Science.gov

Sample records for agonist attenuates bone

  1. Disease Modification of Breast Cancer–Induced Bone Remodeling by Cannabinoid 2 Receptor Agonists

    PubMed Central

    Symons-Liguori, Ashley M; Largent-Milnes, Tally M; Havelin, Josh J; Ferland, Henry L; Chandramouli, Anupama; Owusu-Ankomah, Mabel; Nikolich-Zugich, Tijana; Bloom, Aaron P; Jimenez-Andrade, Juan Miguel; King, Tamara; Porreca, Frank; Nelson, Mark A; Mantyh, Patrick W; Vanderah, Todd W

    2015-01-01

    Most commonly originating from breast malignancies, metastatic bone cancer causes bone destruction and severe pain. Although novel chemotherapeutic agents have increased life expectancy, patients are experiencing higher incidences of fracture, pain, and drug-induced side effects; furthermore, recent findings suggest that patients are severely undertreated for their cancer pain. Strong analgesics, namely opiates, are first-line therapy in alleviating cancer-related pain despite the severe side effects, including enhanced bone destruction with sustained administration. Bone resorption is primarily treated with bisphosphonates, which are associated with highly undesirable side effects, including nephrotoxicity and osteonecrosis of the jaw. In contrast, cannabinoid receptor 2 (CB2) receptor-specific agonists have been shown to reduce bone loss and stimulate bone formation in a model of osteoporosis. CB2 agonists produce analgesia in both inflammatory and neuropathic pain models. Notably, mixed CB1/CB2 agonists also demonstrate a reduction in ErbB2-driven breast cancer progression. Here we demonstrate for the first time that CB2 agonists reduce breast cancer–induced bone pain, bone loss, and breast cancer proliferation via cytokine/chemokine suppression. Studies used the spontaneously-occurring murine mammary cell line (66.1) implanted into the femur intramedullary space; measurements of spontaneous pain, bone loss, and cancer proliferation were made. The systemic administration of a CB2 agonist, JWH015, for 7 days significantly attenuated bone remodeling, assuaged spontaneous pain, and decreased primary tumor burden. CB2-mediated effects in vivo were reversed by concurrent treatment with a CB2 antagonist/inverse agonist but not with a CB1 antagonist/inverse agonist. In vitro, JWH015 reduced cancer cell proliferation and inflammatory mediators that have been shown to promote pain, bone loss, and proliferation. Taken together, these results suggest CB2 agonists as a

  2. Activation of spinal MrgC-Gi-NR2B-nNOS signaling pathway by Mas oncogene-related gene C receptor agonist bovine adrenal medulla 8-22 attenuates bone cancer pain in mice

    PubMed Central

    Sun, Yu’e; Zhang, Juan; Lei, Yishan; Lu, Cui’e; Hou, Bailing; Ma, Zhengliang; Gu, Xiaoping

    2016-01-01

    Objectives: In the present study, we investigate the effects of Mas oncogene-related gene (Mrg) C receptors (MrgC) on the expression and activation of spinal Gi protein, N-methyl-D-aspartate receptor subunit 2B (NR2B), and neuronal nitric oxide synthase (nNOS) in mouse model of bone cancer pain. Methods: The number of spontaneous foot lift (NSF) and paw withdrawal mechanical threshold (PWMT) were measured after inoculation of tumor cells and intrathecal injection of MrgC agonist bovine adrenal medulla 8-22 (BAM8-22) or MrgC antagonist anti-MrgC for 14 days after operation. Expression of spinal MrgC, Gi protein, NR2B and nNOS and their phosphorylated forms after inoculation was examined by immunohistochemistry and Western blotting. Double labeling was used to identify the co-localization of NR2B or nNOS with MrgC in spinal cord dorsal horn (SCDH) neurons. The effects of intrathecal injection of BAM8-22 or anti-MrgC on nociceptive behaviors and the corresponding expression of spinal MrgC, Gi protein, NR2B and nNOS were also investigated. Results: The expression of spinal MrgC, Gi protein, NR2B, and nNOS was higher in tumor-bearing mice in comparison to sham mice or normal mice. Intrathecal injection of MrgC agonist BAM8-22 significantly alleviated bone cancer pain, up-regulated MrgC and Gi protein expression, and down-regulated the expression of spinal p-NR2B, t-nNOS and p-nNOS in SCDH on day 14 after operation, whereas administration of anti-MrgC produced the opposite effect. Meanwhile, MrgC-like immunoreactivity (IR) co-localizes with NR2B-IR or nNOS-IR in SCDH neurons. Conclusions: The present study demonstrates that MrgC-activated spinal Gi-NR2B-nNOS signaling pathway plays important roles in the development of bone cancer pain. These findings may provide a novel strategy for the treatment of bone cancer pain. PMID:27158400

  3. Wnt Agonist Attenuates Liver Injury and Improves Survival after Hepatic Ischemia/Reperfusion

    PubMed Central

    Kuncewitch, Michael; Yang, Weng-Lang; Molmenti, Ernesto; Nicastro, Jeffrey; Coppa, Gene F.; Wang, Ping

    2012-01-01

    The Wnt/β-catenin signaling pathway is well characterized in stem cell biology and plays a critical role in liver development, regeneration, and homeostasis. We hypothesized that pharmacological activation of Wnt signaling protects against hepatic ischemia/reperfusion (I/R) injury through its known proliferative and anti-apoptotic properties. Sprague-Dawley rats underwent 70% hepatic ischemia by microvascular clamping of the hilum of the left and median lobes of the liver for 90 min, followed by reperfusion. Wnt agonist (2-amino-4-[3,4-(methylenedioxy)benzylamino]-6-(3-methoxyphenyl)pyrimidine, 5 mg/kg BW) or vehicle (20% DMSO in saline) in 0.5 ml was injected intraperitoneally (i.p.) 1 h prior to ischemia or infused intravenously over 30 min right after ischemia. Blood and tissue samples from the pre-treated groups were collected 24 h after reperfusion, and a survival study was performed. Hepatic expression of β-catenin and its downstream target gene Axin2 were decreased after I/R while Wnt agonist restored their expression to sham levels. Wnt agonist blunted I/R-induced elevations of AST, ALT, and LDH and significantly improved the microarchitecture of the liver. The cell proliferation determined by Ki67 immunostaining significantly increased with Wnt agonist treatment and inflammatory cascades were dampened in Wnt agonist-treated animals, as demonstrated by attenuations in IL-6, myeloperoxdase, iNOS and nitrotyrosine. Wnt agonist also significantly decreased the amount of apoptosis, as evidenced by decreases in both TUNEL staining as well as caspase-3 activity levels. Finally, the 10-day survival rate was increased from 27% in the vehicle group to 73% in the pre-treated Wnt agonist group and 55% in the Wnt agonist post-ischemia treatment group. Thus, we propose that direct Wnt/β-catenin stimulation may represent a novel therapeutic approach in the treatment of hepatic I/R. PMID:23143067

  4. PPARδ agonist attenuates alcohol-induced hepatic insulin resistance and improves liver injury and repair

    PubMed Central

    Pang, Maoyin; de la Monte, Suzanne M.; Longato, Lisa; Tong, Ming; He, Jiman; Chaudhry, Rajeeve; Duan, Kevin; Ouh, Jiyun; Wands, Jack R.

    2009-01-01

    Background/Aims Chronic ethanol exposure impairs liver regeneration due to inhibition of insulin signaling and oxidative injury. PPAR agonists function as insulin sensitizers and anti-inflammatory agents. We investigated whether treatment with a PPARδ agonist could restore hepatic insulin sensitivity, survival signaling, and regenerative responses vis-a-vis chronic ethanol feeding. Methods Adult rats were fed isocaloric liquid diets containing 0% or 37% ethanol, and administered a PPARδ agonist by i.p. injection. We used liver tissue to examine histopathology, gene expression, oxidative stress, insulin signaling, and regenerative responses to 2/3 hepatectomy. Results Chronic ethanol feeding caused insulin resistance, increased oxidative stress, lipid peroxidation, DNA damage, and hepatocellular injury in liver. These effects were associated with reduced insulin receptor binding and affinity, impaired survival signaling through PI3K/Akt/GSK3β, and reduced expression of insulin responsive genes mediating energy metabolism and tissue remodeling. PPARδ agonist treatment reduced ethanol-mediated hepatic injury, oxidative stress, lipid peroxidation, and insulin resistance, increased signaling through PI3K/Akt/GSK3β, and enhanced the regenerative response to partial hepatectomy. Conclusions PPARδ agonist administration may attenuate the severity of chronic ethanol-induced liver injury and ethanol’s adverse effects on the hepatic repair by restoring insulin responsiveness, even in the context of continued high-level ethanol consumption. PMID:19398227

  5. The long-acting β2-adrenoceptor agonist olodaterol attenuates pulmonary inflammation

    PubMed Central

    Wex, Eva; Kollak, Ines; Duechs, Matthias J; Naline, Emmanuel; Wollin, Lutz; Devillier, Philippe

    2015-01-01

    Background and Purpose β2-adrenoceptor agonists are widely used in the management of obstructive airway diseases. Besides their bronchodilatory effect, several studies suggest inhibitory effects on various aspects of inflammation. The aim of our study was to determine the efficacy of the long-acting β2-adrenoceptor agonist olodaterol to inhibit pulmonary inflammation and to elucidate mechanism(s) underlying its anti-inflammatory actions. Experimental Approach Olodaterol was tested in murine and guinea pig models of cigarette smoke- and LPS-induced lung inflammation. Furthermore, effects of olodaterol on the LPS-induced pro-inflammatory mediator release from human parenchymal explants, CD11b adhesion molecule expression on human granulocytes TNF-α release from human whole blood and on the IL-8-induced migration of human peripheral blood neutrophils were investigated. Key Results Olodaterol dose-dependently attenuated cell influx and pro-inflammatory mediator release in murine and guinea pig models of pulmonary inflammation. These anti-inflammatory effects were observed at doses relevant to their bronchodilatory efficacy. Mechanistically, olodaterol attenuated pro-inflammatory mediator release from human parenchymal explants and whole blood and reduced expression of CD11b adhesion molecules on granulocytes, but without direct effects on IL-8-induced neutrophil transwell migration. Conclusions and Implications This is the first evidence for the anti-inflammatory efficacy of a β2-adrenoceptor agonist in models of lung inflammation induced by cigarette smoke. The long-acting β2-adrenoceptor agonist olodaterol attenuated pulmonary inflammation through mechanisms that are separate from direct inhibition of bronchoconstriction. Furthermore, the in vivo data suggest that the anti-inflammatory properties of olodaterol are maintained after repeated dosing for 4 days. PMID:25824824

  6. Adenosine receptor agonists attenuate and adenosine receptor antagonists exacerbate opiate withdrawal signs.

    PubMed

    Kaplan, G B; Sears, M T

    1996-01-01

    Previous studies have demonstrated a role for adenosine in mediating opiate effects. Adenosine receptors and their functions have been shown to be regulated by chronic opiate treatment. This study examines the role of adenosine receptors in the expression of opiate withdrawal behaviors. The effects of single doses of parenterally administered adenosine receptor subtype-selective agonists and antagonists on opiate withdrawal signs in morphine-dependent mice were measured. Mice received subcutaneous morphine pellet treatment for 72 h and then underwent naloxone-precipitated withdrawal after pretreatment with adenosinergic agents. Adenosine agonists attenuated different opiate withdrawal signs. The A1 agonist R-N6(phenylisopropyl)adenosine (0, 0.01, 0.02 mg/kg, IP) significantly reduced wet dog shakes and withdrawal diarrhea, while the A2a-selective agonist 2-p-(2-carboxethyl)phenylethylamino-5'-N-ethylcarboxamido adenosine or CGS 21680 (0, 0.01, 0.05 mg/kg, IP) significantly inhibited teeth chattering and forepaw treads. Adenosine receptor antagonists enhanced different opiate withdrawal signs. The adenosine A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine (0, 1, 10 mg/kg, IP) significantly increased weight loss and the A2 antagonist, 3,7-dimethyl-1-propargylxanthine (0, 1 and 10 mg/kg, IP) enhanced wet dog shakes and withdrawal diarrhea. Treatment effects of adenosinergic agents were not due to nonspecific motor effects, as demonstrated by activity monitoring studies. These results support a role for adenosine receptors in the expression of opiate withdrawal and suggest the potential utility of adenosine agonists in its treatment. PMID:8741956

  7. Beta-1 adrenergic agonist treatment mitigates negative changes in cancellous bone microarchitecture and inhibits osteocyte apoptosis during disuse.

    PubMed

    Swift, Joshua M; Swift, Sibyl N; Allen, Matthew R; Bloomfield, Susan A

    2014-01-01

    The sympathetic nervous system (SNS) plays an important role in mediating bone remodeling. However, the exact role that beta-1 adrenergic receptors (beta1AR) have in this process has not been elucidated. We have previously demonstrated the ability of dobutamine (DOB), primarily a beta1AR agonist, to inhibit reductions in cancellous bone formation and mitigate disuse-induced loss of bone mass. The purpose of this study was to characterize the independent and combined effects of DOB and hindlimb unloading (HU) on cancellous bone microarchitecture, tissue-level bone cell activity, and osteocyte apoptosis. Male Sprague-Dawley rats, aged 6-mos, were assigned to either normal cage activity (CC) or HU (n = 18/group) for 28 days. Animals were administered either daily DOB (4 mg/kg BW/d) or an equal volume of saline (VEH) (n = 9/gp). Unloading resulted in significantly lower distal femur cancellous BV/TV (-33%), Tb.Th (-11%), and Tb.N (-25%) compared to ambulatory controls (CC-VEH). DOB treatment during HU attenuated these changes in cancellous bone microarchitecture, resulting in greater BV/TV (+29%), Tb.Th (+7%), and Tb.N (+21%) vs. HU-VEH. Distal femur cancellous vBMD (+11%) and total BMC (+8%) were significantly greater in DOB- vs. VEH-treated unloaded rats. Administration of DOB during HU resulted in significantly greater osteoid surface (+158%) and osteoblast surface (+110%) vs. HU-VEH group. Furthermore, Oc.S/BS was significantly greater in HU-DOB (+55%) vs. CC-DOB group. DOB treatment during unloading fully restored bone formation, resulting in significantly greater bone formation rate (+200%) than in HU-VEH rats. HU resulted in an increased percentage of apoptotic cancellous osteocytes (+85%), reduced osteocyte number (-16%), lower percentage of occupied osteocytic lacunae (-30%) as compared to CC-VEH, these parameters were all normalized with DOB treatment. Altogether, these data indicate that beta1AR agonist treatment during disuse mitigates negative

  8. FOXOs attenuate bone formation by suppressing Wnt signaling.

    PubMed

    Iyer, Srividhya; Ambrogini, Elena; Bartell, Shoshana M; Han, Li; Roberson, Paula K; de Cabo, Rafael; Jilka, Robert L; Weinstein, Robert S; O'Brien, Charles A; Manolagas, Stavros C; Almeida, Maria

    2013-08-01

    Wnt/β-catenin/TCF signaling stimulates bone formation and suppresses adipogenesis. The hallmarks of skeletal involution with age, on the other hand, are decreased bone formation and increased bone marrow adiposity. These changes are associated with increased oxidative stress and decreased growth factor production, which activate members of the FOXO family of transcription factors. FOXOs in turn attenuate Wnt/β-catenin signaling by diverting β-catenin from TCF- to FOXO-mediated transcription. We show herein that mice lacking Foxo1, -3, and -4 in bipotential progenitors of osteoblast and adipocytes (expressing Osterix1) exhibited increased osteoblast number and high bone mass that was maintained in old age as well as decreased adiposity in the aged bone marrow. The increased bone mass in the Foxo-deficient mice was accounted for by increased proliferation of osteoprogenitor cells and bone formation resulting from upregulation of Wnt/β-catenin signaling and cyclin D1 expression, but not changes in redox balance. Consistent with this mechanism, β-catenin deletion in Foxo null cells abrogated both the increased cyclin D1 expression and proliferation. The elucidation of a restraining effect of FOXOs on Wnt signaling in bipotential progenitors suggests that FOXO activation by accumulation of age-associated cellular stressors may be a seminal pathogenetic mechanism in the development of involutional osteoporosis. PMID:23867625

  9. Estimation of ultrasonic attenuation in a bone using coded excitation.

    PubMed

    Nowicki, A; Litniewski, J; Secomski, W; Lewin, P A; Trots, I

    2003-11-01

    This paper describes a novel approach to estimate broadband ultrasound attenuation (BUA) in a bone structure in human in vivo using coded excitation. BUA is an accepted indicator for assessment of osteoporosis. In the tested approach a coded acoustic signal is emitted and then the received echoes are compressed into brief, high amplitude pulses making use of matched filters and correlation receivers. In this way the acoustic peak pressure amplitude probing the tissue can be markedly decreased whereas the average transmitted intensity increases proportionally to the length of the code. This paper examines the properties of three different transmission schemes, based on Barker code, chirp and Golay code. The system designed is capable of generating 16 bits complementary Golay code (CGC), linear frequency modulated (LFM) chirp and 13-bit Barker code (BC) at 0.5 and 1 MHz center frequencies. Both in vivo data acquired from healthy heel bones and in vitro data obtained from human calcaneus were examined and the comparison between the results using coded excitation and two cycles sine burst is presented. It is shown that CGC system allows the effective range of frequencies employed in the measurement of broadband acoustic energy attenuation in the trabecular bone to be doubled in comparison to the standard 0.5 MHz pulse transmission. The algorithm used to calculate the pairs of Golay sequences of the different length, which provide the temporal side-lobe cancellation is also presented. Current efforts are focused on adapting the system developed for operation in pulse-echo mode; this would allow examination and diagnosis of bones with limited access such as hip bone. PMID:14585473

  10. Obeticholic acid, a synthetic bile acid agonist of the farnesoid X receptor, attenuates experimental autoimmune encephalomyelitis.

    PubMed

    Ho, Peggy P; Steinman, Lawrence

    2016-02-01

    Bile acids are ligands for the nuclear hormone receptor, farnesoid X receptor (FXR). The bile acid-FXR interaction regulates bile acid synthesis, transport, and cholesterol metabolism. Recently, bile acid-FXR regulation has been reported to play an integral role in both hepatic and intestinal inflammation, and in atherosclerosis. In this study, we found that FXR knockout mice had more disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Obeticholic acid (6α-ethyl-chenodeoxycholic acid, 6-ECDCA), a synthetic FXR agonist, is an orally available drug that is currently in clinical trials for the treatment of inflammatory diseases such as alcoholic hepatitis, nonalcoholic steatohepatitis, and primary biliary cirrhosis. When we treated mice exhibiting established EAE with 6-ECDCA, or the natural FXR ligand chenodeoxycholic acid (CDCA), clinical disease was ameliorated by (i) suppressing lymphocyte activation and proinflammatory cytokine production; (ii) reducing CD4(+) T cells and CD19(+) B cell populations and their expression of negative checkpoint regulators programmed cell death protein 1 (PD1), programmed death-ligand 1 (PD-L1), and B and T lymphocyte attenuator (BTLA); (iii) increasing CD8(+) T cells and PD1, PDl-1, and BTLA expression; and (iv) reducing VLA-4 expression in both the T- and B-cell populations. Moreover, adoptive transfer of 6-ECDCA- or CDCA-treated donor cells failed to transfer disease in naive recipients. Thus, we show that FXR functions as a negative regulator in neuroinflammation and we highlight that FXR agonists represent a potential previously unidentified therapy for MS. PMID:26811456

  11. Obeticholic acid, a synthetic bile acid agonist of the farnesoid X receptor, attenuates experimental autoimmune encephalomyelitis

    PubMed Central

    Ho, Peggy P.; Steinman, Lawrence

    2016-01-01

    Bile acids are ligands for the nuclear hormone receptor, farnesoid X receptor (FXR). The bile acid–FXR interaction regulates bile acid synthesis, transport, and cholesterol metabolism. Recently, bile acid–FXR regulation has been reported to play an integral role in both hepatic and intestinal inflammation, and in atherosclerosis. In this study, we found that FXR knockout mice had more disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Obeticholic acid (6α-ethyl-chenodeoxycholic acid, 6-ECDCA), a synthetic FXR agonist, is an orally available drug that is currently in clinical trials for the treatment of inflammatory diseases such as alcoholic hepatitis, nonalcoholic steatohepatitis, and primary biliary cirrhosis. When we treated mice exhibiting established EAE with 6-ECDCA, or the natural FXR ligand chenodeoxycholic acid (CDCA), clinical disease was ameliorated by (i) suppressing lymphocyte activation and proinflammatory cytokine production; (ii) reducing CD4+ T cells and CD19+ B cell populations and their expression of negative checkpoint regulators programmed cell death protein 1 (PD1), programmed death-ligand 1 (PD-L1), and B and T lymphocyte attenuator (BTLA); (iii) increasing CD8+ T cells and PD1, PDl-1, and BTLA expression; and (iv) reducing VLA-4 expression in both the T- and B-cell populations. Moreover, adoptive transfer of 6-ECDCA– or CDCA-treated donor cells failed to transfer disease in naive recipients. Thus, we show that FXR functions as a negative regulator in neuroinflammation and we highlight that FXR agonists represent a potential previously unidentified therapy for MS. PMID:26811456

  12. Adiponectin Agonist ADP355 Attenuates CCl4-Induced Liver Fibrosis in Mice

    PubMed Central

    Kumar, Pradeep; Smith, Tekla; Rahman, Khalidur; Thorn, Natalie E.; Anania, Frank A.

    2014-01-01

    Liver fibrosis is a growing global health problem characterized by excess deposition of fibrillar collagen, and activation of hepatic stellate cells (HSCs). Adiponectin is known to possess anti-fibrotic properties; however a high physiological concentration and multiple forms circulating in blood prohibit clinical use. Recently, an adiponectin-like small synthetic peptide agonist (ADP355: H-DAsn-Ile-Pro-Nva-Leu-Tyr-DSer-Phe-Ala-DSer-NH2) was synthesized for the treatment of murine breast cancer. The present study was designed to evaluate the efficacy of ADP355 as an anti-fibrotic agent in the in vivo carbon tetrachloride (CCl4)-induced liver fibrosis model. Liver fibrosis was induced in eight-week old male C57BL/6J mice by CCl4-gavage every other day for four weeks before injection of a nanoparticle-conjugated with ADP355 (nano-ADP355). Control gold nanoparticles and nano-ADP355 were administered by intraperitoneal injection for two weeks along with CCl4-gavage. All mice were sacrificed after 6 weeks, and serum and liver tissue were collected for biochemical, histopathologic and molecular analyses. Biochemical studies suggested ADP355 treatment attenuates liver fibrosis, determined by reduction of serum aspartate aminotransferase (AST), alanine aminotransferase ALT) and hydroxyproline. Histopathology revealed chronic CCl4-treatment results in significant fibrosis, while ADP355 treatment induced significantly reversed fibrosis. Key markers for fibrogenesis–α-smooth muscle actin (α-SMA), transforming growth factor-beta1 (TGF-β1), connective tissue growth factor (CTGF), and the tissue inhibitor of metalloproteinase I (TIMP1) were also markedly attenuated. Conversely, liver lysates from ADP355 treated mice increased phosphorylation of both endothelial nitric oxide synthase (eNOS) and AMPK while AKT phosphorylation was diminished. These findings suggest ADP355 is a potent anti-fibrotic agent that can be an effective intervention against liver fibrosis. PMID

  13. Rosiglitazone, a PPAR gamma agonist, Attenuates Inflammation After Surgical Brain Injury in Rodents

    PubMed Central

    Hyong, Amy; Jadhav, Vikram; Lee, Steve; Tong, Wenni; Rowe, Jamaine; Zhang, John H.; Tang, Jiping

    2008-01-01

    Introduction Surgical brain injury (SBI) is unavoidable during many neurosurgical procedures. This inevitable brain injury can result in postoperative complications including brain edema, blood-brain barrier disruption (BBB) and cell death in susceptible areas. Rosiglitazone (RSG), a PPAR-γ agonist, has been shown to reduce inflammation and provide neuroprotection in experimental models of ischemia and intracerebral hemorrhage. This study was designed to evaluate the neuroprotective effects of RSG in a rodent model of SBI. Methods 65 adult male Sprague-Dawley rats were randomly divided into sham, vehicle and treatment groups. RSG was administered intraperitoneally in two dosages (1mg/kg/dose, 6mg/kg/dose) 30 minutes before surgery, and 30 minutes and 4 hours after surgery. Animals were euthanized 24 hrs following neurological evaluation to assess brain edema and BBB permeability by IgG staining. Inflammation was examined using myeloperoxidase (MPO) assay and double-labeling fluorescent immunohistochemical analysis of IL-1β and TNF-α. Results Localized brain edema was observed in tissue surrounding the surgical injury. This brain edema was significantly higher in rats subjected to SBI than sham animals. Increased IgG staining was present in affected brain tissue; however, RSG reduced neither IgG staining nor brain edema. RSG also did not improve neurological status observed after SBI. RSG, however, significantly attenuated MPO activity and qualitatively decreased IL-1β and TNF-α expression compared to vehicle-treated group. Conclusion SBI causes increased brain edema, BBB disruption and inflammation localized along the periphery of the site of surgical resection. RSG attenuated inflammatory changes, however, did not improve brain edema, BBB disruption and neurological outcomes after SBI. PMID:18479673

  14. The mu/kappa agonist nalbuphine attenuates sensitization to the behavioral effects of cocaine.

    PubMed

    Smith, M A; Cole, K T; Iordanou, J C; Kerns, D C; Newsom, P C; Peitz, G W; Schmidt, K T

    2013-03-01

    Sensitization refers to an increase in sensitivity to a drug and is believed to play a role in the etiology of substance use disorders. The purpose of the present study was to evaluate the ability of the mixed mu/kappa agonist nalbuphine to modulate sensitization to the locomotor and positive reinforcing effects of cocaine. Rats were habituated to a locomotor activity chamber and treated with saline (1.0 ml/kg, ip), cocaine (10 mg/kg, ip), or cocaine+nalbuphine (10 mg/kg, ip) every day for 10 days. Following locomotor activity testing, rats were implanted with intravenous catheters and cocaine self-administration was examined on fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement. Rats treated with cocaine exhibited a progressive increase in locomotor activity over the 10-day treatment period, and this effect was significantly reduced in rats treated with cocaine+nalbuphine. In self-administration tests, rats treated with cocaine exhibited significantly higher levels of responding at a threshold dose of cocaine (0.03 mg/kg/infusion) on both FR and PR schedules than rats treated with saline. This increase in responding at a threshold dose of cocaine was blocked completely in rats treated with cocaine+nalbuphine. These data suggest that nalbuphine attenuates the development of sensitization to the behavioral effects of cocaine. PMID:23305678

  15. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    SciTech Connect

    Hasegawa-Moriyama, Maiko; Ohnou, Tetsuya; Godai, Kohei; Kurimoto, Tae; Nakama, Mayo; Kanmura, Yuichi

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functions linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased, whereas

  16. Phosphodiesterase 4 Inhibitors Attenuate the Asthma Phenotype Produced by β2-Adrenoceptor Agonists in Phenylethanolamine N-Methyltransferase-Knockout Mice.

    PubMed

    Forkuo, Gloria S; Kim, Hosu; Thanawala, Vaidehi J; Al-Sawalha, Nour; Valdez, Daniel; Joshi, Radhika; Parra, Sergio; Pera, Tonio; Gonnella, Patricia A; Knoll, Brian J; Walker, Julia K L; Penn, Raymond B; Bond, Richard A

    2016-08-01

    Mice lacking the endogenous β2-adrenoceptor (β2AR) agonist epinephrine (phenylethanolamine N-methyltransferase [PNMT]-knockout mice) are resistant to developing an "asthma-like" phenotype in an ovalbumin sensitization and challenge (Ova S/C) model, and chronic administration of β2AR agonists to PNMT-KO mice restores the phenotype. Based on these and other studies showing differential effects of various β2AR ligands on the asthma phenotype, we have speculated that the permissive effect of endogenous epinephrine and exogenous β2AR agonists on allergic lung inflammation can be explained by qualitative β2AR signaling. The β2AR can signal through at least two pathways: the canonical Gαs-cAMP pathway and a β-arrestin-dependent pathway. Previous studies suggest that β-arrestin-2 is required for allergic lung inflammation. On the other hand, cell-based assays suggest antiinflammatory effects of Gαs-cAMP signaling. This study was designed to test whether the in vitro antiinflammatory effects of phosphodiesterase 4 inhibitors, known to increase intracellular cAMP in multiple airway cell types, attenuate the asthma-like phenotype produced by the β2AR agonists formoterol and salmeterol in vivo in PNMT-KO mice, based on the hypothesis that skewing β2AR signaling toward Gαs-cAMP pathway is beneficial. Airway inflammatory cells, epithelial mucus production, and airway hyperresponsiveness were quantified. In Ova S/C PNMT-KO mice, formoterol and salmeterol restored the asthma-like phenotype comparable to Ova S/C wild-type mice. However, coadministration of either roflumilast or rolipram attenuated this formoterol- or salmeterol-driven phenotype in Ova S/C PNMT-KO. These findings suggest that amplification of β2AR-mediated cAMP by phosphodiesterase 4 inhibitors attenuates the asthma-like phenotype promoted by β-agonists. PMID:26909542

  17. The 5-HT1A agonists 8-OH-DPAT, buspirone and ipsapirone attenuate stress-induced anorexia in rats.

    PubMed

    Dourish, C T; Kennett, G A; Curzon, G

    1987-01-01

    The effects of 5-HT agonists and antagonists, benzodiazepine anxiolytics and tricyclic antidepressants on restraint stress-induced anorexia in rats were examined. The selective 5-HT(1A) agonists 8-hydroxy-2-(di- n-propylamino)tetralin (8-OH-DPAT), buspirone and ipsapirone, when injected 2 h after the termination of stress, attenuated stress-induced anor exia and body weight loss. The effects of 8-OH-DPAT on stress-induced anorexia were blocked by the 5-HT(1A) antagonist spiperone but not by the 5-HT(2) antagonist ketanserin. The preferential 5-HT(1B) agonists RU-24969 and quipazine induced anorexia in unstressed rats and tended to supplement the anorectic effects of stress. The benzodiazepines chlordiazepoxide and diazepam and the 5-HT antagonist cyproheptadine had no effect on stress-induced anorexia, when given (like the 5-HT(1A) agonists) 2 h after the stress. Similarly, daily injection for 2 weeks of the tricyclic antidepressants desipramine and sertraline had no beneficial effect. The data suggest that 8-OH-DPAT, buspirone and ipsapirone attenuate stress-induced anorexia in rodents by a hyperphagic action on 5-HT(1A) receptors. PMID:22158750

  18. Repeated beta-2 adrenergic receptor agonist therapy attenuates the response to rescue bronchodilation in a hyperoxic newborn mouse model

    PubMed Central

    Raffay, Thomas; Kc, Prabha; Reynolds, James; Di Fiore, Juliann; MacFarlane, Peter; Martin, Richard

    2014-01-01

    Background Preterm infants with neonatal lung injury are prone to wheezing and are often treated with beta-2 adrenergic receptor (β-AR) agonists although any benefits of β-AR agonists may be lost with chronic use. Objective To investigate if repeated β-AR agonist exposures would down-regulate β-ARs in the immature lung resulting in a decreased response to bronchodilator rescue and whether hyperoxic exposure would aggravate this response. Methods Newborn mice were raised for 21 days in 60% or 21% oxygen and received daily aerosols of formoterol or saline. Respiratory system resistance (Rrs) and compliance (Crs) were measured in response to methacholine challenge and rescue bronchodilation with levalbuterol. Western blot analysis quantified the relative amount of lung β-ARs. Results Hyperoxia increased airway reactivity to methacholine. Animals raised in hyperoxia that received daily formoterol were most sensitive to methacholine and exhibited a blunted response to levalbuterol bronchodilation. Hyperoxia exposed animals receiving daily formoterol vs saline showed a significant decrease in the relative amount of lung β-ARs. Conclusions In this hyperoxia exposed neonatal mouse model, repeated β-AR agonist treatments increased airway reactivity and attenuated the response to a rescue bronchodilator. The blunted bronchodilator response could be explained by a reduced quantity of lung β-ARs. Our findings may account for a time-dependent decrease in therapeutic benefit of β-AR agonists in preterm infants with neonatal lung injury, which may have clinical consequences for patients already prone to airway hyperreactivity. PMID:24969536

  19. Adenosine A(3) receptor agonist acts as a homeostatic regulator of bone marrow hematopoiesis.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Vacek, Antonín; Streitová, Denisa

    2007-07-01

    The present study was performed to define the optimum conditions of the stimulatory action of the adenosine A(3) receptor agonist, N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), on bone marrow hematopoiesis in mice. Effects of 2-day treatment with IB-MECA given at single doses of 200nmol/kg twice daily were investigated in normal mice and in mice whose femoral bone marrow cells were either depleted or regenerating after pretreatment with the cytotoxic drug 5-fluorouracil. Morphological criteria were used to determine the proliferation state of the granulocytic and erythroid cell systems. Significant negative correlation between the control proliferation state and the increase of cell proliferation after IB-MECA treatment irrespective of the cell lineage investigated was found. The results suggest the homeostatic character of the induced stimulatory effects and the need to respect the functional state of the target tissue when investigating effects of adenosine receptor agonists under in vivo conditions. PMID:17383145

  20. β2-Adrenergic agonists attenuate organic dust-induced lung inflammation.

    PubMed

    Romberger, Debra J; Heires, Art J; Nordgren, Tara M; Poole, Jill A; Toews, Myron L; West, William W; Wyatt, Todd A

    2016-07-01

    Agricultural dust exposure results in significant lung inflammation, and individuals working in concentrated animal feeding operations (CAFOs) are at risk for chronic airway inflammatory diseases. Exposure of bronchial epithelial cells to aqueous extracts of hog CAFO dusts (HDE) leads to inflammatory cytokine production that is driven by protein kinase C (PKC) activation. cAMP-dependent protein kinase (PKA)-activating agents can inhibit PKC activation in epithelial cells, leading to reduced inflammatory cytokine production following HDE exposure. β2-Adrenergic receptor agonists (β2-agonists) activate PKA, and we hypothesized that β2-agonists would beneficially impact HDE-induced adverse airway inflammatory consequences. Bronchial epithelial cells were cultured with the short-acting β2-agonist salbutamol or the long-acting β2-agonist salmeterol prior to stimulation with HDE. β2-Agonist treatment significantly increased PKA activation and significantly decreased HDE-stimulated IL-6 and IL-8 production in a concentration- and time-dependent manner. Salbutamol treatment significantly reduced HDE-induced intracellular adhesion molecule-1 expression and neutrophil adhesion to epithelial cells. Using an established intranasal inhalation exposure model, we found that salbutamol pretreatment reduced airway neutrophil influx and IL-6, TNF-α, CXCL1, and CXCL2 release in bronchoalveolar lavage fluid following a one-time exposure to HDE. Likewise, when mice were pretreated daily with salbutamol prior to HDE exposure for 3 wk, HDE-induced neutrophil influx and inflammatory mediator production were also reduced. The severity of HDE-induced lung pathology in mice repetitively exposed to HDE for 3 wk was also decreased with daily salbutamol pretreatment. Together, these results support the need for future clinical investigations to evaluate the utility of β2-agonist therapies in the treatment of airway inflammation associated with CAFO dust exposure. PMID:27190062

  1. Effects of the NOP agonist SCH221510 on producing and attenuating reinforcing effects as measured by drug self-administration in rats

    PubMed Central

    Sukhtankar, Devki D.; Lagorio, Carla H.; Ko, Mei-Chuan

    2014-01-01

    Nociceptin/orphanin FQ peptide (NOP) receptor agonists attenuate morphine-induced conditioned place preference in rodents. However, it is not known whether NOP agonists have reinforcing properties or can inhibit mu opioid receptor (MOP)-mediated reinforcement as measured by drug self-administration in rodents. Further understanding the behavioral effects of NOP agonists could suggest them as having potential in attenuating reinforcing effects of opioids. In the first part of the study, reinforcing properties of selective NOP agonist SCH221510 were determined and compared with the full MOP agonist remifentanil under fixed-ratio 5 (FR5) and progressive-ratio (PR) schedules of drug self-administration. In the second part, effects of systemic and intracisternal pretreatment of SCH221510 were determined and compared with MOP antagonist naltrexone in attenuating reinforcing effects of remifentanil and a non-drug reinforcer (sucrose pellets). Remifentanil self-administration (0.3-10 μg/kg/infusion) generated a biphasic dose-response curve, characteristic of drugs with reinforcing properties. SCH221510 (3-300 μg/kg/infusion) self-administration resulted in flat dose-response curves and early break-points under the PR, indicative of drugs lacking reinforcing value. Intracisternally, but not systemically, administered SCH221510 (0.3-3 μg) attenuated remifentanil self-administration, comparable with systemic naltrexone (0.03-0.3 mg/kg). SCH221510 (1-3 μg), unlike naltrexone (0.03-1 mg/kg), attenuated responding for sucrose pellets. Both effects of SCH221510 were reversed by the NOP antagonist J-113397 (0.3-3 μg). These results suggest that SCH221510 does not function as a reinforcer in rats, and that it can attenuate the reinforcing value of MOP agonists; therefore, the potential utility of NOP agonists for the treatment of drug addiction warrants further evaluation. PMID:25446568

  2. A novel natural Nrf2 activator with PPARγ-agonist (monascin) attenuates the toxicity of methylglyoxal and hyperglycemia

    SciTech Connect

    Hsu, Wei-Hsuan; Lee, Bao-Hong; Chang, Yu-Ying; Hsu, Ya-Wen; Pan, Tzu-Ming

    2013-11-01

    Methylglyoxal (MG) is a toxic-glucose metabolite and a major precursor of advanced glycation endproducts (AGEs). MG has been reported to result in inflammation by activating receptor for AGEs (RAGE). We recently found that Monascus-fermented metabolite monascin acts as a novel natural peroxisome proliferator-activated receptor-γ (PPARγ) agonist that improves insulin sensitivity. We investigated the metabolic, biochemical, and molecular abnormalities characteristic of type 2 diabetes in MG-treated Wistar rats treated with oral administration of monascin or rosiglitazone. Monascin (a novel PPARγ agonist) activated nuclear factor-erythroid 2-related factor 2 (Nrf2) and down-regulated hyperinsulinmia in oral glucose tolerance test (OGTT). Monascin was able to elevate glyoxalase-1 expression via activation of hepatic Nrf2, hence, resulting in MG metabolism to D-lactic acid and protected from AGEs production in MG-treated rats. Rosiglitazone did not activate Nrf2 nor glyoxalase expression to lower serum and hepatic AGEs levels. Monascin acts as a novel natural Nrf2 activator with PPARγ-agonist activity were confirmed by Nrf2 and PPARγ reporter assays in Hep G2 cells. These findings suggest that monascin acts as an anti-diabetic and anti-oxidative stress agent to a greater degree than rosiglitazone and thus may have therapeutic potential for the prevention of diabetes. - Highlights: • Monascin acts as a PPARgamma agonist. • Monascin activates Nrf2 and AMPK. • Monascin promotes MG metabolism into D-lactic acid. • Monascin attenuates inflammation and diabetes in vivo.

  3. Accuracy of CT-based attenuation correction in PET/CT bone imaging

    NASA Astrophysics Data System (ADS)

    Abella, Monica; Alessio, Adam M.; Mankoff, David A.; MacDonald, Lawrence R.; Vaquero, Juan Jose; Desco, Manuel; Kinahan, Paul E.

    2012-05-01

    We evaluate the accuracy of scaling CT images for attenuation correction of PET data measured for bone. While the standard tri-linear approach has been well tested for soft tissues, the impact of CT-based attenuation correction on the accuracy of tracer uptake in bone has not been reported in detail. We measured the accuracy of attenuation coefficients of bovine femur segments and patient data using a tri-linear method applied to CT images obtained at different kVp settings. Attenuation values at 511 keV obtained with a 68Ga/68Ge transmission scan were used as a reference standard. The impact of inaccurate attenuation images on PET standardized uptake values (SUVs) was then evaluated using simulated emission images and emission images from five patients with elevated levels of FDG uptake in bone at disease sites. The CT-based linear attenuation images of the bovine femur segments underestimated the true values by 2.9 ± 0.3% for cancellous bone regardless of kVp. For compact bone the underestimation ranged from 1.3% at 140 kVp to 14.1% at 80 kVp. In the patient scans at 140 kVp the underestimation was approximately 2% averaged over all bony regions. The sensitivity analysis indicated that errors in PET SUVs in bone are approximately proportional to errors in the estimated attenuation coefficients for the same regions. The variability in SUV bias also increased approximately linearly with the error in linear attenuation coefficients. These results suggest that bias in bone uptake SUVs of PET tracers ranges from 2.4% to 5.9% when using CT scans at 140 and 120 kVp for attenuation correction. Lower kVp scans have the potential for considerably more error in dense bone. This bias is present in any PET tracer with bone uptake but may be clinically insignificant for many imaging tasks. However, errors from CT-based attenuation correction methods should be carefully evaluated if quantitation of tracer uptake in bone is important.

  4. The Extravehicular Suit Impact Load Attenuation Study for Use in Astronaut Bone Fracture Prediction

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Gilkey, Kelly M.; Sulkowski, Christina M.; Samorezov, Sergey; Myers, Jerry G.

    2011-01-01

    The NASA Integrated Medical Model (IMM) assesses the risk, including likelihood and impact of occurrence, of all credible in-flight medical conditions. Fracture of the proximal femur is a traumatic injury that would likely result in loss of mission if it were to happen during spaceflight. The low gravity exposure causes decreases in bone mineral density which heightens the concern. Researchers at the NASA Glenn Research Center have quantified bone fracture probability during spaceflight with a probabilistic model. It was assumed that a pressurized extravehicular activity (EVA) suit would attenuate load during a fall, but no supporting data was available. The suit impact load attenuation study was performed to collect analogous data. METHODS: A pressurized EVA suit analog test bed was used to study how the offset, defined as the gap between the suit and the astronaut s body, impact load magnitude and suit operating pressure affects the attenuation of impact load. The attenuation data was incorporated into the probabilistic model of bone fracture as a function of these factors, replacing a load attenuation value based on commercial hip protectors. RESULTS: Load attenuation was more dependent on offset than on pressurization or load magnitude, especially at small offsets. Load attenuation factors for offsets between 0.1 - 1.5 cm were 0.69 +/- 0.15, 0.49 +/- 0.22 and 0.35 +/- 0.18 for mean impact forces of 4827, 6400 and 8467 N, respectively. Load attenuation factors for offsets of 2.8 - 5.3 cm were 0.93 +/- 0.2, 0.94 +/- 0.1 and 0.84 +/- 0.5, for the same mean impact forces. Reductions were observed in the 95th percentile confidence interval of the bone fracture probability predictions. CONCLUSIONS: The reduction in uncertainty and improved confidence in bone fracture predictions increased the fidelity and credibility of the fracture risk model and its benefit to mission design and operational decisions.

  5. Phase velocity and attenuation predictions of waves in cancellous bone using an iterative effective medium approximation.

    PubMed

    Potsika, Vassiliki T; Protopappas, Vasilios C; Vavva, Maria G; Polyzos, Demosthenes; Fotiadis, Dimitrios I

    2013-01-01

    The quantitative determination of wave dispersion and attenuation in bone is an open research area as the factors responsible for ultrasound absorption and scattering in composite biological tissues have not been completely explained. In this study, we use the iterative effective medium approximation (IEMA) proposed in [1] so as to calculate phase velocity and attenuation in media with properties similar to those of cancellous bones. Calculations are performed for a frequency range of 0.4-0.8 MHz and for different inclusions' volume concentrations and sizes. Our numerical results are compared with previous experimental findings so as to assess the effectiveness of IEMA. It was made clear that attenuation and phase velocity estimations could provide supplementary information for cancellous bone characterization. PMID:24111396

  6. Antinociceptive effect of intrathecal cannabinoid receptor agonist WIN 55,212-2 in a rat bone tumor pain model.

    PubMed

    Cui, Jin Hua; Kim, Woong Mo; Lee, Hyung Gon; Kim, Ye Ok; Kim, Chang Mo; Yoon, Myung Ha

    2011-04-15

    Bone tumor pain is a poorly controlled pain comprising background and severe pain on moving or weight-bearing postures that decreases the quality of life for cancer patients; thus, more effective analgesics are clearly needed. This study evaluated the efficacy of a cannabinoid (CB) receptor agonist (WIN 55,212-2) on bone tumor pain in the spinal cords of rats, and clarified the roles of the CB1 and CB2 receptors in WIN 55,212-2-induced antinociception at the spinal level. Bone tumor pain was induced by injecting MRMT-1 tumor cells (1×10(5)) into the right tibias of female Sprague-Dawley rats under sevoflurane anesthesia. Bone tumor development was monitored radiologically. Under sevoflurane anesthesia, a polyethylene catheter was inserted into the intrathecal space for drug administration. To assess pain, the withdrawal threshold was measured by applying a von Frey filament to the tumor cell inoculation site. The effect of intrathecal WIN 55,212-2 was investigated. Next, the WIN 55,212-2-mediated antinociception was reversed using CB1 (AM 251) and CB2 (AM 630) receptor antagonists. The intratibial injection of MRMT-1 tumor cells produced radiologically confirmed bone tumors. The paw withdrawal threshold decreased significantly (mechanical allodynia) with tumor development; however, intrathecal WIN 55,212-2 dose-dependently increased the withdrawal threshold. The antinociceptive effect of WIN 55,212-2 was reversed by both CB1 and CB2 receptor antagonists. Intrathecal WIN 55,212-2 reduced bone tumor-related pain behavior mediated via spinal CB1 and CB2 receptors. Therefore, spinal CB receptor agonists may be novel analgesics in the treatment of bone tumor pain. PMID:21195743

  7. The non-selective cannabinoid receptor agonist WIN 55,212-2 attenuates responses of C-fiber nociceptors in a murine model of cancer pain

    PubMed Central

    Uhelski, Megan L.; Cain, David M.; Harding-Rose, Catherine; Simone, Donald A.

    2013-01-01

    Pain from cancer can be severe, difficult to treat, and greatly diminishes patients’ quality of life. It is therefore important to gain new information on the mechanisms of cancer pain and develop new treatment strategies. We have used a murine model of bone cancer pain to investigate underlying peripheral neural mechanisms and novel treatment approaches. In this model, implantation of fibrosarcoma cells into and around the calcaneous bone produces mechanical and thermal hyperalgesia in mice. C-fiber nociceptors in tumor-bearing mice develop spontaneous ongoing activity and sensitization to thermal stimuli. However, it is unclear whether sensitization of nociceptors to mechanical stimuli underlies the mechanical hyperalgesia seen in tumor-bearing mice. We therefore examined responses of C-fiber nociceptors to suprathreshold mechanical stimuli in tumor-bearing mice and found they did not differ from those of C-nociceptors in control mice. Thus, sensitization of C-fiber nociceptors to mechanical stimulation does not appear to underlie tumor-evoked mechanical hyperalgesia in this murine model of bone cancer pain. We also examined the effect of the non-selective cannabinoid receptor agonist, WIN 55, 212-2, on spontaneous activity and responses evoked by mechanical stimuli of C-fiber nociceptors innervating the tumor-bearing paw. Selective CB1 and CB2 antagonists were administered to determine the contribution of each receptor subtype to the effects of WIN 55,212-2. Intraplantar administration of WIN 55,212-2 attenuated spontaneous discharge and responses evoked by mechanical stimulation of C-fiber nociceptors. These effects were inhibited by prior intraplantar administration of selective CB1 (AM281) or CB2 (AM630) receptor antagonists but not by vehicle. These results indicate that activation of either CB1 or CB2 receptors reduced the spontaneous activity of C-fiber nociceptors associated with tumor growth as well as their evoked responses. Our results provide

  8. The PPARγ agonist, rosiglitazone, attenuates airway inflammation and remodeling via heme oxygenase-1 in murine model of asthma

    PubMed Central

    Xu, Jing; Zhu, Yan-ting; Wang, Gui-zuo; Han, Dong; Wu, Yuan-yuan; Zhang, De-xin; Liu, Yun; Zhang, Yong-hong; Xie, Xin-ming; Li, Shao-jun; Lu, Jia-mei; Liu, Lu; Feng, Wei; Sun, Xiu-zhen; Li, Man-xiang

    2015-01-01

    Aim: Rosiglitazone is one of the specific PPARγ agonists showing potential therapeutic effects in asthma. Though PPARγ activation was considered protective in inhibiting airway inflammation and remodeling in asthma, the specific mechanisms are still unclear. This study was aimed to investigate whether heme oxygenase-1 (HO-1) related pathways were involved in rosiglitazone-activated PPARγ signaling in asthma treatment. Methods: Asthma was induced in mice by multiple exposures to ovalbumin (OVA) in 8 weeks. Prior to every OVA challenge, the mice received rosiglitazone (5 mg/kg, po). After the mice were sacrificed, the bronchoalveolar lavage fluid (BALF), blood samples and lungs were collected for analyses. The activities of HO-1, MMP-2 and MMP-9 in airway tissue were assessed, and the expression of PPARγ, HO-1 and p21 proteins was also examined. Results: Rosiglitazone administration significantly attenuated airway inflammation and remodeling in mice with OVA-induced asthma, which were evidenced by decreased counts of total cells, eosinophils and neutrophils, and decreased levels of IL-5 and IL-13 in BALF, and by decreased airway smooth muscle layer thickness and reduced airway collagen deposition. Furthermore, rosiglitazone administration significantly increased PPARγ, HO-1 and p21 expression and HO-1 activity, decreased MMP-2 and MMP-9 activities in airway tissue. All the therapeutic effects of rosiglitazone were significantly impaired by co-administration of the HO-1 inhibitor ZnPP. Conclusion: Rosiglitazone effectively attenuates airway inflammation and remodeling in OVA- induced asthma of mice by activating PPARγ/HO-1 signaling pathway. PMID:25619395

  9. A multiscale poromicromechanical approach to wave propagation and attenuation in bone.

    PubMed

    Morin, Claire; Hellmich, Christian

    2014-07-01

    Ultrasonics is an important diagnostic tool for bone diseases, as it allows for non-invasive assessment of bone tissue quality through mass density-elasticity relationships. The latter are, however, quite complex for fluid-filled porous media, which motivates us to develop a rigorous multiscale poromicrodynamics approach valid across the great variety of different bone tissues. Multiscale momentum and mass balance, as well as kinematics of a hierarchical double porous medium, together with Darcy's law for fluid flow and micro-poro-elasticity for the solid phase of bone, give access to the so-called dispersion relation, linking the complex wave numbers to corresponding wave frequencies. Experimentally validated results show that 2.25 MHz acoustical signals transmit healthy cortical bone (exhibiting a low vascular porosity) only in the form of fast waves, agreeing very well with experimental data, while both fast and slow waves transmit highly osteoporotic as well as trabecular bone (exhibiting a large vascular porosity). While velocities and wavelengths of both fast and slow waves, as well as attenuation lengths of slow waves, are always monotonously increasing with the permeability of the bone sample, the attenuation length of fast waves shows a minimum when considered as function of the permeability. PMID:24457030

  10. VTX-1463, a novel TLR-8 agonist, attenuates nasal congestion after ragweed challenge in sensitized beagle dogs.

    PubMed

    Royer, Christopher M; Rudolph, Karin; Dietsch, Gregory N; Hershberg, Robert M; Barrett, Edward G

    2016-03-01

    VTX-1463 is a selective toll-like receptor (TLR) 8 agonist that activates a subset of innate immune cells to produce a unique cytokine profile. Delivery of VTX-1463 via nasal spray may modulate the nasal response in allergic rhinitis. The aim of this study was to determine the effects of VTX-1463 on the nasal response in a dog model of allergic rhinitis. Ragweed (RW)-sensitized dogs were pretreated with increasing doses of VTX-1463 1 day prior to RW challenge or with two doses (4 or 8 days and 1 day prior to RW). Changes in nasal cavity volume (NV) were determined by acoustic rhinometry and nasal lavage fluid was assessed for histamine, lipid mediators, and cellular infiltrates at sequential times following RW challenge. VTX-1463 pretreatment significantly preserved NV during the acute response to RW challenge for all doses tested. The area under the curve (AUC) for NV over the 1.5 h assessment period in RW challenged vehicle controls averaged 51.5% (SEM: ±2.12%) of the baseline NV over all studies. A single 100 µg dose of VTX-1463 given 1 day prior to RW yielded an AUC for NV of 69.3% (±6.59%) of baseline, while a 1000 µg dose administered twice (8 days and 1 day prior to RW) resulted in an AUC for NV of 85.4% (±4.74%, P < 0.05) of baseline. For a single 1000 µg VTX-1463 dose 1 day prior to RW, multiple mediators produced by mast cells, including histamine, PGE2, PGD2, and cysteinyl LTs, were significantly reduced relative to the vehicle control. The selective TLR8 agonist, VTX-1463, preserved NV in a dose-dependent manner in the acute phase of a nasal allergic response. The therapeutic effect appears to result from attenuated mast cell mediator release. Modulating the local cytokine response via TLR8 agonism appears to have a therapeutic effect on the acute allergic nasal response. PMID:27042301

  11. Numerical investigation of ultrasonic attenuation through 2D trabecular bone structures reconstructed from CT scans and random realizations.

    PubMed

    Gilbert, Robert P; Guyenne, Philippe; Li, Jing

    2014-02-01

    In this paper, we compare ultrasound interrogations of actual CT-scanned images of trabecular bone with artificial randomly constructed bone. Even though it is known that actual bone does not have randomly distributed trabeculae, we find that the ultrasound attenuations are close enough to cast doubt on any microstructural information, such as trabeculae width and distance between trabeculae, being gleaned from such experiments. More precisely, we perform numerical simulations of ultrasound interrogation on cancellous bone to investigate the phenomenon of ultrasound attenuation as a function of excitation frequency and bone porosity. The theoretical model is based on acoustic propagation equations for a composite fluid-solid material and is solved by a staggered-grid finite-difference scheme in the time domain. Numerical experiments are performed on two-dimensional bone samples reconstructed from CT-scanned images of real human calcaneus and from random distributions of fluid-solid particles generated via the turning bands method. A detailed comparison is performed on various parameters such as the attenuation rate and speed of sound through the bone samples as well as the normalized broadband ultrasound attenuation coefficient. Comparing results from these two types of bone samples allows us to assess the role of bone microstructure in ultrasound attenuation. It is found that the random model provides suitable bone samples for ultrasound interrogation in the transverse direction of the trabecular network. PMID:24480174

  12. The nonlinear transition period of broadband ultrasound attenuation as bone density varies.

    PubMed

    Serpe, L; Rho, J Y

    1996-07-01

    The purpose of this study was to determine whether a transition period occurs between cortical and cancellous bone in the relationship between ultrasound parameters [broadband ultrasound attenuation (BUA) and ultrasonic velocity] and density. Twenty-two cancellous bone discs wee obtained from proximal bovine tibiae. Also included were three samples of human vertebral cancellous bone from an elderly female and four samples of bovine cortical bone. Ultrasonic velocity did not show any transition period as density varied from cancellous to cortical bone. Ultrasonic velocity exhibited a definite linear dependence on density over the entire range examined. However, BUA has shown a transition period as density varied. Although BUA increased linearly with density for a low density cancellous bone tested (below 0.64 g cm-3), the dependence of BUA on density is nonlinear with a downwardly inflected parabola shape when covering a wide density range (0.130-0.913 g cm-3) of cancellous bone. When one includes cortical bone, the parabola tends to level off in a slow exponential decay. This nonlinear dependence may help to understand the characteristics of BUA measurement. PMID:8809627

  13. A Dopamine Receptor D2-Type Agonist Attenuates the Ability of Stress to Alter Sleep in Mice

    PubMed Central

    Jefferson, F.; Ehlen, J. C.; Williams, N. S.; Montemarano, J. J.

    2014-01-01

    Although sleep disruptions that accompany stress reduce quality of life and deteriorate health, the mechanisms through which stress alters sleep remain obscure. Psychological stress can alter sleep in a variety of ways, but it has been shown to be particularly influential on rapid eye movement (REM) sleep. Prolactin (PRL), a sexually dimorphic, stress-sensitive hormone whose basal levels are higher in females, has somnogenic effects on REM sleep. In the current study, we examined the relationship between PRL secretion and REM sleep after restraint stress to determine whether: 1) the ability of stress to increase REM sleep is PRL-dependent, and 2) fluctuating PRL levels underlie sex differences in sleep responses to stress. Because dopamine D2 receptors in the pituitary gland are the primary regulator of PRL secretion, D2 receptor agonist, 1-[(6-allylergolin-8β-yl)-carbonyl]-1-[3-(dimethylamino) propyl]-3-ethylurea (cabergoline), was used to attenuate PRL levels in mice before 1 hour of restraint stress. Mice were implanted with electroencephalographic/electromyographic recording electrodes and received an ip injection of either 0.3-mg/kg cabergoline or vehicle before a control procedure of 1 hour of sleep deprivation by gentle handling during the light phase. Six days after the control procedure, mice received cabergoline or vehicle 15 minutes before 1 hour of restraint stress. Cabergoline blocked the ability of restraint stress to increase REM sleep amount in males but did not alter REM sleep amount after stress in females even though it reduced basal REM sleep amount in female controls. These data provide evidence that the ability for restraint stress to increase REM sleep is dependent on PRL and that sex differences in REM sleep amount may be driven by PRL. PMID:25157453

  14. Analysis of gait in rats with olivocerebellar lesions and ability of the nicotinic acetylcholine receptor agonist varenicline to attenuate impairments.

    PubMed

    Lambert, C S; Philpot, R M; Engberg, M E; Johns, B E; Wecker, L

    2015-09-15

    Studies have demonstrated that administration of the neuronal nicotinic receptor agonist varenicline to rats with olivocerebellar lesions attenuates balance deficits on a rotorod and balance beam, but the effects of this drug on gait deficits have not been investigated. To accomplish this, male Sprague-Dawley rats were trained to walk on a motorized treadmill at 25 and 35 cm/s and baseline performance determined; both temporal and spatial gait parameters were analyzed. A principal component analysis (PCA) was used to identify the key components of gait, and the cumulative gait index (CGI) was calculated, representing deviations from prototypical gait patterns. Subsequently, animals either remained as non-lesioned controls or received injections of 3-acetylpyridine (3-AP)/nicotinamide to destroy the climbing fibers innervating Purkinje cells. The gait of the non-lesioned group was assessed weekly to monitor changes in the normal population, while the gait of the lesioned group was assessed 1 week following 3-AP administration, and weekly following the daily administration of saline or varenicline (0.3, 1.0, or 3.0mg free base/kg) for 2 weeks. Non-lesioned animals exhibited a 60-70% increased CGI over time due to increases in temporal gait measures, whereas lesioned animals exhibited a nearly 3-fold increased CGI as a consequence of increases in spatial measures. Following 2 weeks of treatment with the highest dose of varenicline (3.0mg free base/kg), the swing duration of lesioned animals normalized, and stride duration, stride length and step angle in this population did not differ from the non-lesioned population. Thus, varenicline enabled animals to compensate for their impairments and rectify the timing of the gait cycle. PMID:26049061

  15. Hypothalamic neuropeptide Y (NPY) and the attenuation of hyperphagia in streptozotocin diabetic rats treated with dopamine D1/D2 agonists

    PubMed Central

    Kuo, Dong-Yih

    2006-01-01

    Dopamine is an appetite suppressant, while neuropeptide Y (NPY), an appetite stimulant in the brain, is reported to be involved in anorectic action induced by a combined administration of D1/D2 agonists in normal rats. In diabetic rats, however, these factors have not been studied. Rats (including normal, diabetic and insulin-treated diabetic rats) were given daily injections of saline or D1/D2 agonists for 6 days. Changes in food intake and hypothalamic NPY content of these rats were assessed and compared. The D1/D2 agonist-induced anorectic responses were altered in diabetic rats compared to normal rats treated similarly. Both the anorectic response on the first day of dosing and the tolerant response on the subsequent days were attenuated. This alteration was independent of the neuroendocrine disturbance on feeding behavior since the basic pattern of food intake during the time course of a 24-h day/night cycle was similar in normal and diabetic rats; the decrease of food intake following drug treatment was only shown at the initial interval of 0–6 h in both groups of rats. However, this alteration coincided with changes in NPY content following D1/D2 coadministration. The replacement of insulin in diabetic rats could normalize both NPY content and D1/D2 agonist-induced anorexia. It is demonstrated that the response of D1/D2 agonist-induced appetite suppression is attenuated in diabetic rats compared to normal rats and that elevated hypothalamic NPY content may contribute to this alteration. PMID:16702993

  16. Attenuation of the stimulant response to ethanol is associated with enhanced ataxia for a GABAA, but not a GABAB, receptor agonist

    PubMed Central

    Holstein, Sarah E.; Dobbs, Lauren; Phillips, Tamara J.

    2008-01-01

    Background The γ-aminobutyric acid (GABA) system is implicated in the neurobiological actions of ethanol, and pharmacological agents that increase the activity of this system have been proposed as potential treatments for alcohol use disorders. As ethanol has its own GABA mimetic properties, it is critical to determine the mechanism by which GABAergic drugs may reduce the response to ethanol (i.e. via an inhibition or an accentuation of the neurobiological effects of ethanol). Methods In the present study, we examined the ability of three different types of GABAergic compounds, the GABA reuptake inhibitor NO-711, the GABAA receptor agonist muscimol, and the GABAB receptor agonist baclofen, to attenuate the locomotor stimulant response to ethanol in FAST mice, which were selectively bred for extreme sensitivity to ethanol-induced locomotor stimulation. In order to determine whether these compounds produced a specific reduction in stimulation, their effects on ethanol-induced motor incoordination were also examined. Results NO-711, muscimol, and baclofen were all found to potently attenuate the locomotor stimulant response to ethanol in FAST mice. However, both NO-711 and muscimol produced a marked increase in ethanol-induced ataxia, whereas baclofen did not accentuate this response. Conclusions These results suggest that pharmacological agents that increase extracellular concentrations of GABA and GABAA receptor activity may attenuate the stimulant effects of ethanol by accentuating its intoxicating and sedative properties. However, selective activation of the GABAB receptor appears to produce a specific attenuation of ethanol-induced stimulation, suggesting that GABAB receptor agonists may hold greater promise as potential pharmacotherapies for alcohol use disorders. PMID:18945218

  17. Atorvastatin Attenuates Bone Loss and Aortic Valve Atheroma in LDLR Mice.

    PubMed

    Rajamannan, Nalini M

    2015-01-01

    Atherosclerosis and osteoporosis are the leading causes of mortality and morbidity. The objective of this study was to test this hypothesis in experimental hypercholesterolemia to determine whether statins play a protective role in this process. LDLR(-/-) mice (n = 60) were allocated to the following groups: group I (n = 20), normal diet; group II (n = 20), 0.25% (w/w) cholesterol diet (w/w), and group III (n = 20), 0.25% (w/w) cholesterol diet + atorvastatin for 48 weeks. Examination of aortic valves (AVA) and femurs for atherosclerosis and calcification markers included micro-CT, special stains, and calcein incorporation. The cholesterol diet induced bone formation in calcified AVA and an increase in macrophage infiltration. Hyperlipidemic bones expressed an increase in osteoclast cells and a decrease in bone formation. Atorvastatin reduced atherosclerosis and bone mineralization in AVA and increased mineralization within femur bones (p < 0.05). Atherosclerosis is present in hyperlipidemic bones and valves as characterized by macrophage and osteoclast infiltration, and it is attenuated by atorvastatin, which may have implications for therapy in the future. PMID:25997922

  18. The chemerin receptor 23 agonist, chemerin, attenuates monosynaptic C-fibre input to lamina I neurokinin 1 receptor expressing rat spinal cord neurons in inflammatory pain

    PubMed Central

    2014-01-01

    Background Recent evidence has shown that the chemerin receptor 23 (ChemR23) represents a novel inflammatory pain target, whereby the ChemR23 agonists, resolvin E1 and chemerin, can inhibit inflammatory pain hypersensitivity, by a mechanism that involves normalisation of potentiated spinal cord responses. This study has examined the ability of the ChemR23 agonist, chemerin, to modulate synaptic input to lamina I neurokinin 1 receptor expressing (NK1R+) dorsal horn neurons, which are known to be crucial for the manifestation of inflammatory pain. Results Whole-cell patch-clamp recordings from pre-identified lamina I NK1R+ neurons, in rat spinal cord slices, revealed that chemerin significantly attenuates capsaicin potentiation of miniature excitatory postsynaptic current (mEPSC) frequency, but is without effect in non-potentiated conditions. In tissue isolated from complete Freund’s adjuvant (CFA) treated rats, chemerin significantly reduced the peak amplitude of monosynaptic C-fibre evoked excitatory postsynaptic currents (eEPSCs) in a subset of lamina I NK1R+ neurons, termed chemerin responders. However, chemerin did not alter the peak amplitude of monosynaptic C-fibre eEPSCs in control tissue. Furthermore, paired-pulse recordings in CFA tissue demonstrated that chemerin significantly reduced paired-pulse depression in the subset of neurons classified as chemerin responders, but was without effect in non-responders, indicating that chemerin acts presynaptically to attenuate monosynaptic C-fibre input to a subset of lamina I NK1R+ neurons. Conclusions These results suggest that the reported ability of ChemR23 agonists to attenuate inflammatory pain hypersensitivity may in part be due to a presynaptic inhibition of monosynaptic C-fibre input to lamina I NK1R+ neurons and provides further evidence that ChemR23 represents a promising inflammatory pain target. PMID:24716552

  19. PPARγ antagonist attenuates mouse immune-mediated bone marrow failure by inhibition of T cell function

    PubMed Central

    Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J.; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S.

    2016-01-01

    Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically “fatless” mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation. PMID:26589913

  20. Intrathecal Injection of JWH-015 Attenuates Bone Cancer Pain Via Time-Dependent Modification of Pro-inflammatory Cytokines Expression and Astrocytes Activity in Spinal Cord.

    PubMed

    Lu, Cui'e; Liu, Yue; Sun, Bei; Sun, Yu'e; Hou, Bailing; Zhang, Yu; Ma, Zhengliang; Gu, Xiaoping

    2015-10-01

    Cannabinoid receptor type 2 (CB2) agonists display potential analgesic effects in acute and neuropathic pain. However, its complex cellular and molecular mechanisms in bone cancer pain remain unclear. And less relevant reports concerned its time-dependent effects on the long-lasting modifications of behavior, spinal inflammatory cytokines levels, astrocytes activity induced by bone cancer pain. A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells was utilized. Pain behaviors at different time points were assessed by ambulatory pain scores and paw withdrawal mechanical threshold (PWMT). Pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-18, and tumor necrosis factor alpha (TNF-α), were quantitated by Western blots. Glial activity was assessed by immunohistochemistry. Intra-tibia inoculation of Walker 256 mammary gland carcinoma cells induced progressive bone cancer pain; a long-term up-regulation of IL-1β, IL-6, IL-18, and TNF-α; and the activation of glia in spinal cord. Activation of microglia was first evident on day 4 after surgery and reached to a peak on day 7 while activation of astrocytes was on day 10. A single intrathecal injection of JWH-015 attenuated bone cancer induced spontaneous pain and mechanical allodynia, reduced the expression of pro-inflammatory cytokines, and inhibited the activity of astrocytes. All the modifications were transient and peaked at 24 h after JWH-015 administration. Furthermore, the protective effects of JWH-015 were reversed in the presence of CB2-selective antagonist AM630. Overall, our results provided evidences for the persistent participation of inflammation reaction in the progression of bone cancer pain, and demonstrated that JWH-015 reduced the expression of IL-1β, IL-6, IL-18, and TNF-α and inhibited astrocytes activation in a time-dependent manner, thereby displaying an analgesic effect. PMID:25896633

  1. Relationships of ultrasonic backscatter with ultrasonic attenuation, sound speed and bone mineral density in human calcaneus.

    PubMed

    Wear, K A; Stuber, A P; Reynolds, J C

    2000-10-01

    Ultrasonic attenuation and sound speed have been investigated in trabecular bone by numerous authors. Ultrasonic backscatter has received much less attention. To investigate relationships among these three ultrasonic parameters and bone mineral density (BMD), 30 defatted human calcanei were investigated in vitro. Normalized broadband ultrasonic attenuation (nBUA), sound speed (SOS), and logarithm of ultrasonic backscatter coefficient (LBC) were measured. Bone mineral density was assessed using single-beam dual energy x-ray absorptiometry (DEXA). The correlation coefficients of least squares linear regressions of the three individual ultrasound (US) parameters with BMD were 0.84 (nBUA), 0.84 (SOS) and 0.79 (LBC). The 95% confidence intervals for the correlation coefficients were 0. 69-0.92 (nBUA), 0.68-0.92 (SOS) and 0.60-0.90 (LBC). The correlations among pairs of US variables ranged from 0.63-0.79. Variations in nBUA accounted for r(2) = 62% of the variations in LBC. Variations in SOS accounted for r(2) = 40% of the variations in LBC. These results suggest that ultrasonic backscattering properties may contain substantial information not already contained in nBUA and SOS. A multiple regression model including all three US variables was somewhat more predictive of BMD than a model including only nBUA and SOS. PMID:11120369

  2. Alpha 2A adrenergic receptor agonist, guanfacine, attenuates cocaine-related impairments of inhibitory response control and working memory in animal models.

    PubMed

    Terry, Alvin V; Callahan, Patrick M; Schade, Rosann; Kille, Nancy J; Plagenhoef, Marc

    2014-11-01

    There is considerable evidence that centrally acting α2A adrenergic receptor agonists can attenuate impairments in executive function that result from dysfunction of the prefrontal cortex. Such positive effects resulted in the recent approval by the United States Food and Drug Administration (FDA) of the α2A agonists clonidine and guanfacine for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD), but also suggest that they could have beneficial effects in substance abuse disorders and other neuropsychiatric conditions. The purpose of this study was to evaluate guanfacine for its ability to attenuate behavioral alterations associated with acute cocaine exposure in rats trained to perform a task of sustained attention, the five choice serial reaction time task (5C-SRTT) and monkeys trained to perform a task of working/short term memory, the delayed match to sample (DMTS) task. In the rodent 5C-SRTT acute intraperitoneal (i.p.) administration of cocaine (3.5-15.0mg/kg) did not affect accuracy, but was associated with dose-dependent increases in premature responses and timeout responses. Guanfacine (0.1-1.0mg/kgi.p.) dose-dependently decreased premature responses and timeout responses associated with cocaine and it attenuated similar deficits in inhibitory response control observed in a variable ITI version of the 5C-SRTT. In the DMTS task in monkeys, acute intramuscular (i.m.) administration of cocaine (4.0mg/kg) was associated with impairments in accuracy at long delay intervals, an effect that was attenuated by guanfacine (0.4mg/kg). These animal studies suggest that guanfacine may have therapeutic potential for treating impairments of executive function that are associated with the abuse of cocaine. PMID:25242808

  3. Alpha 2A adrenergic receptor agonist, guanfacine, attenuates cocaine-related impairments of inhibitory response control and working memory in animal models

    PubMed Central

    Terry, Alvin V.; Callahan, Patrick M.; Schade, Rosann; Kille, Nancy J.; Plagenhoef, Marc

    2014-01-01

    There is considerable evidence that centrally acting α2A adrenergic receptor agonists can attenuate impairments in executive function that result from dysfunction of the prefrontal cortex. Such positive effects resulted in the recent approval by the United States Food and Drug Administration (FDA) of the α2A agonists clonidine and guanfacine for the treatment of Attention-Deficit/Hyperactivity Disorder (ADHD), but also suggest that they could have beneficial effects in substance abuse disorders and other neuropsychiatric conditions. The purpose of this study was to evaluate guanfacine for its ability to attenuate behavioral alterations associated with acute cocaine exposure in rats trained to perform a task of sustained attention, the five choice serial reaction time task (5C-SRTT) and monkeys trained to perform a task of working/short term memory, the delayed match to sample task (DMTS). In the rodent 5C-SRTT acute intraperitoneal (i.p.) administration of cocaine (3.5–15.0 mg/kg) did not affect accuracy, but was associated with dose-dependent increases in premature responses and timeout responses. Guanfacine (0.1–1.0 mg/kg i.p.) dose-dependently decreased premature responses and timeout responses associated with cocaine and it attenuated similar deficits in inhibitory response control observed in a variable ITI version of the 5C-SRTT. In the DMTS task in monkeys, acute intramuscular (i.m.) administration of cocaine (4.0 mg/kg) was associated with impairments in accuracy at long delay intervals, an effect that was attenuated by guanfacine (0.4 mg/kg). These animal studies suggest that guanfacine may have therapeutic potential for treating impairments of executive function that are associated with the abuse of cocaine. PMID:25242808

  4. Central Infusion of Angiotensin II Type 2 Receptor Agonist Compound 21 Attenuates DOCA/NaCl-Induced Hypertension in Female Rats

    PubMed Central

    Dai, Shu-Yan; Zhang, Yu-Ping; Peng, Wei; Shen, Ying; He, Jing-Jing

    2016-01-01

    The present study investigated whether central activation of angiotensin II type 2 receptor (AT2-R) attenuates deoxycorticosterone acetate (DOCA)/NaCl-induced hypertension in intact and ovariectomized (OVX) female rats and whether female sex hormone status has influence on the effects of AT2-R activation. DOCA/NaCl elicited a greater increase in blood pressure in OVX females than that in intact females. Central infusion of compound 21, a specific AT2-R agonist, abolished DOCA/NaCl pressor effect in intact females, whereas same treatment in OVX females produced an inhibitory effect. Real-time RT-PCR analysis revealed that DOCA/NaCl enhanced the mRNA expression of hypertensive components including AT1-R, ACE-1, and TNF-α in the paraventricular nucleus of hypothalamus in both intact and OVX females. However, the mRNA expressions of antihypertensive components such as AT2-R, ACE-2, and IL-10 were increased only in intact females. Central AT2-R agonist reversed the changes in the hypertensive components in all females, while this agonist further upregulated the expression of ACE2 and IL-10 in intact females, but only IL-10 in OVX females. These results indicate that brain AT2-R activation plays an inhibitory role in the development of DOCA/NaCl-induced hypertension in females. This beneficial effect of AT2-R activation involves regulation of renin-angiotensin system and proinflammatory cytokines. PMID:26783414

  5. The selective mGlu2/3 receptor agonist LY354740 attenuates morphine-withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal.

    PubMed

    Vandergriff, J; Rasmussen, K

    1999-02-01

    Naltrexone-precipitated morphine withdrawal induces hyperactivity of locus coeruleus (LC) neurons, as well as a plethora of behavioral withdrawal signs. Previous research has demonstrated that an increased release of glutamate and activation of AMPA receptors, particularly in the LC, play an important role in opiate withdrawal. LY354740 is a novel Group II metabotropic glutamate mGlu2/3 receptor agonist that decreases the release of glutamate. Therefore, we investigated the effect of LY354740 on naltrexone-precipitated morphine-withdrawal-induced activation of LC neurons and behavioral signs of morphine withdrawal. In in vivo recordings from anesthetized rats, pretreatment with LY354740 (3-30 mg/kg, s.c.) dose-dependently attenuated the morphine-withdrawal-induced activation of LC neurons. In unanesthetized, morphine-dependent animals, pretreatment with LY354740 (3-30 mg/kg, s.c.) dose-dependently suppressed the severity and occurrence of many naltrexone-precipitated morphine-withdrawal signs. These results indicate mGlu2/3 receptor agonists: (1) can attenuate the morphine-withdrawal-induced activation of LC neurons and many behavioral signs of morphine withdrawal; and (2) may have therapeutic effects in man for the treatment of opiate withdrawal. PMID:10218862

  6. Mas-Related Gene (Mrg) C Activation Attenuates Bone Cancer Pain via Modulating Gi and NR2B

    PubMed Central

    Lu, Cui’e; Lei, Yishan; Ma, Zhengliang; Gu, Xiaoping

    2016-01-01

    Objective This study is to investigate the role of Mas-related gene (Mrg) C in the pathogenesis and treatment of bone cancer pain (BCP). Methods BCP mouse model was established by osteosarcoma cell inoculation. Pain-related behaviors were assessed with the spontaneous lifting behavior test and mechanical allodynia test. Expression levels of MrgC, Gi, and NR2B in the spinal cord were detected with Western blot analysis and immunohistochemistry. Results Pain-related behavior tests showed significantly increased spontaneous flinches (NSF) and decreased paw withdrawal mechanical threshold (PWMT) in mouse models of BCP. Western blot analysis showed that, compared with the control group and before modeling, all the expression levels of MrgC, Gi, and NR2B in the spinal cord of BCP mice were dramatically elevated, which were especially increased at day 7 after operation and thereafter, in a time-dependent manner. Moreover, the treatment of MrgC agonist BAM8-22 significantly up-regulated Gi and down-regulated NR2B expression levels, in the spinal cord of BCP mice, in a time-dependent manner. On the other hand, anti-MrgC significantly down-regulated Gi expression, while dramatically up-regulated NR2B expression, in the BCP mice. Similar results were obtained from the immunohistochemical detection. Importantly, BAM8-22 significantly attenuated the nociceptive behaviors in the BCP mice. Conclusion Our results indicated the MrgC-mediated Gi and NR2B expression alterations in the BCP mice, which might contribute to the pain hypersensitivity. These findings may provide a novel strategy for the treatment of BCP in clinic. PMID:27152740

  7. Human bone marrow mesenchymal stem cell transplantation attenuates axonal injury in stroke rats

    PubMed Central

    Xu, Yi; Du, Shiwei; Yu, Xinguang; Han, Xiao; Hou, Jincai; Guo, Hao

    2014-01-01

    Previous studies have shown that transplantation of human bone marrow mesenchymal stem cells promotes neural functional recovery after stroke, but the neurorestorative mechanisms remain largely unknown. We hypothesized that functional recovery of myelinated axons may be one of underlying mechanisms. In this study, an ischemia/reperfusion rat model was established using the middle cerebral artery occlusion method. Rats were used to test the hypothesis that intravenous transplantation of human bone marrow mesenchymal stem cells through the femoral vein could exert neuroprotective effects against cerebral ischemia via a mechanism associated with the ability to attenuate axonal injury. The results of behavioral tests, infarction volume analysis and immunohistochemistry showed that cerebral ischemia caused severe damage to the myelin sheath and axons. After rats were intravenously transplanted with human bone marrow mesenchymal stem cells, the levels of axon and myelin sheath-related proteins, including microtubule-associated protein 2, myelin basic protein, and growth-associated protein 43, were elevated, infarct volume was decreased and neural function was improved in cerebral ischemic rats. These findings suggest that intravenously transplanted human bone marrow mesenchymal stem cells promote neural function. Possible mechanisms underlying these beneficial effects include resistance to demyelination after cerebral ischemia, prevention of axonal degeneration, and promotion of axonal regeneration. PMID:25657721

  8. Noninvasive Femur Bone Volume Estimation Based on X-Ray Attenuation of a Single Radiographic Image and Medical Knowledge

    NASA Astrophysics Data System (ADS)

    Kiattisin, Supaporn; Chamnongthai, Kosin

    Bone Mineral Density (BMD) is an indicator of osteoporosis that is an increasingly serious disease, particularly for the elderly. To calculate BMD, we need to measure the volume of the femur in a noninvasive way. In this paper, we propose a noninvasive bone volume measurement method using x-ray attenuation on radiography and medical knowledge. The absolute thickness at one reference pixel and the relative thickness at all pixels of the bone in the x-ray image are used to calculate the volume and the BMD. First, the absolute bone thickness of one particular pixel is estimated by the known geometric shape of a specific bone part as medical knowledge. The relative bone thicknesses of all pixels are then calculated by x-ray attenuation of each pixel. Finally, given the absolute bone thickness of the reference pixel, the absolute bone thickness of all pixels is mapped. To evaluate the performance of the proposed method, experiments on 300 subjects were performed. We found that the method provides good estimations of real BMD values of femur bone. Estimates shows a high linear correlation of 0.96 between the volume Bone Mineral Density (vBMD) of CT-SCAN and computed vBMD (all P<0.001). The BMD results reveal 3.23% difference in volume from the BMD of CT-SCAN.

  9. Glucagon-like peptide-1 receptor agonist Liraglutide has anabolic bone effects in ovariectomized rats without diabetes.

    PubMed Central

    Yu, JingJia; Wang, Xiaojing; Liu, Dongmei; Zhao, Lin; Sun, Lihao; Zhao, Hongyan; Tao, Bei; Liu, Jianmin

    2015-01-01

    Recently, a number of studies have demonstrated the potential beneficial role for novel anti-diabetic GLP-1 receptor agonists (GLP-1RAs) in the skeleton metabolism in diabetic rodents and patients. In this study, we evaluated the impacts of the synthetic GLP-1RA Liraglutide on bone mass and quality in osteoporotic rats induced by ovariectomy (OVX) but without diabetes, as well as its effect on the adipogenic and osteoblastogenic differentiation of bone marrow stromal cells (BMSCs). Three months after sham surgery or bilateral OVX, eighteen 5-month old female Wistar rats were randomly divided into three groups to receive the following treatments for 2 months: (1) Sham + normal saline; (2) OVX + normal saline; and (3) OVX + Liraglutide (0.6 mg/day). As revealed by micro-CT analysis, Liraglutide improved trabecular volume, thickness and number, increased BMD, and reduced trabecular spacing in the femurs in OVX rats; similar results were observed in the lumbar vertebrae of OVX rats treated with Liraglutide. Following in vitro treatment of rat and human BMSCs with 10 nM Liraglutide, there was a significant increase in the mRNA expression of osteoblast-specific transcriptional factor Runx2 and the osteoblast markers alkaline phosphatase (ALP) and collagen α1 (Col-1), but a significant decrease in peroxisome proliferator-activated receptor γ (PPARγ). In conclusion, our results indicate that the anti-diabetic drug Liraglutide can exert a bone protective effect even in non-diabetic osteoporotic OVX rats. This protective effect is likely attributable to the impact of Liraglutide on the lineage fate determination of BMSCs. PMID:26177280

  10. Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone

    PubMed Central

    Cui, Zhuang; Crane, Janet; Xie, Hui; Jin, Xin; Zhen, Gehua; Li, Changjun; Xie, Liang; Wang, Long; Bian, Qin; Qiu, Tao; Wan, Mei; Xie, Min; Ding, Sheng; Yu, Bin; Cao, Xu

    2016-01-01

    Objectives Examine whether osteoarthritis (OA) progression can be delayed by halofuginone in anterior cruciate ligament transection (ACLT) rodent models. Methods 3-month-old male C57BL/6J (wild type; WT) mice and Lewis rats were randomised to sham-operated, ACLT-operated, treated with vehicle, or ACLT-operated, treated with halofuginone. Articular cartilage degeneration was graded using the Osteoarthritis Research Society International (OARSI)-modified Mankin criteria. Immunostaining, flow cytometry, RT-PCR and western blot analyses were conducted to detect relative protein and RNA expression. Bone micro CT (μCT) and CT-based microangiography were quantitated to detect alterations of microarchitecture and vasculature in tibial subchondral bone. Results Halofuginone attenuated articular cartilage degeneration and subchondral bone deterioration, resulting in substantially lower OARSI scores. Specifically, we found that proteoglycan loss and calcification of articular cartilage were significantly decreased in halofuginone-treated ACLT rodents compared with vehicle-treated ACLT controls. Halofuginone reduced collagen X (Col X), matrix metalloproteinase-13 and A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS 5) and increased lubricin, collagen II and aggrecan. In parallel, halofuginone-attenuated uncoupled subchondral bone remodelling as defined by reduced subchondral bone tissue volume, lower trabecular pattern factor (Tb.pf) and increased thickness of subchondral bone plate compared with vehicle-treated ACLT controls. We found that halofuginone exerted protective effects in part by suppressing Th17-induced osteoclastic bone resorption, inhibiting Smad2/3-dependent TGF-β signalling to restore coupled bone remodelling and attenuating excessive angiogenesis in subchondral bone. Conclusions Halofuginone attenuates OA progression by inhibition of subchondral bone TGF-β activity and aberrant angiogenesis as a potential preventive therapy for OA

  11. Administration of bone marrow stromal cells in sepsis attenuates sepsis-related coagulopathy.

    PubMed

    Tan, Lifei; Huang, Yueyue; Pan, Xiaojun; Quan, Shichao; Xu, Shunyao; Li, Dequan; Song, Lijun; Zhang, Xiaomin; Chen, Wanzhou; Pan, Jingye

    2016-06-01

    Introduction Coagulopathy plays an important role in sepsis. The aim of this study was to determine whether bone marrow stromal cell (BMSC) administration could attenuate coagulopathy in sepsis. Materials and methods In vitro: endothelial cells were cultured with/without BMSCs for 6 h following LPS stimulation and were collected for thrombomodulin (TM) and endothelial protein C receptor (EPCR) measurements. In vivo: Thirty-six mice were randomized into sham, sepsis, and sepsis + BMSC groups (n = 12 each group). Sepsis was induced through cecal ligation and puncture (CLP). BMSC infusion was started at 6 h after CLP. Lung tissues and plasma samples were collected at 24 h after CLP for enzyme-linked immunosorbent assay (ELISA), quantitative real-time RT-PCR, western blot, and immunohistochemistry analysis. Results In vitro: BMSCs attenuated the decrease in TM and EPCR mRNA and protein expression levels in LPS-stimulated endothelial cells. In vivo: BMSC treatment decreased lung injury and mesenteric perfusion impairment, and ameliorated coagulopathy, as suggested by the reduction in elevated TF, vWF, and TAT circulation levels. BMSC infusion decreased TF mRNA transcription and protein expression levels in lung tissues, and increased TM and EPCR mRNA transcription and expression levels. Discussion BMSC administration attenuated coagulopathy, and decreased lung injury and mesenteric perfusion impairment in sepsis. Key messages BMSCs increased the expression of TM and EPCR from endothelium cells exposed to LPS in vitro. BMSC treatment attenuated lung injury and coagulopathy in the mice cecal ligation and puncture (CLP) model. BMSC administration-attenuated coagulopathy is related to the reduced expression of TF and increased expression of TM and EPCR. PMID:26969493

  12. Atrial natriuretic peptide attenuates agonist-induced pulmonary edema in mice with targeted disruption of the gene for natriuretic peptide receptor-A

    PubMed Central

    Tsai, Shu-Whei; Green, Sabrina; Grinnell, Katie L.; Machan, Jason T.; Harrington, Elizabeth O.

    2013-01-01

    Atrial natriuretic peptide (ANP) inhibits agonist-induced pulmonary edema formation, but the signaling pathway responsible is not well defined. To investigate the role of the particulate guanylate cyclase-linked receptor, natriuretic peptide receptor-A (NPR-A), we measured acute lung injury responses in intact mice and pulmonary microvascular endothelial cells (PMVEC) with normal and disrupted expression of NPR-A. NPR-A wild-type (NPR-A+/+), heterozygous (NPR-A+/−), and knockout (NPR-A−/−) mice were anesthetized and treated with thrombin receptor agonist peptide (TRAP) or lipopolysaccharide (LPS). Lung injury was assessed by lung wet-to-dry (W/D) weight and by protein and cell concentration of bronchoalveolar lavage (BAL) fluid. No difference in pulmonary edema formation was seen between NPR-A genotypes under baseline conditions. TRAP and LPS increased lung W/D weight and BAL fluid cell counts more in NPR-A−/− mice than in NPR-A+/− or NPR-A+/+ mice, but no genotype-related differences were seen in TRAP-induced increases in bloodless lung W/D weight or LPS-induced increases in BAL protein concentration. Pretreatment with ANP infusion completely blocked TRAP-induced increases in lung W/D weight and blunted LPS-induced increases in BAL cell counts and protein concentration in both NPR-A−/− and NPR-A+/+ mice. Thrombin decreased transmembrane electrical resistance in monolayers of PMVECs in vitro, and this effect was attenuated by ANP in PMVECs isolated from both genotypes. Administration of the NPR-C-specific ligand, cANF, also blocked TRAP-induced increases in lung W/D weight and LPS-induced increases in BAL cell count and protein concentration in NPR-A+/+ and NPR-A−/− mice. We conclude that ANP is capable of attenuating agonist-induced lung edema in the absence of NPR-A. The protective effect of ANP on agonist-induced lung injury and pulmonary barrier function may be mediated by NPR-C. PMID:23195629

  13. Atrial natriuretic peptide attenuates agonist-induced pulmonary edema in mice with targeted disruption of the gene for natriuretic peptide receptor-A.

    PubMed

    Klinger, James R; Tsai, Shu-Whei; Green, Sabrina; Grinnell, Katie L; Machan, Jason T; Harrington, Elizabeth O

    2013-02-01

    Atrial natriuretic peptide (ANP) inhibits agonist-induced pulmonary edema formation, but the signaling pathway responsible is not well defined. To investigate the role of the particulate guanylate cyclase-linked receptor, natriuretic peptide receptor-A (NPR-A), we measured acute lung injury responses in intact mice and pulmonary microvascular endothelial cells (PMVEC) with normal and disrupted expression of NPR-A. NPR-A wild-type (NPR-A+/+), heterozygous (NPR-A+/-), and knockout (NPR-A-/-) mice were anesthetized and treated with thrombin receptor agonist peptide (TRAP) or lipopolysaccharide (LPS). Lung injury was assessed by lung wet-to-dry (W/D) weight and by protein and cell concentration of bronchoalveolar lavage (BAL) fluid. No difference in pulmonary edema formation was seen between NPR-A genotypes under baseline conditions. TRAP and LPS increased lung W/D weight and BAL fluid cell counts more in NPR-A-/- mice than in NPR-A+/- or NPR-A+/+ mice, but no genotype-related differences were seen in TRAP-induced increases in bloodless lung W/D weight or LPS-induced increases in BAL protein concentration. Pretreatment with ANP infusion completely blocked TRAP-induced increases in lung W/D weight and blunted LPS-induced increases in BAL cell counts and protein concentration in both NPR-A-/- and NPR-A+/+ mice. Thrombin decreased transmembrane electrical resistance in monolayers of PMVECs in vitro, and this effect was attenuated by ANP in PMVECs isolated from both genotypes. Administration of the NPR-C-specific ligand, cANF, also blocked TRAP-induced increases in lung W/D weight and LPS-induced increases in BAL cell count and protein concentration in NPR-A+/+ and NPR-A-/- mice. We conclude that ANP is capable of attenuating agonist-induced lung edema in the absence of NPR-A. The protective effect of ANP on agonist-induced lung injury and pulmonary barrier function may be mediated by NPR-C. PMID:23195629

  14. Bone sonometry: reducing phase aberration to improve estimates of broadband ultrasonic attenuation.

    PubMed

    Bauer, Adam Q; Anderson, Christian C; Holland, Mark R; Miller, James G

    2009-01-01

    Previous studies suggest that phase cancellation at the receiving transducer can result in the overestimation of the frequency dependent ultrasonic attenuation of bone, a quantity that has been shown to correlate with bone mineral density and ultimately with osteoporotic fracture risk. Evidence supporting this interpretation is provided by phase insensitive processing of the data, which appear to reduce the apparent overestimates of attenuation. The present study was designed to clarify the components underlying phase aberration artifacts in such through-transmission measurements by conducting systematic studies of the simplest possible test objects capable of introducing phase aberration. Experimental results are presented for a Lexan phantom over the frequency range 300-700 kHz and a Plexiglas phantom over the 3-7 MHz range. Both phantoms were flat and parallel plates featuring a step discontinuity milled into one of their initially flat sides. The through-transmitted signals were received by a 0.6 mm diameter membrane hydrophone that was raster scanned over a grid coaxial with the transmitting transducer. Signals received by the pseudoarray were processed offline to emulate phase sensitive and phase insensitive receivers with different aperture diameters. The data processed phase sensitively were focused to demonstrate the results of planar, geometrical, and correlation-based aberration correction methods. Results are presented illustrating the relative roles of interference in the ultrasonic field and phase cancellation at the receiving transducer in producing phase aberration artifacts. It was found that artifacts due to phase cancellation or interference can only be minimized with phase insensitive summation techniques by choosing an appropriately large receiving aperture. Data also suggest the potentially confounding role of time-and frequency-domain artifacts on ultrasonic measurements and illustrate the advantages of two-dimensional receiving arrays in

  15. A novel natural Nrf2 activator with PPARγ-agonist (monascin) attenuates the toxicity of methylglyoxal and hyperglycemia.

    PubMed

    Hsu, Wei-Hsuan; Lee, Bao-Hong; Chang, Yu-Ying; Hsu, Ya-Wen; Pan, Tzu-Ming

    2013-11-01

    Methylglyoxal (MG) is a toxic-glucose metabolite and a major precursor of advanced glycation endproducts (AGEs). MG has been reported to result in inflammation by activating receptor for AGEs (RAGE). We recently found that Monascus-fermented metabolite monascin acts as a novel natural peroxisome proliferator-activated receptor-γ (PPARγ) agonist that improves insulin sensitivity. We investigated the metabolic, biochemical, and molecular abnormalities characteristic of type 2 diabetes in MG-treated Wistar rats treated with oral administration of monascin or rosiglitazone. Monascin (a novel PPARγ agonist) activated nuclear factor-erythroid 2-related factor 2 (Nrf2) and down-regulated hyperinsulinmia in oral glucose tolerance test (OGTT). Monascin was able to elevate glyoxalase-1 expression via activation of hepatic Nrf2, hence, resulting in MG metabolism to d-lactic acid and protected from AGEs production in MG-treated rats. Rosiglitazone did not activate Nrf2 nor glyoxalase expression to lower serum and hepatic AGEs levels. Monascin acts as a novel natural Nrf2 activator with PPARγ-agonist activity were confirmed by Nrf2 and PPARγ reporter assays in Hep G2 cells. These findings suggest that monascin acts as an anti-diabetic and anti-oxidative stress agent to a greater degree than rosiglitazone and thus may have therapeutic potential for the prevention of diabetes. PMID:23954466

  16. Lithium attenuates lead induced toxicity on mouse non-adherent bone marrow cells.

    PubMed

    Banijamali, Mahsan; Rabbani-Chadegani, Azra; Shahhoseini, Maryam

    2016-07-01

    Lead is a poisonous heavy metal that occurs in all parts of environment and causes serious health problems in humans. The aim of the present study was to investigate the possible protective effect of lithium against lead nitrate induced toxicity in non-adherent bone marrow stem cells. Trypan blue and MTT assays represented that exposure of the cells to different concentrations of lead nitrate decreased viability in a dose dependent manner, whereas, pretreatment of the cells with lithium protected the cells against lead toxicity. Lead reduced the number and differentiation status of bone marrow-derived precursors when cultured in the presence of colony stimulating factor (CSF), while the effect was attenuated by lithium. The cells treated with lead nitrate exhibited cell shrinkage, DNA fragmentation, anion superoxide production, but lithium prevented lead action. Moreover, apoptotic indexes such as PARP cleavage and release of HMGB1 induced by lead, were protected by lithium, suggesting anti-apoptotic effect of lithium. Immunoblot analysis of histone H3K9 acetylation indicated that lithium overcame lead effect on acetylation. In conclusion, lithium efficiently reduces lead toxicity suggesting new insight into lithium action which may contribute to increased cell survival. It also provides a potentially new therapeutic strategy for lithium and a cost-effective approach to minimize destructive effects of lead on bone marrow stem cells. PMID:27259346

  17. Treatment with recombinant lubricin attenuates osteoarthritis by positive feedback loop between articular cartilage and subchondral bone in ovariectomized rats.

    PubMed

    Cui, Zhuang; Xu, Changpeng; Li, Xue; Song, Jinqi; Yu, Bin

    2015-05-01

    Osteoarthritis (OA) is a most commonly multifactorial degenerative joint disease along with the aging population, particularly in postmenopausal women. During the onset of OA, articular cartilage and subchondral bone act in concert as a functional unit. This present study is to investigate the effects of early or late treatment with recombinant lubricin on the onset of osteoarthritis (OA) in ovariectomized (OVX) rats. We found that both early and late recombinant lubricin treatments attenuated the onset of OA by positive feedback loop between articular cartilage and subchondral bone, although late treatment contributed to a lesser effect compared with early treatment. Specifically, treatment with recombinant lubricin protected articular cartilage from degeneration, demonstrated by lower proteoglycan loss, lower OARSI scores, less calcification cartilage zone and reduced immunostaining for collagen X (Col X) and matrix metalloproteinase (MMP-13) but increased the expression of lubricin, in comparison with vehicle-treated OVX rat group. Further, chondroprotective effects of lubricin normalized bone remodeling in subchondral bone underneath. It's suggested that treatment with recombinant lubricin inhibited the elevation of TRAP and Osterix positive cells in OVX rats and led to the normalization of subchondral bone microarchitectures with the suppression of subsidence of bone volume ratio (BV/TV) and trabecular thickness (Tb.Th) and the increase of trabecular separation (Tb.Sp) in vehicle-treated OVX rats. What's more, the normalization of subchondral bone in turn attenuated the articular cartilage erosion by inhibiting vascular invasion from subchondral bone to calcified cartilage zone, exemplified by inhibiting the elevation of CD31 positive cells in calcified cartilage and angiography in subchondral bone. Together, these results shed light that both early and late recombinant lubricin treatments attenuate the onset of OA by balancing the interplay between articular

  18. Administration of the nicotinic acetylcholine receptor agonists ABT-089 and ABT-107 attenuates the reinstatement of nicotine-seeking behavior in rats.

    PubMed

    Lee, Alycia M; Arreola, Adrian C; Kimmey, Blake A; Schmidt, Heath D

    2014-11-01

    Current smoking cessation pharmacotherapies have modest efficacy, and most smokers relapse within the first few days after a quit attempt. Nicotine withdrawal-induced craving and cognitive impairments predict smoking relapse during abstinence and suggest that cognitive-enhancing drugs may prevent relapse. ABT-089 and ABT-107 are subtype-selective nAChR agonists that improve cognitive performance in laboratory animals. However, there are no studies examining the effects of ABT-089 and ABT-107 on nicotine self-administration and the reinstatement of nicotine-seeking behavior, an animal model of relapse in human smokers. The goal of the present study was to determine the effects of the α4β2*/α6β2* nAChR agonist ABT-089 and the α7 nAChR agonist ABT-107 on nicotine taking and seeking in rats. The effects of acute ABT-089 and ABT-107 pretreatment on nicotine self-administration and reinstatement were tested in male Sprague Dawley rats. Parallel studies of ABT-089 and ABT-107 on sucrose self-administration and reinstatement were tested in separate groups of rats to determine if the effects of these drug treatments generalized to other reinforced behaviors. Nicotine and sucrose self-administration behaviors were not altered following acute administration of ABT-089 (0, 0.12, 1.2 and 12.0mg/kg) or ABT-107 (0, 0.03 and 0.3mg/kg). In contrast, both ABT-089 and ABT-107 pretreatment dose-dependently attenuated nicotine reinstatement. These effects were reinforcer-specific as no effects of ABT-089 or ABT-107 pretreatment on sucrose seeking were noted. Taken together, these findings suggest that ABT-089 and ABT-107 do not affect nicotine consumption, but may reduce the likelihood that a smoking lapse will lead to relapse. PMID:25128791

  19. The glucagon-like peptide 1 receptor agonist liraglutide attenuates the reinforcing properties of alcohol in rodents.

    PubMed

    Vallöf, Daniel; Maccioni, Paola; Colombo, Giancarlo; Mandrapa, Minja; Jörnulf, Julia Winsa; Egecioglu, Emil; Engel, Jörgen A; Jerlhag, Elisabet

    2016-03-01

    The incretin hormone, glucagon-like peptide 1 (GLP-1), regulates gastric emptying, glucose-dependent stimulation of insulin secretion and glucagon release, and GLP-1 analogs are therefore approved for treatment of type II diabetes. GLP-1 receptors are expressed in reward-related areas such as the ventral tegmental area and nucleus accumbens, and GLP-1 was recently shown to regulate several alcohol-mediated behaviors as well as amphetamine-induced, cocaine-induced and nicotine-induced reward. The present series of experiments were undertaken to investigate the effect of the GLP-1 receptor agonist, liraglutide, on several alcohol-related behaviors in rats that model different aspects of alcohol use disorder in humans. Acute liraglutide treatment suppressed the well-documented effects of alcohol on the mesolimbic dopamine system, namely alcohol-induced accumbal dopamine release and conditioned place preference in mice. In addition, acute administration of liraglutide prevented the alcohol deprivation effect and reduced alcohol intake in outbred rats, while repeated treatment of liraglutide decreased alcohol intake in outbred rats as well as reduced operant self-administration of alcohol in selectively bred Sardinian alcohol-preferring rats. Collectively, these data suggest that GLP-1 receptor agonists could be tested for treatment of alcohol dependence in humans. PMID:26303264

  20. Continuous MR bone density measurement using water- and fat-suppressed projection imaging (WASPI) for PET attenuation correction in PET-MR.

    PubMed

    Huang, C; Ouyang, J; Reese, T G; Wu, Y; El Fakhri, G; Ackerman, J L

    2015-10-21

    Due to the lack of signal from solid bone in normal MR sequences for the purpose of MR-based attenuation correction, investigators have proposed using the ultrashort echo time (UTE) pulse sequence, which yields signal from bone. However, the UTE-based segmentation approach might not fully capture the intra- and inter-subject bone density variation, which will inevitably lead to bias in reconstructed PET images. In this work, we investigated using the water- and fat-suppressed proton projection imaging (WASPI) sequence to obtain accurate and continuous attenuation for bones. This approach is capable of accounting for intra- and inter-subject bone attenuation variations. Using data acquired from a phantom, we have found that that attenuation correction based on the WASPI sequence is more accurate and precise when compared to either conventional MR attenuation correction or UTE-based segmentation approaches. PMID:26405761

  1. Retinoic acid receptor agonist Am80 inhibits CXCL2 production from microglial BV-2 cells via attenuation of NF-κB signaling.

    PubMed

    Takaoka, Yuichiro; Takahashi, Moeka; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Shudo, Koichi; Katsuki, Hiroshi

    2016-09-01

    Accumulating lines of evidence suggest that retinoic acid receptor agonists such as Am80 exerts anti-inflammatory actions in the central nervous system, although detailed mechanisms of the action remain largely unknown. Our previous findings suggest that Am80 provides therapeutic effect on intracerebral hemorrhage in mice via suppression of expression of chemokine (C-X-C motif) ligand 2 (CXCL2). Here we investigated the mechanisms of inhibitory action of Am80 on expression of CXCL2 and other pro-inflammatory factors in microglial BV-2 cells. Pretreatment with Am80 markedly suppressed lipopolysaccharide (LPS)-induced expression of CXCL2 mRNA and release of CXCL2 protein. Am80 had no effect on LPS-induced activation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. On the other hand, Am80 prevented LPS-induced nuclear translocation of p65 subunit of NF-κB complex. In addition, total expression levels of p65 and IκBα proteins, as well as of mRNAs encoding p65 and IκBα, were lowered by Am80. Dependence of CXCL2 expression on NF-κB was confirmed by the effect of an NF-κB inhibitor caffeic acid phenethyl ester that abolished LPS-induced CXCL2 expression. Caffeic acid phenethyl ester also abolished LPS-induced expression of inducible nitric oxide synthase, interleukin-1β and tumor necrosis factor α, which may be relevant to the inhibitory effect of Am80 on expression of these pro-inflammatory factors. We additionally found that Am80 attenuated LPS-induced up-regulation of CD14, a co-receptor for Toll-like receptor 4 (TLR4). These results suggest that inhibitory effect on TLR4 signaling mediated by NF-κB pathway underlies the anti-inflammatory action of retinoic acid receptor agonists in microglia. PMID:27351827

  2. Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10{sup −/−} mice by attenuating the activation of T cells and promoting their apoptosis

    SciTech Connect

    Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Price, Robert L.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2012-01-15

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Recent studies have shown that the cannabinoid system may play a critical role in mediating protection against intestinal inflammation. However, the effect of cannabinoid receptor induction after chronic colitis progression has not been investigated. Here, we investigate the effect of cannabinoid receptor-2 (CB2) agonist, JWH-133, after chronic colitis in IL-10{sup −/−} mice. JWH-133 effectively attenuated the overall clinical score, and reversed colitis-associated pathogenesis and decrease in body weight in IL-10{sup −/−} mice. After JWH-133 treatment, the percentage of CD4{sup +} T cells, neutrophils, mast cells, natural killer (NK1.1) cells, and activated T cells declined in the intestinal lamina propria (LP) and mesenteric lymph nodes (MLN) of mice with chronic colitis. JWH-133 was also effective in ameliorating dextran sodium sulfate (DSS)-induced colitis. In this model, JWH-133 reduced the number and percentage of macrophages and IFN-γ expressing cells that were induced during colitis progression. Treatment with aminoalkylindole 6-iodo-pravadoline (AM630), a CB2 receptor antagonist, reversed the colitis protection provided by JWH-133 treatment. Also, activated T cells were found to undergo apoptosis following JWH-133 treatment both in-vivo and in-vitro. These findings suggest that JWH-133 mediates its effect through CB2 receptors, and ameliorates chronic colitis by inducing apoptosis in activated T cells, reducing the numbers of activated T cells, and suppressing induction of mast cells, NK cells, and neutrophils at sites of inflammation in the LP. These results support the idea that the CB2 receptor agonists may serve as a therapeutic modality against IBD. -- Highlights: ► JWH-133, a cannnabinoid receptor-2 agonist ameliorates experimental colitis. ► JWH-133 suppressed inflammation and

  3. Measurement of the normalized broadband ultrasound attenuation in trabecular bone by using a bidirectional transverse transmission technique

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2015-01-01

    A new method for measuring the normalized broadband ultrasound attenuation (nBUA) in trabecular bone by using a bidirectional transverse transmission technique was proposed and validated with measurements obtained by using the conventional transverse transmission technique. There was no significant difference between the nBUA measurements obtained for 14 bovine femoral trabecular bone samples by using the bidirectional and the conventional transverse transmission techniques. The nBUA measured by using the two transverse transmission techniques showed strong positive correlations of r = 0.87 to 0.88 with the apparent bone density, consistent with the behavior in human trabecular bone invitro. We expect that the new method can be usefully applied for improved accuracy and precision in clinical measurements.

  4. Bone Marrow Mesenchymal Stem Cells Attenuate Mitochondria Damage Induced by Hypoxia in Mouse Trophoblasts

    PubMed Central

    Wang, Lingjuan; Xu, Xiaoyan; Kang, Lina

    2016-01-01

    Objective We aimed to observe the change of mitochondrial function and structure as well as the cell function induced by hypoxia in mouse trophoblasts, and moreover, to validate the restoration of these changes after co-culture with bone marrow mesenchymal stem cells (hereinafter referred to as “MSCs”). Further, we explored the mechanism of MSCs attenuating the functional damage of trophoblasts caused by hypoxia. Methods Cells were divided into two groups, trophoblasts and MSCs+trophoblasts respectively, and the two groups of cells were incubated with normoxia or hypoxia. Chemiluminescence was used to assay the β-HCG and progesterone in cell culture supernatants quantitatively. Western blotting and PCR were applied to detect the expression of Mfn2, MMP-2, MMP-9 and integrin β1 in the two groups. The mitochondrial membrane potential of each group of cells was detected with JC-1 dye and the ATP content was measured by the phosphomolybdic acid colorimetric method. We utilized transmission electron microscopy for observing the ultrastructure of mitochondria in trophoblasts. Finally, we assessed the cell apoptosis with flow cytometry (FCM) and analyzed the expression of the apoptosis related genes—Bcl-2, Bax, Caspase3 and Caspase9 by western blotting. Results The results showed that the Mfn2 expression was reduced after 4 h in hypoxia compared with that in normoxia, but increased in the co-culture group when compared with that in the separated-culture group (p<0.05). In addition, compared with the separated-culture group, theβ-HCG and progesterone levels in the co-culture group were significantly enhanced (p<0.05), and so were the expressions of MMP-2, MMP-9 and integrin β1 (p<0.05). Moreover, it exhibited significantly higher in ATP levels and intensified about the mitochondrial membrane potential in the co-culture group. TEM revealed disorders of the mitochondrial cristae and presented short rod-like structure and spheroids in hypoxia, however, in the co

  5. Hyperactivity induced by the dopamine D2/D3 receptor agonist quinpirole is attenuated by inhibitors of endocannabinoid degradation in mice.

    PubMed

    Luque-Rojas, María Jesús; Galeano, Pablo; Suárez, Juan; Araos, Pedro; Santín, Luis J; de Fonseca, Fernando Rodríguez; Calvo, Eduardo Blanco

    2013-04-01

    The present study was designed to investigate the effect of pharmacological inhibition of endocannabinoid degradation on behavioural actions of the dopamine D2/D3 receptor agonist quinpirole in male C57Bl/6J mice. In addition, we studied the effects of endocannabinoid degradation inhibition on both cocaine-induced psychomotor activation and behavioural sensitization. We analysed the effects of inhibition of the two main endocannabinoid degradation enzymes: fatty acid amide hydrolase (FAAH), using inhibitor URB597 (1 mg/kg); monoacylglycerol lipase (MAGL), using inhibitor URB602 (10 mg/kg). Administration of quinpirole (1 mg/kg) caused a temporal biphasic response characterized by a first phase of immobility (0-50 min), followed by enhanced locomotion (next 70 min) that was associated with the introduction of stereotyped behaviours (stereotyped jumping and rearing). Pretreatment with both endocannabinoid degradation inhibitors did not affect the hypoactivity actions of quinpirole. However, this pretreatment resulted in a marked decrease in quinpirole-induced locomotion and stereotyped behaviours. Administration of FAAH or MAGL inhibitors did not attenuate the acute effects of cocaine. Furthermore, these inhibitors did not impair the acquisition of cocaine-induced behavioural sensitization or the expression of cocaine-induced conditioned locomotion. Only MAGL inhibition attenuated the expression of an already acquired cocaine-induced behavioural sensitization. These results suggest that pharmacological inhibition of endocannabinoid degradation might exert a negative feedback on D2/D3 receptor-mediated hyperactivity. This finding might be relevant for therapeutic approaches for either psychomotor disorders (dyskinesia, corea) or disorganized behaviours associated with dopamine-mediated hyperactivity. PMID:22647577

  6. Administration of a tropomyosin receptor kinase inhibitor attenuates sarcoma-induced nerve sprouting, neuroma formation and bone cancer pain

    PubMed Central

    2010-01-01

    Pain often accompanies cancer and most current therapies for treating cancer pain have significant unwanted side effects. Targeting nerve growth factor (NGF) or its cognate receptor tropomyosin receptor kinase A (TrkA) has become an attractive target for attenuating chronic pain. In the present report, we use a mouse model of bone cancer pain and examine whether oral administration of a selective small molecule Trk inhibitor (ARRY-470, which blocks TrkA, TrkB and TrkC kinase activity at low nm concentrations) has a significant effect on cancer-induced pain behaviors, tumor-induced remodeling of sensory nerve fibers, tumor growth and tumor-induced bone remodeling. Early/sustained (initiated day 6 post cancer cell injection), but not late/acute (initiated day 18 post cancer cell injection) administration of ARRY-470 markedly attenuated bone cancer pain and significantly blocked the ectopic sprouting of sensory nerve fibers and the formation of neuroma-like structures in the tumor bearing bone, but did not have a significant effect on tumor growth or bone remodeling. These data suggest that, like therapies that target the cancer itself, the earlier that the blockade of TrkA occurs, the more effective the control of cancer pain and the tumor-induced remodeling of sensory nerve fibers. Developing targeted therapies that relieve cancer pain without the side effects of current analgesics has the potential to significantly improve the quality of life and functional status of cancer patients. PMID:21138586

  7. Propranolol, a β-adrenergic antagonist, attenuates the decrease in trabecular bone mass in high calorie diet fed growing mice.

    PubMed

    Baek, Kyunghwa; Hwang, Hyo Rin; Park, Hyun-Jung; Kwon, Arang; Qadir, Abdul S; Baek, Jeong-Hwa

    2014-09-01

    We investigated the effects of high calorie and low calorie diets on skeletal integrity, and whether β-adrenergic blockade (BB) attenuates bone loss induced by dietary calorie alteration. Male 6-week-old C57BL/6 mice were assigned to either an ad-lib fed control diet (CON), a high calorie diet (HIGH), or a low calorie diet (LOW) group. In each diet group, mice were treated with either vehicle (VEH) or propranolol, a β-adrenergic antagonist. Over 12-weeks, β-blockade mitigated body weight and fat mass increases induced by the high calorie diet. Femoral trabecular bone mineral density and the expression levels of osteogenic marker genes in bone marrow cells were reduced in HIGHVEH and LOWVEH mice, and BB significantly attenuated this decline only in HIGH mice. In summary, the magnitude of bone loss induced by low calorie diet was greater than that caused by high calorie diet in growing mice, and β-blockade mitigated high calorie diet-induced bone loss. PMID:24393528

  8. Propranolol, a β-adrenergic antagonist, attenuates the decrease in trabecular bone mass in high calorie diet fed growing mice

    PubMed Central

    Baek, Kyunghwa; Hwang, Hyo Rin; Park, Hyun-Jung; Kwon, Arang; Qadir, Abdul S.; Baek, Jeong-Hwa

    2014-01-01

    We investigated the effects of high calorie and low calorie diets on skeletal integrity, and whether β-adrenergic blockade (BB) attenuates bone loss induced by dietary calorie alteration. Male 6-week-old C57BL/6 mice were assigned to either an ad-lib fed control diet (CON), a high calorie diet (HIGH), or a low calorie diet (LOW) group. In each diet group, mice were treated with either vehicle (VEH) or propranolol, a β-adrenergic antagonist. Over 12-weeks, β-blockade mitigated body weight and fat mass increases induced by the high calorie diet. Femoral trabecular bone mineral density and the expression levels of osteogenic marker genes in bone marrow cells were reduced in HIGHVEH and LOWVEH mice, and BB significantly attenuated this decline only in HIGH mice. In summary, the magnitude of bone loss induced by low calorie diet was greater than that caused by high calorie diet in growing mice, and β-blockade mitigated high calorie diet-induced bone loss. [BMB Reports 2014; 47(9): 506-511] PMID:24393528

  9. Intravenous Immunoglobulin (IVIG) Attenuates TNF-Induced Pathologic Bone Resorption and Suppresses Osteoclastogenesis by Inducing A20 Expression.

    PubMed

    Lee, Min Joon; Lim, Elisha; Mun, Se-Hwan; Bae, Seyeon; Murata, Koichi; Ivashkiv, Lionel B; Park-Min, Kyung-Hyun

    2016-02-01

    Investigations on the therapeutic effects of intravenous immunoglobulin (IVIG) have focused on the suppression of autoantibody and immune complex-mediated inflammatory pathogenesis. Inflammatory diseases such as rheumatoid arthritis are often accompanied by excessive bone erosion but the effect of IVIG on osteoclasts, bone-resorbing cells, has not been studied. Here, we investigate whether IVIG directly regulates osteoclast differentiation and has therapeutic potential for suppressing osteoclast-mediated pathologic bone resorption. IVIG or cross-linking of Fcγ receptors with plate-bound IgG suppressed receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteoclastogenesis and expression of osteoclast-related genes such as integrin β3 and cathepsin K in a dose-dependent manner. Mechanistically, IVIG or plate-bound IgG suppressed osteoclastogenesis by downregulating RANKL-induced expression of NFATC1, the master regulator of osteoclastogenesis. IVIG suppressed NFATC1 expression by attenuating RANKL-induced NF-κB signaling, explained in part by induction of the inflammatory signaling inhibitor A20. IVIG administration attenuated in vivo osteoclastogenesis and suppressed bone resorption in the tumor necrosis factor (TNF)-induced calvarial osteolysis model. Our findings show that, in addition to suppressing inflammation, IVIG directly inhibits osteoclastogenesis through a mechanism involving suppression of RANK signaling. Direct suppression of osteoclast differentiation may provide beneficial effects on preserving bone mass when IVIG is used to treat rheumatic disorders. PMID:26189496

  10. A retinoic acid receptor agonist Am80 rescues neurons, attenuates inflammatory reactions, and improves behavioral recovery after intracerebral hemorrhage in mice.

    PubMed

    Matsushita, Hideaki; Hijioka, Masanori; Hisatsune, Akinori; Isohama, Yoichiro; Shudo, Koichi; Katsuki, Hiroshi

    2011-01-01

    Am80 (tamibarotene) is a retinoic acid receptor (RAR) agonist clinically available for treatment of acute promyelocytic leukemia. As intracerebral hemorrhage (ICH) accompanies inflammatory reactions in the brain and also because retinoids may suppress activation of microglia, we investigated the effect of Am80 on collagenase-induced experimental model of ICH in adult mice. Daily oral administration of Am80 (5 mg/kg) starting from 1 day before or from up to 6 hours after intrastriatal injection of collagenase significantly inhibited the decrease in the number of striatal neurons at 3 days after the insult. Am80 showed no significant effect on the hematoma size and the extent of edema associated with hemorrhage. Prominent expression of RARα was observed in activated microglia/macrophages, and the number of activated microglia/macrophages in the perihematoma region was lower in Am80-treated mice than in vehicle-treated mice. Am80 treatment also reduced areas affected by hemorrhage-associated oxidative stress as indicated by nitrotyrosine immunoreactivity, and attenuated heme oxygenase-1 expression in activated microglia/macrophages. Moreover, Am80-treated mice exhibited better recovery from hemorrhage-induced neurologic deficits than vehicle-treated mice. These results suggest that RAR is a promising target of neuroprotective therapy for ICH. PMID:20551971

  11. A retinoic acid receptor agonist Am80 rescues neurons, attenuates inflammatory reactions, and improves behavioral recovery after intracerebral hemorrhage in mice

    PubMed Central

    Matsushita, Hideaki; Hijioka, Masanori; Hisatsune, Akinori; Isohama, Yoichiro; Shudo, Koichi; Katsuki, Hiroshi

    2011-01-01

    Am80 (tamibarotene) is a retinoic acid receptor (RAR) agonist clinically available for treatment of acute promyelocytic leukemia. As intracerebral hemorrhage (ICH) accompanies inflammatory reactions in the brain and also because retinoids may suppress activation of microglia, we investigated the effect of Am80 on collagenase-induced experimental model of ICH in adult mice. Daily oral administration of Am80 (5 mg/kg) starting from 1 day before or from up to 6 hours after intrastriatal injection of collagenase significantly inhibited the decrease in the number of striatal neurons at 3 days after the insult. Am80 showed no significant effect on the hematoma size and the extent of edema associated with hemorrhage. Prominent expression of RARα was observed in activated microglia/macrophages, and the number of activated microglia/macrophages in the perihematoma region was lower in Am80-treated mice than in vehicle-treated mice. Am80 treatment also reduced areas affected by hemorrhage-associated oxidative stress as indicated by nitrotyrosine immunoreactivity, and attenuated heme oxygenase-1 expression in activated microglia/macrophages. Moreover, Am80-treated mice exhibited better recovery from hemorrhage-induced neurologic deficits than vehicle-treated mice. These results suggest that RAR is a promising target of neuroprotective therapy for ICH. PMID:20551971

  12. Targeting cells of the myeloid lineage attenuates pain and disease progression in a prostate model of bone cancer.

    PubMed

    Thompson, Michelle L; Jimenez-Andrade, Juan M; Chartier, Stephane; Tsai, James; Burton, Elizabeth A; Habets, Gaston; Lin, Paul S; West, Brian L; Mantyh, Patrick W

    2015-09-01

    Tumor cells frequently metastasize to bone where they can generate cancer-induced bone pain (CIBP) that can be difficult to fully control using available therapies. Here, we explored whether PLX3397, a high-affinity small molecular antagonist that binds to and inhibits phosphorylation of colony-stimulating factor-1 receptor, the tyrosine-protein kinase c-Kit, and the FMS-like tyrosine kinase 3, can reduce CIBP. These 3 targets all regulate the proliferation and function of a subset of the myeloid cells including macrophages, osteoclasts, and mast cells. Preliminary experiments show that PLX3397 attenuated inflammatory pain after formalin injection into the hind paw of the rat. As there is an inflammatory component in CIBP, involving macrophages and osteoclasts, the effect of PLX3397 was explored in a prostate model of CIBP where skeletal pain, cancer cell proliferation, tumor metastasis, and bone remodeling could be monitored in the same animal. Administration of PLX3397 was initiated on day 14 after prostate cancer cell injection when the tumor was well established, and tumor-induced bone remodeling was first evident. Over the next 6 weeks, sustained administration of PLX3397 attenuated CIBP behaviors by approximately 50% and was equally efficacious in reducing tumor cell growth, formation of new tumor colonies in bone, and pathological tumor-induced bone remodeling. Developing a better understanding of potential effects that analgesic therapies have on the tumor itself may allow the development of therapies that not only better control the pain but also positively impact disease progression and overall survival in patients with bone cancer. PMID:25993548

  13. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic analysis of regenerated bone

    NASA Astrophysics Data System (ADS)

    Benetti, Carolina; Kazarain, Sergei G.; Alves, Marco A. V.; Blay, Alberto; Correa, Luciana; Zezell, Denise M.

    2014-03-01

    The cutting of bone is routinely required in medical procedures, especially in dental applications. In such cases, bone regeneration and new bone quality can determine the success of the treatment. This study investigated the main spectral differences of undamaged and healed bone using the ATR-FTIR spectroscopy technique. Three rabbits were submitted to a surgical procedure; a small piece of bone (3x3 mm2) was removed from both sides of their jaws using a high speed drill. After 15 days, the rabbits were euthanized and the jaws were removed. A bone slice was cut from each side of the jaw containing regions of undamaged and newly formed bone, resulting in six samples which were polished for spectroscopic comparison. The samples were analyzed by FTIR spectroscopy using a diamond ATR accessory. Spectral characteristics were compared and particular attention was paid to the proportion of phosphate to amide I bands and the width of the phosphate band. The results show that the ratio of phosphate to amide I is smaller in new bone tissue than in the undamaged bone, indicating a higher organic content in the newly formed bone. The analysis of the width of the phosphate band suggests a crystallinity difference between both tissues, since the width was higher in the new bone than in the natural bone. These results suggest that the differences observed in bone aging processes by FTIR spectroscopic can be applied to the study of healing processes.

  14. Icariin attenuates titanium-particle inhibition of bone formation by activating the Wnt/β-catenin signaling pathway in vivo and in vitro.

    PubMed

    Wang, Junhua; Tao, Yunxia; Ping, Zichuan; Zhang, Wen; Hu, Xuanyang; Wang, Yijun; Wang, Liangliang; Shi, Jiawei; Wu, Xiexing; Yang, Huilin; Xu, Yaozeng; Geng, Dechun

    2016-01-01

    Wear-debris-induced periprosthetic osteolysis (PIO) is a common clinical condition following total joint arthroplasty, which can cause implant instability and failure. The host response to wear debris promotes bone resorption and impairs bone formation. We previously demonstrated that icariin suppressed wear-debris-induced osteoclastogenesis and attenuated particle-induced osteolysis in vivo. Whether icariin promotes bone formation in a wear-debris-induced osteolytic site remains unclear. Here, we demonstrated that icariin significantly attenuated titanium-particle inhibition of osteogenic differentiation of mesenchymal stem cells (MSCs). Additionally, icariin increased bone mass and decreased bone loss in titanium-particle-induced osteolytic sites. Mechanistically, icariin inhibited decreased β-catenin stability induced by titanium particles in vivo and in vitro. To confirm icariin mediated its bone-protective effects via the Wnt/β-catenin signaling pathway, we demonstrated that ICG-001, a selective Wnt/β-catenin inhibitor, attenuated the effects of icariin on MSC mineralization in vitro and bone formation in vivo. Therefore, icariin could induce osteogenic differentiation of MSCs and promote new bone formation at a titanium-particle-induced osteolytic site via activation of the Wnt/β-catenin signaling pathway. These results further support the protective effects of icariin on particle-induced bone loss and provide novel mechanistic insights into the recognized bone-anabolic effects of icariin and an evidence-based rationale for its use in PIO treatment. PMID:27029606

  15. Icariin attenuates titanium-particle inhibition of bone formation by activating the Wnt/β-catenin signaling pathway in vivo and in vitro

    PubMed Central

    Wang, Junhua; Tao, Yunxia; Ping, Zichuan; Zhang, Wen; Hu, Xuanyang; Wang, Yijun; Wang, Liangliang; Shi, Jiawei; Wu, Xiexing; Yang, Huilin; Xu, Yaozeng; Geng, Dechun

    2016-01-01

    Wear-debris-induced periprosthetic osteolysis (PIO) is a common clinical condition following total joint arthroplasty, which can cause implant instability and failure. The host response to wear debris promotes bone resorption and impairs bone formation. We previously demonstrated that icariin suppressed wear-debris-induced osteoclastogenesis and attenuated particle-induced osteolysis in vivo. Whether icariin promotes bone formation in a wear-debris-induced osteolytic site remains unclear. Here, we demonstrated that icariin significantly attenuated titanium-particle inhibition of osteogenic differentiation of mesenchymal stem cells (MSCs). Additionally, icariin increased bone mass and decreased bone loss in titanium-particle-induced osteolytic sites. Mechanistically, icariin inhibited decreased β-catenin stability induced by titanium particles in vivo and in vitro. To confirm icariin mediated its bone-protective effects via the Wnt/β-catenin signaling pathway, we demonstrated that ICG-001, a selective Wnt/β-catenin inhibitor, attenuated the effects of icariin on MSC mineralization in vitro and bone formation in vivo. Therefore, icariin could induce osteogenic differentiation of MSCs and promote new bone formation at a titanium-particle-induced osteolytic site via activation of the Wnt/β-catenin signaling pathway. These results further support the protective effects of icariin on particle-induced bone loss and provide novel mechanistic insights into the recognized bone-anabolic effects of icariin and an evidence-based rationale for its use in PIO treatment. PMID:27029606

  16. Putative Dopamine Agonist (KB220Z) Attenuates Lucid Nightmares in PTSD Patients: Role of Enhanced Brain Reward Functional Connectivity and Homeostasis Redeeming Joy

    PubMed Central

    McLaughlin, Thomas; Blum, Kenneth; Oscar-Berman, Marlene; Febo, Marcelo; Agan, Gozde; Fratantonio, James L.; Simpatico, Thomas; Gold, Mark S.

    2015-01-01

    Background Lucid dreams are frequently pleasant and training techniques have been developed to teach dreamers to induce them. In addition, the induction of lucid dreams has also been used as a way to ameliorate nightmares. On the other hand, lucid dreams may be associated with psychiatric conditions, including Post-Traumatic Stress Disorder (PTSD) and Reward Deficiency Syndrome-associated diagnoses. In the latter conditions, lucid dreams can assume an unpleasant and frequently terrifying character. Case Presentations We present two cases of dramatic alleviation of terrifying lucid dreams in patients with PTSD. In the first case study, a 51-year-old, obese woman, diagnosed with PTSD and depression, had attempted suicide and experienced terrifying lucid nightmares linked to sexual/physical abuse from early childhood by family members including her alcoholic father. Her vivid “bad dreams” remained refractory in spite of 6 months of treatment with Dialectical Behavioral Therapy (DBT) and standard pharmaceutical agents which included prazosin, clonidie and Adderall. The second 39-year-old PTSD woman patient had also suffered from lucid nightmares. Results The medication visit notes reveal changes in the frequency, intensity and nature of these dreams after the complex putative dopamine agonist KB220Z was added to the first patient’s regimen. The patient reported her first experience of an extended period of happy dreams. The second PTSD patient, who had suffered from lucid nightmares, was administered KB220Z to attenuate methadone withdrawal symptoms and incidentally reported dreams full of happiness and laughter. Conclusions These cases are discussed with reference to the known effects of KB220Z including enhanced dopamine homeostasis and functional connectivity of brain reward circuitry in rodents and humans. Their understanding awaits intensive investigation involving large-population, double-blinded studies. PMID:26132915

  17. A combination of soy isoflavones and cello-oligosaccharides changes equol/O-desmethylangolensin production ratio and attenuates bone fragility in ovariectomized mice.

    PubMed

    Fujii, Shungo; Takahashi, Nobuyuki; Inoue, Hirofumi; Katsumata, Shin-Ichi; Kikkawa, Yuji; Machida, Makoto; Ishimi, Yoshiko; Uehara, Mariko

    2016-08-01

    We examined the cooperative effects of isoflavones and cello-oligosaccharides on daidzein metabolism and bone fragility in ovariectomized mice. Cello-oligosaccharides increased urinary equol and decreased O-desmethylangolensin. A combination of isoflavones and cello-oligosaccharides attenuated decreases in bone breaking force and stiffness caused by ovariectomy. Combination treatment with isofalvones and cello-oligosaccharides increases urinary equol/O-desmethylangolensin production ratio and prevents ovariectomy-induced abnormalities in bone strength. PMID:27191709

  18. Inhibition of SDF-1α/CXCR4 Signalling in Subchondral Bone Attenuates Post-Traumatic Osteoarthritis.

    PubMed

    Dong, Yonghui; Liu, Hui; Zhang, Xuejun; Xu, Fei; Qin, Liang; Cheng, Peng; Huang, Hui; Guo, Fengjing; Yang, Qing; Chen, Anmin

    2016-01-01

    Previous studies showed that SDF-1α is a catabolic factor that can infiltrate cartilage, decrease proteoglycan content, and increase MMP-13 activity. Inhibiting the SDF-1α/CXCR4 signalling pathway can attenuate the pathogenesis of osteoarthritis (OA). Recent studies have also shown that SDF-1α enhances chondrocyte proliferation and maturation. These results appear to be contradictory. In the current study, we used a destabilisation OA animal model to investigate the effects of SDF-1α/CXCR4 signalling in the tibial subchondral bone and the OA pathological process. Post-traumatic osteoarthritis (PTOA) mice models were prepared by transecting the anterior cruciate ligament (ACLT), or a sham surgery was performed, in a total of 30 mice. Mice were treated with phosphate buffer saline (PBS) or AMD3100 (an inhibitor of CXCR4) and sacrificed at 30 days post ACLT or sham surgery. Tibial subchondral bone status was quantified by micro-computed tomography (μCT). Knee-joint histology was analysed to examine the articular cartilage and joint degeneration. The levels of SDF-1α and collagen type I c-telopeptidefragments (CTX-I) were quantified by ELISA. Bone marrow mononuclear cells (BMMCs) were used to clarify the effects of SDF-1α on osteoclast formation and activity in vivo. μCT analysis revealed significant loss of trabecular bone from tibial subchondral bone post-ACLT, which was effectively prevented by AMD3100. AMD3100 could partially prevent bone loss and articular cartilage degeneration. Serum biomarkers revealed an increase in SDF-1α and bone resorption, which were also reduced by AMD3100. SDF-1α can promote osteoclast formation and the expression oftartrate resistant acid phosphatase (TRAP), cathepsin K (CK), and matrix metalloproteinase (MMP)-9 in osteoclasts by activating the MAPK pathway, including ERK and p38, but not JNK. In conclusion, inhibition of SDF-1α/CXCR4signalling was able to prevent trabecular bone loss and attenuated cartilage degeneration in

  19. Inhibition of SDF-1α/CXCR4 Signalling in Subchondral Bone Attenuates Post-Traumatic Osteoarthritis

    PubMed Central

    Dong, Yonghui; Liu, Hui; Zhang, Xuejun; Xu, Fei; Qin, Liang; Cheng, Peng; Huang, Hui; Guo, Fengjing; Yang, Qing; Chen, Anmin

    2016-01-01

    Previous studies showed that SDF-1α is a catabolic factor that can infiltrate cartilage, decrease proteoglycan content, and increase MMP-13 activity. Inhibiting the SDF-1α/CXCR4 signalling pathway can attenuate the pathogenesis of osteoarthritis (OA). Recent studies have also shown that SDF-1α enhances chondrocyte proliferation and maturation. These results appear to be contradictory. In the current study, we used a destabilisation OA animal model to investigate the effects of SDF-1α/CXCR4 signalling in the tibial subchondral bone and the OA pathological process. Post-traumatic osteoarthritis (PTOA) mice models were prepared by transecting the anterior cruciate ligament (ACLT), or a sham surgery was performed, in a total of 30 mice. Mice were treated with phosphate buffer saline (PBS) or AMD3100 (an inhibitor of CXCR4) and sacrificed at 30 days post ACLT or sham surgery. Tibial subchondral bone status was quantified by micro-computed tomography (μCT). Knee-joint histology was analysed to examine the articular cartilage and joint degeneration. The levels of SDF-1α and collagen type I c-telopeptidefragments (CTX-I) were quantified by ELISA. Bone marrow mononuclear cells (BMMCs) were used to clarify the effects of SDF-1α on osteoclast formation and activity in vivo. μCT analysis revealed significant loss of trabecular bone from tibial subchondral bone post-ACLT, which was effectively prevented by AMD3100. AMD3100 could partially prevent bone loss and articular cartilage degeneration. Serum biomarkers revealed an increase in SDF-1α and bone resorption, which were also reduced by AMD3100. SDF-1α can promote osteoclast formation and the expression oftartrate resistant acid phosphatase (TRAP), cathepsin K (CK), and matrix metalloproteinase (MMP)-9 in osteoclasts by activating the MAPK pathway, including ERK and p38, but not JNK. In conclusion, inhibition of SDF-1α/CXCR4signalling was able to prevent trabecular bone loss and attenuated cartilage degeneration in

  20. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice

    PubMed Central

    Watari, Kosuke; Shibata, Tomohiro; Nabeshima, Hiroshi; Shinoda, Ai; Fukunaga, Yuichi; Kawahara, Akihiko; Karasuyama, Kazuyuki; Fukushi, Jun-ichi; Iwamoto, Yukihide; Kuwano, Michihiko; Ono, Mayumi

    2016-01-01

    N-myc downstream regulated gene 1 (NDRG1) is a responsible gene for a hereditary motor and sensory neuropathy-Lom (Charcot–Marie–Tooth disease type 4D). This is the first study aiming to assess the contribution of NDRG1 to differentiation of macrophage lineage cells, which has important implications for bone remodeling and inflammatory angiogenesis. Ndrg1 knockout (KO) mice exhibited abnormal curvature of the spine, high trabecular bone mass, and reduced number of osteoclasts. We observed that serum levels of macrophage colony-stimulating factor (M-CSF) and macrophage-related cytokines were markedly decreased in KO mice. Differentiation of bone marrow (BM) cells into osteoclasts, M1/M2-type macrophages and dendritic cells was all impaired. Furthermore, KO mice also showed reduced tumor growth and angiogenesis by cancer cells, accompanied by decreased infiltration of tumor-associated macrophages. The transfer of BM-derived macrophages from KO mice into BM-eradicated wild type (WT) mice induced much less tumor angiogenesis than observed in WT mice. Angiogenesis in corneas in response to inflammatory stimuli was also suppressed with decreased infiltration of macrophages. Taken together, these results indicate that NDRG1 deficiency attenuates the differentiation of macrophage lineage cells, suppressing bone remodeling and inflammatory angiogenesis. This study strongly suggests the crucial role of NDRG1 in differentiation process for macrophages. PMID:26778110

  1. Green tea polyphenols attenuate deterioration of bone microarchitecture in female rats with systemic chronic inflammation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Our previous study demonstrated that green tea polyphenols (GTP) benefit bone health in female rats with chronic inflammation, because of GTP’s antioxidant capacity. The current study further evaluates whether GTP can restore bone microstructure along with related mechanism in rats wit...

  2. Involvement of angiotensin II type 2 receptor (AT2R) signaling in human pancreatic ductal adenocarcinoma (PDAC): a novel AT2R agonist effectively attenuates growth of PDAC grafts in mice

    PubMed Central

    Ishiguro, Susumu; Yoshimura, Kiyoshi; Tsunedomi, Ryouichi; Oka, Masaaki; Takao, Sonshin; Inui, Makoto; Kawabata, Atsushi; Wall, Terrahn; Magafa, Vassiliki; Cordopatis, Paul; Tzakos, Andreas G; Tamura, Masaaki

    2015-01-01

    We have recently discovered the potential involvement of angiotensin II type 2 receptor (AT2R) signaling in pancreatic cancer using AT2R deficient mice. To examine the involvement of AT2R expression in human PDAC, expressions of AT2R as well as the major angiotensin II receptor (type 1 receptor, AT1R) in human PDAC and adjacent normal tissue was evaluated by immunohistochemistry and real time PCR using surgically dissected human PDAC specimens. In immunohistochemical analysis, relatively strong AT1R expression was detected consistently in both normal pancreas and PDAC areas, whereas moderate AT2R expression was detected in 78.5% of PDAC specimens and 100% of normal area of the pancreas. AT1R, but not AT2R, mRNA levels were significantly higher in the PDAC area than in the normal pancreas. AT2R mRNA levels showed a negative correlation trend with overall survival. In cell cultures, treatment with a novel AT2R agonist significantly attenuated both murine and human PDAC cell growth with negligible cytotoxicity in normal epithelial cells. In a mouse study, administrations of the AT2R agonist in tumor surrounding connective tissue markedly attenuated growth of only AT2R expressing PAN02 murine PDAC grafts in syngeneic mice. The AT2R agonist treatment induced apoptosis primarily in tumor cells but not in stromal cells. Taken together, our findings offer clinical and preclinical evidence for the involvement of AT2R signaling in PDAC development and pinpoint that the novel AT2R agonist could serve as an effective therapeutic for PDAC treatment. PMID:25756513

  3. Dixon sequence with superimposed model-based bone compartment provides highly accurate PET/MR attenuation correction of the brain

    PubMed Central

    Koesters, Thomas; Friedman, Kent P.; Fenchel, Matthias; Zhan, Yiqiang; Hermosillo, Gerardo; Babb, James; Jelescu, Ileana O.; Faul, David; Boada, Fernando E.; Shepherd, Timothy M.

    2016-01-01

    Simultaneous PET/MR of the brain is a promising new technology for characterizing patients with suspected cognitive impairment or epilepsy. Unlike CT though, MR signal intensities do not provide a direct correlate to PET photon attenuation correction (AC) and inaccurate radiotracer standard uptake value (SUV) estimation could limit future PET/MR clinical applications. We tested a novel AC method that supplements standard Dixon-based tissue segmentation with a superimposed model-based bone compartment. Methods We directly compared SUV estimation for MR-based AC methods to reference CT AC in 16 patients undergoing same-day, single 18FDG dose PET/CT and PET/MR for suspected neurodegeneration. Three Dixon-based MR AC methods were compared to CT – standard Dixon 4-compartment segmentation alone, Dixon with a superimposed model-based bone compartment, and Dixon with a superimposed bone compartment and linear attenuation correction optimized specifically for brain tissue. The brain was segmented using a 3D T1-weighted volumetric MR sequence and SUV estimations compared to CT AC for whole-image, whole-brain and 91 FreeSurfer-based regions-of-interest. Results Modifying the linear AC value specifically for brain and superimposing a model-based bone compartment reduced whole-brain SUV estimation bias of Dixon-based PET/MR AC by 95% compared to reference CT AC (P < 0.05) – this resulted in a residual −0.3% whole-brain mean SUV bias. Further, brain regional analysis demonstrated only 3 frontal lobe regions with SUV estimation bias of 5% or greater (P < 0.05). These biases appeared to correlate with high individual variability in the frontal bone thickness and pneumatization. Conclusion Bone compartment and linear AC modifications result in a highly accurate MR AC method in subjects with suspected neurodegeneration. This prototype MR AC solution appears equivalent than other recently proposed solutions, and does not require additional MR sequences and scan time. These

  4. Correction of quantification errors in pelvic and spinal lesions caused by ignoring higher photon attenuation of bone in [{sup 18}F]NaF PET/MR

    SciTech Connect

    Schramm, Georg Maus, Jens; Hofheinz, Frank; Petr, Jan; Lougovski, Alexandr; Beuthien-Baumann, Bettina; Oehme, Liane; Platzek, Ivan; Hoff, Jörg van den

    2015-11-15

    Purpose: MR-based attenuation correction (MRAC) in routine clinical whole-body positron emission tomography and magnetic resonance imaging (PET/MRI) is based on tissue type segmentation. Due to lack of MR signal in cortical bone and the varying signal of spongeous bone, standard whole-body segmentation-based MRAC ignores the higher attenuation of bone compared to the one of soft tissue (MRAC{sub nobone}). The authors aim to quantify and reduce the bias introduced by MRAC{sub nobone} in the standard uptake value (SUV) of spinal and pelvic lesions in 20 PET/MRI examinations with [{sup 18}F]NaF. Methods: The authors reconstructed 20 PET/MR [{sup 18}F]NaF patient data sets acquired with a Philips Ingenuity TF PET/MRI. The PET raw data were reconstructed with two different attenuation images. First, the authors used the vendor-provided MRAC algorithm that ignores the higher attenuation of bone to reconstruct PET{sub nobone}. Second, the authors used a threshold-based algorithm developed in their group to automatically segment bone structures in the [{sup 18}F]NaF PET images. Subsequently, an attenuation coefficient of 0.11 cm{sup −1} was assigned to the segmented bone regions in the MRI-based attenuation image (MRAC{sub bone}) which was used to reconstruct PET{sub bone}. The automatic bone segmentation algorithm was validated in six PET/CT [{sup 18}F]NaF examinations. Relative SUV{sub mean} and SUV{sub max} differences between PET{sub bone} and PET{sub nobone} of 8 pelvic and 41 spinal lesions, and of other regions such as lung, liver, and bladder, were calculated. By varying the assigned bone attenuation coefficient from 0.11 to 0.13 cm{sup −1}, the authors investigated its influence on the reconstructed SUVs of the lesions. Results: The comparison of [{sup 18}F]NaF-based and CT-based bone segmentation in the six PET/CT patients showed a Dice similarity of 0.7 with a true positive rate of 0.72 and a false discovery rate of 0.33. The [{sup 18}F]NaF-based bone

  5. Dihydroartemisinin attenuates lipopolysaccharide-induced osteoclastogenesis and bone loss via the mitochondria-dependent apoptosis pathway.

    PubMed

    Dou, C; Ding, N; Xing, J; Zhao, C; Kang, F; Hou, T; Quan, H; Chen, Y; Dai, Q; Luo, F; Xu, J; Dong, S

    2016-01-01

    Dihydroartemisinin (DHA) is a widely used antimalarial drug isolated from the plant Artemisia annua. Recent studies suggested that DHA has antitumor effects utilizing its reactive oxygen species (ROS) yielding mechanism. Here, we reported that DHA is inhibitory on lipopolysaccharide (LPS)-induced osteoclast (OC) differentiation, fusion and bone-resorption activity in vitro. Intracellular ROS detection revealed that DHA could remarkably increase ROS accumulation during LPS-induced osteoclastogenesis. Moreover, cell apoptosis was also increased by DHA treatment. We found that DHA-activated caspase-3 increased Bax/Bcl-2 ratio during LPS-induced osteoclastogenesis. Meanwhile, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c from the mitochondria into the cytosol were observed, indicating that ROS-mediated mitochondrial dysfunction is crucial in DHA-induced apoptosis during LPS-induced osteoclastogenesis. In vivo study showed that DHA treatment decreased OC number, prevents bone loss, rescues bone microarchitecture and restores bone strength in LPS-induced bone-loss mouse model. Together, our findings indicate that DHA is protective against LPS-induced bone loss through apoptosis induction of osteoclasts via ROS accumulation and the mitochondria-dependent apoptosis pathway. Therefore, DHA may be considered as a new therapeutic candidate for treating inflammatory bone loss. PMID:27031959

  6. Dihydroartemisinin attenuates lipopolysaccharide-induced osteoclastogenesis and bone loss via the mitochondria-dependent apoptosis pathway

    PubMed Central

    Dou, C; Ding, N; Xing, J; Zhao, C; Kang, F; Hou, T; Quan, H; Chen, Y; Dai, Q; Luo, F; Xu, J; Dong, S

    2016-01-01

    Dihydroartemisinin (DHA) is a widely used antimalarial drug isolated from the plant Artemisia annua. Recent studies suggested that DHA has antitumor effects utilizing its reactive oxygen species (ROS) yielding mechanism. Here, we reported that DHA is inhibitory on lipopolysaccharide (LPS)-induced osteoclast (OC) differentiation, fusion and bone-resorption activity in vitro. Intracellular ROS detection revealed that DHA could remarkably increase ROS accumulation during LPS-induced osteoclastogenesis. Moreover, cell apoptosis was also increased by DHA treatment. We found that DHA-activated caspase-3 increased Bax/Bcl-2 ratio during LPS-induced osteoclastogenesis. Meanwhile, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c from the mitochondria into the cytosol were observed, indicating that ROS-mediated mitochondrial dysfunction is crucial in DHA-induced apoptosis during LPS-induced osteoclastogenesis. In vivo study showed that DHA treatment decreased OC number, prevents bone loss, rescues bone microarchitecture and restores bone strength in LPS-induced bone-loss mouse model. Together, our findings indicate that DHA is protective against LPS-induced bone loss through apoptosis induction of osteoclasts via ROS accumulation and the mitochondria-dependent apoptosis pathway. Therefore, DHA may be considered as a new therapeutic candidate for treating inflammatory bone loss. PMID:27031959

  7. γ-Secretase inhibitor reverts the Notch signaling attenuation of osteogenic differentiation in aged bone marrow mesenchymal stem cells.

    PubMed

    Tang, Zhaolong; Wei, Junjun; Yu, Yunbo; Zhang, Jiankang; Liu, Lei; Tang, Wei; Long, Jie; Zheng, Xiaohui; Jing, Wei

    2016-04-01

    The age-related changes in cell viability and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) play pivotal roles in the fracture healing process, especially in geriatric individuals. This study was designed to explore the age-related changes in murine BMSCs and the regulation of osteogenic differentiation in aged BMSCs in vitro. Notch signaling pathway took part in the regulation of osteogensis, while the relationship between Notch and the osteogenic differentiation in aged BMSCs has not been reported yet. BMSCs harvested from the bone marrow of young, adult, and aged C57BL/6 mice were cultured in osteogenic and adipogenic differentiation media. Histochemical staining results indicated that the osteogenic ability of BMSCs gradually decreased with aging, whereas the adipogenic ability increased. Cell activity assays showed that the proliferative and migrated capacity did not decline with aging significantly. According to real-time PCR and Western blotting results, the aged cells exhibited higher Notch signaling expression level than the younger ones did. After the aged BMSCs being treated with γ-secretase inhibitor, however, Notch activity was changed and the aging-imparied osteogenic ability reverted to a normal level. This study demonstrated that the decreased bone formation capacity in aged BMSCs had relationship with the transdifferentiation between osteogenesis and adipogenesis, which would be regulated by Notch signaling pathway and the attenuated osteogenesis in aged BMSCs could be promoted when the inhibition of Notch pathway. PMID:26801333

  8. Attenuated BMP1 Function Compromises Osteogenesis, Leading to Bone Fragility in Humans and Zebrafish

    PubMed Central

    Asharani, P.V.; Keupp, Katharina; Semler, Oliver; Wang, Wenshen; Li, Yun; Thiele, Holger; Yigit, Gökhan; Pohl, Esther; Becker, Jutta; Frommolt, Peter; Sonntag, Carmen; Altmüller, Janine; Zimmermann, Katharina; Greenspan, Daniel S.; Akarsu, Nurten A.; Netzer, Christian; Schönau, Eckhard; Wirth, Radu; Hammerschmidt, Matthias; Nürnberg, Peter; Wollnik, Bernd; Carney, Thomas J.

    2012-01-01

    Bone morphogenetic protein 1 (BMP1) is an astacin metalloprotease with important cellular functions and diverse substrates, including extracellular-matrix proteins and antagonists of some TGFβ superfamily members. Combining whole-exome sequencing and filtering for homozygous stretches of identified variants, we found a homozygous causative BMP1 mutation, c.34G>C, in a consanguineous family affected by increased bone mineral density and multiple recurrent fractures. The mutation is located within the BMP1 signal peptide and leads to impaired secretion and an alteration in posttranslational modification. We also characterize a zebrafish bone mutant harboring lesions in bmp1a, demonstrating conservation of BMP1 function in osteogenesis across species. Genetic, biochemical, and histological analyses of this mutant and a comparison to a second, similar locus reveal that Bmp1a is critically required for mature-collagen generation, downstream of osteoblast maturation, in bone. We thus define the molecular and cellular bases of BMP1-dependent osteogenesis and show the importance of this protein for bone formation and stability. PMID:22482805

  9. OOPHORECTOMY-INDUCED BONE LOSS IS ATTENUATED IN MAGP1-DEFICIENT MICE

    PubMed Central

    Craft, Clarissa S.; Broekelmann, Thomas J.; Zou, Wei; Chappel, Jean C.; Teitelbaum, Steven L.; Mecham, Robert P.

    2011-01-01

    Microfibril-associated glycoprotein-1 (MAGP1)¶, together with the fibrillins, are constitutive components of vertebrate microfibrils. Mice deficient in MAGP1 (MAGP1Δ) develop progressive osteopenia and reduced whole-bone strength, and have elevated numbers of osteoclasts lining the bone surface. Our previous studies suggested that the increased osteoclast population was associated with elevated levels of RANKL, a positive regulator of osteoclast differentiation. To explore the relationship between RANKL expression and osteoclast differentiation in MAGP1 deficiency, oophorectomy (OVX) was used to stimulate RANKL expression in both WT and MAGP1Δ animals. Bone loss following OVX was monitored using whole body DEXA and in vivo μCT. While WT mice exhibited significant bone loss following OVX, percent bone loss was reduced in MAGP1Δ mice. Further, serum RANKL levels rose significantly in OVX WT mice whereas there was only a modest increase in RANKL following OVX in the mutant mice due to already high baseline levels. Elevated RANKL expression was normalized when cultured MAGP1Δ osteoblasts were treated with a neutralizing antibody targeting free TGFβ. These studies provide support for increased RANKL expression associated with MAGP1 deficiency and provide a link to altered TGF-β signaling as a possible causative signaling pathway regulating RANKL expression in MAGP1Δ osteoblasts. PMID:21898536

  10. Low Bone Strength Is a Manifestation of Phenylketonuria in Mice and Is Attenuated by a Glycomacropeptide Diet

    PubMed Central

    Solverson, Patrick; Murali, Sangita G.; Litscher, Suzanne J.; Blank, Robert D.; Ney, Denise M.

    2012-01-01

    Purpose Phenylketonuria (PKU), caused by phenylalanine (phe) hydroxylase loss of function mutations, requires a low-phe diet plus amino acid (AA) formula to prevent cognitive impairment. Glycomacropeptide (GMP), a low-phe whey protein, provides a palatable alternative to AA formula. Skeletal fragility is a poorly understood chronic complication of PKU. We sought to characterize the impact of the PKU genotype and dietary protein source on bone biomechanics. Procedures Wild type (WT; Pah+/+) and PKU (Pahenu2/enu2) mice on a C57BL/6J background were fed high-phe casein, low-phe AA, and low-phe GMP diets between 3 to 23 weeks of age. Following euthanasia, femur biomechanics were assessed by 3-point bending and femoral diaphyseal structure was determined. Femoral ex vivo bone mineral density (BMD) was assessed by dual-enengy x-ray absorptiometry. Whole bone parameters were used in prinicipal component analysis. Data were analyzed by 3-way ANCOVA with genotype, sex, and diet as the main factors. Findings Regardless of diet and sex, PKU femora were more brittle, as manifested by lower post-yield displacement, weaker, as manifested by lower energy and yield and maximal loads, and showed reduced BMD compared with WT femora. Four principal components accounted for 87% of the variance and all differed significantly by genotype. Regardless of genotype and sex, the AA diet reduced femoral cross-sectional area and consequent maximal load compared with the GMP diet. Conclusions Skeletal fragility, as reflected in brittle and weak femora, is an inherent feature of PKU. This PKU bone phenotype is attenuated by a GMP diet compared with an AA diet. PMID:23028819

  11. Strain differences in the attenuation of bone accrual in a young growing mouse model of insulin resistance.

    PubMed

    Rendina-Ruedy, Elizabeth; Graef, Jennifer L; Davis, McKale R; Hembree, Kelsey D; Gimble, Jeffrey M; Clarke, Stephen L; Lucas, Edralin A; Smith, Brenda J

    2016-07-01

    Skeletal fractures are considered a chronic complication of type 2 diabetes mellitus (T2DM), but the etiology of compromised bone quality that develops over time remains uncertain. This study investigated the concurrent alterations in metabolic and skeletal changes in two mouse strains, a responsive (C57BL/6) and a relatively resistant (C3H/HeJ) strain, to high-fat diet-induced glucose intolerance. Four-week-old male C57BL/6 and C3H/HeJ mice were randomized to a control (Con = 10 % kcal fat) or high-fat (HF = 60 % kcal fat) diet for 2, 8, or 16 weeks. Metabolic changes, including blood glucose, plasma insulin and leptin, and glucose tolerance were monitored over time in conjunction with alterations in bone structure and turn over. Elevated fasting glucose occurred in both the C57BL/6 and C3H/HeJ strains on the HF diet at 2 and 8 weeks, but only in the C57BL/6 strain at 16 weeks. Both strains on the HF diet demonstrated impaired glucose tolerance at each time point. The C57BL/6 mice on the HF diet exhibited lower whole-body bone mineral density (BMD) by 8 and 16 weeks, but the C3H/HeJ strain had no evidence of bone loss until 16 weeks. Analyses of bone microarchitecture revealed that trabecular bone accrual in the distal femur metaphysis was attenuated in the C57BL/6 mice on the HF diet at 8 and 16 weeks. In contrast, the C3H/HeJ mice were protected from the deleterious effects of the HF diet on trabecular bone. Alterations in gene expression from the femur revealed that several toll-like receptor (TLR)-4 targets (Atf4, Socs3, and Tlr4) were regulated by the HF diet in the C57BL/6 strain, but not in the C3H/HeJ strain. Structural changes observed only in the C57BL/6 mice were accompanied with a decrease in osteoblastogenesis after 8 and 16 weeks on the HF diet, suggesting a TLR-4-mediated mechanism in the suppression of bone formation. Both the C57BL/6 and C3H/HeJ mice demonstrated an increase in osteoclastogenesis after 8 weeks on the HF diet; however

  12. Levo-Tetrahydropalmatine Attenuates Bone Cancer Pain by Inhibiting Microglial Cells Activation

    PubMed Central

    Zhang, Mao-yin; Liu, Yue-peng; Zhang, Lian-yi; Yue, Dong-mei; Qi, Dun-yi; Liu, Gong-jian; Liu, Su

    2015-01-01

    Objective. The present study is to investigate the analgesic roles of L-THP in rats with bone cancer pain caused by tumor cell implantation (TCI). Methods. Thermal hyperalgesia and mechanical allodynia were measured at different time points before and after operation. L-THP (20, 40, and 60 mg/kg) were administrated intragastrically at early phase of postoperation (before pain appearance) and later phase of postoperation (after pain appearance), respectively. The concentrations of TNF-α, IL-1β, and IL-18 in spinal cord were measured by enzyme-linked immunosorbent assay. Western blot was used to test the activation of astrocytes and microglial cells in spinal cord after TCI treatment. Results. TCI treatment induced significant thermal hyperalgesia and mechanical allodynia. Administration of L-THP at high doses significantly prevented and/or reversed bone cancer-related pain behaviors. Besides, TCI-induced activation of microglial cells and the increased levels of TNF-α and IL-18 were inhibited by L-THP administration. However, L-THP failed to affect TCI-induced astrocytes activation and IL-1β increase. Conclusion. This study suggests the possible clinical utility of L-THP in the treatment of bone cancer pain. The analgesic effects of L-THP on bone cancer pain maybe underlying the inhibition of microglial cells activation and proinflammatory cytokines increase. PMID:26819501

  13. A Randomised Comparison Evaluating Changes in Bone Mineral Density in Advanced Prostate Cancer: Luteinising Hormone-releasing Hormone Agonists Versus Transdermal Oestradiol

    PubMed Central

    Langley, Ruth E.; Kynaston, Howard G.; Alhasso, Abdulla A.; Duong, Trinh; Paez, Edgar M.; Jovic, Gordana; Scrase, Christopher D.; Robertson, Andrew; Cafferty, Fay; Welland, Andrew; Carpenter, Robin; Honeyfield, Lesley; Abel, Richard L.; Stone, Michael; Parmar, Mahesh K.B.; Abel, Paul D.

    2016-01-01

    Background Luteinising hormone-releasing hormone agonists (LHRHa), used as androgen deprivation therapy (ADT) in prostate cancer (PCa) management, reduce serum oestradiol as well as testosterone, causing bone mineral density (BMD) loss. Transdermal oestradiol is a potential alternative to LHRHa. Objective To compare BMD change in men receiving either LHRHa or oestradiol patches (OP). Design, setting, and participants Men with locally advanced or metastatic PCa participating in the randomised UK Prostate Adenocarcinoma TransCutaneous Hormones (PATCH) trial (allocation ratio of 1:2 for LHRHa:OP, 2006–2011; 1:1, thereafter) were recruited into a BMD study (2006–2012). Dual-energy x-ray absorptiometry scans were performed at baseline, 1 yr, and 2 yr. Interventions LHRHa as per local practice, OP (FemSeven 100 μg/24 h patches). Outcome measurements and statistical analysis The primary outcome was 1-yr change in lumbar spine (LS) BMD from baseline compared between randomised arms using analysis of covariance. Results and limitations A total of 74 eligible men (LHRHa 28, OP 46) participated from seven centres. Baseline clinical characteristics and 3-mo castration rates (testosterone ≤1.7 nmol/l, LHRHa 96% [26 of 27], OP 96% [43 of 45]) were similar between arms. Mean 1-yr change in LS BMD was −0.021 g/cm3 for patients randomised to the LHRHa arm (mean percentage change −1.4%) and +0.069 g/cm3 for the OP arm (+6.0%; p < 0.001). Similar patterns were seen in hip and total body measurements. The largest difference between arms was at 2 yr for those remaining on allocated treatment only: LS BMD mean percentage change LHRHa −3.0% and OP +7.9% (p < 0.001). Conclusions Transdermal oestradiol as a single agent produces castration levels of testosterone while mitigating BMD loss. These early data provide further supporting evidence for the ongoing phase 3 trial. Patient summary This study found that prostate cancer patients treated with transdermal oestradiol

  14. Plumbagin attenuates cancer cell growth and osteoclast formation in the bone microenvironment of mice

    PubMed Central

    Yan, Wei; Wang, Ting-yu; Fan, Qi-ming; Du, Lin; Xu, Jia-ke; Zhai, Zan-jing; Li, Hao-wei; Tang, Ting-ting

    2014-01-01

    Aim: To investigate the effects of plumbagin, a naphthoquinone derived from the medicinal plant Plumbago zeylanica, on human breast cancer cell growth and the cancer cell-induced osteolysis in the bone microenvironment of mice. Methods: Human breast cancer cell subline MDA-MB-231SA with the ability to spread and grow in the bone was tested. The cell proliferation was determined using the CCK-8 assay. Apoptosis was detected with Annexin V/PI double-labeled flow cytometry. Red fluorescent protein-labeled MDA-MB-231SArfp cells were injected into the right tibia of female BALB/c-nu/nu mice. Three days after the inoculation, the mice were injected with plumbagin (2, 4, or 6 mg/kg, ip) 5 times per week for 7 weeks. The growth of the tumor cells was monitored using an in vivo imaging system. After the mice were sacrificed, the hind limbs were removed for radiographic and histological analyses. Results: Plumbagin (2.5–20 μmol/L) concentration-dependently inhibited the cell viability and induced apoptosis of MDA-MB-231SA cells in vitro (the IC50 value of inhibition of cell viability was 14.7 μmol/L). Administration of plumbagin to breast cancer bearing mice delayed the tumor growth by 2–3 weeks and reduced the tumor volume by 44%–74%. The in vivo imaging study showed that plumbagin dose-dependently inhibited MDA-MB-231SArfp cell growth in bone microenvironment. Furthermore, X-ray images and micro-CT study demonstrated that plumbagin reduced bone erosion area and prevented a decrease in bone tissue volume. Histological studies showed that plumbagin dose-dependently inhibited the breast cancer cell growth, enhanced the cell apoptosis and reduced the number of TRAcP-positive osteoclasts. Conclusion: Plumbagin inhibits the cell growth and induces apoptosis in human breast cancer cells in mice bone microenvironment, leading to significant reduction in osteolytic lesions caused by the tumor cells. PMID:24384612

  15. Attenuation of bone morphogenetic protein signaling during amphibian limb development results in the generation of stage-specific defects.

    PubMed

    Jones, Tamsin E M; Day, Robert C; Beck, Caroline W

    2013-11-01

    The vertebrate limb is one of the most intensively studied organs in the field of developmental biology. Limb development in tetrapod vertebrates is highly conserved and dependent on the interaction of several important molecular pathways. The bone morphogenetic protein (BMP) signaling cascade is one of these pathways and has been shown to be crucial for several aspects of limb development. Here, we have used a Xenopus laevis transgenic line, in which expression of the inhibitor Noggin is under the control of the heat-shock promoter hsp70 to examine the effects of attenuation of BMP signaling at different stages of limb development. Remarkably different phenotypes were produced at different stages, illustrating the varied roles of BMP in development of the limb. Very early limb buds appeared to be refractory to the effects of BMP attenuation, developing normally in most cases. Ectopic limbs were produced by overexpression of Noggin corresponding to a brief window of limb development at about stage 49/50, as recently described by Christen et al. (2012). Attenuation of BMP signaling in stage 51 or 52 tadpoles lead to a reduction in the number of digits formed, resulting in hypodactyly or ectrodactyly, as well as occasional defects in the more proximal tibia-fibula. Finally, inhibition at stage 54 (paddle stage) led to the formation of dramatically shortened digits resulting from loss of distal phalanges. Transcriptome analysis has revealed the possibility that more Noggin-sensitive members of the BMP family could be involved in limb development than previously suspected. Our analysis demonstrates the usefulness of heat-shock-driven gene expression as an effective method for inhibiting a developmental pathway at different times during limb development. PMID:23981117

  16. Sesamol attenuates genotoxicity in bone marrow cells of whole-body γ-irradiated mice.

    PubMed

    Kumar, Arun; Selvan, Tamizh G; Tripathi, Akanchha M; Choudhary, Sandeep; Khan, Shahanshah; Adhikari, Jawahar S; Chaudhury, Nabo K

    2015-09-01

    Ionising radiation causes free radical-mediated damage in cellular DNA. This damage is manifested as chromosomal aberrations and micronuclei (MN) in proliferating cells. Sesamol, present in sesame seeds, has the potential to scavenge free radicals; therefore, it can reduce radiation-induced cytogenetic damage in cells. The aim of this study was to investigate the radioprotective potential of sesamol in bone marrow cells of mice and related haematopoietic system against radiation-induced genotoxicity. A comparative study with melatonin was designed for assessing the radioprotective potential of sesamol. C57BL/6 mice were administered intraperitoneally with either sesamol or melatonin (10 and 20mg/kg body weight) 30 min prior to 2-Gy whole-body irradiation (WBI) and sacrificed after 24h. Total chromosomal aberrations (TCA), MN and cell cycle analyses were performed using bone marrow cells. The comet assay was performed on bone marrow cells, splenocytes and lymphocytes. Blood was drawn to study haematological parameters. Prophylactic doses of sesamol (10 and 20mg/kg) in irradiated mice reduced TCA and micronucleated polychromatic erythrocyte frequency in bone marrow cells by 57% and 50%, respectively, in comparison with radiation-only groups. Sesamol-reduced radiation-induced apoptosis and facilitated cell proliferation. In the comet assay, sesamol (20mg/kg) treatment reduced radiation-induced comets (% DNA in tail) compared with radiation only (P < 0.05). Sesamol also increased granulocyte populations in peripheral blood similar to melatonin. Overall, the radioprotective efficacy of sesamol was found to be similar to that of melatonin. Sesamol treatment also showed recovery of relative spleen weight at 24h of WBI. The results strongly suggest the radioprotective efficacy of sesamol in the haematopoietic system of mice. PMID:25863274

  17. Carvedilol promotes neurological function, reduces bone loss and attenuates cell damage after acute spinal cord injury in rats.

    PubMed

    Liu, Da; Huang, Ying; Li, Bin; Jia, Changqing; Liang, Feng; Fu, Qin

    2015-02-01

    Acute spinal cord injury (SCI) leads to permanent functional deficits via mechanical injury and secondary mechanisms, but the therapeutic strategy for SCI is limited. Carvedilol has been shown to possess multiple biological and pharmacological properties. The of the present study was to investigate the possible protective effect of carvedilol in SCI rats. An acute SCI rat model was established and neurological function was tested. After carvedilol (10 mg/kg, oral gavage) treatment for 21 days, the status of osteoporosis, neuron damage, astrocyte activation, inflammation, oxidative stress and apoptosis were evaluated in rats. Carvedilol significantly improved locomotor activity that was decreased by SCI. In addition, carvedilol promoted bone growth by regulating the expression of nuclear factor-κB ligand (receptor activator of nuclear factor-κB ligand; RANKL) and osteoprotegerin (OPG), inactivating osteoclasts and thereby increasing bone mineral density in tibias. In addition, carvedilol reduced SCI-induced neural damage, increased neuron number and reduced astrocyte activation in the spinal cord. Furthermore, the production and mRNA expression of tumour necrosis factor-α, interleukin (IL)-1β and IL-6 were significantly reduced, reduced glutathione content and superoxide dismutase activity were markedly increased and malondialdehyde content was markedly decreased in the spinal cords of carvedilol-treated rats. These results indicate that carvedilol exhibits anti-inflammatory and anti-oxidative effects in SCI rats. In addition, the expression of Fas and Fas ligand was reduced by carvedilol treatment, which, in turn, reduced cleaved caspase 3 expression and finally decreased the number of apoptotic cells in the spinal cord. In conclusion, carvedilol promotes neurological function, reduces bone loss and attenuates cell damage after acute SCI in rats. PMID:25424914

  18. Therapeutic potential of the dual peroxisome proliferator activated receptor (PPAR)α/γ agonist aleglitazar in attenuating TNF-α-mediated inflammation and insulin resistance in human adipocytes.

    PubMed

    Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Carluccio, Maria Annunziata; Calabriso, Nadia; Wabitsch, Martin; Storelli, Carlo; Wright, Matthew; De Caterina, Raffaele

    2016-05-01

    Adipose tissue inflammation is a mechanistic link between obesity and its related sequelae, including insulin resistance and type 2 diabetes. Dual ligands of peroxisome proliferator activated receptor (PPAR)α and γ, combining in a single molecule the metabolic and inflammatory-regulatory properties of α and γ agonists, have been proposed as a promising therapeutic strategy to antagonize adipose tissue inflammation. Here we investigated the effects of the dual PPARα/γ agonist aleglitazar on human adipocytes challenged with inflammatory stimuli. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were treated with aleglitazar or - for comparison - the selective agonists for PPARα or γ fenofibrate or rosiglitazone, respectively, for 24h before stimulation with TNF-α. Aleglitazar, at concentrations as low as 10nmol/L, providing the half-maximal transcriptional activation of both PPARα and PPARγ, reduced the stimulated expression of several pro-inflammatory mediators including interleukin (IL)-6, the chemokine CXC-L10, and monocyte chemoattractant protein (MCP)-1. Correspondingly, media from adipocytes treated with aleglitazar reduced monocyte migration, consistent with suppression of MCP-1 secretion. Under the same conditions, aleglitazar also reversed the TNF-α-mediated suppression of insulin-stimulated ser473 Akt phosphorylation and decreased the TNF-α-induced ser312 IRS1 phosphorylation, two major switches in insulin-mediated metabolic activities, restoring glucose uptake in insulin-resistant adipocytes. Such effects were similar to those obtainable with a combination of single PPARα and γ agonists. In conclusion, aleglitazar reduces inflammatory activation and dysfunction in insulin signaling in activated adipocytes, properties that may benefit diabetic and obese patients. The effect of aleglitazar was consistent with dual PPARα and γ agonism, but with no evidence of synergism. PMID:26976796

  19. Endogenous n-3 fatty acids protect ovariectomy induced bone loss by attenuating osteoclastogenesis.

    PubMed

    Rahman, Md Mizanur; Bhattacharya, Arunabh; Banu, Jameela; Kang, Jing X; Fernandes, Gabriel

    2009-08-01

    Beneficial effects of n-3 fatty acids (FA) on bone mineral density (BMD) have been reported in mice, rats and human beings, but the precise mechanisms involved have not been described. This study used the Fat-1 mouse, a transgenic model that synthesizes n-3 FA from n-6 FA to directly determine if outcome of bone health were correlated with n-3 FA. Ovariectomized (Ovx) and sham operated wild-type (WT) and Fat-1 mice were fed an AIN-93M diet containing 10% corn oil for 24 weeks. BMD was analysed by dual energy x-ray absorptiometry. Fat-1 Ovx mice exhibited significantly lower level of osteotropic factors like receptor activator of NF-kappaB ligand and tartrate-resistant acid phosphatase (TRAP)5b in serum and higher BMD in distal femoral metaphysis, proximal tibial metaphysis, femoral diaphysis and lumbar vertebra as compared to WT Ovx mice. LPS-stimulated bone marrow (BM) cells from Fat-1 Ovx mice produced significantly lower level of pro-inflammatory cytokines like tumour necrosis factor-alpha, interleukin (IL)-1-beta, IL-6 and higher level of anti-inflammatory cytokines like IL-10, IFN-gamma and higher level of nitric oxide as compared to BM cells from WT Ovx mice. LPS-stimulated COX-II activity as well as NF-kappaB activation in BM cells from Fat-1 Ovx mice was significantly less as compared to BM cells from WT Ovx mice. Furthermore, Fat-1 BM cells generated significantly less number of TRAP osteoclast-like cells as compared to WT BM cells. In conclusion, we offer further insight into the mechanisms involved in preventing the BMD loss in Ovx mice by n-3 FA using a Fat-1 transgenic mouse model. PMID:20141608

  20. High-Dose Vitamin D and Calcium Attenuates Bone Loss with Antiretroviral Therapy Initiation

    PubMed Central

    Overton, Edgar Turner; Chan, Ellen S.; Brown, Todd T.; Tebas, Pablo; McComsey, Grace A.; Melbourne, Kathleen M.; Napoli, Andrew; Hardin, William Royce; Ribaudo, Heather J.; Yin, Michael T.

    2015-01-01

    Background Antiretroviral therapy (ART) initiation for HIV-1 infection is associated with 2-6% loss in bone mineral density (BMD). Objective To evaluate vitamin D3 (4000 IU daily) plus calcium (1000 mg calcium carbonate daily) supplementation on bone loss associated with ART initiation. Design 48-week prospective, randomized, double-blind, placebo-controlled study. Setting Thirty nine AIDS Clinical Trials Network research units. Participants ART-naïve HIV-infected adults. Measurements BMD by dual-energy X-ray absorptiometry (DXA); 25-hydroxy vitamin D (25(OH)D) levels, parathyroid hormone (PTH), phosphate metabolism, markers of bone turnover and systemic inflammation. Results 165 eligible subjects were randomized (79 Vitamin D/calcium (VitD/Cal); 86 placebo); 142 subjects with evaluable DXA data were included in the primary analysis. The study arms were well-balanced at baseline: median age 33 years; 90% male; 33% non-Hispanic black; median CD4 count 341 cells/mm3; and median 25(OH)D 23 ng/mL (57 nmol/L). At 48 weeks, subjects receiving placebo had greater decline in total hip BMD than VitD/Cal: −3.19% median change (1st-3rd quartile (Q1, Q3) −5.12%, −1.02%) vs. (−1.46% −3.16%,−0.40%). respectively (p=0.001). Lumbar spine BMD loss for the two groups was similar: −2.91% (−4.84%, −1.06%) vs. −1.41% (−3.78%, 0.00%), (p=0.085). At week 48, 90% of participants achieved HIV-1 RNA <50 copies/mL. Levels of 25(OH)D3 increased in the VitD/Cal but not the placebo group: median change of 24.5 (14.6, 37.8) vs. 0.7 (−5.3, 4.3) ng/mL, respectively (p<0.001). Additionally, increases in markers of bone turnover were blunted in the VitD/Cal group. Limitations No international sites were included; only 48 weeks of follow up Conclusion Vitamin D/calcium supplementation mitigates the loss of BMD seen with initiation of efavirenz/emtricitabine/tenofovir, particularly at the total hip, which is the site of greatest concern for fragility fracture. Primary Funding

  1. Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes

    PubMed Central

    Song, Zhen-peng; Xiong, Bing-rui; Guan, Xue-hai; Cao, Fei; Manyande, Anne; Zhou, Ya-qun; Zheng, Hua; Tian, Yu-ke

    2016-01-01

    Aim: To investigate the mechanisms underlying the anti-nociceptive effect of minocycline on bone cancer pain (BCP) in rats. Methods: A rat model of BCP was established by inoculating Walker 256 mammary carcinoma cells into tibial medullary canal. Two weeks later, the rats were injected with minocycline (50, 100 μg, intrathecally; or 40, 80 mg/kg, ip) twice daily for 3 consecutive days. Mechanical paw withdrawal threshold (PWT) was used to assess pain behavior. After the rats were euthanized, spinal cords were harvested for immunoblotting analyses. The effects of minocycline on NF-κB activation were also examined in primary rat astrocytes stimulated with IL-1β in vitro. Results: BCP rats had marked bone destruction, and showed mechanical tactile allodynia on d 7 and d 14 after the operation. Intrathecal injection of minocycline (100 μg) or intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced mechanical tactile allodynia. Furthermore, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of GFAP (astrocyte marker) and PSD95 in spinal cord. Moreover, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of NF-κB, p-IKKα and IκBα in spinal cord. In IL-1β-stimulated primary rat astrocytes, pretreatment with minocycline (75, 100 μmol/L) significantly inhibited the translocation of NF-κB to nucleus. Conclusion: Minocycline effectively alleviates BCP by inhibiting the NF-κB signaling pathway in spinal astrocytes. PMID:27157092

  2. AKP-11 - A Novel S1P1 Agonist with Favorable Safety Profile Attenuates Experimental Autoimmune Encephalomyelitis in Rat Model of Multiple Sclerosis.

    PubMed

    Samuvel, Devadoss J; Saxena, Nishant; Dhindsa, Jasdeep S; Singh, Avtar K; Gill, Gurmit S; Grobelny, Damian W; Singh, Inderjit

    2015-01-01

    Sphingosine-1-phosphate receptor 1 (S1P1) mediated regulation of lymphocyte egress from lymphoid organs is recognized as the mechanism of FTY720 (Fingolimod, Gilenya) efficacy in relapsing-remitting forms of multiple sclerosis (RRMS). In this study we describe a novel S1P1 agonist AKP-11, next generation of S1P1 agonist, with immunomodulatory activities in cell culture model and for therapeutic efficacy against an animal model of MS, i.e. experimental autoimmune encephalomyelitis (EAE) but without the adverse effects observed with FTY720. Like FTY720, AKP-11 bound to S1P1 is internalized and activates intracellular AKT and ERKs cellular signaling pathways. In contrast to FTY720, AKP-11 mediated S1P1 downregulation is independent of sphingosine kinase activity indicating it to be a direct agonist of S1P1. The S1P1 loss and inhibition of lymphocyte egress by FTY720 leads to lymphopenia. In comparison with FTY720, oral administration of AKP-11 caused milder and reversible lymphopenia while providing a similar degree of therapeutic efficacy in the EAE animal model. Consistent with the observed reversible lymphopenia with AKP-11, the S1P1 recycled back to cell membrane in AKP-11 treated cells following its withdrawal, but not with withdrawal of FTY720. Accordingly, a smaller degree of ubiquitination and proteolysis of S1P1 was observed in AKP-11 treated cells as compared to FTY720. Consistent with previous observations, FTY720 treatment is associated with adverse effects of bradycardia and lung vascular leaks in rodents, whereas AKP-11 treatment had undetectable effects on bradycardia and reduced lung vascular leaks as compared to FTY720. Taken together, the data documents that AKP-11 treatment cause milder and reversible lymphopenia with milder adverse effects while maintaining therapeutic efficacy similar to that observed with FTY720, thus indicating therapeutic potential of AKP-11 for treatment of MS and related autoimmune disorders. PMID:26513477

  3. AKP-11 - A Novel S1P1 Agonist with Favorable Safety Profile Attenuates Experimental Autoimmune Encephalomyelitis in Rat Model of Multiple Sclerosis

    PubMed Central

    Samuvel, Devadoss J.; Saxena, Nishant; Dhindsa, Jasdeep S.; Singh, Avtar K.; Gill, Gurmit S.; Grobelny, Damian W.; Singh, Inderjit

    2015-01-01

    Sphingosine-1-phosphate receptor 1 (S1P1) mediated regulation of lymphocyte egress from lymphoid organs is recognized as the mechanism of FTY720 (Fingolimod, Gilenya) efficacy in relapsing-remitting forms of multiple sclerosis (RRMS). In this study we describe a novel S1P1 agonist AKP-11, next generation of S1P1 agonist, with immunomodulatory activities in cell culture model and for therapeutic efficacy against an animal model of MS, i.e. experimental autoimmune encephalomyelitis (EAE) but without the adverse effects observed with FTY720. Like FTY720, AKP-11 bound to S1P1 is internalized and activates intracellular AKT and ERKs cellular signaling pathways. In contrast to FTY720, AKP-11 mediated S1P1 downregulation is independent of sphingosine kinase activity indicating it to be a direct agonist of S1P1. The S1P1 loss and inhibition of lymphocyte egress by FTY720 leads to lymphopenia. In comparison with FTY720, oral administration of AKP-11 caused milder and reversible lymphopenia while providing a similar degree of therapeutic efficacy in the EAE animal model. Consistent with the observed reversible lymphopenia with AKP-11, the S1P1 recycled back to cell membrane in AKP-11 treated cells following its withdrawal, but not with withdrawal of FTY720. Accordingly, a smaller degree of ubiquitination and proteolysis of S1P1 was observed in AKP-11 treated cells as compared to FTY720. Consistent with previous observations, FTY720 treatment is associated with adverse effects of bradycardia and lung vascular leaks in rodents, whereas AKP-11 treatment had undetectable effects on bradycardia and reduced lung vascular leaks as compared to FTY720. Taken together, the data documents that AKP-11 treatment cause milder and reversible lymphopenia with milder adverse effects while maintaining therapeutic efficacy similar to that observed with FTY720, thus indicating therapeutic potential of AKP-11 for treatment of MS and related autoimmune disorders. PMID:26513477

  4. FGFR1 signaling in hypertrophic chondrocytes is attenuated by the Ras-GAP neurofibromin during endochondral bone formation

    PubMed Central

    Karolak, Matthew R.; Yang, Xiangli; Elefteriou, Florent

    2015-01-01

    Aberrant fibroblast growth factor receptor 3 (FGFR3) signaling disrupts chondrocyte proliferation and growth plate size and architecture, leading to various chondrodysplasias or bone overgrowth. These observations suggest that the duration, intensity and cellular context of FGFR signaling during growth plate chondrocyte maturation require tight, regulated control for proper bone elongation. However, the machinery fine-tuning FGFR signaling in chondrocytes is incompletely defined. We report here that neurofibromin, a Ras-GAP encoded by Nf1, has an overlapping expression pattern with FGFR1 and FGFR3 in prehypertrophic chondrocytes, and with FGFR1 in hypertrophic chondrocytes during endochondral ossification. Based on previous evidence that neurofibromin inhibits Ras-ERK signaling in chondrocytes and phenotypic analogies between mice with constitutive FGFR1 activation and Nf1 deficiency in Col2a1-positive chondrocytes, we asked whether neurofibromin is required to control FGFR1-Ras-ERK signaling in maturing chondrocytes in vivo. Genetic Nf1 ablation in Fgfr1-deficient chondrocytes reactivated Ras-ERK1/2 signaling in hypertrophic chondrocytes and reversed the expansion of the hypertrophic zone observed in mice lacking Fgfr1 in Col2a1-positive chondrocytes. Histomorphometric and gene expression analyses suggested that neurofibromin, by inhibiting Rankl expression, attenuates pro-osteoclastogenic FGFR1 signaling in hypertrophic chondrocytes. We also provide evidence suggesting that neurofibromin in prehypertrophic chondrocytes, downstream of FGFRs and via an indirect mechanism, is required for normal extension and organization of proliferative columns. Collectively, this study indicates that FGFR signaling provides an important input into the Ras-Raf-MEK-ERK1/2 signaling axis in chondrocytes, and that this input is differentially regulated during chondrocyte maturation by a complex intracellular machinery, of which neurofibromin is a critical component. PMID:25616962

  5. FGFR1 signaling in hypertrophic chondrocytes is attenuated by the Ras-GAP neurofibromin during endochondral bone formation.

    PubMed

    Karolak, Matthew R; Yang, Xiangli; Elefteriou, Florent

    2015-05-01

    Aberrant fibroblast growth factor receptor 3 (FGFR3) signaling disrupts chondrocyte proliferation and growth plate size and architecture, leading to various chondrodysplasias or bone overgrowth. These observations suggest that the duration, intensity and cellular context of FGFR signaling during growth plate chondrocyte maturation require tight, regulated control for proper bone elongation. However, the machinery fine-tuning FGFR signaling in chondrocytes is incompletely defined. We report here that neurofibromin, a Ras-GAP encoded by Nf1, has an overlapping expression pattern with FGFR1 and FGFR3 in prehypertrophic chondrocytes, and with FGFR1 in hypertrophic chondrocytes during endochondral ossification. Based on previous evidence that neurofibromin inhibits Ras-ERK signaling in chondrocytes and phenotypic analogies between mice with constitutive FGFR1 activation and Nf1 deficiency in Col2a1-positive chondrocytes, we asked whether neurofibromin is required to control FGFR1-Ras-ERK signaling in maturing chondrocytes in vivo. Genetic Nf1 ablation in Fgfr1-deficient chondrocytes reactivated Ras-ERK1/2 signaling in hypertrophic chondrocytes and reversed the expansion of the hypertrophic zone observed in mice lacking Fgfr1 in Col2a1-positive chondrocytes. Histomorphometric and gene expression analyses suggested that neurofibromin, by inhibiting Rankl expression, attenuates pro-osteoclastogenic FGFR1 signaling in hypertrophic chondrocytes. We also provide evidence suggesting that neurofibromin in prehypertrophic chondrocytes, downstream of FGFRs and via an indirect mechanism, is required for normal extension and organization of proliferative columns. Collectively, this study indicates that FGFR signaling provides an important input into the Ras-Raf-MEK-ERK1/2 signaling axis in chondrocytes, and that this input is differentially regulated during chondrocyte maturation by a complex intracellular machinery, of which neurofibromin is a critical component. PMID:25616962

  6. Bone deficits in parenteral nutrition-dependent infants and children with intestinal failure are attenuated when accounting for slower growth

    PubMed Central

    Appleman, Stephanie S.; Kalkwarf, Heidi J.; Dwivedi, Alok; Heubi, James E.

    2015-01-01

    Objective To determine if bone mineral content (BMC) and density (BMD) of infants and children with parenteral nutrition (PN)-dependent intestinal failure (IF) is lower than healthy controls, and investigate potential causes of lower BMC and BMD. Methods We performed a cross-sectional study comparing infants and children with PN-dependent IF with duos of age, sex, and race matched controls. Lumbar spine BMC and BMD were measured by dual energy x-ray absorptiometry, and serum cytokines, aluminum, IGF-1, insulin-like growth factor-binding protein (IGF-BP)-3, parathyroid hormone, 25(OH) vitamin D, and 1,25(OH)2 vitamin D were measured. Generalized estimating equation models accounting for matching were used for comparisons. Results BMC was 15% and BMD was 12% lower in IF participants than controls (p≤0.004). Group differences were attenuated to 3% and 7% and were not statistically significant (p=0.40 and p=0.07) when adjusted for length and weight; length- and weight-for-age were lower in IF than control participants (12.5% vs. 63%; 29.5% vs. 54%, p≤0.03). IF participants had higher serum aluminum (23 vs. 7 mcg/L, p<0.0001), IGF-1 (97 vs. 64 ng/mL, p=0.04), and 25(OH) vitamin D concentrations (40 vs. 30 ng/mL, p=0.0005), and lower IGF-BP3 (1418 vs. 1812 ng/mL, p<0.0001) and parathyroid hormone concentrations (51 vs. 98 pg/mL, p=0.0002) than controls. There was no difference in serum cytokine concentrations (p≥0.09). Conclusions Growth retardation is a significant problem for PN-dependent IF patients. Additional investigation is needed to elucidate the cause and its impact on bone mass and density, especially the role of IGF-1 resistance and aluminum toxicity. PMID:23518489

  7. The Serotonin 2C Receptor Agonist Lorcaserin Attenuates Intracranial Self-Stimulation and Blocks the Reward-Enhancing Effects of Nicotine.

    PubMed

    Zeeb, Fiona D; Higgins, Guy A; Fletcher, Paul J

    2015-07-15

    Lorcaserin, a serotonin (5-hydroxytryptamine, 5-HT) 2C receptor agonist, was recently approved for the treatment of obesity. We previously suggested that 5-HT2C receptor agonists affect reward processes and reduce the rewarding effects of drugs of abuse. Here, we determined whether lorcaserin (1) decreases responding for brain stimulation reward (BSR) and (2) prevents nicotine from enhancing the efficacy of BSR. Rats were trained on the intracranial self-stimulation (ICSS) paradigm to nosepoke for BSR of either the dorsal raphé nucleus or left medial forebrain bundle. In Experiment 1, lorcaserin (0.3-1.0 mg/kg) dose-dependently reduced the efficacy of BSR. This effect was blocked by prior administration of the 5-HT2C receptor antagonist SB242084. In Experiment 2, separate groups of rats received saline or nicotine (0.4 mg/kg) for eight sessions prior to testing. Although thresholds were unaltered in saline-treated rats, nicotine reduced reward thresholds. An injection of lorcaserin (0.3 mg/kg) prior to nicotine prevented the reward-enhancing effect of nicotine across multiple test sessions. These results demonstrated that lorcaserin reduces the rewarding value of BSR and also prevents nicotine from facilitating ICSS. Hence, lorcaserin may be effective in treating psychiatric disorders, including obesity and nicotine addiction, by reducing the value of food or drug rewards. PMID:25781911

  8. Green Tea Modulates Cytokine Expression in the Periodontium and Attenuates Alveolar Bone Resorption in Type 1 Diabetic Rats

    PubMed Central

    Gennaro, Gabriela; Claudino, Marcela; Cestari, Tania Mary; Ceolin, Daniele; Germino, Patrícia; Garlet, Gustavo Pompermaier; de Assis, Gerson Francisco

    2015-01-01

    Diabetes mellitus comprises a heterogeneous group of disorders with the main feature of hyperglycemia. Chronic hyperglycemia increases the severity of periodontal disease via an exacerbated inflammatory response, activated by advanced glycation end products and their receptor, RAGE. Therefore, anti-inflammatory agents represent potential inhibitors of this pathological interaction. In particular, green tea has been shown to possess anti-inflammatory properties mediated by its polyphenol content. Objectives: This study investigated the mechanisms by which green tea attenuates the spontaneous onset of diabetes-induced periodontitis. Methods: Diabetes was induced in rats via a single intraperitoneal injection of streptozotocin (STZ). Diabetic and control animals were divided into water-treated and green tea-treated subgroups and were analyzed at 15, 30, 60 and 90 days after diabetes induction. Immunohistochemistry was performed to quantitatively evaluate tumor necrosis factor-α (TNF-α), receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG), interleukin-10 (IL-10) and runt-related transcription factor 2 (RUNX-2) expression in serial sections of each hemimaxilla. Morphometric measurements of the distance from the cementum-enamel junction (CEJ) of the superior distal root of the first molar to the alveolar bone crest (ABC) were performed to assess bone loss. Results: Diabetes resulted in significant bone loss and alterations in the number of cells that stained positive for inflammatory mediators. In the diabetic rats treated with green tea, we observed a decreased number of cells expressing RANKL and TNF-α compared with that observed in the diabetic rats treated with water. Additionally, green tea increased the numbers of cells that stained positive for OPG, RUNX-2 and IL-10 in the diabetic rats. Conclusion: Green tea intake reduces expression of the pro-inflammatory cytokine TNF-α and the osteoclastogenic mediator RANKL to normal levels

  9. The Amiloride Derivative Phenamil Attenuates Pulmonary Vascular Remodeling by Activating NFAT and the Bone Morphogenetic Protein Signaling Pathway ▿

    PubMed Central

    Chan, Mun Chun; Weisman, Alexandra S.; Kang, Hara; Nguyen, Peter H.; Hickman, Tyler; Mecker, Samantha V.; Hill, Nicholas S.; Lagna, Giorgio; Hata, Akiko

    2011-01-01

    Pulmonary artery hypertension (PAH) is characterized by elevated pulmonary artery resistance and increased medial thickness due to deregulation of vascular remodeling. Inactivating mutations of the BMPRII gene, which encodes a receptor for bone morphogenetic proteins (BMPs), are identified in ∼60% of familial PAH (FPAH) and ∼30% of idiopathic PAH (IPAH) patients. It has been hypothesized that constitutive reduction in BMP signal by BMPRII mutations may cause abnormal vascular remodeling by promoting dedifferentiation of vascular smooth muscle cells (vSMCs). Here, we demonstrate that infusion of the amiloride analog phenamil during chronic-hypoxia treatment in rat attenuates development of PAH and vascular remodeling. Phenamil induces Tribbles homolog 3 (Trb3), a positive modulator of the BMP pathway that acts by stabilizing the Smad family signal transducers. Through induction of Trb3, phenamil promotes the differentiated, contractile vSMC phenotype characterized by elevated expression of contractile genes and reduced cell growth and migration. Phenamil activates the Trb3 gene transcription via activation of the calcium-calcineurin-nuclear factor of activated T cell (NFAT) pathway. These results indicate that constitutive elevation of Trb3 by phenamil is a potential therapy for IPAH and FPAH. PMID:21135135

  10. Unfractionated bone marrow cells attenuate paraquat-induced glomerular injury and acute renal failure by modulating the inflammatory response

    PubMed Central

    Gu, Sing-Yi; Yeh, Ti-Yen; Lin, Shih-Yi; Peng, Fu-Chuo

    2016-01-01

    The aim of this study was to evaluate the efficacy of unfractionated bone marrow cells (BMCs) in attenuating acute kidney injury (AKI) induced by paraquat (PQ) in a mouse model. PQ (55 mg/kg BW) was intraperitoneally injected into C57BL/6 female mice to induce AKI, including renal function failure, glomerular damage and renal tubule injury. Glomerular podocytes were the first target damaged by PQ, which led to glomerular injury. Upon immunofluorescence staining, podocytes depletion was validated and accompanied by increased urinary podocin levels, measured on days 1 and 6. A total of 5.4 × 106 BMCs obtained from the same strain of male mice were injected into AKI mice through the tail vein at 3, 24, and 48 hours after PQ administration. As a result, renal function increased, tubular and glomerular injury were ameliorated, podocytes loss improved, and recipient mortality decreased. In addition, BMCs co-treatment decreased the extent of neutrophil infiltration and modulated the inflammatory response by shifting from pro-inflammatory Th1 to an anti-inflammatory Th2 profile, where IL-1β, TNF-α, IL-6 and IFN-γ levels declined and IL-10 and IL-4 levels increased. The present study provides a platform to investigate PQ-induced AKI and repeated BMCs injection represents an efficient therapeutic strategy. PMID:26988026

  11. Measurement of attenuation coefficients for bone, muscle, fat and water at 140, 364 and 662 keV γ-ray energies

    NASA Astrophysics Data System (ADS)

    Akar, A.; Baltaş, H.; Çevik, U.; Korkmaz, F.; Okumuşoğlu, N. T.

    2006-11-01

    The half-value thicknesses, linear and mass attenuation coefficients of biological samples such as bone, muscle, fat and water have been measured at 140, 364 and 662 keV γ-ray energies by using the ATOMLABTM-930 medical spectrometer. The γ-rays were obtained from 99mTc, 131I and 137Cs γ-ray point sources. Also theoretical calculations have been performed in order to obtain the half-value thicknesses and, mass and linear attenuation coefficients at photon energies 0.001 keV 20 MeV for bone, muscle and water samples. The calculated value and the experimental results of this work and the other results in literature are found to be in good agreement.

  12. The ghrelin receptor agonist HM01 mimics the neuronal effects of ghrelin in the arcuate nucleus and attenuates anorexia-cachexia syndrome in tumor-bearing rats.

    PubMed

    Borner, Tito; Loi, Laura; Pietra, Claudio; Giuliano, Claudio; Lutz, Thomas A; Riediger, Thomas

    2016-07-01

    The gastric hormone ghrelin positively affects energy balance by increasing food intake and reducing energy expenditure. Ghrelin mimetics are a possible treatment against cancer anorexia-cachexia syndrome (CACS). This study aimed to characterize the action of the nonpeptidergic ghrelin receptor agonist HM01 on neuronal function, energy homeostasis and muscle mass in healthy rats and to evaluate its possible usefulness for the treatment of CACS in a rat tumor model. Using extracellular single-unit recordings, we tested whether HM01 mimics the effects of ghrelin on neuronal activity in the arcuate nucleus (Arc). Furthermore, we assessed the effect of chronic HM01 treatment on food intake (FI), body weight (BW), lean and fat volumes, and muscle mass in healthy rats. Using a hepatoma model, we investigated the possible beneficial effects of HM01 on tumor-induced anorexia, BW loss, muscle wasting, and metabolic rate. HM01 (10(-7)-10(-6) M) mimicked the effect of ghrelin (10(-8) M) by increasing the firing rate in 76% of Arc neurons. HM01 delivered chronically for 12 days via osmotic minipumps (50 μg/h) increased FI in healthy rats by 24%, paralleled by increased BW, higher fat and lean volumes, and higher muscle mass. Tumor-bearing rats treated with HM01 had 30% higher FI than tumor-bearing controls and were protected against BW loss. HM01 treatment resulted in higher muscle mass and fat mass. Moreover, tumor-bearing rats reduced their metabolic rate following HM01 treatment. Our studies substantiate the possible therapeutic usefulness of ghrelin receptor agonists like HM01 for the treatment of CACS and possibly other forms of disease-related anorexia and cachexia. PMID:27147616

  13. k-space sampling optimization for ultrashort TE imaging of cortical bone: Applications in radiation therapy planning and MR-based PET attenuation correction

    SciTech Connect

    Hu, Lingzhi E-mail: raymond.muzic@case.edu; Traughber, Melanie; Su, Kuan-Hao; Pereira, Gisele C.; Grover, Anu; Traughber, Bryan; Muzic, Raymond F. Jr. E-mail: raymond.muzic@case.edu

    2014-10-15

    Purpose: The ultrashort echo-time (UTE) sequence is a promising MR pulse sequence for imaging cortical bone which is otherwise difficult to image using conventional MR sequences and also poses strong attenuation for photons in radiation therapy and PET imaging. The authors report here a systematic characterization of cortical bone signal decay and a scanning time optimization strategy for the UTE sequence through k-space undersampling, which can result in up to a 75% reduction in acquisition time. Using the undersampled UTE imaging sequence, the authors also attempted to quantitatively investigate the MR properties of cortical bone in healthy volunteers, thus demonstrating the feasibility of using such a technique for generating bone-enhanced images which can be used for radiation therapy planning and attenuation correction with PET/MR. Methods: An angularly undersampled, radially encoded UTE sequence was used for scanning the brains of healthy volunteers. Quantitative MR characterization of tissue properties, including water fraction and R2{sup ∗} = 1/T2{sup ∗}, was performed by analyzing the UTE images acquired at multiple echo times. The impact of different sampling rates was evaluated through systematic comparison of the MR image quality, bone-enhanced image quality, image noise, water fraction, and R2{sup ∗} of cortical bone. Results: A reduced angular sampling rate of the UTE trajectory achieves acquisition durations in proportion to the sampling rate and in as short as 25% of the time required for full sampling using a standard Cartesian acquisition, while preserving unique MR contrast within the skull at the cost of a minimal increase in noise level. The R2{sup ∗} of human skull was measured as 0.2–0.3 ms{sup −1} depending on the specific region, which is more than ten times greater than the R2{sup ∗} of soft tissue. The water fraction in human skull was measured to be 60%–80%, which is significantly less than the >90% water fraction in

  14. [Administration of bone marrow mesenchymal stem cells attenuates inflammation of rats with sepsis].

    PubMed

    Hao, Yufang; Geng, Lixia

    2016-09-01

    Objective To investigate the therapeutic effects of bone marrow-derived mesenchymal stem cells (BMSCs) in rats with sepsis. Methods Forty-eight Wistar rats were divided into blank group, sham group, model group and treatment group. Sepsis model was made using cecum ligation and puncture (CLP). BMSCs were extracted and cultured to the third generation. The rats in the treatment group received BMSCs through a tail vein and the rats in the model group received an equivalent dose of PBS. The survival rate was recorded in each group 72 hours after operation. Pathological changes of lung tissues were observed by HE staining. The mRNA levels of interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), fork head box protein 3 (Foxp3), CC chemokine ligand 2 (CCL2) were tested by quantitative real-time fluorescence PCR. The serum levels of IL-6, IL-17 and TNF-α proteins were detected by ELISA. Results In both blank group and sham group, the survival rate and histological changes of the lungs showed normal; no bacteria were found growing in rats' blood culture; IL-6, IL-17, TNF-α, CCL2, Foxp3 mRNA and IL-6, IL-17, TNF-α protein levels had no significant differences. In the model group, the survival rate of rats was obviously lower than that of the sham group; the pathological changes of the lungs were significant; any amount of enterobacteria were seen growing in rats' blood culture; IL-6, IL-17, TNF-α, CCL2 mRNA and protein expression levels were apparently higher than those of sham group, while Foxp3 mRNA expression level was obviously lower than that of sham group. In the treatment group, the survival rate was significantly higher than that of the model group; the pathological changes of the lung tissues were evidently eased; IL-6, IL-17, TNF-α, CCL2 mRNA and protein expression levels significantly decreased compared with the model group, while Foxp3 mRNA expression level significantly increased compared with the model group. Conclusion BMSCs injection increases the

  15. Fetal ethanol exposure attenuates aversive oral effects of TrpV1, but not TrpA1 agonists in rats

    PubMed Central

    Glendinning, John I; Simons, Yael M; Youngentob, Lisa; Youngentob, Steven L

    2012-01-01

    In humans, fetal ethanol exposure is highly predictive of adolescent ethanol use and abuse. Prior work in our labs indicated that fetal ethanol exposure results in stimulus-induced chemosensory plasticity in the taste and olfactory systems of adolescent rats. In particular, we found that increased ethanol acceptability could be attributed, in part, to an attenuated aversion to ethanol’s aversive odor and quinine-like bitter taste quality. Here, we asked whether fetal ethanol exposure also alters the oral trigeminal response of adolescent rats to ethanol. We focused on two excitatory ligand-gated ion channels, TrpV1 and TrpA1, which are expressed in oral trigeminal neurons and mediate the aversive orosensory response to many chemical irritants. To target TrpV1, we used capsaicin, and to target TrpA1, we used allyl isothiocyanate (or mustard oil). We assessed the aversive oral effects of ethanol, together with capsaicin and mustard oil, by measuring short-term licking responses to a range of concentrations of each chemical. Experimental rats were exposed in utero by administering ethanol to dams through a liquid diet. Control rats had ad libitum access to an iso-caloric iso-nutritive liquid diet. We found that fetal ethanol exposure attenuated the oral aversiveness of ethanol and capsaicin, but not mustard oil, in adolescent rats. Moreover, the increased acceptability of ethanol was directly related to the reduced aversiveness of the TrpV1-mediated orosensory input. We propose that fetal ethanol exposure increases ethanol avidity not only by making ethanol smell and taste better, but also by attenuating ethanol’s capsaicin-like burning sensations. PMID:22378825

  16. The blocking of uPAR suppresses lipopolysaccharide‐induced inflammatory osteoclastogenesis and the resultant bone loss through attenuation of integrin β3/Akt pathway

    PubMed Central

    Ishisaki, Akira; Miyashita, Mei; Matsuo, Osamu

    2016-01-01

    Abstract Introduction Chronic inflammatory diseases, such as rheumatoid arthritis and periodontitis, cause the bone destruction by promotion of the differentiation of monocyte/macrophage lineage cells into mature osteoclasts (OCs) with active bone‐resorbing character. However, the detailed mechanisms underlying this disorder remain unclear. We herein investigated the role of urokinase plasminogen activator receptor (uPAR) in the bone destruction caused by chronic inflammation. Methods We investigated that the effect of uPAR on inflammatory OC formation induced by lipopolysaccharide (LPS) in inflammatory diseases. Results We found that the LPS more weakly induced OC formation and the resultant bone loss in uPAR‐deficient mice than in wild‐type mice. Additionally, we demonstrated that uPAR significantly potentiated LPS‐induced OC formation of RAW264.7 mouse monocyte/macrophage linage cells in integrin β3/Akt‐dependent manner. Moreover, we showed that the blocking of uPAR function by the administration of anti‐uPAR neutralizing antibody significantly attenuated the LPS‐induced OC formation and the resultant bone loss in mice. Conclusions These results strongly suggest that uPAR negatively regulates the LPS‐induced inflammatory OC formation and the resultant bone loss mediated through the integrin β3/Akt pathway. Our findings partly clarify the molecular mechanisms underlying bone destruction caused by chronic inflammatory diseases, and would benefit research on identifying antibody therapy for the treatment of these diseases. PMID:27621816

  17. The GLP-1 agonist exendin-4 attenuates self-administration of sweetened fat on fixed and progressive ratio schedules of reinforcement in rats.

    PubMed

    Bernosky-Smith, Kimberly A; Stanger, David B; Trujillo, Alexandria J; Mitchell, Luke R; España, Rodrigo A; Bass, Caroline E

    2016-03-01

    GLP-1 agonists such as exendin-4 (EX4) are used in the treatment of type-2 diabetes and have the additional benefit of promoting weight loss. GLP-1 agonists decrease feeding through peripheral effects, but recent evidence suggests they may also influence sweet or high fat preference, as well as motivation to obtain these tastants. Yet it remains unclear how GLP-1-induced alterations in food preference influences decreases in overall feeding. The current study sought to determine if EX4 affects the reinforcing strength and consumption of a highly palatable sweet/fat reinforcer. Rats were trained to self-administer sweetened vegetable shortening (SVS) under fixed (FR) and progressive ratio (PR) schedules of reinforcement. EX4 (0.3-2.4μg/kg, i.p.) administered one hour prior to operant sessions significantly reduced responses for SVS under both FR and PR schedules, although the lowest active dose (0.6μg/kg) significantly suppressed FR responding only. EX4 also dose dependently decreased locomotor activity (0.6-2.4μg/kg doses), but did not enhance acute kaolin intake, suggesting that nausea did not influence the self-administration results. Analysis of ED50 values show that EX4 is more effective at inhibiting FR responding versus PR, indicating that EX4 may have more potent effects on amount consumed versus motivation for SVS. Although EX4 caused generalized locomotor suppression, these results do not fully explain the decreases in operant responding. For example, a dose of EX4 (0.6μg/kg) that significantly suppressed locomotor activity did not affect the mean total number of lever presses during PR sessions (59±15), although it did significantly reduce lever presses during FR sessions (21±3). In addition, the pattern of intake was constant at the beginning of the sessions in both PR and FR schedules, regardless of the dose. Together these data suggest that EX4 inhibits consumption of a palatable high sweet/high fat reinforcer potentially through altering satiety

  18. Epidermal growth factor attenuates tubular necrosis following mercuric chloride damage by regeneration of indigenous, not bone marrow-derived cells

    PubMed Central

    Yen, Tzung-Hai; Alison, Malcolm R; Goodlad, Robert A; Otto, William R; Jeffery, Rosemary; Cook, H Terence; Wright, Nicholas A; Poulsom, Richard

    2015-01-01

    To assess effects of epidermal growth factor (EGF) and pegylated granulocyte colony-stimulating factor (P-GCSF; pegfilgrastim) administration on the cellular origin of renal tubular epithelium regenerating after acute kidney injury initiated by mercuric chloride (HgCl2). Female mice were irradiated and male whole bone marrow (BM) was transplanted into them. Six weeks later recipient mice were assigned to one of eight groups: control, P-GCSF+, EGF+, P-GCSF+EGF+, HgCl2, HgCl2+P-GCSF+, HgCl2+EGF+ and HgCl2+P-GCSF+EGF+. Following HgCl2, injection tubular injury scores increased and serum urea nitrogen levels reached uraemia after 3 days, but EGF-treated groups were resistant to this acute kidney injury. A four-in-one analytical technique for identification of cellular origin, tubular phenotype, basement membrane and S-phase status revealed that BM contributed 1% of proximal tubular epithelium in undamaged kidneys and 3% after HgCl2 damage, with no effects of exogenous EGF or P-GCSF. Only 0.5% proximal tubular cells were seen in S-phase in the undamaged group kidneys; this increased to 7–8% after HgCl2 damage and to 15% after addition of EGF. Most of the regenerating tubular epithelium originated from the indigenous pool. BM contributed up to 6.6% of the proximal tubular cells in S-phase after HgCl2 damage, but only to 3.3% after additional EGF. EGF administration attenuated tubular necrosis following HgCl2 damage, and the major cause of this protective effect was division of indigenous cells, whereas BM-derived cells were less responsive. P-GCSF did not influence damage or regeneration. PMID:25389045

  19. MO-G-17A-03: MR-Based Cortical Bone Segmentation for PET Attenuation Correction with a Non-UTE 3D Fast GRE Sequence

    SciTech Connect

    Ai, H; Pan, T; Hwang, K

    2014-06-15

    Purpose: To determine the feasibility of identifying cortical bone on MR images with a short-TE 3D fast-GRE sequence for attenuation correction of PET data in PET/MR. Methods: A water-fat-bone phantom was constructed with two pieces of beef shank. MR scans were performed on a 3T MR scanner (GE Discovery™ MR750). A 3D GRE sequence was first employed to measure the level of residual signal in cortical bone (TE{sub 1}/TE{sub 2}/TE{sub 3}=2.2/4.4/6.6ms, TR=20ms, flip angle=25°). For cortical bone segmentation, a 3D fast-GRE sequence (TE/TR=0.7/1.9ms, acquisition voxel size=2.5×2.5×3mm{sup 3}) was implemented along with a 3D Dixon sequence (TE{sub 1}/TE{sub 2}/TR=1.2/2.3/4.0ms, acquisition voxel size=1.25×1.25×3mm{sup 3}) for water/fat imaging. Flip angle (10°), acquisition bandwidth (250kHz), FOV (480×480×144mm{sup 3}) and reconstructed voxel size (0.94×0.94×1.5mm{sup 3}) were kept the same for both sequences. Soft tissue and fat tissue were first segmented on the reconstructed water/fat image. A tissue mask was created by combining the segmented water/fat masks, which was then applied on the fast-GRE image (MRFGRE). A second mask was created to remove the Gibbs artifacts present in regions in close vicinity to the phantom. MRFGRE data was smoothed with a 3D anisotropic diffusion filter for noise reduction, after which cortical bone and air was separated using a threshold determined from the histogram. Results: There is signal in the cortical bone region in the 3D GRE images, indicating the possibility of separating cortical bone and air based on signal intensity from short-TE MR image. The acquisition time for the 3D fast-GRE sequence was 17s, which can be reduced to less than 10s with parallel imaging. The attenuation image created from water-fat-bone segmentation is visually similar compared to reference CT. Conclusion: Cortical bone and air can be separated based on intensity in MR image with a short-TE 3D fast-GRE sequence. Further research is required

  20. Rosiglitazone, a Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, Attenuates Inflammation Via NF-κB Inhibition in Lipopolysaccharide-Induced Peritonitis.

    PubMed

    Zhang, Yun-Fang; Zou, Xun-Liang; Wu, Jun; Yu, Xue-Qing; Yang, Xiao

    2015-12-01

    We assessed the anti-inflammatory effect of peroxisome proliferator-activated receptor (PPAR)-γ agonist, rosiglitazone, in a lipopolysaccharide (LPS)-induced peritonitis rat model. LPS was intraperitoneally injected into rats to establish peritonitis model. Male Sprague-Dawley (SD) rats were assigned to normal saline (the solvent of LPS), LPS, rosiglitazone plus LPS, and rosiglitazone alone. A simple peritoneal equilibrium test was performed with 20 ml 4.25 % peritoneal dialysis fluid. We measured the leukocyte count in dialysate and ultrafiltration volume. Peritoneal membrane histochemical staining was performed, and peritoneal thickness was assessed. CD40 and intercellular adhesion molecule-1 messenger RNA (ICAM-1 mRNA) levels in rat visceral peritoneum were detected by reverse transcription (RT)-PCR. IL-6 in rat peritoneal dialysis effluent was measured using enzyme-linked immunosorbent assay. The phosphorylation of NF-κB-p65 and IκBα was analyzed by Western blot. LPS administration resulted in increased peritoneal thickness and decreased ultrafiltration volume. Rosiglitazone pretreatment significantly decreased peritoneal thickness. In addition to CD40 and ICAM-1 mRNA expression, the IL-6, p-p65, and p-IκBα protein expressions were enhanced in LPS-administered animals. Rosiglitazone pretreatment significantly decreased ICAM-1 mRNA upregulation, secretion of IL-6 protein, and phosphorylation of NF-κB-p65 and IκBα without decreasing CD40 mRNA expression. Rosiglitazone has a protective effect in peritonitis, simultaneously decreasing NF-κB phosphorylation, suggesting that NF-κB signaling pathway mediated peritoneal inflammation induced by LPS. PPAR-γ might be considered a potential therapeutic target against peritonitis. PMID:26047949

  1. Attenuation of phencyclidine-induced object recognition deficits by the combination of atypical antipsychotic drugs and pimavanserin (ACP 103), a 5-hydroxytryptamine(2A) receptor inverse agonist.

    PubMed

    Snigdha, S; Horiguchi, M; Huang, M; Li, Z; Shahid, M; Neill, J C; Meltzer, H Y

    2010-02-01

    Subchronic administration of the N-methyl-d-aspartate receptor antagonist, phencyclidine (PCP), in rodents has been shown to produce impairment in novel object recognition (NOR), a model of visual learning and memory. We tested the hypothesis that the selective 5-HT(2A) inverse agonists, pimavanserin and (R)-(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl]-4-piperidinemethanol (M100907), would potentiate subeffective doses of atypical antipsychotic drugs (APDs) to reverse the NOR deficits. Female rats received vehicle or PCP (2 mg/kg b.i.d.) for 7 days, followed by a 7-day washout. Pimavanserin (3 mg/kg) or M100907 (1 mg/kg) alone, or four atypicial APDs, risperidone (0.05-0.1 mg/kg), melperone (1-3 mg/kg), olanzapine (1-2 mg/kg), or N-desmethylclozapine (1-2 mg/kg), and the typical APD, haloperidol (0.05-0.1 mg/kg), were administered alone, or in combination with pimavanserin or M100907, before NOR testing. The exploration times of objects during 3-min acquisition and retention trials, separated by a 1-min interval, were compared by analysis of variance. Vehicle-, but not PCP-treated, animals, explored the novel object significantly more than the familiar in the retention trial (p < 0.05-0.01). Pretreatment with the higher doses of the atypical APDs, but not pimavanserin, M100907, or haloperidol alone, reversed the effects of PCP. The effect of risperidone was blocked by haloperidol pretreatment. Coadministration of pimavanserin or M100907, with ineffective doses of the atypical APDs, but not haloperidol, also reversed the PCP-induced deficit in NOR. These results support the importance of 5-hydroxytryptamine(2A) receptor blockade relative to D(2) receptor blockade in the ability of atypicals to ameliorate the effect of subchronic PCP, a putative measure of cognitive dysfunction in schizophrenia. PMID:19864614

  2. High-fat diet enhances and plasminogen activator inhibitor-1 deficiency attenuates bone loss in mice with Lewis Lung carcinoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study determined the effects of a high-fat diet and plasminogen activator inhibitor-1 deficiency (PAI-1-/-) on bone structure in mice bearing Lewis lung carcinoma (LLC) in lungs. Reduction in bone volume fraction (BV/TV) by 22% and 21%, trabecular number (Tb.N) by 8% and 4% and bone mineral de...

  3. Does combined peroxisome proliferator-activated receptors-agonist and pravastatin therapy attenuate the onset of diabetes-induced experimental nephropathy?

    PubMed Central

    Gad, Hayam I.

    2014-01-01

    Objectives: To investigate the combined effects of rosiglitazone and pravastatin on renal functions in early streptozotocin induced diabetic nephropathy (DN). Methods: This study was carried out at King Khalid University Hospital Animal House, Riyadh, Saudi Arabia from August 2013 to February 2014. Fifty male Wistar rats were assigned to normal control rats and diabetic rats that received saline, rosiglitazone, pravastatin, or rosiglitazone+pravastatin for 2 months. Their weight range was 230-250 gm, and age range was from 18-20 weeks. At the end of experiment, creatinine clearance, and urinary albumin to creatinine ratio (ACR) were measured. Blood samples were analyzed for transferrin, glycosylated hemoglobin (HbA1c), lipid profile, tumor necrosis factor-alpha (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and lipid peroxide. Results: Rosiglitazone treatment increased creatinine clearance and plasma transferrin, and decreased urinary ACR, HbA1c, plasma TNF-α, ICAM-1, and serum lipid peroxide levels without affecting the altered lipid profile. Pravastatin treatment produced similar results and normalized the lipid alteration. The combination of rosiglitazone and pravastatin was more effective in attenuating the diabetes-induced nephropathy compared with treatment with either drug alone. Conclusion: The combination strategy of rosiglitazone and pravastatin may provide a potential synergistic renoprotective effect against DN by improving renal functions and reducing indices of DN. PMID:25399210

  4. Whole-Body PET/MR Imaging: Quantitative Evaluation of a Novel Model-Based MR Attenuation Correction Method Including Bone

    PubMed Central

    Paulus, Daniel H.; Quick, Harald H.; Geppert, Christian; Fenchel, Matthias; Zhan, Yiqiang; Hermosillo, Gerardo; Faul, David; Boada, Fernando; Friedman, Kent P.; Koesters, Thomas

    2016-01-01

    In routine whole-body PET/MR hybrid imaging, attenuation correction (AC) is usually performed by segmentation methods based on a Dixon MR sequence providing up to 4 different tissue classes. Because of the lack of bone information with the Dixon-based MR sequence, bone is currently considered as soft tissue. Thus, the aim of this study was to evaluate a novel model-based AC method that considers bone in whole-body PET/MR imaging. Methods The new method (“Model”) is based on a regular 4-compartment segmentation from a Dixon sequence (“Dixon”). Bone information is added using a model-based bone segmentation algorithm, which includes a set of prealigned MR image and bone mask pairs for each major body bone individually. Model was quantitatively evaluated on 20 patients who underwent whole-body PET/MR imaging. As a standard of reference, CT-based μ-maps were generated for each patient individually by nonrigid registration to the MR images based on PET/CT data. This step allowed for a quantitative comparison of all μ-maps based on a single PET emission raw dataset of the PET/MR system. Volumes of interest were drawn on normal tissue, soft-tissue lesions, and bone lesions; standardized uptake values were quantitatively compared. Results In soft-tissue regions with background uptake, the average bias of SUVs in background volumes of interest was 2.4% ± 2.5% and 2.7% ± 2.7% for Dixon and Model, respectively, compared with CT-based AC. For bony tissue, the −25.5% ± 7.9% underestimation observed with Dixon was reduced to −4.9% ± 6.7% with Model. In bone lesions, the average underestimation was −7.4% ± 5.3% and −2.9% ± 5.8% for Dixon and Model, respectively. For soft-tissue lesions, the biases were 5.1% ± 5.1% for Dixon and 5.2% ± 5.2% for Model. Conclusion The novel MR-based AC method for whole-body PET/MR imaging, combining Dixon-based soft-tissue segmentation and model-based bone estimation, improves PET quantification in whole-body hybrid PET

  5. Cardioprotective C-kit⁺ bone marrow cells attenuate apoptosis after acute myocardial infarction in mice - in-vivo assessment with fluorescence molecular imaging.

    PubMed

    Ale, Angelique; Siebenhaar, Frank; Kosanke, Katja; Aichler, Michaela; Radrich, Karin; Heydrich, Sina; Schiemann, Matthias; Bielicki, Isabella; Noel, Peter B; Braren, Rickmer; Maurer, Marcus; Walch, Axel K; Rummeny, Ernst J; Ntziachristos, Vasilis; Wildgruber, Moritz

    2013-01-01

    Cardiomyocyte loss via apoptosis plays a crucial role in ventricular remodeling following myocardial infarction (MI). Cell-based therapy approaches using bone marrow derived c-kit⁺ pluripotent cells may attenuate apoptosis following ischemic injury. We therefore thought to examine the early course of apoptosis following myocardial infarction - in-vivo - and non-invasively determine the effect of c-kit⁺ bone marrow cells on post-MI remodeling. We studied apoptosis in wild-type Kit(+/+) , c-kit mutant Kit(W)/Kit(W-v) and Kit(W)/Kit(W-v) mice after cell therapy with bone-marrow derived c-kit⁺ cells after ischemia-reperfusion injury. Mice were followed by hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography (FMT-XCT) at 6h, 24h and 7 days after ischemia-reperfusion injury using an Annexin V-based fluorescent nanosensor targeting phosphatidylserine. Kit(W)/Kit(W-v) mice showed increased and prolonged apoptosis compared to control Kit(+/+) mice while c-kit cell therapy was able to attenuate the altered apoptosis rates. Increased apoptosis was accompanied by severe decline in heart function, determined by cardiac Magnetic Resonance Imaging, and cell therapy was able to rescue the animals from deleterious heart failure. Post-mortem cryoslicing and immunohistochemistry localized the fluorescence signal of the Annexin V sensor within the infarcted myocardium. Flow cytometry of digested infarct specimens identified apoptotic cardiomyocytes as the major source for the in-vivo Annexin V signal. In-vivo molecular imaging using hybrid FMT-XCT reveals increased cardiomyocyte apoptosis in Kit(W)/Kit(W-v) mice and shows that c-kit⁺ cardioprotective cells are able to attenuate post-MI apoptosis and rescue mice from progressive heart failure. PMID:24312159

  6. AAV8-mediated expression of N-acetylglucosamine-1-phosphate transferase attenuates bone loss in a mouse model of mucolipidosis II.

    PubMed

    Ko, Ah-Ra; Jin, Dong-Kyu; Cho, Sung Yoon; Park, Sung Won; Przybylska, Malgorzata; Yew, Nelson S; Cheng, Seng H; Kim, Jung-Sun; Kwak, Min Jung; Kim, Su Jin; Sohn, Young Bae

    2016-04-01

    Mucolipidoses II and III (ML II and ML III) are lysosomal disorders in which the mannose 6-phosphate recognition marker is absent from lysosomal hydrolases and other glycoproteins due to mutations in GNPTAB, which encodes two of three subunits of the heterohexameric enzyme, N-acetylglucosamine-1-phosphotransferase. Both disorders are caused by the same gene, but ML II represents the more severe phenotype. Bone manifestations of ML II include hip dysplasia, scoliosis, rickets and osteogenesis imperfecta. In this study, we sought to determine whether a recombinant adeno-associated viral vector (AAV2/8-GNPTAB) could confer high and prolonged gene expression of GNPTAB and thereby influence the pathology in the cartilage and bone tissue of a GNPTAB knock out (KO) mouse model. The results demonstrated significant increases in bone mineral density and content in AAV2/8-GNPTAB-treated as compared to non-treated KO mice. We also showed that IL-6 (interleukin-6) expression in articular cartilage was reduced in AAV2/8-GNPTAB treated ML II mice. Together, these data suggest that AAV-mediated expression of GNPTAB in ML II mice can attenuate bone loss via inhibition of IL-6 production. This study emphasizes the value of the MLII KO mouse to recapitulate the clinical manifestations of the disease and highlights its amenability to therapy. PMID:26857995

  7. Increased circulating estradiol in mice fed a high-fat diet does not attenuate ovariectomy-induced bone structural deterioration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ovariectomy-induced estrogen deficiency increases adiposity and induces substantial bone loss by increasing osteoclast activity. This study investigated whether obesity induced by a high-fat diet alter circulating estradiol levels, mitigates or exacerbates bone structure deterioration, and changes m...

  8. Dried Plum Protects From Radiation-Induced Bone Loss by Attenuating Pro-Osteoclastic and Oxidative Stress Responses

    NASA Technical Reports Server (NTRS)

    Globus, Ruth

    2015-01-01

    Future space explorations beyond the earths magnetosphere will increase human exposure to space radiation and associated risks to skeletal health. We hypothesize that oxidative stress resulting from radiation exposure plays a major role in progressive bone loss and dysfunction in associated tissue. In animal studies, increased free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. Our long-term goals are to define the mechanisms and risk of bone loss in the spaceflight environment and to facilitate the development of effective countermeasures. We had previously reported that exposure to low or high-LET radiation correlates with an acute increase in the expression of pro-osteoclastic and oxidative stress genes in bone during the early response to radiation followed by pathological changes in skeletal structure. We then conducted systematic screening for potential countermeasures against bone loss where we tested the ability of various antioxidants to mitigate the radiation-induced increase in expression of these markers. For the screen, 16-week old C57Bl6J mice were treated with a dietary antioxidant cocktail, injectable DHLA or a dried plum-enriched diet (DP). Mice were then exposed to 2Gy 137Cs radiation and one day later, marrow cells were collected and the relevant genes analyzed for expression levels. Among the candidate countermeasures tested, DP was most effective in reducing the expression of genes associated with bone loss. Furthermore, analysis of skeletal structure by microcomputed tomography (microCT) revealed that DP also prevents the radiation-induced deterioration in skeletal microarchitecture as indicated by parameters such as percent bone volume (BVTV), trabecular spacing and trabecular number. We also found that DP has similar protective effects on skeletal structure in a follow-up study using 1 Gy of

  9. St. John's Wort (Hypericum perforatum) stimulates human osteoblastic MG-63 cell proliferation and attenuates trabecular bone loss induced by ovariectomy

    PubMed Central

    You, Mi-kyoung; Kim, Du-Woon; Jeong, Kyu-Shik; Bang, Mi-Ae; Kim, Hwan-Seon; Rhuy, Jin

    2015-01-01

    BACKGROUND/OBJECFTIVES The effect of St. John's Wort extract (SJW) on MG-63 cell proliferation and trabecular bone loss induced by ovariectomy was examined. MATERIALS/METHODS Proliferation, expression of estrogen receptor (ER) α and ER β, and gene expressions of osteoprotegerin (OPG), osteocalcin (OC) and alkaline phosphatase (ALP) were examined in MG-63 cells treated with or without SJW. Ovariectomized rats were treated with SJW at the dose of 100 or 200 mg/kg/day, β-estradiol-3-benzoate (E2), or vehicle only (OVX-C), and sham operated rats were treated with vehicle only (Sham-C). Serum ALP and C-telopeptide (CTX), and femoral trabecular bone loss were examined. RESULTS SJW increased MG-63 cell proliferation and expression of ER α and ER β, and positive effect was shown on gene expressions of ALP, OC and OPG. SJW also showed estrogen like effect on bone associated with slowing down in trabecular bone loss. Histopathology by H&E showed rats treated with SJW displayed denser structure in metaphyseal region of distal femur compared with rats in OVX-C. SJW was shown to reduce serum CTX in OVX rats. CONCLUSION The present study provides new insight in preventing estrogen deficiency induced bone loss of SJW and possibility for its application in bone health supplement. PMID:26425274

  10. Inhibition of spinal UCHL1 attenuates pain facilitation in a cancer-induced bone pain model by inhibiting ubiquitin and glial activation

    PubMed Central

    Cheng, Wei; Chen, Yuan-Li; Wu, Liang; Miao, Bei; Yin, Qin; Wang, Jin-Feng; Fu, Zhi-Jian

    2016-01-01

    The present study examined alterations of spinal ubiquitin C-terminal hydrolase L1 (UCHL1), ubiquitin expression and glial activation in the cancer-induced bone pain rats. Furthermore, whether inhibition of spinal UCHL1 could alleviate cancer-induced bone pain was observed. The CIBP model was established by intrathecal Walker 256 mammary gland carcinoma cells in SD rats. The rats of CIBP developed significant pain facilitation in the Von Frey test. Double immunofluorescence analyses revealed that in the spines of CIBP rats, ubiquitin co-localized with NeuN, Iba-1 or GFAP; UCHL1 and NeuN were co-expressed and UCHL1 also co-localized with ubiquitin. The CIBP model induced up-regulation of ubiquitin and UCHL1 in the spines, as well as glial activation. Inhibition of spinal UCHL1 attenuated pain facilitation by down-regulation of ubiquitin expression and glial activation. in the CIBP rats. Our data suggests that UCHL1/ubiquitin distributed and increased in the spines of CIBP rats, that glial activation also increased in the CIBP model and that inhibition of spinal UCHL1 may be an effective method to alleviate cancer-induced bone pain. PMID:27508024

  11. Changes in the linear attenuation coefficient of canine appendicular bone following intravenous infusion of strontium lactate, measured using gamma-ray computed tomography.

    PubMed

    Overton, T R; Snyder, R E; Hangartner, T N; Girgis, S; Audette, R J; Secord, D C

    1992-04-01

    Changes in the average linear attenuation coefficient (LAC) within a fixed measurement volume in the proximal end of the dog tibia, which contains trabecular bone and associated soft tissues (the trabecular bone "space"), were monitored continuously using gamma-ray computed tomography (gamma-CT) prior to, during, and following intravenous infusion of strontium (Sr) lactate. An infusion of 1.3-4.7 g of Sr over a period of 110-160 minutes into 20-kg dogs resulted, within 6-8 hours, in an increase of 0.019-0.045 cm-1 (P less than 0.002) in the LAC. Calibration of the gamma-CT system showed that 0.44 mg/cm3 of Sr produced a change of 0.01 cm-1 in the LAC. Using this conversion factor, the Sr concentration in the trabecular bone space resulting from infusion, as measured by flame atomic absorption spectroscopy, agreed with that predicted by the change observed in the LAC. Sr present in the serum and urine was consistent with the changes observed in the LAC over the study period. Control dogs infused with mineral-free solutions showed no change in LAC. Calcium equivalents required to give the changes observed in the LAC using Sr indicate that variations in skeletal turnover in man can be monitored in the peripheral skeleton using gamma-CT. PMID:1571847

  12. Heme oxygenase-1 attenuates acute pulmonary inflammation by decreasing the release of segmented neutrophils from the bone marrow.

    PubMed

    Konrad, Franziska M; Braun, Stefan; Ngamsri, Kristian-Christos; Vollmer, Irene; Reutershan, Jörg

    2014-11-01

    Recruiting polymorphonuclear neutrophil granulocytes (PMNs) from circulation and bone marrow to the site of inflammation is one of the pivotal mechanisms of the innate immune system. During inflammation, the enzyme heme oxygenase 1 (HO-1) has been shown to reduce PMN migration. Although these effects have been described in various models, underlying mechanisms remain elusive. Recent studies revealed an influence of HO-1 on different cells of the bone marrow. We investigated the particular role of the bone marrow in terms of HO-1-dependent pulmonary inflammation. In a murine model of LPS inhalation, stimulation of HO-1 by cobalt (III) protoporphyrin-IX-chloride (CoPP) resulted in reduced segmented PMN migration into the alveolar space. In the CoPP group, segmented PMNs were also decreased intravascularly, and concordantly, mature and immature PMN populations were higher in the bone marrow. Inhibition of the enzyme by tin protoporphyrin-IX increased segmented and banded PMN migration into the bronchoalveolar lavage fluid with enhanced PMN release from the bone marrow and aggravated parameters of tissue inflammation. Oxidative burst activity was significantly higher in immature compared with mature PMNs. The chemokine stromal-derived factor-1 (SDF-1), which mediates homing of leukocytes into the bone marrow and is decreased in inflammation, was increased by CoPP. When SDF-1 was blocked by the specific antagonist AMD3100, HO-1 activation was no longer effective in curbing PMN trafficking to the inflamed lungs. In conclusion, we show evidence that the anti-inflammatory effects of HO-1 are largely mediated by inhibiting the release of segmented PMNs from the bone marrow rather than direct effects within the lung. PMID:25172914

  13. Aqueous extract of pomegranate seed attenuates glucocorticoid-induced bone loss and hypercalciuria in mice: A comparative study with alendronate.

    PubMed

    Zhang, Yan; Shao, Jin; Wang, Zhi; Yang, Tieyi; Liu, Shuyi; Liu, Yue; Fan, Xinbing; Ye, Weiguang

    2016-08-01

    The present study was performed in order to examine bone loss and calcium homeostasis in mice with glucocorticoid (GC)-induced osteoporosis (GIOP) following treatment with the aqueous extract of pomegranate seed (AE-PS). In addition, a comparative study with alendronate was performed. Biomarkers in the serum and the urine were measured. The tibias, kidney and duodenum were removed in order to measure the levels of bone calcium, protein expression as well as to perform histomorphological analysis of the bone. GC treatment facilitated the induction of hypercalciuria in the mice, and the AE-PS‑treated mice exhibited a greater increase in serum calcium and a decrease in urine calcium. The AE-PS reversed the deleterious effects on the trabecular bone induced by DXM and stimulated bone remodeling, including an increase in bone calcium and alkaline phosphatase‑b (ALP-b) and a decrease in a the critical bone resorption markers C-terminal telopeptide of type I collagen (CTX) and tartrate‑resistant acid phosphatase-5b (TRAP-5b). Hematoxylin and eosin (H&E) staining revealed the increased disconnections and separation between the growth plate and the trabecular bone network as well as the reduction in the trabecular bone mass of the primary and secondary spongiosa throughout the proximal metaphysis of the tibia in the DXM group. Moreover, the decreased protein expression of transient receptor potential vanilloid (TRPV)5, TRPV6 and calbindin‑D9k (CaBP‑9k) was reversed by the AE-PS or alendronate supplementation in the kidneys and the duodenum as well as plasma membrane Ca2+‑ATPase1 (PMCA1) expression in the kidneys of mice with GIOP. There was no marked difference in pharmacological effectiveness between alendronate and the AE-PS. Taken together, these findings suggest that the AE-PS may be an alternative therapy suitable for use in the management of secondary osteoporosis. PMID:27278225

  14. Effects of pioglitazone and fenofibrate co-administration on bone biomechanics and histomorphometry in ovariectomized rats.

    PubMed

    Smith, Susan Y; Samadfam, Rana; Chouinard, Luc; Awori, Malaika; Bénardeau, Agnes; Bauss, Frieder; Guldberg, Robert E; Sebokova, Elena; Wright, Matthew B

    2015-11-01

    Pioglitazone, the peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist is an effective therapy for type 2 diabetes, but has been associated with increased risk for bone fracture. Preclinical studies suggest that PPAR-α agonists (e.g., fenofibrate) increase bone mineral density/content, although clinical data on bone effects of fibrates are lacking. We investigated the effects of pioglitazone (10 mg/kg/day) and fenofibrate (25 mg/kg/day) on bone strength and bone histomorphometric parameters in osteopenic ovariectomized (OVX) rats. An additional group of rats received a combination of pioglitazone + fenofibrate to mimic the effects of a dual PPAR-α/γ agonist. The study consisted of a 13-week treatment phase followed by a 6-week treatment-free recovery period. Pioglitazone significantly reduced biomechanical strength at the lumbar spine and femoral neck compared with rats administered fenofibrate. Co-treatment with pioglitazone + fenofibrate had no significant effect on bone strength in comparison with OVX vehicle controls. Histomorphometric analysis of the proximal tibia revealed that pioglitazone suppressed bone formation and increased bone resorption at both cancellous and cortical bone sites relative to OVX vehicle controls. In contrast, fenofibrate did not affect bone resorption and only slightly suppressed bone formation. Discontinuation of pioglitazone treatment, both in the monotherapy and in the combination therapy arms, resulted in restoration of bone formation and resorption rates, demonstrating reversibility of effects. The above data support the concept that dual activation of PPAR-γ and PPAR-α attenuates the negative effects of PPAR-γ agonism on bone strength. PMID:25534548

  15. (1-(4-(Naphthalen-2-yl)pyrimidin-2-yl)piperidin-4-yl)methanamine: a wingless beta-catenin agonist that increases bone formation rate.

    PubMed

    Pelletier, Jeffrey C; Lundquist, Joseph T; Gilbert, Adam M; Alon, Nipa; Bex, Frederick J; Bhat, Bheem M; Bursavich, Mattew G; Coleburn, Valerie E; Felix, Luciana A; Green, Daniel M; Green, Paula; Hauze, Diane B; Kharode, Yogendra P; Lam, Ho-Sun; Lockhead, Susan R; Magolda, Ronald L; Matteo, Jeanne J; Mehlmann, John F; Milligan, Colleen; Murrills, Richard J; Pirrello, Jennifer; Selim, Sally; Sharp, Michael C; Unwalla, Ray J; Vera, Matthew D; Wrobel, Jay E; Yaworsky, Paul; Bodine, Peter V N

    2009-11-26

    A high-throughput screening campaign to discover small molecule leads for the treatment of bone disorders concluded with the discovery of a compound with a 2-aminopyrimidine template that targeted the Wnt beta-catenin cellular messaging system. Hit-to-lead in vitro optimization for target activity and molecular properties led to the discovery of (1-(4-(naphthalen-2-yl)pyrimidin-2-yl)piperidin-4-yl)methanamine (5, WAY-262611). Compound 5 has excellent pharmacokinetic properties and showed a dose dependent increase in the trabecular bone formation rate in ovariectomized rats following oral administration. PMID:19856966

  16. Protocatechuic Acid Attenuates Osteoclastogenesis by Downregulating JNK/c-Fos/NFATc1 Signaling and Prevents Inflammatory Bone Loss in Mice.

    PubMed

    Park, Sun-Hyang; Kim, Ju-Young; Cheon, Yoon-Hee; Baek, Jong Min; Ahn, Sung-Jun; Yoon, Kwon-Ha; Lee, Myeung Su; Oh, Jaemin

    2016-04-01

    Protocatechuic acid (PCA) plays a critical role in nutritional metabolism; it is a major metabolite of anthocyanins, which are flavonoids with a range of health benefits. PCA has a variety of biological activities including anti-oxidant, antiinflammatory, anti-apoptosis, and anti-microbial activities. However, the pharmacological effect of PCA, especially on osteoclastogenesis, remains unknown. We examined the effect of PCA on receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation and bone resorption. PCA dose-dependently inhibited RANKL-induced osteoclast differentiation in mouse bone marrow macrophages (BMMs) and suppressed the bone-resorbing activity of mature osteoclasts. At the molecular level, PCA suppressed RANKL-induced phosphorylation of JNK among MAPKs only, without significantly affecting the early signaling pathway. PCA also suppressed RANKL-stimulated expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1) at the mRNA and protein levels, without altering c-Fos mRNA expression. Additionally, PCA down-regulated the expression of downstream osteoclastogenesis-related genes including β3-integrin, DC-STAMP, OC-STAMP, Atp6v0d2, CTR, and CtsK. Mice treated with PCA efficiently recovered from lipopolysaccharide-induced bone loss in vivo. Thus, PCA inhibits RANKL-induced osteoclast differentiation and function by suppressing JNK signaling, c-Fos stability, and expression of osteoclastic marker genes. These results suggest that PCA could be useful in treatment of inflammatory bone disorders. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26792397

  17. Perilipin1 Deficiency in Whole Body or Bone Marrow-Derived Cells Attenuates Lesions in Atherosclerosis-Prone Mice

    PubMed Central

    Zhao, Xiaojing; Gao, Mingming; He, Jinhan; Zou, Liangqiang; Lyu, Ying; Zhang, Ling; Geng, Bin; Liu, George; Xu, Guoheng

    2015-01-01

    Aims The objective of this study is to determine the role of perilipin 1 (Plin1) in whole body or bone marrow-derived cells on atherogenesis. Methods and Results Accumulated evidence have indicated the role of Plin1 in atherosclerosis, however, these findings are controversial. In this study, we showed that Plin1 was assembled and colocalized with CD68 in macrophages in atherosclerotic plaques of ApoE-/- mice. We further found 39% reduction of plaque size in the aortic roots of Plin1 and ApoE double knockout (Plin1-/-ApoE-/-) females compared with ApoE-/- female littermates. In order to verify whether this reduction was macrophage-specific, the bone marrow cells from wild-type or Plin1 deficient mice (Plin1-/-) were transplanted into LDL receptor deficient mice (LDLR-/-). Mice receiving Plin1-/- bone marrow cells showed also 49% reduction in aortic atherosclerotic lesions compared with LDLR-/- mice received wild-type bone marrow cells. In vitro experiments showed that Plin1-/- macrophages had decreased protein expression of CD36 translocase and an enhanced cholesterol ester hydrolysis upon aggregated-LDL loading, with unaltered expression of many other regulators of cholesterol metabolism, such as cellular lipases, and Plin2 and 3. Given the fundamental role of Plin1 in protecting LD lipids from lipase hydrolysis, it is reasonably speculated that the assembly of Plin1 in microphages might function to reduce lipolysis and hence increase lipid retention in ApoE-/- plaques, but this pro-atherosclerotic property would be abrogated on inactivation of Plin1. Conclusion Plin1 deficiency in bone marrow-derived cells may be responsible for reduced atherosclerotic lesions in the mice. PMID:25855981

  18. Evaluation of imaging technologies to correct for photon attenuation in the overlying tissue for in vivo bone strontium measurements

    NASA Astrophysics Data System (ADS)

    Heirwegh, C. M.; Chettle, D. R.; Pejović-Milić, A.

    2010-02-01

    The interpretation of measurements of bone strontium in vivo using energy dispersive x-ray fluorescence spectroscopy is presently hindered by overlying skin and soft-tissue absorption of the strontium x-rays. The use of imaging technologies to measure the overlying soft-tissue thickness at the index finger measuring site might allow correction of the strontium reading to estimate its concentration in bone. An examination of magnetic resonance (MR), computed tomography (CT) and high-frequency ultrasound (US) imaging technologies revealed that 55 MHz US had the smallest range of measurement uncertainty at 3.2% followed by 1 Tesla MR, 25 MHz US, 8 MHz US and CT at 4.3, 5.4, 6.6 and 7.1% uncertainty, respectively. Of these, only CT imaging appeared to underestimate total thickness (p < 0.05). Furthermore, an inter-study comparison on the accuracy of US measurements of the overlying tissue thickness at finger and ankle in nine subjects was investigated. The 8 MHz US system used in prior in vivo experiments was found to perform satisfactorily in a repeat study of ankle measurements, but indicated that finger thickness measurements may have been misread in previous studies by up to 17.7% (p < 0.025). Repeat ankle measurements were not significantly different from initial measurements at 2.2% difference.

  19. β-Glucans (Saccharomyces cereviseae) Reduce Glucose Levels and Attenuate Alveolar Bone Loss in Diabetic Rats with Periodontal Disease

    PubMed Central

    2015-01-01

    The objective of this study was to assess the effects of oral ingestion of β-glucans isolated from Saccharomyces cereviseae on the metabolic profile, expression of gingival inflammatory markers and amount of alveolar bone loss in diabetic rats with periodontal disease. Diabetes mellitus was induced in 48 Wistar rats by intraperitoneal injection of streptozotocin (80 mg/kg). After confirming the diabetes diagnosis, the animals were treated with β-glucans (by gavage) for 28 days. On the 14th day of this period, periodontal disease was induced using a ligature protocol. β-glucans reduced the amount of alveolar bone loss in animals with periodontal disease in both the diabetic and non-diabetic groups (p < 0.05). β-glucans reduced blood glucose, cholesterol and triacylglycerol levels in diabetic animals, both with and without periodontal disease (p < 0.05). Furthermore, treatment with β-glucans reduced the expression of cyclooxygenase-2 and receptor activator of nuclear factor kappa-B ligand and increased osteoprotegerin expression in animals with diabetes and periodontal disease (p < 0.05). It was concluded that treatment with β-glucans has beneficial metabolic and periodontal effects in diabetic rats with periodontal disease. PMID:26291983

  20. High-Dose Diosgenin Reduces Bone Loss in Ovariectomized Rats via Attenuation of the RANKL/OPG Ratio

    PubMed Central

    Zhang, Zhiguo; Song, Changheng; Fu, Xiaowei; Liu, Meijie; Li, Yan; Pan, Jinghua; Liu, Hong; Wang, Shaojun; Xiang, Lihua; Xiao, Gary Guishan; Ju, Dahong

    2014-01-01

    The aim of this study was to evaluate effect of diosgenin (DG) on rats that had osteoporosis-like features induced by ovariectomy (OVX). Seventy-two six-month-old female Wistar rats were subjected to either ovariectomy (n = 60) or Sham operation (SHAM group, n = 12). Beginning at one week post-ovariectomy, the OVX rats were treated with vehicle (OVX group, n = 12), estradiol valerate (EV group, n = 12), or DG at three doses (DG-L, -M, -H group, n = 12, respectively). After a 12-week treatment, administration of EV or DG-H inhibited OVX-induced weight gain, and administration of EV or DG-H or DG-M had a significantly uterotrophic effect. Bone mineral density (BMD) and indices of bone histomorphometry of tibia were measured. Levels of protein and mRNA expression of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) in tibia were evaluated by immunohistochemistry and in situ hybridization. Our results show that DG at a high dose (DG-H) had a significant anti-osteoporotic effect compared to OVX control. DG-H treatment down-regulated expression of RANKL and up-regulated expression of OPG significantly in tibia from OVX rats compared to control, and thus lowered the RANKL/OPG ratio. This suggests that the anti-osteoporotic effect of DG might be associated with modulating the RANKL/OPG ratio and DG had potential to be developed as alternative therapeutic agents of osteoporosis induced by postmenopause. PMID:25257532

  1. Soy milk and dairy consumption is independently associated with ultrasound attenuation of the heel bone among postmenopausal women: the Adventist Health Study-2.

    PubMed

    Matthews, Vichuda Lousuebsakul; Knutsen, Synnove F; Beeson, W Lawrence; Fraser, Gary E

    2011-10-01

    Soy milk has become a popular substitute for dairy milk with important health claims. We hypothesized that soy milk, based on its nutrient composition, is comparable to dairy products and, therefore, beneficial for bone health. To test this hypothesis, we examined the benefit of soy milk and dairy products intake on bone health using broadband ultrasound attenuation of the calcaneus. Postmenopausal white women (n = 337) who had completed a lifestyle and dietary questionnaire at enrollment into the Adventist Health Study-2 had their calcaneal broadband ultrasound attenuation measured 2 years later. The association between osteoporosis (defined as a T-score <-1.8) and some dietary factors (soy milk, dairy) and selected lifestyle factors was assessed using logistic regression. In a multivariable model adjusted for demographics, hormone use, and other dietary factors, osteoporosis was positively associated with age (odds ratio [OR] = 1.08; 95% confidence interval [CI], 1.06-1.12) and inversely associated with body mass index (OR = 0.91; 95% CI, 0.86-0.97) and current estrogen use (OR = 0.27; 95% CI, 0.13-0.56). Compared with women who did not drink soy milk, women drinking soy milk once a day or more had 56% lower odds of osteoporosis (OR = 0.44; 95% CI, 0.20-0.98; P(trend) = .04). Women whose dairy intake was once a day or more had a 62% reduction in the likelihood of having osteoporosis (OR = 0.38; 95% CI, 0.17-0.86; P(trend) = .02) compared with women whose dairy intake was less than twice a week. Among individual dairy products, only cheese showed an independent and significant protection (OR = 0.28; 95% CI, 0.12-0.66; P(trend) = .004) for women eating cheese more than once per week vs those who ate cheese less than once a week. We concluded that osteoporosis is inversely associated with soy milk intake to a similar degree as dairy intake after accounting for age, body mass index, and estrogen use. PMID:22074801

  2. Autologous bone marrow mononuclear cells therapy attenuates activated microglial/macrophage response and improves spatial learning after traumatic brain injury

    PubMed Central

    Bedi, Supinder S.; Walker, Peter A.; Shah, Shinil K.; Jimenez, Fernando; Thomas, Chelsea P.; Smith, Philippa; Hetz, Robert A.; Xue, Hasen; Pati, Shibani; Dash, Pramod K.; Cox, Charles S.

    2014-01-01

    Background Autologous bone marrow-derived mononuclear cells (AMNC) have shown therapeutic promise for central nervous system insults such as stroke and traumatic brain injury (TBI). We hypothesized that intravenous injection of AMNC provides neuroprotection which leads to cognitive improvement after TBI. Methods A controlled cortical impact (CCI) rodent traumatic brain injury (TBI) model was used to examine blood-brain barrier permeability (BBB), neuronal and glial apoptosis and cognitive behavior. Two groups of rats underwent CCI with (CCI-Autologous) or without AMNC treatment (CCI-Alone), consisting of 2 million AMNC/kilogram body weight harvested from the tibia and intravenously injected 72 hr after injury. CCI-Alone animals underwent sham harvests and received vehicle injections. Results 96 hr after injury, AMNC significantly reduced the BBB permeability in injured animals, and there was an increase in apoptosis of pro-inflammatory activated microglia in the ipsilateral hippocampus. At 4 weeks after injury, we examined changes in spatial memory after TBI due to AMNC treatment. There was a significant improvement in probe testing of CCI-Autologous group in comparison to CCI-Alone in the Morris Water Maze paradigm. Conclusions Our data demonstrate that the intravenous injection of AMNC after TBI leads to neuroprotection by preserving early BBB integrity and increasing activated microglial apoptosis. In addition, AMNC also improves cognitive function. PMID:23928737

  3. Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan

    PubMed Central

    Cuong, Dang Van; Kim, Hyoung Kyu; Marquez, Jubert; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo

    2016-01-01

    Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular Ca2+, which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with 0.5 µg/ml BG, 100 µg/ml peptidoglycan (PGN), or 10 µM A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial Ca2+ uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial Ca2+ uniporter has an important regulatory role in BG-induced mast cell degranulation. PMID:26937218

  4. Calpain inhibitor attenuates ER stress-induced apoptosis in injured spinal cord after bone mesenchymal stem cells transplantation.

    PubMed

    Wang, Chao; Shi, Dongling; Song, Xinghui; Chen, Yingying; Wang, Linlin; Zhang, Xiaoming

    2016-07-01

    Bone marrow mesenchymal stem cells (BMSCs) therapy for tissue repair is limited by low survival of cells transplanted in the recipient sites after spinal cord injury (SCI). Here, we investigated the effects of a calpain inhibitor (MDL28170) on BMSCs survival by a rat model of spinal cord injury in vitro and in vivo. Conditioned medium from hypoxia injured VSC4.1 motor neurons (Hypoxia-CM) were collected to mimic the micro-environment of injured spinal cord. Tunicamycin was also applied to induce endoplasmic reticulum (ER) stress in BMSCs. The CCK-8 assay, LDH leakage assay and flow cytometer assay demonstrated that MDL28170 could enhance BMSCs survival in response to Hypoxia-CM and tunicamycin. Moreover, MDL28170 significantly enhanced GFP-positive BMSCs survival in vivo after transplantation into the contused spinal cord of SCI rats. The protective effects of MDL28170 on BMSCs survival may inhibit the activation of calpain and the downstream ER stress-induced apoptosis. The present results suggested for the first time that MDL28170 with BMSCs transplant helped to rescue cells in injured spinal cord by modulating the ER stress-induced apoptosis. The calpain inhibitor, MDL28170 may have the promising new strategies for promoting the survival of transplanted BMSCs on cell-based regenerative medicine. PMID:27137651

  5. Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan.

    PubMed

    Cuong, Dang Van; Kim, Hyoung Kyu; Marquez, Jubert; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo; Han, Jin

    2016-03-01

    Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular Ca(2+), which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with 0.5 µg/ml BG, 100 µg/ml peptidoglycan (PGN), or 10 µM A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial Ca(2+) uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial Ca(2+) uniporter has an important regulatory role in BG-induced mast cell degranulation. PMID:26937218

  6. Transplantation of Bone Marrow-Derived Very Small Embryonic-Like Stem Cells Attenuates Left Ventricular Dysfunction and Remodeling After Myocardial Infarction

    PubMed Central

    Dawn, Buddhadeb; Tiwari, Sumit; Kucia, Magdalena J.; Zuba-Surma, Ewa K.; Guo, Yiru; SanganalMath, Santosh K.; Abdel-Latif, Ahmed; Hunt, Greg; Vincent, Robert J.; Taher, Hisham; Reed, Nathan J.; Ratajczak, Mariusz Z.; Bolli, Roberto

    2013-01-01

    Adult bone marrow (BM) contains Sca-1+/Lin−/CD45− very small embryonic-like stem cells (VSELs) that express markers of several lineages, including cardiac markers, and differentiate into cardiomyocytes in vitro. We examined whether BM-derived VSELs promote myocardial repair after a reperfused myocardial infarction (MI). Mice underwent a 30-minute coronary occlusion followed by reperfusion and received intramyocardial injection of vehicle (n = 11), 1 × 105 Sca-1+/Lin−/CD45+ enhanced green fluorescent protein (EGFP)-labeled hematopoietic stem cells (n = 13 [cell control group]), or 1 × 104 Sca-1+/Lin−/CD45− EGFP-labeled cells (n = 14 [VSEL-treated group]) at 48 hours after MI. At 35 days after MI, VSEL-treated mice exhibited improved global and regional left ventricular (LV) systolic function (echocardiography) and attenuated myocyte hypertrophy in surviving tissue (histology and echocardiography) compared with vehicle-treated controls. In contrast, transplantation of Sca-1+/Lin−/CD45+ cells failed to confer any functional or structural benefits. Scattered EGFP+ myocytes and capillaries were present in the infarct region in VSEL-treated mice, but their numbers were very small. These results indicate that transplantation of a relatively small number of CD45− VSELs is sufficient to improve LV function and alleviate myocyte hypertrophy after MI, supporting the potential therapeutic utility of these cells for cardiac repair. PMID:18420834

  7. [Bone quantitative ultrasound].

    PubMed

    Matsukawa, Mami

    2016-01-01

    The conventional ultrasonic bone densitometry system can give us information of bone as ultrasonic wave velocity and attenuation. However, the data reflect both structural and material properties of bone. In order to focus only on the bone matrix properties without the effect of bone structure, studies of microscopic Brillouin scattering technique are introduced. The wave velocity in a trabecula was anisotropic and depended on the position and structure of the cancellous bone. The glycation also affected on the wave velocities in bone. As a new bone quality, the piezoelectricity of bone is also discussed. PMID:26728531

  8. Extracellular Vesicles Derived from Bone Marrow Mesenchymal Stem Cells Protect against Experimental Colitis via Attenuating Colon Inflammation, Oxidative Stress and Apoptosis

    PubMed Central

    Fan, Heng; Tang, Qing; Shou, Zhe-Xing; Zuo, Dong-Mei; Zou, Zhou; Xu, Meng; Chen, Qian-Yun; Peng, Ying; Deng, Shuang-Jiao; Liu, Yu-Jin

    2015-01-01

    The administration of bone mesenchymal stem cells (BMSCs) could reverse experimental colitis, and the predominant mechanism in tissue repair seems to be related to their paracrine activity. BMSCs derived extracellular vesicles (BMSC-EVs), including mcirovesicles and exosomes, containing diverse proteins, mRNAs and micro-RNAs, mediating various biological functions, might be a main paracrine mechanism for stem cell to injured cell communication. We aimed to investigate the potential alleviating effects of BMSC-EVs in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model. Intravenous injection of BMSC-EVs attenuated the severity of colitis as evidenced by decrease of disease activity index (DAI) and histological colonic damage. In inflammation response, the BMSC-EVs treatment significantly reduced both the mRNA and protein levels of nuclear factor kappaBp65 (NF-κBp65), tumor necrosis factor-alpha (TNF-α), induciblenitric oxidesynthase (iNOS) and cyclooxygenase-2 (COX-2) in injured colon. Additionally, the BMSC-EVs injection resulted in a markedly decrease in interleukin-1β (IL-1β) and an increase in interleukin-10 (IL-10) expression. Therapeutic effect of BMSC-EVs associated with suppression of oxidative perturbations was manifested by a decrease in the activity of myeloperoxidase (MPO) and Malondialdehyde (MDA), as well as an increase in superoxide dismutase (SOD) and glutathione (GSH). BMSC-EVs also suppressed the apoptosis via reducing the cleavage of caspase-3, caspase-8 and caspase-9 in colitis rats. Data obtained indicated that the beneficial effects of BMSC-EVs were due to the down regulation of pro-inflammatory cytokines levels, inhibition of NF-κBp65 signal transduction pathways, modulation of anti-oxidant/ oxidant balance, and moderation of the occurrence of apoptosis. PMID:26469068

  9. Peripheral cannabinoid receptor, CB2, regulates bone mass

    PubMed Central

    Ofek, Orr; Karsak, Meliha; Leclerc, Nathalie; Fogel, Meirav; Frenkel, Baruch; Wright, Karen; Tam, Joseph; Attar-Namdar, Malka; Kram, Vardit; Shohami, Esther; Mechoulam, Raphael; Zimmer, Andreas; Bab, Itai

    2006-01-01

    The endogenous cannabinoids bind to and activate two G protein-coupled receptors, the predominantly central cannabinoid receptor type 1 (CB1) and peripheral cannabinoid receptor type 2 (CB2). Whereas CB1 mediates the cannabinoid psychotropic, analgesic, and orectic effects, CB2 has been implicated recently in the regulation of liver fibrosis and atherosclerosis. Here we show that CB2-deficient mice have a markedly accelerated age-related trabecular bone loss and cortical expansion, although cortical thickness remains unaltered. These changes are reminiscent of human osteoporosis and may result from differential regulation of trabecular and cortical bone remodeling. The CB2–/– phenotype is also characterized by increased activity of trabecular osteoblasts (bone-forming cells), increased osteoclast (the bone-resorbing cell) number, and a markedly decreased number of diaphyseal osteoblast precursors. CB2 is expressed in osteoblasts, osteocytes, and osteoclasts. A CB2-specific agonist that does not have any psychotropic effects enhances endocortical osteoblast number and activity and restrains trabecular osteoclastogenesis, apparently by inhibiting proliferation of osteoclast precursors and receptor activator of NF-κB ligand expression in bone marrow-derived osteoblasts/stromal cells. The same agonist attenuates ovariectomy-induced bone loss and markedly stimulates cortical thickness through the respective suppression of osteoclast number and stimulation of endocortical bone formation. These results demonstrate that the endocannabinoid system is essential for the maintenance of normal bone mass by osteoblastic and osteoclastic CB2 signaling. Hence, CB2 offers a molecular target for the diagnosis and treatment of osteoporosis, the most prevalent degenerative disease in developed countries. PMID:16407142

  10. Exendin-4 protects bone marrow-derived mesenchymal stem cells against oxygen/glucose and serum deprivation-induced apoptosis through the activation of the cAMP/PKA signaling pathway and the attenuation of ER stress

    PubMed Central

    HE, JIEQIONG; WANG, CHAO; SUN, YUNPENG; LU, BO; CUI, JINJIN; DONG, NANA; ZHANG, MAOMAO; LIU, YOUBING; YU, BO

    2016-01-01

    Exendin-4 (ex-4) is a long-acting glucagon-like peptide-1 receptor (GLP-1R) agonist which exerts beneficial effects on glycemic control and promotes cell viability. In the present study, we investigated the anti-apoptotic effects of ex-4, as well as the potential mechanisms responsible for these effects in rat bone marrow-derived mesenchymal stem cells (BM-MSCs) under conditions of oxygen, glucose and serum deprivation (OGD). The apoptosis of the MSCs was induced by subjecting the cells to OGD conditions for 4 h and was detected by Annexin V/PI and Hoechst 33258 staining. The MSCs were pre-conditioned with ex-4 for 12 h prior to being subjected to OGD conditions, and the expression levels of an apoptotic marker (cleaved caspase-3), endoplasmic reticulum (ER) stress markers [phosphorylated (p-)protein kinase RNA-like endoplasmic reticulum kinase (PERK), PERK, binding immunoglobulin protein (BIP), activating transcription factor 4 (ATF-4) and C/EBP homologous protein (CHOP)], as well as those of a survival marker (Bcl-2) were measured by western blot analysis. Furthermore, the mRNA levels of ATF-4 and CHOP were determined by RT-qPCR. ELISA was used to examine the activity of intracellular cAMP. Moreover, the GLP-1R antagonist, exendin9-39 (ex9-39), the protein kinase A (PKA) inhibitor, H89, and small interfering RNA (siRNA) targeting rat ATF-4 and CHOP were co-incubated with the MSCs. The apoptotic rate was markedly diminished following pre-conditioning with ex-4 in a dose-dependent manner (P<0.05). The ER stress markers, p-PERK, BIP, ATF-4 and CHOP, were upregulated in the cells subjected to OGD conditions. Ex-4 pre-conditioning significantly decreased the mRNA and protein levels of ATF-4 and CHOP (P<0.05), and increased the activity of intracellular cAMP (P<0.05). Furthermore, the anti-apoptotic effects of ex-4 were almost reversed by treatment with either H89 or ex9-39 (P<0.05); transfection with siRNA-CHOP significantly reduced the apoptotic rate of the MSCs and

  11. Anabolic and Catabolic Regimens of Human Parathyroid Hormone 1–34 Elicit Bone- and Envelope-Specific Attenuation of Skeletal Effects in Sost-Deficient Mice

    PubMed Central

    Kedlaya, Rajendra; Ellis, Shana N.; Childress, Paul J.; Bidwell, Joseph P.; Bellido, Teresita; Turner, Charles H.

    2011-01-01

    PTH is a potent calcium-regulating factor that has skeletal anabolic effects when administered intermittently or catabolic effects when maintained at consistently high levels. Bone cells express PTH receptors, but the cellular responses to PTH in bone are incompletely understood. Wnt signaling has recently been implicated in the osteo-anabolic response to the hormone. Specifically, the Sost gene, a major antagonist of Wnt signaling, is down-regulated by PTH exposure. We investigated this mechanism by treating Sost-deficient mice and their wild-type littermates with anabolic and catabolic regimens of PTH and measuring the skeletal responses. Male Sost+/+ and Sost−/− mice were injected daily with human PTH 1–34 (0, 30, or 90 μg/kg) for 6 wk. Female Sost+/+ and Sost−/− mice were continuously infused with vehicle or high-dose PTH (40 μg/kg · d) for 3 wk. Dual energy x-ray absorptiometry-derived measures of intermittent PTH (iPTH)-induced bone gain were impaired in Sost−/− mice. Further probing revealed normal or enhanced iPTH-induced cortical bone formation rates but concomitant increases in cortical porosity among Sost−/− mice. Distal femur trabecular bone was highly responsive to iPTH in Sost−/− mice. Continuous PTH (cPTH) infusion resulted in equal bone loss in Sost+/+ and Sost−/− mice as measured by dual energy x-ray absorptiometry. However, distal femur trabecular bone, but not lumbar spine trabecular bone, was spared the bone-wasting effects of cPTH in Sost−/− mice. These results suggest that changes in Sost expression are not required for iPTH-induced anabolism. iPTH-induced resorption of cortical bone might be overstimulated in Sost-deficient environments. Furthermore, Sost deletion protects some trabecular compartments, but not cortical compartments, from bone loss induced by high-dose PTH infusion. PMID:21652726

  12. Pioglitazone, a PPARγ agonist, attenuates PDGF-induced vascular smooth muscle cell proliferation through AMPK-dependent and AMPK-independent inhibition of mTOR/p70S6K and ERK signaling.

    PubMed

    Osman, Islam; Segar, Lakshman

    2016-02-01

    Pioglitazone (PIO), a PPARγ agonist that improves glycemic control in type 2 diabetes through its insulin-sensitizing action, has been shown to exhibit beneficial effects in the vessel wall. For instance, it inhibits vascular smooth muscle cell (VSMC) proliferation, a major event in atherosclerosis and restenosis after angioplasty. Although PPARγ-dependent and PPARγ-independent mechanisms have been attributed to its vasoprotective effects, the signaling events associated with PIO action in VSMCs are not fully understood. To date, the likely intermediary role of AMP-activated protein kinase (AMPK) toward PIO inhibition of VSMC proliferation has not been examined. Using human aortic VSMCs, the present study demonstrates that PIO activates AMPK in a sustained manner thereby contributing in part to inhibition of key proliferative signaling events. In particular, PIO at 30μM concentration activates AMPK to induce raptor phosphorylation, which diminishes PDGF-induced mTOR activity as evidenced by decreased phosphorylation of p70S6K, 4E-BP1, and S6 and increased accumulation of p27(kip1), a cell cycle inhibitor. In addition, PIO inhibits the basal phosphorylation of ERK in VSMCs. Downregulation of endogenous AMPK by target-specific siRNA reveals an AMPK-independent effect for PIO inhibition of ERK, which contributes in part to diminutions in cyclin D1 expression and Rb phosphorylation and the suppression of VSMC proliferation. Furthermore, AMPK-dependent inhibition of mTOR/p70S6K and AMPK-independent inhibition of ERK signaling occur regardless of PPARγ expression/activation in VSMCs as evidenced by gene silencing and pharmacological inhibition of PPARγ. Strategies that utilize nanoparticle-mediated PIO delivery at the lesion site may limit restenosis after angioplasty without inducing PPARγ-mediated systemic adverse effects. PMID:26643070

  13. A two-year history of high bone loading physical activity attenuates ethnic differences in bone strength and geometry in pre-/early pubertal children from a low-middle income country.

    PubMed

    Meiring, Rebecca M; Avidon, Ingrid; Norris, Shane A; McVeigh, Joanne A

    2013-12-01

    We examined the interplay between ethnicity and weight-bearing physical activity on the content and volumetric properties of bone in a pre- to early pubertal South African Black and White population. Sixty six children [Black boys, 10.4 (1.4)yrs, n=15; Black girls, 10.1 (1.2)yrs, n=27; White boys, 10.1 (1.1)yrs, n=7; White girls, 9.6 (1.3)yrs, n=17] reported on all their physical activities over the past two years in an interviewer administered physical activity questionnaire (PAQ). All participants underwent a whole body and site-specific DXA scan and we also assessed bone structure and estimated bone strength with pQCT. Children were classified as being either high or low bone loaders based on the cohort's median peak bone strain score estimated from the PAQ. In the low bone loading group, Black children had greater femoral neck bone mineral content (BMC) (2.9 (0.08)g) than White children (2.4 (0.11)g; p=0.05). There were no ethnic differences in the high bone loaders for femoral neck BMC. At the cortical site, the Black low bone loaders had a greater radius area (97.3 (1.3) vs 88.8 (2.6)mm(2); p=0.05) and a greater tibia total area (475.5 (8.7) vs. 397.3 (14.0)mm(2); p=0.001) and strength (1633.7 (60.1) vs. 1271.8 (98.6)mm(3); p=0.04) compared to the White low bone loaders. These measures were not different between the Black low and high bone loaders or between the Black and White high bone loaders. In conclusion, the present study shows that there may be ethnic and physical activity associations in the bone health of Black and White pre-pubertal children and further prospective studies are required to determine the possible ethnic specific response to mechanical loading. PMID:24012701

  14. siRNA-mediated downregulation of GluN2B in the rostral anterior cingulate cortex attenuates mechanical allodynia and thermal hyperalgesia in a rat model of pain associated with bone cancer

    PubMed Central

    XU, YONGGUANG; WANG, GONGMING; ZOU, XULI; YANG, ZAIQI; WANG, QIN; FENG, HAO; ZHANG, MENGYUAN

    2016-01-01

    It has previously been suggested that the upregulation of GluN2B-containing N-methyl D-aspartate receptors (GluN2B) within the rostral anterior cingulate cortex (rACC) may contribute to the development of chronic pain. The present study used a rat model of bone cancer pain in order to investigate whether lentiviral-mediated delivery of small interfering RNAs targeting GluN2B (LV-GluN2B) could attenuate pain associated with bone cancer, by selectively decreasing GluN2B expression within the rACC. Sprague Dawley rats were inoculated with osteosarcoma cells into the intramedullary space of the right tibia in order to induce persistent bone cancer-associated pain. Intra-rACC administration of the lentiviral siRNA was performed in the tumor bearing rats; and reverse transcription-quantitative polymerase chain reaction and western blotting were performed in order to detect the expression levels of GluN2B. Pain behavior changes were evaluated via paw withdrawal threshold and latency determinations. Marked and region-selective decreases in the mRNA and protein expression levels of GluN2B were detected in the rACC following the intra-rACC administration of LV-GluN2B. Furthermore, the rats also exhibited pain behavior changes corresponding to the decreased levels of GluN2B. By post-operative day 14, inoculation of osteosarcoma cells had significantly enhanced mechanical allodynia and thermal hyperalgesia in the rats, which were subsequently attenuated by the intra-rACC administration of LV-GluN2B. Notably, the paw withdrawal threshold and latency of the tumor-bearing rats had recovered to normal levels, by day 14 post-administration. The results of the present study suggest that GluN2B within the rACC may be a potential target for RNA interference therapy for the treatment of pain associated with bone cancer. Furthermore, the lentiviral vector delivery strategy may be a promising novel approach for the treatment of bone cancer pain. PMID:26889244

  15. Consumption of onion juice modulates oxidative stress and attenuates the risk of bone disorders in middle-aged and post-menopausal healthy subjects.

    PubMed

    Law, Yat-Yin; Chiu, Hui-Fang; Lee, Hui-Hsin; Shen, You-Cheng; Venkatakrishnan, Kamesh; Wang, Chin-Kun

    2016-02-01

    Osteoporosis is a chronic inflammatory condition that is characterized by the loss of bone mineral density (BMD). The current study was undertaken to evaluate the impact of onion juice intake on the bone mineral density (BMD) and bone loss in corroboration with antioxidant effects in human (in vivo) as well as inhibitory effects on the differentiation of osteoclasts in the cell line (in vitro). For in vitro studies, the RAW 264.7 (osteoclast progenitor) cells were used to examine the anti-osteoclastogenic effect of onion. In the case of in vivo studies, twenty-four subjects were divided into two groups and advised to intake 100 mL of onion juice or placebo for 8 weeks. Anthropometric measurements and blood samples were collected at the initial, 2(nd), 6(th), 8(th) and 10(th) week. The result of in vitro studies indicated that onion extract would effectively inhibit the osteoclastogenesis and its differentiation. Significant changes in the levels of alkaline phosphatase (ALP), free radicals, total antioxidant capacity (TEAC) and various antioxidants were observed in onion administered subjects. The BMD of three postmenopausal women was also found to be mildly improved on supplementation with onion juice. Onion juice consumption showed a positive modulatory effect on the bone loss and BMD by improving antioxidant activities and thus can be recommended for treating various bone-related disorders, especially osteoporosis. PMID:26686359

  16. Beta-Adrenergic Agonists

    PubMed Central

    Barisione, Giovanni; Baroffio, Michele; Crimi, Emanuele; Brusasco, Vito

    2010-01-01

    Inhaled β2-adrenoceptor (β2-AR) agonists are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptoms-relievers and, in combination with inhaled corticosteroids, as disease-controllers. In this article, we first review the basic mechanisms by which the β2-adrenergic system contributes to the control of airway smooth muscle tone. Then, we go on describing the structural characteristics of β2-AR and the molecular basis of G-protein-coupled receptor signaling and mechanisms of its desensitization/ dysfunction. In particular, phosphorylation mediated by protein kinase A and β-adrenergic receptor kinase are examined in detail. Finally, we discuss the pivotal role of inhaled β2-AR agonists in the treatment of asthma and the concerns about their safety that have been recently raised.

  17. A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice.

    PubMed

    Eckle, Tobias; Grenz, Almut; Laucher, Stefanie; Eltzschig, Holger K

    2008-10-01

    Although acute lung injury contributes significantly to critical illness, resolution often occurs spontaneously via activation of incompletely understood pathways. We recently found that mechanical ventilation of mice increases the level of pulmonary adenosine, and that mice deficient for extracellular adenosine generation show increased pulmonary edema and inflammation after ventilator-induced lung injury (VILI). Here, we profiled the response to VILI in mice with genetic deletions of each of the 4 adenosine receptors (ARs) and found that deletion of the A2BAR gene was specifically associated with reduced survival time and increased pulmonary albumin leakage after injury. In WT mice, treatment with an A2BAR-selective antagonist resulted in enhanced pulmonary inflammation, edema, and attenuated gas exchange, while an A2BAR agonist attenuated VILI. In bone marrow-chimeric A2BAR mice, although the pulmonary inflammatory response involved A2BAR signaling from bone marrow-derived cells, A2BARs located on the lung tissue attenuated VILI-induced albumin leakage and pulmonary edema. Furthermore, measurement of alveolar fluid clearance (AFC) demonstrated that A2BAR signaling enhanced amiloride-sensitive fluid transport and elevation of pulmonary cAMP levels following VILI, suggesting that A2BAR agonist treatment protects by drying out the lungs. Similar enhancement of pulmonary cAMP and AFC were also observed after beta-adrenergic stimulation, a pathway known to promote AFC. Taken together, these studies reveal a role for A2BAR signaling in attenuating VILI and implicate this receptor as a potential therapeutic target during acute lung injury. PMID:18787641

  18. Alpha 1 Antitrypsin Inhibits Dendritic Cell Activation and Attenuates Nephritis in a Mouse Model of Lupus.

    PubMed

    Elshikha, Ahmed S; Lu, Yuanqing; Chen, Mong-Jen; Akbar, Mohammad; Zeumer, Leilani; Ritter, Andrea; Elghamry, Hanaa; Mahdi, Mahmoud A; Morel, Laurence; Song, Sihong

    2016-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder with a worldwide distribution and considerable mortality and morbidity. Although the pathogenesis of this disease remains elusive, over-reactive dendritic cells (DCs) play a critical role in the disease development. It has been shown that human alpha-1 antitrypsin (hAAT) has protective effects in type 1 diabetes and rheumatoid arthritis mouse models. In the present study, we tested the effect of AAT on DC differentiation and functions, as well as its protective effect in a lupus-prone mouse model. We showed that hAAT treatment significantly inhibited LPS (TLR4 agonist) and CpG (TLR9 agonist) -induced bone-marrow (BM)-derived conventional and plasmacytoid DC (cDC and pDC) activation and reduced the production of inflammatory cytokines including IFN-I, TNF-α and IL-1β. In MRL/lpr mice, hAAT treatment significantly reduced BM-derived DC differentiation, serum autoantibody levels, and importantly attenuated renal pathology. Our results for the first time demonstrate that hAAT inhibits DC activation and function, and it also attenuates autoimmunity and renal damage in the MRL/lpr lupus model. These results imply that hAAT has a therapeutic potential for the treatment of SLE in humans. PMID:27232337

  19. Alpha 1 Antitrypsin Inhibits Dendritic Cell Activation and Attenuates Nephritis in a Mouse Model of Lupus

    PubMed Central

    Elshikha, Ahmed S.; Lu, Yuanqing; Chen, Mong-Jen; Akbar, Mohammad; Zeumer, Leilani; Ritter, Andrea; Elghamry, Hanaa; Mahdi, Mahmoud A.; Morel, Laurence; Song, Sihong

    2016-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder with a worldwide distribution and considerable mortality and morbidity. Although the pathogenesis of this disease remains elusive, over-reactive dendritic cells (DCs) play a critical role in the disease development. It has been shown that human alpha-1 antitrypsin (hAAT) has protective effects in type 1 diabetes and rheumatoid arthritis mouse models. In the present study, we tested the effect of AAT on DC differentiation and functions, as well as its protective effect in a lupus-prone mouse model. We showed that hAAT treatment significantly inhibited LPS (TLR4 agonist) and CpG (TLR9 agonist) -induced bone-marrow (BM)-derived conventional and plasmacytoid DC (cDC and pDC) activation and reduced the production of inflammatory cytokines including IFN-I, TNF-α and IL-1β. In MRL/lpr mice, hAAT treatment significantly reduced BM-derived DC differentiation, serum autoantibody levels, and importantly attenuated renal pathology. Our results for the first time demonstrate that hAAT inhibits DC activation and function, and it also attenuates autoimmunity and renal damage in the MRL/lpr lupus model. These results imply that hAAT has a therapeutic potential for the treatment of SLE in humans. PMID:27232337

  20. Interactions between cannabinoid receptor agonists and mu opioid receptor agonists in rhesus monkeys discriminating fentanyl.

    PubMed

    Maguire, David R; France, Charles P

    2016-08-01

    Cannabinoid receptor agonists such as delta-9-tetrahydrocannabinol (Δ(9)-THC) enhance some (antinociceptive) but not other (positive reinforcing) effects of mu opioid receptor agonists, suggesting that cannabinoids might be combined with opioids to treat pain without increasing, and possibly decreasing, abuse. The degree to which cannabinoids enhance antinociceptive effects of opioids varies across drugs insofar as Δ(9)-THC and the synthetic cannabinoid receptor agonist CP55940 increase the potency of some mu opioid receptor agonists (e.g., fentanyl) more than others (e.g., nalbuphine). It is not known whether interactions between cannabinoids and opioids vary similarly for other (abuse-related) effects. This study examined whether Δ(9)-THC and CP55940 differentially impact the discriminative stimulus effects of fentanyl and nalbuphine in monkeys (n=4) discriminating 0.01mg/kg of fentanyl (s.c.) from saline. Fentanyl (0.00178-0.0178mg/kg) and nalbuphine (0.01-0.32mg/kg) dose-dependently increased drug-lever responding. Neither Δ(9)-THC (0.032-1.0mg/kg) nor CP55940 (0.0032-0.032mg/kg) enhanced the discriminative stimulus effects of fentanyl or nalbuphine; however, doses of Δ(9)-THC and CP55940 that shifted the nalbuphine dose-effect curve markedly to the right and/or down were less effective or ineffective in shifting the fentanyl dose-effect curve. The mu opioid receptor antagonist naltrexone (0.032mg/kg) attenuated the discriminative stimulus effects of fentanyl and nalbuphine similarly. These data indicate that the discriminative stimulus effects of nalbuphine are more sensitive to attenuation by cannabinoids than those of fentanyl. That the discriminative stimulus effects of some opioids are more susceptible to modification by drugs from other classes has implications for developing maximally effective therapeutic drug mixtures with reduced abuse liability. PMID:27184925

  1. Eicosapentaenoic acid attenuates dexamethasome-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells.

    PubMed

    Gao, B; Han, Y-H; Wang, L; Lin, Y-J; Sun, Z; Lu, W-G; Hu, Y-Q; Li, J-Q; Lin, X-S; Liu, B-H; Jie, Q; Yang, L; Luo, Z-J

    2016-01-01

    Long-term use of glucocorticoids is a widespread clinical problem, which currently has no effective solution other than discontinuing the use. Eicosapentaenoic acid (EPA), an omega-3 long chain polyunsaturated fatty acid (n-3 PUFA), which is largely contained in fish or fish oil, has been reported to promote cell viability and improve bone metabolism. However, little is known about the effects of EPA on dexamethasome (Dex)-induced cell apoptosis. In this study, we showed that EPA-induced autophagy of murine bone marrow-derived mesenchymal stem cells (mBMMSCs). Meanwhile, EPA, but not arachidonic acid (AA), markedly inhibited Dex-induced apoptosis and promoted the viability of mBMMSCs. We also observed that EPA-induced autophagy was modulated by GPR120, but not GPR40. Further experiments showed that the mechanism of EPA-induced autophagy associated with GPR120 modulation involved an increase in the active form of AMP-activated protein kinase and a decrease in the activity of mammalian target of RAPA. The protective effect of EPA on Dex-induced apoptosis via GPR120-meditated induction of adaptive autophagy was supported by in vivo experiments. In summary, our findings may have important implications in developing future strategies to use EPA in the prevention and therapy of the side effects induced by long-term Dex-abuse. PMID:27228350

  2. Eicosapentaenoic acid attenuates dexamethasome-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells

    PubMed Central

    Gao, B; Han, Y-H; Wang, L; Lin, Y-J; Sun, Z; Lu, W-G; Hu, Y-Q; Li, J-Q; Lin, X-S; Liu, B-H; Jie, Q; Yang, L; Luo, Z-J

    2016-01-01

    Long-term use of glucocorticoids is a widespread clinical problem, which currently has no effective solution other than discontinuing the use. Eicosapentaenoic acid (EPA), an omega-3 long chain polyunsaturated fatty acid (n-3 PUFA), which is largely contained in fish or fish oil, has been reported to promote cell viability and improve bone metabolism. However, little is known about the effects of EPA on dexamethasome (Dex)-induced cell apoptosis. In this study, we showed that EPA-induced autophagy of murine bone marrow-derived mesenchymal stem cells (mBMMSCs). Meanwhile, EPA, but not arachidonic acid (AA), markedly inhibited Dex-induced apoptosis and promoted the viability of mBMMSCs. We also observed that EPA-induced autophagy was modulated by GPR120, but not GPR40. Further experiments showed that the mechanism of EPA-induced autophagy associated with GPR120 modulation involved an increase in the active form of AMP-activated protein kinase and a decrease in the activity of mammalian target of RAPA. The protective effect of EPA on Dex-induced apoptosis via GPR120-meditated induction of adaptive autophagy was supported by in vivo experiments. In summary, our findings may have important implications in developing future strategies to use EPA in the prevention and therapy of the side effects induced by long-term Dex-abuse. PMID:27228350

  3. Human mesenchymal stromal cells attenuate graft-versus-host disease and maintain graft-versus-leukemia activity following experimental allogeneic bone marrow transplantation.

    PubMed

    Auletta, Jeffery J; Eid, Saada K; Wuttisarnwattana, Patiwet; Silva, Ines; Metheny, Leland; Keller, Matthew D; Guardia-Wolff, Rocio; Liu, Chen; Wang, Fangjing; Bowen, Theodore; Lee, Zhenghong; Solchaga, Luis A; Ganguly, Sudipto; Tyler, Megan; Wilson, David L; Cooke, Kenneth R

    2015-02-01

    We sought to define the effects and underlying mechanisms of human, marrow-derived mesenchymal stromal cells (hMSCs) on graft-versus-host disease (GvHD) and graft-versus-leukemia (GvL) activity. Irradiated B6D2F1 mice given C57BL/6 BM and splenic T cells and treated with hMSCs had reduced systemic GvHD, donor T-cell expansion, and serum TNFα and IFNγ levels. Bioluminescence imaging demonstrated that hMSCs redistributed from lungs to abdominal organs within 72 hours, and target tissues harvested from hMSC-treated allogeneic BMT (alloBMT) mice had less GvHD than untreated controls. Cryoimaging more precisely revealed that hMSCs preferentially distributed to splenic marginal zones and regulated T-cell expansion in the white pulp. Importantly, hMSCs had no effect on in vitro cytotoxic T-cell activity and preserved potent GvL effects in vivo. Mixed leukocyte cultures containing hMSCs exhibited decreased T-cell proliferation, reduced TNFα, IFNγ, and IL-10 but increased PGE2 levels. Indomethacin and E-prostanoid 2 (EP2) receptor antagonisms both reversed while EP2 agonism restored hMSC-mediated in vitro T-cell suppression, confirming the role for PGE2 . Furthermore, cyclo-oxygenase inhibition following alloBMT abrogated the protective effects of hMSCs. Together, our data show that hMSCs preserve GvL activity and attenuate GvHD and reveal that hMSC biodistribute to secondary lymphoid organs wherein they attenuate alloreactive T-cell proliferation likely through PGE2 induction. PMID:25336340

  4. Bone Grafts

    MedlinePlus

    A bone graft transplants bone tissue. Surgeons use bone grafts to repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some ...

  5. Bone tumor

    MedlinePlus

    Tumor - bone; Bone cancer; Primary bone tumor; Secondary bone tumor ... The cause of bone tumors is unknown. They often occur in areas of the bone that grow rapidly. Possible causes include: Genetic defects ...

  6. Do all β-blockers attenuate the excess hematopoietic progenitor cell mobilization from the bone marrow following trauma/hemorrhagic shock?

    PubMed Central

    Pasupuleti, Latha V.; Cook, Kristin M.; Sifri, Ziad C.; Alzate, Walter D.; Livingston, David H.; Mohr, Alicia M.

    2016-01-01

    BACKGROUND Severe injury results in increased mobilization of hematopoietic progenitor cells (HPC) from the bone marrow (BM) to sites of injury, which may contribute to persistent BM dysfunction after trauma. Norepinephrine is a known inducer of HPC mobilization, and nonselective β-blockade with propranolol has been shown to decrease mobilization after trauma and hemorrhagic shock (HS). This study will determine the role of selective β-adrenergic receptor blockade in HPC mobilization in a combined model of lung contusion (LC) and HS. METHODS Male Sprague-Dawley rats were subjected to LC, followed by 45 minutes of HS. Animals were then randomized to receive atenolol (LCHS + β1B), butoxamine (LCHS + β2B), or SR59230A (LCHS + β3B) immediately after resuscitation and daily for 6 days. Control groups were composed of naive animals. BM cellularity, %HPCs in peripheral blood, and plasma granulocyte-colony stimulating factor levels were assessed at 3 hours and 7 days. Systemic plasma-mediated effects were evaluated in vitro by assessment of BM HPC growth. Injured lung tissue was graded histologically by a blinded reader. RESULTS The use of β2B or β3B following LCHS restored BM cellularity and significantly decreased HPC mobilization. In contrast, β1B had no effect on HPC mobilization. Only β3B significantly reduced plasma G-CSF levels. When evaluating the plasma systemic effects, both β2B and β3B significantly improved BM HPC growth as compared with LCHS alone. The use of β2 and β3 blockade did not affect lung injury scores. CONCLUSION Both β2 and β3 blockade can prevent excess HPC mobilization and BM dysfunction when given after trauma and HS, and the effects seem to be mediated systemically, without adverse effects on subsequent healing. Only treatment with β3 blockade reduced plasma G-CSF levels, suggesting different mechanisms for adrenergic-induced G-CSF release and mobilization of HPCs. This study adds to the evidence that therapeutic strategies that

  7. Bone Diseases

    MedlinePlus

    ... avoid smoking and drinking too much alcohol. Bone diseases can make bones easy to break. Different kinds ... break Osteogenesis imperfecta makes your bones brittle Paget's disease of bone makes them weak Bones can also ...

  8. Proteasome involvement in agonist-induced down-regulation of mu and delta opioid receptors.

    PubMed

    Chaturvedi, K; Bandari, P; Chinen, N; Howells, R D

    2001-04-13

    This study investigated the mechanism of agonist-induced opioid receptor down-regulation. Incubation of HEK 293 cells expressing FLAG-tagged delta and mu receptors with agonists caused a time-dependent decrease in opioid receptor levels assayed by immunoblotting. Pulse-chase experiments using [(35)S]methionine metabolic labeling indicated that the turnover rate of delta receptors was accelerated 5-fold following agonist stimulation. Inactivation of functional G(i) and G(o) proteins by pertussis toxin-attenuated down-regulation of the mu opioid receptor, while down-regulation of the delta opioid receptor was unaffected. Pretreatment of cells with inhibitors of lysosomal proteases, calpain, and caspases had little effect on mu and delta opioid receptor down-regulation. In marked contrast, pretreatment with proteasome inhibitors attenuated agonist-induced mu and delta receptor down-regulation. In addition, incubation of cells with proteasome inhibitors in the absence of agonists increased steady-state mu and delta opioid receptor levels. Immunoprecipitation of mu and delta opioid receptors followed by immunoblotting with ubiquitin antibodies suggested that preincubation with proteasome inhibitors promoted accumulation of polyubiquitinated receptors. These data provide evidence that the ubiquitin/proteasome pathway plays a role in agonist-induced down-regulation and basal turnover of opioid receptors. PMID:11152677

  9. Agonist-trafficking and hallucinogens.

    PubMed

    González-Maeso, Javier; Sealfon, Stuart C

    2009-01-01

    Seven transmembrane domain receptors, also termed G protein-coupled receptors (GPCRs), represent the most common molecular target for therapeutic drugs. The generally accepted pharmacological model for GPCR activation is the ternary complex model, in which GPCRs exist in a dynamic equilibrium between the active and inactive conformational states. However, the demonstration that different agonists sometimes elicit a different relative activation of two signaling pathways downstream of the same receptor has led to a revision of the ternary complex model. According to this agonist- trafficking model, agonists stabilize distinct activated receptor conformations that preferentially activate specific signaling pathways. Hallucinogenic drugs and non-hallucinogenic drugs represent an attractive experimental system with which to study agonist-trafficking of receptor signaling. Thus many of the behavioral responses induced by hallucinogenic drugs, such as lysergic acid diethylamide (LSD), psilocybin or mescaline, depend on activation of serotonin 5-HT(2A) receptors (5-HT2ARs). In contrast, this neuropsychological state in humans is not induced by closely related chemicals, such as lisuride or ergotamine, despite their similar in vitro activity at the 5-HT2AR. In this review, we summarize the current knowledge, as well as unresolved questions, regarding agonist-trafficking and the mechanism of action of hallucinogenic drugs. PMID:19275609

  10. Dissociated sterol-based liver X receptor agonists as therapeutics for chronic inflammatory diseases.

    PubMed

    Yu, Shan; Li, Sijia; Henke, Adam; Muse, Evan D; Cheng, Bo; Welzel, Gustav; Chatterjee, Arnab K; Wang, Danling; Roland, Jason; Glass, Christopher K; Tremblay, Matthew

    2016-07-01

    Liver X receptor (LXR), a nuclear hormone receptor, is an essential regulator of immune responses. Activation of LXR-mediated transcription by synthetic agonists, such as T0901317 and GW3965, attenuates progression of inflammatory disease in animal models. However, the adverse effects of these conventional LXR agonists in elevating liver lipids have impeded exploitation of this intriguing mechanism for chronic therapy. Here, we explore the ability of a series of sterol-based LXR agonists to alleviate inflammatory conditions in mice without hepatotoxicity. We show that oral treatment with sterol-based LXR agonists in mice significantly reduces dextran sulfate sodium colitis-induced body weight loss, which is accompanied by reduced expression of inflammatory markers in the large intestine. The anti-inflammatory property of these agonists is recapitulated in vitro in mouse lamina propria mononuclear cells, human colonic epithelial cells, and human peripheral blood mononuclear cells. In addition, treatment with LXR agonists dramatically suppresses inflammatory cytokine expression in a model of traumatic brain injury. Importantly, in both disease models, the sterol-based agonists do not affect the liver, and the conventional agonist T0901317 results in significant liver lipid accumulation and injury. Overall, these results provide evidence for the development of sterol-based LXR agonists as novel therapeutics for chronic inflammatory diseases.-Yu, S., Li, S., Henke, A., Muse, E. D., Cheng, B., Welzel, G., Chatterjee, A. K., Wang, D., Roland, J., Glass, C. K., Tremblay, M. Dissociated sterol-based liver X receptor agonists as therapeutics for chronic inflammatory diseases. PMID:27025962

  11. Bone Morphogenetic Proteins.

    PubMed

    Katagiri, Takenobu; Watabe, Tetsuro

    2016-01-01

    Bone morphogenetic proteins (BMPs), originally identified as osteoinductive components in extracts derived from bone, are now known to play important roles in a wide array of processes during formation and maintenance of various organs including bone, cartilage, muscle, kidney, and blood vessels. BMPs and the related "growth and differentiation factors" (GDFs) are members of the transforming growth factor β (TGF-β) family, and transduce their signals through type I and type II serine-threonine kinase receptors and their intracellular downstream effectors, including Smad proteins. Furthermore, BMP signals are finely tuned by various agonists and antagonists. Because deregulation of the BMP activity at multiple steps in signal transduction is linked to a wide variety of human diseases, therapeutic use of activators and inhibitors of BMP signaling will provide potential avenues for the treatment of the human disorders that are caused by hypo- and hyperactivation of BMP signals, respectively. PMID:27252362

  12. Diabetes and bone health.

    PubMed

    Antonopoulou, Marianna; Bahtiyar, Gül; Banerji, Mary Ann; Sacerdote, Alan S

    2013-11-01

    The increasing prevalence of diabetes especially type 2 diabetes worldwide is indisputable. Diabetics suffer increased morbidity and mortality, compared to their non-diabetic counterparts, not only because of vascular complications, but also because of an increased fracture incidence. Both types 1 and 2 diabetes and some medications used to treat it are associated with osteoporotic fractures. The responsible mechanisms remain incompletely elucidated. In this review, we evaluate the role of glycemic control in bone health, and the effect of anti-diabetic medications such as thiazolidinediones, sulfonylureas, DPP-4 inhibitors, and GLP-1 agonists. In addition, we examine the possible role of insulin and metformin as anabolic agents for bone. Lastly, we identify the current and future screening tools that help evaluate bone health in diabetics and their limitations. In this way we can offer individualized treatment, to the at-risk diabetic population. PMID:23628280

  13. Potential effect of angiotensin II receptor blockade in adipose tissue and bone.

    PubMed

    Nakagami, Hironori; Osako, Mariana Kiomy; Morishita, Ryuichi

    2013-01-01

    Recent evidence demonstrated that dysregulation of adipocytokine functions seen in abdominal obesity may be involved in the pathogenesis of the metabolic syndrome. Angiotensinogen, the precursor of angiotensin (Ang) II, is produced primarily in the liver, and also in adipose tissue, where it is up-regulated during the development of obesity and involved in blood pressure regulation and adipose tissue growth. Blockade of renin-angiotensin system (RAS) attenuates weight gain and adiposity by enhanced energy expenditure, and the favorable metabolic effects of telmisartan have been related to its Ang II receptor blockade and action as a partial agonist of peroxisome proliferators activated receptor (PPAR)-γ. PPARγ plays an important role in regulating carbohydrate and lipid metabolism, and ligands for PPARγ can improve insulin sensitivity and reduce triglyceride levels. Similarly, bone metabolism is closely regulated by hormones and cytokines, which have effects on both bone resorption and deposition. It is known that the receptors of Ang II are expressed in culture osteoclasts and osteoblasts, and Ang II is postulated to be able to act upon the cells involved in bone metabolism. In in vitro system, Ang II induced the differentiation and activation of osteoclasts responsible for bone resorption. Importantly, it was demonstrated by the sub-analysis of a recent clinical study that the fracture risk was significantly reduced by the usage of angiotensin-converting enzyme inhibitors. To treat the subgroups of hypertensive patients with osteoporosis RAS can be considered a novel target. PMID:23176218

  14. A direct measurement of skull attenuation for quantitative SPECT

    SciTech Connect

    Turkington, T.G.; Gilland, D.R.; Jaszczak, R.J.; Greer, K.L.; Coleman, R.E. . Dept. of Radiology); Smith, M.F. . Dept. of Biomedical Engineering)

    1993-08-01

    The attenuation of 140 keV photons was measured in three empty skulls by placing a [sup 99m]Tc line source inside each one and acquiring projection data. These projections were compared to projections of the line source alone to determine the transmission through each point in the skull surrounding the line source. The effective skull thickness was calculated for each point using an assumed dense bone attenuation coefficient. The relative attenuation for this thickness of bone was compared to that of an equivalent amount of soft tissue to evaluate the increased attenuation of photons in brain SPECT relative to a uniform soft tissue approximation. For the skull regions surrounding most of the brain, the effective bone thickness varied considerably, but was generally less than 6 mm, resulting in a relative attenuation increases of less than 6%.

  15. Adenosine 2A receptor agonism: A single intrathecal administration attenuates motor paralysis in experimental autoimmune encephalopathy in rats.

    PubMed

    Loram, Lisa C; Strand, Keith A; Taylor, Frederick R; Sloane, Evan; Van Dam, Anne-Marie; Rieger, Jayson; Maier, Steven F; Watkins, Linda R

    2015-05-01

    A single intrathecal dose of adenosine 2A receptor (A2AR) agonist was previously reported to produce a multi-week reversal of allodynia in two different models of neuropathic pain in addition to downregulating glial activation markers in the spinal cord. We aimed to determine whether a single intrathecal administration of an A2AR agonist was able to attenuate motor symptoms induced by experimental autoimmune encephalopathy. Two A2AR agonists (CGS21680 and ATL313) significantly attenuated progression of motor symptoms following a single intrathecal administration at the onset of motor symptoms. OX-42, a marker of microglial activation, was significantly attenuated in the lumbar spinal cord following A2AR administration compared to vehicle. Therefore, A2AR agonists attenuate motor symptoms of EAE by acting on A2AR in the spinal cord. PMID:25653191

  16. Selective Retinoic Acid Receptor γ Agonists Promote Repair of Injured Skeletal Muscle in Mouse.

    PubMed

    Di Rocco, Agnese; Uchibe, Kenta; Larmour, Colleen; Berger, Rebecca; Liu, Min; Barton, Elisabeth R; Iwamoto, Masahiro

    2015-09-01

    Retinoic acid signaling regulates several biological events, including myogenesis. We previously found that retinoic acid receptor γ (RARγ) agonist blocks heterotopic ossification, a pathological bone formation that mostly occurs in the skeletal muscle. Interestingly, RARγ agonist also weakened deterioration of muscle architecture adjacent to the heterotopic ossification lesion, suggesting that RARγ agonist may oppose skeletal muscle damage. To test this hypothesis, we generated a critical defect in the tibialis anterior muscle of 7-week-old mice with a cautery, treated them with RARγ agonist or vehicle corn oil, and examined the effects of RARγ agonist on muscle repair. The muscle defects were partially repaired with newly regenerating muscle cells, but also filled with adipose and fibrous scar tissue in both RARγ-treated and control groups. The fibrous or adipose area was smaller in RARγ agonist-treated mice than in the control. In addition, muscle repair was remarkably delayed in RARγ-null mice in both critical defect and cardiotoxin injury models. Furthermore, we found a rapid increase in retinoid signaling in lacerated muscle, as monitored by retinoid signaling reporter mice. Together, our results indicate that endogenous RARγ signaling is involved in muscle repair and that selective RARγ agonists may be beneficial to promote repair in various types of muscle injuries. PMID:26205250

  17. Bone Diseases

    MedlinePlus

    ... also avoid smoking and drinking too much alcohol. Bone diseases can make bones easy to break. Different kinds ... Bones can also develop cancer and infections Other bone diseases, which are caused by poor nutrition, genetics, or ...

  18. Bone Grafts

    MedlinePlus

    ... repair and rebuild diseased bones in your hips, knees, spine, and sometimes other bones and joints. Grafts can also repair bone loss caused by some types of fractures or cancers. Once your body accepts the bone ...

  19. Metabolic Syndrome Abolishes Glucagon-Like Peptide 1 Receptor Agonist Stimulation of SERCA in Coronary Smooth Muscle.

    PubMed

    Dineen, Stacey L; McKenney, Mikaela L; Bell, Lauren N; Fullenkamp, Allison M; Schultz, Kyle A; Alloosh, Mouhamad; Chalasani, Naga; Sturek, Michael

    2015-09-01

    Metabolic syndrome (MetS) doubles the risk of adverse cardiovascular events. Glucagon-like peptide 1 (GLP-1) receptor agonists induce weight loss, increase insulin secretion, and improve glucose tolerance. Studies in healthy animals suggest cardioprotective properties of GLP-1 receptor agonists, perhaps partially mediated by improved sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) activity. We examined the acute effect of GLP-1 receptor agonists on coronary smooth muscle cells (CSM) enzymatically isolated from lean, healthy Ossabaw miniature swine. Intracellular Ca(2+) handling was interrogated with fura-2. The GLP-1 receptor agonist exenatide activated SERCA but did not alter other Ca(2+) transporters. Further, we tested the hypothesis that chronic, in vivo treatment with GLP-1 receptor agonist AC3174 would attenuate coronary artery disease (CAD) in swine with MetS. MetS was induced in 20 swine by 6 months' feeding of a hypercaloric, atherogenic diet. Swine were then randomized (n = 10/group) into placebo or AC3174 treatment groups and continued the diet for an additional 6 months. AC3174 treatment attenuated weight gain, increased insulin secretion, and improved glucose tolerance. Intravascular ultrasound and histology showed no effect of AC3174 on CAD. MetS abolished SERCA activation by GLP-1 receptor agonists. We conclude that MetS confers vascular resistance to GLP-1 receptor agonists, partially through impaired cellular signaling steps involving SERCA. PMID:25845661

  20. Rotary antenna attenuator

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.; Hardy, J. C.

    1969-01-01

    Radio frequency attenuator, having negligible insertion loss at minimum attenuation, can be used for making precise antenna gain measurements. It is small in size compared to a rotary-vane attenuator.

  1. A novel PPARgamma agonist monascin's potential application in diabetes prevention.

    PubMed

    Hsu, Wei-Hsuan; Pan, Tzu-Ming

    2014-07-25

    Edible fungi of the Monascus species have been used as traditional Chinese medicine in eastern Asia for several centuries. Monascus-fermented products possess a number of functional secondary metabolites, including the anti-inflammatory pigments monascin and ankaflavin. Monascin has been shown to prevent or ameliorate several conditions, including hypercholesterolemia, hyperlipidemia, diabetes, and obesity. Recently, monascin has been shown to improve hyperglycemia, attenuate oxidative stress, inhibit insulin resistance, and suppress inflammatory cytokine production. In our recent study, we have found that monascin is a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist. The PPARgamma agonist activity had been investigated and its exerted benefits are inhibition of inflammation in methylglyoxal (MG)-treated rats, prevention of pancreas impairment causing advanced glycation endproducts (AGEs), promotion of insulin expression in vivo and in vitro, and attenuated carboxymethyllysine (CML)-induced hepatic stellate cell (HSC) activation in the past several years. Moreover, our studies also demonstrated that monascin also activated nuclear factor-erythroid 2-related factor 2 (Nrf2) in pancreatic RIN-m5F cell line thereby invading methylglyoxal induced pancreas dysfunction. In this review, we focus on the chemo-preventive properties of monascin against metabolic syndrome through PPARgamma and Nrf2 pathways. PMID:24752777

  2. Systemic chemotherapy is modulated by platelet-activating factor-receptor agonists.

    PubMed

    Sahu, Ravi P; Ferracini, Matheus; Travers, Jeffrey B

    2015-01-01

    Chemotherapy is used to treat numerous cancers including melanoma. However, its effectiveness in clinical settings is often hampered by various mechanisms. Previous studies have demonstrated that prooxidative stressor-mediated generation of oxidized lipids with platelet-activating factor-receptor (PAF-R) agonistic activity induces systemic immunosuppression that augments the growth of experimental melanoma tumors. We have recently shown that treatment of murine B16F10 melanoma cells in vitro or tumors implanted into syngeneic mice and treated intratumorally with various chemotherapeutic agents generated PAF-R agonists in a process blocked by antioxidants. Notably, these intratumoral chemotherapy-generated PAF-R agonists augmented the growth of secondary (untreated) tumors in a PAF-R dependent manner. As both localized and systemic chemotherapies are used based on tumor localization/stage and metastases, the current studies were sought to determine effects of PAF-R agonists on systemic chemotherapy against experimental melanoma. Here, we show that systemic chemotherapy with etoposide (ETOP) attenuates the growth of melanoma tumors when given subsequent to the tumor cell implantation. Importantly, this ETOP-mediated suppression of melanoma tumor growth was blocked by exogenous administration of a PAF-R agonist, CPAF. These findings indicate that PAF-R agonists not only negatively affect the ability of localized chemotherapy but also compromise the efficacy of systemic chemotherapy against murine melanoma. PMID:25922565

  3. PPARα-Independent Arterial Smooth Muscle Relaxant Effects of PPARα Agonists

    PubMed Central

    Silswal, Neerupma; Parelkar, Nikhil K.; Wacker, Michael J.; Badr, Mostafa; Andresen, Jon

    2012-01-01

    We sought to determine direct vascular effects of peroxisome proliferator-activated receptor alpha (PPARα) agonists using isolated mouse aortas and middle cerebral arteries (MCAs). The PPARα agonists GW7647, WY14643, and gemfibrozil acutely relaxed aortas held under isometric tension and dilated pressurized MCAs with the following order of potency: GW7647≫WY14643>gemfibrozil. Responses were endothelium-independent, and the use of PPARα deficient mice demonstrated that responses were also PPARα-independent. Pretreating arteries with high extracellular K+ attenuated PPARα agonist-mediated relaxations in the aorta, but not in the MCA. In the aorta, the ATP sensitive potassium (KATP) channel blocker glibenclamide also impaired relaxations whereas the other K+ channel inhibitors, 4-aminopyridine and Iberiotoxin, had no effect. In aortas, GW7647 and WY14643 elevated cGMP levels by stimulating soluble guanylyl cyclase (sGC), and inhibition of sGC with ODQ blunted relaxations to PPARα agonists. In the MCA, dilations were inhibited by the protein kinase C (PKC) activator, phorbol 12,13-dibutyrate, and also by ODQ. Our results demonstrated acute, nonreceptor-mediated relaxant effects of PPARα agonists on smooth muscle of mouse arteries. Responses to PPARα agonists in the aorta involved KATP channels and sGC, whereas in the MCA the PKC and sGC pathways also appeared to contribute to the response. PMID:23008696

  4. Des-Aspartate-Angiotensin I Attenuates Mortality of Mice Exposed to Gamma Radiation via a Novel Mechanism of Action

    PubMed Central

    Wang, Hong; Sethi, Gautam; Loke, Weng-Keong; Sim, Meng-Kwoon

    2015-01-01

    ACE inhibitors and ARBs (angiotensin receptor blockers) have been shown to attenuate radiation injuries in animal models of lethal gamma irradiation. These two classes of drug act by curtailing the actions of angiotensin II-linked inflammatory pathways that are up-regulated during gamma radiation in organ systems such as the brain, lung, kidney, and bone marrow. ACE inhibitors inhibit ACE and attenuate the formation of angiotensin II from angiotensin I; ARBs block the angiotensin AT1 receptor and attenuate the actions of angiotensin II that are elicited through the receptor. DAA-I (des-aspartate-angiotensin I), an orally active angiotensin peptide, also attenuates the deleterious actions of angiotensin II. It acts as an agonist on the angiotensin AT1 receptor and elicits responses that oppose those of angiotensn II. Thus, DAA-I was investigated for its anticipated radioprotection in gamma irradiated mice. DAA-I administered orally at 800 nmole/kg/day for 30 days post exposure (6.4 Gy) attenuated the death of mice during the 30-day period. The attenuation was blocked by losartan (50 nmole/kg/day, i.p.) that was administered sequential to DAA-I administration. This shows that the radioprotection was mediated via the angiotensin AT1 receptor. Furthermore, the radioprotection correlated to an increase in circulating PGE2 of surviving animals, and this suggests that PGE2 is involved in the radioprotection in DAA-I-treated mice. At the hematopoietic level, DAA-I significantly improved two syndromes of myelosuppression (leucopenia and lymphocytopenia), and mice pre-treated with DAA-I prior to gamma irradiation showed significant improvement in the four myelodysplastic syndromes that were investigated, namely leucopenia, lymphocytopenia, monocytopenia and thrombocytopenia. Based on the known ability of PGE2 to attenuate the loss of functional hematopoietic stem and progenitor cells in radiation injury, we hypothesize that PGE2 mediated the action of DAA-I. DAA-I completely

  5. Suppression of atherosclerosis by synthetic REV-ERB agonist

    SciTech Connect

    Sitaula, Sadichha; Billon, Cyrielle; Kamenecka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2015-05-08

    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks compared to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. - Highlights: • Synthetic REV-ERB agonist treatment reduced atherosclerosis in a mouse model. • Pharmacological activation of REV-ERB decreased M1 macrophage polarization. • Pharmacological activation of REV-ERB increased M2 macrophage polarization.

  6. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  7. Crosstalk between cartilage and bone: when bone cytokines matter.

    PubMed

    Funck-Brentano, Thomas; Cohen-Solal, Martine

    2011-04-01

    The cartilage damage which characterizes osteoarthritis is often accompanied by bone lesions. Joint integrity results from the balance in the physiological interactions between bone and cartilage. Several local factors regulate the physiological remodeling of cartilage, the disequilibrium of these leading to a higher cartilage catabolism. Several cytokines secreted by bone cells can induce chondrocyte differentiation, which suggests their role in the dialogue between both cells. Accumulative in vivo evidence shows that increased bone resorption occurs at an early stage in the development of osteoarthritis and that blocking bone-resorbing cytokines prevents cartilage damage, confirming the role of bone factors in the crosstalk of both tissues. Recently, molecules of the Wnt pathway have emerged as key regulators of bone and cartilage. Activation of Wnt/βcatenin induces an imbalance in cartilage homeostasis, and agonists/antagonists of Wnt are potential candidates for this interaction. This review will summarize what is known about the contribution of bone cytokines to the physiological remodeling of cartilage and in the pathophysiology of osteoarthritis. PMID:21596615

  8. WNT AGONIST DECREASES TISSUE DAMAGE AND IMPROVES RENAL FUNCTION AFTER ISCHEMIA-REPERFUSION

    PubMed Central

    Kuncewitch, Michael; Yang, Weng-Lang; Corbo, Lana; Khader, Adam; Nicastro, Jeffrey; Coppa, Gene F.; Wang, Ping

    2014-01-01

    Renal ischemia-reperfusion (IR) injury (IRI) following shock states or transplantation causes tissue damage and delayed graft function, respectively. The Wnt/β-catenin signaling pathway plays a critical role in nephrogenesis. We therefore hypothesized that pharmacological activation of Wnt/β-catenin signaling by Wnt agonist, a synthetic pyrimidine, could protect kidneys from IRI. Adult male rats were subjected to bilateral clamping of the renal pedicles with microvascular clips for 60 min, followed by reperfusion. Wnt agonist (5 mg/kg BW) or vehicle (20% DMSO in saline) was administered intravenously 1 h prior to ischemia. Blood and renal tissues were collected 24 h after IR for evaluation. Renal IR caused a significant reduction of β-catenin and its downstream target gene cyclin D1 by 65% and 39%, respectively, compared to the sham, while Wnt agonist restored them to the sham levels. The number and intensity of cells staining with the proliferation marker Ki67 in ischematized kidneys were enhanced by Wnt agonist. The integrity of the renal histological architecture in the Wnt agonist group was better preserved than the vehicle group. Wnt agonist significantly lowered serum levels of creatinine, AST, and LDH, inhibited the production of IL-6 and IL-1β, and MPO activities. Lastly, Wnt agonist reduced iNOS, nitrotyrosine proteins and 4-hydroxynonenal in the kidneys by 60%, 47% and 21%, respectively, compared to the vehicle. These results indicate that Wnt agonist improves renal regeneration and function while attenuating inflammation and oxidative stress in the kidneys after IR. Thus, pharmacologic stimulation of Wnt/β-catenin signaling provides a beneficial effect on the prevention of renal IRI. PMID:25514428

  9. Effects of oxytocin on serotonin 1B agonist-induced autism-like behavior in mice.

    PubMed

    Lawson, Sarah K; Gray, Andrew C; Woehrle, Nancy S

    2016-11-01

    Social impairments in autism remain poorly understood and without approved pharmacotherapies. Novel animals models are needed to elucidate mechanisms and evaluate novel treatments for the social deficits in autism. Recently, serotonin 1B receptor (5-HT1B) agonist challenge in mice was shown to induce autism-like behaviors including perseveration, reduced prepulse inhibition, and delayed alternation deficits. However, the effects of 5-HT1B agonists on autism-related social behaviors in mice remain unknown. Here, we examine the effects of 5-HT1B agonist challenge on sociability and preference for social novelty in mice. We also examine the effects of 5-HT1B agonist treatment on average rearing duration, a putative rodent measure of non-selective attention. Non-selective attention is an associated feature of autism that is also not well understood. We show that 5-HT1B receptor activation reduces sociability, preference for social novelty, and rearing in mice. In addition, we examine the ability of oxytocin, an off-label treatment for the social impairments in autism, to reverse 5-HT1B agonist-induced social and attention deficits in mice. We show that oxytocin restores social novelty preference in mice treated with a 5-HT1B agonist. We also show that oxytocin attenuates 5-HT1B agonist-induced sociability and rearing deficits in mice. Our results suggest that 5-HT1B agonist challenge provides a useful pharmacological mouse model for aspects of autism, and implicate 5-HT1B in autism social and attention deficits. Moreover, our findings suggest that oxytocin may treat the social deficits in autism through a mechanism involving 5-HT1B. PMID:27439030

  10. Living Bones, Strong Bones

    NASA Video Gallery

    In this classroom activity, engineering, nutrition, and physical activity collide when students design and build a healthy bone model of a space explorer which is strong enough to withstand increas...

  11. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  12. Bone Density

    MedlinePlus

    ... bone health. It compares your bone density, or mass, to that of a healthy person who is ... Whether your osteoporosis treatment is working Low bone mass that is not low enough to be osteoporosis ...

  13. Bone scan

    MedlinePlus

    ... scan is an imaging test used to diagnose bone diseases and find out how severe they are. How ... a 3-phase bone scan. To evaluate metastatic bone disease, images are taken only after the 3- to ...

  14. Bone Cancer

    MedlinePlus

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another ... more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 and ...

  15. Bone scan

    MedlinePlus

    A bone scan is an imaging test used to diagnose bone diseases and find out how severe they are. ... A bone scan involves injecting a very small amount of radioactive material (radiotracer) into a vein. The substance travels through ...

  16. Bone Tumor

    MedlinePlus

    ... most common types of primary bone cancer are: • Multiple myeloma. Multiple myeloma is the most common primary bone cancer. It ... Any bone can be affected by this cancer. Multiple myeloma affects approximately six people per 100,000 each ...

  17. Bone Cancer

    MedlinePlus

    Cancer that starts in a bone is uncommon. Cancer that has spread to the bone from another part of the body is more common. There are three types of bone cancer: Osteosarcoma - occurs most often between ages 10 ...

  18. Antinociceptive effects of imidazoline I2 receptor agonists in the formalin test in rats.

    PubMed

    Thorn, David A; Qiu, Yanyan; Jia, Shushan; Zhang, Yanan; Li, Jun-Xu

    2016-06-01

    The imidazoline I2 receptor is an emerging drug target for analgesics. This study extended previous studies by examining the antinociceptive effects of three I2 receptor agonists (2-BFI, BU224, and CR4056) in the formalin test. The receptor mechanisms and anatomical mediation of I2 receptor agonist-induced antinociception were also examined. Formalin-induced flinching responses (2%, 50 μl) were quantified after treatment with I2 receptor agonists alone or in combination with the I2 receptor antagonist idazoxan. Anatomical mediation was studied by locally administering 2-BFI into the plantar surface or into the right lateral ventricle through cannulae (intracerebroventricular). The locomotor activity was also examined after central (intracerebroventricular) administration of 2-BFI. 2-BFI (1-10 mg/kg, intraperitoneal) and BU224 (1-10 mg/kg, intraperitoneal) attenuated the spontaneous flinching response observed during 10 min (phase 1) and 20-60 min (phase 2) following formalin treatment, whereas CR4056 (1-32 mg/kg, intraperitoneal) decreased only phase 2 flinching response. The I2 receptor antagonist idazoxan attenuated the antinociceptive effects of 2-BFI and BU224 during phase 1, but not phase 2. Peripheral administration of 2-BFI (1-10 mg/kg, intraplantar) to the hind paw of rats had no antinociceptive effect. In contrast, centrally delivered 2-BFI (10-100 µg, intracerebroventricular) dose-dependently attenuated phase 1 and phase 2 flinching at doses that did not reduce the locomotor activity. Together, these data revealed the differential antinociceptive effects of I2 receptor agonists and the differential antagonism profiles by idazoxan, suggesting the involvement of different I2 receptor subtypes in reducing different phases of formalin-induced pain-like behaviors. In addition, the results also suggest the central mediation of I2 receptor agonist-induced antinociceptive actions. PMID:26599907

  19. Anti-Inflammatory Effects of β2-Receptor Agonists Salbutamol and Terbutaline Are Mediated by MKP-1.

    PubMed

    Keränen, Tiina; Hömmö, Tuija; Hämäläinen, Mari; Moilanen, Eeva; Korhonen, Riku

    2016-01-01

    Mitogen-activated protein kinase phosphatase 1 (MKP-1) expression is induced by inflammatory factors, and it is an endogenous suppressor of inflammatory response. MKP-1 expression is increased by PDE4 inhibitor rolipram suggesting that it is regulated by cAMP-enhancing compounds. Therefore, we investigated the effect of β2-receptor agonists on MKP-1 expression and inflammatory response. We found that β2-receptor agonists salbutamol and terbutaline, as well as 8-Br-cAMP, increased MKP-1 expression. Salbutamol and terbutaline also inhibited p38 MAPK phosphorylation and TNF production in J774 mouse macrophages. Interestingly, salbutamol suppressed carrageenan-induced paw inflammation in wild-type mice, but the effect was attenuated in MKP-1(-/-) mice. In conclusion, these data show that β2-receptor agonists increase MKP-1 expression, which seems to mediate, at least partly, the observed anti-inflammatory effects of β2-receptor agonists. PMID:26849227

  20. Anti-Inflammatory Effects of β2-Receptor Agonists Salbutamol and Terbutaline Are Mediated by MKP-1

    PubMed Central

    Keränen, Tiina; Hömmö, Tuija; Hämäläinen, Mari; Moilanen, Eeva; Korhonen, Riku

    2016-01-01

    Mitogen-activated protein kinase phosphatase 1 (MKP-1) expression is induced by inflammatory factors, and it is an endogenous suppressor of inflammatory response. MKP-1 expression is increased by PDE4 inhibitor rolipram suggesting that it is regulated by cAMP-enhancing compounds. Therefore, we investigated the effect of β2-receptor agonists on MKP-1 expression and inflammatory response. We found that β2-receptor agonists salbutamol and terbutaline, as well as 8-Br-cAMP, increased MKP-1 expression. Salbutamol and terbutaline also inhibited p38 MAPK phosphorylation and TNF production in J774 mouse macrophages. Interestingly, salbutamol suppressed carrageenan-induced paw inflammation in wild-type mice, but the effect was attenuated in MKP-1(-/-) mice. In conclusion, these data show that β2-receptor agonists increase MKP-1 expression, which seems to mediate, at least partly, the observed anti-inflammatory effects of β2-receptor agonists. PMID:26849227

  1. Ultrasonic Evaluation of Deeply Located Trabecular Bones - Preliminary Results

    NASA Astrophysics Data System (ADS)

    Cieślik, Lucyna; Litniewski, Jerzy

    The analysis of ultrasonic signals scattered by soft tissues have been successfully applied for their characterization. Similarly, the trabecular bone backscattered signal contains information about the properties of the bone structure. Therefore scattering-based ultrasonic technique potentially enables the assessment of microstructure characteristics of a bone. The femoral neck fracture often occurs in the course of osteoporosis and can lead to severe complications. Therefore assessment of femoral bone microstructure and condition is important and essential for the diagnosis and treatment monitoring. As far most of the trabecular bone investigations have been performed in vitro. The only in vivo measurements were carried out in transmission and mostly concerned estimation of the attenuation in heel bone. We have built the ultrasonic scanner that could be useful in acquiring the RF (Radio Frequency) echoes backscattered by the trabecular bone in vivo. Moreover, the bone scanner provides data not only from heel bone but from deeply located bones as well (e.g. femoral bone). It can be also used for easily accessible bones like heel bone or breastbone. In this case a gel-pad is applied to assure focusing of ultrasound in trabecular bone (approximately 10 mm beneath the cortical bone). This study presents preliminary results of the attenuating properties evaluation of trabecular bone from the ultrasonic echoes backscattered by heel bone and femoral neck.

  2. Pressure surge attenuator

    DOEpatents

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  3. Bone Cell-autonomous Contribution of Type 2 Cannabinoid Receptor to Breast Cancer-induced Osteolysis*

    PubMed Central

    Sophocleous, Antonia; Marino, Silvia; Logan, John G.; Mollat, Patrick; Ralston, Stuart H.; Idris, Aymen I.

    2015-01-01

    The cannabinoid type 2 receptor (CB2) has previously been implicated as a regulator of tumor growth, bone remodeling, and bone pain. However, very little is known about the role of the skeletal CB2 receptor in the regulation of osteoblasts and osteoclasts changes associated with breast cancer. Here we found that the CB2-selective agonists HU308 and JWH133 reduced the viability of a variety of parental and bone-tropic human and mouse breast cancer cells at high micromolar concentrations. Under conditions in which these ligands are used at the nanomolar range, HU308 and JWH133 enhanced human and mouse breast cancer cell-induced osteoclastogenesis and exacerbated osteolysis, and these effects were attenuated in cultures obtained from CB2-deficient mice or in the presence of a CB2 receptor blocker. HU308 and JWH133 had no effects on osteoblast growth or differentiation in the presence of conditioned medium from breast cancer cells, but under these circumstances both agents enhanced parathyroid hormone-induced osteoblast differentiation and the ability to support osteoclast formation. Mechanistic studies in osteoclast precursors and osteoblasts showed that JWH133 and HU308 induced PI3K/AKT activity in a CB2-dependent manner, and these effects were enhanced in the presence of osteolytic and osteoblastic factors such as RANKL (receptor activator of NFκB ligand) and parathyroid hormone. When combined with published work, these findings suggest that breast cancer and bone cells exhibit differential responses to treatment with CB2 ligands depending upon cell type and concentration used. We, therefore, conclude that both CB2-selective activation and antagonism have potential efficacy in cancer-associated bone disease, but further studies are warranted and ongoing. PMID:26195631

  4. Bone Cell-autonomous Contribution of Type 2 Cannabinoid Receptor to Breast Cancer-induced Osteolysis.

    PubMed

    Sophocleous, Antonia; Marino, Silvia; Logan, John G; Mollat, Patrick; Ralston, Stuart H; Idris, Aymen I

    2015-09-01

    The cannabinoid type 2 receptor (CB2) has previously been implicated as a regulator of tumor growth, bone remodeling, and bone pain. However, very little is known about the role of the skeletal CB2 receptor in the regulation of osteoblasts and osteoclasts changes associated with breast cancer. Here we found that the CB2-selective agonists HU308 and JWH133 reduced the viability of a variety of parental and bone-tropic human and mouse breast cancer cells at high micromolar concentrations. Under conditions in which these ligands are used at the nanomolar range, HU308 and JWH133 enhanced human and mouse breast cancer cell-induced osteoclastogenesis and exacerbated osteolysis, and these effects were attenuated in cultures obtained from CB2-deficient mice or in the presence of a CB2 receptor blocker. HU308 and JWH133 had no effects on osteoblast growth or differentiation in the presence of conditioned medium from breast cancer cells, but under these circumstances both agents enhanced parathyroid hormone-induced osteoblast differentiation and the ability to support osteoclast formation. Mechanistic studies in osteoclast precursors and osteoblasts showed that JWH133 and HU308 induced PI3K/AKT activity in a CB2-dependent manner, and these effects were enhanced in the presence of osteolytic and osteoblastic factors such as RANKL (receptor activator of NFκB ligand) and parathyroid hormone. When combined with published work, these findings suggest that breast cancer and bone cells exhibit differential responses to treatment with CB2 ligands depending upon cell type and concentration used. We, therefore, conclude that both CB2-selective activation and antagonism have potential efficacy in cancer-associated bone disease, but further studies are warranted and ongoing. PMID:26195631

  5. Using Micro-CT Derived Bone Microarchitecture to Analyze Bone Stiffness - A Case Study on Osteoporosis Rat Bone.

    PubMed

    Wu, Yuchin; Adeeb, Samer; Doschak, Michael R

    2015-01-01

    Micro-computed tomography (Micro-CT) images can be used to quantitatively represent bone geometry through a range of computed attenuation-based parameters. Nonetheless, those parameters remain indirect indices of bone microarchitectural strength and require further computational tools to interpret bone structural stiffness and potential for mechanical failure. Finite element analysis (FEA) can be applied to measure trabecular bone stiffness and potentially predict the location of structural failure in preclinical animal models of osteoporosis, although that procedure from image segmentation of Micro-CT derived bone geometry to FEA is often challenging and computationally expensive, resulting in failure of the model to build. Notably, the selection of resolution and threshold for bone segmentation are key steps that greatly affect computational complexity and validity. In the following study, we evaluated an approach whereby Micro-CT derived grayscale attenuation and segmentation data guided the selection of trabecular bone for analysis by FEA. We further correlated those FEA results to both two- and three-dimensional bone microarchitecture from sham and ovariectomized (OVX) rats (n = 10/group). A virtual cylinder of vertebral trabecular bone 40% in length from the caudal side was selected for FEA, because Micro-CT based image analysis indicated the largest differences in microarchitecture between the two groups resided there. Bone stiffness was calculated using FEA and statistically correlated with the three-dimensional values of bone volume/tissue volume, bone mineral density, fractal dimension, trabecular separation, and trabecular bone pattern factor. Our method simplified the process for the assessment of trabecular bone stiffness by FEA from Micro-CT images and highlighted the importance of bone microarchitecture in conferring significantly increased bone quality capable of resisting failure due to increased mechanical loading. PMID:26042089

  6. Using Micro-CT Derived Bone Microarchitecture to Analyze Bone Stiffness – A Case Study on Osteoporosis Rat Bone

    PubMed Central

    Wu, Yuchin; Adeeb, Samer; Doschak, Michael R.

    2015-01-01

    Micro-computed tomography (Micro-CT) images can be used to quantitatively represent bone geometry through a range of computed attenuation-based parameters. Nonetheless, those parameters remain indirect indices of bone microarchitectural strength and require further computational tools to interpret bone structural stiffness and potential for mechanical failure. Finite element analysis (FEA) can be applied to measure trabecular bone stiffness and potentially predict the location of structural failure in preclinical animal models of osteoporosis, although that procedure from image segmentation of Micro-CT derived bone geometry to FEA is often challenging and computationally expensive, resulting in failure of the model to build. Notably, the selection of resolution and threshold for bone segmentation are key steps that greatly affect computational complexity and validity. In the following study, we evaluated an approach whereby Micro-CT derived grayscale attenuation and segmentation data guided the selection of trabecular bone for analysis by FEA. We further correlated those FEA results to both two- and three-dimensional bone microarchitecture from sham and ovariectomized (OVX) rats (n = 10/group). A virtual cylinder of vertebral trabecular bone 40% in length from the caudal side was selected for FEA, because Micro-CT based image analysis indicated the largest differences in microarchitecture between the two groups resided there. Bone stiffness was calculated using FEA and statistically correlated with the three-dimensional values of bone volume/tissue volume, bone mineral density, fractal dimension, trabecular separation, and trabecular bone pattern factor. Our method simplified the process for the assessment of trabecular bone stiffness by FEA from Micro-CT images and highlighted the importance of bone microarchitecture in conferring significantly increased bone quality capable of resisting failure due to increased mechanical loading. PMID:26042089

  7. Beta-agonists and animal welfare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  8. Short bones

    MedlinePlus

    Short bones in the human body are often cube-like, their length, width, and height are all about the same. Short bones include the carpal bones of the hands and wrist, and the tarsal bones of the feet and ankles.

  9. Bone scanning.

    PubMed

    Greenfield, L D; Bennett, L R

    1975-03-01

    Scanning is based on the uptake of a nuclide by the crystal lattice of bone and is related to bone blood flow. Cancer cells do not take up the tracer. Normally, the scan visualizes the highly vascular bones. Scans are useful and are indicated in metastatic bone disease, primary bone tumors, hematologic malignancies and some non-neoplastic diseases. The scan is more sensitive than x-ray in the detection of malignant diseases of the skeleton. PMID:1054210

  10. β2-agonist therapy in lung disease.

    PubMed

    Cazzola, Mario; Page, Clive P; Rogliani, Paola; Matera, M Gabriella

    2013-04-01

    β2-Agonists are effective bronchodilators due primarily to their ability to relax airway smooth muscle (ASM). They exert their effects via their binding to the active site of β2-adrenoceptors on ASM, which triggers a signaling cascade that results in a number of events, all of which contribute to relaxation of ASM. There are some differences between β2-agonists. Traditional inhaled short-acting β2-agonists albuterol, fenoterol, and terbutaline provide rapid as-needed symptom relief and short-term prophylactic protection against bronchoconstriction induced by exercise or other stimuli. The twice-daily β2-agonists formoterol and salmeterol represent important advances. Their effective bronchodilating properties and long-term improvement in lung function offer considerable clinical benefits to patients. More recently, a newer β2-agonist (indacaterol) with a longer pharmacodynamic half-life has been discovered, with the hopes of achieving once-daily dosing. In general, β2-agonists have an acceptable safety profile, although there is still controversy as to whether long-acting β2-agonists may increase the risk of asthma mortality. In any case, they can induce adverse effects, such as increased heart rate, palpitations, transient decrease in PaO2, and tremor. Desensitization of β2-adrenoceptors that occurs during the first few days of regular use of β2-agonist treatment may account for the commonly observed resolution of the majority of these adverse events after the first few doses. Nevertheless, it can also induce tolerance to bronchoprotective effects of β2-agonists and has the potential to reduce bronchodilator sensitivity to them. Some novel once-daily β2-agonists (olodaterol, vilanterol, abediterol) are under development, mainly in combination with an inhaled corticosteroid or a long-acting antimuscarinic agent. PMID:23348973

  11. Tracer attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  12. Selective VIP Receptor Agonists Facilitate Immune Transformation for Dopaminergic Neuroprotection in MPTP-Intoxicated Mice

    PubMed Central

    Olson, Katherine E.; Kosloski-Bilek, Lisa M.; Anderson, Kristi M.; Diggs, Breha J.; Clark, Barbara E.; Gledhill, John M.; Shandler, Scott J.; Mosley, R. Lee

    2015-01-01

    Vasoactive intestinal peptide (VIP) mediates a broad range of biological responses by activating two related receptors, VIP receptor 1 and 2 (VIPR1 and VIPR2). Although the use of native VIP facilitates neuroprotection, clinical application of the hormone is limited due to VIP's rapid metabolism and inability to distinguish between VIPR1 and VIPR2 receptors. In addition, activation of both receptors by therapeutics may increase adverse secondary toxicities. Therefore, we developed metabolically stable and receptor-selective agonists for VIPR1 and VIPR2 to improve pharmacokinetic and pharmacodynamic therapeutic end points. Selective agonists were investigated for their abilities to protect mice against MPTP-induced neurodegeneration used to model Parkinson's disease (PD). Survival of tyrosine hydroxylase neurons in the substantia nigra was determined by stereological tests after MPTP intoxication in mice pretreated with either VIPR1 or VIPR2 agonist or after adoptive transfer of splenic cell populations from agonist-treated mice administered to MPTP-intoxicated animals. Treatment with VIPR2 agonist or splenocytes from agonist-treated mice resulted in increased neuronal sparing. Immunohistochemical tests showed that agonist-treated mice displayed reductions in microglial responses, with the most pronounced effects in VIPR2 agonist-treated, MPTP-intoxicated mice. In parallel studies, we observed reductions in proinflammatory cytokine release that included IL-17A, IL-6, and IFN-γ and increases in GM-CSF transcripts in CD4+ T cells recovered from VIPR2 agonist-treated animals. Moreover, a phenotypic shift of effector to regulatory T cells was observed. These results support the use of VIPR2-selective agonists as neuroprotective agents for PD treatment. SIGNIFICANCE STATEMENT Vasoactive intestinal peptide receptor 2 can elicit immune transformation in a model of Parkinson's disease (PD). Such immunomodulatory capabilities can lead to neuroprotection by attenuating

  13. Pharmacological characterization and therapeutic potential for the treatment of opioid abuse with ATPM-ET, an N-ethyl substituted aminothiazolomorphinan with κ agonist and μ agonist/antagonist activity.

    PubMed

    Sun, Jian-Feng; Wang, Yu-Hua; Chai, Jing-Rui; Li, Fu-Ying; Hang, Ai; Lu, Gang; Tao, Yi-Min; Cheng, Yun; Chi, Zhi-Qiang; Neumeyer, John L; Zhang, Ao; Liu, Jing-Gen; Wang, Yu-Jun

    2014-10-01

    We previously reported that the κ agonists with mixed μ activity could attenuate heroin self-administration with less potential to develop tolerance. The present study further investigated the effects of (-)-3-N-Ethylamino-thiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride (ATPM-ET), a κ agonist and μ agonist/antagonist, on the acquisition and reinstatement of morphine-induced conditioned place preference (CPP), heroin self-administration and heroin-primed reinstatement of drug-seeking behavior. We found that ATPM-ET produced a longer duration of potent antinociceptive effects with less side effect of sedation. More importantly, ATPM-ET attenuated the acquisition of morphine-induced CPP, without affecting the reinstatement of morphine CPP. Furthermore, ATPM-ET significantly inhibited heroin self-administration and the reinstatement of heroin primed drug-seeking behavior. Taken together, ATPM-ET, a novel κ agonist and μ agonist/antagonist may have utility for the treatment of drug dependence. PMID:24998879

  14. Neuropeptide FF receptors as novel targets for limbic seizure attenuation.

    PubMed

    Portelli, Jeanelle; Meurs, Alfred; Bihel, Frederic; Hammoud, Hassan; Schmitt, Martine; De Kock, Joery; Utard, Valerie; Humbert, Jean-Paul; Bertin, Isabelle; Buffel, Ine; Coppens, Jessica; Tourwe, Dirk; Maes, Veronique; De Prins, An; Vanhaecke, Tamara; Massie, Ann; Balasubramaniam, Ambikaipakan; Boon, Paul; Bourguignon, Jean-Jacques; Simonin, Frederic; Smolders, Ilse

    2015-08-01

    Neuropeptide Y (NPY) is a well established anticonvulsant and first-in-class antiepileptic neuropeptide. In this study, the controversial role of NPY1 receptors in epilepsy was reassessed by testing two highly selective NPY1 receptor ligands and a mixed NPY1/NPFF receptor antagonist BIBP3226 in a rat model for limbic seizures. While BIBP3226 significantly attenuated the pilocarpine-induced seizures, neither of the highly selective NPY1 receptor ligands altered the seizure severity. Administration of the NPFF1/NPFF2 receptor antagonist RF9 also significantly attenuated limbic seizure activity. To further prove the involvement of NPFF receptors in these seizure-modulating effects, low and high affinity antagonists for the NPFF receptors were tested. We observed that the low affinity ligand failed to exhibit anticonvulsant properties while the two high affinity ligands significantly attenuated the seizures. Continuous NPFF1 receptor agonist administration also inhibited limbic seizures whereas bolus administration of the NPFF1 receptor agonist was without effect. This suggests that continuous agonist perfusion could result in NPFF1 receptor desensitization and mimic NPFF1 receptor antagonist administration. Our data unveil for the first time the involvement of the NPFF system in the management of limbic seizures. PMID:25963417

  15. Transforming growth factor-β1 and cigarette smoke inhibit the ability of β2-agonists to enhance epithelial permeability.

    PubMed

    Unwalla, Hoshang J; Ivonnet, Pedro; Dennis, John S; Conner, Gregory E; Salathe, Matthias

    2015-01-01

    Chronic bronchitis, caused by cigarette smoke exposure, is characterized by mucus hypersecretion and reduced mucociliary clearance (MCC). Effective MCC depends, in part, on adequate airway surface liquid. Cystic fibrosis transmembrane conductance regulator (CFTR) provides the necessary osmotic gradient for serosal to mucosal fluid transport through its ability to both secrete Cl(-) and regulate paracellular permeability, but CFTR activity is attenuated in chronic bronchitis and in smokers. β2-adrenergic receptor (β2-AR) agonists are widely used for managing chronic obstructive pulmonary disease, and can activate CFTR, stimulate ciliary beat frequency, and increase epithelial permeability, thereby stimulating MCC. Patients with chronic airway diseases and cigarette smokers demonstrate increased transforming growth factor (TGF)-β1 signaling, which suppresses β2-agonist-mediated CFTR activation and epithelial permeability increases. Restoring CFTR function in these diseases can restore the ability of β2-agonists to enhance epithelial permeability. Human bronchial epithelial cells, fully redifferentiated at the air-liquid interface, were used for (14)C mannitol flux measurements, Ussing chamber experiments, and quantitative RT-PCR. β2-agonists enhance epithelial permeability by activating CFTR via the β2-AR/adenylyl cyclase/cAMP/protein kinase A pathway. TGF-β1 inhibits β2-agonist-mediated CFTR activation and epithelial permeability enhancement. Although TGF-β1 down-regulates both β2-AR and CFTR mRNA, functionally it only decreases CFTR activity. Cigarette smoke exposure inhibits β2-agonist-mediated epithelial permeability increases, an effect reversed by blocking TGF-β signaling. β2-agonists enhance epithelial permeability via CFTR activation. TGF-β1 signaling inhibits β2-agonist-mediated CFTR activation and subsequent increased epithelial permeability, potentially limiting the ability of β2-agonists to facilitate paracellular transport in disease

  16. Opiate receptor agonists regulate phosphorylation of synapsin I in cocultures of rat spinal cord and dorsal root ganglion.

    PubMed Central

    Nah, S Y; Saya, D; Barg, J; Vogel, Z

    1993-01-01

    Kappa opiate receptor agonists applied to cocultures of spinal cord and dorsal root ganglion neurons have been previously shown to inhibit voltage-dependent Ca2+ influx and adenylate cyclase activity. Here we describe the effect of kappa opiate receptor agonists on phosphorylation of synapsin I, a synaptic-vesicle-associated protein whose phosphorylation was shown to be regulated by cAMP and Ca2+ concentrations. Depolarization of spinal cord-dorsal root ganglion cocultured cells (by high K+ or veratridine) and the addition of forskolin (which activates adenylate cyclase) led to increased phosphorylation of synapsin I. Addition of kappa opiate agonists attenuated both the depolarization- and the forskolin-induced phosphorylation of synapsin I. This attenuation was blocked by the opiate antagonist naloxone. mu and delta opiate receptor agonists had much weaker effects on the depolarization-induced phosphorylation of synapsin I. Similarly, kappa opiate agonists decreased (by 40-60%) the high-K+- or veratridine-induced phosphorylation of synapsin I in spinal cord synaptosomes. These results show that opiate ligands modulate synapsin I phosphorylation. Moreover, the data could explain the reduction in synaptic efficacy observed after opiate treatment. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 7 PMID:8097883

  17. Low Bone Density

    MedlinePlus

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  18. Infusion of D1 Dopamine Receptor Agonist into Medial Frontal Cortex Disrupts Neural Correlates of Interval Timing

    PubMed Central

    Parker, Krystal L.; Ruggiero, Rafael N.; Narayanan, Nandakumar S.

    2015-01-01

    Medial frontal cortical (MFC) dopamine is essential for the organization of behavior in time. Our prior work indicates that blocking D1 dopamine receptors (D1DR) attenuates temporal processing and low-frequency oscillations by MFC neuronal networks. Here we investigate the effects of focal infusion of the D1DR agonist SKF82958 into MFC during interval timing. MFC D1DR agonist infusion impaired interval timing performance without changing overall firing rates of MFC neurons. MFC ramping patterns of neuronal activity that reflect temporal processing were attenuated following infusion of MFC D1DR agonist. MFC D1DR agonist infusion also altered MFC field potentials by enhancing delta activity between 1 and 4 Hz and attenuating alpha activity between 8 and 15 Hz. These data support the idea that the influence of D1-dopamine signals on frontal neuronal activity adheres to a U-shaped curve, and that cognition requires optimal levels of dopamine in frontal cortex. PMID:26617499

  19. Soy Isoflavones for Reducing Bone Loss (SIRBL) Study: Randomized Three Year Intervention in Postmenopausal Women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research has indicated that soy protein with isoflavones may attenuate bone loss in postmenopausal women. We hypothesized that soy isoflavones would decrease bone loss in healthy postmenopausal women (45.8-65.0 years) by maintaining bone mineral density (BMD), and this bone-sparing effect would be g...

  20. Both the antioxidant and D3 agonist actions of pramipexole mediate its neuroprotective actions in mesencephalic cultures.

    PubMed

    Ling, Z D; Robie, H C; Tong, C W; Carvey, P M

    1999-04-01

    Pramipexole (PPX) is a full intrinsic activity, direct-acting dopamine (DA) agonist possessing 7-fold higher affinity for D3 than for D2 receptors. It also is a potent antioxidant. PPX was previously shown to be neuroprotective because it dose dependently attenuated the DA neuron loss produced by levodopa in mesencephalic cultures. Several different drugs with properties similar to PPX were studied here to better understand the mechanism or mechanisms responsible for this neuroprotective effect. The D3-preferring agonist 7-hydroxy-diphenylaminotetralin (7-OH-DPAT) and the D3 antagonist U99194, respectively, increased and decreased the neuroprotective effects of PPX in a dose-dependent fashion. Addition of the selective D2 agonist U95666 or the D2/D3 antagonists domperidone or raclopride did not affect PPX's neuroprotective effect. Interestingly, 7-OH-DPAT by itself did not attenuate the DA neuron loss produced by levodopa. However, when 7-OH-DPAT was combined with a low dose of the antioxidants U101033E or alpha-tocopherol, the toxic effects of levodopa were attenuated. Similar results were observed when the D3-preferring agonist PD128, 907 was studied. In addition, media conditioned by exposure of mesencephalic cultures incubated with all D3-preferring agonists studied was shown to enhance the growth of DA neurons in freshly harvested recipient cultures implicating a D3-mediated trophic activity in the neuroprotective effect. These data suggest that PPX's neuroprotective actions in the levodopa toxicity model are a consequence of its combined actions as a D3 receptor agonist and an antioxidant. PMID:10087005

  1. Aspirin metabolites are GPR35 agonists.

    PubMed

    Deng, Huayun; Fang, Ye

    2012-07-01

    Aspirin is widely used as an anti-inflammatory, anti-platelet, anti-pyretic, and cancer-preventive agent; however, the molecular mode of action is unlikely due entirely to the inhibition of cyclooxygenases. Here, we report the agonist activity of several aspirin metabolites at GPR35, a poorly characterized orphan G protein-coupled receptor. 2,3,5-Trihydroxybenzoic acid, an aspirin catabolite, was found to be the most potent GPR35 agonist among aspirin metabolites. Salicyluric acid, the main metabolite of aspirin, was also active. These results suggest that the GPR35 agonist activity of certain aspirin metabolites may contribute to the clinical features of aspirin. PMID:22526472

  2. Self-medication of a cannabinoid CB2 agonist in an animal model of neuropathic pain.

    PubMed

    Gutierrez, Tannia; Crystal, Jonathon D; Zvonok, Alexander M; Makriyannis, Alexandros; Hohmann, Andrea G

    2011-09-01

    Drug self-administration methods were used to test the hypothesis that rats would self-medicate with a cannabinoid CB(2) agonist to attenuate a neuropathic pain state. Self-medication of the CB(2) agonist (R,S)-AM1241, but not vehicle, attenuated mechanical hypersensitivity produced by spared nerve injury. Switching rats from (R,S)-AM1241 to vehicle self-administration also decreased lever responding in an extinction paradigm. (R,S)-AM1241 self-administration did not alter paw withdrawal thresholds in sham-operated or naive animals. The percentage of active lever responding was similar in naive groups self-administering vehicle or (R,S)-AM1241. The CB(2) antagonist SR144528 blocked both antiallodynic effects of (R,S)-AM1241 self-medication and the percentage of active lever responding in neuropathic (but not naive) rats. Neuropathic and sham groups exhibited similar percentages of active lever responding for (R,S)-AM1241 on a fixed ratio 1 (FR1) schedule. However, neuropathic animals worked harder than shams to obtain (R,S)-AM1241 when the schedule of reinforcement was increased (to FR6). (R,S)-AM1241 self-medication on FR1, FR3, or FR6 schedules attenuated nerve injury-induced mechanical allodynia. (R,S)-AM1241 (900μg intravenously) failed to produce motor ataxia observed after administration of the mixed CB(1)/CB(2) agonist WIN55,212-2 (0.5mg/kg intravenously). Our results suggest that cannabinoid CB(2) agonists may be exploited to treat neuropathic pain with limited drug abuse liability and central nervous system side effects. These studies validate the use of drug self-administration methods for identifying nonpsychotropic analgesics possessing limited abuse potential. These methods offer potential to elucidate novel analgesics that suppress spontaneous neuropathic pain that is not measured by traditional assessments of evoked pain. PMID:21550725

  3. Suppression of atherosclerosis by synthetic REV-ERB agonist.

    PubMed

    Sitaula, Sadichha; Billon, Cyrielle; Kamenecka, Theodore M; Solt, Laura A; Burris, Thomas P

    2015-05-01

    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks compared to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. PMID:25800870

  4. Monoterpenoid agonists of TRPV3

    PubMed Central

    Vogt-Eisele, A K; Weber, K; Sherkheli, M A; Vielhaber, G; Panten, J; Gisselmann, G; Hatt, H

    2007-01-01

    Background and purpose: Transient receptor potential (TRP) V3 is a thermosensitive ion channel expressed predominantly in the skin and neural tissues. It is activated by warmth and the monoterpene camphor and has been hypothesized to be involved in skin sensitization. A selection of monoterpenoid compounds was tested for TRPV3 activation to establish a structure-function relationship. The related channel TRPM8 is activated by cool temperatures and a number of chemicals, among them the monoterpene (-)-menthol. The overlap of the receptor pharmacology between the two channels was investigated. Experimental approach: Transfected HEK293 cells were superfused with the test substances. Evoked currents were measured in whole cell patch clamp measurements. Dose-response curves for the most potent agonists were obtained in Xenopus laevis oocytes. Key results: Six monoterpenes significantly more potent than camphor were identified: 6-tert-butyl-m-cresol, carvacrol, dihydrocarveol, thymol, carveol and (+)-borneol. Their EC50 is up to 16 times lower than that of camphor. All of these compounds carry a ring-located hydroxyl group and neither activates TRPM8 to a major extent. Conclusions and implications: Terpenoids have long been recognized as medically and pharmacologically active compounds, although their molecular targets have only partially been identified. TRPV3 activation may be responsible for several of the described effects of terpenoids. We show here that TRPV3 is activated by a number of monoterpenes and that a secondary hydroxyl-group is a structural requirement. PMID:17420775

  5. Bone Markers

    MedlinePlus

    ... Alkaline Phosphatase; Osteocalcin; P1NP; Procollagen Type 1 N-Terminal Propeptide Formal name: Biochemical Markers of Bone Remodeling ... tests for evaluating bone turnover: C-telopeptide (C-terminal telopeptide of type 1 collagen (CTx)) – a marker ...

  6. Bone tumor

    MedlinePlus

    ... physical exam. Tests that may be done include: Alkaline phosphatase blood level Bone biopsy Bone scan Chest x- ... also affect the results of the following tests: Alkaline phosphatase isoenzyme Blood calcium level Parathyroid hormone Blood phosphorus ...

  7. Bone Infections

    MedlinePlus

    ... of the body, bones can get infected. The infections are usually bacterial, but can also be fungal. ... bloodstream. People who are at risk for bone infections include those with diabetes, poor circulation, or recent ...

  8. Variable laser attenuator

    DOEpatents

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  9. Variable laser attenuator

    DOEpatents

    Foltyn, S.R.

    1987-05-29

    The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

  10. Bone Analyzer

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The danger of disuse osteoporosis under weightless condition in space led to extensive research into measurements of bone stiffness and mass by the Biomedical Research Division of Ames and Stanford University. Through its Technology Utilization Program, NASA funded an advanced SOBSA, a microprocessor-controlled bone probe system. SOBSA determines bone stiffness by measuring responses to an electromagnetic shaker. With this information, a physician can identify bone disease, measure deterioration and prescribe necessary therapy. The system is now undergoing further testing.

  11. Bone cement

    PubMed Central

    Vaishya, Raju; Chauhan, Mayank; Vaish, Abhishek

    2013-01-01

    The knowledge about the bone cement is of paramount importance to all Orthopaedic surgeons. Although the bone cement had been the gold standard in the field of joint replacement surgery, its use has somewhat decreased because of the advent of press-fit implants which encourages bone in growth. The shortcomings, side effects and toxicity of the bone cement are being addressed recently. More research is needed and continues in the field of nanoparticle additives, enhanced bone–cement interface etc. PMID:26403875

  12. Piperidine derivatives as nonprostanoid IP receptor agonists.

    PubMed

    Hayashi, Ryoji; Sakagami, Hideki; Koiwa, Masakazu; Ito, Hiroaki; Miyamoto, Mitsuko; Isogaya, Masafumi

    2016-05-01

    The discovery of a new class of nonprostanoid prostaglandin I2 receptor (IP receptor) agonists is reported. Among them, the unique piperidine derivative 31b (2-((1-(2-(N-(4-tolyl)benzamido)ethyl)piperidin-4-yl)oxy)acetic acid) was a good IP receptor agonist and was 50-fold more selective for the human IP receptor than for other human prostanoid receptors. This compound showed good pharmacokinetic properties in dog. PMID:26996371

  13. The peak bone mass concept: is it still relevant?

    PubMed

    Schönau, Eckhard

    2004-08-01

    The peak bone mass concept implies that optimal skeletal development during childhood and adolescence will prevent fractures in late adulthood. This concept is based on the observation that areal bone density increases with growth during childhood, is highest around 20 years of age and declines thereafter. However, it is now clear that strong bones in the youngster do not necessarily lead to a fracture-free old age. In the recent bone densitometric literature, the terms bone mass and bone density are typically used synonymously. In physics, density has been defined as the mass of a body divided by its volume. In clinical practice and science, "bone density" usually has a different meaning-the degree to which a radiation beam is attenuated by a bone, as judged from a two-dimensional projection image (areal bone density). The attenuation of a radiation beam does not only depend on physical density, but also on bone size. A small bone therefore has a lower areal bone density than a larger bone, even if the physical density is the same. Consequently, a low areal bone density value can simply reflect the small size of an otherwise normal bone. At present, bone mass analysis is very useful for epidemiological studies on factors that may have an impact on bone development. There is an ongoing discussion about whether the World Health Organization (WHO) definition of osteoporosis is over-simplistic and requires upgrading to include indices representing the distribution of bone and mineral (bone strength indices). The following suggestions and recommendations outline a new concept: bone mass should not be related to age. There is now more and more evidence that bone mass should be related to bone size or muscle function. Thus analyzed, there is no such entity as a "peak bone mass". Many studies are currently under way to evaluate whether these novel approaches increase sensitivity and specificity of fracture prediction in an individual. Furthermore, the focus of many bone

  14. Differential activation of the μ-opioid receptor by oxycodone and morphine in pain-related brain regions in a bone cancer pain model

    PubMed Central

    Nakamura, Atsushi; Hasegawa, Minoru; Minami, Kazuhisa; Kanbara, Tomoe; Tomii, Takako; Nishiyori, Atsushi; Narita, Minoru; Suzuki, Tsutomu; Kato, Akira

    2013-01-01

    Background and Purpose Bone cancer pain is chronic and often difficult to control with opioids. However, recent studies have shown that several opioids have distinct analgesic profiles in chronic pain. Experimental Approach To clarify the mechanisms underlying these distinct analgesic profiles, functional changes in the μ-opioid receptor were examined using a mouse femur bone cancer (FBC) model. Key Results In the FBC model, the Bmax of [3H]-DAMGO binding was reduced by 15–45% in the periaqueductal grey matter (PAG), region ventral to the PAG (vPAG), mediodorsal thalamus (mTH), ventral thalamus and spinal cord. Oxycodone (10−8–10−5 M) and morphine (10−8–10−5 M) activated [35S]-GTPγS binding, but the activation was significantly attenuated in the PAG, vPAG, mTH and spinal cord in the FBC model. Interestingly, the attenuation of oxycodone-induced [35S]-GTPγS binding was quite limited (9–26%) in comparison with that of morphine (46–65%) in the PAG, vPAG and mTH, but not in the spinal cord. Furthermore, i.c.v. oxycodone at doses of 0.02–1.0 μg per mouse clearly inhibited pain-related behaviours, such as guarding, limb-use abnormalities and allodynia-like behaviour in the FBC model mice, while i.c.v. morphine (0.05–2.0 μg per mouse) had only partial or little analgesic effect on limb-use abnormalities and allodynia-like behaviour. Conclusion and Implications These results show that μ-opioid receptor functions are attenuated in several pain-related regions in bone cancer in an agonist-dependent manner, and suggest that modification of the μ-opioid receptor is responsible for the distinct analgesic effect of oxycodone and morphine. PMID:22889192

  15. Suppression of interleukin-6-induced C-reactive protein expression by FXR agonists

    SciTech Connect

    Zhang Songwen Liu Qiangyuan; Wang Juan; Harnish, Douglas C.

    2009-02-06

    C-reactive protein (CRP), a human acute-phase protein, is a risk factor for future cardiovascular events and exerts direct pro-inflammatory and pro-atherogenic properties. The farnesoid X receptor (FXR), a member of the nuclear hormone receptor superfamily, plays an essential role in the regulation of enterohepatic circulation and lipid homeostasis. In this study, we report that two synthetic FXR agonists, WAY-362450 and GW4064, suppressed interleukin-6-induced CRP expression in human Hep3B hepatoma cells. Knockdown of FXR by short interfering RNA attenuated the inhibitory effect of the FXR agonists and also increased the ability of interleukin-6 to induce CRP production. Furthermore, treatment of wild type C57BL/6 mice with the FXR agonist, WAY-362450, attenuated lipopolysaccharide-induced serum amyloid P component and serum amyloid A3 mRNA levels in the liver, whereas no effect was observed in FXR knockout mice. These data provide new evidence for direct anti-inflammatory properties of FXR.

  16. β2 Agonists enhance the efficacy of simultaneous enzyme replacement therapy in murine Pompe disease.

    PubMed

    Koeberl, Dwight D; Li, Songtao; Dai, Jian; Thurberg, Beth L; Bali, Deeksha; Kishnani, Priya S

    2012-02-01

    Enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) has improved clinical outcomes in patients with Pompe disease; however, the response of skeletal muscle and the central nervous system to ERT has been attenuated. The poor response of skeletal muscle to ERT has been attributed to the low abundance of the cation-independent mannose-6-phosphate receptor (CI-MPR), which mediates receptor-mediated uptake of rhGAA. Hence the ability of adjunctive therapy with β2-agonists to increase CI-MPR expression in skeletal muscle was evaluated during ERT in murine Pompe disease with regard to reversal of neuromuscular involvement. Mice with Pompe disease were treated with weekly rhGAA injections (20 mg/kg) and a selective β2-agonist, either albuterol (30 mg/l in drinking water) or low-dose clenbuterol (6 mg/l in drinking water). Biochemical correction was enhanced by β2-agonist treatment in both muscle and the cerebellum, indicating that adjunctive therapy could enhance efficacy from ERT in Pompe disease with regard to neuromuscular involvement. Intriguingly, clenbuterol slightly reduced muscle glycogen content independent of CI-MPR expression, as demonstrated in CI-MPR knockout/GAA knockout mice that were otherwise resistant to ERT. Thus, adjunctive therapy with β2 agonists might improve the efficacy of ERT in Pompe disease and possibly other lysosomal storage disorders through enhancing receptor-mediated uptake of recombinant lysosomal enzymes. PMID:22154081

  17. β2 Agonists Enhance the Efficacy of Simultaneous Enzyme Replacement Therapy in Murine Pompe Disease

    PubMed Central

    Koeberl, Dwight D.; Li, Songtao; Dai, Jian; Thurberg, Beth L.; Bali, Deeksha; Kishnani, Priya S.

    2011-01-01

    Enzyme replacement therapy (ERT) with recombinant human acid α-glucosidase (rhGAA) has improved clinical outcomes in patients with Pompe disease; however, the response of skeletal muscle and the central nervous system to ERT has been attenuated. The poor response of skeletal muscle to ERT has been attributed to the low abundance of the cation-independent mannose-6-phosphate receptor (CI-MPR), which mediates receptor-mediated uptake of rhGAA. Hence the ability of adjunctive therapy with β2-agonists to increase CI-MPR expression in skeletal muscle was evaluated during ERT in murine Pompe disease with regard to reversal of neuromuscular involvement. Mice with Pompe disease were treated with weekly rhGAA injections (20 mg/kg) and a selective β2-agonist, either albuterol (30 mg/l in drinking water) or low-dose clenbuterol (6 mg/l in drinking water). Biochemical correction was enhanced by β2-agonist treatment in both muscle and the cerebellum, indicating that adjunctive therapy could enhance efficacy from ERT in Pompe disease with regard to neuromuscular involvement. Intriguingly, clenbuterol slightly reduced muscle glycogen content independent of CI-MPR expression, as demonstrated in CI-MPR knockout/GAA knockout mice that were otherwise resistant to ERT. Thus, adjunctive therapy with β2 agonists might improve the efficacy of ERT in Pompe disease and possibly other lysosomal storage disorders through enhancing receptor-mediated uptake of recombinant lysosomal enzymes. PMID:22154081

  18. Modulation of agonist binding to human dopamine receptor subtypes by L-prolyl-L-leucyl-glycinamide and a peptidomimetic analog.

    PubMed

    Verma, Vaneeta; Mann, Amandeep; Costain, Willard; Pontoriero, Giuseppe; Castellano, Jessica M; Skoblenick, Kevin; Gupta, Suresh K; Pristupa, Zdenek; Niznik, Hyman B; Johnson, Rodney L; Nair, Venugopalan D; Mishra, Ram K

    2005-12-01

    The present study was undertaken to investigate the role of the hypothalamic tripeptide L-prolyl-L-leucyl-glycinamide (PLG) and its conformationally constrained analog 3(R)-[(2(S)-pyrrolidinylcarbonyl)amino]-2-oxo-1-pyrrolidineacetamide (PAOPA) in modulating agonist binding to human dopamine (DA) receptor subtypes using human neuroblastoma SH-SY5Y cells stably transfected with respective cDNAs. Both PLG and PAOPA enhanced agonist [3H]N-propylnorapomorphine (NPA) and [3H]quinpirole binding in a dose-dependent manner to the DA D2L,D2S, and D4 receptors. However, agonist binding to the D1 and D3 receptors and antagonist binding to the D2L receptors by PLG were not significantly affected. Scatchard analysis of [3H]NPA binding to membranes in the presence of PLG revealed a significant increase in affinity of the agonist binding sites for the D2L, D2S, and D4 receptors. Analysis of agonist/antagonist competition curves revealed that PLG and PAOPA increased the population and affinity of the high-affinity form of the D2L receptor and attenuated guanosine 5'-(beta,gamma-imido)-triphosphate-induced inhibition of high-affinity agonist binding sites for the DA D2L receptor. Furthermore, direct NPA binding with D2L cell membranes pretreated with suramin, a compound that can uncouple receptor/G protein complexes, and incubated with and without DA showed that both PLG and PAOPA had only increased agonist binding in membranes pretreated with both suramin and DA, suggesting that PLG requires the D2L receptor/G protein complex to increase agonist binding. These results suggest that PLG possibly modulates DA D2S, D2L, and D4 receptors in an allosteric manner and that the coupling of D2 receptors to the G protein is essential for this modulation to occur. PMID:16126839

  19. Protein intake and bone health.

    PubMed

    Bonjour, Jean-Philippe

    2011-03-01

    Adequate nutrition plays an important role in the development and maintenance of bone structures resistant to usual mechanical stresses. In addition to calcium in the presence of an adequate supply of vitamin D, dietary proteins represent key nutrients for bone health and thereby function in the prevention of osteoporosis. Several studies point to a positive effect of high protein intake on bone mineral density or content. This fact is associated with a significant reduction in hip fracture incidence, as recorded in a large prospective study carried out in a homogeneous cohort of postmenopausal women. Low protein intake (< 0.8 g/kg body weight/day) is often observed in patients with hip fractures and an intervention study indicates that following orthopedic management, protein supplementation attenuates post-fracture bone loss, tends to increase muscle strength, and reduces medical complications and rehabilitation hospital stay. There is no evidence that high protein intake per se would be detrimental for bone mass and strength. Nevertheless, it appears reasonable to avoid very high protein diets (i. e. more than 2.0 g/kg body weight/day) when associated with low calcium intake (i. e. less than 600 mg/day). In the elderly, taking into account the attenuated anabolic response to dietary protein with ageing, there is concern that the current dietary protein recommended allowance (RDA), as set at 0.8 g/kg body weight/day, might be too low for the primary and secondary prevention of fragility fractures. PMID:22139564

  20. Compensation for non-uniform attenuation in SPECT brain imaging

    SciTech Connect

    Glick, S.J.; King, M.A.; Pan, T.S.

    1994-05-01

    Photon attenuation is a major limitation in performing quantitative SPECT brain imaging. A number of methods have been proposed for compensation of attenuation in regions of the body that can be modelled as a uniform attenuator. The magnitude of the errors introduced into reconstructed brain images by assuming the head to be a uniform attenuator are uncertain (the skull, sinus cavities and head holder all have different attenuation properties than brain tissue). Brain imaging is unique in that the radioisotope, for the most part, is taken up within a uniform attenuation medium (i.e., brain tissue) which is surrounded by bone (i.e., the skull) of a different density. Using this observation, Bellini`s method for attenuation compensation (which is an exact solution to the exponential Radon transform) has been modified to account for the different attenuation properties of the skull. To test this modified Bellini method, a simple mathematical phantom was designed to model the brain and a skull of varying thickness less than 7.5 mm. To model brain imaging with Tc-99m HMPAO, the attenuation coefficient of the brain tissue and skull were set to 0.15 cm{sup -1} and 0.22 cm{sup -1} respectively. A ray-driven projector which accounted for non-uniform attenuation was used to simulate projection data from 128 views. The detector response and scatter were not simulated. It was observed that reconstructions processed with uniform attenuation compensation (i.e., where it was assumed that the brain tissue and the skull had the same attenuation coefficient) provided errors of 6-20%, whereas those processed with the non-uniform Bellini algorithm were biased by only 0-5%.

  1. Menthol attenuates respiratory irritation responses to multiple cigarette smoke irritants

    PubMed Central

    Willis, Daniel N.; Liu, Boyi; Ha, Michael A.; Jordt, Sven-Eric; Morris, John B.

    2011-01-01

    Menthol, the cooling agent in peppermint, is added to almost all commercially available cigarettes. Menthol stimulates olfactory sensations, and interacts with transient receptor potential melastatin 8 (TRPM8) ion channels in cold-sensitive sensory neurons, and transient receptor potential ankyrin 1 (TRPA1), an irritant-sensing channel. It is highly controversial whether menthol in cigarette smoke exerts pharmacological actions affecting smoking behavior. Using plethysmography, we investigated the effects of menthol on the respiratory sensory irritation response in mice elicited by smoke irritants (acrolein, acetic acid, and cyclohexanone). Menthol, at a concentration (16 ppm) lower than in smoke of mentholated cigarettes, immediately abolished the irritation response to acrolein, an agonist of TRPA1, as did eucalyptol (460 ppm), another TRPM8 agonist. Menthol's effects were reversed by a TRPM8 antagonist, AMTB. Menthol's effects were not specific to acrolein, as menthol also attenuated irritation responses to acetic acid, and cyclohexanone, an agonist of the capsaicin receptor, TRPV1. Menthol was efficiently absorbed in the respiratory tract, reaching local concentrations sufficient for activation of sensory TRP channels. These experiments demonstrate that menthol and eucalyptol, through activation of TRPM8, act as potent counterirritants against a broad spectrum of smoke constituents. Through suppression of respiratory irritation, menthol may facilitate smoke inhalation and promote nicotine addiction and smoking-related morbidities.— Willis, D. N., Liu, B., Ha, M. A., Jordt, S.-E., Morris, J. B. Menthol attenuates respiratory irritation responses to multiple cigarette smoke irritants. PMID:21903934

  2. New Insights into the PPAR γ Agonists for the Treatment of Diabetic Nephropathy.

    PubMed

    Jia, Zhanjun; Sun, Ying; Yang, Guangrui; Zhang, Aihua; Huang, Songming; Heiney, Kristina Marie; Zhang, Yue

    2014-01-01

    Diabetic nephropathy (DN) is a severe complication of diabetes and serves as the leading cause of chronic renal failure. In the past decades, angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin II receptor blockers (ARBs) based first-line therapy can slow but cannot stop the progression of DN, which urgently requests the innovation of therapeutic strategies. Thiazolidinediones (TZDs), the synthetic exogenous ligands of nuclear receptor peroxisome proliferator-activated receptor- γ (PPAR γ ), had been thought to be a promising candidate for strengthening the therapy of DN. However, the severe adverse effects including fluid retention, cardiovascular complications, and bone loss greatly limited their use in clinic. Recently, numerous novel PPAR γ agonists involving the endogenous PPAR γ ligands and selective PPAR γ modulators (SPPARMs) are emerging as the promising candidates of the next generation of antidiabetic drugs instead of TZDs. Due to the higher selectivity of these novel PPAR γ agonists on the regulation of the antidiabetes-associated genes than that of the side effect-associated genes, they present fewer adverse effects than TZDs. The present review was undertaken to address the advancements and the therapeutic potential of these newly developed PPAR γ agonists in dealing with diabetic kidney disease. At the same time, the new insights into the therapeutic strategies of DN based on the PPAR γ agonists were fully addressed. PMID:24624137

  3. Stimulation of Wnt/beta-Catenin Signaling Pathway with Wnt Agonist Reduces Organ Injury after Hemorrhagic Shock

    PubMed Central

    Kuncewitch, Michael; Yang, Weng-Lang; Jacob, Asha; Khader, Adam; Giangola, Matthew; Nicastro, Jeffrey; Coppa, Gene F.; Wang, Ping

    2014-01-01

    Background Hemorrhagic shock is a leading cause of morbidity and mortality in surgery and trauma patients. Despite a large number of preclinical trials conducted to develop therapeutic strategies against hemorrhagic shock, there is still an unmet need exist for effective therapy for hemorrhage victims. Wnt/β-catenin signaling controls developmental processes and cellular regeneration owing to its central role in cell survival and proliferation. We therefore hypothesized that the activation of Wnt signaling reduces systemic injury caused by hemorrhagic shock. Methods Adult male Sprague-Dawley rats underwent hemorrhagic shock by controlled bleeding of the femoral artery to maintain a mean arterial pressure (MAP) of 30 mmHg for 90 min, followed by resuscitation with crystalloid equal to two times the shed blood volume. After resuscitation, animals were infused with Wnt agonist (5 mg/kg) or Vehicle (20% DMSO in saline). Blood and tissue samples were collected 6 h after resuscitation for analysis. Results Hemorrhagic shock increased serum levels of AST, lactate, and LDH. Treatment with Wnt agonist significantly reduced these levels by 40%, 36%, and 77%, respectively. Wnt agonist also decreased BUN and creatinine by 34% and 56%, respectively. Treatment reduced lung myeloperoxidase activity and IL-6 mRNA by 55% and 68% respectively and, significantly improved lung histology. Wnt agonist treatment increased Bcl-2 protein to Sham values and decreased cleaved caspase-3 by 46% indicating attenuation of hemorrhage-induced apoptosis in the lungs. Hemorrhage resulted in significant reductions of β-catenin protein levels in the lungs as well as down-regulation of a Wnt target gene, Cyclin-D1, while Wnt agonist treatment preserved these levels. Conclusions The administration of Wnt agonist attenuated hemorrhage-induced organ injury, inflammation and apoptosis. This was correlated with preservation of the Wnt signaling pathway. Thus, Wnt/β-catenin activation could be protective

  4. Modulation of pre- and postsynaptic dopamine D2 receptor function by the selective kappa-opioid receptor agonist U69593.

    PubMed

    Acri, J B; Thompson, A C; Shippenberg, T

    2001-03-15

    The repeated administration of selective kappa-opioid receptor agonists prevents the locomotor activation produced by acute cocaine administration and the development of cocaine-induced behavioral sensitization. Previous studies have shown that dopamine (DA) D2 autoreceptors modulate the synthesis and release of DA in the striatum. Evidence that kappa agonist treatment downregulates DA D2 receptors in this same brain region has recently been obtained. Accordingly, the present studies were undertaken to examine the influence of repeated kappa-opioid receptor agonist administration on pre- and postsynaptic DA D2 receptor function in the dorsal striatum using pre- and postsynaptic receptor-selective doses of quinpirole. Rats were injected once daily with the selective kappa-opioid receptor agonist U69593 (0.16-0.32 mg/kg s.c.) or vehicle for 3 days. Microdialysis studies assessing basal and quinpirole-evoked (0.05 mg/kg s.c.) DA levels were conducted 2 days later. Basal and quinpirole-stimulated locomotor activity were assessed in a parallel group of animals. The no-net flux method of quantitative microdialysis revealed no effect of U69593 on basal DA dynamics, in that extracellular DA concentration and extraction fraction did not differ in control and U69593-treated animals. Acute administration of quinpirole significantly decreased striatal DA levels in control animals, but in animals treated with U69593, the inhibitory effects of quinpirole were significantly reduced. Quinpirole produced a dose-related increase in locomotor activity in control animals, and this effect was significantly attenuated in U69593-treated animals. These data reveal that prior repeated administration of a selective kappa-opioid receptor agonist attenuates quinpirole-induced alterations in DA neurotransmission and locomotor activity. These results suggest that both pre- and postsynaptic striatal DA D2 receptors may be downregulated following repeated kappa-opioid receptor agonist

  5. Landing gear noise attenuation

    NASA Technical Reports Server (NTRS)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  6. RADIO FREQUENCY ATTENUATOR

    DOEpatents

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  7. A study of stress-free living bone and its application to space flight

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Spira, M.

    1983-01-01

    Observations of animals and human subjects in weightless space flight (Skylab and COSMOS) document altered bone metabolism. Bone metabolism is affected by a number of local and systemic factors. The calcification and growth of transplanted bone is independent of local muscle, nervous, and mechanical forces; therefore, transplanted bone would provide data on the role of local vs. systematic factors. Bone metabolism in living transplanted bone, devoid of stress, was investigated as a possible tool for the investigation of countermeasures against disuse bone loss. An animal model using Sprague-Dawley rats was developed for transplantation of femur bone tissue on a nutrient vascular pedicel. The long term course of these implants was assessed through the measure of regional and total bone mineral, blood flow, and methylene diphosphonate (MDP) uptake. Clomid, an estrogen agonist/antagonist, was shown to protect bone from disuse loss of minerals by retarding trabecular and cortical resorption.

  8. Cannabinoid withdrawal in mice: inverse agonist vs neutral antagonist

    PubMed Central

    Tai, Sherrica; Nikas, Spyros P.; Shukla, Vidyanand G.; Vemuri, Kiran; Makriyannis, Alexandros; Järbe, Torbjörn U.C.

    2015-01-01

    Rationale Previous reports shows rimonabant's inverse properties may be a limiting factor for treating cannabinoid dependence. To overcome this limitation neutral antagonists were developed, to address mechanisms by which an inverse agonist and neutral antagonist elicit withdrawal. Objective Introduces an animal model to study cannabinoid dependence by incorporating traditional methodologies and profiling novel cannabinoid ligands with distinct pharmacological properties/modes of action by evaluating their pharmacological effects on CB1-receptor (CB1R) related physiological/behavioral endpoints. Methods The cannabinergic AM2389 was acutely characterized in the tetrad (locomotor activity, analgesia, inverted screen/catalepsy bar test and temperature); with some comparisons made to Δ9-tetrahydrocannabinol (THC). Tolerance was measured in mice repeatedly administered AM2389. Antagonist-precipitated withdrawal was characterized in cannabinoid-adapted mice induced by either centrally acting antagonists, rimonabant and AM4113, or an antagonist with limited brain penetration, AM6545. Results In the tetrad, AM2389 was more potent and longer acting than THC, suggesting a novel approach for inducing dependence. Repeated administration of AM2389 led to tolerance by attenuating hypothermia that was induced by acute AM2389 administration. Antagonist-precipitated withdrawal signs were induced by rimonabant or AM4113, but not by AM6545. Antagonist-precipitated withdrawal was reversed by reinstating AM2389 or THC. Conclusions These findings suggest cannabinoid-precipitated withdrawal may not be ascribed to the inverse properties of rimonabant, but rather to rapid competition with the agonist at the CB1R. This withdrawal syndrome is likely centrally-mediated, since only the centrally acting CB1R antagonists elicited withdrawal, i.e., such responses were absent after the purported peripherally selective CB1R antagonist AM6545. PMID:25772338

  9. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2

    PubMed Central

    Mediero, Aránzazu; Wilder, Tuere; Perez-Aso, Miguel; Cronstein, Bruce N.

    2015-01-01

    Promoting bone regeneration and repair of bone defects is a need that has not been well met to date. We have previously found that adenosine, acting via A2A receptors (A2AR) promotes wound healing and inhibits inflammatory osteolysis and hypothesized that A2AR might be a novel target to promote bone regeneration. Therefore, we determined whether direct A2AR stimulation or increasing endogenous adenosine concentrations via purine transport blockade with dipyridamole regulates bone formation. We determined whether coverage of a 3 mm trephine defect in a mouse skull with a collagen scaffold soaked in saline, bone morphogenetic protein-2 (BMP-2; 200 ng), 1 μM CGS21680 (A2AR agonist, EC50 = 160 nM), or 1 μM dipyridamole (EC50 = 32 nM) promoted bone regeneration. Microcomputed tomography examination demonstrated that CGS21680 and dipyridamole markedly enhanced bone regeneration as well as BMP-2 8 wk after surgery (60 ± 2%, 79 ± 2%, and 75 ± 1% bone regeneration, respectively, vs. 32 ± 2% in control, P < 0.001). Blockade by a selective A2AR antagonist (ZM241385, 1 μM) or deletion of A2AR abrogated the effect of CGS21680 and dipyridamole on bone regeneration. Both CGS21680 and dipyridamole treatment increased alkaline phosphatase-positive osteoblasts and diminished tartrate resistance acid phosphatase-positive osteoclasts in the defects. In vivo imaging with a fluorescent dye for new bone formation revealed a strong fluorescent signal in treated animals that was equivalent to BMP-2. In conclusion, stimulation of A2AR by specific agonists or by increasing endogenous adenosine levels stimulates new bone formation as well as BMP-2 and represents a novel approach to stimulating bone regeneration.—Mediero, A., Wilder, T., Perez-Aso, M., Cronstein, B. N. Direct or indirect stimulation of adenosine A2A receptors enhances bone regeneration as well as bone morphogenetic protein-2. PMID:25573752

  10. [Bone diseases].

    PubMed

    Uebelhart, Brigitte; Rizzoli, René

    2016-01-13

    Calcium intake shows a small impact on bone mineral density and fracture risk. Denosumab is a more potent inhibitor of bone resorption than zoledronate. Abaloparatide, PTHrP analog, increases bone mineral density and decreases fracture incidence. Teriparatide could be delivered via a transdermic device. Romosozumab and odanacatib improve calculated bone strength. Sequential or combined treatments with denosumab and teriparatide could be of interest, but not denosumab followed by teriparatide. Fibrous dysplasia, Paget disease and hypophosphatasia are updated, as well as atypical femoral fracture and osteonecrosis of the jaw. PMID:26946704