; SHEN, YAN; SUN, YONGJIAN; ZHAO, XIAO; JIN, YINJI; YANG, WEIWEI; HE, YAN; ZHANG, LEI; JIN, XIAOMING; LI, XIAOBO

    2015-01-01

    Increasing evidence has showed that hypoxia inducible factor-1 (HIF1) has an important role in hypoxia-induced lipid accumulation, a common feature of solid tumors; however, its role remains to be fully elucidated. Adipose differentiation-related protein (ADRP), a structural protein of lipid droplets, is found to be upregulated under hypoxic conditions. In the present study, an MCF7 breast cancer cell line was used to study the role of ADRP in hypoxia-induced lipid accumulation. It was demonstrated that hypoxia induced the gene expression of ADRP in a HIF1-dependent manner. Increases in the mRNA and protein levels of ADRP was accompanied by increased HIF1A activity. In addition, a significant decrease in the mRNA and protein levels of ADRP were detected in presence of siRNA targeting HIF1A. Using a dual-luciferase reporting experiment and chromatin immunoprecipitation assay, the present study demonstrated that ADRP is a direct target gene of HIF1, and identified a functional hypoxia response element localized 33 bp upstream of the transcriptional start site of the ADRP gene. Furthermore, the present study demonstrated the role of ADRP in low density liporotein (LDL) and very-LDL uptake-induced lipid accumulation under hypoxia. The knockdown of ADRP did not reduce HIF1-induced lipid accumulation under hypoxia. Together, these results showed that ADRP may be not involved in HIF1-induced lipid accumulation. PMID:26498183

  17. Endothelial monocyte activating polypeptide-II modulates endothelial cell responses by degrading hypoxia-inducible factor-1alpha through interaction with PSMA7, a component of the proteasome

    SciTech Connect

    Tandle, Anita T.; Calvani, Maura; Uranchimeg, Badarch; Zahavi, David; Melillo, Giovanni; Libutti, Steven K.

    2009-07-01

    The majority of human tumors are angiogenesis dependent. Understanding the specific mechanisms that contribute to angiogenesis may offer the best approach to develop therapies to inhibit angiogenesis in cancer. Endothelial monocyte activating polypeptide-II (EMAP-II) is an anti-angiogenic cytokine with potent effects on endothelial cells (ECs). It inhibits EC proliferation and cord formation, and it suppresses primary and metastatic tumor growth in-vivo. However, very little is known about the molecular mechanisms behind the anti-angiogenic activity of EMAP-II. In the present study, we explored the molecular mechanism behind the anti-angiogenic activity exerted by this protein on ECs. Our results demonstrate that EMAP-II binds to the cell surface {alpha}5{beta}1 integrin receptor. The cell surface binding of EMAP-II results in its internalization into the cytoplasmic compartment where it interacts with its cytoplasmic partner PSMA7, a component of the proteasome degradation pathway. This interaction increases hypoxia-inducible factor 1-alpha (HIF-1{alpha}) degradation under hypoxic conditions. The degradation results in the inhibition of HIF-1{alpha} mediated transcriptional activity as well as HIF-1{alpha} mediated angiogenic sprouting of ECs. HIF-1{alpha} plays a critical role in angiogenesis by activating a variety of angiogenic growth factors. Our results suggest that one of the major anti-angiogenic functions of EMAP-II is exerted through its inhibition of the HIF-1{alpha} activities.

  18. Hypoxia-Inducible Factors (HIFs) and Phosphorylation: Impact on Stability, Localization, and Transactivity

    PubMed Central

    Kietzmann, Thomas; Mennerich, Daniela; Dimova, Elitsa Y.

    2016-01-01

    The hypoxia-inducible factor α-subunits (HIFα) are key transcription factors in the mammalian response to oxygen deficiency. The HIFα regulation in response to hypoxia occurs primarily on the level of protein stability due to posttranslational hydroxylation and proteasomal degradation. However, HIF α-subunits also respond to various growth factors, hormones, or cytokines under normoxia indicating involvement of different kinase pathways in their regulation. Because these proteins participate in angiogenesis, glycolysis, programmed cell death, cancer, and ischemia, HIFα regulating kinases are attractive therapeutic targets. Although numerous kinases were reported to regulate HIFα indirectly, direct phosphorylation of HIFα affects HIFα stability, nuclear localization, and transactivity. Herein, we review the role of phosphorylation-dependent HIFα regulation with emphasis on protein stability, subcellular localization, and transactivation. PMID:26942179

  19. Hypoxia-Inducible Factor (HIF) as a Target for Novel Therapies in Rheumatoid Arthritis

    PubMed Central

    Hua, Susan; Dias, Thilani H.

    2016-01-01

    Hypoxia is an important micro-environmental characteristic of rheumatoid arthritis (RA). Hypoxia-inducible factors (HIF) are key transcriptional factors that are highly expressed in RA synovium to regulate the adaptive responses to this hypoxic milieu. Accumulating evidence supports hypoxia and HIFs in regulating a number of important pathophysiological characteristics of RA, including synovial inflammation, angiogenesis, and cartilage destruction. Experimental and clinical data have confirmed the upregulation of both HIF-1α and HIF-2α in RA. This review will focus on the differential expression of HIFs within the synovial joint and its functional behavior in different cell types to regulate RA progression. Potential development of new therapeutic strategies targeting HIF-regulated pathways at sites of disease in RA will also be addressed. PMID:27445820

  20. Rv1894c Is a Novel Hypoxia-Induced Nitronate Monooxygenase Required for Mycobacterium tuberculosis Virulence

    PubMed Central

    Klinkenberg, Lee G.; Karakousis, Petros C.

    2013-01-01

    Tuberculosis is difficult to cure, requiring a minimum of 6 months of treatment with multiple antibiotics. Small numbers of organisms are able to tolerate the antibiotics and persist in the lungs of infected humans, but they still require some metabolic activity to survive. We studied the role of the hypoxia-induced Rv1894c gene in Mycobacterium tuberculosis virulence in guinea pigs, which develop hypoxic, necrotic granulomas histologically resembling those in humans and found this gene to be necessary for full bacillary growth and survival. We characterized the function of the encoded enzyme as a nitronate monooxygenase, which is needed to prevent the buildup of toxic products during hypoxic metabolism and is negatively regulated by the transcriptional repressor KstR. Future studies will focus on developing small-molecule inhibitors that target Rv1894c and its homologs, with the goal of killing persistent bacteria, thereby shortening the time needed to treat tuberculosis. PMID:23408846

  1. Hypoxia inducible factor 1α expression and effects of its inhibitors in canine lymphoma

    PubMed Central

    KAMBAYASHI, Satoshi; IGASE, Masaya; KOBAYASHI, Kosuke; KIMURA, Ayana; SHIMOKAWA MIYAMA, Takako; BABA, Kenji; NOGUCHI, Shunsuke; MIZUNO, Takuya; OKUDA, Masaru

    2015-01-01

    Hypoxic conditions in various cancers are believed to relate with their malignancy, and hypoxia inducible factor-1α (HIF-1α) has been shown to be a major regulator of the response to low oxygen. In this study, we examined HIF-1α expression in canine lymphoma using cell lines and clinical samples and found that these cells expressed HIF-1α. Moreover, the HIF-1α inhibitors, echinomycin, YC-1 and 2-methoxyestradiol, suppressed the proliferation of canine lymphoma cell lines. In a xenograft model using NOD/scid mice, echinomycin treatment resulted in a dose-dependent regression of the tumor. Our results suggest that HIF-1α contributes to the proliferation and/or survival of canine lymphoma cells. Therefore, HIF-1α inhibitors may be potential agents to treat canine lymphoma. PMID:26050843

  2. The Role of Hypoxia-Inducible Factors in Oxygen Sensing by the Carotid Body

    PubMed Central

    Prabhakar, Nanduri R.

    2013-01-01

    Chronic intermittent hypoxia (IH) associated with sleep-disordered breathing is an important cause of hypertension, which results from carotid body-mediated activation of the sympathetic nervous system. IH triggers increased levels of reactive oxygen species (ROS) in the carotid body, which induce increased synthesis and stability of hypoxia-inducible factor 1α (HIF-1α) and calpain-dependent degradation of HIF-2α. HIF-1 activates transcription of the Nox2 gene, encoding NADPH oxidase 2, which generates superoxide. Loss of HIF-2 activity leads to decreased transcription of the Sod2 gene, encoding manganese superoxide dismutase, which converts superoxide to hydrogen peroxide. Thus, IH disrupts the balance between HIF-1-dependent pro-oxidant and HIF-2-dependent anti-oxidant activities, and this loss of redox homeostasis underlies the pathogenesis of autonomic morbidities associated with IH. PMID:23080136

  3. The role of hypoxia-inducible factor-2 in digestive system cancers

    PubMed Central

    Zhao, J; Du, F; Shen, G; Zheng, F; Xu, B

    2015-01-01

    Hypoxia is an all but ubiquitous phenomenon in cancers. Two known hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, primarily mediate the transcriptional response to hypoxia. Despite the high homology between HIF-1α and HIF-2α, emerging evidence suggests differences between both molecules in terms of transcriptional targets as well as impact on multiple physiological pathways and tumorigenesis. To date, much progress has been made toward understanding the roles of HIF-2α in digestive system cancers. Indeed, HIF-2α has been shown to regulate multiple aspects of digestive system cancers, including cell proliferation, angiogenesis and apoptosis, metabolism, metastasis and resistance to chemotherapy. These findings make HIF-2α a critical regulator of this malignant phenotype. Here we summarize the function of HIF-2 during cancer development as well as its contribution to tumorigenesis in digestive system malignancies. PMID:25590810

  4. Agmatine, by Improving Neuroplasticity Markers and Inducing Nrf2, Prevents Corticosterone-Induced Depressive-Like Behavior in Mice.

    PubMed

    Freitas, Andiara E; Egea, Javier; Buendia, Izaskun; Gómez-Rangel, Vanessa; Parada, Esther; Navarro, Elisa; Casas, Ana Isabel; Wojnicz, Aneta; Ortiz, José Avendaño; Cuadrado, Antonio; Ruiz-Nuño, Ana; Rodrigues, Ana Lúcia S; Lopez, Manuela G

    2016-07-01

    Agmatine, an endogenous neuromodulator, is a potential candidate to constitute an adjuvant/monotherapy for the management of depression. A recent study by our group demonstrated that agmatine induces Nrf2 and protects against corticosterone effects in a hippocampal neuronal cell line. The present study is an extension of this previous study by assessing the antidepressant-like effect of agmatine in an animal model of depression induced by corticosterone in mice. Swiss mice were treated simultaneously with agmatine or imipramine at a dose of 0.1 mg/kg/day (p.o.) and corticosterone for 21 days and the daily administrations of experimental drugs were given immediately prior to corticosterone (20 mg/kg/day, p.o.) administrations. Wild-type C57BL/6 mice (Nrf2 (+/+)) and Nrf2 KO (Nrf2 (-/-)) were treated during 21 days with agmatine (0.1 mg/kg/day, p.o.) or vehicle. Twenty-four hours after the last treatments, the behavioral tests and biochemical assays were performed. Agmatine treatment for 21 days was able to abolish the corticosterone-induced depressive-like behavior and the alterations in the immunocontent of mature BDNF and synaptotagmin I, and in the serotonin and glutamate levels. Agmatine also abolished the corticosterone-induced changes in the morphology of astrocytes and microglia in CA1 region of hippocampus. In addition, agmatine treatment in control mice increased noradrenaline, serotonin, and dopamine levels, CREB phosphorylation, mature BDNF and synaptotagmin I immunocontents, and reduced pro-BDNF immunocontent in the hippocampus. Agmatine's ability to produce an antidepressant-like effect was abolished in Nrf2 (-/-) mice. The present results reinforce the participation of Nrf2 in the antidepressant-like effect produced by agmatine and expand literature data concerning its mechanisms of action. PMID:25966970

  5. A2B adenosine receptor dampens hypoxia-induced vascular leak

    PubMed Central

    Eckle, Tobias; Faigle, Marion; Grenz, Almut; Laucher, Stefanie; Thompson, Linda F.

    2008-01-01

    Extracellular adenosine has been implicated in adaptation to hypoxia and previous studies demonstrated a central role in vascular responses. Here, we examined the contribution of individual adenosine receptors (ARs: A1AR/A2AAR/A2BAR/A3AR) to vascular leak induced by hypoxia. Initial profiling studies revealed that siRNA-mediated repression of the A2BAR selectively increased endothelial leak in response to hypoxia in vitro. In parallel, vascular permeability was significantly increased in vascular organs of A2BAR−/−-mice subjected to ambient hypoxia (8% oxygen, 4 hours; eg, lung: 2.1 ± 0.12-fold increase). By contrast, hypoxia-induced vascular leak was not accentuated in A1AR−/−-, A2AAR−/−-, or A3AR−/−-deficient mice, suggesting a degree of specificity for the A2BAR. Further studies in wild type mice revealed that the selective A2BAR antagonist PSB1115 resulted in profound increases in hypoxia-associated vascular leakage while A2BAR agonist (BAY60-6583 [2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)-. phenyl]pyridin-2-ylsulfanyl]acetamide]) treatment was associated with almost complete reversal of hypoxia-induced vascular leakage (eg, lung: 2.0 ± 0.21-fold reduction). Studies in bone marrow chimeric A2BAR mice suggested a predominant role of vascular A2BARs in this response, while hypoxia-associated increases in tissue neutrophils were, at least in part, mediated by A2BAR expressing hematopoietic cells. Taken together, these studies provide pharmacologic and genetic evidence for vascular A2BAR signaling as central control point of hypoxia-associated vascular leak. PMID:18056839

  6. Altered Hypoxia-inducible factor-1 alpha expression levels correlate with coronary vessel anomalies

    PubMed Central

    Wikenheiser, Jamie; Wolfram, Julie A.; Gargesha, Madhusudhana; Yang, Ke; Karunamuni, Ganga; Wilson, David L.; Semenza, Gregg L.; Agani, Faton; Fisher, Steven A.; Ward, Nicole; Watanabe, Michiko

    2009-01-01

    The outflow tract myocardium and other regions corresponding to the location of the major coronary vessels of the developing chicken heart, display a high level of hypoxia as assessed by the hypoxia indicator EF5. The EF5 positive tissues were also specifically positive for nuclear-localized hypoxia inducible factor-1 alpha (HIF-1α), the oxygen-sensitive component of the hypoxia inducible factor-1 (HIF-1) heterodimer. This led to our hypothesis that there is a “template” of hypoxic tissue that determines the stereotyped pattern of the major coronary vessels. In this study we disturbed this template by altering ambient oxygen levels (hypoxia 15%; hyperoxia 75-40%) during the early phases of avian coronary vessel development, in order to alter tissue hypoxia, HIF-1α protein expression and its downstream target genes without high mortality. We also altered HIF-1α gene expression in the embryonic outflow tract cardiomyocytes by injecting an adenovirus containing a constitutively active form of HIF-1α (AdCA5). We assayed for coronary anomalies using anti-alpha-smooth muscle actin immunohistology. When incubated under abnormal oxygen levels or injected with a low titer of the AdCA5, coronary arteries displayed deviations from their normal proximal connections to the aorta. These deviations were similar to known clinical anomalies of coronary arteries. These findings indicated that developing coronary vessels may be subject to a level of regulation that is dependent on differential oxygen levels within cardiac tissues and subsequent HIF-1 regulation of gene expression. PMID:19777592

  7. α-tocopherol supplementation prevents lead acetate and hypoxia-induced hepatic dysfunction

    PubMed Central

    Das, Kusal K.; Jargar, Jameel G.; Saha, Sikha; Yendigeri, Saeed M.; Singh, Shashi Bala

    2015-01-01

    Objective: Lead (Pb) is a long-known poison of environment and industrial origin. Its prolonged exposure affects cellular material and alters cellular genetics and produces oxidative damages. In this study, we investigated the exposure of chronic sustained hypoxia or lead acetate alone or in combination with or without supplementation of α-tocopherol on hepatic oxidative and nitrosative stress in rats. Materials and Methods: The rats weighing 165 ± 5 g were exposed to chronic sustained hypoxia (10% oxygen) or lead acetate (25 mg/kg of body weight, intraperitoneally) alone or in combination with or without supplementation of α-tocopherol (10 mg/100 g b.wt, intramuscularly). The body weight of all the rats was recorded on the day 1 of the treatment and the day of sacrifice. Serum lipid profile was estimated by using a biochemical analyzer. Oxidant and enzymatic antioxidants status was evaluated by using spectrophotometer. Serum levels of hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) were measured by using ELISA technique. Histopathological assessments of hepatic tissue were also done. Results: Exposure of both lead and hypoxia showed decreased body weight, altered serum lipid profile, oxidant and enzymatic antioxidants status, serum HIF-1α and VEGF concentrations. Simultaneous α-tocopherol supplementation showed beneficial effects to all these alterations. Histopathological observations also showed hepatic degenerative changes after lead or hypoxia exposure either alone or in combination, but remarkable improvement has been noticed after α-tocopherol supplementation. Conclusion: Supplementation of α-tocopherol is beneficial to counter both lead acetate and hypoxia induced hepatic cytotoxicities possibly by reducing oxidative and nitrosative stress. PMID:26069366

  8. Hypoxia inducible factor 1α contributes to regulation of autophagy in retinal detachment.

    PubMed

    Shelby, Shameka J; Angadi, Pavan S; Zheng, Qiong-Duon; Yao, Jingyu; Jia, Lin; Zacks, David N

    2015-08-01

    Photoreceptor (PR) cells receive oxygen and nutritional support from the underlying retinal pigment epithelium (RPE). Retinal detachment results in PR hypoxia and their time-dependent death. Detachment also activates autophagy within the PR, which serves to reduce the rate of PR apoptosis. In this study, we test the hypothesis that autophagy activation in the PR results, at least in part, from the detachment-induced activation of hypoxia-inducible factors (HIF). Retina-RPE separation was created in Brown-Norway rats and C57BL/6J mice by injection of 1% hyaluronic acid into the subretinal space. Retinas were harvested and assayed for HIF protein levels. Cultured 661W photoreceptor cells were subjected to hypoxic conditions and assayed for induction of HIF and autophagy. The requirement of HIF-1α and HIF-2α in regulating photoreceptor autophagy was tested using siRNA in vitro and in vivo. We observed increased levels of HIF-1α and HIF-2α within 1 day post-detachment, as well as increased levels of BNIP3, a downstream target of HIF-1α that contributes to autophagy activation. Exposing 661W cells to hypoxia resulted in increased HIF-1α and HIF-2α levels and increase in conversion of LC3-I to LC3-II. Silencing of HIF-1α, but not HIF-2α, reduced the hypoxia-induced increase in LC3-II formation and increased cell death in 661W cells. Silencing of HIF-1α in rat retinas prevented the detachment-induced increase in BNIP3 and LC3-II, resulting in increased PR cell death. Our data support the hypothesis that HIF-1α, but not HIF-2α, serves as an early response signal to induce autophagy and reduce photoreceptor cell death. PMID:26093278

  9. Agmatine transport in brain mitochondria: a different mechanism from that in liver mitochondria.

    PubMed

    Battaglia, V; Grancara, S; Mancon, M; Cravanzola, C; Colombatto, S; Grillo, M A; Tempera, G; Agostinelli, E; Toninello, A

    2010-02-01

    The diamine agmatine (AGM), exhibiting two positive charges at physiological pH, is transported into rat brain mitochondria (RBM) by an electrophoretic mechanism, requiring high membrane potential values and exhibiting a marked non-ohmic force-flux relationship. The mechanism of this transport apparently resembles that observed in rat liver mitochondria (RLM), but there are several characteristics that strongly suggest the presence of a different transporter of agmatine in RBM. In this type of mitochondria, the extent of initial binding and total accumulation is higher and lower, respectively, than that in liver; saturation kinetics and the flux-voltage relationship also exhibit different trends, whereas idazoxan and putrescine, ineffective in RLM, act as inhibitors. The characteristics of agmatine uptake in RBM lead to the conclusion that its transporter is a channel with two asymmetric energy barriers, showing some characteristics similar to those of the imidazoline receptor I(2) and the sharing with the polyamine transporter. PMID:19997762

  10. Glycerol-3-phosphate acyltransferase-1 upregulation by O-GlcNAcylation of Sp1 protects against hypoxia-induced mouse embryonic stem cell apoptosis via mTOR activation.

    PubMed

    Lee, H J; Ryu, J M; Jung, Y H; Lee, K H; Kim, D I; Han, H J

    2016-01-01

    Oxygen signaling is critical for stem cell regulation, and oxidative stress-induced stem cell apoptosis decreases the efficiency of stem cell therapy. Hypoxia activates O-linked β-N-acetyl glucosaminylation (O-GlcNAcylation) of stem cells, which contributes to regulation of cellular metabolism, as well as cell fate. Our study investigated the role of O-GlcNAcylation via glucosamine in the protection of hypoxia-induced apoptosis of mouse embryonic stem cells (mESCs). Hypoxia increased mESCs apoptosis in a time-dependent manner. Moreover, hypoxia also slightly increased the O-GlcNAc level. Glucosamine treatment further enhanced the O-GlcNAc level and prevented hypoxia-induced mESC apoptosis, which was suppressed by O-GlcNAc transferase inhibitors. In addition, hypoxia regulated several lipid metabolic enzymes, whereas glucosamine increased expression of glycerol-3-phosphate acyltransferase-1 (GPAT1), a lipid metabolic enzyme producing lysophosphatidic acid (LPA). In addition, glucosamine-increased O-GlcNAcylation of Sp1, which subsequently leads to Sp1 nuclear translocation and GPAT1 expression. Silencing of GPAT1 by gpat1 siRNA transfection reduced glucosamine-mediated anti-apoptosis in mESCs and reduced mammalian target of rapamycin (mTOR) phosphorylation. Indeed, LPA prevented mESCs from undergoing hypoxia-induced apoptosis and increased phosphorylation of mTOR and its substrates (S6K1 and 4EBP1). Moreover, mTOR inactivation by rapamycin (mTOR inhibitor) increased pro-apoptotic proteins expressions and mESC apoptosis. Furthermore, transplantation of non-targeting siRNA and glucosamine-treated mESCs increased cell survival and inhibited flap necrosis in mouse skin flap model. Conversely, silencing of GPAT1 expression reversed those glucosamine effects. In conclusion, enhancing O-GlcNAcylation of Sp1 by glucosamine stimulates GPAT1 expression, which leads to inhibition of hypoxia-induced mESC apoptosis via mTOR activation. PMID:27010859

  11. Glycerol-3-phosphate acyltransferase-1 upregulation by O-GlcNAcylation of Sp1 protects against hypoxia-induced mouse embryonic stem cell apoptosis via mTOR activation

    PubMed Central

    Lee, H J; Ryu, J M; Jung, Y H; Lee, K H; Kim, D I; Han, H J

    2016-01-01

    Oxygen signaling is critical for stem cell regulation, and oxidative stress-induced stem cell apoptosis decreases the efficiency of stem cell therapy. Hypoxia activates O-linked β-N-acetyl glucosaminylation (O-GlcNAcylation) of stem cells, which contributes to regulation of cellular metabolism, as well as cell fate. Our study investigated the role of O-GlcNAcylation via glucosamine in the protection of hypoxia-induced apoptosis of mouse embryonic stem cells (mESCs). Hypoxia increased mESCs apoptosis in a time-dependent manner. Moreover, hypoxia also slightly increased the O-GlcNAc level. Glucosamine treatment further enhanced the O-GlcNAc level and prevented hypoxia-induced mESC apoptosis, which was suppressed by O-GlcNAc transferase inhibitors. In addition, hypoxia regulated several lipid metabolic enzymes, whereas glucosamine increased expression of glycerol-3-phosphate acyltransferase-1 (GPAT1), a lipid metabolic enzyme producing lysophosphatidic acid (LPA). In addition, glucosamine-increased O-GlcNAcylation of Sp1, which subsequently leads to Sp1 nuclear translocation and GPAT1 expression. Silencing of GPAT1 by gpat1 siRNA transfection reduced glucosamine-mediated anti-apoptosis in mESCs and reduced mammalian target of rapamycin (mTOR) phosphorylation. Indeed, LPA prevented mESCs from undergoing hypoxia-induced apoptosis and increased phosphorylation of mTOR and its substrates (S6K1 and 4EBP1). Moreover, mTOR inactivation by rapamycin (mTOR inhibitor) increased pro-apoptotic proteins expressions and mESC apoptosis. Furthermore, transplantation of non-targeting siRNA and glucosamine-treated mESCs increased cell survival and inhibited flap necrosis in mouse skin flap model. Conversely, silencing of GPAT1 expression reversed those glucosamine effects. In conclusion, enhancing O-GlcNAcylation of Sp1 by glucosamine stimulates GPAT1 expression, which leads to inhibition of hypoxia-induced mESC apoptosis via mTOR activation. PMID:27010859

  12. Regulation and physiologic significance of the agmatine deiminase system of Streptococcus mutans UA159.

    PubMed

    Griswold, Ann R; Jameson-Lee, Max; Burne, Robert A

    2006-02-01

    We previously demonstrated that Streptococcus mutans expresses a functional agmatine deiminase system (AgDS) encoded by the agmatine-inducible aguBDAC operon (A. R. Griswold, Y. Y. Chen, and R. A. Burne, J. Bacteriol. 186:1902-1904, 2004). The AgDS yields ammonia, CO2, and ATP while converting agmatine to putrescine and is proposed to augment the acid resistance properties and pathogenic potential of S. mutans. To initiate a study of agu gene regulation, the aguB transcription initiation site was identified by primer extension and a putative sigma70-like promoter was mapped 5' to aguB. Analysis of the genome database revealed an open reading frame (SMU.261c) encoding a putative transcriptional regulator located 239 bases upstream of aguB. Inactivation of SMU.261c decreased AgD activity by sevenfold and eliminated agmatine induction. AgD was also found to be induced by certain environmental stresses, including low pH and heat, implying that the AgDS may also be a part of a general stress response pathway of this organism. Interestingly, an AgDS-deficient strain was unable to grow in the presence of 20 mM agmatine, suggesting that the AgDS converts a growth-inhibitory substance into products that can enhance acid tolerance and contribute to the competitive fitness of the organism at low pH. The capacity to detoxify and catabolize agmatine is likely to have major ramifications on oral biofilm ecology. PMID:16428386

  13. Effects of the hypoxia-inducible factor-1 inhibitor echinomycin on vascular endothelial growth factor production and apoptosis in human ectopic endometriotic stromal cells.

    PubMed

    Tsuzuki, Tomoko; Okada, Hidetaka; Shindoh, Hisayuu; Shimoi, Kayo; Nishigaki, Akemi; Kanzaki, Hideharu

    2016-04-01

    Recent evidence points to a possible role for hypoxia-inducible factor (HIF)-1 in the pathogenesis and development of endometriosis. The objectives of this study were to investigate the critical role of HIF-1 in endometriosis and the effect of the HIF-1 inhibitor echinomycin on human ectopic endometriotic stromal cells (eESCs). Ectopic endometriotic tissues were obtained from 20 patients, who received an operation for ovarian endometriomas. We examined vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1) production, HIF-1 expression, cell proliferation and apoptosis of eESCs. Cobalt chloride (CoCl2) significantly induced expression of HIF-1α protein and VEGF production in a time-dependent manner in eESCs, but reduced SDF-1 production. VEGF production was significantly suppressed by treatment of 100 nM echinomycin without causing cell toxicity, but 0.1-10 nM echinomycin or 100 nM progestin had no significant effect. SDF-1 production was not affected by echinomycin treatment at any dose. Echinomycin inhibited cell proliferation and induced apoptotic cell death of the eESCs, and significantly inhibited expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL. Echinomycin inhibits VEGF production and induces apoptosis of eESCs by suppression of Bcl-2 and Bcl-xL. These findings suggest the unique therapeutic potential for echinomycin as an inhibitor of HIF-1 activation for endometriosis treatment. PMID:26654708

  14. Basal and therapy-driven hypoxia-inducible factor-1α confers resistance to endocrine therapy in estrogen receptor-positive breast cancer

    PubMed Central

    Li, Daqiang; Li, Jianwei; Mo, Miao; Wang, Yujie; Shao, Zhimin; Shen, Zhenzhou; Cheng, Jingyi; Liu, Guangyu

    2015-01-01

    Resistance is an obstacle to endocrine therapy for breast cancer. We measured levels of hypoxia-inducible factor (HIF)-1α in 52 primary breast cancer patients before and after receiving neoadjuvant endocrine therapy with letrozole for at least 3 months. Pre-treatment levels of HIF-1α were associated with negative clinical outcome. Furthermore, levels of HIF-1α were increased in post-treatment residual tumors compared with those in pre-treatment biopsy samples. In animal studies, xenografts stably expressing HIF-1α were resistant to endocrine therapy with fulvestrant compared with the effects in control xenografts. Additionally, HIF-1α transcription was inhibited by zoledronic acid, a conventional drug for the treatment of postmenopausal osteoporosis, and was accompanied by a marked inhibition of the RAS/MAPK/ERK1/2 pathway. HIF-1α is a determinant of resistance to endocrine therapy and should be considered as a potential therapeutic target for overcoming endocrine resistance in estrogen receptor (ER)-positive breast cancer. In addition, zoledronic acid may overcome endocrine resistance in ER-positive human breast cancer by targeting HIF-1α transcription through inhibition of the RAS/MAPK/ERK1/2 pathway. Clinical studies on the administration of zoledronic acid as a second line treatment in patients who failed endocrine therapy should be considered to improve therapeutic outcomes in breast cancer patients. PMID:25929338

  15. Triptolide reverses hypoxia-induced epithelial–mesenchymal transition and stem-like features in pancreatic cancer by NF-κB downregulation

    PubMed Central

    Liu, Li; Salnikov, Alexei V; Bauer, Nathalie; Aleksandrowicz, Ewa; Labsch, Sabrina; Nwaeburu, Clifford; Mattern, Jürgen; Gladkich, Jury; Schemmer, Peter; Werner, Jens; Herr, Ingrid

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal malignancies characterized by an intense tumor stroma with hypoperfused regions, a significant inflammatory response and pronounced therapy resistance. New therapeutic agents are urgently needed. The plant-derived agent triptolide also known as “thunder god vine” has a long history in traditional Chinese medicine for treatment of rheumatoid arthritis and cancer and is now in a clinical phase II trial for establishing the efficacy against a placebo. The authors mimicked the situation in patient tumors by induction of hypoxia in experimental models of pancreatic cancer stem cells (CSCs) and evaluated the therapeutic effect of triptolide. Hypoxia led to induction of colony and spheroid formation, aldehyde dehydrogenase 1 (ALDH1) and NF-κB activity, migratory potential and a switch in morphology to a fibroblastoid phenotype, as well as stem cell- and epithelial–mesenchymal transition-associated protein expression. Triptolide efficiently inhibited hypoxia-induced transcriptional signaling and downregulated epithelial–mesenchymal transition (EMT) and CSC features in established highly malignant cell lines, whereas sensitive cancer cells or nonmalignant cells were less affected. In vivo triptolide inhibited tumor take and tumor growth. In primary CSCs isolated from patient tumors, triptolide downregulated markers of CSCs, proliferation and mesenchymal cells along with upregulation of markers for apoptosis and epithelial cells. This study is the first to show that triptolide reverses EMT and CSC characteristics and therefore may be superior to current chemotherapeutics for treatment of PDA. What's new? Current treatment for pancreatic cancer does not directly target tumor hypoxia, a major mediator of aggressive growth, early metastasis, and therapy resistance. The plant-derived agent triptolide has a long history of use in rheumatoid arthritis and cancer in traditional Chinese medicine and has been

  16. Up-regulation of survivin by AKT and hypoxia-inducible factor 1α contributes to cisplatin resistance in gastric cancer.

    PubMed

    Sun, Xue-Pu; Dong, Xuesong; Lin, Lele; Jiang, Xian; Wei, Zheng; Zhai, Bo; Sun, Bo; Zhang, Qiang; Wang, Xiaolong; Jiang, Hongchi; Krissansen, Geoffrey W; Qiao, Haiquan; Sun, Xueying

    2014-01-01

    This study investigated the contribution of survivin and its upstream regulators, AKT and hypoxia-inducible factor 1α (HIF-1α), to the resistance of gastric cancer cells to cisplatin (CDDP). We found that over-expression of survivin increased the resistance of SGC7901 and BGC823 gastric cancer cells to CDDP. Its over-expression abrogated CDDP-induced inhibition of cell proliferation and CDDP-induced cell apoptosis. In contrast, down-regulation of survivin expression using small hairpin RNA (shRNA) vectors and the small-molecule inhibitor YM155, or inhibition of survivin function using a recombinant cell-permeable dominant-negative survivin protein (dNSur9), promoted CDDP-induced apoptosis. CDDP-resistant sub-lines generated from the parental SGC7901 and BGC823 cells by exposure to increasing concentrations of CDDP expressed higher levels of HIF-1α and survivin in response to hypoxia, and higher levels of phosphorylated AKT (pAKT). Specific inhibition of AKT reduced the expression of HIF-1α and survivin, whereas specific inhibition or depletion of HIF-1α reduced survivin expression but had no effect on the expression of phosphorylated AKT. The expression levels of survivin affected the therapeutic efficacy of CDDP in treating gastric tumors in mice. Specific inhibition of survivin, AKT and HIF-1α enhanced the sensitivity of CDDP-resistant cells to CDDP. Specific inhibition of survivin, AKT and HIF-1α synergized with CDDP to suppress the growth of gastric tumors that had been engineered to overexpress survivin. In summary, the results provide evidence that up-regulation of survivin by AKT and HIF-1α contributes to CDDP resistance, indicating that inhibition of these pathways may be a potential strategy for overcoming CDDP resistance in the treatment of gastric cancer. PMID:24165223

  17. The molecular and metabolic influence of long term agmatine consumption.

    PubMed

    Nissim, Itzhak; Horyn, Oksana; Daikhin, Yevgeny; Chen, Pan; Li, Changhong; Wehrli, Suzanne L; Nissim, Ilana; Yudkoff, Marc

    2014-04-01

    Agmatine (AGM), a product of arginine decarboxylation, influences multiple physiologic and metabolic functions. However, the mechanism(s) of action, the impact on whole body gene expression and metabolic pathways, and the potential benefits and risks of long term AGM consumption are still a mystery. Here, we scrutinized the impact of AGM on whole body metabolic profiling and gene expression and assessed a plausible mechanism(s) of AGM action. Studies were performed in rats fed a high fat diet or standard chow. AGM was added to drinking water for 4 or 8 weeks. We used (13)C or (15)N tracers to assess metabolic reactions and fluxes and real time quantitative PCR to determine gene expression. The results demonstrate that AGM elevated the synthesis and tissue level of cAMP. Subsequently, AGM had a widespread impact on gene expression and metabolic profiling including (a) activation of peroxisomal proliferator-activated receptor-α and its coactivator, PGC1α, and (b) increased expression of peroxisomal proliferator-activated receptor-γ and genes regulating thermogenesis, gluconeogenesis, and carnitine biosynthesis and transport. The changes in gene expression were coupled with improved tissue and systemic levels of carnitine and short chain acylcarnitine, increased β-oxidation but diminished incomplete fatty acid oxidation, decreased fat but increased protein mass, and increased hepatic ureagenesis and gluconeogenesis but decreased glycolysis. These metabolic changes were coupled with reduced weight gain and a curtailment of the hormonal and metabolic derangements associated with high fat diet-induced obesity. The findings suggest that AGM elevated the synthesis and levels of cAMP, thereby mimicking the effects of caloric restriction with respect to metabolic reprogramming. PMID:24523404

  18. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases

    PubMed Central

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2016-01-01

    Hypoxia is an environmental stress at high altitude and underground conditions but it is also present in many chronic age-related diseases, where blood flow into tissues is impaired. The oxygen-sensing system stimulates gene expression protecting tissues against hypoxic insults. Hypoxia stabilizes the expression of hypoxia-inducible transcription factor-1α (HIF-1α), which controls the expression of hundreds of survival genes related to e.g. enhanced energy metabolism and autophagy. Moreover, many stress-related signaling mechanisms, such as oxidative stress and energy metabolic disturbances, as well as the signaling cascades via ceramide, mTOR, NF-κB, and TGF-β pathways, can also induce the expression of HIF-1α protein to facilitate cell survival in normoxia. Hypoxia is linked to prominent epigenetic changes in chromatin landscape. Screening studies have indicated that the stabilization of HIF-1α increases the expression of distinct histone lysine demethylases (KDM). HIF-1α stimulates the expression of KDM3A, KDM4B, KDM4C, and KDM6B, which enhance gene transcription by demethylating H3K9 and H3K27 sites (repressive epigenetic marks). In addition, HIF-1α induces the expression of KDM2B and KDM5B, which repress transcription by demethylating H3K4me2,3 sites (activating marks). Hypoxia-inducible KDMs support locally the gene transcription induced by HIF-1α, although they can also control genome-wide chromatin landscape, especially KDMs which demethylate H3K9 and H3K27 sites. These epigenetic marks have important role in the control of heterochromatin segments and 3D folding of chromosomes, as well as the genetic loci regulating cell type commitment, proliferation, and cellular senescence, e.g. the INK4 box. A chronic stimulation of HIF-1α can provoke tissue fibrosis and cellular senescence, which both are increasingly present with aging and age-related diseases. We will review the regulation of HIF-1α-dependent induction of KDMs and clarify their role in

  19. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases.

    PubMed

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2016-03-01

    Hypoxia is an environmental stress at high altitude and underground conditions but it is also present in many chronic age-related diseases, where blood flow into tissues is impaired. The oxygen-sensing system stimulates gene expression protecting tissues against hypoxic insults. Hypoxia stabilizes the expression of hypoxia-inducible transcription factor-1α (HIF-1α), which controls the expression of hundreds of survival genes related to e.g. enhanced energy metabolism and autophagy. Moreover, many stress-related signaling mechanisms, such as oxidative stress and energy metabolic disturbances, as well as the signaling cascades via ceramide, mTOR, NF-κB, and TGF-β pathways, can also induce the expression of HIF-1α protein to facilitate cell survival in normoxia. Hypoxia is linked to prominent epigenetic changes in chromatin landscape. Screening studies have indicated that the stabilization of HIF-1α increases the expression of distinct histone lysine demethylases (KDM). HIF-1α stimulates the expression of KDM3A, KDM4B, KDM4C, and KDM6B, which enhance gene transcription by demethylating H3K9 and H3K27 sites (repressive epigenetic marks). In addition, HIF-1α induces the expression of KDM2B and KDM5B, which repress transcription by demethylating H3K4me2,3 sites (activating marks). Hypoxia-inducible KDMs support locally the gene transcription induced by HIF-1α, although they can also control genome-wide chromatin landscape, especially KDMs which demethylate H3K9 and H3K27 sites. These epigenetic marks have important role in the control of heterochromatin segments and 3D folding of chromosomes, as well as the genetic loci regulating cell type commitment, proliferation, and cellular senescence, e.g. the INK4 box. A chronic stimulation of HIF-1α can provoke tissue fibrosis and cellular senescence, which both are increasingly present with aging and age-related diseases. We will review the regulation of HIF-1α-dependent induction of KDMs and clarify their role in

  20. In Vivo Therapeutic Silencing of Hypoxia-Inducible Factor 1 Alpha (HIF-1α) Using Single-Walled Carbon Nanotubes Noncovalently Coated with siRNA

    PubMed Central

    Bartholomeusz, Geoffrey; Cherukuri, Paul; Kingston, John; Cognet, Laurent; Lemos, Robert; Leeuw, Tonya K.; Gumbiner-Russo, Laura; Weisman, R. Bruce; Powis, Garth

    2009-01-01

    A new approach is described for delivering small interfering RNA (siRNA) into cancer cells by noncovalently complexing unmodified siRNA with pristine single-walled carbon nanotubes (SWCNTs). The complexes were prepared by simple sonication of pristine SWCNTs in a solution of siRNA, which then served both as the cargo and as the suspending agent for the SWCNTs. When complexes containing siRNA targeted to hypoxia-inducible factor 1 alpha (HIF-1α) were added to cells growing in serum containing culture media, there was strong specific inhibition of cellular HIF-1α activity. The ability to obtain a biological response to SWCNT/siRNA complexes was seen in a wide variety of cancer cell types. Moreover, intratumoral administration of SWCNT-HIF-1α siRNA complexes in mice bearing MiaPaCa-2/HRE tumors significantly inhibited the activity of tumor HIF-1α. As elevated levels of HIF-1α are found in many human cancers and are associated with resistance to therapy and decreased patient survival, these results imply that SWCNT/siRNA complexes may have value as therapeutic agents. PMID:20052401

  1. Cobalt chloride decreases fibroblast growth factor-21 expression dependent on oxidative stress but not hypoxia-inducible factor in Caco-2 cells

    SciTech Connect

    Liu, Yanlong; Wang, Chunhong; Wang, Yuhua; Ma, Zhenhua; Xiao, Jian; McClain, Craig; Li, Xiaokun; Feng, Wenke

    2012-10-15

    Fibroblast growth factor-21 (FGF21) is a potential metabolic regulator with multiple beneficial effects on metabolic diseases. FGF21 is mainly expressed in the liver, but is also found in other tissues including the intestine, which expresses β-klotho abundantly. The intestine is a unique organ that operates in a physiologically hypoxic environment, and is responsible for the fat absorption processes including triglyceride breakdown, re-synthesis and absorption into the portal circulation. In the present study, we investigated the effects of hypoxia and the chemical hypoxia inducer, cobalt chloride (CoCl{sub 2}), on FGF21 expression in Caco-2 cells and the consequence of fat accumulation. Physical hypoxia (1% oxygen) and CoCl{sub 2} treatment decreased both FGF21 mRNA and secreted protein levels. Gene silence and inhibition of hypoxia-inducible factor-α (HIFα) did not affect the reduction of FGF21 mRNA and protein levels by hypoxia. However, CoCl{sub 2} administration caused a significant increase in oxidative stress. The addition of n-acetylcysteine (NAC) suppressed CoCl{sub 2}-induced reactive oxygen species (ROS) formation and completely negated CoCl{sub 2}-induced FGF21 loss. mRNA stability analysis demonstrated that the CoCl{sub 2} administration caused a remarkable reduction in FGF21 mRNA stability. Furthermore, CoCl{sub 2} increased intracellular triglyceride (TG) accumulation, along with a reduction in mRNA levels of lipid lipase, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), and an increase of sterol regulatory element-binding protein-1c (SREBP1c) and stearoyl-coenzyme A (SCD1). Addition of both NAC and recombinant FGF21 significantly attenuated the CoCl{sub 2}-induced TG accumulation. In conclusion, the decrease of FGF21 in Caco-2 cells by chemical hypoxia is independent of HIFα, but dependent on an oxidative stress-mediated mechanism. The regulation of FGF21 by hypoxia may contribute to intestinal lipid metabolism and

  2. Oxidative Stress Mediates Chemical Hypoxia- Induced Injury and Inflammation by Activating NF-κb-COX-2 Pathway in HaCaT Cells

    PubMed Central

    Yang, Chuntao; Ling, Hongzhong; Zhang, Meifen; Yang, Zhanli; Wang, Xiuyu; Zeng, Fanqin; Wang, Chuhuai; Feng, Jianqiang

    2011-01-01

    Hypoxia of skin is an important physiopathological process in many diseases, such as pressure ulcer, diabetic ulcer, and varicose ulcer. Although cellular injury and inflammation have been involved in hypoxia-induced dermatic injury, the underlying mechanisms remain largely unknown. This study was conducted to investigate the effects of cobalt chloride (CoCl2), a hypoxia-mimicking agent, on human skin keratinocytes (HaCaT cells) and to explore the possible molecular mechanisms. Exposure of HaCaT cells to CoCl2 reduced cell viability and caused overproduction of reactive oxygen species (ROS) and oversecretion of interleukin-6 (IL-6) and interleukin-8 (IL-8). Importantly, CoCl2 exposure elicited overexpression of cyclooxygenase-2 (COX-2) and phosphorylation of nuclear factor-kappa B (NF-κB) p65 subunit. Inhibition of COX-2 by NS-398, a selective inhibitor of COX-2, significantly repressed the cytotoxicity, as well as secretion of IL-6 and IL-8 induced by CoCl2. Inhibition of NF-κB by PDTC (a selective inhibitor of NF-κB) or genetic silencing of p65 by RNAi (Si-p65), attenuated not only the cytotoxicity and secretion of IL-6 and IL-8, but also overexpression of COX- 2 in CoCl2-treated HaCaT cells. Neutralizing anti-IL-6 or anti-IL-8 antibody statistically alleviated CoCl2-induced cytotoxicity in HaCaT cells. N-acetyl-L-cysteine (NAC), a well characterized ROS scavenger, obviously suppressed CoCl2-induced cytotoxicity in HaCaT cells, as well as secretion of IL-6 and IL-8. Additionally, NAC also repressed overexpression of COX-2 and phosphorylation of NF-κB p65 subunit induced by CoCl2 in HaCaT cells. In conclusion, our results demonstrated that oxidative stress mediates chemical hypoxia-induced injury and inflammatory response through activation of NF-κB–COX-2 pathway in HaCaT cells. PMID:21533553

  3. Essential role for SphK1/S1P signaling to regulate hypoxia-inducible factor 2α expression and activity in cancer.

    PubMed

    Bouquerel, P; Gstalder, C; Müller, D; Laurent, J; Brizuela, L; Sabbadini, R A; Malavaud, B; Pyronnet, S; Martineau, Y; Ader, I; Cuvillier, O

    2016-01-01

    The sphingosine kinase-1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway has been reported to modulate the expression of the canonical transcription factor hypoxia-inducible HIF-1α in multiple cell lineages. HIF-2α is also frequently overexpressed in solid tumors but its role has been mostly studied in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, where HIF-2α has been established as a driver of a more aggressive disease. In this study, the role of SphK1/S1P signaling with regard to HIF-2α was investigated in various cancer cell models including ccRCC cells. Under hypoxic conditions or in ccRCC lacking a functional von Hippel-Lindau (VHL) gene and expressing high levels of HIF-2α, SphK1 activity controls HIF-2α expression and transcriptional activity through a phospholipase D (PLD)-driven mechanism. SphK1 silencing promotes a VHL-independent HIF-2α loss of expression and activity and reduces cell proliferation in ccRCC. Importantly, downregulation of SphK1 is associated with impaired Akt and mTOR signaling in ccRCC. Taking advantage of a monoclonal antibody neutralizing extracellular S1P, we show that inhibition of S1P extracellular signaling blocks HIF-2α accumulation in ccRCC cell lines, an effect mimicked when the S1P transporter Spns2 or the S1P receptor 1 (S1P1) is silenced. Here, we report the first evidence that the SphK1/S1P signaling pathway regulates the transcription factor hypoxia-inducible HIF-2α in diverse cancer cell lineages notably ccRCC, where HIF-2α has been established as a driver of a more aggressive disease. These findings demonstrate that SphK1/S1P signaling may act as a canonical regulator of HIF-2α expression in ccRCC, giving support to its inhibition as a therapeutic strategy that could contribute to reduce HIF-2 activity in ccRCC. PMID:26974204

  4. Essential role for SphK1/S1P signaling to regulate hypoxia-inducible factor 2α expression and activity in cancer

    PubMed Central

    Bouquerel, P; Gstalder, C; Müller, D; Laurent, J; Brizuela, L; Sabbadini, R A; Malavaud, B; Pyronnet, S; Martineau, Y; Ader, I; Cuvillier, O

    2016-01-01

    The sphingosine kinase-1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway has been reported to modulate the expression of the canonical transcription factor hypoxia-inducible HIF-1α in multiple cell lineages. HIF-2α is also frequently overexpressed in solid tumors but its role has been mostly studied in clear cell renal cell carcinoma (ccRCC), the most common form of kidney cancer, where HIF-2α has been established as a driver of a more aggressive disease. In this study, the role of SphK1/S1P signaling with regard to HIF-2α was investigated in various cancer cell models including ccRCC cells. Under hypoxic conditions or in ccRCC lacking a functional von Hippel-Lindau (VHL) gene and expressing high levels of HIF-2α, SphK1 activity controls HIF-2α expression and transcriptional activity through a phospholipase D (PLD)-driven mechanism. SphK1 silencing promotes a VHL-independent HIF-2α loss of expression and activity and reduces cell proliferation in ccRCC. Importantly, downregulation of SphK1 is associated with impaired Akt and mTOR signaling in ccRCC. Taking advantage of a monoclonal antibody neutralizing extracellular S1P, we show that inhibition of S1P extracellular signaling blocks HIF-2α accumulation in ccRCC cell lines, an effect mimicked when the S1P transporter Spns2 or the S1P receptor 1 (S1P1) is silenced. Here, we report the first evidence that the SphK1/S1P signaling pathway regulates the transcription factor hypoxia-inducible HIF-2α in diverse cancer cell lineages notably ccRCC, where HIF-2α has been established as a driver of a more aggressive disease. These findings demonstrate that SphK1/S1P signaling may act as a canonical regulator of HIF-2α expression in ccRCC, giving support to its inhibition as a therapeutic strategy that could contribute to reduce HIF-2 activity in ccRCC. PMID:26974204

  5. Lactobacilli Modulate Hypoxia-Inducible Factor (HIF)-1 Regulatory Pathway in Triple Negative Breast Cancer Cell Line

    PubMed Central

    Abedin-Do, Atieh; Mirfakhraie, Reza; Shirzad, Mahdieh; Ghafouri-Fard, Soudeh; Motevaseli, Elahe

    2016-01-01

    Objective Hypoxia-Inducible Factor (HIF)-1 plays an essential role in the body’s response to low oxygen concentrations and regulates expression of several genes implicated in homeostasis, vascularization, anaerobic metabolism as well as immunological responses. Increased levels of HIF-1α are associated with increased proliferation and more aggressive breast tumor development. Lactobacilli have been shown to exert anti-cancer effects on several malignancies including breast cancer. However, the exact mechanism of such effect is not clear yet. The aim of this study was to analyze the expression of selected genes from HIF pathway in a triple negative breast cancer cell line (expressing no estrogen and progesterone receptors as well as HER-2/Neu), MDA-MB-231, following treatment with two lactobacilli culture supernatants. Materials and Methods In this experimental study, we analyzed the expression of HIF-1α, SLC2A1, VHL, HSP90, XBP1 and SHARP1 genes from HIF pathway in MDA-MB-231 cells, before and after treatment with Lactobacillus crispatus and Lactobacillus rhamnosus culture supernatants (LCS and LRS, respectively) by means of quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Results Both LRS and LCS had cytotoxic effects on MDA-MB-231 cells, while the former type was more cytotoxic. LRS dramatically down-regulated expression levels of the HIF-1α, HSP90 and SLC2A1 in the MDA-MB-231 cells. LCS had similar effect on the expression of HSP90, to what was observed in the LRS treatment. The expression level of tumor suppressor genes VHL and SHARP1 were also decreased in LCS treated cells. Conclusion Although both LCS and LRS had cytotoxic effects on the MDA-MB-231 cells, it is proposed that LRS could be more appropriate for pathway directed treatment modalities, as it did not decrease expression of tumor suppressor genes involved in HIF pathway. Down-regulation of HIF pathway mediated oncogenes by LRS suggests that the cytotoxic effects of this

  6. Hypoxia-Inducible Factor 1–Dependent Induction of Intestinal Trefoil Factor Protects Barrier Function during Hypoxia

    PubMed Central

    Furuta, Glenn T.; Turner, Jerrold R.; Taylor, Cormac T.; Hershberg, Robert M.; Comerford, Katrina; Narravula, Sailaja; Podolsky, Daniel K.; Colgan, Sean P.

    2001-01-01

    Mucosal organs such as the intestine are supported by a rich and complex underlying vasculature. For this reason, the intestine, and particularly barrier-protective epithelial cells, are susceptible to damage related to diminished blood flow and concomitant tissue hypoxia. We sought to identify compensatory mechanisms that protect epithelial barrier during episodes of intestinal hypoxia. Initial studies examining T84 colonic epithelial cells revealed that barrier function is uniquely resistant to changes elicited by hypoxia. A search for intestinal-specific, barrier-protective factors revealed that the human intestinal trefoil factor (ITF) gene promoter bears a previously unappreciated binding site for hypoxia-inducible factor (HIF)-1. Hypoxia resulted in parallel induction of ITF mRNA and protein. Electrophoretic mobility shift assay analysis using ITF-specific, HIF-1 consensus motifs resulted in a hypoxia-inducible DNA binding activity, and loading cells with antisense oligonucleotides directed against the α chain of HIF-1 resulted in a loss of ITF hypoxia inducibility. Moreover, addition of anti-ITF antibody resulted in a loss of barrier function in epithelial cells exposed to hypoxia, and the addition of recombinant human ITF to vascular endothelial cells partially protected endothelial cells from hypoxia-elicited barrier disruption. Extensions of these studies in vivo revealed prominent hypoxia-elicited increases in intestinal permeability in ITF null mice. HIF-1–dependent induction of ITF may provide an adaptive link for maintenance of barrier function during hypoxia. PMID:11342587

  7. The HIF-1α/CXCR4 pathway supports hypoxia-induced metastasis of human osteosarcoma cells.

    PubMed

    Guan, Guofeng; Zhang, Yinglong; Lu, Yao; Liu, Lijuan; Shi, Doufei; Wen, Yanhua; Yang, Lianjia; Ma, Qiong; Liu, Tao; Zhu, Xiaodong; Qiu, Xiuchun; Zhou, Yong

    2015-02-01

    HIF-1α mediates hypoxia-induced expression of the chemokine receptor CXCR4 and contributes to metastasis in many different cancers. We have previously shown that hypoxia promotes migration of human osteosarcoma cells by activating the HIF-1α/CXCR4 pathway. Here, immunohistochemical analysis showed that unlike control osteochondroma samples, osteosarcoma specimens were characterized by elevated expression levels of HIF-1α and CXCR4. Moreover, we found that hypoxia-induced invasiveness was more pronounced in high metastatic potential F5M2 osteosarcoma cells than in low metastatic potential F4 cells, and that this induction was sensitive to treatment with the CXCR4 antagonist AMD3100 and the HIF-1α inhibitor KC7F2. Interestingly, hypoxia-induced CXCR4 expression persisted after cultured osteosarcoma cells were returned to normoxic conditions. These observations were confirmed by experiments in a mouse model of osteosarcoma lung metastasis showing that hypoxia stimulation of pulmonary metastasis was greater in F5M2 than in F4 cells, and was sensitive to treatment with AMD3100. Our study provides further evidence of the contributions of hypoxia and the HIF-1α/CXCR4 pathway to the progression of osteosarcoma, and suggests that this axis might be efficiently leveraged in the development of novel osteosarcoma therapeutics. PMID:25444927

  8. Chronic hypoxia-induced alteration of presynaptic protein profiles and neurobehavioral dysfunction are averted by supplemental oxygen in Lymnaea stagnalis.

    PubMed

    Fei, G-H; Feng, Z-P

    2008-04-22

    Chronic hypoxia causes neural dysfunction. Oxygen (O(2)) supplements have been commonly used to increase the O(2) supply, yet the therapeutic benefit of this treatment remains controversial due to a lack of cellular and molecular evidence. In this study, we examined the effects of short-burst O(2) supplementation on neural behavior and presynaptic protein expression profiles in a simple chronic hypoxia model of snail Lymnaea stagnalis. We reported that hypoxia delayed the animal response to light stimuli, suppressed locomotory activity, induced expression of stress-response proteins, hypoxia inducible factor-1alpha (HIF-1alpha) and heat shock protein 70 (HSP70), repressed syntaxin-1 (a membrane-bound presynaptic protein) and elevated vesicle-associated membrane protein-1 (VAMP-1) (a vesicle-bound presynaptic protein) level. O(2) supplements relieved suppression of neural behaviors, and corrected hypoxia-induced protein alterations in a dose-dependent manner. The effectiveness of supplemental O(2) was further evaluated by determining time courses for recovery of neural behaviors and expression of stress response proteins and presynaptic proteins after relief from hypoxia conditions. Our findings suggest that O(2) supplement improves hypoxia-induced adverse alterations of presynaptic protein expression and neurobehaviors, however, the optimal level of O(2) required for improvement is protein specific and system specific. PMID:18343591

  9. MicroRNA-584-3p, a novel tumor suppressor and prognostic marker, reduces the migration and invasion of human glioma cells by targeting hypoxia-induced ROCK1

    PubMed Central

    Xue, Hao; Guo, Xing; Han, Xiao; Yan, Shaofeng; Zhang, Jinsen; Xu, Shugang; Li, Tong; Guo, Xiaofan; Zhang, Ping; Gao, Xiao; Liu, Qinglin; Li, Gang

    2016-01-01

    Here, we report that microRNA-584-3p (miR-584-3p) is up-regulated in hypoxic glioma cells and in high-grade human glioma tumors (WHO grades III–IV) relative to normoxic cells and to low-grade tumors (WHO grades I–II), respectively. The postoperative survival time was significantly prolonged in the high-grade glioma patients with high miR-584-3p expression compared with those with low miR-584-3p expression. miR-584-3p may function as a potent tumor suppressor and as a prognostic biomarker for malignant glioma. However, the molecular mechanisms underlying these properties remain poorly understood. Our mechanistic studies revealed that miR-584-3p suppressed the migration and invasion of glioma cells by disrupting hypoxia-induced stress fiber formation. Specifically, we have found that ROCK1 is a direct and functionally relevant target of miR-584-3p in glioma cells. Our results have demonstrated a tumor suppressive function of miR-584-3p in glioma, in which it inhibits the migration and invasion of tumor cells by antagonizing hypoxia-induced, ROCK1-dependent stress fiber formation. Our findings have potential implications for glioma gene therapy and suggest that miR-584-3p could represent a prognostic indicator for glioma. PMID:26715733

  10. Protective action of endogenously generated H₂S on hypoxia-induced respiratory suppression and its relation to antioxidation and down-regulation of c-fos mRNA in medullary slices of neonatal rats.

    PubMed

    Pan, Ji-Gang; Zhang, Jie; Zhou, Hua; Chen, Li; Tang, Yu-Hong; Zheng, Yu

    2011-09-15

    We previously reported that exogenous H(2)S played roles in protection of respiratory centers against hypoxic injury in medullary slices of neonatal rats. The protective action of endogenous H(2)S and its relation to antioxidation and down-regulation of c-fos mRNA were investigated in the present study. Perfusion of the slices with l-cysteine (Cys), substrate of cystathionine β-synthase (CBS, H(2)S synthase), could increase frequency of rhythmic respiratory discharge of the hypoglossal rootlets and prevent respiratory suppression induced by hypoxia, whereas perfusion with hydroxylamine (NH(2)OH, inhibitor of CBS) could postpone recovery of respiration from hypoxic inhibition. NH(2)OH also significantly enhanced hypoxia-induced increase in malondialdehyde (MDA) content of the slices. The hypoxia-induced up-regulation of c-fos mRNA could be markedly antagonized by S-adenosyl-l-methionine (SAM, activator of CBS), but greatly increased by NH(2)OH. Neither NH(2)OH, Cys nor SAM had any effect on expression of bcl-2 mRNA in hypoxic medullary slices. These results indicate that endogenously generated H(2)S was involved in protection of the medullary respiratory centers against hypoxic injury partly via antioxidation and down-regulation of c-fos. PMID:21723961

  11. The Hypoxia-inducible Factor Renders Cancer Cells More Sensitive to Vitamin C-induced Toxicity*

    PubMed Central

    Tian, Weihua; Wang, Yu; Xu, Yan; Guo, Xiangpeng; Wang, Bo; Sun, Li; Liu, Longqi; Cui, Fenggong; Zhuang, Qiang; Bao, Xichen; Schley, Gunnar; Chung, Tung-Liang; Laslett, Andrew L.; Willam, Carsten; Qin, Baoming; Maxwell, Patrick H.; Esteban, Miguel A.

    2014-01-01

    Megadose vitamin C (Vc) is one of the most enduring alternative treatments for diverse human diseases and is deeply engrafted in popular culture. Preliminary studies in the 1970s described potent effects of Vc on prolonging the survival of patients with terminal cancer, but these claims were later criticized. An improved knowledge of the pharmacokinetics of Vc and recent reports using cancer cell lines have renewed the interest in this subject. Despite these findings, using Vc as an adjuvant for anticancer therapy remains questionable, among other things because there is no proper mechanistic understanding. Here, we show that a Warburg effect triggered by activation of the hypoxia-inducible factor (HIF) pathway greatly enhances Vc-induced toxicity in multiple cancer cell lines, including von Hippel-Lindau (VHL)-defective renal cancer cells. HIF increases the intracellular uptake of oxidized Vc through its transcriptional target glucose transporter 1 (GLUT1), synergizing with the uptake of its reduced form through sodium-dependent Vc transporters. The resulting high levels of intracellular Vc induce oxidative stress and massive DNA damage, which then causes metabolic exhaustion by depleting cellular ATP reserves. HIF-positive cells are particularly sensitive to Vc-induced ATP reduction because they mostly rely on the rather inefficient glycolytic pathway for energy production. Thus, our experiments link Vc-induced toxicity and cancer metabolism, providing a new explanation for the preferential effect of Vc on cancer cells. PMID:24371136

  12. Adequate hypoxia inducible factor 1α signaling is indispensable for bone regeneration.

    PubMed

    Stegen, Steve; Deprez, Sanne; Eelen, Guy; Torrekens, Sophie; Van Looveren, Riet; Goveia, Jermaine; Ghesquière, Bart; Carmeliet, Peter; Carmeliet, Geert

    2016-06-01

    Engineered cell-based constructs are an appealing strategy to treat large skeletal defects. However, transplanted cells are often confronted with an environment that is deprived of oxygen and nutrients. Upon hypoxia, most cell types activate hypoxia-inducible factor 1α (HIF-1α) signaling, but its importance for implanted osteoprogenitor cells during bone regeneration is not elucidated. To this end, we specifically deleted the HIF--1α isoform in periosteal progenitor cells and show that activation of HIF-1α signaling in these cells is critical for bone repair by modulating angiogenic and metabolic processes. Activation of HIF-1α is not only crucial for blood vessel invasion, by enhancing angiogenic growth factor production, but also for periosteal cell survival early after implantation, when blood vessels have not yet invaded the construct. HIF-1α signaling limits oxygen consumption to avoid accumulation of harmful ROS and preserve redox balance, and additionally induces a switch to glycolysis to prevent energetic distress. Altogether, our results indicate that the proangiogenic capacity of implanted periosteal cells is HIF-1α regulated and that metabolic adaptations mediate post-implantation cell survival. PMID:27058876

  13. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression

    NASA Astrophysics Data System (ADS)

    Makino, Yuichi; Cao, Renhai; Svensson, Kristian; Bertilsson, Göran; Asman, Mikael; Tanaka, Hirotoshi; Cao, Yihai; Berkenstam, Anders; Poellinger, Lorenz

    2001-11-01

    Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs). Here we describe an inhibitory PAS (Per/Arnt/Sim) domain protein, IPAS, which is a basic helix-loop-helix (bHLH)/PAS protein structurally related to HIFs. IPAS contains no endogenous transactivation function but demonstrates dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impairs induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene, and results in retarded tumour growth and tumour vascular density in vivo. In mice, IPAS was predominantly expressed in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlates with low levels of expression of the VEGF gene under hypoxic conditions. Application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normal oxygen conditions, and demonstrated hypoxia-dependent induction of VEGF gene expression in hypoxic corneal cells. These results indicate a previously unknown mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.

  14. The role of ion channels in the hypoxia-induced aggressiveness of glioblastoma

    PubMed Central

    Sforna, Luigi; Cenciarini, Marta; Belia, Silvia; D’Adamo, Maria Cristina; Pessia, Mauro; Franciolini, Fabio; Catacuzzeno, Luigi

    2015-01-01

    The malignancy of glioblastoma multiform (GBM), the most common and aggressive form of human brain tumors, strongly correlates with the presence of hypoxic areas, but the mechanisms controlling the hypoxia-induced aggressiveness are still unclear. GBM cells express a number of ion channels whose activity supports cell volume changes and increases in the cytosolic Ca2+ concentration, ultimately leading to cell proliferation, migration or death. In several cell types it has previously been shown that low oxygen levels regulate the expression and activity of these channels, and more recent data indicate that this also occurs in GBM cells. Based on these findings, it may be hypothesized that the modulation of ion channel activity or expression by the hypoxic environment may participate in the acquisition of the aggressive phenotype observed in GBM cells residing in a hypoxic environment. If this hypothesis will be confirmed, the use of available ion channels modulators may be considered for implementing novel therapeutic strategies against these tumors. PMID:25642170

  15. Regulation of carotid body oxygen sensing by hypoxia-inducible factors.

    PubMed

    Prabhakar, Nanduri R; Semenza, Gregg L

    2016-01-01

    Oxygen (O2) sensing by the carotid body and its chemosensory reflex is critical for homeostatic regulation of breathing and blood pressure. Carotid body responses to hypoxia are not uniform but instead exhibit remarkable inter-individual variations. The molecular mechanisms underlying variations in carotid body O2 sensing are not known. Hypoxia-inducible factor-1 (HIF-1) and HIF-2 mediate transcriptional responses to hypoxia. This article reviews the emerging evidence that proper expression of the HIF-α isoforms is a key molecular determinant for carotid body O2 sensing. HIF-1α deficiency leads to a blunted carotid body hypoxic response, which is due to increased abundance of HIF-2α, elevated anti-oxidant enzyme activity, and a reduced intracellular redox state. Conversely, HIF-2α deficiency results in augmented carotid body sensitivity to hypoxia, which is due to increased abundance of HIF-1α, elevated pro-oxidant enzyme activity, and an oxidized intracellular redox state. Double heterozygous mice with equally reduced HIF-1α and HIF-2α showed no abnormality in redox state or carotid body O2 sensing. Thus, mutual antagonism between HIF-α isoforms determines the redox state and thereby establishes the set point for hypoxic sensing by the carotid body. PMID:26265380

  16. Hypoxia-Inducible Factor Signaling in Pheochromocytoma: Turning the Rudder in the Right Direction

    PubMed Central

    2013-01-01

    Many solid tumors, including pheochromocytoma (PHEO) and paraganglioma (PGL), are characterized by a (pseudo)hypoxic signature. (Pseudo)hypoxia has been shown to promote both tumor progression and resistance to therapy. The major mediators of the transcriptional hypoxic response are hypoxia-inducible factors (HIFs). High levels of HIFs lead to transcription of hypoxia-responsive genes, which are involved in tumorigenesis. PHEOs and PGLs are catecholamine-producing tumors arising from sympathetic- or parasympathetic-derived chromaffin tissue. In recent years, substantial progress has been made in understanding the metabolic disturbances present in PHEO and PGL, especially because of the identification of some disease-susceptibility genes. To date, fifteen PHEO and PGL susceptibility genes have been identified. Based on the main transcription signatures of the mutated genes, PHEOs and PGLs have been divided into two clusters, pseudohypoxic cluster 1 and cluster 2, rich in kinase receptor signaling and protein translation pathways. Although these two clusters seem to show distinct signaling pathways, recent data suggest that both clusters are interconnected by HIF signaling as the important driver in their tumorigenesis, and mutations in most PHEO and PGL susceptibility genes seem to affect HIF-α regulation and its downstream signaling pathways. HIF signaling appears to play an important role in the development and growth of PHEOs and PGLs, which could suggest new therapeutic approaches for the treatment of these tumors. PMID:23940289

  17. The hypoxia-inducible factor renders cancer cells more sensitive to vitamin C-induced toxicity.

    PubMed

    Tian, Weihua; Wang, Yu; Xu, Yan; Guo, Xiangpeng; Wang, Bo; Sun, Li; Liu, Longqi; Cui, Fenggong; Zhuang, Qiang; Bao, Xichen; Schley, Gunnar; Chung, Tung-Liang; Laslett, Andrew L; Willam, Carsten; Qin, Baoming; Maxwell, Patrick H; Esteban, Miguel A

    2014-02-01

    Megadose vitamin C (Vc) is one of the most enduring alternative treatments for diverse human diseases and is deeply engrafted in popular culture. Preliminary studies in the 1970s described potent effects of Vc on prolonging the survival of patients with terminal cancer, but these claims were later criticized. An improved knowledge of the pharmacokinetics of Vc and recent reports using cancer cell lines have renewed the interest in this subject. Despite these findings, using Vc as an adjuvant for anticancer therapy remains questionable, among other things because there is no proper mechanistic understanding. Here, we show that a Warburg effect triggered by activation of the hypoxia-inducible factor (HIF) pathway greatly enhances Vc-induced toxicity in multiple cancer cell lines, including von Hippel-Lindau (VHL)-defective renal cancer cells. HIF increases the intracellular uptake of oxidized Vc through its transcriptional target glucose transporter 1 (GLUT1), synergizing with the uptake of its reduced form through sodium-dependent Vc transporters. The resulting high levels of intracellular Vc induce oxidative stress and massive DNA damage, which then causes metabolic exhaustion by depleting cellular ATP reserves. HIF-positive cells are particularly sensitive to Vc-induced ATP reduction because they mostly rely on the rather inefficient glycolytic pathway for energy production. Thus, our experiments link Vc-induced toxicity and cancer metabolism, providing a new explanation for the preferential effect of Vc on cancer cells. PMID:24371136

  18. Hypoxia-induced invadopodia formation: a role for β-PIX.

    PubMed

    Md Hashim, Nur Fariesha; Nicholas, Nicole S; Dart, Anna E; Kiriakidis, Serafim; Paleolog, Ewa; Wells, Claire M

    2013-06-01

    During tumour progression, oxygen tension in the microenvironment surrounding tumour cells is reduced, resulting in hypoxia. It is well established that cancer cells resist the negative effects of hypoxia by inducing angiogenesis predominantly via the activity of transcription factor hypoxia-inducible factor-1 (HIF-1). However, more recently HIF-1α has also been linked to increased invasive potential, although the molecular mechanisms remain to be defined. Invasive cancer cells are thought to employ membrane protrusions, termed invadopodia, to achieve matrix degradation. While many invadopodia components have been identified, signalling pathways that link extracellular stimuli to invadopodia formation remain largely unknown. Indeed, the relationship between invadopodia formation and HIF-1α has not been explored. We now report that HIF-1α is a driver of invadopodia formation. Furthermore, we have identified an important, direct and novel link between the Rho family activator β-PIX, HIF-1α and invadopodia formation. Indeed, we find that β-PIX expression is essential for invadopodia formation. In conclusion, we identify a new HIF-1α mechanistic pathway and suggest that β-PIX is a novel downstream signalling mediator during invadopodia formation. PMID:23740575

  19. Roles of adrenomedullin and hypoxia-inducible factor 1 alpha in patients with varicocele.

    PubMed

    Hu, W; Zhou, P-H; Zhang, X-B; Xu, C-G; Wang, W

    2015-10-01

    This study aimed to assess any changes in the plasma concentrations of adrenomedullin (ADM) and hypoxia-inducible factor 1 alpha (HIF 1a) in patients with varicocele (VC). Plasma concentrations of ADM and HIF 1a were measured in brachial vein (BV) and internal spermatic vein (ISV) of 30 fertile VC subjects and 35 untreated infertile VC patients. The results demonstrated that plasma levels of ADM and HIF 1a were significantly higher in ISV than those in BV in the fertile or infertile group respectively. The values of ADM and HIF 1a in BV or ISV of the infertile group were significantly higher than in BV or ISV of the fertile group respectively. Similar changes in values of reactive oxygen metabolites (ROM) were observed. Plasma HIF 1a concentration positively correlated with ROM levels. Plasma ADM concentration positively correlated with ROM values and HIF 1a levels in the two groups. Moreover, remarkable improvement in clinical sperm parameters was observed 3 months after surgery for the infertile patients. It is concluded that ADM may participate, along with HIF 1a, in mechanisms that aid spermatogenic cells in adapting to hypoxia. These predictors may have potential in infertility development in VC patients. Furthermore, early surgical repair is extremely important for infertile VC patients with poor semen quality. PMID:25335788

  20. Hypoxia-Inducible Factor-1 (HIF-1): A Potential Target for Intervention in Ocular Neovascular Diseases

    PubMed Central

    Vadlapatla, Ramya Krishna; Vadlapudi, Aswani Dutt; Mitra, Ashim K.

    2015-01-01

    Constant oxygen supply is essential for proper tissue development, homeostasis and function of all eukaryotic organisms. Cellular response to reduced oxygen levels is mediated by the transcriptional regulator hypoxia-inducible factor-1 (HIF-1). It is a heterodimeric complex protein consisting of an oxygen dependent subunit (HIF-1α) and a constitutively expressed nuclear subunit (HIF-1β). In normoxic conditions, de novo synthesized cytoplasmic HIF-1α is degraded by 26S proteasome. Under hypoxic conditions, HIF-1α is stabilized, binds with HIF-1β and activates transcription of various target genes. These genes play a key role in regulating angiogenesis, cell survival, proliferation, chemotherapy, radiation resistance, invasion, metastasis, genetic instability, immortalization, immune evasion, metabolism and stem cell maintenance. This review highlights the importance of hypoxia signaling in development and progression of various vision threatening pathologies such as diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration and glaucoma. Further, various inhibitors of HIF-1 pathway that may have a viable potential in the treatment of oxygen-dependent ocular diseases are also discussed. PMID:23701276

  1. Molecular Characterisation, Evolution and Expression of Hypoxia-Inducible Factor in Aurelia sp.1

    PubMed Central

    Wang, Guoshan; Yu, Zhigang; Zhen, Yu; Mi, Tiezhu; Shi, Yan; Wang, Jianyan; Wang, Minxiao; Sun, Song

    2014-01-01

    The maintenance of physiological oxygen homeostasis is mediated by hypoxia-inducible factor (HIF), a key transcriptional factor of the PHD-HIF system in all metazoans. However, the molecular evolutionary origin of this central physiological regulatory system is not well characterized. As the earliest eumetazoans, Cnidarians can be served as an interesting model for exploring the HIF system from an evolutionary perspective. We identified the complete cDNA sequence of HIF-1α (ASHIF) from the Aurelia sp.1, and the predicted HIF-1α protein (pASHIF) was comprised of 674 amino acids originating from 2,025 bp nucleotides. A Pairwise comparison revealed that pASHIF not only possessed conserved basic helix-loop-helix (bHLH) and Per-Arnt-Sim (PAS) domains but also contained the oxygen dependent degradation (ODD) and the C-terminal transactivation domains (C-TAD), the key domains for hypoxia regulation. As indicated by sequence analysis, the ASHIF gene contains 8 exons interrupted by 7 introns. Western blot analysis indicated that pASHIF that existed in the polyps and medusa of Aurelia. sp.1 was more stable for a hypoxic response than normoxia. PMID:24926666

  2. Hypoxia-Induced Retinal Neovascularization in Zebrafish Embryos: A Potential Model of Retinopathy of Prematurity

    PubMed Central

    Kao, Alex; Hsi, Brian; Lee, Shwu-Huey; Chen, Yau-Hung; Wang, I-Jong

    2015-01-01

    Retinopathy of prematurity, formerly known as a retrolental fibroplasia, is a leading cause of infantile blindness worldwide. Retinopathy of prematurity is caused by the failure of central retinal vessels to reach the retinal periphery, creating a nonperfused peripheral retina, resulting in retinal hypoxia, neovascularization, vitreous hemorrhage, vitreoretinal fibrosis, and loss of vision. We established a potential retinopathy of prematurity model by using a green fluorescent vascular endothelium zebrafish transgenic line treated with cobalt chloride (a hypoxia-inducing agent), followed by GS4012 (a vascular endothelial growth factor inducer) at 24 hours postfertilization, and observed that the number of vascular branches and sprouts significantly increased in the central retinal vascular trunks 2–4 days after treatment. We created an angiography method by using tetramethylrhodamine dextran, which exhibited severe vascular leakage through the vessel wall into the surrounding retinal tissues. The quantification of mRNA extracted from the heads of the larvae by using real-time quantitative polymerase chain reaction revealed a twofold increase in vegfaa and vegfr2 expression compared with the control group, indicating increased vascular endothelial growth factor signaling in the hypoxic condition. In addition, we demonstrated that the hypoxic insult could be effectively rescued by several antivascular endothelial growth factor agents such as SU5416, bevacizumab, and ranibizumab. In conclusion, we provide a simple, highly reproducible, and clinically relevant retinopathy of prematurity model based on zebrafish embryos; this model may serve as a useful platform for clarifying the mechanisms of human retinopathy of prematurity and its progression. PMID:25978439

  3. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?

    PubMed Central

    Kumar, Hemant; Choi, Dong-Kug

    2015-01-01

    Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1–1% O2), physioxia or physoxia (∼1–13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise. PMID:26491231

  4. Adenosine and Hypoxia-Inducible Factor Signaling in Intestinal Injury and Recovery

    PubMed Central

    Eltzschig, Holger K.

    2013-01-01

    The gastrointestinal mucosa has proven to be an interesting tissue in which to investigate disease-related metabolism. In this review, we outline some of the evidence that implicates hypoxia-mediated adenosine signaling as an important signature within both healthy and diseased mucosa. Studies derived from cultured cell systems, animal models, and human patients have revealed that hypoxia is a significant component of the inflammatory microenvironment. These studies have revealed a prominent role for hypoxia-induced factor (HIF) and hypoxia signaling at several steps along the adenine nucleotide metabolism and adenosine receptor signaling pathways. Likewise, studies to date in animal models of intestinal inflammation have demonstrated an almost uniformly beneficial influence of HIF stabilization on disease outcomes. Ongoing studies to define potential similarities with and differences between innate and adaptive immune responses will continue to teach us important lessons about the complexity of the gastrointestinal tract. Such information has provided new insights into disease pathogenesis and, importantly, will provide insights into new therapeutic targets. PMID:21942704

  5. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?

    PubMed

    Kumar, Hemant; Choi, Dong-Kug

    2015-01-01

    Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1-1% O2), physioxia or physoxia (∼1-13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise. PMID:26491231

  6. Hypoxia-Inducible Factor-1α and CD271 inversely correlate with melanoma invasiveness.

    PubMed

    Marconi, Alessandra; Borroni, Riccardo G; Truzzi, Francesca; Longo, Caterina; Pistoni, Federica; Pellacani, Giovanni; Pincelli, Carlo

    2015-05-01

    Melanoma is characterized, among other features, by microenvironmental factors and by an altered apoptotic machinery. Melanoma cell response to a hypoxic environment is transcriptionally regulated by the Hypoxia-Inducible Factor (HIF)-1α. p75 neurotrophin receptor (p75(NTR) ), also called CD271, mediates apoptosis in several cell systems. The purpose of this study was to analyze the expression of HIF-1α and CD271 in melanomas at different phases of progression, as evaluated by histology and reflectance confocal microscopy (RCM). By RCM, 41.67% tumors were characterized by the presence of a population of dendritic and pleomorphic cells (D+P), corresponding to in situ melanoma; 25% exhibited a predominantly round-cell (RN) proliferation with histologic features of superficial melanoma, and 33.33% showed the presence of cells aggregated in nests (DN), typical of invasive melanoma. HIF-1α was scarcely detected in D+P and in RN melanomas, while it was highly expressed in DN tumors. By contrast, CD271 positive cells were mostly detected in D+P population, and barely observed in the other subtypes. This work demonstrates that CD271 expression inversely correlates with hypoxia in melanoma, and that the two markers may be used in the future as diagnostic/prognostic tools for this neoplasm. PMID:25739328

  7. Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration

    PubMed Central

    Kurihara, Toshihide; Westenskow, Peter D; Gantner, Marin L; Usui, Yoshihiko; Schultz, Andrew; Bravo, Stephen; Aguilar, Edith; Wittgrove, Carli; Friedlander, Mollie SH; Paris, Liliana P; Chew, Emily; Siuzdak, Gary; Friedlander, Martin

    2016-01-01

    Photoreceptors are the most numerous and metabolically demanding cells in the retina. Their primary nutrient source is the choriocapillaris, and both the choriocapillaris and photoreceptors require trophic and functional support from retinal pigment epithelium (RPE) cells. Defects in RPE, photoreceptors, and the choriocapillaris are characteristic of age-related macular degeneration (AMD), a common vision-threatening disease. RPE dysfunction or death is a primary event in AMD, but the combination(s) of cellular stresses that affect the function and survival of RPE are incompletely understood. Here, using mouse models in which hypoxia can be genetically triggered in RPE, we show that hypoxia-induced metabolic stress alone leads to photoreceptor atrophy. Glucose and lipid metabolism are radically altered in hypoxic RPE cells; these changes impact nutrient availability for the sensory retina and promote progressive photoreceptor degeneration. Understanding the molecular pathways that control these responses may provide important clues about AMD pathogenesis and inform future therapies. DOI: http://dx.doi.org/10.7554/eLife.14319.001 PMID:26978795

  8. Hypoxia-induced neuroinflammatory white-matter injury reduced by minocycline in SHR/SP

    PubMed Central

    Jalal, Fakhreya Y; Yang, Yi; Thompson, Jeffrey F; Roitbak, Tamara; Rosenberg, Gary A

    2015-01-01

    Hypertensive small vessel disease is a major cause of vascular cognitive impairment (VCI). Spontaneously hypertensive/stroke prone rats (SHR/SP) with unilateral carotid artery occlusion (UCAO) and a Japanese permissive diet (JPD) have white-matter (WM) damage similar to that seen in VCI. We hypothesized that WM injury was due to hypoxia-mediated, blood–brain barrier (BBB) disruption. Twelve-week-old SHR/SP had UCAO/JPD and were studied with immunohistochemistry, biochemistry, multimodal magnetic resonance imaging (MRI), and Morris water maze (MWM) testing. One week after UCAO/JPD, WM showed a significant increase in hypoxia inducible factor-1α (HIF-1α), which increased further by 3 weeks. Prolyl hydroxylase-2 (PHD2) expression decreased at 1 and 3 weeks. Infiltrating T cells and neutrophils appeared around endothelial cells from 1 to 3 weeks after UCAO/JPD, and matrix metalloproteinase-9 (MMP-9) colocalized with inflammatory cells. At 3 weeks, WM immunostained for IgG, indicating BBB leakage. Minocycline (50 mg/kg intraperitoeally) was given every other day from weeks 12 to 20. Multimodal MRI showed that treatment with minocycline significantly reduced lesion size and improved cerebral blood flow. Minocycline improved performance in the MWM and prolonged survival. We propose that BBB disruption occurred secondary to hypoxia, which induced an MMP-9-mediated infiltration of leukocytes. Minocycline significantly reduced WM damage, improved behavior, and prolonged life. PMID:25712499

  9. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells

    SciTech Connect

    Tong Qiangsong; Zheng Liduan; Li Bo; Wang Danming; Huang Chuanshu; Matuschak, George M.; Li Dechun . E-mail: dli2@slu.edu

    2006-11-01

    Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), {delta}p85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways.

  10. Carotid Body Chemoreflex Mediates Intermittent Hypoxia-Induced Oxidative Stress in the Adrenal Medulla

    PubMed Central

    Kumar, Ganesh K.; Peng, Ying-Jie; Nanduri, Jayasri; Prabhakar, Nanduri R.

    2016-01-01

    Intermittent hypoxia (IH) increases reactive oxygen species generation resulting in oxidative stress in the adrenal medulla (AM), a major end-organ of the sympathetic nervous system which facilitates catecholamine secretion by hypoxia. Here, we show that carotid body chemoreflex contributes to IH-induced oxidative stress in the AM. Carotid bodies were ablated by cryocoagulation of glomus cells, the putative O2 sensing cells. Carotid body ablated (CBA) and control rats were exposed to IH and the redox state of the AM was assessed biochemically. We found that IH raised reactive oxygen species levels along with an increase in NADPH oxidase (Nox), a pro-oxidant enzyme and a decrease in superoxide dismutase-2 (SOD2), an anti-oxidant enzyme. Further, IH increased hypoxia-inducible factor (HIF)-1α, whereas decreased HIF-2α, the transcriptional regulator of Nox and SOD-2, respectively. These IH-induced changes in the AM were absent in CBA rats. Moreover, IH increased splanchnic nerve activity and facilitated hypoxia-evoked catecholamine efflux from the AM and CBA prevented these effects. These findings suggest that IH-induced oxidative stress and catecholamine efflux in the AM occurs via carotid body chemoreflex involving HIF α isoform mediated imbalance in pro-, and anti-oxidant enzymes. PMID:26303481

  11. Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia.

    PubMed

    Fang, Hsin-Yu; Hughes, Russell; Murdoch, Craig; Coffelt, Seth B; Biswas, Subhra K; Harris, Adrian L; Johnson, Randall S; Imityaz, Hongxia Z; Simon, M Celeste; Fredlund, Erik; Greten, Florian R; Rius, Jordi; Lewis, Claire E

    2009-07-23

    Ischemia exists in many diseased tissues, including arthritic joints, atherosclerotic plaques, and malignant tumors. Macrophages accumulate in these sites and up-regulate hypoxia-inducible transcription factors (HIFs) 1 and 2 in response to the hypoxia present. Here we show that the gene expression profile in primary human and murine macrophages changes markedly when they are exposed to hypoxia for 18 hours. For example, they were seen to up-regulate the cell surface receptors, CXCR4 and GLUT1, and the potent, tumor-promoting cytokines, vascular endothelial growth factor A, interleukin (IL)-1beta and IL-8, adrenomedullin, CXCR4, and angiopoietin-2. Hypoxia also stimulated their expression and/or phosphorylation of various proteins in the nuclear factor-kappaB (NF-kappaB) signaling pathway. We then used both genetic and pharmacologic methods to manipulate the levels of HIFs-1alpha and 2alpha or NF-kappaB in primary macrophages to elucidate their role in the hypoxic induction of many of these key genes. These studies showed that both HIF-1 and -2, but not NF-kappaB, are important transcriptional effectors regulating the responses of macrophages to such a period of hypoxia. Further studies using experimental mouse models are now warranted to investigate the role of such macrophage responses in the progression of various diseased tissues, such as malignant tumors. PMID:19454749

  12. Hypoxia inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia

    PubMed Central

    Fang, Hsin-Yu; Hughes, Russell; Murdoch, Craig; Coffelt, Seth; Biswas, Subhra K.; Harris, Adrian L.; Johnson, Randall S.; Imityaz, Hongxia Z.; Simon, M. Celeste; Fredlund, Erik; Greten, Florian; Rius, Jordi; Lewis, Claire E.

    2010-01-01

    Ischemia exists in many diseased tissues including arthritic joints, atherosclerotic plaques and malignant tumors. Macrophages accumulate in these sites and upregulate hypoxia-inducible transcription factors (HIFs) 1 and 2 in response to the hypoxia present. Here we show that the gene expression profile in primary human and murine macrophages changes markedly when they are exposed to hypoxia for 18h. For example, they were seen to upregulate the cell surface receptors, CXCR4 and GLUT1, and the potent, tumor-promoting cytokines, VEGFA, interleukins 1β and 8, adrenomedullin, CXCR4 and angiopoietin-2. Hypoxia also stimulated their expression and/or phosphorylation of various proteins in the NF-κB signalling pathway. We then used both genetic and pharmacological methods to manipulate the levels of HIFs 1α and 2α or NF-κB in primary macrophages in order to elucidate their role in the hypoxic induction of many of these key genes. These studies showed that both HIFs 1 and 2, but not NF-κB, are important transcriptional effectors regulating the responses of macrophages to such a period of hypoxia. Further studies using experimental mouse models are now warranted to investigate the role of such macrophage responses in the progression of various diseased tissues like malignant tumors. PMID:19454749

  13. Endocannabinoids participate in placental apoptosis induced by hypoxia inducible factor-1.

    PubMed

    Abán, C; Martinez, N; Carou, C; Albamonte, I; Toro, A; Seyahian, A; Franchi, A; Leguizamón, G; Trigubo, D; Damiano, A; Farina, M

    2016-10-01

    During pregnancy, apoptosis is a physiological event critical in the remodeling and aging of the placenta. Increasing evidence has pointed towards the relevance of endocannabinoids (ECs) and hypoxia as modulators of trophoblast cell death. However, the relation between these factors is still unknown. In this report, we evaluated the participation of ECs in placental apoptosis induced by cobalt chloride (CoCl2), a hypoxia mimicking agent that stabilizes the expression of hypoxia inducible factor-1 alpha (HIF-1α). We found that HIF-1α stabilization decreased FAAH mRNA and protein levels, suggesting an increase in ECs tone. Additionally, CoCl2 incubation and Met-AEA treatment reduced cell viability and increased TUNEL-positive staining in syncytiotrophoblast layer. Immunohistochemical analysis demonstrated Bax and Bcl-2 protein expression in the cytoplasm of syncytiotrophoblast. Finally, HIF-1α stabilization produced an increase in Bax/Bcl-2 ratio, activation of caspase 3 and PARP cleavage. All these changes in apoptotic parameters were reversed with AM251, a CB1 antagonist. These results demonstrate that HIF-1α may induce apoptosis in human placenta via intrinsic pathway by a mechanism that involves activation of CB1 receptor suggesting a role of the ECs in this process. PMID:27488203

  14. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies

    PubMed Central

    Zimna, Agnieszka; Kurpisz, Maciej

    2015-01-01

    The cardiovascular system ensures the delivery of oxygen and nutrients to all cells, tissues, and organs. Under extended exposure to reduced oxygen levels, cells are able to survive through the transcriptional activation of a series of genes that participate in angiogenesis, glucose metabolism, and cell proliferation. The oxygen-sensitive transcriptional activator HIF-1 (hypoxia-inducible factor-1) is a key transcriptional mediator of the response to hypoxic conditions. The HIF-1 pathway was found to be a master regulator of angiogenesis. Whether the process is physiological or pathological, HIF-1 seems to participate in vasculature formation by synergistic correlations with other proangiogenic factors such as VEGF (vascular endothelial growth factor), PlGF (placental growth factor), or angiopoietins. Considering the important contributions of HIF-1 in angiogenesis and vasculogenesis, it should be considered a promising target for treating ischaemic diseases or cancer. In this review, we discuss the roles of HIF-1 in both physiological/pathophysiological angiogenesis and potential strategies for clinical therapy. PMID:26146622

  15. Hypoxia inducible factor-1α accumulation in steatotic liver preservation: Role of nitric oxide

    PubMed Central

    Zaouali, Mohamed Amine; Mosbah, Ismail Ben; Boncompagni, Eleonora; Abdennebi, Hassen Ben; Mitjavila, Maria Teresa; Bartrons, Ramon; Freitas, Isabel; Rimola, Antoni; Roselló-Catafau, Joan

    2010-01-01

    AIM: To examine the relevance of hypoxia inducible factor (HIF-1) and nitric oxide (NO) on the preservation of fatty liver against cold ischemia-reperfusion injury (IRI). METHODS: We used an isolated perfused rat liver model and we evaluated HIF-1α in steatotic and non-steatotic livers preserved for 24 h at 4°C in University of Wisconsin and IGL-1 solutions, and then subjected to 2 h of normothermic reperfusion. After normoxic reperfusion, liver enzymes, bile production, bromosulfophthalein clearance, as well as HIF-1α and NO [endothelial NO synthase (eNOS) activity and nitrites/nitrates] were also measured. Other factors associated with the higher susceptibility of steatotic livers to IRI, such as mitochondrial damage and vascular resistance were evaluated. RESULTS: A significant increase in HIF-1α was found in steatotic and non-steatotic livers preserved in IGL-1 after cold storage. Livers preserved in IGL-1 showed a significant attenuation of liver injury and improvement in liver function parameters. These benefits were enhanced by the addition of trimetazidine (an anti-ischemic drug), which induces NO and eNOS activation, to IGL-1 solution. In normoxic reperfusion, the presence of NO favors HIF-1α accumulation, promoting also the activation of other cytoprotective genes, such as heme-oxygenase-1. CONCLUSION: We found evidence for the role of the HIF-1α/NO system in fatty liver preservation, especially when IGL-1 solution is used. PMID:20653058

  16. Interaction with ErbB4 Promotes Hypoxia-inducible Factor-1α Signaling*

    PubMed Central

    Paatero, Ilkka; Jokilammi, Anne; Heikkinen, Pekka T.; Iljin, Kristiina; Kallioniemi, Olli-Pekka; Jones, Frank E.; Jaakkola, Panu M.; Elenius, Klaus

    2012-01-01

    The receptor-tyrosine kinase ErbB4 was identified as a direct regulator of hypoxia-inducible factor-1α (HIF-1α) signaling. Cleaved intracellular domain of ErbB4 directly interacted with HIF-1α in the nucleus, and stabilized HIF-1α protein in both normoxic and hypoxic conditions by blocking its proteasomal degradation. The mechanism of HIF stabilization was independent of VHL and proline hydroxylation but dependent on RACK1. ErbB4 activity was necessary for efficient HRE-driven promoter activity, transcription of known HIF-1α target genes, and survival of mammary carcinoma cells in vitro. In addition, mammary epithelial specific targeting of Erbb4 in the mouse significantly reduced the amount of HIF-1α protein in vivo. ERBB4 expression also correlated with the expression of HIF-regulated genes in a series of 4552 human normal and cancer tissue samples. These data demonstrate that soluble ErbB4 intracellular domain promotes HIF-1α stability and signaling via a novel mechanism. PMID:22308027

  17. Evidence for role of cytosolic free calcium in hypoxia-induced proximal tubule injury.

    PubMed Central

    Kribben, A; Wieder, E D; Wetzels, J F; Yu, L; Gengaro, P E; Burke, T J; Schrier, R W

    1994-01-01

    The role of cytosolic free Ca2+ ([Ca2+]i) in hypoxic injury was investigated in rat proximal tubules. [Ca2+]i was measured using fura-2 and cell injury was estimated with propidium iodide (PI) in individual tubules using video imaging fluorescence microscopy. [Ca2+]i increased from approximately 170 to approximately 390 nM during 5 min of hypoxia. This increase preceded detectable cell injury as assessed by PI and was reversible with reoxygenation. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA; 100 microM) reduced [Ca2+]i under basal conditions (approximately 80 nM) and during hypoxia (approximately 120 nM) and significantly attenuated hypoxic injury. When [Ca2+]i and hypoxic cell injury were studied concurrently in the same individual tubules, the 10 min [Ca2+]i rise correlated significantly with subsequent cell damage observed at 20 min. 2 mM glycine did not block the rise in [Ca2+]i, yet protected the tubules from hypoxic injury. These results indicate that in rat proximal tubules, hypoxia induces an increase of [Ca2+]i which occurs before cell damage. The protective effect of BAPTA supports a role for [Ca2+]i in the initiation of hypoxic proximal tubule injury. The glycine results, however, implicate calcium-independent mechanisms of injury and/or blockade of calcium-mediated processes of injury such as activation of phospholipases or proteases. Images PMID:8182125

  18. Hypoxia-inducible factor 1–mediated characteristic features of cancer cells for tumor radioresistance

    PubMed Central

    Harada, Hiroshi

    2016-01-01

    Tumor hypoxia has been attracting increasing attention in the fields of radiation biology and oncology since Thomlinson and Gray detected hypoxic cells in malignant solid tumors and showed that they exert a negative impact on the outcome of radiation therapy. This unfavorable influence has, at least partly, been attributed to cancer cells acquiring a radioresistant phenotype through the activation of the transcription factor, hypoxia-inducible factor 1 (HIF-1). On the other hand, accumulating evidence has recently revealed that, even though HIF-1 is recognized as an important regulator of cellular adaptive responses to hypoxia, it may not become active and induce tumor radioresistance under hypoxic conditions only. The mechanisms by which HIF-1 is activated in cancer cells not only under hypoxic conditions, but also under normoxic conditions, through cancer-specific genetic alterations and the resultant imbalance in intermediate metabolites have been summarized herein. The relevance of the HIF-1–mediated characteristic features of cancer cells, such as the production of antioxidants through reprogramming of the glucose metabolic pathway and cell cycle regulation, for tumor radioresistance has also been reviewed. PMID:26983985

  19. Hypoxia-inducible factors in human pulmonary arterial hypertension: a link to the intrinsic myeloid abnormalities.

    PubMed

    Farha, Samar; Asosingh, Kewal; Xu, Weiling; Sharp, Jacqueline; George, Deepa; Comhair, Suzy; Park, Margaret; Tang, W H Wilson; Loyd, James E; Theil, Karl; Tubbs, Raymond; Hsi, Eric; Lichtin, Alan; Erzurum, Serpil C

    2011-03-31

    Pulmonary arterial hypertension (PAH) is a proliferative vasculopathy characterized by high circulating CD34(+)CD133(+) proangiogenic progenitors, and endothelial cells that have pathologic expression of hypoxia-inducible factor 1 α (HIF-1α). Here, CD34(+)CD133(+) progenitor cell numbers are shown to be higher in PAH bone marrow, blood, and pulmonary arteries than in healthy controls. The HIF-inducible myeloid-activating factors erythropoietin, stem cell factor (SCF), and hepatocyte growth factor (HGF) are also present at higher than normal levels in PAH blood, and related to disease severity. Primary endothelial cells harvested from human PAH lungs produce greater HGF and progenitor recruitment factor stromal-derived factor 1 α (SDF-1α) than control lung endothelial cells, and thus may contribute to bone marrow activation. Even though PAH patients had normal numbers of circulating blood elements, hematopoietic alterations in myeloid and erythroid lineages and reticulin fibrosis identified a subclinical myeloproliferative process. Unexpectedly, evaluation of bone marrow progenitors and reticulin in nonaffected family members of patients with familial PAH revealed similar myeloid abnormalities. Altogether, the results show that PAH is linked to myeloid abnormalities, some of which may be related to increased production of HIF-inducible factors by diseased pulmonary vasculature, but findings in nonaffected family suggest myeloid abnormalities may be intrinsic to the disease process. PMID:21258008

  20. Hypoxia-induced apoptosis and mechanism of epididymal dysfunction in rats with left-side varicocele.

    PubMed

    Zhang, K; Wang, Z; Wang, H; Fu, Q; Zhang, H; Cao, Q

    2016-04-01

    To investigate the relationship between hypoxia and epididymal dysfunction and the mechanism of epididymal dysfunction in rats with left-side varicocele, a total of 45 male Wistar rats were randomly divided into three groups in average. The expression of hypoxia-inducible factor-1α (HIF-1α) was detected by Western blot and immunohistochemical analysis respectively. HIF-1α was expressed in the experimental group, and the positive rate was significantly higher than that of either the sham or the control group (P < 0.05). The apoptosis index (AI) of epididymal epithelium was higher in the experimental group (7.25 ± 2.56) than that in either the sham (0.52 ± 0.57, P < 0.01) or the control group (0.08 ± 0.13, P < 0.01). Additionally, the levels of sialic acid and carnitine were lower in the experimental group than that in either the sham or the control group (P < 0.05) and were significantly negatively correlated with HIF-1α expression (r = -0.620, P = 0.014, and r = -0.610, P = 0.016 respectively). It is concluded that left-side varicocele could cause epididymal hypoxia and epididymal dysfunction. Moreover, HIF-1α maybe act as useful factor to predict germ cell apoptosis in varicocele. PMID:26148146

  1. Effects of Pogostemon cablin Blanco extract on hypoxia induced rabbit cardiomyocyte injury

    PubMed Central

    Lim, Chi-Yeon; Kim, Bu-Yeo; Lim, Se-Hyun; Cho, Su-In

    2015-01-01

    Background: Pogostemonis Herba, the dried aerial part of Pogostemon cablin Blanco, is a well-known materia medica in Asia that is widely used for syndrome of gastrointestinal dysfunctions. Objective: This study was undertaken to examine whether Pogostemon cablin extract (PCe) might have any beneficial effect on hypoxia induced rabbit cardiomyocyte injury. Materials and Methods: Isolated cardiomyocytes were divided into three groups and the changes of cell viability in cardiomyocytes of hypoxic and hypoxia/reoxygenation group were determined. The effect of PCe on reactive oxygen species (ROS) generation, intracellular formation of ROS was also measured by monitoring the 2’,7’-dichlorofluorescein fluorescence. Results: PCe effectively protected the cells against both the hypoxia and reoxygenation induced injury, and the protective effect of PCe is not mediated by interaction with adenosine triphosphate-sensitive K+ channels. In the presence of PCe, production of ROS under chemical hypoxia was remarkably reduced which suggests that PCe might exert its effect as a ROS scavenger. Conclusion: The present study provides clear evidence for the beneficial effect of PCe on cardiomyocyte injury during hypoxia or reoxygenation following prolonged hypoxia. PMID:25829770

  2. Hypoxia-inducible factors in human pulmonary arterial hypertension: a link to the intrinsic myeloid abnormalities

    PubMed Central

    Asosingh, Kewal; Xu, Weiling; Sharp, Jacqueline; George, Deepa; Comhair, Suzy; Park, Margaret; Tang, W. H. Wilson; Loyd, James E.; Theil, Karl; Tubbs, Raymond; Hsi, Eric; Lichtin, Alan

    2011-01-01

    Pulmonary arterial hypertension (PAH) is a proliferative vasculopathy characterized by high circulating CD34+CD133+ proangiogenic progenitors, and endothelial cells that have pathologic expression of hypoxia-inducible factor 1 α (HIF-1α). Here, CD34+CD133+ progenitor cell numbers are shown to be higher in PAH bone marrow, blood, and pulmonary arteries than in healthy controls. The HIF-inducible myeloid-activating factors erythropoietin, stem cell factor (SCF), and hepatocyte growth factor (HGF) are also present at higher than normal levels in PAH blood, and related to disease severity. Primary endothelial cells harvested from human PAH lungs produce greater HGF and progenitor recruitment factor stromal-derived factor 1 α (SDF-1α) than control lung endothelial cells, and thus may contribute to bone marrow activation. Even though PAH patients had normal numbers of circulating blood elements, hematopoietic alterations in myeloid and erythroid lineages and reticulin fibrosis identified a subclinical myeloproliferative process. Unexpectedly, evaluation of bone marrow progenitors and reticulin in nonaffected family members of patients with familial PAH revealed similar myeloid abnormalities. Altogether, the results show that PAH is linked to myeloid abnormalities, some of which may be related to increased production of HIF-inducible factors by diseased pulmonary vasculature, but findings in nonaffected family suggest myeloid abnormalities may be intrinsic to the disease process. PMID:21258008

  3. Hypoxia-induced neuroinflammatory white-matter injury reduced by minocycline in SHR/SP.

    PubMed

    Jalal, Fakhreya Y; Yang, Yi; Thompson, Jeffrey F; Roitbak, Tamara; Rosenberg, Gary A

    2015-07-01

    Hypertensive small vessel disease is a major cause of vascular cognitive impairment (VCI). Spontaneously hypertensive/stroke prone rats (SHR/SP) with unilateral carotid artery occlusion (UCAO) and a Japanese permissive diet (JPD) have white-matter (WM) damage similar to that seen in VCI. We hypothesized that WM injury was due to hypoxia-mediated, blood-brain barrier (BBB) disruption. Twelve-week-old SHR/SP had UCAO/JPD and were studied with immunohistochemistry, biochemistry, multimodal magnetic resonance imaging (MRI), and Morris water maze (MWM) testing. One week after UCAO/JPD, WM showed a significant increase in hypoxia inducible factor-1α (HIF-1α), which increased further by 3 weeks. Prolyl hydroxylase-2 (PHD2) expression decreased at 1 and 3 weeks. Infiltrating T cells and neutrophils appeared around endothelial cells from 1 to 3 weeks after UCAO/JPD, and matrix metalloproteinase-9 (MMP-9) colocalized with inflammatory cells. At 3 weeks, WM immunostained for IgG, indicating BBB leakage. Minocycline (50 mg/kg intraperitoneally) was given every other day from weeks 12 to 20. Multimodal MRI showed that treatment with minocycline significantly reduced lesion size and improved cerebral blood flow. Minocycline improved performance in the MWM and prolonged survival. We propose that BBB disruption occurred secondary to hypoxia, which induced an MMP-9-mediated infiltration of leukocytes. Minocycline significantly reduced WM damage, improved behavior, and prolonged life. PMID:25712499

  4. The role of calcium in hypoxia-induced signal transduction and gene expression.

    PubMed

    Seta, Karen A; Yuan, Yong; Spicer, Zachary; Lu, Gang; Bedard, James; Ferguson, Tsuneo K; Pathrose, Peterson; Cole-Strauss, Allyson; Kaufhold, Alexa; Millhorn, David E

    2004-01-01

    Mammalian cells require a constant supply of oxygen in order to maintain adequate energy production, which is essential for maintaining normal function and for ensuring cell survival. Sustained hypoxia can result in cell death. Sophisticated mechanisms have therefore evolved which allow cells to respond and adapt to hypoxia. Specialized oxygen-sensing cells have the ability to detect changes in oxygen tension and transduce this signal into organ system functions that enhance the delivery of oxygen to tissue in a wide variety of different organisms. An increase in intracellular calcium levels is a primary response of many cell types to hypoxia/ischemia. The response to hypoxia is complex and involves the regulation of multiple signaling pathways and coordinated expression of perhaps hundreds of genes. This review discusses the role of calcium in hypoxia-induced regulation of signal transduction pathways and gene expression. An understanding of the molecular events initiated by changes in intracellular calcium will lead to the development of therapeutic approaches toward the treatment of hypoxic/ischemic diseases and tumors. PMID:15261489

  5. Hypoxia-inducible factor 2alpha binds to cobalt in vitro.

    PubMed

    Yuan, Y; Beitner-Johnson, D; Millhorn, D E

    2001-11-01

    The hypoxia-inducible factor (HIF) activates the expression of genes that contain a hypoxia response element (HRE). The alpha subunit of the HIF transcription factors is degraded by proteasome pathways during normoxia, but stabilized under hypoxic conditions. It has previously been established that cobalt causes accumulation of HIF-2alpha and HIF-1alpha. However, little is known about the mechanism by which cobalt mimics hypoxia and stabilizes these transcription factors. We show here that cobalt binds directly to HIF-2alpha in vitro with a high affinity and in an oxygen-dependent manner. We found that HIF-2alpha, which had been stabilized with a proteasome inhibitor, could bind to cobalt, whereas hypoxia-stabilized HIF-2alpha could not. Mutations within the oxygen-dependent degradation domain of HIF-2alpha prevented cobalt binding and led to accumulation of HIF-2alpha during normoxia. This suggests that transition metal such as iron may play a role in regulation of HIF-2alpha in vivo. PMID:11688986

  6. Hypoxia Inducible Factor 1 as a Therapeutic Target in Ischemic Stroke

    PubMed Central

    Shi, H

    2010-01-01

    In stroke research, a significant focus is to develop therapeutic strategies that prevent neuronal death and improve recovery. Yet, few successful therapeutic strategies have emerged. Hypoxia-inducible factor 1 (HIF-1) is a key regulator in hypoxia. It has been suggested to be an important player in neurological outcomes following ischemic stroke due to the functions of its downstream genes. These include genes that promote glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Many lines of evidence have shown that HIF-1 is induced in ischemic brains. Importantly, it seems that HIF-1 is primarily induced in the salvageable tissue of an ischemic brain, penumbra. However, the effect of HIF-1 on neuronal tissue injuries is still debatable based on evidence from in vitro and preclinical studies. Furthermore, it is of importance to understand the mechanism of HIF-1 degradation after its induction in ischemic brain. This review provides a present understanding of the mechanism of HIF-1 induction in ischemic neurons and the potential effect of HIF-1 on ischemic brain tissue. The author also elaborates on potential therapeutic approaches through understanding of the induction mechanism and of the potential role of HIF-1 in ischemic stroke. PMID:19903149

  7. Disodium cromoglycate attenuates hypoxia induced enlargement of end-expiratory lung volume in rats.

    PubMed

    Maxová, H; Hezinová, A; Vízek, M

    2011-01-01

    Mechanism responsible for the enlargement of end-expiratory lung volume (EELV) induced by chronic hypoxia remains unclear. The fact that the increase in EELV persists after return to normoxia suggests involvement of morphological changes. Because hypoxia has been also shown to activate lung mast cells, we speculated that they could play in the mechanism increasing EELV similar role as in vessel remodeling in hypoxic pulmonary hypertension (HPH). We, therefore, tested an effect of mast cells degranulation blocker disodium cromoglycate (DSCG) on hypoxia induced EELV enlargement. Ventilatory parameters, EELV and right to left heart weight ratio (RV/LV+S) were measured in male Wistar rats. The experimental group (H+DSCG) was exposed to 3 weeks of normobaric hypoxia and treated with DSCG during the first four days of hypoxia, control group was exposed to hypoxia only (H), two others were kept in normoxia as non-treated (N) and treated (N+DSCG) groups. DSCG treatment significantly attenuated the EELV enlargement (H+DSCG = 6.1+/-0.8; H = 9.2+/-0.9; ml +/-SE) together with the increase in minute ventilation (H + DSCG = 190+/-8; H = 273 +/- 10; ml/min +/- SE) and RV/LV + S (H + DSCG = 0.39 +/- 0.03; H = 0.50 +/- 0.06). PMID:22106819

  8. Hypoxia-Inducible Factor Stabilizers: a New Avenue for Reducing BP While Helping Hemoglobin?

    PubMed

    Yousaf, Farhanah; Spinowitz, Bruce

    2016-03-01

    Anemia of chronic kidney disease (CKD) is common and is associated with diminished quality of life, cognitive impairment, cardiovascular morbidity, hospitalizations, and mortality. As the prevalence of end-stage renal disease continues to rise, the management of anemia represents a growing economic burden. Erythropoiesis-stimulating agents (ESA) are the mainstay of anemia management but their use is limited due to the associated cardiovascular adverse events. Prolyl hydroxylase domain enzyme (PHD) inhibitors are a new class of drugs that stabilize the hypoxia-inducible factors and are under clinical investigation for the treatment of renal anemia. The advantages of PHD inhibitors include the oral route of administration, improved iron profile, restoration of diurnal rhythm of erythropoietin secretion, and endogenous erythropoietin production near physiological range. Emerging but limited data indicates a small blood pressure lowering effect of PHD inhibitors. The effect of PHD inhibitors on cardiovascular endpoints and the potential risks of CKD progression and pulmonary hypertension remains to be addressed in the ongoing clinical trials. PMID:26894597

  9. Hypoxia-induced retinal neovascularization in zebrafish embryos: a potential model of retinopathy of prematurity.

    PubMed

    Wu, Yu-Ching; Chang, Chao-Yuan; Kao, Alex; Hsi, Brian; Lee, Shwu-Huey; Chen, Yau-Hung; Wang, I-Jong

    2015-01-01

    Retinopathy of prematurity, formerly known as a retrolental fibroplasia, is a leading cause of infantile blindness worldwide. Retinopathy of prematurity is caused by the failure of central retinal vessels to reach the retinal periphery, creating a nonperfused peripheral retina, resulting in retinal hypoxia, neovascularization, vitreous hemorrhage, vitreoretinal fibrosis, and loss of vision. We established a potential retinopathy of prematurity model by using a green fluorescent vascular endothelium zebrafish transgenic line treated with cobalt chloride (a hypoxia-inducing agent), followed by GS4012 (a vascular endothelial growth factor inducer) at 24 hours postfertilization, and observed that the number of vascular branches and sprouts significantly increased in the central retinal vascular trunks 2-4 days after treatment. We created an angiography method by using tetramethylrhodamine dextran, which exhibited severe vascular leakage through the vessel wall into the surrounding retinal tissues. The quantification of mRNA extracted from the heads of the larvae by using real-time quantitative polymerase chain reaction revealed a twofold increase in vegfaa and vegfr2 expression compared with the control group, indicating increased vascular endothelial growth factor signaling in the hypoxic condition. In addition, we demonstrated that the hypoxic insult could be effectively rescued by several antivascular endothelial growth factor agents such as SU5416, bevacizumab, and ranibizumab. In conclusion, we provide a simple, highly reproducible, and clinically relevant retinopathy of prematurity model based on zebrafish embryos; this model may serve as a useful platform for clarifying the mechanisms of human retinopathy of prematurity and its progression. PMID:25978439

  10. Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells.

    PubMed

    Huang, Guichun; Tao, Leilei; Shen, Sunan; Chen, Longbang

    2016-01-01

    Tumor hypoxia is one of the important features of lung adenocarcinoma. Chemokines might mediate the effects caused by tumor hypoxia. As confirmed in tumor tissue and serum of patients, CC chemokine 28 (CCL28) was the only hypoxia induced chemokine in lung adenocarcinoma cells. CCL28 could promote tube formation, migration and proliferation of endothelial cells. In addition, angiogenesis was promoted by CCL28 in the chick chorioallantoic membrane and matrigel implanted in dorsal back of athymic nude mice (CByJ.Cg-Foxn1(nu)/J). Tumors formed by lung adenocarcinoma cells with high expression of CCL28 grew faster and had a higher vascular density, whereas tumor formation rate of lung adenocarcinoma cells with CCL28 expression knockdown was quite low and had a lower vascular density. CCR3, receptor of CCL28, was highly expressed in vascular endothelial cells in lung adenocarcinoma when examining by immunohistochemistry. Further signaling pathways in endothelial cells, modulated by CCL28, were analyzed by Phosphorylation Antibody Array. CCL28/CCR3 signaling pathway could bypass that of VEGF/VEGFR on the levels of PI3K-Akt, p38 MAPK and PLC gamma. The effects could be neutralized by antibody against CCR3. In conclusion, CCL28, as a chemokine induced by tumor hypoxia, could promote angiogenesis in lung adenocarcinoma through targeting CCR3 on microvascular endothelial cells. PMID:27250766

  11. Uncovering the role of hypoxia inducible factor-1α in skin carcinogenesis.

    PubMed

    Nys, Kris; Maes, Hannelore; Dudek, Aleksandra Maria; Agostinis, Patrizia

    2011-08-01

    The hypoxia inducible factor-1α (HIF-1α) is a pleiotropic transcription factor typically activated in response to low oxygen tension as well as other stress factors in normoxic conditions. Upon activation HIF-1α mediates the transcriptional activation of target genes involved in a variety of processes comprising stress adaptation, metabolism, growth and invasion, but also apoptotic cell death. The molecular mechanisms, signaling pathways and downstream targets evoked by the activation of HIF-1α in epidermal cells are becoming increasingly understood and underscore the participation of HIF-1α in crucial processes including malignant transformation and cancer progression. Recent studies have implicated HIF-1α as an integral part of the multifaceted signal transduction initiated by the exposure of keratinocytes to ultraviolet radiation B (UVB), which represents the most ubiquitous hazard for human skin and the principal risk factor for skin cancer. HIF-1α activation by UVB exposure contributes to either repair or the removal of UVB-damaged keratinocytes by inducing apoptosis, thus revealing a tumor suppressor role for HIF-1α in these cells. On the other hand, the constitutive expression of HIF-1α evoked by the mild hypoxic state of the skin has been implicated as a positive factor in the transformation of normal melanocytes into malignant melanoma, one of the most aggressive types of human cancers. Here we review the uncovered and complex role of HIF-1α in skin carcinogenesis. PMID:21338656

  12. Control of TH17/Treg Balance by Hypoxia-inducible Factor 1

    PubMed Central

    Dang, Eric V.; Barbi, Joseph; Yang, Huang-Yu; Jinasena, Dilini; Yu, Hong; Zheng, Ying; Bordman, Zachary; Fu, Juan; Kim, Young; Yen, Hung-Rong; Luo, Weibo; Zeller, Karen; Shimoda, Larissa; Topalian, Suzanne L.; Semenza, Gregg L.; Dang, Chi V.; Pardoll, Drew M.; Pan, Fan

    2011-01-01

    SUMMARY T cell differentiation into distinct functional effector and inhibitory subsets is regulated in part by the cytokine environment present at the time of antigen recognition. Here, we show that hypoxia-inducible factor 1 (HIF-1), a key metabolic sensor, regulates the balance between T regulatory (Treg) and TH17 differentiation. HIF-1α enhances TH17 development through direct transcriptional activation of RORvt, and via tertiary complex formation with RORvt and p300 recruitment to the IL17 promoter, thereby regulating TH17 signature genes. Concurrently, HIF-1α attenuates Treg development by binding Foxp3 and targeting it for proteasomal degradation. Importantly this regulation occurs under both normoxic and hypoxic conditions. Mice with HIF-1α deficient T cells are resistant to induction of TH17-dependent experimental autoimmune encephalitis associated with diminished TH17 and increased Treg cells. These findings highlight the importance of metabolic cues in T cell fate determination and suggest that metabolic modulation could ameliorate certain T cell-based immune pathologies. PMID:21871655

  13. Role of hypoxia-inducible factor 1{alpha} in modulating cobalt-induced lung inflammation.

    PubMed

    Saini, Yogesh; Kim, Kyung Y; Lewandowski, Ryan; Bramble, Lori A; Harkema, Jack R; Lapres, John J

    2010-02-01

    Hypoxia plays an important role in development, cellular homeostasis, and pathological conditions, such as cancer and stroke. There is also growing evidence that hypoxia is an important modulator of the inflammatory process. Hypoxia-inducible factors (HIFs) are a family of proteins that regulate the cellular response to oxygen deficit, and loss of HIFs impairs inflammatory cell function. There is little known, however, about the role of epithelial-derived HIF signaling in modulating inflammation. Cobalt is capable of eliciting an allergic response and promoting HIF signaling. To characterize the inflammatory function of epithelial-derived HIF in response to inhaled cobalt, a conditional lung-specific HIF1alpha, the most ubiquitously expressed HIF, deletion mouse, was created. Control mice showed classic signs of metal-induced injury following cobalt exposure, including fibrosis and neutrophil infiltration. In contrast, HIF1alpha-deficient mice displayed a Th2 response that resembled asthma, including increased eosinophilic infiltration, mucus cell metaplasia, and chitinase-like protein expression. The results suggest that epithelial-derived HIF signaling has a critical role in establishing a tissue's inflammatory response, and compromised HIF1alpha signaling biases the tissue towards a Th2-mediated reaction. PMID:19915160

  14. Hypoxia induced CCL28 promotes angiogenesis in lung adenocarcinoma by targeting CCR3 on endothelial cells

    PubMed Central

    Huang, Guichun; Tao, Leilei; Shen, Sunan; Chen, Longbang

    2016-01-01

    Tumor hypoxia is one of the important features of lung adenocarcinoma. Chemokines might mediate the effects caused by tumor hypoxia. As confirmed in tumor tissue and serum of patients, CC chemokine 28 (CCL28) was the only hypoxia induced chemokine in lung adenocarcinoma cells. CCL28 could promote tube formation, migration and proliferation of endothelial cells. In addition, angiogenesis was promoted by CCL28 in the chick chorioallantoic membrane and matrigel implanted in dorsal back of athymic nude mice (CByJ.Cg-Foxn1nu/J). Tumors formed by lung adenocarcinoma cells with high expression of CCL28 grew faster and had a higher vascular density, whereas tumor formation rate of lung adenocarcinoma cells with CCL28 expression knockdown was quite low and had a lower vascular density. CCR3, receptor of CCL28, was highly expressed in vascular endothelial cells in lung adenocarcinoma when examining by immunohistochemistry. Further signaling pathways in endothelial cells, modulated by CCL28, were analyzed by Phosphorylation Antibody Array. CCL28/CCR3 signaling pathway could bypass that of VEGF/VEGFR on the levels of PI3K-Akt, p38 MAPK and PLC gamma. The effects could be neutralized by antibody against CCR3. In conclusion, CCL28, as a chemokine induced by tumor hypoxia, could promote angiogenesis in lung adenocarcinoma through targeting CCR3 on microvascular endothelial cells. PMID:27250766

  15. Hypoxia-Inducible Factor 1: Regulator of Mitochondrial Metabolism and Mediator of Ischemic Preconditioning

    PubMed Central

    Semenza, Gregg L.

    2010-01-01

    Hypoxia-inducible factor 1 (HIF-1) mediates adaptive responses to reduced oxygen availability by regulating gene expression. A critical cell-autonomous adaptive response to chronic hypoxia controlled by HIF-1 is reduced mitochondrial mass and/or metabolism. Exposure of HIF-1-deficient fibroblasts to chronic hypoxia results in cell death due to excessive levels of reactive oxygen species (ROS). HIF-1 reduces ROS production under hypoxic conditions by multiple mechanisms including: a subunit switch in cytochrome c oxidase from the COX4-1 to COX4-2 regulatory subunit that increases the efficiency of complex IV; induction of pyruvate dehydrogenase kinase 1, which shunts pyruvate away from the mitochondria; induction of BNIP3, which triggers mitochondrial selective autophagy; and induction of microRNA-210, which blocks assembly of Fe/S clusters that are required for oxidative phosphorylation. HIF-1 is also required for ischemic preconditioning and this effect may be due in part to its induction of CD73, the enzyme that produces adenosine. HIF-1-dependent regulation of mitochondrial metabolism may also contribute to the protective effects of ischemic preconditioning. PMID:20732359

  16. Agmatine attenuates reserpine-induced oral dyskinesia in mice: Role of oxidative stress, nitric oxide and glutamate NMDA receptors.

    PubMed

    Cunha, Andréia S; Matheus, Filipe C; Moretti, Morgana; Sampaio, Tuane B; Poli, Anicleto; Santos, Danúbia B; Colle, Dirleise; Cunha, Mauricio P; Blum-Silva, Carlos H; Sandjo, Louis P; Reginatto, Flávio H; Rodrigues, Ana Lúcia S; Farina, Marcelo; Prediger, Rui D

    2016-10-01

    Dyskinesia consists in a series of trunk, limbs and orofacial involuntary movements that can be observed following long-term pharmacological treatment in some psychotic and neurological disorders such as schizophrenia and Parkinson's disease, respectively. Agmatine is an endogenous arginine metabolite that emerges as neuromodulator and a promising agent to manage diverse central nervous system disorders by modulating nitric oxide (NO) pathway, glutamate NMDA receptors and oxidative stress. Herein, we investigated the effects of a single intraperitoneal (i.p.) administration of different agmatine doses (10, 30 or 100mg/kg) against the orofacial dyskinesia induced by reserpine (1mg/kg,s.c.) in mice by measuring the vacuous chewing movements and tongue protusion frequencies, and the duration of facial twitching. The results showed an orofacial antidyskinetic effect of agmatine (30mg/kg, i.p.) or the combined administration of sub-effective doses of agmatine (10mg/kg, i.p.) with the NMDA receptor antagonists amantadine (1mg/kg, i.p.) and MK801 (0.01mg/kg, i.p.) or the neuronal nitric oxide synthase (NOS) inhibitor 7-nitroindazole (7-NI; 0.1mg/kg, i.p.). Reserpine-treated mice displayed locomotor activity deficits in the open field and agmatine had no effect on this response. Reserpine increased nitrite and nitrate levels in cerebral cortex, but agmatine did not reverse it. Remarkably, agmatine reversed the decrease of dopamine and non-protein thiols (NPSH) levels caused by reserpine in the striatum. However, no changes were observed in striatal immunocontent of proteins related to the dopaminergic system including tyrosine hydroxylase, dopamine transporter, vesicular monoamine transporter type 2, pDARPP-32[Thr75], dopamine D1 and D2 receptors. These results indicate that the blockade of NO pathway, NMDAR and oxidative stress are possible mechanisms associated with the protective effects of agmatine against the orofacial dyskinesia induced by reserpine in mice. PMID

  17. Effects of Agmatine on Depressive-Like Behavior Induced by Intracerebroventricular Administration of 1-Methyl-4-phenylpyridinium (MPP(+)).

    PubMed

    Moretti, Morgana; Neis, Vivian Binder; Matheus, Filipe Carvalho; Cunha, Mauricio Peña; Rosa, Priscila Batista; Ribeiro, Camille Mertins; Rodrigues, Ana Lúcia S; Prediger, Rui Daniel

    2015-10-01

    Considering that depression is a common non-motor comorbidity of Parkinson's disease and that agmatine is an endogenous neuromodulator that emerges as a potential agent to manage diverse central nervous system disorders, this study investigated the antidepressant-like effect of agmatine in mice intracerebroventricularly (i.c.v.) injected with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)). Male C57BL6 mice were treated with agmatine (0.0001, 0.1 or 1 mg/kg) and 60 min later the animals received an i.c.v. injection of MPP(+) (1.8 µg/site). Twenty-four hours after MPP(+) administration, immobility time, anhedonic behavior, and locomotor activity were evaluated in the tail suspension test (TST), splash test, and open field test, respectively. Using Western blot analysis, we investigated the putative modulation of MPP(+) and agmatine on striatal and frontal cortex levels of tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF). MPP(+) increased the immobility time of mice in the TST, as well as induced an anhedonic-like behavior in the splash test, effects which were prevented by pre-treatment with agmatine at the three tested doses. Neither drug, alone or in combination, altered the locomotor activity of mice. I.c.v. administration of MPP(+) increased the striatal immunocontent of TH, an effect prevented by the three tested doses of agmatine. MPP(+) and agmatine did not alter the immunocontent of BDNF in striatum and frontal cortex. These results demonstrate for the first time the antidepressant-like effects of agmatine in an animal model of depressive-like behavior induced by the dopaminergic neurotoxin MPP(+). PMID:26156429

  18. TERT alleviates irradiation-induced late rectal injury by reducing hypoxia-induced ROS levels through the activation of NF-κB and autophagy.

    PubMed

    Liu, Qi; Sun, Yong; Lv, Yuefeng; Le, Ziyu; Xin, Yuhu; Zhang, Ping; Liu, Yong

    2016-09-01

    The hypoxic microenvironment which is present following irradiation has been proven to promote radiation-induced injury to normal tissues. Previous studies have demonstrated that telomerase reverse transcriptase (TERT) is regulated by hypoxia, and that it plays a protective role in the process of wound repair. However, its effects on radiation-induced injury remain unclear. In this study, we examined the effects of human TERT on irradiation-induced late rectal injury in fibroblasts under hypoxic conditions. We also performed in vivo experiments. The rectums of 5-week‑old female C57BL/6N mice were irradiated locally with a single dose of 25 Gy. We then examined the fibrotic changes using hematoxylin and eosin staining, and Masson's staining. The expression of hypoxia inducible factor-1α (HIF-1α) and TERT was analyzed by immunohistochemistry. In in vitro experiments, apoptosis, reactive oxygen species (ROS) production and the autophagy level induced by exposure to hypoxia were assayed in fibroblasts. The association between TERT, nuclear factor-κB (NF-κB) and the autophagy level was examined by western blot analysis. The antioxidant effects of TERT were examined on the basis of the ratio of glutathione to glutathione disulfide (GSH/GSSG) and mitochondrial membrane potential. Rectal fibrosis was induced significantly at 12 weeks following irradiation. The HIF-1α and TERT expression levels increased in the fibrotic region. The TERT‑overexpressing fibroblasts (transfected with an hTERT-expressing lentiviral vector) exhibited reduced apoptosis, reduced ROS production, a higher autophagy level, a higher GSH/GSSG ratio and stable mitochondrial membrane potential compared with the fibroblasts in which TERT had been silenced by siRNA. NF-κB was activated by TERT, and the inhibition of TERT reduced the autophagy level in the fibroblasts. These results demonstrate that TERT decreases cellular ROS production, while maintaining mitochondrial function and

  19. TERT alleviates irradiation-induced late rectal injury by reducing hypoxia-induced ROS levels through the activation of NF-κB and autophagy

    PubMed Central

    Liu, Qi; Sun, Yong; Lv, Yuefeng; Le, Ziyu; Xin, Yuhu; Zhang, Ping; Liu, Yong

    2016-01-01

    The hypoxic microenvironment which is present following irradiation has been proven to promote radiation-induced injury to normal tissues. Previous studies have demonstrated that telomerase reverse transcriptase (TERT) is regulated by hypoxia, and that it plays a protective role in the process of wound repair. However, its effects on radiation-induced injury remain unclear. In this study, we examined the effects of human TERT on irradiation-induced late rectal injury in fibroblasts under hypoxic conditions. We also performed in vivo experiments. The rectums of 5-week-old female C57BL/6N mice were irradiated locally with a single dose of 25 Gy. We then examined the fibrotic changes using hematoxylin and eosin staining, and Masson's staining. The expression of hypoxia inducible factor-1α (HIF-1α) and TERT was analyzed by immunohistochemistry. In in vitro experiments, apoptosis, reactive oxygen species (ROS) production and the autophagy level induced by exposure to hypoxia were assayed in fibroblasts. The association between TERT, nuclear factor-κB (NF-κB) and the autophagy level was examined by western blot analysis. The antioxidant effects of TERT were examined on the basis of the ratio of glutathione to glutathione disulfide (GSH/GSSG) and mitochondrial membrane potential. Rectal fibrosis was induced significantly at 12 weeks following irradiation. The HIF-1α and TERT expression levels increased in the fibrotic region. The TERT-overexpressing fibroblasts (transfected with an hTERT-expressing lentiviral vector) exhibited reduced apoptosis, reduced ROS production, a higher autophagy level, a higher GSH/GSSG ratio and stable mitochondrial membrane potential compared with the fibroblasts in which TERT had been silenced by siRNA. NF-κB was activated by TERT, and the inhibition of TERT reduced the autophagy level in the fibroblasts. These results demonstrate that TERT decreases cellular ROS production, while maintaining mitochondrial function and protecting the

  20. The effect of agmatine on trichothecene type B and zearalenone production in Fusarium graminearum, F. culmorum and F. poae.

    PubMed

    Pasquali, Matias; Cocco, Emmanuelle; Guignard, Cédric; Hoffmann, Lucien

    2016-01-01

    Agmatine and other putrescines are known for being strong inducers of deoxynivalenol (DON) production in Fusarium graminearum. Other important species produce DON and/or other trichothecene type B toxins (3 acetylated DON, 15 acetylated DON, Fusarenon-X, Nivalenol), such as F. culmorum and F. poae. In order to verify whether the mechanism of the regulation of trichothecene type B induction by agmatine is shared by different species of Fusarium, we tested the hypothesis on 19 strains belonging to 3 Fusarium species (F. graminearum, F. culmorum, F. poae) with diverse genetic chemotypes (3ADON, 15ADON, NIV) by measuring trichothecene B toxins such as DON, NIV, Fusarenon-X, 3ADON and 15ADON. Moreover, we tested whether other toxins like zearalenone were also boosted by agmatine. The trichothecene type B boosting effect was observed in the majority of strains (13 out of 19) in all the three species. Representative strains from all three genetic chemotypes were able to boost toxin production after agmatine treatment. We identified the non-responding strains to the agmatine stimulus, which may contribute to deciphering the regulatory mechanisms that link toxin production to agmatine (and, more generally, polyamines). PMID:26893962

  1. The effect of agmatine on trichothecene type B and zearalenone production in Fusarium graminearum, F. culmorum and F. poae

    PubMed Central

    Cocco, Emmanuelle; Guignard, Cédric; Hoffmann, Lucien

    2016-01-01

    Agmatine and other putrescines are known for being strong inducers of deoxynivalenol (DON) production in Fusarium graminearum. Other important species produce DON and/or other trichothecene type B toxins (3 acetylated DON, 15 acetylated DON, Fusarenon-X, Nivalenol), such as F. culmorum and F. poae. In order to verify whether the mechanism of the regulation of trichothecene type B induction by agmatine is shared by different species of Fusarium, we tested the hypothesis on 19 strains belonging to 3 Fusarium species (F. graminearum, F. culmorum, F. poae) with diverse genetic chemotypes (3ADON, 15ADON, NIV) by measuring trichothecene B toxins such as DON, NIV, Fusarenon-X, 3ADON and 15ADON. Moreover, we tested whether other toxins like zearalenone were also boosted by agmatine. The trichothecene type B boosting effect was observed in the majority of strains (13 out of 19) in all the three species. Representative strains from all three genetic chemotypes were able to boost toxin production after agmatine treatment. We identified the non-responding strains to the agmatine stimulus, which may contribute to deciphering the regulatory mechanisms that link toxin production to agmatine (and, more generally, polyamines). PMID:26893962

  2. Loss of von Hippel-Lindau Protein (VHL) Increases Systemic Cholesterol Levels through Targeting Hypoxia-Inducible Factor 2α and Regulation of Bile Acid Homeostasis

    PubMed Central

    Ramakrishnan, Sadeesh K.; Taylor, Matthew; Qu, Aijuan; Ahn, Sung-Hoon; Suresh, Madathilparambil V.; Raghavendran, Krishnan; Gonzalez, Frank J.

    2014-01-01

    Cholesterol synthesis is a highly oxygen-dependent process. Paradoxically, hypoxia is correlated with an increase in cellular and systemic cholesterol levels and risk of cardiovascular diseases. The mechanism for the increase in cholesterol during hypoxia is unclear. Hypoxia signaling is mediated through hypoxia-inducible factor 1α (HIF-1α) and HIF-2α. The present study demonstrates that activation of HIF signaling in the liver increases hepatic and systemic cholesterol levels due to a decrease in the expression of cholesterol hydroxylase CYP7A1 and other enzymes involved in bile acid synthesis. Specifically, activation of hepatic HIF-2α (but not HIF-1α) led to hypercholesterolemia. HIF-2α repressed the circadian expression of Rev-erbα, resulting in increased expression of E4BP4, a negative regulator of Cyp7a1. To understand if HIF-mediated decrease in bile acid synthesis is a physiologically relevant pathway by which hypoxia maintains or increases systemic cholesterol levels, two hypoxic mouse models were assessed, an acute lung injury model and mice exposed to 10% O2 for 3 weeks. In both models, cholesterol levels increased with a concomitant decrease in expression of genes involved in bile acid synthesis. The present study demonstrates that hypoxic activation of hepatic HIF-2α leads to an adaptive increase in cholesterol levels through inhibition of bile acid synthesis. PMID:24421394

  3. Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression.

    PubMed

    Luo, Weibo; Chang, Ryan; Zhong, Jun; Pandey, Akhilesh; Semenza, Gregg L

    2012-12-01

    Hypoxia-inducible factor 1 (HIF-1) activates transcription of genes encoding proteins that play key roles in breast cancer biology. We hypothesized that interaction of HIF-1 with epigenetic regulators may increase HIF-1 transcriptional activity, and thereby promote breast cancer progression. We report that the histone demethylase jumonji domain containing protein 2C (JMJD2C) selectively interacts with HIF-1α, but not HIF-2α, and that HIF-1α mediates recruitment of JMJD2C to the hypoxia response elements of HIF-1 target genes. JMJD2C decreases trimethylation of histone H3 at lysine 9, and enhances HIF-1 binding to hypoxia response elements, thereby activating transcription of BNIP3, LDHA, PDK1, and SLC2A1, which encode proteins that are required for metabolic reprogramming, as well as LOXL2 and L1CAM, which encode proteins that are required for lung metastasis. JMJD2C expression is significantly associated with expression of GLUT1, LDHA, PDK1, LOX, LOXL2, and L1CAM mRNA in human breast cancer biopsies. JMJD2C knockdown inhibits breast tumor growth and spontaneous metastasis to the lungs of mice following mammary fat pad injection. Taken together, these findings establish an important epigenetic mechanism that stimulates HIF-1-mediated transactivation of genes encoding proteins involved in metabolic reprogramming and lung metastasis in breast cancer. PMID:23129632

  4. Loss of VHL Confers Hypoxia-Inducible Factor (HIF)-Dependent Resistance to Vesicular Stomatitis Virus: Role of HIF in Antiviral Response▿

    PubMed Central

    Hwang, Irene I. L.; Watson, Ian R.; Der, Sandy D.; Ohh, Michael

    2006-01-01

    Hypoxia-inducible factor (HIF) is a central regulator of cellular responses to hypoxia, and under normal oxygen tension the catalytic α subunit of HIF is targeted for ubiquitin-mediated destruction via the VHL-containing E3 ubiquitin ligase complex. Principally known for its association with oncogenesis, HIF has been documented to have a role in the antibacterial response. Interferons, cytokines with antiviral functions, have been shown to upregulate the expression of HIF-1α, but the significance of HIF in the antiviral response has not been established. Here, using renal carcinoma cells devoid of VHL or reconstituted with functional wild-type VHL or VHL mutants with various abilities to negatively regulate HIF as an ideal model system of HIF activity, we show that elevated HIF activity confers dramatically enhanced resistance to vesicular stomatitis virus (VSV)-mediated cytotoxicity. Inhibition of HIF activity using a small-molecule inhibitor, chetomin, enhanced cellular sensitivity to VSV, while treatment with hypoxia mimetic CoCl2 promoted resistance. Similarly, targeting HIF-2α by RNA interference also enhanced susceptibility to VSV. Expression profiling studies show that upon VSV infection, the induction of genes with known antiviral activity, such as that encoding beta interferon (IFN-β), is significantly enhanced by HIF. These results reveal a previously unrecognized role of HIF in the antiviral response by promoting the expression of the IFN-β gene and other genes with antiviral activity upon viral infection. PMID:16928739

  5. MicroRNA-223 Attenuates Hypoxia-induced Vascular Remodeling by Targeting RhoB/MLC2 in Pulmonary Arterial Smooth Muscle Cells

    PubMed Central

    Zeng, Yan; Zhang, Xiaoying; Kang, Kang; Chen, Jidong; Wu, Zhiqin; Huang, Jinyong; Lu, Wenju; Chen, Yuqin; Zhang, Jie; Wang, Zhiwei; Zhai, Yujia; Qu, Junle; Ramchandran, Ramaswamy; Raj, J. Usha; Wang, Jian; Gou, Deming

    2016-01-01

    There is growing evidence that microRNAs are implicated in pulmonary arterial hypertension (PAH), but underlying mechanisms remain elusive. Here, we identified that miR-223 was significantly downregulated in chronically hypoxic mouse and rat lungs, as well as in pulmonary artery and pulmonary artery smooth muscle cells (PASMC) exposed to hypoxia. Knockdown of miR-223 increased PASMC proliferation. In contrast, miR-223 overexpression abrogated cell proliferation, migration and stress fiber formation. Administering miR-223 agomir in vivo antagonized hypoxia-induced increase in pulmonary artery pressure and distal arteriole muscularization. RhoB, which was increased by hypoxia, was identified as one of the targets of miR-223. Overexpressed miR-223 suppressed RhoB and inhibited the consequent phosphorylation of myosin phosphatase target subunit (MYPT1) and the expression of myosin light chain of myosin II (MLC2), which was identified as another target of miR-223. Furthermore, serum miR-223 levels were decreased in female patients with PAH associated with congenital heart disease. Our study provides the first evidence that miR-223 can regulate PASMC proliferation, migration, and actomyosin reorganization through its novel targets, RhoB and MLC2, resulting in vascular remodeling and the development of PAH. It also highlights miR-223 as a potential circulating biomarker and a small molecule drug for diagnosis and treatment of PAH. PMID:27121304

  6. Hypoxia-inducible enhancer/alpha-fetoprotein promoter-driven RNA interference targeting STK15 suppresses proliferation and induces apoptosis in human hepatocellular carcinoma cells.

    PubMed

    Gao, Ping; Wang, Rui; Shen, Jian-Jun; Lin, Fang; Wang, Xi; Dong, Ke; Zhang, Hui-Zhong

    2008-11-01

    STK15 (Aurora A/BTAK) is an oncogenic serine/threonine kinase that plays a role in centrosome separation and in the formation of the mitotic bipolar spindle. It is highly expressed and constitutively activated in various human tumors including hepatocellular carcinoma (HCC). To investigate its possibility as a molecular target for future therapies directed against hepatocellular carcinoma, we constructed a tissue-specific RNA interference (RNAi) system mediated by hypoxia-inducible (HI) enhancer/alpha-fetoprotein (AFP) promoter and employed it to downregulate exogenous reporters (LUC and EGFP) and endogenous STK15 gene expression and analyzed the phenotypical changes in HCC cells. Results showed that the expression of exogenous reporters (LUC and EGFP) was specifically downregulated in hepatoma cells but not in non-hepatoma cells. Moreover, the specific downregulation of STK15 expression in hepatocellular carcinoma cells (HepG2) significantly inhibited in vitro cellular proliferation and in vivo tumorigenicity. Furthermore, we also found that the downregulation of STK15 expression led to cell arrest in the G(2)/M phase and finally apoptosis induction of HepG2 cells. Thus, the HI enhancer/AFP promoter-mediated RNAi targeting STK15 may be a potential therapeutic strategy for the treatment of hepatocellular carcinoma with tumor specificity and high efficacy. PMID:18803637

  7. Effects of tetrahydrocurcumin on hypoxia-inducible factor-1α and vascular endothelial growth factor expression in cervical cancer cell-induced angiogenesis in nude mice.

    PubMed

    Yoysungnoen, Bhornprom; Bhattarakosol, Parvapan; Patumraj, Suthiluk; Changtam, Chatchawan

    2015-01-01

    Tetrahydrocurcumin (THC), one of the important in vivo metabolites of curcumin, inhibits tumor angiogenesis. Its effects on angiogenesis in cervical cancer- (CaSki-) implanted nude mice and its mechanisms on hypoxia-inducible factor-1α and vascular endothelial growth factor expression were investigated. Female BALB/c nude mice were divided into control (CON) and CaSki-implanted groups (CaSki group). One month after the injection with cervical cancer cells, mice were orally administered vehicle or 100, 300, and 500 mg/kg of THC daily for 30 consecutive days. The microvascular density (MVD) was evaluated using the CD31 expression. VEGF, VEGFR-2, and HIF-1α expression were also detected by immunohistochemistry. The MVD in CaSki + vehicle group was significantly increased compared to the CON + vehicle group. Interestingly, when treated with THC at all doses, the CaSki group showed a significant smaller number of the MVD. The CaSki + vehicle group also showed significantly increased VEGF, VEGFR-2, and HIF-1α expressions, but they were downregulated when mice were treated with THC at all doses. THC demonstrated an inhibitory effect against tumor angiogenesis in CaSki-implanted nude mice model. This effect is likely to be mediated by the downregulation of HIF-1-α, VEGF expression, and its receptor. THC could be developed into a promising agent for cancer therapy in the future. PMID:25789317

  8. Hypoxia-inducible factor-1 drives annexin A2 system-mediated perivascular fibrin clearance in oxygen-induced retinopathy in mice.

    PubMed

    Huang, Bihui; Deora, Arun B; He, Kai-Li; Chen, Kang; Sui, Guangzhi; Jacovina, Andrew T; Almeida, Dena; Hong, Peng; Burgman, Paul; Hajjar, Katherine A

    2011-09-01

    Oxygen-induced retinopathy (OIR) is a well-characterized model for retinopathy of prematurity, a disorder that results from rapid microvascular proliferation after exposure of the retina to high oxygen levels. Here, we report that the proliferative phase of OIR requires transcriptional induction of the annexin A2 (A2) gene through the direct action of the hypoxia-inducible factor-1 complex. We show, in addition, that A2 stabilizes its binding partner, p11, and promotes OIR-related angiogenesis by enabling clearance of perivascular fibrin. Adenoviral-mediated restoration of A2 expression restores neovascularization in the oxygen-primed Anxa2(-/-) retina and reinstates plasmin generation and directed migration in cultured Anxa2(-/-) endothelial cells. Systemic depletion of fibrin repairs the neovascular response to high oxygen treatment in the Anxa2(-/-) retina, whereas inhibition of plasminogen activation dampens angiogenesis under the same conditions. These findings show that the A2 system enables retinal neoangiogenesis in OIR by enhancing perivascular activation of plasmin and remodeling of fibrin. These data suggest new potential approaches to retinal angiogenic disorders on the basis of modulation of perivascular fibrinolysis. PMID:21788340

  9. Hypoxia-inducible factor-1 drives annexin A2 system-mediated perivascular fibrin clearance in oxygen-induced retinopathy in mice

    PubMed Central

    Huang, Bihui; Deora, Arun B.; He, Kai-Li; Chen, Kang; Sui, Guangzhi; Jacovina, Andrew T.; Almeida, Dena; Hong, Peng; Burgman, Paul

    2011-01-01

    Oxygen-induced retinopathy (OIR) is a well-characterized model for retinopathy of prematurity, a disorder that results from rapid microvascular proliferation after exposure of the retina to high oxygen levels. Here, we report that the proliferative phase of OIR requires transcriptional induction of the annexin A2 (A2) gene through the direct action of the hypoxia-inducible factor-1 complex. We show, in addition, that A2 stabilizes its binding partner, p11, and promotes OIR-related angiogenesis by enabling clearance of perivascular fibrin. Adenoviral-mediated restoration of A2 expression restores neovascularization in the oxygen-primed Anxa2−/− retina and reinstates plasmin generation and directed migration in cultured Anxa2−/− endothelial cells. Systemic depletion of fibrin repairs the neovascular response to high oxygen treatment in the Anxa2−/− retina, whereas inhibition of plasminogen activation dampens angiogenesis under the same conditions. These findings show that the A2 system enables retinal neoangiogenesis in OIR by enhancing perivascular activation of plasmin and remodeling of fibrin. These data suggest new potential approaches to retinal angiogenic disorders on the basis of modulation of perivascular fibrinolysis. PMID:21788340

  10. Loss of von Hippel-Lindau protein (VHL) increases systemic cholesterol levels through targeting hypoxia-inducible factor 2α and regulation of bile acid homeostasis.

    PubMed

    Ramakrishnan, Sadeesh K; Taylor, Matthew; Qu, Aijuan; Ahn, Sung-Hoon; Suresh, Madathilparambil V; Raghavendran, Krishnan; Gonzalez, Frank J; Shah, Yatrik M

    2014-04-01

    Cholesterol synthesis is a highly oxygen-dependent process. Paradoxically, hypoxia is correlated with an increase in cellular and systemic cholesterol levels and risk of cardiovascular diseases. The mechanism for the increase in cholesterol during hypoxia is unclear. Hypoxia signaling is mediated through hypoxia-inducible factor 1α (HIF-1α) and HIF-2α. The present study demonstrates that activation of HIF signaling in the liver increases hepatic and systemic cholesterol levels due to a decrease in the expression of cholesterol hydroxylase CYP7A1 and other enzymes involved in bile acid synthesis. Specifically, activation of hepatic HIF-2α (but not HIF-1α) led to hypercholesterolemia. HIF-2α repressed the circadian expression of Rev-erbα, resulting in increased expression of E4BP4, a negative regulator of Cyp7a1. To understand if HIF-mediated decrease in bile acid synthesis is a physiologically relevant pathway by which hypoxia maintains or increases systemic cholesterol levels, two hypoxic mouse models were assessed, an acute lung injury model and mice exposed to 10% O2 for 3 weeks. In both models, cholesterol levels increased with a concomitant decrease in expression of genes involved in bile acid synthesis. The present study demonstrates that hypoxic activation of hepatic HIF-2α leads to an adaptive increase in cholesterol levels through inhibition of bile acid synthesis. PMID:24421394

  11. Suppression of hypoxia-inducible factor-1alpha and its downstream genes reduces acute hyperglycemia-enhanced hemorrhagic transformation in a rat model of cerebral ischemia.

    PubMed

    Chen, Chunhua; Ostrowski, Robert P; Zhou, Changman; Tang, Jiping; Zhang, John H

    2010-07-01

    We evaluated a role of hypoxia-inducible factor-1alpha (HIF-1alpha) and its downstream genes in acute hyperglycemia-induced hemorrhagic transformation in a rat model of focal cerebral ischemia. Male Sprague-Dawley rats weighing 280-300 g (n = 105) were divided into sham, 90 min middle cerebral artery occlusion (MCAO), MCAO plus HIF-1alpha inhibitors, 2-methoxyestradiol (2ME2) or 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), groups. Rats received an injection of 50% dextrose (6 ml/kg intraperitoneally) at 15 min before MCAO. HIF-1alpha inhibitors were administered at the onset of reperfusion. The animals were examined for neurological deficits and sacrificed at 6, 12, 24, and 72 hr following MCAO. The cerebral tissues were collected for histology, zymography, and Western blot analysis. The expression of HIF-1alpha was increased in ischemic brain tissues after MCAO and reduced by HIF-1alpha inhibitors. In addition, 2ME2 reduced the expression of vascular endothelial growth factor (VEGF) and the elevation of active matrix metalloproteinase-2 and -9 (MMP-2/MMP-9) in the ipsilateral hemisphere. Both 2ME2 and YC-1 reduced infarct volume and ameliorated neurological deficits. However, only 2ME2 attenuated hemorrhagic transformation in the ischemic territory. In conclusion, the inhibition of HIF-1alpha and its downstream genes attenuates hemorrhagic conversion of cerebral infarction and ameliorates neurological deficits after focal cerebral ischemia. PMID:20155812

  12. Increased Lung Ischemia-Reperfusion Injury in Aquaporin 1-Null Mice Is Mediated via Decreased Hypoxia-Inducible Factor 2α Stability.

    PubMed

    Ge, Haiyan; Zhu, Huili; Xu, Nuo; Zhang, Dan; Ou, Jiaxian; Wang, Guifang; Fang, Xiaocong; Zhou, Jian; Song, Yuanlin; Bai, Chunxue

    2016-06-01

    Aquaporin (AQP) 1, a water channel protein expressed widely in vascular endothelia, has been shown to regulate cell migration, angiogenesis, and organ regeneration. Even though its role in the pathogenesis of lung ischemia-reperfusion (IR) injury has been defined, the functional role of AQP1 during long-term IR resolution remains to be clarified. Here, we found that AQP1 expression was increased at late time points (7-14 d) after IR and colocalized with endothelial cell (EC) marker CD31. Compared with IR in wild-type mice, IR in Aqp1(-/-) mice had significantly enhanced leukocyte infiltration, collagen deposition, and microvascular permeability, as well as inhibited angiogenic factor expression. AQP1 knockdown repressed hypoxia-inducible factor (HIF)-2α protein stability. HIF-2α overexpression rescued the angiogenic factor expression in pulmonary microvascular ECs with AQP1 knockdown exposed to hypoxia-reoxygenation. Furthermore, AQP1 knockdown suppressed cellular viability and capillary tube formation, and enhanced permeability in pulmonary microvascular ECs, which were partly rescued by HIF-2α overexpression. Thus, this study demonstrates that AQP1 deficiency delays long-term IR resolution, partly through repressing angiogenesis mediated by destabilizing HIF-2α. These results suggest that AQP1 participates in long-term IR resolution, at least in part by promoting angiogenesis. PMID:26649797

  13. PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a)

    PubMed Central

    Emerling, Brooke M.; Weinberg, Frank; Liu, Juinn-Lin; Mak, Tak W.; Chandel, Navdeep S.

    2008-01-01

    The tumor suppressor PTEN is mutated or deleted in many tumors, causing the activation of the PI3K pathway. Here, we show that the loss of PTEN increases the transcriptional activity of hypoxia-inducible factor 1 (HIF-1) through the inactivation of Forkhead transcription factors (FOXO) in PTEN-null cells. Reintroduction of PTEN into the nucleus, overexpression of a nonphosphorylatable FOXO3a, which accumulates in the nucleus, or inhibition of nuclear export of FOXO3a by leptomycin B represses HIF-1 transcriptional activity in PTEN-null cells. HIF-1 transcriptional activity increases in PTEN-positive cells depleted of FOXO3a with siRNA. PTEN and FOXO3a regulate the transactivation domain of HIF-1α. Chromatin immunoprecipitation indicates that FOXO3a complexes with HIF-1α and p300 on the Glut-1 promoter, a HIF-1 target gene. Overexpression of p300 reverses FOXO3a-mediated repression of HIF-1 transcriptional activity. Coimmunoprecipitation and GAL4-HIF-1α transactivation assays reveal that FOXO3a interferes with p300-dependent HIF-1 transcriptional activity. Thus, FOXO3a negatively regulates HIF-1 transcriptional activity. PMID:18268343

  14. Suppressing the malignant phenotypes of glioma cells by lentiviral delivery of small hairpin RNA targeting hypoxia-inducible factor-1α

    PubMed Central

    Dong, Chang Gui; Wu, William K K; Feng, Su Yin; Yu, Jun; Shao, Jun Fei; He, Gui Mei

    2013-01-01

    Hypoxic microenvironment of solid tumors is known to shape malignant phenotypes of cancer cells through the dimeric transcription factor hypoxia-inducible factor (HIF)-1. In the present study, the therapeutic effect of targeting α subunit of HIF-1 in glioma cells via lentiviral delivery of small hairpin RNA (shRNA) was evaluated. Data from quantitative real-time PCR and immunohistochemistry demonstrated that HIF-1α was progressively upregulated during the development of gliomas. Lentiviral shRNA targeting HIF-1α led to substantial loss of cell viability, G0/G1-phase cell cycle arrest, apoptosis, and impairment of cell motility and invasiveness in human glioma U87MG cells. Xenograft experiments in nude mice further showed that HIF-1α-shRNA inhibited tumor growth and caused persistent repression of HIF-1α and its target genes, including VEGF, GLUT1 and MMP2, up to 25 days post-inoculation. Taken together, lentiviral delivery of shRNA is a promising therapeutic approach for targeting HIF-1α in glioma. PMID:24228093

  15. Inhibitor of DNA Binding 1 Is Induced during Kidney Ischemia-Reperfusion and Is Critical for the Induction of Hypoxia-Inducible Factor-1α

    PubMed Central

    Wen, Dan; Zou, Yan-Fang; Gao, Yao-Hui; Zhao, Qian; Xie, Yin-Yin; Shen, Ping-Yan; Xu, Yao-Wen; Xu, Jing; Chen, Yong-Xi; Feng, Xiao-Bei; Shi, Hao; Zhang, Wen

    2016-01-01

    In this study, rat models of acute kidney injury (AKI) induced by renal ischemia-reperfusion (I/R) and HK-2 cell models of hypoxia-reoxygenation (H/R) were established to investigate the expression of inhibitor of DNA binding 1 (ID1) in AKI, and the regulation relationship between ID1 and hypoxia-inducible factor 1 alpha (HIF-1α). Through western blot, quantitative real-time PCR, immunohistochemistry, and other experiment methods, the induction of ID1 after renal I/R in vivo was observed, which was expressed mainly in renal tubular epithelial cells (TECs). ID1 expression was upregulated in in vitro H/R models at both the protein and mRNA levels. Via RNAi, it was found that ID1 induction was inhibited with silencing of HIF-1α. Moreover, the suppression of ID1 mRNA expression could lead to decreased expression and transcription of HIF-1α during hypoxia and reoxygenation. In addition, it was demonstrated that both ID1 and HIF-1α can regulate the transcription of twist. This study demonstrated that ID1 is induced in renal TECs during I/R and can regulate the transcription and expression of HIF-1α. PMID:27127787

  16. Constitutive stabilization of hypoxia-inducible factor alpha selectively promotes the self-renewal of mesenchymal progenitors and maintains mesenchymal stromal cells in an undifferentiated state.

    PubMed

    Park, In-Ho; Kim, Kwang-Ho; Choi, Hyun-Kyung; Shim, Jae-Seung; Whang, Soo-Young; Hahn, Sang June; Kwon, Oh-Joo; Oh, Il-Hoan

    2013-01-01

    With the increasing use of culture-expanded mesenchymal stromal cells (MSCs) for cell therapies, factors that regulate the cellular characteristics of MSCs have been of major interest. Oxygen concentration has been shown to influence the functions of MSCs, as well as other normal and malignant stem cells. However, the underlying mechanisms of hypoxic responses and the precise role of hypoxia-inducible factor-1α (Hif-1α), the master regulatory protein of hypoxia, in MSCs remain unclear, due to the limited span of Hif-1α stabilization and the complex network of hypoxic responses. In this study, to further define the significance of Hif-1α in MSC function during their self-renewal and terminal differentiation, we established adult bone marrow (BM)-derived MSCs that are able to sustain high level expression of ubiquitin-resistant Hif-1α during such long-term biological processes. Using this model, we show that the stabilization of Hif-1α proteins exerts a selective influence on colony-forming mesenchymal progenitors promoting their self-renewal and proliferation, without affecting the proliferation of the MSC mass population. Moreover, Hif-1α stabilization in MSCs led to the induction of pluripotent genes (oct-4 and klf-4) and the inhibition of their terminal differentiation into osteogenic and adipogenic lineages. These results provide insights into the previously unrecognized roles of Hif-1α proteins in maintaining the primitive state of primary MSCs and on the cellular heterogeneities in hypoxic responses among MSC populations. PMID:24071737

  17. Hypoxia-inducible factor 1 alpha in high-risk breast cancer: an independent prognostic parameter?

    PubMed Central

    Gruber, Günther; Greiner, Richard H; Hlushchuk, Ruslan; Aebersold, Daniel M; Altermatt, Hans J; Berclaz, Gilles; Djonov, Valentin

    2004-01-01

    Background Hypoxia-inducible factor 1 alpha (hif-1α) furnishes tumor cells with the means of adapting to stress parameters like tumor hypoxia and promotes critical steps in tumor progression and aggressiveness. We investigated the role of hif-1α expression in patients with node-positive breast cancer. Methods Tumor samples from 77 patients were available for immunohistochemistry. The impact of hif-1α immunoreactivity on survival endpoints was determined by univariate and multivariate analyses, and correlations to clinicopathological characteristics were determined by cross-tabulations. Results hif-1α was expressed in 56% (n = 43/77) of the patients. Its expression correlated with progesterone receptor negativity (P = 0.002). The Kaplan–Meier curves revealed significantly shorter distant metastasis-free survival (DMFS) (P = 0.04, log-rank) and disease-free survival (DFS) (P = 0.04, log-rank) in patients with increased hif-1α expression. The difference in overall survival (OS) did not attain statistical significance (5-year OS, 66% without hif-1α expression and 55% with hif-1α expression; P = 0.21). The multivariate analysis failed to reveal an independent prognostic value for hif-1α expression in the whole patient group. The only significant parameter for all endpoints was the T stage (T3/T4 versus T1/T2: DMFS, relative risk = 3.16, P = 0.01; DFS, relative risk = 2.57, P = 0.03; OS, relative risk = 3.03, P = 0.03). Restricting the univariate and multivariate analyses to T1/T2 tumors, hif-1α expression was a significant parameter for DFS and DMFS. Conclusions hif-1α is expressed in the majority of patients with node-positive breast cancer. It can serve as a prognostic marker for an unfavorable outcome in those with T1/T2 tumors and positive axillary lymph nodes. PMID:15084243

  18. Preinspiratory and inspiratory hypoglossal motor output during hypoxia-induced plasticity in the rat

    PubMed Central

    Fuller, David D.

    2010-01-01

    Respiratory-related discharge in the hypoglossal (XII) nerve is composed of preinspiratory (pre-I) and inspiratory (I) activity. Our first purpose was to test the hypothesis that hypoxia-induced plasticity in XII motor output is differentially expressed in pre-I vs. I XII bursting. Short-term potentiation (STP) of XII motor output was induced in urethane-anesthetized, vagotomized, and ventilated rats by exposure to isocapnic hypoxia (PaO2 of ∼35 Torr). Both pre-I and I XII discharge abruptly increased at beginning of hypoxia (i.e., acute hypoxic response), and the relative increase in amplitude was much greater for pre-I (507 ± 46% baseline) vs. I bursting (257 ± 16% baseline; P < 0.01). In addition, STP was expressed in I but not pre-I bursting following hypoxia. Specifically, I activity remained elevated following termination of hypoxia but pre-I bursting abruptly returned to prehypoxia levels. Our second purpose was to test the hypothesis that STP of I XII activity results from recruitment of inactive or “silent” XII motoneurons (MNs) vs. rate coding of active MNs. Single fiber recordings were used to classify XII MNs as I, expiratory-inspiratory, or silent based on baseline discharge patterns. STP of I XII activity following hypoxia was associated with increased discharge frequency in active I and silent MNs but not expiratory-inspiratory MNs. We conclude that the expression of respiratory plasticity is differentially regulated between pre-I and I XII activity. In addition, both recruitment of silent MNs and rate coding of active I MNs contribute to increases in XII motor output following hypoxia. PMID:20150564

  19. Bile Acids Repress Hypoxia-Inducible Factor 1 Signaling and Modulate the Airway Immune Response

    PubMed Central

    Legendre, Claire; Reen, F. Jerry; Woods, David F.; Mooij, Marlies J.; Adams, Claire

    2014-01-01

    Gastroesophageal reflux (GER) frequently occurs in patients with respiratory disease and is particularly prevalent in patients with cystic fibrosis. GER is a condition in which the duodenogastric contents of the stomach leak into the esophagus, in many cases resulting in aspiration into the respiratory tract. As such, the presence of GER-derived bile acids (BAs) has been confirmed in the bronchoalveolar lavage fluid and sputum of affected patients. We have recently shown that bile causes cystic fibrosis-associated bacterial pathogens to adopt a chronic lifestyle and may constitute a major host trigger underlying respiratory infection. The current study shows that BAs elicit a specific response in humans in which they repress hypoxia-inducible factor 1α (HIF-1α) protein, an emerging master regulator in response to infection and inflammation. HIF-1α repression was shown to occur through the 26S proteasome machinery via the prolyl hydroxylase domain (PHD) pathway. Further analysis of the downstream inflammatory response showed that HIF-1α repression by BAs can significantly modulate the immune response of airway epithelial cells, correlating with a decrease in interleukin-8 (IL-8) production, while IL-6 production was strongly increased. Importantly, the effects of BAs on cytokine production can also be more dominant than the bacterium-mediated effects. However, the effect of BAs on cytokine levels cannot be fully explained by their ability to repress HIF-1α, which is not surprising, given the complexity of the immune regulatory network. The suppression of HIF-1 signaling by bile acids may have a significant influence on the progression and outcome of respiratory disease, and the molecular mechanism underpinning this response warrants further investigation. PMID:24914220

  20. Guanfacine is an effective countermeasure for hypobaric hypoxia-induced cognitive decline.

    PubMed

    Kauser, H; Sahu, S; Kumar, S; Panjwani, U

    2013-12-19

    Hypobaric hypoxia (HH), an environmental stress resulting from ascent to high altitude, affects perception, memory, judgment, and attention, resulting in degradation of many aspects of normal functioning. Alpha 2A adrenergic agonist, guanfacine proved to be beneficial in the amelioration of neurological outcomes of many neuropsychiatric disorders involving adrenergic imbalance and neurodegeneration. Adrenergic dysregulation and neuronal damage have been implicated in hypoxia-induced cognitive deficits, however, efficacy of guanfacine as a countermeasure for HH-induced cognitive decline remains to be evaluated. We, therefore, have studied the effect of this drug on the HH-induced cognitive deficits, adrenergic dysfunction and neuronal damage. Rats were exposed to HH at a simulated altitude of 25,000 feet for 7days and received an IM injection of either saline or guanfacine at a dose of 1mg/kg. Adrenergic transmission was evaluated by biomarkers i.e. norepinephrine (NE), dopamine (DA) and tyrosine hydroxylase (TH) in medial prefrontal cortex (PFC) by biochemical and immunohistochemical assays. Spine and dendritic morphology of pyramidal neurons in layer II of medial PFC was studied using Golgi-Cox staining and Neurolucida neuronal tracing. The cognitive performance was assessed by Delayed Alternation Task using a T-Maze. There was a significant reduction in HH-induced increases in NE, DA and TH levels with guanfacine treatment. Guanfacine rescued HH-induced dendritic atrophy and mushroom type spine loss. The spatial working memory deficits induced by HH were significantly ameliorated with guanfacine treatment. Furthermore, the cognitive performance showed a positive correlation with dendritic arbors and spine numbers. These results showed that the HH-induced cognitive decline is associated with adrenergic dysregulation and neuronal damage in layer II of medial PFC, and that guanfacine treatment during HH ameliorated these functional and morphological deficits. The

  1. Altered expression of hypoxia-Inducible factor-1α participates in the epileptogenesis in animal models.

    PubMed

    Li, Jie; Jiang, Guohui; Chen, Yalan; Chen, Ling; Li, Zengyou; Wang, Zhihua; Wang, Xuefeng

    2014-09-01

    Although epilepsy is a common neurological disorder, its mechanism(s) are still not completely understood. Hypoxia can lead to neuronal cell death and angiogenesis, and the same mechanisms were also found in epilepsy. Hypoxia-inducible factor-1α (HIF-1α) is an important transcription protein that regulates gene expression in the brain and other tissues in response to decreases in oxygen availability. However, little is known regarding the expression of HIF-1α in the epileptic brain and whether HIF-1α interventions affect the epileptic process. The aims of this study are to investigate the expression profile of HIF-1α in rat models and to explore the role of HIF-1α in epilepsy. We performed Western blots and immunofluorescence in a lithium-pilocarpine rat epilepsy model. To determine the role of HIF-1α in epilepsy, we used the HIF-1α agonist DMOG and inhibitor KC7F2 to detect changes in the animal behavior in pentylenetetrazole (PTZ) and lithium-pilocarpine epilepsy models. The expression of HIF-1α was significantly increased after pilocarpine-induced status epilepticus. DMOG significantly prolonged the latent period in the PTZ kindling model and decreased the rate of spontaneous recurrent seizures during the chronic stage in the lithium-pilocarpine model. Conversely, the inhibitor KC7F2 produced an opposite behavioral change. Interestingly, both KC7F2 and DMOG had no effect on the acute stage of pilocarpine model and PTZ convulsive model. Our study suggests that upregulated HIF-1α may be involved in the process of epileptogenesis but not in the acute stage of epilepsy. The modulation of HIF-1α may offer a novel therapeutic target in epilepsy. PMID:24889205

  2. Role of hypoxia-inducible factor-1α in pathogenesis and disease evaluation of ulcerative colitis

    PubMed Central

    XU, CHUNMEI; DONG, WEIGUO

    2016-01-01

    The main aim of the present study was to measure hypoxia-inducible factor-1α (HIF-1α) in serum and colonic mucosa of ulcerative colitis (UC) patients and to analyze its role in the pathogenesis, disease activity and severity of UC. A total of 47 UC patients and 13 UC in remission patients were recruited for the present study. Ten healthy subjects were also included to serve as controls. HIF-1α in the serum was measured using ELISA. The citrate-microwave-SP immunohistochemical method was used to measure the expression of HIF-1α in colonic mucosa. The results showed that, HIF-1α in serum was notably higher in UC patients (73.21±28.65) than UC in remission patients (44.54±14.75) and controls (42.83±15.49). The difference between UC patients and UC in remission patients was significant (P<0.05). A correlation analysis revealed that, the HIF-1α level in serum was positively associated with disease activity, disease severity and endoscopic grade. The expression of HIF-1α in colonic mucosa of UC patients was (58.05±13.83) higher than that in UC in remission patients (3.00±2.72) and controls (3.04±2.69) and this difference was statistically significant (P<0.05). A positive correlation was identified between the expression of HIF-1α in colonic mucosa and the disease activity, severity and endoscopic grade. Thus, the present findings indicated that, HIF-1α is likely to play an important role in the pathogenesis of UC and may serve as a biomarker to evaluate disease activity and severity in UC patients. PMID:27073444

  3. Hypoxia-inducible Factor-dependent Production of Profibrotic Mediators by Hypoxic Hepatocytes

    PubMed Central

    Copple, Bryan L.; Bustamante, Juan J.; Welch, Timothy P.; Kim, Nam Deuk; Moon, Jeon-OK

    2011-01-01

    Background/Aims During the development of liver fibrosis, mediators are produced that stimulate cells in the liver to differentiate into myofibroblasts and to produce collagen. Recent studies demonstrated that the transcription factor, hypoxia-inducible factor-1α (HIF-1α), is critical for upregulation of profibrotic mediators, such as platelet-derived growth factor-A (PDGF-A), PDGF-B, and plasminogen activator inhibitor-1 (PAI-1) in the liver during the development of fibrosis. What remains unknown is the cell type-specific regulation of these genes by HIF-1α in liver cell types. Accordingly, the hypothesis was tested that HIF-1α is activated in hypoxic hepatocytes and regulates production of profibrotic mediators by these cells. Methods In this study, hepatocytes were isolated from the livers of control and HIF-1α or HIF-1β-Deficient mice and exposed to hypoxia. Results Exposure of primary mouse hepatocytes to 1% oxygen stimulated nuclear accumulation of HIF-1α and upregulated PAI-1, vascular endothelial cell growth factor, and the vasoactive peptides adrenomedullin-1 (ADM-1) and ADM-2. In contrast, levels of PDGF-A and PDGF-B mRNAs were unaffected in these cells by hypoxia. Exposure of HIF-1α-Deficient hepatocytes to 1% oxygen only partially prevented upregulation of these genes, suggesting that other hypoxia-regulated transcription factors, such as HIF-2α, may also regulate these genes. In support of this, HIF-2α was activated in hypoxic hepatocytes, and exposure of HIF-1β-Deficient hepatocytes to 1% oxygen completely prevented upregulation PAI-1, VEGF, and ADM-1, suggesting that HIF-2α may also contribute to upregulation of these genes in hypoxic hepatocytes. Conclusions Collectively, our results suggest that HIFs may be important regulators of profibrotic and vasoactive mediators by hypoxic hepatocytes. PMID:19302442

  4. Hypoxia-inducible factor regulates expression of surfactant protein in alveolar type II cells in vitro.

    PubMed

    Ito, Yoko; Ahmad, Aftab; Kewley, Emily; Mason, Robert J

    2011-11-01

    Alveolar type II (ATII) cells cultured at an air-liquid (A/L) interface maintain differentiation, but they lose these properties when they are submerged. Others showed that an oxygen tension gradient develops in the culture medium as ATII cells consume oxygen. Therefore, we wondered whether hypoxia inducible factor (HIF) signaling could explain differences in the phenotypes of ATII cells cultured under A/L interface or submerged conditions. ATII cells were isolated from male Sprague-Dawley rats and cultured on inserts coated with a mixture of rat-tail collagen and Matrigel, in medium including 5% rat serum and 10 ng/ml keratinocyte growth factor, with their apical surfaces either exposed to air or submerged. The A/L interface condition maintained the expression of surfactant proteins, whereas that expression was down-regulated under the submerged condition, and the effect was rapid and reversible. Under submerged conditions, there was an increase in HIF1α and HIF2α in nuclear extracts, mRNA levels of HIF inducible genes, vascular endothelial growth factor, glucose transporter-1 (GLUT1), and the protein level of pyruvate dehydrogenase kinase isozyme-1. The expression of surfactant proteins was suppressed and GLUT1 mRNA levels were induced when cells were cultured with 1 mM dimethyloxalyl glycine. The expression of surfactant proteins was restored under submerged conditions with supplemented 60% oxygen. HIF signaling and oxygen tension at the surface of cells appears to be important in regulating the phenotype of rat ATII cells. PMID:21454802

  5. Mesenchymal stem cells protect from hypoxia-induced alveolar epithelial-mesenchymal transition.

    PubMed

    Uzunhan, Yurdagül; Bernard, Olivier; Marchant, Dominique; Dard, Nicolas; Vanneaux, Valérie; Larghero, Jérôme; Gille, Thomas; Clerici, Christine; Valeyre, Dominique; Nunes, Hilario; Boncoeur, Emilie; Planès, Carole

    2016-03-01

    Administration of bone marrow-derived human mesenchymal stem cells (hMSC) reduces lung inflammation, fibrosis, and mortality in animal models of lung injury, by a mechanism not completely understood. We investigated whether hMSC would prevent epithelial-mesenchymal transition (EMT) induced by hypoxia in primary rat alveolar epithelial cell (AEC). In AEC cultured on semipermeable filters, prolonged hypoxic exposure (1.5% O2 for up to 12 days) induced phenotypic changes consistent with EMT, i.e., a change in cell morphology, a decrease in transepithelial resistance (Rte) and in the expression of epithelial markers [zonula occludens-1 (ZO-1), E-cadherin, AQP-5, TTF-1], together with an increase in mesenchymal markers [vimentin, α-smooth muscle actin (α-SMA)]. Expression of transcription factors driving EMT such as SNAIL1, ZEB1, and TWIST1 increased after 2, 24, and 48 h of hypoxia, respectively. Hypoxia also induced TGF-β1 mRNA expression and the secretion of active TGF-β1 in apical medium, and the expression of connective tissue growth factor (CTGF), two inducers of EMT. Coculture of AEC with hMSC partially prevented the decrease in Rte and in ZO-1, E-cadherin, and TTF-1 expression, and the increase in vimentin expression induced by hypoxia. It also abolished the increase in TGF-β1 expression and in TGF-β1-induced genes ZEB1, TWIST1, and CTGF. Finally, incubation with human recombinant KGF at a concentration similar to what was measured in hMSC-conditioned media restored the expression of TTF-1 and prevented the increase in TWIST1, TGF-β1, and CTGF in hypoxic AEC. Our results indicate that hMSC prevent hypoxia-induced alveolar EMT through the paracrine modulation of EMT signaling pathways and suggest that this effect is partly mediated by KGF. PMID:26702148

  6. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice

    PubMed Central

    Savale, Laurent; Tu, Ly; Rideau, Dominique; Izziki, Mohamed; Maitre, Bernard; Adnot, Serge; Eddahibi, Saadia

    2009-01-01

    Background Inflammation may contribute to the pathogenesis of various forms of pulmonary hypertension (PH). Recent studies in patients with idiopathic PH or PH associated with underlying diseases suggest a role for interleukin-6 (IL-6). Methods To determine whether endogenous IL-6 contributes to mediate hypoxic PH and lung inflammation, we studied IL-6-deficient (IL-6-/-) and wild-type (IL-6+/+) mice exposed to hypoxia for 2 weeks. Results Right ventricular systolic pressure, right ventricle hypertrophy, and the number and media thickness of muscular pulmonary vessels were decreased in IL-6-/- mice compared to wild-type controls after 2 weeks' hypoxia, although the pressure response to acute hypoxia was similar in IL-6+/+ and IL-6-/- mice. Hypoxia exposure of IL-6+/+ mice led to marked increases in IL-6 mRNA and protein levels within the first week, with positive IL-6 immunostaining in the pulmonary vessel walls. Lung IL-6 receptor and gp 130 (the IL-6 signal transducer) mRNA levels increased after 1 and 2 weeks' hypoxia. In vitro studies of cultured human pulmonary-artery smooth-muscle-cells (PA-SMCs) and microvascular endothelial cells revealed prominent synthesis of IL-6 by PA-SMCs, with further stimulation by hypoxia. IL-6 also markedly stimulated PA-SMC migration without affecting proliferation. Hypoxic IL-6-/- mice showed less inflammatory cell recruitment in the lungs, compared to hypoxic wild-type mice, as assessed by lung protein levels and immunostaining for the specific macrophage marker F4/80, with no difference in lung expression of adhesion molecules or cytokines. Conclusion These data suggest that IL-6 may be actively involved in hypoxia-induced lung inflammation and pulmonary vascular remodeling in mice. PMID:19173740

  7. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth.

    PubMed

    McIntyre, Alan; Hulikova, Alzbeta; Ledaki, Ioanna; Snell, Cameron; Singleton, Dean; Steers, Graham; Seden, Peter; Jones, Dylan; Bridges, Esther; Wigfield, Simon; Li, Ji-Liang; Russell, Angela; Swietach, Pawel; Harris, Adrian L

    2016-07-01

    Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR. PMID:27197160

  8. MicroRNA-18a regulates invasive meningiomas via hypoxia-inducible factor-1α

    PubMed Central

    LI, PUXIAN; GAO, YONG; LI, FENGJIA; PAN, QIANG; LIU, ZHENRUI; LU, XIANGDONG; SONG, CHUNYU; DIAO, XINGTAO

    2015-01-01

    The aim of the present study was to investigate the effects of microRNA-18a (miR-18a) on the invasiveness and metastasis of invasive meningiomas and the underlying mechanism. A total of 69 patients with meningiomas (30 patients in the invasive meningioma group and 39 patients in the non-invasive meningioma group) and 48 cases in the control group were enrolled. Samples of meningioma tissues, serum and cerebrospinal fluid were collected. Reverse transcription-quantitative polymerase chain reaction was performed to quantify the expression levels of hypoxia-inducible factor-1α (HIF-1α) mRNA and miR-18a. Western blot analysis was used to determine protein expression levels of HIF-1α. The expression levels of HIF-1α mRNA and protein in all three types of sample from the invasive meningioma group were significantly higher compared with those in the control and non-invasive meningioma groups (P<0.05), and the expression levels of HIF-1α mRNA in the serum and cerebrospinal fluid of the non-invasive meningioma group were significantly higher compared with those in the control group (P<0.05). The expression levels of miR-18a in the invasive meningioma group were significantly reduced compared with those in the control and non-invasive meningioma groups (P<0.05), whereas the levels of miR-18a in the non-invasive meningioma group were significantly lower compared with those in the control group (P<0.05). The expression of HIF-1α is significantly upregulated in patients with invasive meningiomas, possibly due to the downregulation of miR-18a expression. Therefore, miR-18a may regulate invasive meningiomas via HIF-1α. PMID:26622458

  9. Hypoxia-induced protein binding to O2-responsive seq