Science.gov

Sample records for agonist diminishes acute

  1. Partial agonist therapy in schizophrenia: relevance to diminished criminal responsibility.

    PubMed

    Gavaudan, Gilles; Magalon, David; Cohen, Julien; Lançon, Christophe; Léonetti, Georges; Pélissier-Alicot, Anne-Laure

    2010-11-01

    Pathological gambling (PG), classified in the DSM-IV among impulse control disorders, is defined as inappropriate, persistent gaming for money with serious personal, family, and social consequences. Offenses are frequently committed to obtain money for gambling. Pathological gambling, a planned and structured behavioral disorder, has often been described as a complication of dopamine agonist treatment in patients with Parkinson's disease. It has never been described in patients with schizophrenia receiving dopamine agonists. We present two patients with schizophrenia, previously treated with antipsychotic drugs without any suggestion of PG, who a short time after starting aripiprazole, a dopamine partial agonist, developed PG and criminal behavior, which totally resolved when aripiprazole was discontinued. Based on recent advances in research on PG and adverse drug reactions to dopamine agonists in Parkinson's disease, we postulate a link between aripiprazole and PG in both our patients with schizophrenia and raise the question of criminal responsibility. PMID:20579229

  2. Dual Alleviation of Acute and Neuropathic Pain by Fused Opioid Agonist-Neurokinin 1 Antagonist Peptidomimetics.

    PubMed

    Betti, Cecilia; Starnowska, Joanna; Mika, Joanna; Dyniewicz, Jolanta; Frankiewicz, Lukasz; Novoa, Alexandre; Bochynska, Marta; Keresztes, Attila; Kosson, Piotr; Makuch, Wioletta; Van Duppen, Joost; Chung, Nga N; Vanden Broeck, Jozef; Lipkowski, Andrzej W; Schiller, Peter W; Janssens, Frans; Ceusters, Marc; Sommen, François; Meert, Theo; Przewlocka, Barbara; Tourwé, Dirk; Ballet, Steven

    2015-12-10

    Herein, the synthesis and biological evaluation of dual opioid agonists-neurokinin 1 receptor (NK1R) antagonists is described. In these multitarget ligands, the two pharmacophores do not overlap, and this allowed maintaining high NK1R affinity and antagonist potency in compounds 12 and 13. Although the fusion of the two ligands resulted in slightly diminished opioid agonism at the μ- and δ-opioid receptors (MOR and DOR, respectively), as compared to the opioid parent peptide, balanced MOR/DOR activities were obtained. Compared to morphine, compounds 12 and 13 produced more potent antinociceptive effects in both acute (tail-flick) and neuropathic pain models (von Frey and cold plate). Similarly to morphine, analgesic tolerance developed after repetitive administration of these compounds. To our delight, compound 12 did not produce cross-tolerance with morphine and high antihyperalgesic and antiallodynic effects could be reinstated after chronic administration of each of the two compounds. PMID:26713106

  3. Dexrazoxane Diminishes Doxorubicin-Induced Acute Ovarian Damage and Preserves Ovarian Function and Fecundity in Mice

    PubMed Central

    Ringelstetter, Ashley; Khatib, Hasan; Abbott, David H.; Salih, Sana M.

    2015-01-01

    Advances in cancer treatment utilizing multiple chemotherapies have dramatically increased cancer survivorship. Female cancer survivors treated with doxorubicin (DXR) chemotherapy often suffer from an acute impairment of ovarian function, which can persist as long-term, permanent ovarian insufficiency. Dexrazoxane (Dexra) pretreatment reduces DXR-induced insult in the heart, and protects in vitro cultured murine and non-human primate ovaries, demonstrating a drug-based shield to prevent DXR insult. The present study tested the ability of Dexra pretreatment to mitigate acute DXR chemotherapy ovarian toxicity in mice through the first 24 hours post-treatment, and improve subsequent long-term fertility throughout the reproductive lifespan. Adolescent CD-1 mice were treated with Dexra 1 hour prior to DXR treatment in a 1:1 mg or 10:1 mg Dexra:DXR ratio. During the acute injury period (2–24 hours post-injection), Dexra pretreatment at a 1:1 mg ratio decreased the extent of double strand DNA breaks, diminished γH2FAX activation, and reduced subsequent follicular cellular demise caused by DXR. In fertility and fecundity studies, dams pretreated with either Dexra:DXR dose ratio exhibited litter sizes larger than DXR-treated dams, and mice treated with a 1:1 mg Dexra:DXR ratio delivered pups with birth weights greater than DXR-treated females. While DXR significantly increased the “infertility index” (quantifying the percentage of dams failing to achieve pregnancy) through 6 gestations following treatment, Dexra pretreatment significantly reduced the infertility index following DXR treatment, improving fecundity. Low dose Dexra not only protected the ovaries, but also bestowed a considerable survival advantage following exposure to DXR chemotherapy. Mouse survivorship increased from 25% post-DXR treatment to over 80% with Dexra pretreatment. These data demonstrate that Dexra provides acute ovarian protection from DXR toxicity, improving reproductive health in a mouse

  4. Diminishing willingness to pay per quality-adjusted life year: valuing acute foodborne illness.

    PubMed

    Haninger, Kevin; Hammitt, James K

    2011-09-01

    We design and conduct a stated-preference survey to estimate willingness to pay (WTP) to reduce foodborne risk of acute illness and to test whether WTP is proportional to the corresponding gain in expected quality-adjusted life years (QALYs). If QALYs measure utility for health, then economic theory requires WTP to be nearly proportional to changes in both health quality and duration of illness and WTP could be estimated by multiplying the expected change in QALYs by an appropriate monetary value. WTP is elicited using double-bounded, dichotomous-choice questions in which respondents (randomly selected from the U.S. general adult population, n = 2,858) decide whether to purchase a more expensive food to reduce the risk of foodborne illness. Health risks vary by baseline probability of illness, reduction in probability, duration and severity of illness, and conditional probability of mortality. The expected gain in QALYs is calculated using respondent-assessed decrements in health-related quality of life if ill combined with the duration of illness and reduction in probability specified in the survey. We find sharply diminishing marginal WTP for severity and duration of illness prevented. Our results suggest that individuals do not have a constant rate of WTP per QALY, which implies that WTP cannot be accurately estimated by multiplying the change in QALYs by an appropriate monetary value. PMID:21488924

  5. Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects are Diminished in Adrenalectomized Rats

    EPA Science Inventory

    Acute ozone exposure increases circulating stress hormones and induces peripheral metabolic alterations in animals and humans. We hypothesized that the increase of adrenal-derived stress hormones is necessary for ozone-induced systemic metabolic effects and lung injury. Male Wis...

  6. Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects are Diminished in Adrenalectomized Rats#

    EPA Science Inventory

    Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals and humans. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats ...

  7. Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents

    PubMed Central

    Yasuda, Shin-ichiro; Tsuchida, Takuma; Oguma, Takahiro; Marley, Anna; Wennberg-Huldt, Charlotte; Hovdal, Daniel; Fukuda, Hajime; Yoneyama, Yukimi; Sasaki, Kazuyo; Johansson, Anders; Lundqvist, Sara; Brengdahl, Johan; Isaacs, Richard J.; Brown, Daniel; Geschwindner, Stefan; Benthem, Lambertus; Priest, Claire; Turnbull, Andrew

    2015-01-01

    Type 2 diabetes (T2D) occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO) mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents. PMID:26720709

  8. Diminished agonist-stimulated inositol trisphosphate generation blocks stimulus-secretion coupling in mouse pancreatic acini during diet-induced experimental pancreatitis

    SciTech Connect

    Powers, R.E.; Saluja, A.K.; Houlihan, M.J.; Steer, M.L.

    1986-05-01

    Young female mice fed a choline-deficient, ethionine-supplemented (CDE) diet rapidly develop acute hemorrhagic pancreatitis. We have observed that pancreatic acini prepared from these mice are unable to secrete amylase in response to addition of the cholinergic agonist carbachol, although they retain the ability to secrete amylase in response to the Ca2+ ionophore A23187. The CDE diet does not alter the binding characteristics (Kd or the maximal number of binding sites) for muscarinic cholinergic receptors as tested using the antagonist (/sup 3/H)N-methylscopolamine nor the competition for this binding by carbachol. Addition of carbachol to acini prepared from mice fed the CDE diet does not result in as marked an increase in cytosolic free Ca2+ levels as that noted in control samples (evaluated using quin2 fluorescence). These observations indicate that the CDE diet interferes with stimulus-secretion coupling in mouse pancreatic acini at a step subsequent to hormone-receptor binding and prior to Ca2+ release. This conclusion is confirmed by our finding that the hormone-stimulated generation of (/sup 3/H)inositol phosphates (inositol trisphosphate, inositol bisphosphate, and inositol monophosphate) from acini labeled with (/sup 3/H)myoinositol is markedly reduced in acini prepared from mice fed the CDE diet. This reduction is not due to a decrease in phosphatidylinositol-4,5-bisphosphate. This communication represents the first report of a system in which a blockade of inositol phosphate generation can be related to a physiologic defect and pathologic lesion.

  9. Animated bird silhouette above the tank: Acute alcohol diminishes fear responses in zebrafish

    PubMed Central

    Luca, Ruxandra M.; Gerlai, Robert

    2012-01-01

    Alcohol dependence and alcohol abuse represent major unmet medical needs. The zebrafish is considered to be a promising vertebrate species with which the effects of alcohol on brain function and behavior and the mechanisms underlying these effects may be studied. Alcohol is known to induce alterations in motor function as well as fear and anxiety. Here we present a recently developed fear paradigm in which we employ an animated (moving) image of a bird silhouette. We measure the effect of acute alcohol administration (dose range employed: 0.00 – 0.75 vol/vol percentage, bath exposure for 60 minutes) on the behavioral responses of zebrafish. We test these responses during a pre-stimulus, stimulus and post-stimulus period of the task using both a video-tracking and an observation based quantification method. The fear inducing stimulus was found to decrease the distance of the zebrafish from the bottom of the tank, to increase number of erratic movements, and to increase the number of jumps in alcohol exposed fish (versus control fish). Alcohol attenuated these fear responses in a dose dependent manner. In addition, alcohol decreased general activity at the highest dose, an effect that was independent of the presentation of the stimulus. We discuss the similarities and differences between observation and video-tracking based results and conclude that fear paradigms will be useful in revealing alcohol induced functional changes in the brain of zebrafish. PMID:22266470

  10. Acute and chronic head-down tail suspension diminishes cerebral perfusion in rats

    NASA Technical Reports Server (NTRS)

    Wilkerson, M. Keith; Colleran, Patrick N.; Delp, Michael D.

    2002-01-01

    The purpose of this study was to test the hypothesis that regional brain blood flow and vascular resistance are altered by acute and chronic head-down tail suspension (HDT). Regional cerebral blood flow, arterial pressure, heart rate, and vascular resistance were measured in a group of control rats during normal standing and following 10 min of HDT and in two other groups of rats after 7 and 28 days of HDT. Heart rate was not different among conditions, whereas mean arterial pressure was elevated at 10 min of HDT relative to the other conditions. Total brain blood flow was reduced from that during standing by 48, 24, and 27% following 10 min and 7 and 28 days of HDT, respectively. Regional blood flows to all cerebral tissues and the eyes were reduced with 10 min of HDT and remained lower in the eye, olfactory bulbs, left and right cerebrum, thalamic region, and the midbrain with 7 and 28 days of HDT. Total brain vascular resistance was 116, 44, and 38% greater following 10 min and 7 and 28 days of HDT, respectively, relative to that during control standing. Vascular resistance was elevated in all cerebral regions with 10 min of HDT and remained higher than control levels in most brain regions. These results demonstrate that HDT results in chronic elevations in total and regional cerebral vascular resistance, and this may be the underlying stimulus for the HDT-induced smooth muscle hypertrophy of cerebral resistance arteries.

  11. Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects Are Diminished in Adrenalectomized Rats.

    PubMed

    Miller, Desinia B; Snow, Samantha J; Schladweiler, Mette C; Richards, Judy E; Ghio, Andrew J; Ledbetter, Allen D; Kodavanti, Urmila P

    2016-04-01

    Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats underwent bilateral adrenal demedullation (DEMED), total bilateral adrenalectomy (ADREX), or sham surgery (SHAM). After a 4 day recovery, rats were exposed to air or ozone (1 ppm), 4 h/day for 1 or 2 days and responses assessed immediately postexposure. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to SHAM. Corticosterone tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED rats with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids (P = .15) and branched-chain amino acids increased after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX > DEMED). Ozone-mediated decreases in circulating white blood cells in SHAM were not observed in DEMED and ADREX rats. We demonstrate that ozone-induced peripheral metabolic effects and lung injury/inflammation are mediated through adrenal-derived stress hormones likely via the activation of stress response pathway. PMID:26732886

  12. Continuous Inhalation of Ipratropium Bromide for Acute Asthma Refractory to β2-agonist Treatment

    PubMed Central

    Mastropietro, Christopher

    2015-01-01

    To present the case of a patient with persistent bronchospasm, refractory to treatment with β2-agonists, that resolved promptly with continuous inhalation of large dose (1000 mcg/hr) ipratropium bromide, and to discuss the possibility of tolerance to β2-agonists as the cause for his failure to respond to adrenergic medications. The patient had received multiple doses of albuterol, as well as subcutaneous terbutaline (0.3 mg), intravenous magnesium sulfate (1 g) and intravenous dexamethasone (10 mg) prior to his admission to the intensive care unit. He remained symptomatic despite systemic intravenous steroids, continuous intravenous terbutaline (up to 0.6 mcg/kg/min), and continuous nebulized albuterol (up to 20 mg/hr for 57 hr) followed by 49 hours of continuous levalbuterol (7 mg/hr). Due to the lack of response, all β2-agonists were discontinued at 106 hours post-admission, and he was started on large dose ipratropium bromide (1000 mcg/hr) by continuous nebulization. Clinical improvement was evident within 1 hour and complete resolution of his symptoms within 4 hours. Continuous inhalation of large dose ipratropium bromide may be an effective regimen for the treatment of patients hospitalized with acute asthma who are deemed to be nonresponsive and/or tolerant to β2-agonist therapy. PMID:25859173

  13. Continuous Inhalation of Ipratropium Bromide for Acute Asthma Refractory to β2-agonist Treatment.

    PubMed

    Koumbourlis, Anastassios C; Mastropietro, Christopher

    2015-01-01

    To present the case of a patient with persistent bronchospasm, refractory to treatment with β2-agonists, that resolved promptly with continuous inhalation of large dose (1000 mcg/hr) ipratropium bromide, and to discuss the possibility of tolerance to β2-agonists as the cause for his failure to respond to adrenergic medications. The patient had received multiple doses of albuterol, as well as subcutaneous terbutaline (0.3 mg), intravenous magnesium sulfate (1 g) and intravenous dexamethasone (10 mg) prior to his admission to the intensive care unit. He remained symptomatic despite systemic intravenous steroids, continuous intravenous terbutaline (up to 0.6 mcg/kg/min), and continuous nebulized albuterol (up to 20 mg/hr for 57 hr) followed by 49 hours of continuous levalbuterol (7 mg/hr). Due to the lack of response, all β2-agonists were discontinued at 106 hours post-admission, and he was started on large dose ipratropium bromide (1000 mcg/hr) by continuous nebulization. Clinical improvement was evident within 1 hour and complete resolution of his symptoms within 4 hours. Continuous inhalation of large dose ipratropium bromide may be an effective regimen for the treatment of patients hospitalized with acute asthma who are deemed to be nonresponsive and/or tolerant to β2-agonist therapy. PMID:25859173

  14. Acute Hemodynamic Efficacy of a 32-ml Subcutaneous Counterpulsation Device in a Calf Model of Diminished Cardiac Function

    PubMed Central

    Koenig, Steven C.; Litwak, Kenneth N.; Giridharan, Guruprasad A.; Pantalos, George M.; Dowling, Robert D.; Prabhu, Sumanth D.; Slaughter, Mark S.; Sobieski, Michael A.; Spence, Paul A.

    2010-01-01

    The acute hemodynamic efficacy of an implantable counter-pulsation device (CPD) was evaluated. The CPD is a valveless single port, 32-ml stroke volume blood chamber designed to be connected to the human axillary artery using a simple surface surgical procedure. Blood is drawn into the pump during systole and ejected during diastole. The acute hemodynamic effects of the 32-ml CPD were compared to a standard clinical 40-ml intra-aortic balloon pump (IABP) in calves (80 kg, n = 10). The calves were treated by a single oral dose of Monensin to produce a model of diminished cardiac function (DCF). The CPD and IABP produced similar increases in cardiac output (6% CPD vs. 5% IABP, p > 0.5) and reduction in left ventricular external work (14% CPD vs. 13% IABP, p > 0.5) compared to DCF (p < 0.05). However, the ratio of diastolic coronary artery flow to left ventricular external work increase from DCF baseline (p < 0.05) was greater with the CPD compared to the IABP (15% vs. 4%, p < 0.05). The CPD also produced a greater reduction in left ventricular myocardial oxygen consumption from DCF baseline (p < 0.05) compared to the IABP (13% vs. 9%, p < 0.05) despite each device providing similar improvements in cardiac output. There was no early indication of hemolysis, thrombus formation, or vascular injury. The CPD provides hemodynamic efficacy equivalent to an IABP and may become a therapeutic option for patients who may benefit from prolonged counterpulsation. PMID:19033769

  15. Acute hemodynamic efficacy of a 32-ml subcutaneous counterpulsation device in a calf model of diminished cardiac function.

    PubMed

    Koenig, Steven C; Litwak, Kenneth N; Giridharan, Guruprasad A; Pantalos, George M; Dowling, Robert D; Prabhu, Sumanth D; Slaughter, Mark S; Sobieski, Michael A; Spence, Paul A

    2008-01-01

    The acute hemodynamic efficacy of an implantable counterpulsation device (CPD) was evaluated. The CPD is a valveless single port, 32-ml stroke volume blood chamber designed to be connected to the human axillary artery using a simple surface surgical procedure. Blood is drawn into the pump during systole and ejected during diastole. The acute hemodynamic effects of the 32-ml CPD were compared to a standard clinical 40-ml intra-aortic balloon pump (IABP) in calves (80 kg, n = 10). The calves were treated by a single oral dose of Monensin to produce a model of diminished cardiac function (DCF). The CPD and IABP produced similar increases in cardiac output (6% CPD vs. 5% IABP, p > 0.5) and reduction in left ventricular external work (14% CPD vs. 13% IABP, p > 0.5) compared to DCF (p < 0.05). However, the ratio of diastolic coronary artery flow to left ventricular external work increase from DCF baseline (p < 0.05) was greater with the CPD compared to the IABP (15% vs. 4%, p < 0.05). The CPD also produced a greater reduction in left ventricular myocardial oxygen consumption from DCF baseline (p < 0.05) compared to the IABP (13% vs. 9%, p < 0.05) despite each device providing similar improvements in cardiac output. There was no early indication of hemolysis, thrombus formation, or vascular injury. The CPD provides hemodynamic efficacy equivalent to an IABP and may become a therapeutic option for patients who may benefit from prolonged counterpulsation. PMID:19033769

  16. Profiles of 5-HT 1B/1D agonists in acute migraine with special reference to second generation agents.

    PubMed

    Deleu, D; Hanssens, Y

    1999-06-01

    The efficacy of 5-hydroxytryptamine 1B/1D (5-HT 1B/1D) agonists is related to their inhibitory effects on neurogenic inflammation, mediated through serotoninergic control mechanisms. Recently, a series of oral second generation 5-HT 1B/1D agonists (eletriptan, naratriptan, rizatriptan and zolmitriptan) have been developed and are reviewed in this paper. Their in vitro and in vivo pharmacological properties, clinical efficacy, drug interactions, and adverse effects are evaluated and compared to the gold standard in the treatment of acute migraine, sumatriptan. PMID:10427351

  17. Intrathecal cannabinoid-1 receptor agonist prevents referred hyperalgesia in acute acrolein-induced cystitis in rats

    PubMed Central

    Jones, Marsha Ritter; Wang, Zun-Yi; Bjorling, Dale E

    2015-01-01

    We investigated the capacity of intrathecal arachidonyl-2’-chloroethylamide (ACEA), a cannabinoid-1 receptor (CB1R) agonist, to inhibit referred hyperalgesia and increased bladder contractility resulting from acute acrolein-induced cystitis in rats. 24 female rats were divided into 4 groups: 1) intrathecal vehicle/intravesical saline; 2) intrathecal vehicle/intravesical acrolein; 3) intrathecal ACEA/intravesical saline; and 4) intrathecal ACEA/intravesical acrolein. Bladder catheters were placed 4-6 days prior to the experiment. On the day of the experiment, rats were briefly anesthetized with isoflurane to recover the external end of the cystostomy catheter. After recovery from anesthesia, pre-treatment cystometry was performed, and mechanical sensitivity of the hindpaws was determined. Rats were again briefly anesthetized with isoflurane to inject ACEA or vehicle into the intrathecal space between L5-L6. Beginning 10 minutes after intrathecal injection, saline or acrolein was infused into the bladder for 30 minutes. Post-treatment cystometry and mechanical sensitivity testing were performed. Rats were euthanized, and bladders were collected, weighed, and fixed for histology. The intrathecal vehicle/intravesical acrolein group developed mechanical hyperalgesia with post-treatment mechanical sensitivity of 6 ± 0.3 g compared to pretreatment of 14 ± 0.4 g (p < 0.01). Pre- and post-treatment hind paw mechanical sensitivity was statistically similar in rats that received intrathecal ACEA prior to intravesical infusion of acrolein (15 ± 0.2 g and 14 ± 0.4 g, respectively). Acrolein treatment increased basal bladder pressure and maximal voiding pressure and decreased intercontraction interval and voided volume. However, intrathecal ACEA was ineffective in improving acrolein-related urodynamic changes. In addition, bladder histology demonstrated submucosal and muscularis edema that was similar for all acrolein-treated groups, irrespective of ACEA treatment

  18. Diminished acute phase response and increased hepatic inflammation of aged rats in response to intraperitoneal injection of lipopolysaccharide.

    PubMed

    Gomez, Christian R; Acuña-Castillo, Claudio; Pérez, Claudio; Leiva-Salcedo, Elías; Riquelme, Denise M; Ordenes, Gamaliel; Oshima, Kiyoko; Aravena, Mauricio; Pérez, Viviana I; Nishimura, Sumiyo; Sabaj, Valeria; Walter, Robin; Sierra, Felipe

    2008-12-01

    Aging is associated with a deterioration of the acute phase response to inflammatory challenges. However, the nature of these defects remains poorly defined. We analyzed the hepatic inflammatory response after intraperitoneal administration of lipopolysaccharide (LPS) given to Fisher 344 rats aged 6, 15, and 22-23 months. Induction of the acute phase proteins (APPs), haptoglobin, alpha-1-acid glycoprotein, and T-kininogen was reduced and/or retarded with aging. Initial induction of interleukin-6 in aged rats was normal, but the later response was increased relative to younger counterparts. An exacerbated hepatic injury was observed in aged rats receiving LPS, as evidenced by the presence of multiple microabscesses in portal tracts, confluent necrosis, higher neutrophil accumulation, and elevated serum levels of alanine aminotransferase, relative to younger animals. Our results suggest that aged rats displayed a reduced expression of APPs and increased hepatic injury in response to the inflammatory insult. PMID:19126842

  19. Differences in acute anorectic effects of long-acting GLP-1 receptor agonists in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-acting glucagon-like peptide-1 receptor (GLP-1R) agonists have both glucose- and weight-lowering effects. The brain is poised to mediate both of these actions since GLP-1Rs are present in key areas known to control weight and glucose. Although some research has been performed on the effects of ...

  20. Effects of μ-Opioid Receptor Agonists in Assays of Acute Pain-Stimulated and Pain-Depressed Behavior in Male Rats: Role of μ-Agonist Efficacy and Noxious Stimulus Intensity

    PubMed Central

    Rice, Kenner C.; Negus, S. Stevens

    2015-01-01

    Pain is associated with stimulation of some behaviors and depression of others, and μ-opioid receptor agonists are among the most widely used analgesics. This study used parallel assays of pain-stimulated and pain-depressed behavior in male Sprague-Dawley rats to compare antinociception profiles for six μ-agonists that varied in efficacy at μ-opioid receptors (from highest to lowest: methadone, fentanyl, morphine, hydrocodone, buprenorphine, and nalbuphine). Intraperitoneal injection of diluted lactic acid served as an acute noxious stimulus to either stimulate stretching or depress operant responding maintained by electrical stimulation in an intracranial self-stimulation (ICSS). All μ-agonists blocked both stimulation of stretching and depression of ICSS produced by 1.8% lactic acid. The high-efficacy agonists methadone and fentanyl were more potent at blocking acid-induced depression of ICSS than acid-stimulated stretching, whereas lower-efficacy agonists displayed similar potency across assays. All μ-agonists except morphine also facilitated ICSS in the absence of the noxious stimulus at doses similar to those that blocked acid-induced depression of ICSS. The potency of the low-efficacy μ-agonist nalbuphine, but not the high-efficacy μ-agonist methadone, to block acid-induced depression of ICSS was significantly reduced by increasing the intensity of the noxious stimulus to 5.6% acid. These results demonstrate sensitivity of acid-induced depression of ICSS to a range of clinically effective μ-opioid analgesics and reveal distinctions between opioids based on efficacy at the μ-receptor. These results also support the use of parallel assays of pain-stimulated and -depressed behaviors to evaluate analgesic efficacy of candidate drugs. PMID:25406170

  1. Capitals diminished, denied, mustered and deployed. A qualitative longitudinal study of women's four year trajectories after acute health crisis, Burkina Faso

    PubMed Central

    Murray, Susan F.; Akoum, Mélanie S.; Storeng, Katerini T.

    2012-01-01

    Accumulating evidence indicates that health crises can play a key role in precipitating or exacerbating poverty. For women of reproductive age in low-income countries, the complications of pregnancy are a common cause of acute health crisis, yet investigation of longer-term dynamics set in motion by such events, and their interactions with other aspects of social life, is rare. This article presents findings from longitudinal qualitative research conducted in Burkina Faso over 2004–2010. Guided by an analytic focus on patterns of continuity and change, and drawing on recent discussions on the notion of ‘resilience’, and the concepts of ‘social capital’ and ‘bodily capital’, we explore the trajectories of 16 women in the aftermath of costly acute healthcare episodes. The synthesis of case studies shows that, in conditions of structural inequity and great insecurity, an individual's social capital ebbs and flow over time, resulting in a trajectory of multiple adaptations. Women's capacity to harness or exploit bodily capital in its various forms (beauty, youthfulness, physical strength, fertility) to some extent determines their ability to confront and overcome adversities. With this, they are able to further mobilise social capital without incurring excessive debt, or to access and accumulate significant new social capital. Temporary self-displacement, often to the parental home, is also used as a weapon of negotiation in intra-household conflict and to remind others of the value of one's productive and domestic labour. Conversely, diminished bodily capital due to the physiological impact of an obstetric event or its complications can lead to reduced opportunities, and to further disadvantage. PMID:23063215

  2. Capitals diminished, denied, mustered and deployed. A qualitative longitudinal study of women's four year trajectories after acute health crisis, Burkina Faso.

    PubMed

    Murray, Susan F; Akoum, Mélanie S; Storeng, Katerini T

    2012-12-01

    Accumulating evidence indicates that health crises can play a key role in precipitating or exacerbating poverty. For women of reproductive age in low-income countries, the complications of pregnancy are a common cause of acute health crisis, yet investigation of longer-term dynamics set in motion by such events, and their interactions with other aspects of social life, is rare. This article presents findings from longitudinal qualitative research conducted in Burkina Faso over 2004-2010. Guided by an analytic focus on patterns of continuity and change, and drawing on recent discussions on the notion of 'resilience', and the concepts of 'social capital' and 'bodily capital', we explore the trajectories of 16 women in the aftermath of costly acute healthcare episodes. The synthesis of case studies shows that, in conditions of structural inequity and great insecurity, an individual's social capital ebbs and flow over time, resulting in a trajectory of multiple adaptations. Women's capacity to harness or exploit bodily capital in its various forms (beauty, youthfulness, physical strength, fertility) to some extent determines their ability to confront and overcome adversities. With this, they are able to further mobilise social capital without incurring excessive debt, or to access and accumulate significant new social capital. Temporary self-displacement, often to the parental home, is also used as a weapon of negotiation in intra-household conflict and to remind others of the value of one's productive and domestic labour. Conversely, diminished bodily capital due to the physiological impact of an obstetric event or its complications can lead to reduced opportunities, and to further disadvantage. PMID:23063215

  3. Novel fentanyl-based dual μ/δ-opioid agonists for the treatment of acute and chronic pain

    PubMed Central

    Podolsky, Alexander T.; Sandweiss, Alexander; Hu, Jackie; Bilsky, Edward J; Cain, Jim P; Kumirov, Vlad K.; Lee, Yeon Sun; Hruby, Victor J; Vardanyan, Ruben S.; Vanderah, Todd W.

    2014-01-01

    Approximately one third of the adult U.S. population suffers from some type of on-going, chronic pain annually, and many more will have some type of acute pain associated with trauma or surgery. First-line therapies for moderate to severe pain include prescriptions for common mu opioid receptor agonists such as morphine and its various derivatives. The epidemic use, misuse and diversion of prescription opioids has highlighted just one of the adverse effects of mu opioid analgesics. Alternative approaches include novel opioids that target delta or kappa opioid receptors, or compounds that interact with two or more of the opioid receptors. Aims Here we report the pharmacology of a newly synthesized bifunctional opioid agonist (RV-Jim-C3) derived from combined structures of fentanyl and enkephalin in rodents. RV-Jim-C3 has high affinity binding to both mu and delta opioid receptors. Main Methods Mice and rats were used to test RV-Jim-C3 in a tailflick test with and without opioid selective antagonist for antinociception. RV-Jim-C3 was tested for anti-inflammatory and antihypersensitivity effects in a model of formalin-induced flinching and spinal nerve ligation. To rule out motor impairment, rotarod was tested in rats. Key findings RV-Jim-C3 demonstrates potent-efficacious activity in several in vivo pain models including inflammatory pain, antihyperalgesia and antiallodynic with no significant motor impairment. Significance This is the first report of a fentanyl-based structure with delta and mu opioid receptor activity that exhibits outstanding antinociceptive efficacy in neuropathic pain, reducing the propensity of unwanted side effects driven by current therapies that are unifunctional mu opioid agonists. PMID:24084045

  4. Randomized, Placebo-controlled Clinical Trial of an Aerosolized β2-Agonist for Treatment of Acute Lung Injury

    PubMed Central

    2011-01-01

    Rationale: β2-Adrenergic receptor agonists accelerate resolution of pulmonary edema in experimental and clinical studies. Objectives: This clinical trial was designed to test the hypothesis that an aerosolized β2-agonist, albuterol, would improve clinical outcomes in patients with acute lung injury (ALI). Methods: We conducted a multicenter, randomized, placebo-controlled clinical trial in which 282 patients with ALI receiving mechanical ventilation were randomized to receive aerosolized albuterol (5 mg) or saline placebo every 4 hours for up to 10 days. The primary outcome variable for the trial was ventilator-free days. Measurements and Main Results: Ventilator-free days were not significantly different between the albuterol and placebo groups (means of 14.4 and 16.6 d, respectively; 95% confidence interval for the difference, −4.7 to 0.3 d; P = 0.087). Rates of death before hospital discharge were not significantly different between the albuterol and placebo groups (23.0 and 17.7%, respectively; 95% confidence interval for the difference, −4.0 to 14.7%; P = 0.30). In the subset of patients with shock before randomization, the number of ventilator-free days was lower with albuterol, although mortality was not different. Overall, heart rates were significantly higher in the albuterol group by approximately 4 beats/minute in the first 2 days after randomization, but rates of new atrial fibrillation (10% in both groups) and other cardiac dysrhythmias were not significantly different. Conclusions: These results suggest that aerosolized albuterol does not improve clinical outcomes in patients with ALI. Routine use of β2-agonist therapy in mechanically ventilated patients with ALI cannot be recommended. Clinical trial registered with www.clinicaltrials.gov (NCT 00434993). PMID:21562125

  5. Acetylcholinesterase activity in regions of mouse brain following acute and chronic treatment with a benzodiazepine inverse agonist.

    PubMed Central

    Appleyard, M. E.; Taylor, S. C.; Little, H. J.

    1990-01-01

    1. Chronic administration of the benzodiazepine inverse agonist FG 7142 has previously been shown to induce seizure activity in mice. In the present study we have investigated the effects of acute and chronic treatment with FG 7142 in mice on the levels of acetylcholinesterase activity in cortex, hippocampus, midbrain and striatum. We have also investigated the effects of acute and chronic stress in the form of handling (vehicle-injection) on acetylcholinesterase levels. 2. A single dose of FG 7142 produced a marked elevation of total acetylcholinesterase activities in the hippocampus and midbrain when compared with vehicle-injected control levels, but the levels were not different from those in unhandled animals. 3. Acute stress, in the form of vehicle-injection produced decreases in cortical and hippocampal soluble acetylcholinesterase activity but FG 7142 had no effect upon these stress-induced changes. 4. Total cortical and hippocampal acetylcholinesterase activities were increased by 56% and 16% respectively in the chronic FG 7142-treated mice that exhibited seizure activity (compared with vehicle-injected controls). 5. Soluble acetylcholinesterase activity in the midbrain was decreased to 82% of control levels only in animals that had undergone FG 7142-induced kindling. Smaller or no changes in acetylcholinesterase activity in the midbrain were observed in chronically FG 7142-treated animals that exhibited no seizure activity. 6. Mice that did not demonstrate seizure activity in response to chronic FG 7142 treatment showed alterations in the soluble acetylcholinesterase activities of the hippocampus and midbrain.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1963800

  6. The Synthetic Tie2 Agonist Peptide Vasculotide Protects Renal Vascular Barrier Function In Experimental Acute Kidney Injury

    PubMed Central

    Rübig, Eva; Stypmann, Jörg; Van Slyke, Paul; Dumont, Daniel J; Spieker, Tilmann; Buscher, Konrad; Reuter, Stefan; Goerge, Tobias; Pavenstädt, Hermann; Kümpers, Philipp

    2016-01-01

    Microvascular barrier dysfunction plays a major role in the pathophysiology of acute kidney injury (AKI). Angiopoietin-1, the natural agonist ligand for the endothelial-specific Tie2 receptor, is a non-redundant endothelial survival and vascular stabilization factor. Here we evaluate the efficacy of a polyethylene glycol-clustered Tie2 agonist peptide, vasculotide (VT), to protect against endothelial-cell activation with subsequent microvascular dysfunction in a murine model of ischemic AKI. Renal ischemia reperfusion injury (IRI) was induced by clamping of the renal arteries for 35 minutes. Mice were treated with VT or PEGylated cysteine before IRI. Sham-operated animals served as time-matched controls. Treatment with VT significantly reduced transcapillary albumin flux and renal tissue edema after IRI. The protective effects of VT were associated with activation of Tie2 and stabilization of its downstream effector, VE-cadherin in renal vasculature. VT abolished the decline in renal tissue blood flow, attenuated the increase of serum creatinine and blood urea nitrogen after IRI, improved recovery of renal function and markedly reduced mortality compared to PEG [HR 0.14 (95% CI 0.05–0.78) P < 0.05]. VT is inexpensive to produce, chemically stable and unrelated to any Tie2 ligands. Thus, VT may represent a novel therapy to prevent AKI in patients. PMID:26911791

  7. Effects of nicotinic acetylcholine receptor agonists in assays of acute pain-stimulated and pain-depressed behaviors in rats.

    PubMed

    Freitas, Kelen C; Carroll, F Ivy; Negus, S Stevens

    2015-11-01

    Agonists at nicotinic acetylcholine receptors (nAChRs) constitute one drug class being evaluated as candidate analgesics. Previous preclinical studies have implicated α4β2 and α7 nAChRs as potential mediators of the antinociceptive effects of (–)-nicotine hydrogen tartrate (nicotine) and other nAChR agonists; however, these studies have relied exclusively on measures of pain-stimulated behavior, which can be defined as behaviors that increase in frequency, rate, or intensity after presentation of a noxious stimulus. Pain is also associated with depression of many behaviors, and drug effects can differ in assays of pain-stimulated versus pain-depressed behavior. Accordingly, this study compared the effects of nicotine, the selective α4/6β2 agonist 5-(123I)iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380), and the selective α7 agonist N-(3R)-1-azabicyclo(2.2.2)oct-3-yl-4-chlorobenzamide in assays of pain-stimulated and pain-depressed behavior in male Sprague-Dawley rats. Intraperitoneal injection of dilute lactic acid served as an acute noxious stimulus to either stimulate a stretching response or depress the operant responding, which is maintained by electrical brain stimulation in an intracranial self-stimulation (ICSS) procedure. Nicotine produced a dose-dependent, time-dependent, and mecamylamine-reversible blockade of both acid-stimulated stretching and acid-induced depression of ICSS. 5-I-A-85380 also blocked both acid-stimulated stretching and acid-induced depression of ICSS, whereas N-(3R)-1-azabicyclo(2.2.2)oct-3-yl-4-chlorobenzamide produced no effect in either procedure. Both nicotine and 5-I-A-85380 were ≥10-fold more potent in blocking the acid-induced depression of ICSS than in blocking the acid-induced stimulation of stretching. These results suggest that stimulation of α4β2 and/or α6β2 nAChRs may be especially effective to alleviate the signs of pain-related behavioral depression in rats; however, nonselective behavioral effects

  8. Acute Effects of Different Agonist and Antagonist Stretching Arrangements on Static and Dynamic Range of Motion

    PubMed Central

    Amiri-Khorasani, Mohammadtaghi; Kellis, Eleftherios

    2015-01-01

    Background: Traditionally, stretching exercises are considered as basic components of warm up aiming to prepare the musculoskeletal system for performance and to prevent injuries. Objectives: The purpose of this study was to examine the effects of different agonist and antagonist stretching arrangements within a pre-exercise warm-up on hip static (SROM) and dynamic range of motion (DROM). Materials and Methods: Sixty trained male subjects (Mean ± SD: height, 177.38 ± 6.92 cm; body mass, 68.4 ± 10.22 kg; age, 21.52 ± 1.17 years) volunteered to participate in this study. SROM was measured by V-sit test and DROM captured by a motion analysis system before and after (i) static stretching for both hip flexor and extensor muscles (SFSE), (ii) dynamic stretching for both hip flexor and extensor muscles (DFDE), (iii) static stretching for the hip flexors and dynamic stretching for hip extensors (SFDE), and (iv) dynamic stretching for the hip flexors and static stretching for hip extensors (DFSE). Results: DFSE showed a significantly higher increase in DROM and SROM than the remainder of the stretching protocols (P < 0.05). There were significant differences between DFDE with SFSE and SFDE (P < 0.05) and SFSE showed significant increase as compared to SFDE (P < 0.05). Conclusions: In conclusion, DFSE is probably the best stretching arrangement due to producing more post activation potentiation on agonist muscles and less muscle stiffness in antagonist muscles. PMID:26715975

  9. Diminished heart rate reactivity to acute psychological stress is associated with enhanced carotid intima-media thickness through adverse health behaviors.

    PubMed

    Ginty, Annie T; Williams, Sarah E; Jones, Alexander; Roseboom, Tessa J; Phillips, Anna C; Painter, Rebecca C; Carroll, Douglas; de Rooij, Susanne R

    2016-06-01

    Recent evidence demonstrates that individuals with low heart rate (HR) reactions to acute psychological stress are more likely to be obese or smokers. Smoking and obesity are established risk factors for increased carotid intima-media thickness (IMT). The aim of this study was to examine the potential pathways linking intima-media thickness, smoking, body mass index (BMI), and HR stress reactivity. A total of 552 participants, 47.6% male, M (SD) age = 58.3 (0.94) years, were exposed to three psychological stress tasks (Stroop, mirror drawing, and speech) preceded by a resting baseline period; HR was recorded throughout. HR reactivity was calculated as the average response across the three tasks minus average baseline HR. Smoking status, BMI, and IMT were determined by trained personnel. Controlling for important covariates (e.g., socioeconomic status), structural equation modeling revealed that BMI and smoking mediated the negative relationship between HR reactivity and IMT. The hypothesized model demonstrated a good overall fit to the data, χ(2) (8) = 0.692, p = .403; CFI = 1.00; TLI = 1.00 SRMR = .01; RMSEA < .001 (90% CI < 0.01-0.11). HR reactivity was negatively related to BMI (β = -.16) and smoking (β = -.18), and these in turn were positively associated with IMT (BMI: β = .10; smoking: β = .17). Diminished HR stress reactivity appears to be a marker for enlarged IMT and appears to be exerting its impact through already established risks. Future research should examine this relationship longitudinally and aim to intervene early. PMID:27005834

  10. Combined mitigation of the gastrointestinal and hematopoietic acute radiation syndromes by an LPA2 receptor-specific nonlipid agonist.

    PubMed

    Patil, Renukadevi; Szabó, Erzsébet; Fells, James I; Balogh, Andrea; Lim, Keng G; Fujiwara, Yuko; Norman, Derek D; Lee, Sue-Chin; Balazs, Louisa; Thomas, Fridtjof; Patil, Shivaputra; Emmons-Thompson, Karin; Boler, Alyssa; Strobos, Jur; McCool, Shannon W; Yates, C Ryan; Stabenow, Jennifer; Byrne, Gerrald I; Miller, Duane D; Tigyi, Gábor J

    2015-02-19

    Pharmacological mitigation of injuries caused by high-dose ionizing radiation is an unsolved medical problem. A specific nonlipid agonist of the type 2 G protein coupled receptor for lysophosphatidic acid (LPA2) 2-[4-(1,3-dioxo-1H,3H-benzoisoquinolin-2-yl)butylsulfamoyl]benzoic acid (DBIBB) when administered with a postirradiation delay of up to 72 hr reduced mortality of C57BL/6 mice but not LPA2 knockout mice. DBIBB mitigated the gastrointestinal radiation syndrome, increased intestinal crypt survival and enterocyte proliferation, and reduced apoptosis. DBIBB enhanced DNA repair by augmenting the resolution of γ-H2AX foci, increased clonogenic survival of irradiated IEC-6 cells, attenuated the radiation-induced death of human CD34(+) hematopoietic progenitors and enhanced the survival of the granulocyte/macrophage lineage. DBIBB also increased the survival of mice suffering from the hematopoietic acute radiation syndrome after total-body irradiation. DBIBB represents a drug candidate capable of mitigating acute radiation syndrome caused by high-dose γ-radiation to the hematopoietic and gastrointestinal system. PMID:25619933

  11. Pharmacological and pharmacokinetic characterization of the cannabinoid receptor 2 agonist, GW405833, utilizing rodent models of acute and chronic pain, anxiety, ataxia and catalepsy.

    PubMed

    Valenzano, Kenneth J; Tafesse, Laykea; Lee, Gary; Harrison, James E; Boulet, Jamie M; Gottshall, Susan L; Mark, Lilly; Pearson, Michelle S; Miller, Wendy; Shan, Shen; Rabadi, Leyana; Rotshteyn, Yakov; Chaffer, Suzanne M; Turchin, Paul I; Elsemore, David A; Toth, Mathew; Koetzner, Lee; Whiteside, Garth T

    2005-04-01

    To date, two cannabinoid receptors have been identified, CB1 and CB2. Activation of these receptors with non-selective cannabinoid receptor agonists reduces pain sensitivity in animals and humans. However, activation of CB1 receptors is also associated with central side effects, including ataxia and catalepsy. More recently, a role for selective CB2 agonists in pain modification has been demonstrated. GW405833, a selective CB2 agonist, was recently reported to partially reverse the inflammation and hyperalgesia in a rat model of acute inflammation. In the current report, we extend the characterization and therapeutic potential of this compound. For the first time, we show that GW405833 selectively binds both rat and human CB2 receptors with high affinity, where it acts as a partial agonist (approximately 50% reduction of forskolin-mediated cAMP production compared to the full cannabinoid agonist, CP55,940). We also report for the first time that intraperitoneal administration of GW405833 (0.3-100 mg/kg) to rats shows linear, dose-dependent increases in plasma levels and substantial penetration into the central nervous system. In addition, GW405833 (up to 30 mg/kg) elicits potent and efficacious antihyperalgesic effects in rodent models of neuropathic, incisional and chronic inflammatory pain, the first description of this compound in these models. In contrast, analgesia, sedation and catalepsy were not observed in this dose range, but were apparent at 100 mg/kg. Additionally, GW405833 was not antihyperalgesic against chronic inflammatory pain in CB2 knockout mice. These data support the tenet that selective CB2 receptor agonists have the potential to treat pain without eliciting the centrally-mediated side effects associated with non-selective cannabinoid agonists, and highlight the utility of GW405833 for the investigation of CB2 physiology. PMID:15814101

  12. The effect of intra-articular vanilloid receptor agonists on pain behavior measures in a murine model of acute monoarthritis

    PubMed Central

    Abdullah, Mishal; Mahowald, Maren L; Frizelle, Sandra P; Dorman, Christopher W; Funkenbusch, Sonia C; Krug, Hollis E

    2016-01-01

    Arthritis is the most common cause of disability in the US, and the primary manifestation of arthritis is joint pain that leads to progressive physical limitation, disability, morbidity, and increased health care utilization. Capsaicin (CAP) is a vanilloid agonist that causes substance P depletion by interacting with vanilloid receptor transient receptor potential V1 on small unmyelinated C fibers. It has been used topically for analgesia in osteoarthritis with variable success. Resiniferatoxin (RTX) is an ultra potent CAP analog. The aim of this study was to measure the analgesic effects of intra-articular (IA) administration of CAP and RTX in experimental acute inflammatory arthritis in mice. Evoked pain score (EPS) and a dynamic weight bearing (DWB) device were used to measure nociceptive behaviors in a murine model of acute inflammatory monoarthritis. A total of 56 C57B16 male mice underwent EPS and DWB testing – 24 nonarthritic controls and 32 mice with carrageenan-induced arthritis. The effects of pretreatment with 0.1% CAP, 0.0003% RTX, or 0.001% RTX were measured. Nociception was reproducibly demonstrated by increased EPS and reduced DWB measures in the affected limb of arthritic mice. Pretreatment with 0.001% RTX resulted in statistically significant improvement in EPS and DWB measures when compared with those observed in carrageenan-induced arthritis animals. Pretreatment with IA 0.0003% RTX and IA 0.01% CAP resulted in improvement in some but not all of these measures. The remaining 24 mice underwent evaluation following treatment with 0.1% CAP, 0.0003% RTX, or 0.001% RTX, and the results obtained were similar to that of naïve, nonarthritic mice. PMID:27574462

  13. The adenosine 2A receptor agonist GW328267C improves lung function after acute lung injury in rats.

    PubMed

    Folkesson, Hans G; Kuzenko, Stephanie R; Lipson, David A; Matthay, Michael A; Simmons, Mark A

    2012-08-01

    There is a significant unmet need for treatments of patients with acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS). The primary mechanism that leads to resolution of alveolar and pulmonary edema is active vectorial Na(+) and Cl(-) transport across the alveolar epithelium. Several studies have suggested a role for adenosine receptors in regulating this fluid transport in the lung. Furthermore, these studies point to the A(2A) subtype of adenosine receptor (A(2A)R) as playing a role to enhance fluid transport, suggesting that activation of the A(2A)R may enhance alveolar fluid clearance (AFC). The current studies test the potential therapeutic value of the A(2A)R agonist GW328267C to accelerate resolution of alveolar edema and ALI/ARDS in rats. GW328267C, at concentrations of 10(-5) M to 10(-3) M, instilled into the airspaces, increased AFC in control animals. GW328267C did not increase AFC beyond that produced by maximal β-adrenergic stimulation. The effect of GW328267C was inhibited by amiloride but was not affected by cystic fibrosis transmembrane conductance regulator inhibition. The drug was tested in three models of ALI, HCl instillation 1 h, LPS instillation 16 h, and live Escherichia coli instillation 2 h before GW328267C instillation. After either type of injury, GW328267C (10(-4) M) decreased pulmonary edema formation and restored AFC, measured 1 h after GW328267C instillation. These findings show that GW328267C has beneficial effects in experimental models of ALI and may be a useful agent for treating patients with ALI or prophylactically to prevent ALI. PMID:22659881

  14. The effect of intra-articular vanilloid receptor agonists on pain behavior measures in a murine model of acute monoarthritis.

    PubMed

    Abdullah, Mishal; Mahowald, Maren L; Frizelle, Sandra P; Dorman, Christopher W; Funkenbusch, Sonia C; Krug, Hollis E

    2016-01-01

    Arthritis is the most common cause of disability in the US, and the primary manifestation of arthritis is joint pain that leads to progressive physical limitation, disability, morbidity, and increased health care utilization. Capsaicin (CAP) is a vanilloid agonist that causes substance P depletion by interacting with vanilloid receptor transient receptor potential V1 on small unmyelinated C fibers. It has been used topically for analgesia in osteoarthritis with variable success. Resiniferatoxin (RTX) is an ultra potent CAP analog. The aim of this study was to measure the analgesic effects of intra-articular (IA) administration of CAP and RTX in experimental acute inflammatory arthritis in mice. Evoked pain score (EPS) and a dynamic weight bearing (DWB) device were used to measure nociceptive behaviors in a murine model of acute inflammatory monoarthritis. A total of 56 C57B16 male mice underwent EPS and DWB testing - 24 nonarthritic controls and 32 mice with carrageenan-induced arthritis. The effects of pretreatment with 0.1% CAP, 0.0003% RTX, or 0.001% RTX were measured. Nociception was reproducibly demonstrated by increased EPS and reduced DWB measures in the affected limb of arthritic mice. Pretreatment with 0.001% RTX resulted in statistically significant improvement in EPS and DWB measures when compared with those observed in carrageenan-induced arthritis animals. Pretreatment with IA 0.0003% RTX and IA 0.01% CAP resulted in improvement in some but not all of these measures. The remaining 24 mice underwent evaluation following treatment with 0.1% CAP, 0.0003% RTX, or 0.001% RTX, and the results obtained were similar to that of naïve, nonarthritic mice. PMID:27574462

  15. Bifunctional Peptide-Based Opioid Agonist-Nociceptin Antagonist Ligands for Dual Treatment of Acute and Neuropathic Pain.

    PubMed

    Guillemyn, Karel; Starnowska, Joanna; Lagard, Camille; Dyniewicz, Jolanta; Rojewska, Ewelina; Mika, Joanna; Chung, Nga N; Utard, Valérie; Kosson, Piotr; Lipkowski, Andrzej W; Chevillard, Lucie; Arranz-Gibert, Pol; Teixidó, Meritxell; Megarbane, Bruno; Tourwé, Dirk; Simonin, Frédéric; Przewlocka, Barbara; Schiller, Peter W; Ballet, Steven

    2016-04-28

    Herein, the opioid pharmacophore H-Dmt-d-Arg-Aba-β-Ala-NH2 (7) was linked to peptide ligands for the nociceptin receptor. Combination of 7 and NOP ligands (e.g., H-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2) led to binding affinities in the low nanomolar domain. In vitro, the hybrids behaved as agonists at the opioid receptors and antagonists at the nociceptin receptor. Intravenous administration of hybrid 13a (H-Dmt-d-Arg-Aba-β-Ala-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2) to mice resulted in potent and long lasting antinociception in the tail-flick test, indicating that 13a was able to permeate the BBB. This was further supported by a cell-based BBB model. All hybrids alleviated allodynia and hyperalgesia in neuropathic pain models. Especially with respect to hyperalgesia, they showed to be more effective than the parent compounds. Hybrid 13a did not result in significant respiratory depression, in contrast to an equipotent analgesic dose of morphine. These hybrids hence represent a promising avenue toward analgesics for the dual treatment of acute and neuropathic pain. PMID:27035422

  16. Baclofen, a GABABR Agonist, Ameliorates Immune-Complex Mediated Acute Lung Injury by Modulating Pro-Inflammatory Mediators

    PubMed Central

    Jin, Shunying; Merchant, Michael L.; Ritzenthaler, Jeffrey D.; McLeish, Kenneth R.; Lederer, Eleanor D.; Torres-Gonzalez, Edilson; Fraig, Mostafa; Barati, Michelle T.; Lentsch, Alex B.; Roman, Jesse; Klein, Jon B.; Rane, Madhavi J.

    2015-01-01

    Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a

  17. Disorders of diminished motivation.

    PubMed

    Marin, Robert S; Wilkosz, Patricia A

    2005-01-01

    Disorders of diminished motivation occur frequently in individuals with traumatic brain injury. Motivation is an ever-present, essential determinant of behavior and adaptation. The major syndromes of diminished motivation are apathy, abulia, and akinetic mutism. Depending on their etiology, disorders of diminished motivation may be a primary clinical disturbance, a symptom of another disorder, or a coexisting second disorder. This article presents a biopsychosocial approach to the assessment and management of motivational impairments in patients with traumatic brain injury. The recognition and differential diagnosis of disorders of diminished motivation, as well as the mechanism and clinical pathogenesis, are discussed. PMID:16030444

  18. Treatment with Adenosine Receptor Agonist Ameliorates Pain Induced by Acute and Chronic Inflammation.

    PubMed

    Montes, Guilherme Carneiro; Hammes, Nathalia; da Rocha, Miguel Divino; Montagnoli, Tadeu Lima; Fraga, Carlos Alberto Manssour; Barreiro, Eliezer J; Sudo, Roberto Takashi; Zapata-Sudo, Gisele

    2016-08-01

    Rheumatoid arthritis is an inflammatory autoimmune condition, and tumor necrosis factor-α (TNF-α) plays an important role in its pathophysiology. In vitro, (E)-N'-(3,4-dimethoxybenzylidene)-N-methylbenzohydrazide (LASSBio-1359) has exhibited anti-TNF-α properties, and in vivo these effects are mediated via activation of adenosine receptor. This work investigates the antinociceptive action of LASSBio-1359 in murine models of acute and chronic inflammatory pain. Male mice received an intraperitoneal injection of LASSBio-1359 and then were evaluated in formalin- and carrageenan-induced paw edema assays. Complete Freund's adjuvant (CFA) was used to induce a mouse model of monoarthritis. These mice were treated with LASSBio-1359 by oral gavage to evaluate thermal and mechanical hyperalgesia. TNF-α and inducible nitric oxide synthase (iNOS) expression as well as histologic features were analyzed. The time of reactivity to formalin in the neurogenic phase was reduced from 56.3 ± 6.0 seconds to 32.7 ± 2.2 seconds and 23.8 ± 2.6 seconds after treatment with LASSBio-1359 at doses of 10 mg/kg and 20 mg/kg, respectively. A reversal of the antinociceptive action of LASSBio-1359 was observed in the inflammatory phase after treatment with ZM 241385 [4-(2-[7-amino-2-(2-furly)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol], an adenosine A2A antagonist. Carrageenan-induced thermal and mechanical hyperalgesia were reduced after treatment with LASSBio-1359. Similarly, CFA-induced thermal and mechanical hyperalgesia were reduced after treatment with LASSBio-1359 (25 and 50 mg/kg). Levels of TNF-α and iNOS expression increased in the monoarthritis model and were normalized in animals treated with LASSBio-1359, which was also associated with beneficial effects in the histologic analysis. These results suggest that LASSBio-1359 represents an alternative treatment of monoarthritis. PMID:27194479

  19. The Diminishing Apple.

    ERIC Educational Resources Information Center

    Kelly, Catherine

    2002-01-01

    Introduces the Apple Ocean activity which teaches about the diminishing natural resources of the earth including drinkable water, habitable land, and productive areas while working with fractions, ratios, and proportions. (YDS)

  20. Central role of intracellular calcium stores in acute flow- and agonist-evoked endothelial nitric oxide release.

    PubMed

    Hutcheson, I R; Griffith, T M

    1997-09-01

    isolated aortic ring preparations were markedly attenuated by pretreatment with CPA and TSG, but were unaffected by ryanodine. Ryanodine and CPA caused only a small attenuation of endothelium-independent relaxations to sodium nitroprusside (0.001-10 microM), whereas TSG had no effect. 7. We conclude that release of Ca2+ from CPA- and TSG-sensitive endothelial stores is necessary for NO release evoked by acute flow changes and agonists in rabbit abdominal aorta. Ca(2+)-induced Ca2+ release via the ryanodine-sensitive release channel plays no direct role in these responses. Free radical interactions may complicate the interpretation of findings in cascade bioassay compared with isolated ring preparations. PMID:9298537

  1. Distinct inhibition of acute cocaine-stimulated motor activity following microinjection of a group III metabotropic glutamate receptor agonist into the dorsal striatum of rats.

    PubMed

    Mao, L; Wang, J Q

    2000-09-01

    Group III metabotropic glutamate receptors (mGluRs) are negatively coupled to adenylate cyclase through G-proteins. Activation of this group of mGluRs shows an inhibition of dopaminergic transmission in the forebrain. To define the role of striatal group III mGluRs in the regulation of basal and dopamine-stimulated motor behavior, the recently developed agonist and antagonist relatively selective for group III mGluRs were utilized to pharmacologically enhance and reduce group III mGluR glutamatergic tone in the dorsal striatum of chronically cannulated rats. Bilateral injections of a group III agonist, L-2-amino-4-phosphonobutyrate (L-AP4), did not alter basal levels of motor activity at three doses surveyed (1, 10, and 100 nmol). Neither did intracaudate injection of a group III antagonist, alpha-methyl-4-phosphonophenylglycine (MPPG), at 10, 30, and 100 nmol. However, pretreatment with L-AP4 (10 and 100 nmol) dose dependently blocked hyperlocomotion induced by acute injection of cocaine (20 mg/kg, i.p.), amphetamine (2.5 mg/kg, i.p.), or apomorphine (1 mg/kg, s.c.). The behavioral activity induced by cocaine was much more sensitive to L-AP4 than that induced by amphetamine and apomorphine. At 100 nmol, L-AP4 completely blocked cocaine effect whereas amphetamine- and apomorphine-stimulated behaviors were blocked only by 28% and 31%, respectively. The blocking effect of L-AP4 on cocaine action was reversed by pretreatment with MPPG. MPPG itself did not modify behavioral responses to cocaine, amphetamine, or apomorphine. These data indicate that the glutamatergic tone on the group III mGluRs is not active in the regulation of basal and acute dopamine-stimulated motor activity. However, enhanced group III mGluR glutamatergic transmission by an exogenous ligand is capable of suppressing behavioral responses to acute exposure of dopamine stimulants. PMID:11113488

  2. Cannabinoid exposure during zebra finch sensorimotor vocal learning persistently alters expression of endocannabinoid signaling elements and acute agonist responsiveness

    PubMed Central

    2011-01-01

    Background Previously we have found that cannabinoid treatment of zebra finches during sensorimotor stages of vocal development alters song patterns produced in adulthood. Such persistently altered behavior must be attributable to changes in physiological substrates responsible for song. We are currently working to identify the nature of such physiological changes, and to understand how they contribute to altered vocal learning. One possibility is that developmental agonist exposure results in altered expression of elements of endocannabinoid signaling systems. To test this hypothesis we have studied effects of the potent cannabinoid receptor agonist WIN55212-2 (WIN) on endocannabinoid levels and densities of CB1 immunostaining in zebra finch brain. Results We found that late postnatal WIN treatment caused a long-term global disregulation of both levels of the endocannabinoid, 2-arachidonyl glycerol (2-AG) and densities of CB1 immunostaining across brain regions, while repeated cannabinoid treatment in adults produced few long-term changes in the endogenous cannabinoid system. Conclusions Our findings indicate that the zebra finch endocannabinoid system is particularly sensitive to exogenous agonist exposure during the critical period of song learning and provide insight into susceptible brain areas. PMID:21211022

  3. The pharmacological profile and clinical prospects of the oral 5-HT1F receptor agonist lasmiditan in the acute treatment of migraine

    PubMed Central

    Israel, Heike; Neeb, Lars

    2015-01-01

    More than 20 years have passed without the launch of a new substance class for acute migraine therapy. Triptans were the latest class of substances which successfully passed all developmental stages with a significant antimigraine efficacy and a sufficient safety profile. New drugs with a better adverse event profile and at least similar efficacy are needed for migraine subjects who cannot tolerate triptans for attack treatment. Lasmiditan is a novel highly specific 5-HT1F receptor agonist currently in clinical trials for acute migraine therapy and devoid of vasoconstriction in coronary arteries as determined in a surrogate assay. In both phase II randomized, placebo-controlled trials in acute migraine the primary endpoint was met. For the intravenous formulation a clear dose-dependent effect on headaches could be determined. Lasmiditan tablets in doses of 50–400 mg show significant headache relief after 2 hours compared with placebo and improved accompanying symptoms. This substance is chemically clearly different from other antimigraine drugs, which is also reflected by its dose-dependent adverse event profile chiefly including dizziness, vertigo, paresthesia and fatigue. Adverse events are usually linked to the central nervous system. Future phase III clinical trials with an active triptan comparator or in a preferential trial design will allow a better comparison of lasmiditan and triptans. They will also determine whether lasmiditan will become available to the migraine patient. PMID:25584073

  4. Acute pancreatitis decreases the sensitivity of pancreas-projecting dorsal motor nucleus of the vagus neurones to group II metabotropic glutamate receptor agonists in rats

    PubMed Central

    Babic, Tanja; Travagli, R Alberto

    2014-01-01

    Recent studies have shown that pancreatic exocrine secretions (PES) are modulated by dorsal motor nucleus of the vagus (DMV) neurones, whose activity is finely tuned by GABAergic and glutamatergic synaptic inputs. Group II metabotropic glutamate receptors (mGluR) decrease synaptic transmission to pancreas-projecting DMV neurones and increase PES. In the present study, we used a combination of in vivo and in vitro approaches aimed at characterising the effects of caerulein-induced acute pancreatitis (AP) on the vagal neurocircuitry modulating pancreatic functions. In control rats, microinjection of bicuculline into the DMV increased PES, whereas microinjections of kynurenic acid had no effect. Conversely, in AP rats, microinjection of bicuculline had no effect, whereas kynurenic acid decreased PES. DMV microinjections of the group II mGluR agonist APDC and whole cell recordings of excitatory currents in identified pancreas-projecting DMV neurones showed a reduced functional response in AP rats compared to controls. Moreover, these changes persisted up to 3 weeks following the induction of AP. These data demonstrate that AP increases the excitatory input to pancreas-projecting DMV neurones by decreasing the response of excitatory synaptic terminals to group II mGluR agonist. PMID:24445314

  5. Antidepressant-like activity of EMD 386088, a 5-HT6 receptor partial agonist, following systemic acute and chronic administration to rats.

    PubMed

    Jastrzębska-Więsek, Magdalena; Siwek, Agata; Partyka, Anna; Szewczyk, Bernadeta; Sowa-Kućma, Magdalena; Wasik, Anna; Kołaczkowski, Marcin; Wesołowska, Anna

    2015-10-01

    The study was designed to examine the potency of EMD 386088, a 5-HT6 receptor partial agonist, to exert antidepressant-like properties in animal models following acute and chronic intraperitoneal administration to rats. The modified rat forced swim test (FST) was utilized to examine a potential antidepressant effect of EMD 386088 after acute treatment (30 min before the test) and three times in a 24-h administration scheme (24 h, 5 h, and 30 min prior to the FST). The olfactory bulbectomy (OB) model was used to assess its antidepressant-like properties after chronic treatment (the drug was administered once daily for 14 days). EMD 386088 showed an antidepressant-like effect in all conducted tests. Its activity in FST after its acute administration (5 mg/kg) was blocked by the selective 5-HT6 receptor antagonist SB 271046. The obtained results seem to be specific, as there was no observed locomotor stimulation by the drug given at a lower/antidepressant dose. In the three times in the 24-h treatment scheme, EMD 386088 (2.5 mg/kg) exerted antidepressant properties in FST as well as increased locomotor activity in the open field test. Chronic administration of EMD 386088 (2.5 mg/kg) significantly improved the learning deficit in OB rats without affecting performance in Sham-operated (SH) animals in the passive avoidance test, and reduced OB-related rats' locomotor hyperactivity, but did not change the number of rearing + peeping episodes. The obtained findings suggest that EMD 386088 produces antidepressant-like activity after systemic acute and chronic administration which may result from direct stimulation of 5-HT6 receptors. PMID:26077660

  6. Differential Effects of Acute and Chronic Treatment with the α2-Adrenergic Agonist, Lofexidine, on Cocaine Self-Administration in Rhesus Monkeys

    PubMed Central

    Kohut, Stephen J.; Fivel, Peter A.; Mello, Nancy K.

    2013-01-01

    Background Lofexidine, an α2-adrenergic agonist, is being investigated as a treatment for reducing opioid withdrawal symptoms and blocking stress-induced relapse to cocaine taking. Opioid abusers are often polydrug abusers and cocaine is one frequent drug of choice. However, relatively little is known about lofexidine interactions with cocaine. The present study investigated the effects of acute and chronic treatment with lofexidine in a pre-clinical model of cocaine self-administration. Methods Male rhesus monkeys were trained to respond for food (1 g) and cocaine (0.01 mg/kg/inj) under a fixed ratio 30 (FR30) or a second order FR2 (VR16:S) schedule of reinforcement. Systematic observations of behavior were conducted during and after chronic treatment with lofexidine. Results Acute treatment with lofexidine (0.1 or 0.32 mg/kg, IM) significantly reduced cocaine self-administration but responding for food was less effected. In contrast, chronic treatment (7–10 days) with lofexidine (0.1–0.32 mg/kg/hr, IV) produced a leftward shift in the cocaine self-administration dose-effect curve, but had no effect on food-maintained responding. Lofexidine did not produce any observable side effects during or after treatment. Conclusions Lofexidine potentiated cocaine’s reinforcing effects during chronic treatment. These data suggest that it is unlikely to be effective as a cocaine abuse medication and could enhance risk for cocaine abuse in polydrug abusers. PMID:23998378

  7. Combined Mitigation of the Gastrointestinal and Hematopoietic Acute Radiation Syndromes by a Novel LPA2 Receptor-specific Non-lipid Agonist

    PubMed Central

    Patil, Renukadevi; Szabó, Erzsébet; Fells, James I.; Balogh, Andrea; Lim, Keng G.; Fujiwara, Yuko; Norman, Derek B.; Lee, Sue-Chin; Balazs, Louisa; Thomas, Fridtjof; Patil, Shivaputra; Emmons-Thompson, Karin; Boler, Alyssa; Strobos, Jur; McCool, Shannon W.; Yates, C. Ryan; Stabenow, Jennifer; Byrne, Gerrald I.; Miller, Duane D.; Tigyi, Gábor J.

    2015-01-01

    Pharmacological mitigation of injuries caused by high-dose ionizing radiation is an unsolved medical problem. A specific nonlipid agonists of the type 2 GPCR for lysophosphatidic acid (LPA2) 2-[4-(1,3-Dioxo-1H,3H-benzoisoquinolin-2-yl)butylsulfamoyl]benzoic acid (DBIBB) when administered with a postirradiation delay up to 72 hours reduced mortality of C57BL/6 mice but not in LPA2 KO mice. DBIBB mitigated the gastrointestinal radiation syndrome, increased intestinal crypt survival and enterocyte proliferation, and reduced apoptosis. DBIBB enhanced DNA repair by augmenting the resolution of γ–H2AX foci, increased clonogenic survival of irradiated IEC-6 cells, attenuated the radiation-induced death of human CD34+ hematopoietic progenitors and enhanced the survival of the granulocyte/macrophage lineage. DBIBB also increased the survival of mice suffering of the hematopoietic acute radiation syndrome after total body irradiation. DBIBB represents the first drug candidate capable of mitigating acute radiation syndrome caused by high-dose γ-radiation to the hematopoietic and gastrointestinal system. PMID:25619933

  8. Metabolomics analysis reveals elevation of 3-indoxyl sulfate in plasma and brain during chemically-induced acute kidney injury in mice: Investigation of nicotinic acid receptor agonists

    SciTech Connect

    Zgoda-Pols, Joanna R.; Chowdhury, Swapan; Wirth, Mark; Milburn, Michael V.; Alexander, Danny C.; Alton, Kevin B.

    2011-08-15

    An investigative renal toxicity study using metabolomics was conducted with a potent nicotinic acid receptor (NAR) agonist, SCH 900424. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were used to identify small molecule biomarkers of acute kidney injury (AKI) that could aid in a better mechanistic understanding of SCH 900424-induced AKI in mice. The metabolomics study revealed 3-indoxyl sulfate (3IS) as a more sensitive marker of SCH 900424-induced renal toxicity than creatinine or urea. An LC-MS assay for quantitative determination of 3IS in mouse matrices was also developed. Following treatment with SCH 900424, 3IS levels were markedly increased in murine plasma and brain, thereby potentially contributing to renal- and central nervous system (CNS)-related rapid onset of toxicities. Furthermore, significant decrease in urinary excretion of 3IS in those animals due to compromised renal function may be associated with the elevation of 3IS in plasma and brain. These data suggest that 3IS has a potential to be a marker of renal and CNS toxicities during chemically-induced AKI in mice. In addition, based on the metabolomic analysis other statistically significant plasma markers including p-cresol-sulfate and tryptophan catabolites (kynurenate, kynurenine, 3-indole-lactate) might be of toxicological importance but have not been studied in detail. This comprehensive approach that includes untargeted metabolomic and targeted bioanalytical sample analyses could be used to investigate toxicity of other compounds that pose preclinical or clinical development challenges in a pharmaceutical discovery and development. - Research Highlights: > Nicotinic acid receptor agonist, SCH 900424, caused acute kidney injury in mice. > MS-based metabolomics was conducted to identify potential small molecule markers of renal toxicity. > 3-indoxyl-sulfate was found to be as a more sensitive marker of renal toxicity than creatinine

  9. The Toll-Like Receptor 5 Agonist Entolimod Mitigates Lethal Acute Radiation Syndrome in Non-Human Primates.

    PubMed

    Krivokrysenko, Vadim I; Toshkov, Ilia A; Gleiberman, Anatoli S; Krasnov, Peter; Shyshynova, Inna; Bespalov, Ivan; Maitra, Ratan K; Narizhneva, Natalya V; Singh, Vijay K; Whitnall, Mark H; Purmal, Andrei A; Shakhov, Alexander N; Gudkov, Andrei V; Feinstein, Elena

    2015-01-01

    There are currently no approved medical radiation countermeasures (MRC) to reduce the lethality of high-dose total body ionizing irradiation expected in nuclear emergencies. An ideal MRC would be effective even when administered well after radiation exposure and would counteract the effects of irradiation on the hematopoietic system and gastrointestinal tract that contribute to its lethality. Entolimod is a Toll-like receptor 5 agonist with demonstrated radioprotective/mitigative activity in rodents and radioprotective activity in non-human primates. Here, we report data from several exploratory studies conducted in lethally irradiated non-human primates (rhesus macaques) treated with a single intramuscular injection of entolimod (in the absence of intensive individualized supportive care) administered in a mitigative regimen, 1-48 hours after irradiation. Following exposure to LD50-70/40 of radiation, injection of efficacious doses of entolimod administered as late as 25 hours thereafter reduced the risk of mortality 2-3-fold, providing a statistically significant (P<0.01) absolute survival advantage of 40-60% compared to vehicle treatment. Similar magnitude of survival improvement was also achieved with drug delivered 48 hours after irradiation. Improved survival was accompanied by predominantly significant (P<0.05) effects of entolimod administration on accelerated morphological recovery of hematopoietic and immune system organs, decreased severity and duration of thrombocytopenia, anemia and neutropenia, and increased clonogenic potential of the bone marrow compared to control irradiated animals. Entolimod treatment also led to reduced apoptosis and accelerated crypt regeneration in the gastrointestinal tract. Together, these data indicate that entolimod is a highly promising potential life-saving treatment for victims of radiation disasters. PMID:26367124

  10. The Toll-Like Receptor 5 Agonist Entolimod Mitigates Lethal Acute Radiation Syndrome in Non-Human Primates

    PubMed Central

    Krivokrysenko, Vadim I.; Toshkov, Ilia A.; Gleiberman, Anatoli S.; Krasnov, Peter; Shyshynova, Inna; Bespalov, Ivan; Maitra, Ratan K.; Narizhneva, Natalya V.; Singh, Vijay K.; Whitnall, Mark H.; Purmal, Andrei A.; Shakhov, Alexander N.; Gudkov, Andrei V.; Feinstein, Elena

    2015-01-01

    There are currently no approved medical radiation countermeasures (MRC) to reduce the lethality of high-dose total body ionizing irradiation expected in nuclear emergencies. An ideal MRC would be effective even when administered well after radiation exposure and would counteract the effects of irradiation on the hematopoietic system and gastrointestinal tract that contribute to its lethality. Entolimod is a Toll-like receptor 5 agonist with demonstrated radioprotective/mitigative activity in rodents and radioprotective activity in non-human primates. Here, we report data from several exploratory studies conducted in lethally irradiated non-human primates (rhesus macaques) treated with a single intramuscular injection of entolimod (in the absence of intensive individualized supportive care) administered in a mitigative regimen, 1–48 hours after irradiation. Following exposure to LD50-70/40 of radiation, injection of efficacious doses of entolimod administered as late as 25 hours thereafter reduced the risk of mortality 2-3-fold, providing a statistically significant (P<0.01) absolute survival advantage of 40–60% compared to vehicle treatment. Similar magnitude of survival improvement was also achieved with drug delivered 48 hours after irradiation. Improved survival was accompanied by predominantly significant (P<0.05) effects of entolimod administration on accelerated morphological recovery of hematopoietic and immune system organs, decreased severity and duration of thrombocytopenia, anemia and neutropenia, and increased clonogenic potential of the bone marrow compared to control irradiated animals. Entolimod treatment also led to reduced apoptosis and accelerated crypt regeneration in the gastrointestinal tract. Together, these data indicate that entolimod is a highly promising potential life-saving treatment for victims of radiation disasters. PMID:26367124

  11. Effect of intravenous β-2 agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): a multicentre, randomised controlled trial

    PubMed Central

    Smith, Fang Gao; Perkins, Gavin D; Gates, Simon; Young, Duncan; McAuley, Daniel F; Tunnicliffe, William; Khan, Zahid; Lamb, Sarah E

    2012-01-01

    Summary Background In a previous randomised controlled phase 2 trial, intravenous infusion of salbutamol for up to 7 days in patients with acute respiratory distress syndrome (ARDS) reduced extravascular lung water and plateau airway pressure. We assessed the effects of this intervention on mortality in patients with ARDS. Methods We did a multicentre, placebo-controlled, parallel-group, randomised trial at 46 UK intensive-care units between December, 2006, and March, 2010. Intubated and mechanically ventilated patients (aged ≥16 years) within 72 h of ARDS onset were randomly assigned to receive either salbutamol (15 μg/kg ideal bodyweight per h) or placebo for up to 7 days. Randomisation was done by a central telephone or web-based randomisation service with minmisation by centre, pressure of arterial oxygen to fractional inspired oxygen concentration (PaO2/FIO2) ratio, and age. All participants, caregivers, and investigators were masked to group allocation. The primary outcome was death within 28 days of randomisation. Analysis was by intention-to-treat. This trial is registered, ISRCTN38366450 and EudraCT number 2006-002647-86. Findings We randomly assigned 162 patients to the salbutamol group and 164 to the placebo group. One patient in each group withdrew consent. Recruitment was stopped after the second interim analysis because of safety concerns. Salbutamol increased 28-day mortality (55 [34%] of 161 patients died in the salbutamol group vs 38 (23%) of 163 in the placebo group; risk ratio [RR] 1·47, 95% CI 1·03–2·08). Interpretation Treatment with intravenous salbutamol early in the course of ARDS was poorly tolerated. Treatment is unlikely to be beneficial, and could worsen outcomes. Routine use of β-2 agonist treatment in ventilated patients with this disorder cannot be recommended. Funding UK Medical Research Council, UK Department of Health, UK Intensive Care Foundation. PMID:22166903

  12. Prevention and Mitigation of Acute Radiation Syndrome in Mice by Synthetic Lipopeptide Agonists of Toll-Like Receptor 2 (TLR2)

    PubMed Central

    Shakhov, Alexander N.; Singh, Vijay K.; Bone, Frederick; Cheney, Alec; Kononov, Yevgeniy; Krasnov, Peter; Bratanova-Toshkova, Troitza K.; Shakhova, Vera V.; Young, Jason; Weil, Michael M.; Panoskaltsis-Mortari, Angela; Orschell, Christie M.; Baker, Patricia S.; Gudkov, Andrei; Feinstein, Elena

    2012-01-01

    Bacterial lipoproteins (BLP) induce innate immune responses in mammals by activating heterodimeric receptor complexes containing Toll-like receptor 2 (TLR2). TLR2 signaling results in nuclear factor-kappaB (NF-κB)-dependent upregulation of anti-apoptotic factors, anti-oxidants and cytokines, all of which have been implicated in radiation protection. Here we demonstrate that synthetic lipopeptides (sLP) that mimic the structure of naturally occurring mycoplasmal BLP significantly increase mouse survival following lethal total body irradiation (TBI) when administered between 48 hours before and 24 hours after irradiation. The TBI dose ranges against which sLP are effective indicate that sLP primarily impact the hematopoietic (HP) component of acute radiation syndrome. Indeed, sLP treatment accelerated recovery of bone marrow (BM) and spleen cellularity and ameliorated thrombocytopenia of irradiated mice. sLP did not improve survival of irradiated TLR2-knockout mice, confirming that sLP-mediated radioprotection requires TLR2. However, sLP was radioprotective in chimeric mice containing TLR2-null BM on a wild type background, indicating that radioprotection of the HP system by sLP is, at least in part, indirect and initiated in non-BM cells. sLP injection resulted in strong transient induction of multiple cytokines with known roles in hematopoiesis, including granulocyte colony-stimulating factor (G-CSF), keratinocyte chemoattractant (KC) and interleukin-6 (IL-6). sLP-induced cytokines, particularly G-CSF, are likely mediators of the radioprotective/mitigative activity of sLP. This study illustrates the strong potential of LP-based TLR2 agonists for anti-radiation prophylaxis and therapy in defense and medical scenarios. PMID:22479357

  13. Wastewater-based epidemiological evaluation of the effect of air pollution on short-acting beta-agonist consumption for acute asthma treatment.

    PubMed

    Fattore, Elena; Davoli, Enrico; Castiglioni, Sara; Bosetti, Cristina; Re Depaolini, Andrea; Marzona, Irene; Zuccato, Ettore; Fanelli, Roberto

    2016-10-01

    Asthma, one of the most common chronic diseases in the world and a leading cause of hospitalization among children, has been associated with outdoor air pollution. We applied the wastewater-based epidemiology (WBE) approach to study the association between the use of salbutamol, a short-acting beta-agonist used to treat acute bronchospasm, and air pollution in the population of Milan, Italy. Composite 24-h samples of untreated wastewater were collected daily and analyzed for human metabolic residues of salbutamol by liquid chromatography tandem mass spectrometry. Corresponding daily outdoor concentrations of particular matter up to 10µm (PM10) and 2.5µm (PM2.5) in aerodynamic diameter, nitrogen dioxide, ozone, sulfur dioxide, and benzene were collected from the public air monitoring network. Associations at different lag times (0-10 days) were assessed by a log-linear Poisson regression model. We found significant direct associations between defined daily doses (DDD) of salbutamol and mean daily concentrations of PM10 and PM2.5 up to nine days of lag time. The highest rate ratio, and 95% confidence interval (CI), of DDD of salbutamol was 1.06 (95% CI: 1.02-1.10) and 1.07 (95% CI: 1.02-1.12) at seven days of lag time and for an increase of 10 μg/m(3) of PM10 and PM2.5, respectively. Reducing the mean daily PM10 concentration in Milan from 50 to 30μg/m(3) means that 852 (95% CI: 483-1504) daily doses of salbutamol per day would not be used. These results confirm the association between asthma and outdoor PM10 and PM2.5 and prove the potential of the WBE approach to quantitatively estimate the relation between environmental exposures and diseases. PMID:27281687

  14. Sociable Sequences and Diminishing Functions.

    ERIC Educational Resources Information Center

    Sprows, David

    1989-01-01

    A FORTRAN program is provided for use with computer projects for a course in number theory. Uses diminishing functions and the speed of the computer to quickly determine possible solutions to problems. (MVL)

  15. Diminishing Returns in Humanities Research

    ERIC Educational Resources Information Center

    Bauerlein, Mark

    2009-01-01

    The author discusses the shift from criticism-as-explanation to criticism-as-performance that has taken place in literary criticism over the past five decades, and the resultant surge in published offerings to what has become a diminishing audience. The question of supersaturation applies to the institutions that demand and reward humanities…

  16. Diminishing Marginal Utility in Economics Textbooks

    ERIC Educational Resources Information Center

    Dittmer, Timothy

    2005-01-01

    Many introductory microeconomics textbook authors derive the law of demand from the assumption of diminishing marginal utility. Authors of intermediate and graduate textbooks derive demand from diminishing marginal rate of substitution and ordinal preferences. These approaches are not interchangeable; diminishing marginal utility for all goods is…

  17. Acute, but not repeated, administration of the neurotensin NTS1 receptor agonist PD149163 decreases conditioned footshock-induced ultrasonic vocalizations in rats

    PubMed Central

    Prus, Adam J.; Hillhouse, Todd M.; LaCrosse, Amber L.

    2014-01-01

    Neurotensin is an endogenous neuropeptide that has significant interactions with monoamine neurotransmitter systems. To date, neurotensin NTS1 receptor agonists, such as PD149163, have been primarily evaluated for the treatment for schizophrenia, drug addiction, and pain. Recently, PD149163 was found to attenuate fear-potentiated startle in rats, an experimental procedure used for screening anxiolytic drugs. The present study sought to extend these findings through testing PD149163 in a conditioned footshock-induced ultrasonic vocalization (USV) model. Conditioning was conducted in Male Wistar rats using chambers equipped with shock grid floors and an ultrasonic vocalization detector. PD149163 and the 5-HT1A receptor partial agonist buspirone produced a statistically significant reduction of 22 kHz USV counts. The typical antipsychotic haloperidol also reduced 22 kHz USV counts, but did so at cataleptic doses. Ten days of repeated administration of PD149163 abolished the inhibitory effects of PD149163 on 22 kHz USVs. These findings further support an anxiolytic profile for PD149163. However, tolerance to these effects may limit the utility of these drugs for the treatment of anxiety. PMID:24275076

  18. Role of an Indole-Thiazolidine Molecule PPAR Pan-Agonist and COX Inhibitor on Inflammation and Microcirculatory Damage in Acute Gastric Lesions

    PubMed Central

    Santin, José Roberto; Daufenback Machado, Isabel; Rodrigues, Stephen F. P.; Teixeira, Simone; Muscará, Marcelo N.; Lins Galdino, Suely; da Rocha Pitta, Ivan; Farsky, Sandra H. P.

    2013-01-01

    The present study aimed to show the in vivo mechanisms of action of an indole-thiazolidine molecule peroxisome-proliferator activated receptor pan-agonist (PPAR pan) and cyclooxygenase (COX) inhibitor, LYSO-7, in an ethanol/HCl-induced (Et/HCl) gastric lesion model. Swiss male mice were treated with vehicle, LYSO-7 or Bezafibrate (p.o.) 1 hour before oral administration of Et/HCl (60%/0.03M). In another set of assays, animals were injected i.p. with an anti-granulocyte antibody, GW9962 or L-NG-nitroarginine methyl ester (L-NAME) before treatment. One hour after Et/HCl administration, neutrophils were quantified in the blood and bone marrow and the gastric microcirculatory network was studied in situ. The gastric tissue was used to quantify the percentage of damaged area, as well as myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) protein and PPARγ protein and gene expression. Acid secretion was evaluated by the pylorus ligation model. LYSO-7 or Bezafibrate treatment reduced the necrotic area. LYSO-7 treatment enhanced PPARγ gene and protein expression in the stomach, and impaired local neutrophil influx and stasis of the microcirculatory network caused by Et/HCl administration. The effect seemed to be due to PPARγ agonist activity, as the LYSO-7 effect was abolished in GW9962 pre-treated mice. The reversal of microcirculatory stasis, but not neutrophil influx, was mediated by nitric oxide (NO), as L-NAME pre-treatment abolished the LYSO-7-mediated reestablishment of microcirculatory blood flow. This effect may depend on enhanced eNOS protein expression in injured gastric tissue. The pH and concentration of H+ in the stomach were not modified by LYSO-7 treatment. In addition, LYSO-7 may induce less toxicity, as 28 days of oral treatment did not induce weight loss, as detected in pioglitazone treated mice. Thus, we show that LYSO-7 may be an effective treatment for gastric lesions by controlling neutrophil

  19. Role of an indole-thiazolidine molecule PPAR pan-agonist and COX inhibitor on inflammation and microcirculatory damage in acute gastric lesions.

    PubMed

    Santin, José Roberto; Daufenback Machado, Isabel; Rodrigues, Stephen F P; Teixeira, Simone; Muscará, Marcelo N; Lins Galdino, Suely; da Rocha Pitta, Ivan; Farsky, Sandra H P

    2013-01-01

    The present study aimed to show the in vivo mechanisms of action of an indole-thiazolidine molecule peroxisome-proliferator activated receptor pan-agonist (PPAR pan) and cyclooxygenase (COX) inhibitor, LYSO-7, in an ethanol/HCl-induced (Et/HCl) gastric lesion model. Swiss male mice were treated with vehicle, LYSO-7 or Bezafibrate (p.o.) 1 hour before oral administration of Et/HCl (60%/0.03M). In another set of assays, animals were injected i.p. with an anti-granulocyte antibody, GW9962 or L-NG-nitroarginine methyl ester (L-NAME) before treatment. One hour after Et/HCl administration, neutrophils were quantified in the blood and bone marrow and the gastric microcirculatory network was studied in situ. The gastric tissue was used to quantify the percentage of damaged area, as well as myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) protein and PPARγ protein and gene expression. Acid secretion was evaluated by the pylorus ligation model. LYSO-7 or Bezafibrate treatment reduced the necrotic area. LYSO-7 treatment enhanced PPARγ gene and protein expression in the stomach, and impaired local neutrophil influx and stasis of the microcirculatory network caused by Et/HCl administration. The effect seemed to be due to PPARγ agonist activity, as the LYSO-7 effect was abolished in GW9962 pre-treated mice. The reversal of microcirculatory stasis, but not neutrophil influx, was mediated by nitric oxide (NO), as L-NAME pre-treatment abolished the LYSO-7-mediated reestablishment of microcirculatory blood flow. This effect may depend on enhanced eNOS protein expression in injured gastric tissue. The pH and concentration of H(+) in the stomach were not modified by LYSO-7 treatment. In addition, LYSO-7 may induce less toxicity, as 28 days of oral treatment did not induce weight loss, as detected in pioglitazone treated mice. Thus, we show that LYSO-7 may be an effective treatment for gastric lesions by controlling neutrophil

  20. Acute alertness-promoting effects of a novel histamine subtype-3 receptor inverse agonist in healthy sleep-deprived male volunteers.

    PubMed

    Iannone, R; Palcza, J; Renger, J J; Calder, N; Cerchio, K; Gottesdiener, K; Hargreaves, R; Dijk, D J; Boyle, J; Murphy, M G

    2010-12-01

    The alertness-promoting effect of MK-0249 (10 or 50 mg), a histamine subtype-3 receptor (HRH3) inverse agonist (IA), was evaluated in the stimulant reference sleep deprivation model (SRSDM) using a double-blind, double-dummy, placebo- and modafinil- (200 mg) controlled, four-period crossover design in 24 healthy young men. The two primary hypotheses were related to sleep latency (first appearance of one epoch of stage 2, 3, or 4 or REM sleep, as detected using polysomnography (PSG)) at 8:00 AM on day 2. Statistically significant increases in sleep latency were observed in association with the use of modafinil 200 mg (9.07 min; P < 0.0001), MK-0249 50 mg (5.17 min; P = 0.008), and MK-0249 10 mg (5.45 min; P = 0.005) at the maintenance of wakefulness test (MWT) at 8:00 AM. Sleep latency was higher when averaged over all MWT time points (P < 0.0001 for modafinil and for both doses of MK-0249). The alertness-promoting effect with the use of MK-0249 in the SRSDM suggests that HRH3 IAs may be effective in disorders involving excessive somnolence. PMID:20981000

  1. A review of rizatriptan, a quick and consistent 5-HT1B/1D agonist for the acute treatment of migraine.

    PubMed

    Pascual, Julio

    2004-03-01

    Rizatriptan is a second-generation triptan marketed as 5 and 10 mg tablets and rapidly disintegrating wafer formulations. In > 5000 acute migraine patients enrolled in short-term trials and almost 1800 patients in long-term, open-label trials treating approximately 47000 attacks, rizatriptan was effective and well-tolerated. Controlled head-to-head data and a meta-analysis of 53 randomised, placebo-controlled trials of oral triptans in > 24000 patients have shown that rizatriptan 10 mg offers efficacy advantages over oral sumatriptan 50 and 100 mg and other oral triptans, both in terms of speed of onset of action and consistency. These advantages may reflect its improved pharmacological profile over sumatriptan in terms of higher oral bioavailability and a shorter time to maximum concentration. The wafer formulation offers the convenience of being administered without water. As a result of its superior efficacy profile and generally good tolerability, rizatriptan can be considered as a first-line treatment for acute migraine. PMID:15013934

  2. Identification and validation of the dopamine agonist bromocriptine as a novel therapy for high-risk myelodysplastic syndromes and secondary acute myeloid leukemia

    PubMed Central

    Liberante, Fabio Giuseppe; Pouryahya, Tara; McMullin, Mary-Frances

    2016-01-01

    Myelodysplastic syndromes (MDS) represent a broad spectrum of diseases characterized by their clinical manifestation as one or more cytopenias, or a reduction in circulating blood cells. MDS is predominantly a disease of the elderly, with a median age in the UK of around 75. Approximately one third of MDS patients will develop secondary acute myeloid leukemia (sAML) that has a very poor prognosis. Unfortunately, most standard cytotoxic agents are often too toxic for older patients. This means there is a pressing unmet need for novel therapies that have fewer side effects to assist this vulnerable group. This challenge was tackled using bioinformatic analysis of available transcriptomic data to establish a gene-based signature of the development and progression of MDS. This signature was then used to identify novel therapeutic compounds via statistically-significant connectivity mapping. This approach suggested re-purposing an existing and widely-prescribed drug, bromocriptine as a novel potential therapy in these disease settings. This drug has shown selectivity for leukemic cells as well as synergy with current therapies. PMID:26735888

  3. Does Public Employee Unionism Diminish Democracy?

    ERIC Educational Resources Information Center

    Cohen, Sanford

    1979-01-01

    The author considers charges that public sector unionism diminishes democracy by requiring a sharing of public authority with private bodies that too often exerts disproportionate influence on government decisions. He questions these charges in view of declining public unionism and unrealistic assumptions about the nature of local government…

  4. Sphingosine-1-Phosphate Receptor-1 Selective Agonist Enhances Collateral Growth and Protects against Subsequent Stroke

    PubMed Central

    Ichijo, Masahiko; Ishibashi, Satoru; Li, Fuying; Yui, Daishi; Miki, Kazunori; Mizusawa, Hidehiro; Yokota, Takanori

    2015-01-01

    Background and Purpose Collateral growth after acute occlusion of an intracranial artery is triggered by increasing shear stress in preexisting collateral pathways. Recently, sphingosine-1-phosphate receptor-1 (S1PR1) on endothelial cells was reported to be essential in sensing fluid shear stress. Here, we evaluated the expression of S1PR1 in the hypoperfused mouse brain and investigated the effect of a selective S1PR1 agonist on leptomeningeal collateral growth and subsequent ischemic damage after focal ischemia. Methods In C57Bl/6 mice (n = 133) subjected to unilateral common carotid occlusion (CCAO) and sham surgery. The first series examined the time course of collateral growth, cell proliferation, and S1PR1 expression in the leptomeningeal arteries after CCAO. The second series examined the relationship between pharmacological regulation of S1PR1 and collateral growth of leptomeningeal anastomoses. Animals were randomly assigned to one of the following groups: LtCCAO and daily intraperitoneal (ip) injection for 7 days of an S1PR1 selective agonist (SEW2871, 5 mg/kg/day); sham surgery and daily ip injection for 7 days of SEW2871 after surgery; LtCCAO and daily ip injection for 7 days of SEW2871 and an S1PR1 inverse agonist (VPC23019, 0.5 mg/kg); LtCCAO and daily ip injection of DMSO for 7 days after surgery; and sham surgery and daily ip injection of DMSO for 7 days. Leptomeningeal anastomoses were visualized 14 days after LtCCAO by latex perfusion method, and a set of animals underwent subsequent permanent middle cerebral artery occlusion (pMCAO) 7days after the treatment termination. Neurological functions 1hour, 1, 4, and 7days and infarction volume 7days after pMCAO were evaluated. Results In parallel with the increase in S1PR1 mRNA levels, S1PR1 expression colocalized with endothelial cell markers in the leptomeningeal arteries, increased markedly on the side of the CCAO, and peaked 7 days after CCAO. Mitotic cell numbers in the leptomeningeal arteries

  5. Risk versus benefit considerations for the beta(2)-agonists.

    PubMed

    Kelly, H William

    2006-09-01

    Short-acting beta(2)-agonists are the mainstay of therapy for acute bronchospasm associated with asthma and chronic obstructive pulmonary disease, whereas long-acting beta(2)-agonists are used in maintaining disease control in these respiratory disorders. This review describes and compares the pharmacology of the beta(2)-agonists and explains how these differences translate into differences in efficacy and beta(2)-adrenergic-mediated adverse effects. Questions commonly asked by clinicians regarding the efficacy and safety of short- and long-acting beta(2)-agonists include issues about cardiovascular effects, tolerance to their bronchodilator and bronchoprotective effects, blunting of albuterol response by long-acting beta(2)-agonists, potential masking of worsening asthma control, and the role of long-acting beta(2)-agonists as adjunctive therapy with inhaled corticosteroids in maintaining asthma control. Pharmacogenetics may play a role in determining which patients may be at risk for a reduced response to a beta(2)-agonist. The continued use of racemic albuterol, which contains a mixture of R-albuterol and S-albuterol, has been questioned because of data from preclinical and clinical studies suggesting that S-albuterol causes proinflammatory effects and may increase bronchial hyperreactivity. The preclinical and clinical effects of these two stereoisomers are reviewed. Data describing the efficacy and safety of levalbuterol (R-albuterol) and racemic albuterol are presented. PMID:16945063

  6. Beta-Adrenergic Agonists

    PubMed Central

    Barisione, Giovanni; Baroffio, Michele; Crimi, Emanuele; Brusasco, Vito

    2010-01-01

    Inhaled β2-adrenoceptor (β2-AR) agonists are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptoms-relievers and, in combination with inhaled corticosteroids, as disease-controllers. In this article, we first review the basic mechanisms by which the β2-adrenergic system contributes to the control of airway smooth muscle tone. Then, we go on describing the structural characteristics of β2-AR and the molecular basis of G-protein-coupled receptor signaling and mechanisms of its desensitization/ dysfunction. In particular, phosphorylation mediated by protein kinase A and β-adrenergic receptor kinase are examined in detail. Finally, we discuss the pivotal role of inhaled β2-AR agonists in the treatment of asthma and the concerns about their safety that have been recently raised.

  7. Diminishing returns in bovine tuberculosis control.

    PubMed

    Hone, J

    2013-07-01

    Mycobacterium bovis causes bovine tuberculosis (bTB) in many mammals including cattle, deer and brushtail possum. The aim of this study was to estimate the strength of association, using model selection (AICc) regression analyses, between the proportion of cattle and farmed deer herds with bTB in New Zealand and annual costs of TB control, namely disease control in livestock, in wildlife or in a combination of the two. There was more support for curved (concave up) than linear models which related the proportion of cattle and farmed deer herds with bTB to the annual control costs. The curved, concave-up, best-fitting relationships showed diminishing returns with no positive asymptote and implied TB eradication is feasible in New Zealand. PMID:23632097

  8. STING Pathway Activation Stimulates Potent Immunity against Acute Myeloid Leukemia.

    PubMed

    Curran, Emily; Chen, Xiufen; Corrales, Leticia; Kline, Douglas E; Dubensky, Thomas W; Duttagupta, Priyanka; Kortylewski, Marcin; Kline, Justin

    2016-06-14

    Type I interferon (IFN), essential for spontaneous T cell priming against solid tumors, is generated through recognition of tumor DNA by STING. Interestingly, we observe that type I IFN is not elicited in animals with disseminated acute myeloid leukemia (AML). Further, survival of leukemia-bearing animals is not diminished in the absence of type I IFN signaling, suggesting that STING may not be triggered by AML. However, the STING agonist, DMXAA, induces expression of IFN-β and other inflammatory cytokines, promotes dendritic cell (DC) maturation, and results in the striking expansion of leukemia-specific T cells. Systemic DMXAA administration significantly extends survival in two AML models. The therapeutic effect of DMXAA is only partially dependent on host type I IFN signaling, suggesting that other cytokines are important. A synthetic cyclic dinucleotide that also activates human STING provided a similar anti-leukemic effect. These data demonstrate that STING is a promising immunotherapeutic target in AML. PMID:27264175

  9. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain.

    PubMed

    Liu, Boyi; Fan, Lu; Balakrishna, Shrilatha; Sui, Aiwei; Morris, John B; Jordt, Sven-Eric

    2013-10-01

    Menthol, the cooling natural product of peppermint, is widely used in medicinal preparations for the relief of acute and inflammatory pain in sports injuries, arthritis, and other painful conditions. Menthol induces the sensation of cooling by activating TRPM8, an ion channel in cold-sensitive peripheral sensory neurons. Recent studies identified additional targets of menthol, including the irritant receptor, TRPA1, voltage-gated ion channels and neurotransmitter receptors. It remains unclear which of these targets contribute to menthol-induced analgesia, or to the irritating side effects associated with menthol therapy. Here, we use genetic and pharmacological approaches in mice to probe the role of TRPM8 in analgesia induced by L-menthol, the predominant analgesic menthol isomer in medicinal preparations. L-menthol effectively diminished pain behavior elicited by chemical stimuli (capsaicin, acrolein, acetic acid), noxious heat, and inflammation (complete Freund's adjuvant). Genetic deletion of TRPM8 completely abolished analgesia by L-menthol in all these models, although other analgesics (acetaminophen) remained effective. Loss of L-menthol-induced analgesia was recapitulated in mice treated with a selective TRPM8 inhibitor, AMG2850. Selective activation of TRPM8 with WS-12, a menthol derivative that we characterized as a specific TRPM8 agonist in cultured sensory neurons and in vivo, also induced TRPM8-dependent analgesia of acute and inflammatory pain. L-menthol- and WS-12-induced analgesia was blocked by naloxone, suggesting activation of endogenous opioid-dependent analgesic pathways. Our data show that TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. In contrast to menthol, selective TRPM8 agonists may produce analgesia more effectively, with diminished side effects. PMID:23820004

  10. TRPM8 is the Principal Mediator of Menthol-induced Analgesia of Acute and Inflammatory Pain

    PubMed Central

    Liu, Boyi; Fan, Lu; Balakrishna, Shrilatha; Sui, Aiwei; Morris, John B.; Jordt, Sven-Eric

    2013-01-01

    Menthol, the cooling natural product of peppermint, is widely used in medicinal preparations for the relief of acute and inflammatory pain in sports injuries, arthritis and other painful conditions. Menthol induces the sensation of cooling by activating TRPM8, an ion channel in cold-sensitive peripheral sensory neurons. Recent studies identified additional targets of menthol, including the irritant receptor, TRPA1, voltage-gated ion channels and neurotransmitter receptors. It remains unclear which of these targets contribute to menthol-induced analgesia, or to the irritating side effects associated with menthol therapy. Here, we use genetic and pharmacological approaches in mice to probe the role of TRPM8 in analgesia induced by L-menthol, the predominant analgesic menthol isomer in medicinal preparations. L-menthol effectively diminished pain behavior elicited by chemical stimuli (capsaicin, acrolein, acetic acid), noxious heat and inflammation (complete Freund's adjuvant). Genetic deletion of TRPM8 completely abolished analgesia by L-menthol in all these models, while other analgesics (acetaminophen) remained effective. Loss of L-menthol-induced analgesia was recapitulated in mice treated with a selective TRPM8 inhibitor, AMG2850. Selective activation of TRPM8 with WS-12, a menthol derivative we characterized as a specific TRPM8 agonist in cultured sensory neurons and in vivo, also induced TRPM8-dependent analgesia of acute and inflammatory pain. L-menthol and WS-12 induced analgesia was blocked by naloxone, suggesting activation of endogenous opioid-dependent analgesic pathways. Our data show that TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. In contrast to menthol, selective TRPM8 agonists may produce analgesia more effectively with diminished side effects. PMID:23820004

  11. Discovery of 2-Pyridylpyrimidines as the First Orally Bioavailable GPR39 Agonists

    PubMed Central

    2014-01-01

    The identification of highly potent and orally bioavailable GPR39 agonists is reported. Compound 1, found in a phenotypic screening campaign, was transformed into compound 2 with good activity on both the rat and human GPR39 receptor. This compound was further optimized to improve ligand efficiency and pharmacokinetic properties to yield GPR39 agonists for the potential oral treatment of type 2 diabetes. Thus, compound 3 is the first potent GPR39 agonist (EC50s ≤ 1 nM for human and rat receptor) that is orally bioavailable in mice and robustly induced acute GLP-1 levels. PMID:25313322

  12. Discovery of 2-Pyridylpyrimidines as the First Orally Bioavailable GPR39 Agonists.

    PubMed

    Peukert, Stefan; Hughes, Richard; Nunez, Jill; He, Guo; Yan, Zhao; Jain, Rishi; Llamas, Luis; Luchansky, Sarah; Carlson, Adam; Liang, Guiqing; Kunjathoor, Vidya; Pietropaolo, Mike; Shapiro, Jeffrey; Castellana, Anja; Wu, Xiaoping; Bose, Avirup

    2014-10-01

    The identification of highly potent and orally bioavailable GPR39 agonists is reported. Compound 1, found in a phenotypic screening campaign, was transformed into compound 2 with good activity on both the rat and human GPR39 receptor. This compound was further optimized to improve ligand efficiency and pharmacokinetic properties to yield GPR39 agonists for the potential oral treatment of type 2 diabetes. Thus, compound 3 is the first potent GPR39 agonist (EC50s ≤ 1 nM for human and rat receptor) that is orally bioavailable in mice and robustly induced acute GLP-1 levels. PMID:25313322

  13. Animal Model of Respiratory Syncytial Virus: CD8+ T Cells Cause a Cytokine Storm That Is Chemically Tractable by Sphingosine-1-Phosphate 1 Receptor Agonist Therapy

    PubMed Central

    Walsh, Kevin B.; Teijaro, John R.; Brock, Linda G.; Fremgen, Daniel M.; Collins, Peter L.

    2014-01-01

    ABSTRACT The cytokine storm is an intensified, dysregulated, tissue-injurious inflammatory response driven by cytokine and immune cell components. The cytokine storm during influenza virus infection, whereby the amplified innate immune response is primarily responsible for pulmonary damage, has been well characterized. Now we describe a novel event where virus-specific T cells induce a cytokine storm. The paramyxovirus pneumonia virus of mice (PVM) is a model of human respiratory syncytial virus (hRSV). Unexpectedly, when C57BL/6 mice were infected with PVM, the innate inflammatory response was undetectable until day 5 postinfection, at which time CD8+ T cells infiltrated into the lung, initiating a cytokine storm by their production of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Administration of an immunomodulatory sphingosine-1-phosphate (S1P) receptor 1 (S1P1R) agonist significantly inhibited PVM-elicited cytokine storm by blunting the PVM-specific CD8+ T cell response, resulting in diminished pulmonary disease and enhanced survival. IMPORTANCE A dysregulated overly exuberant immune response, termed a “cytokine storm,” accompanies virus-induced acute respiratory diseases (VARV), is primarily responsible for the accompanying high morbidity and mortality, and can be controlled therapeutically in influenza virus infection of mice and ferrets by administration of sphingosine-1-phosphate 1 receptor (S1P1R) agonists. Here, two novel findings are recorded. First, in contrast to influenza infection, where the cytokine storm is initiated early by the innate immune system, for pneumonia virus of mice (PVM), a model of RSV, the cytokine storm is initiated late in infection by the adaptive immune response: specifically, by virus-specific CD8 T cells via their release of IFN-γ and TNF-α. Blockading these cytokines with neutralizing antibodies blunts the cytokine storm and protects the host. Second, PVM infection is controlled by administration

  14. In vitro correction of impaired Na+-K+-ATPase in diabetic nerve by protein kinase C agonists.

    PubMed

    Lattimer, S A; Sima, A A; Greene, D A

    1989-02-01

    Diminished Na+-K+-ATPase activity in diabetic peripheral nerve plays a central role in the early electrophysiological, metabolic, and morphological abnormalities of experimental diabetic neuropathy. The defect in Na+-K+-adenosinetriphosphatase (ATPase) regulation in diabetic nerve is linked experimentally to glucose- and sorbitol-induced depletion of nerve myo-inositol but is not fully understood at a molecular level. Therefore, regulation of nerve Na+-K+-ATPase activity by phosphoinositide-derived diacylglycerol was explored as the putative link between myo-inositol depletion and the Na+-K+-ATPase impairment responsible for slowed saltatory conduction in diabetic animal models. In vitro exposure of endoneurial preparations from alloxan-diabetic rabbits to two protein kinase C agonists, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate and 1,2-(but not 1,3-) dioctanoyl-sn-glycerol, for as little as 1 min completely and specifically corrected the 40% decreased enzymatically measured ouabain-sensitive ATPase activity. Neither of these agonists affected ouabain-sensitive ATPase activity in endoneurial preparations derived from nondiabetic controls. These observations are compatible with the hypothesis that metabolites of electrically stimulated phosphoinositide turnover such as diacylglycerol acutely regulate nerve Na+-K+-ATPase activity, probably via protein kinase C, thereby tightly coupling energy-dependent Na+-K+-antiport with impulse conduction in peripheral nerve. Glucose-induced depletion of myo-inositol presumably limits phosphoinositide turnover and diacylglycerol production, thereby disrupting this putative regulatory mechanism for Na+-K+-ATPase in diabetic peripheral nerve. PMID:2537578

  15. Agonist-trafficking and hallucinogens.

    PubMed

    González-Maeso, Javier; Sealfon, Stuart C

    2009-01-01

    Seven transmembrane domain receptors, also termed G protein-coupled receptors (GPCRs), represent the most common molecular target for therapeutic drugs. The generally accepted pharmacological model for GPCR activation is the ternary complex model, in which GPCRs exist in a dynamic equilibrium between the active and inactive conformational states. However, the demonstration that different agonists sometimes elicit a different relative activation of two signaling pathways downstream of the same receptor has led to a revision of the ternary complex model. According to this agonist- trafficking model, agonists stabilize distinct activated receptor conformations that preferentially activate specific signaling pathways. Hallucinogenic drugs and non-hallucinogenic drugs represent an attractive experimental system with which to study agonist-trafficking of receptor signaling. Thus many of the behavioral responses induced by hallucinogenic drugs, such as lysergic acid diethylamide (LSD), psilocybin or mescaline, depend on activation of serotonin 5-HT(2A) receptors (5-HT2ARs). In contrast, this neuropsychological state in humans is not induced by closely related chemicals, such as lisuride or ergotamine, despite their similar in vitro activity at the 5-HT2AR. In this review, we summarize the current knowledge, as well as unresolved questions, regarding agonist-trafficking and the mechanism of action of hallucinogenic drugs. PMID:19275609

  16. Gonadotropin-releasing hormone agonist-induced pituitary apoplexy

    PubMed Central

    Keane, Fergus; Navin, Patrick; Brett, Francesca; Dennedy, Michael C

    2016-01-01

    Summary Pituitary apoplexy represents an uncommon endocrine emergency with potentially life-threatening consequences. Drug-induced pituitary apoplexy is a rare but important consideration when evaluating patients with this presentation. We describe an unusual case of a patient with a known pituitary macroadenoma presenting with acute-onset third nerve palsy and headache secondary to tumour enlargement and apoplexy. This followed gonadotropin-releasing hormone (GNRH) agonist therapy used to treat metastatic prostate carcinoma. Following acute management, the patient underwent transphenoidal debulking of his pituitary gland with resolution of his third nerve palsy. Subsequent retrospective data interpretation revealed that this had been a secretory gonadotropinoma and GNRH agonist therapy resulted in raised gonadotropins and testosterone. Hence, further management of his prostate carcinoma required GNRH antagonist therapy and external beam radiotherapy. This case demonstrates an uncommon complication of GNRH agonist therapy in the setting of a pituitary macroadenoma. It also highlights the importance of careful, serial data interpretation in patients with pituitary adenomas. Finally, this case presents a unique insight into the challenges of managing a hormonal-dependent prostate cancer in a patient with a secretory pituitary tumour. Learning points While non-functioning gonadotropinomas represent the most common form of pituitary macroadenoma, functioning gonadotropinomas are exceedingly rare. Acute tumour enlargement, with potential pituitary apoplexy, is a rare but important adverse effect arising from GNRH agonist therapy in the presence of both functioning and non-functioning pituitary gonadotropinomas. GNRH antagonist therapy represents an alternative treatment option for patients with hormonal therapy-requiring prostate cancer, who also have diagnosed with a pituitary gonadotropinoma. PMID:27284452

  17. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonists down-regulate alpha2-macroglobulin expression by a PPARalpha-dependent mechanism.

    PubMed

    González, María del Carmen; Corton, J Christopher; Cattley, Russell C; Herrera, Emilio; Bocos, Carlos

    2009-08-01

    Fibrates are peroxisome proliferator-activated receptor alpha (PPARalpha) ligands used to normalize lipid and glucose parameters and exert anti-inflammatory effects. The acute-phase response (APR) is an important inflammatory process. One of the most important acute-phase proteins in rats is alpha2-macroglobulin (A2Mg). Whereas normal adult rats present low serum levels, pregnant rats display high amounts. Therefore, we used pregnant rats to detect the effect of fenofibrate on hepatic A2Mg expression by RT-PCR and Northern blot. Virgin rats were used as controls. The expression of other APR genes, a known fibrate-responder gene, gamma-chain fibrinogen (gamma-Fib), and one gene from the same family as A2Mg, complement component 3 (C3), were also measured in liver. In order to determine whether the fibrate-effects were mediated by PPARalpha, wild-type mice and PPARalpha-null mice were also used and treated with WY-14,643 (WY) or di-2-ethylhexyl phthalate (DEHP). Fenofibrate depressed A2Mg expression in virgin rats, but expression was decreased more sharply in pregnant rats. Expression of C3 and gamma-Fib was diminished after treatment only in pregnant rats. On the other hand, WY, but not DEHP, reduced A2Mg and gamma-Fib expression in the livers of wild-type mice, without any effect in PPARalpha-null mice. WY or DEHP did not affect C3 expression. Therefore, A2Mg expression is modified by PPARalpha agonists not only in pregnant rats under augmented APR protein synthesis, but also in virgin rats and mice under basal conditions. Interestingly, our results also identify A2Mg as a novel PPARalpha agonist-regulated gene. PMID:19497347

  18. The emerging therapeutic roles of κ-opioid agonists.

    PubMed

    Jones, Mark R; Kaye, Alan D; Kaye, Aaron J; Urman, Richard D

    2016-01-01

    The current practice of μ-opioid receptor agonists such as morphine as the primary means of acute and chronic pain relief has several dangerous consequences that limit their effectiveness, including respiratory depression, gastrointestinal motility inhibition, addiction, tolerance, and abuse. Several other opioid receptors, notably the μ-opioid (KOP) receptor, have long been known to play a role in pain relief. Recent discoveries and advancements in laboratory techniques have allowed significant developments of KOP agonists as potential novel therapies for pain relief and other pathological processes. These drugs exhibit none of the classic opioid adverse effects and have displayed pronounced analgesia in several different scenarios. New formulations since 2014 have unveiled increased oral bioavailability, exceptional peripheral versus central selectivity, and a positive safety profile. Continued refinements of established μ-opioid agonist formulations have virtually eliminated the centrally mediated side effects of dysphoria and sedation that limited the applicability of previous KOP agonists. Further research is required to better elucidate the potential of these compounds in pain management, as well as in the mediation or modulation of other complex pathophysiological processes as therapeutic agents. PMID:27194194

  19. Alkaloid delta agonist BW373U86 increases hypoxic tolerance.

    PubMed

    Bofetiado, D M; Mayfield, K P; D'Alecy, L G

    1996-06-01

    Activation of delta opioid receptors increases survival time during acute, lethal hypoxia in mice. delta Agonists therefore present a promising avenue for therapeutic application to reduce the morbidity and mortality associated with clinical hypoxia in settings such as drowning, head injury apnea, and complicated childbirths. However, most delta agonists now available are peptides, and may have limited clinical utility. In the present study, we evaluate the neuroprotective ability of an alkaloid delta agonist, BW373U86. Alkaloid compounds, due to increased stability and increased systemic distribution, may be more favorable for clinical use. We found that BW373U86, like the peptide delta agonist, DPDPE ([D-Pen2, D-Pen5]-enkephalin), increases survival time of mice during lethal hypoxia. The mechanism of neuroprotection induced by delta receptor activation appears to involve decreasing body temperature. Further, using selective opioid receptor antagonists, it appears that BW373U86 exerts these neuroprotective effects by acting at delta-opioid receptors. PMID:8638797

  20. β-Adrenoreceptor agonists in the management of pain associated with renal colic: a systematic review

    PubMed Central

    Johnson, Graham David; Fakis, Apostolos; Surtees, Jane; Lennon, Robert Iain

    2016-01-01

    Objectives To determine whether β-adrenoreceptor agonists are effective analgesics for patients with renal colic through a systematic review of the literature. Setting Adult emergency departments or acute assessment units. Participants Human participants with proven or suspected renal colic. Interventions β-adrenoreceptor agonists. Outcome measures Primary: level of pain at 30 min following administration of the β-agonist. Secondary: level of pain at various time points following β-agonist administration; length of hospital stay; analgesic requirement; stone presence, size and position; degree of hydronephrosis. Results 256 records were screened and 4 identified for full-text review. No articles met the inclusion criteria. Conclusions and implications There is no evidence to support or refute the proposed use of β-agonists for analgesia in patients with renal colic. Given the biological plausibility and existing literature base, clinical trials investigating the use of β-adrenoreceptor agonists in the acute setting for treatment of the pain associated with renal colic are recommended. Trial registration number CRD42015016266. PMID:27324714

  1. PPARα-Independent Arterial Smooth Muscle Relaxant Effects of PPARα Agonists

    PubMed Central

    Silswal, Neerupma; Parelkar, Nikhil K.; Wacker, Michael J.; Badr, Mostafa; Andresen, Jon

    2012-01-01

    We sought to determine direct vascular effects of peroxisome proliferator-activated receptor alpha (PPARα) agonists using isolated mouse aortas and middle cerebral arteries (MCAs). The PPARα agonists GW7647, WY14643, and gemfibrozil acutely relaxed aortas held under isometric tension and dilated pressurized MCAs with the following order of potency: GW7647≫WY14643>gemfibrozil. Responses were endothelium-independent, and the use of PPARα deficient mice demonstrated that responses were also PPARα-independent. Pretreating arteries with high extracellular K+ attenuated PPARα agonist-mediated relaxations in the aorta, but not in the MCA. In the aorta, the ATP sensitive potassium (KATP) channel blocker glibenclamide also impaired relaxations whereas the other K+ channel inhibitors, 4-aminopyridine and Iberiotoxin, had no effect. In aortas, GW7647 and WY14643 elevated cGMP levels by stimulating soluble guanylyl cyclase (sGC), and inhibition of sGC with ODQ blunted relaxations to PPARα agonists. In the MCA, dilations were inhibited by the protein kinase C (PKC) activator, phorbol 12,13-dibutyrate, and also by ODQ. Our results demonstrated acute, nonreceptor-mediated relaxant effects of PPARα agonists on smooth muscle of mouse arteries. Responses to PPARα agonists in the aorta involved KATP channels and sGC, whereas in the MCA the PKC and sGC pathways also appeared to contribute to the response. PMID:23008696

  2. Chronic β2 adrenergic agonist, but not exercise, improves glucose handling in older type 2 diabetic mice.

    PubMed

    Elayan, Hamzeh; Milic, Milos; Sun, Ping; Gharaibeh, Munir; Ziegler, Michael G

    2012-07-01

    Insulin resistant type 2 diabetes mellitus in the obese elderly has become a worldwide epidemic. While exercise can prevent the onset of diabetes in young subjects its role in older diabetic people is less clear. Exercise stimulates the release of the β(2)-agonist epinephrine more in the young. Although epinephrine and β(2)-agonist drugs cause acute insulin resistance, their chronic effect on insulin sensitivity is unclear. We fed C57BL/6 mice a high fat diet to induce diabetes. These overweight animals became very insulin resistant. Exhaustive treadmill exercise 5 days a week for 8 weeks had no effect on their diabetes, nor did the β(2)-blocking drug ICI 118551. In contrast, exercise combined with the β(2)-agonist salbutamol (albuterol) had a beneficial effect on both glucose tolerance and insulin sensitivity after 4 and 8 weeks of exercise. The effect was durable and persisted 5 weeks after exercise and β(2)-agonist had stopped. To test whether β(2)-agonist alone was effective, the animals that had received β(2)-blockade were then given β(2)-agonist. Their response to a glucose challenge improved but their response to insulin was not significantly altered. The β(2)-agonists are commonly used to treat asthma and asthmatics have an increased incidence of obesity and type 2 diabetes. Although β(2)-agonists cause acute hyperglycemia, chronic treatment improves insulin sensitivity, probably by improving muscle glucose uptake. PMID:22422105

  3. Antinociceptive properties of selective MT(2) melatonin receptor partial agonists.

    PubMed

    López-Canul, Martha; Comai, Stefano; Domínguez-López, Sergio; Granados-Soto, Vinicio; Gobbi, Gabriella

    2015-10-01

    Melatonin is a neurohormone involved in the regulation of both acute and chronic pain whose mechanism is still not completely understood. We have recently demonstrated that selective MT2 melatonin receptor partial agonists have antiallodynic properties in animal models of chronic neuropathic pain by modulating ON/OFF cells of the descending antinociceptive system. Here, we examined the antinociceptive properties of the selective MT2 melatonin receptor partial agonists N-{2-[(3-methoxyphenyl)phenylamino]ethyl}acetamide (UCM765) and N-{2-[(3-bromophenyl)-(4-fluorophenyl)amino]ethyl}acetamide (UCM924) in two animal models of acute and inflammatory pain: the hot-plate and formalin tests. UCM765 and UCM924 (5-40 mg/kg, s.c.) dose-dependently increased the temperature of the first hind paw lick in the hot-plate test, and decreased the total time spent licking the injected hind paw in the formalin test. Antinociceptive effects of UCM765 and UCM924 were maximal at the dose of 20mg/kg. At this dose, the effects of UCM765 and UCM924 were similar to those produced by 200 mg/kg acetaminophen in the hot-plate test, and by 3 mg/kg ketorolac or 150 mg/kg MLT in the formalin test. Notably, antinociceptive effects of the two MT2 partial agonists were blocked by the pre-treatment with the MT2 antagonist 4-phenyl-2-propionamidotetralin (4P-PDOT, 10 mg/kg) in both paradigms. These results demonstrate the antinociceptive properties of UCM765 and UCM924 in acute and inflammatory pain models and corroborate the concept that MT2 melatonin receptor may be a novel target for analgesic drug development. PMID:26162699

  4. Diminishing Adult Egocentrism when Estimating What Others Know

    ERIC Educational Resources Information Center

    Thomas, Ruthann C.; Jacoby, Larry L.

    2013-01-01

    People often use what they know as a basis to estimate what others know. This egocentrism can bias their estimates of others' knowledge. In 2 experiments, we examined whether people can diminish egocentrism when predicting for others. Participants answered general knowledge questions and then estimated how many of their peers would know the…

  5. The Changing Black Teacher and Diminishing Opportunities for Black Teachers.

    ERIC Educational Resources Information Center

    Hilliard, Asa G., III

    Racism remains a distinct factor in problems faced by black teachers and teacher educators. The number of black teachers in the public schools is diminishing, especially in the southern states, where the black student population is the highest. The higher education environment has been undergoing drastic changes in faculty and student body…

  6. Reconstitution of high-affinity opioid agonist binding in brain membranes

    SciTech Connect

    Remmers, A.E.; Medzihradsky, F. )

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  7. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    PubMed Central

    Payton-Stewart, Florastina; Tilghman, Syreeta L.; Williams, LaKeisha G.; Winfield, Leyte L.

    2014-01-01

    Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulphonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel. However, the napthyl analog diminished gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules upregulate ERβ activity while down regulating that of ERα. PMID:24997336

  8. Dopamine-deficient mice are hypersensitive to dopamine receptor agonists.

    PubMed

    Kim, D S; Szczypka, M S; Palmiter, R D

    2000-06-15

    Dopamine-deficient (DA-/-) mice were created by targeted inactivation of the tyrosine hydroxylase gene in dopaminergic neurons. The locomotor activity response of these mutants to dopamine D1 or D2 receptor agonists and l-3,4-dihydroxyphenylalanine (l-DOPA) was 3- to 13-fold greater than the response elicited from wild-type mice. The enhanced sensitivity of DA-/- mice to agonists was independent of changes in steady-state levels of dopamine receptors and the presynaptic dopamine transporter as measured by ligand binding. The acute behavioral response of DA-/- mice to a dopamine D1 receptor agonist was correlated with c-fos induction in the striatum, a brain nucleus that receives dense dopaminergic input. Chronic replacement of dopamine to DA-/- mice by repeated l-DOPA administration over 4 d relieved the hypersensitivity of DA-/- mutants in terms of induction of both locomotion and striatal c-fos expression. The results suggest that the chronic presence of dopaminergic neurotransmission is required to dampen the intracellular signaling response of striatal neurons. PMID:10844009

  9. Molecular impact of juvenile hormone agonists on neonatal Daphnia magna.

    PubMed

    Toyota, Kenji; Kato, Yasuhiko; Miyakawa, Hitoshi; Yatsu, Ryohei; Mizutani, Takeshi; Ogino, Yukiko; Miyagawa, Shinichi; Watanabe, Hajime; Nishide, Hiroyo; Uchiyama, Ikuo; Tatarazako, Norihisa; Iguchi, Taisen

    2014-05-01

    Daphnia magna has been used extensively to evaluate organism- and population-level responses to pollutants in acute toxicity and reproductive toxicity tests. We have previously reported that exposure to juvenile hormone (JH) agonists results in a reduction of reproductive function and production of male offspring in a cyclic parthenogenesis, D. magna. Recent advances in molecular techniques have provided tools to understand better the responses to pollutants in aquatic organisms, including D. magna. DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to JH agonists: methoprene (125, 250 and 500 ppb), fenoxycarb (0.5, 1 and 2 ppb) and epofenonane (50, 100 and 200 ppb). Exposure to these JH analogs resulted in chemical-specific patterns of gene expression. The heat map analyses based on hierarchical clustering revealed a similar pattern between treatments with a high dose of methoprene and with epofenonane. In contrast, treatment with low to middle doses of methoprene resulted in similar profiles to fenoxycarb treatments. Hemoglobin and JH epoxide hydrolase genes were clustered as JH-responsive genes. These data suggest that fenoxycarb has high activity as a JH agonist, methoprene shows high toxicity and epofenonane works through a different mechanism compared with other JH analogs, agreeing with data of previously reported toxicity tests. In conclusion, D. magna DNA microarray is useful for the classification of JH analogs and identification of JH-responsive genes. PMID:24038158

  10. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  11. Oxygen radicals diminish dopamine transporter function in rat striatum.

    PubMed

    Fleckenstein, A E; Metzger, R R; Beyeler, M L; Gibb, J W; Hanson, G R

    1997-09-01

    Incubation of striatal synaptosomes with the oxygen radical generating enzyme, xanthine oxidase, decreased [3H]dopamine uptake: an effect attributable to a decreased Vmax. Concurrent incubation with the superoxide radical scavenger, superoxide dismutase, abolished the xanthine oxidase-induced decrease. These results indicate that, like methamphetamine administration in vivo, reactive oxygen species diminish dopamine transporter function in vitro. The significance of these findings to mechanisms responsible for effects of methamphetamine is discussed. PMID:9346337

  12. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia

    PubMed Central

    2014-01-01

    Background Aberrant energy metabolism is a hallmark of cancer. To fulfill the increased energy requirements, tumor cells secrete cytokines/factors inducing muscle and fat degradation in cancer patients, a condition known as cancer cachexia. It accounts for nearly 20% of all cancer-related deaths. However, the mechanistic basis of cancer cachexia and therapies targeting cancer cachexia thus far remain elusive. A ketogenic diet, a high-fat and low-carbohydrate diet that elevates circulating levels of ketone bodies (i.e., acetoacetate, β-hydroxybutyrate, and acetone), serves as an alternative energy source. It has also been proposed that a ketogenic diet leads to systemic metabolic changes. Keeping in view the significant role of metabolic alterations in cancer, we hypothesized that a ketogenic diet may diminish glycolytic flux in tumor cells to alleviate cachexia syndrome and, hence, may provide an efficient therapeutic strategy. Results We observed reduced glycolytic flux in tumor cells upon treatment with ketone bodies. Ketone bodies also diminished glutamine uptake, overall ATP content, and survival in multiple pancreatic cancer cell lines, while inducing apoptosis. A decrease in levels of c-Myc, a metabolic master regulator, and its recruitment on glycolytic gene promoters, was in part responsible for the metabolic phenotype in tumor cells. Ketone body-induced intracellular metabolomic reprogramming in pancreatic cancer cells also leads to a significantly diminished cachexia in cell line models. Our mouse orthotopic xenograft models further confirmed the effect of a ketogenic diet in diminishing tumor growth and cachexia. Conclusions Thus, our studies demonstrate that the cachectic phenotype is in part due to metabolic alterations in tumor cells, which can be reverted by a ketogenic diet, causing reduced tumor growth and inhibition of muscle and body weight loss. PMID:25228990

  13. Diminished Reality Based on Image Inpainting Considering Background Geometry.

    PubMed

    Kawai, Norihiko; Sato, Tomokazu; Yokoya, Naokazu

    2016-03-01

    Diminished reality aims to remove real objects from video images and fill in the missing regions with plausible background textures in real time. Most conventional methods based on image inpainting achieve diminished reality by assuming that the background around a target object is almost planar. This paper proposes a new diminished reality method that considers background geometries with less constraints than the conventional ones. In this study, we approximate the background geometry by combining local planes, and improve the quality of image inpainting by correcting the perspective distortion of texture and limiting the search area for finding similar textures as exemplars. The temporal coherence of texture is preserved using the geometries and camera pose estimated by visual-simultaneous localization and mapping (SLAM). The mask region that includes a target object is robustly set in each frame by projecting a 3D region, rather than tracking the object in 2D image space. The effectiveness of the proposed method is successfully demonstrated using several experimental environments. PMID:26829239

  14. [Assessment and management of acute severe asthma].

    PubMed

    Kabe, J; Kudo, K

    1992-09-01

    In the management of acute severe asthma it is very important to start the treatment as soon as possible, by appropriate evaluation of the physical status and signs of airflow obstruction. We propose a guideline to be used by patients with asthma, emergency car crews, physicians and nurses to evaluate the severity and to choose the appropriate management of acute asthma, including intubation and mechanical ventilation, by the assessment of clinical features, as well as blood gas analysis and pulmonary function test. Several researchers have demonstrated that the additional administration of aminophylline to inhaled or subcutaneous beta 2-agonist bronchodilator during the first 4 hours of an attack provides no additional benefit compared to the administration of beta 2-agonist alone. In our retrospective study of 68 episodes of acute severe asthma in the last 5 years at our institute, however, the additional administration of aminophylline with beta 2-agonists was clearly shown to be effective with infrequent minor side effects. PMID:1360031

  15. Reversal of endotoxic shock with the calcium channel agonist BAY k 8644

    SciTech Connect

    Ives, N.; King, J.W.; Chernow, B.; Roth, B.L.

    1986-03-05

    The hypotension and diminished myocardial function observed in sepsis and endotoxin-induced shock are difficult to overcome pharmacologically. They previously demonstrated that a down regulation of ..cap alpha../sub 1/-adrenergic receptors may contribute to the hypotension and diminished response to catecholamines seen in septic shock. They here demonstrate that the calcium channel agonist BAY k 8644 potently reverses the hypotension of experimental endotoxin (20 mg/kg Difico lipopolysaccharide) shock in rats. A dose as low as 10 ..mu..g/kg BAY k 8644 significantly elevated mean arterial pressure (MAP) in hypotensive rats. The maximum percentage increase in MAP was greater in endotoxin-treated rats compared with saline-treated controls (153% vs 120% increase respectively). BAY k 8644 also caused a dose-dependent decrease in heart rate of 37% in endotoxin-treated rats and 39% in controls. No difference in (/sup 3/H)-nitrendipine binding sites were detected comparing control and endotoxin-treated rates. These results demonstrate that calcium channel agonists might represent unique agents in pathologic states characterized by hypotension and diminished cardiac function.

  16. Beta-agonists and animal welfare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  17. Extinction during reconsolidation of threat memory diminishes prefrontal cortex involvement

    PubMed Central

    Schiller, Daniela; Kanen, Jonathan W.; LeDoux, Joseph E.; Monfils, Marie-H.; Phelps, Elizabeth A.

    2013-01-01

    Controlling learned defensive responses through extinction does not alter the threat memory itself, but rather regulates its expression via inhibitory influence of the prefrontal cortex (PFC) over amygdala. Individual differences in amygdala–PFC circuitry function have been linked to trait anxiety and posttraumatic stress disorder. This finding suggests that exposure-based techniques may actually be least effective in those who suffer from anxiety disorders. A theoretical advantage of techniques influencing reconsolidation of threat memories is that the threat representation is altered, potentially diminishing reliance on this PFC circuitry, resulting in a more persistent reduction of defensive reactions. We hypothesized that timing extinction to coincide with threat memory reconsolidation would prevent the return of defensive reactions and diminish PFC involvement. Two conditioned stimuli (CS) were paired with shock and the third was not. A day later, one stimulus (reminded CS+) but not the other (nonreminded CS+) was presented 10 min before extinction to reactivate the threat memory, followed by extinction training for all CSs. The recovery of the threat memory was tested 24 h later. Extinction of the nonreminded CS+ (i.e., standard extinction) engaged the PFC, as previously shown, but extinction of the reminded CS+ (i.e., extinction during reconsolidation) did not. Moreover, only the nonreminded CS+ memory recovered on day 3. These results suggest that extinction during reconsolidation prevents the return of defensive reactions and diminishes PFC involvement. Reducing the necessity of the PFC–amygdala circuitry to control defensive reactions may help overcome a primary obstacle in the long-term efficacy of current treatments for anxiety disorders. PMID:24277809

  18. Diminished KCC2 confounds synapse specificity of LTP during senescence.

    PubMed

    Ferando, Isabella; Faas, Guido C; Mody, Istvan

    2016-09-01

    The synapse specificity of long-term potentiation (LTP) ensures that no interference arises from inputs irrelevant to the memory to be encoded. In hippocampi of aged (21-28 months) mice, LTP was relayed to unstimulated synapses, blemishing its synapse specificity. Diminished levels of the K(+)/Cl(-) cotransporter KCC2 and a depolarizing GABAA receptor-mediated synaptic component following LTP were the most likely causes for the spreading of potentiation, unveiling mechanisms hindering information storage in the aged brain and identifying KCC2 as a potential target for intervention. PMID:27500406

  19. OX40 agonist therapy enhances CD8 infiltration and decreases immune suppression in the tumor.

    PubMed

    Gough, Michael J; Ruby, Carl E; Redmond, William L; Dhungel, Birat; Brown, Alexis; Weinberg, Andrew D

    2008-07-01

    Acquisition of full T-cell effector function and memory differentiation requires appropriate costimulatory signals, including ligation of the costimulatory molecule OX40 (TNFRSF4, CD134). Tumors often grow despite the presence of tumor-specific T cells and establish an environment with weak costimulation and immune suppression. Administration of OX40 agonists has been shown to significantly increase the survival of tumor-bearing mice and was dependent on the presence of both CD4 and CD8 T cells during tumor-specific priming. To understand how OX40 agonists work in mice with established tumors, we developed a model to study changes in immune cell populations within the tumor environment. We show here that systemic administration of OX40 agonist antibodies increased the proportion of CD8 T cells at the tumor site in three different tumor models. The function of the CD8 T cells at the tumor site was also increased by administration of OX40 agonist antibody, and we observed an increase in the proportion of antigen-specific CD8 T cells within the tumor. Despite decreases in the proportion of T regulatory cells at the tumor site, T regulatory cell function in the spleen was unaffected by OX40 agonist antibody therapy. Interestingly, administration of OX40 agonist antibody caused significant changes in the tumor stroma, including decreased macrophages, myeloid-derived suppressor cells, and decreased expression of transforming growth factor-beta. Thus, therapies targeting OX40 dramatically changed the tumor environment by enhancing the infiltration and function of CD8 T cells combined with diminished suppressive influences within the tumor. PMID:18593921

  20. β2-agonist therapy in lung disease.

    PubMed

    Cazzola, Mario; Page, Clive P; Rogliani, Paola; Matera, M Gabriella

    2013-04-01

    β2-Agonists are effective bronchodilators due primarily to their ability to relax airway smooth muscle (ASM). They exert their effects via their binding to the active site of β2-adrenoceptors on ASM, which triggers a signaling cascade that results in a number of events, all of which contribute to relaxation of ASM. There are some differences between β2-agonists. Traditional inhaled short-acting β2-agonists albuterol, fenoterol, and terbutaline provide rapid as-needed symptom relief and short-term prophylactic protection against bronchoconstriction induced by exercise or other stimuli. The twice-daily β2-agonists formoterol and salmeterol represent important advances. Their effective bronchodilating properties and long-term improvement in lung function offer considerable clinical benefits to patients. More recently, a newer β2-agonist (indacaterol) with a longer pharmacodynamic half-life has been discovered, with the hopes of achieving once-daily dosing. In general, β2-agonists have an acceptable safety profile, although there is still controversy as to whether long-acting β2-agonists may increase the risk of asthma mortality. In any case, they can induce adverse effects, such as increased heart rate, palpitations, transient decrease in PaO2, and tremor. Desensitization of β2-adrenoceptors that occurs during the first few days of regular use of β2-agonist treatment may account for the commonly observed resolution of the majority of these adverse events after the first few doses. Nevertheless, it can also induce tolerance to bronchoprotective effects of β2-agonists and has the potential to reduce bronchodilator sensitivity to them. Some novel once-daily β2-agonists (olodaterol, vilanterol, abediterol) are under development, mainly in combination with an inhaled corticosteroid or a long-acting antimuscarinic agent. PMID:23348973

  1. Diminished appetitive startle modulation following targeted inhibition of prefrontal cortex.

    PubMed

    Hurlemann, René; Arndt, Stephan; Schlaepfer, Thomas E; Reul, Juergen; Maier, Wolfgang; Scheele, Dirk

    2015-01-01

    From an evolutionary perspective the startle eye-blink response forms an integral part of the human avoidance behavioral repertoire and is typically diminished by pleasant emotional states. In major depressive disorder (MDD) appetitive motivation is impaired, evident in a reduced interference of positive emotion with the startle response. Given the pivotal role of frontostriatal neurocircuitry in orchestrating appetitive motivation, we hypothesized that inhibitory transcranial magnetic stimulation (TMS) would reduce appetitive neuromodulation in a manner similar to MDD. Based on a pre-TMS functional MRI (fMRI) experiment we selected the left dorsolateral and dorsomedial prefrontal cortices as target regions for subsequent sham-controlled inhibitory theta-burst TMS (TBS) in 40 healthy male volunteers. Consistent with our hypothesis, between-group comparisons revealed a TBS-induced inhibition of appetitive neuromodulation, manifest in a diminished startle response suppression by hedonic stimuli. Collectively, our results suggest that functional integrity of left dorsolateral and dorsomedial prefrontal cortex is critical for mediating a pleasure-induced down-regulation of avoidance responses which may protect the brain from a depressogenic preponderance of defensive stress. PMID:25752944

  2. Diminished appetitive startle modulation following targeted inhibition of prefrontal cortex

    PubMed Central

    Hurlemann, René; Arndt, Stephan; Schlaepfer, Thomas E.; Reul, Juergen; Maier, Wolfgang; Scheele, Dirk

    2015-01-01

    From an evolutionary perspective the startle eye-blink response forms an integral part of the human avoidance behavioral repertoire and is typically diminished by pleasant emotional states. In major depressive disorder (MDD) appetitive motivation is impaired, evident in a reduced interference of positive emotion with the startle response. Given the pivotal role of frontostriatal neurocircuitry in orchestrating appetitive motivation, we hypothesized that inhibitory transcranial magnetic stimulation (TMS) would reduce appetitive neuromodulation in a manner similar to MDD. Based on a pre-TMS functional MRI (fMRI) experiment we selected the left dorsolateral and dorsomedial prefrontal cortices as target regions for subsequent sham-controlled inhibitory theta-burst TMS (TBS) in 40 healthy male volunteers. Consistent with our hypothesis, between-group comparisons revealed a TBS-induced inhibition of appetitive neuromodulation, manifest in a diminished startle response suppression by hedonic stimuli. Collectively, our results suggest that functional integrity of left dorsolateral and dorsomedial prefrontal cortex is critical for mediating a pleasure-induced down-regulation of avoidance responses which may protect the brain from a depressogenic preponderance of defensive stress. PMID:25752944

  3. Dehydroepiandrosterone (DHEA) supplementation in diminished ovarian reserve (DOR)

    PubMed Central

    2011-01-01

    Background With infertility populations in the developed world rapidly aging, treatment of diminished ovarian reserve (DOR) assumes increasing clinical importance. Dehydroepiandrosterone (DHEA) has been reported to improve pregnancy chances with DOR, and is now utilized by approximately one third of all IVF centers world-wide. Increasing DHEA utilization and publication of a first prospectively randomized trial now warrants a systematic review. Methods PubMed, Cochrane and Ovid Medline were searched between 1995 and 2010 under the following strategy: [ and diminished ovarian reserve or ovarian function >]. Bibliographies of relevant publications were further explored for additional relevant citations. Since only one randomized study has been published, publications, independent of evidence levels and quality assessment, were reviewed. Results Current best available evidence suggests that DHEA improves ovarian function, increases pregnancy chances and, by reducing aneuploidy, lowers miscarriage rates. DHEA over time also appears to objectively improve ovarian reserve. Recent animal data support androgens in promoting preantral follicle growth and reduction in follicle atresia. Discussion Improvement of oocyte/embryo quality with DHEA supplementation potentially suggests a new concept of ovarian aging, where ovarian environments, but not oocytes themselves, age. DHEA may, thus, represent a first agent beneficially affecting aging ovarian environments. Others can be expected to follow. PMID:21586137

  4. Targeting heparanase overcomes chemoresistance and diminishes relapse in myeloma.

    PubMed

    Ramani, Vishnu C; Zhan, Fenghuang; He, Jianbo; Barbieri, Paola; Noseda, Alessandro; Tricot, Guido; Sanderson, Ralph D

    2016-01-12

    In most myeloma patients, even after several rounds of intensive therapy, drug resistant tumor cells survive and proliferate aggressively leading to relapse. In the present study, gene expression profiling of tumor cells isolated from myeloma patients after sequential rounds of chemotherapy, revealed for the first time that heparanase, a potent promoter of myeloma growth and progression, was elevated in myeloma cells that survived therapy. Based on this clinical data, we hypothesized that heparanase was involved in myeloma resistance to drug therapy. In several survival and viability assays, elevated heparanase expression promoted resistance of myeloma tumor cells to chemotherapy. Mechanistically, this enhanced survival was due to heparanase-mediated ERK signaling. Importantly, use of the heparanase inhibitor Roneparstat in combination with chemotherapy clearly diminished the growth of disseminated myeloma tumors in vivo. Moreover, use of Roneparstat either during or after chemotherapy diminished regrowth of myeloma tumors in vivo following therapy. These results provide compelling evidence that heparanase is a promising, novel target for overcoming myeloma resistance to therapy and that targeting heparanase has the potential to prevent relapse in myeloma and possibly other cancers. PMID:26624982

  5. Metabolic Syndrome Abolishes Glucagon-Like Peptide 1 Receptor Agonist Stimulation of SERCA in Coronary Smooth Muscle.

    PubMed

    Dineen, Stacey L; McKenney, Mikaela L; Bell, Lauren N; Fullenkamp, Allison M; Schultz, Kyle A; Alloosh, Mouhamad; Chalasani, Naga; Sturek, Michael

    2015-09-01

    Metabolic syndrome (MetS) doubles the risk of adverse cardiovascular events. Glucagon-like peptide 1 (GLP-1) receptor agonists induce weight loss, increase insulin secretion, and improve glucose tolerance. Studies in healthy animals suggest cardioprotective properties of GLP-1 receptor agonists, perhaps partially mediated by improved sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) activity. We examined the acute effect of GLP-1 receptor agonists on coronary smooth muscle cells (CSM) enzymatically isolated from lean, healthy Ossabaw miniature swine. Intracellular Ca(2+) handling was interrogated with fura-2. The GLP-1 receptor agonist exenatide activated SERCA but did not alter other Ca(2+) transporters. Further, we tested the hypothesis that chronic, in vivo treatment with GLP-1 receptor agonist AC3174 would attenuate coronary artery disease (CAD) in swine with MetS. MetS was induced in 20 swine by 6 months' feeding of a hypercaloric, atherogenic diet. Swine were then randomized (n = 10/group) into placebo or AC3174 treatment groups and continued the diet for an additional 6 months. AC3174 treatment attenuated weight gain, increased insulin secretion, and improved glucose tolerance. Intravascular ultrasound and histology showed no effect of AC3174 on CAD. MetS abolished SERCA activation by GLP-1 receptor agonists. We conclude that MetS confers vascular resistance to GLP-1 receptor agonists, partially through impaired cellular signaling steps involving SERCA. PMID:25845661

  6. Involvement of histamine H4 and H1 receptors in scratching induced by histamine receptor agonists in Balb C mice.

    PubMed

    Bell, J K; McQueen, D S; Rees, J L

    2004-05-01

    The role of histamine H(1), H(2), H(3) and H(4) receptors in acute itch induced by histamine was investigated in female BalbC mice. Scratching was induced by intradermal injections of pruritogen into the back of the neck and "itch" assessed by quantifying the scratching evoked. Histamine (0.03-80 micromol), histamine-trifluoromethyl-toluidine (HTMT, H(1) agonist, 0.002-2 micromol), clobenpropit (H(4) agonist, H(3) antagonist, 0.002-0.6 micromol) and to a lesser extent imetit (H(3)/H(4) agonist, 0.03-3 micromol) all induced dose-dependent scratching. Dimaprit (H(2) agonist, 0.04-40 micromol) did not cause scratching. Mepyramine (H(1) antagonist, 20 mg kg(-1), i.p.) reduced scratching evoked by histamine and HTMT, but not that caused by H(3) or H(4) agonists. Thioperamide (H(3)/H(4) antagonist, 20 mg kg(-1), i.p.) reduced scratching induced by histamine, H(3) and H(4) agonists, but not that caused by HTMT. The non-sedating H(1) antagonist, terfenadine, also significantly reduced the scratching induced by the H(1) agonist, HTMT. Cimetidine (H(2) antagonist, 20 mg kg(-1), i.p.) did not affect histamine-induced scratching. These results indicate that activation of histamine H(4) receptors causes itch in mice, in addition to the previously recognised role for H(1) receptors in evoking itch. Histamine H(4) receptor antagonists therefore merit investigation as antipruritic agents. PMID:15066908

  7. Diminished dose minimally invasive radioguided parathyroidectomy: a case for radioguidance.

    PubMed

    You, Christopher J; Zapas, John L

    2007-07-01

    Minimally invasive radioguided parathyroidectomy (MIRP) has been established as an alternative to bilateral neck exploration (BNE) for primary hyperparathyroidism. We investigate whether a diminished dose of technetium-99m sestamibi gives similar results to the standard dose. One hundred one patients were offered MIRP or diminished-dose MIRP (ddMIRP). Patients received intravenous Tc-99m sestamibi at a dose of either 25 mCi 1.5 hours or 5 mCi 1 hour preoperatively. The procedure was terminated when the 20 per cent rule was satisfied. All tissue was confirmed to be parathyroid tissue by frozen section analysis. In addition, intraoperative parathyroid hormone levels were measured in a majority of patients. Patients who failed IOM underwent BNE. Frozen section analysis and intraoperative parathyroid hormone monitoring were also performed in the BNEs. Postoperatively, serum calcium levels were measured at 1 week and 6 months. Fifteen per cent of patients were male and 85 per cent were female. The median age was 63 years (range, 25-89 years). The first 58 patients had the standard dose of 25 mCi, whereas 43 patients had ddMIRP. Six patients (10%) failed intraoperative mapping in the MIRP group and were found to have single-gland disease. Five patients (12%) failed intraoperative mapping in the ddMIRP group. However, two patients were identified to have multigland disease making the true failure rate of intraoperative mapping 7 per cent (three patients). Median operative times for MIRP, ddMIRP, and BNE were 40 minutes, 46 minutes, and 105 minutes, respectively. The 20 per cent rule was satisfied in 96 per cent of patients undergoing MIRP and 98 per cent of patients undergoing ddMIRP. Frozen section analysis and intraoperative parathyroid hormone monitoring did not result in a change in management. Median follow up was 193 days and serum calcium levels at 6 months were normal. Diminished-dose MIRP is a feasible alternative to standard-dose MIRP without compromising

  8. Aspirin metabolites are GPR35 agonists.

    PubMed

    Deng, Huayun; Fang, Ye

    2012-07-01

    Aspirin is widely used as an anti-inflammatory, anti-platelet, anti-pyretic, and cancer-preventive agent; however, the molecular mode of action is unlikely due entirely to the inhibition of cyclooxygenases. Here, we report the agonist activity of several aspirin metabolites at GPR35, a poorly characterized orphan G protein-coupled receptor. 2,3,5-Trihydroxybenzoic acid, an aspirin catabolite, was found to be the most potent GPR35 agonist among aspirin metabolites. Salicyluric acid, the main metabolite of aspirin, was also active. These results suggest that the GPR35 agonist activity of certain aspirin metabolites may contribute to the clinical features of aspirin. PMID:22526472

  9. Desensitization of Functional µ-Opioid Receptors Increases Agonist Off-Rate

    PubMed Central

    2014-01-01

    Desensitization of µ-opioid receptors (MORs) develops over 5–15 minutes after the application of some, but not all, opioid agonists and lasts for tens of minutes after agonist removal. The decrease in function is receptor selective (homologous) and could result from 1) a reduction in receptor number or 2) a decrease in receptor coupling. The present investigation used photolysis of two caged opioid ligands to examine the kinetics of MOR-induced potassium conductance before and after MOR desensitization. Photolysis of a caged antagonist, carboxynitroveratryl-naloxone (caged naloxone), blocked the current induced by a series of agonists, and the time constant of decline was significantly decreased after desensitization. The increase in the rate of current decay was not observed after partial blockade of receptors with the irreversible antagonist, β-chlornaltrexamine (β-CNA). The time constant of current decay after desensitization was never more rapid than 1 second, suggesting an increased agonist off-rate rather than an increase in the rate of channel closure downstream of the receptor. The rate of G protein–coupled K+ channel (GIRK) current activation was examined using photolysis of a caged agonist, carboxynitrobenzyl-tyrosine-[Leu5]-enkephalin. After acute desensitization or partial irreversible block of MORs with β-CNA, there was an increase in the time it took to reach a peak current. The decrease in the rate of agonist-induced GIRK conductance was receptor selective and dependent on receptor number. The results indicate that opioid receptor desensitization reduced the number of functional receptor and that the remaining active receptors have a reduced agonist affinity. PMID:24748657

  10. Assessment of Total Variation Diminishing schemes in combustion instability problems

    NASA Technical Reports Server (NTRS)

    Wang, Z. J.; Yang, H. Q.; Przekwas, A. J.

    1993-01-01

    Numerical simulations of acoustic waves in a shear layer and in an idealized combustion chamber using high resolution Total Variation Diminishing (TVD) schemes has been carried out to study the effects of inherent scheme dissipation and dispersion errors of this class of problems. The numerical results are compared against available exact solutions to quantify these errors. Several popular TVD limiters widely used in the Computational Fluid Dynamics (CFD) community have been assessed. Osher-Chakravarthy limiters are modified so that they can be used in explicit schemes. Among all the limiters investigated, Osher-Chakravarthy third-order limiter is identified as having performed the best. It is also found that all TVD schemes have exceptionally small dispersive errors.

  11. Social Presence Diminishes Contagious Yawning in the Laboratory

    PubMed Central

    Gallup, Andrew; Church, Allyson M.; Miller, Heather; Risko, Evan F.; Kingstone, Alan

    2016-01-01

    Contagious yawning may be a useful measure of social psychological functioning, and thus it is important to evaluate the variables influencing its expression in laboratory settings. Previous research has documented that humans yawn less frequently in crowded environments and when under direct observation, but the impact of social presence on contagious yawning remains unknown. Here we present the first study to systematically alter the degree of social presence experienced by participants in the laboratory to determine its effect on contagious yawning frequency. Our results demonstrate that both implied and actual social presence significantly diminish yawn contagion in comparison to a control condition, indicating a key social component to contagious yawning. These findings provide a framework for pursuing additional research investigating the social factors influencing contagious yawning, while also offering applications for measuring this response in laboratory settings. PMID:27112374

  12. Monoterpenoid agonists of TRPV3

    PubMed Central

    Vogt-Eisele, A K; Weber, K; Sherkheli, M A; Vielhaber, G; Panten, J; Gisselmann, G; Hatt, H

    2007-01-01

    Background and purpose: Transient receptor potential (TRP) V3 is a thermosensitive ion channel expressed predominantly in the skin and neural tissues. It is activated by warmth and the monoterpene camphor and has been hypothesized to be involved in skin sensitization. A selection of monoterpenoid compounds was tested for TRPV3 activation to establish a structure-function relationship. The related channel TRPM8 is activated by cool temperatures and a number of chemicals, among them the monoterpene (-)-menthol. The overlap of the receptor pharmacology between the two channels was investigated. Experimental approach: Transfected HEK293 cells were superfused with the test substances. Evoked currents were measured in whole cell patch clamp measurements. Dose-response curves for the most potent agonists were obtained in Xenopus laevis oocytes. Key results: Six monoterpenes significantly more potent than camphor were identified: 6-tert-butyl-m-cresol, carvacrol, dihydrocarveol, thymol, carveol and (+)-borneol. Their EC50 is up to 16 times lower than that of camphor. All of these compounds carry a ring-located hydroxyl group and neither activates TRPM8 to a major extent. Conclusions and implications: Terpenoids have long been recognized as medically and pharmacologically active compounds, although their molecular targets have only partially been identified. TRPV3 activation may be responsible for several of the described effects of terpenoids. We show here that TRPV3 is activated by a number of monoterpenes and that a secondary hydroxyl-group is a structural requirement. PMID:17420775

  13. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors.

    PubMed

    Jakubík, J; Bacáková, L; El-Fakahany, E E; Tucek, S

    1997-07-01

    It is well known that allosteric modulators of muscarinic acetylcholine receptors can both diminish and increase the affinity of receptors for their antagonists. We investigated whether the allosteric modulators can also increase the affinity of receptors for their agonists. Twelve agonists and five allosteric modulators were tested in experiments on membranes of CHO cells that had been stably transfected with genes for the M1-M4 receptor subtypes. Allosterically induced changes in the affinities for agonists were computed from changes in the ability of a fixed concentration of each agonist to compete with [3H]N-methylscopolamine for the binding to the receptors in the absence and the presence of varying concentrations of allosteric modulators. The effects of allosteric modulators varied greatly depending on the agonists and the subtypes of receptors. The affinity for acetylcholine was augmented by (-)-eburnamonine on the M2 and M4 receptors and by brucine on the M1 and M3 receptors. Brucine also enhanced the affinities for carbachol, bethanechol, furmethide, methylfurmethide, pilocarpine, 3-(3-pentylthio-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1- methylpyridine (pentylthio-TZTP), oxotremorine-M, and McN-A-343 on the M1, M3, and M4 receptors, for pentylthio-TZTP on the M2 receptors, and for arecoline on the M3 receptors. (-)-Eburnamonine enhanced the affinities for carbachol, bethanechol, furmethide, methylfurmethide, pentylthio-TZTP, pilocarpine, oxotremorine and oxotremorine-M on the M2 receptors and for pilocarpine on the M4 receptors. Vincamine, strychnine, and alcuronium displayed fewer positive allosteric interactions with the agonists, but each allosteric modulator displayed positive cooperativity with at least one agonist on at least one muscarinic receptor subtype. The highest degrees of positive cooperativity were observed between (-)-eburnamonine and pilocarpine and (-)-eburnamonine and oxotremorine-M on the M2 receptors (25- and 7-fold increases in

  14. Piperidine derivatives as nonprostanoid IP receptor agonists.

    PubMed

    Hayashi, Ryoji; Sakagami, Hideki; Koiwa, Masakazu; Ito, Hiroaki; Miyamoto, Mitsuko; Isogaya, Masafumi

    2016-05-01

    The discovery of a new class of nonprostanoid prostaglandin I2 receptor (IP receptor) agonists is reported. Among them, the unique piperidine derivative 31b (2-((1-(2-(N-(4-tolyl)benzamido)ethyl)piperidin-4-yl)oxy)acetic acid) was a good IP receptor agonist and was 50-fold more selective for the human IP receptor than for other human prostanoid receptors. This compound showed good pharmacokinetic properties in dog. PMID:26996371

  15. Cold Suppresses Agonist-induced Activation of TRPV1

    PubMed Central

    Chung, M.-K.; Wang, S.

    2011-01-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction. PMID:21666106

  16. Use of Thrombopoietin Receptor Agonists in Childhood Immune Thrombocytopenia

    PubMed Central

    Garzon, Angelica Maria; Mitchell, William Beau

    2015-01-01

    Most children with immune thrombocytopenia (ITP) will have spontaneous remission regardless of therapy, while about 20% will go on to have chronic ITP. In those children with chronic ITP who need treatment, standard therapies for acute ITP may have adverse effects that complicate their long-term use. Thus, alternative treatment options are needed for children with chronic ITP. Thrombopoietin receptor agonists (TPO-RA) have been shown to be safe and efficacious in adults with ITP, and represent a new treatment option for children with chronic ITP. One TPO-RA, eltrombopag, is now approved for children. Clinical trials in children are ongoing and data are emerging on safety and efficacy. This review will focus on the physiology of TPO-RA, their clinical use in children, as well as the long-term safety issues that need to be considered when using these agents. PMID:26322297

  17. Acute bronchial asthma.

    PubMed

    Grover, Sudhanshu; Jindal, Atul; Bansal, Arun; Singhi, Sunit C

    2011-11-01

    Acute asthma is the third commonest cause of pediatric emergency visits at PGIMER. Typically, it presents with acute onset respiratory distress and wheeze in a patient with past or family history of similar episodes. The severity of the acute episode of asthma is judged clinically and categorized as mild, moderate and severe. The initial therapy consists of oxygen, inhaled beta-2 agonists (salbutamol or terbutaline), inhaled budesonide (three doses over 1 h, at 20 min interval) in all and ipratropium bromide and systemic steroids (hydrocortisone or methylprednisolone) in acute severe asthma. Other causes of acute onset wheeze and breathing difficulty such as pneumonia, foreign body, cardiac failure etc. should be ruled out with help of chest radiography and appropriate laboratory investigations in first time wheezers and those not responding to 1 h of inhaled therapy. In case of inadequate response or worsening, intravenous infusion of magnesium sulphate, terbutaline or aminophylline may be used. Magnesium sulphate is the safest and most effective alternative among these. Severe cases may need ICU care and rarely, ventilatory support. PMID:21769523

  18. Cannabinoid withdrawal in mice: inverse agonist vs neutral antagonist

    PubMed Central

    Tai, Sherrica; Nikas, Spyros P.; Shukla, Vidyanand G.; Vemuri, Kiran; Makriyannis, Alexandros; Järbe, Torbjörn U.C.

    2015-01-01

    Rationale Previous reports shows rimonabant's inverse properties may be a limiting factor for treating cannabinoid dependence. To overcome this limitation neutral antagonists were developed, to address mechanisms by which an inverse agonist and neutral antagonist elicit withdrawal. Objective Introduces an animal model to study cannabinoid dependence by incorporating traditional methodologies and profiling novel cannabinoid ligands with distinct pharmacological properties/modes of action by evaluating their pharmacological effects on CB1-receptor (CB1R) related physiological/behavioral endpoints. Methods The cannabinergic AM2389 was acutely characterized in the tetrad (locomotor activity, analgesia, inverted screen/catalepsy bar test and temperature); with some comparisons made to Δ9-tetrahydrocannabinol (THC). Tolerance was measured in mice repeatedly administered AM2389. Antagonist-precipitated withdrawal was characterized in cannabinoid-adapted mice induced by either centrally acting antagonists, rimonabant and AM4113, or an antagonist with limited brain penetration, AM6545. Results In the tetrad, AM2389 was more potent and longer acting than THC, suggesting a novel approach for inducing dependence. Repeated administration of AM2389 led to tolerance by attenuating hypothermia that was induced by acute AM2389 administration. Antagonist-precipitated withdrawal signs were induced by rimonabant or AM4113, but not by AM6545. Antagonist-precipitated withdrawal was reversed by reinstating AM2389 or THC. Conclusions These findings suggest cannabinoid-precipitated withdrawal may not be ascribed to the inverse properties of rimonabant, but rather to rapid competition with the agonist at the CB1R. This withdrawal syndrome is likely centrally-mediated, since only the centrally acting CB1R antagonists elicited withdrawal, i.e., such responses were absent after the purported peripherally selective CB1R antagonist AM6545. PMID:25772338

  19. Platelet signal transduction defect with Gα subunit dysfunction and diminished Gαq in a patient with abnormal platelet responses

    PubMed Central

    Gabbeta, Jagadeesh; Yang, Xu; Kowalska, M. Anna; Sun, Ling; Dhanasekaran, N.; Rao, A. Koneti

    1997-01-01

    G proteins play a major role in signal transduction upon platelet activation. We have previously reported a patient with impaired agonist-induced aggregation, secretion, arachidonate release, and Ca2+ mobilization. Present studies demonstrated that platelet phospholipase A2 (cytosolic and membrane) activity in the patient was normal. Receptor-mediated activation of glycoprotein (GP) IIb-IIIa complex measured by flow cytometry using antibody PAC-1 was diminished despite normal amounts of GPIIb-IIIa on platelets. Ca2+ release induced by guanosine 5′-[γ-thio]triphosphate (GTP[γS]) was diminished in the patient’s platelets, suggesting a defect distal to agonist receptors. GTPase activity (a function of α-subunit) in platelet membranes was normal in resting state but was diminished compared with normal subjects on stimulation with thrombin, platelet-activating factor, or the thromboxane A2 analog U46619. Binding of 35S-labeled GTP[γS] to platelet membranes was decreased under both basal and thrombin-stimulated states. Iloprost (a stable prostaglandin I2 analog) -induced rise in cAMP (mediated by Gαs) and its inhibition (mediated by Gαi) by thrombin in the patient’s platelet membranes were normal. Immunoblot analysis of Gα subunits in the patient’s platelet membranes showed a decrease in Gαq (<50%) but not Gαi, Gαz, Gα12, and Gα13. These studies provide evidence for a hitherto undescribed defect in human platelet G-protein α-subunit function leading to impaired platelet responses, and they provide further evidence for a major role of Gαq in thrombin-induced responses. PMID:9238049

  20. Overeducation and depressive symptoms: diminishing mental health returns to education.

    PubMed

    Bracke, Piet; Pattyn, Elise; von dem Knesebeck, Olaf

    2013-11-01

    In general, well-educated people enjoy better mental health than those with less education. As a result, some wonder whether there are limits to the mental health benefits of education. Inspired by the literature on the expansion of tertiary education, this article explores marginal mental health returns to education and studies the mental health status of overeducated people. To enhance the validity of the findings we use two indicators of educational attainment - years of education and ISCED97 categories - and two objective indicators of overeducation (the realised matches method and the job analyst method) in a sample of the working population of 25 European countries (unweighted sample N = 19,089). Depression is measured using an eight-item version of the CES-D scale. We find diminishing mental health returns to education. In addition, overeducated people report more depression symptoms. Both findings hold irrespective of the indicators used. The results must be interpreted in the light of the enduring expansion of education, as our findings show that the discussion of the relevance of the human capital perspective, and the diploma disease view on the relationship between education and modern society, is not obsolete. PMID:23909439

  1. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins

    PubMed Central

    Yao, Chunxiang; Behring, Jessica B.; Shao, Di; Sverdlov, Aaron L.; Whelan, Stephen A.; Elezaby, Aly; Yin, Xiaoyan; Siwik, Deborah A.; Seta, Francesca; Costello, Catherine E.; Cohen, Richard A.; Matsui, Reiko; Colucci, Wilson S.; McComb, Mark E.; Bachschmid, Markus M.

    2015-01-01

    Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2), react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat), an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a ‘Tandem Mass Tag’ (TMT) labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg) mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation. PMID:26642319

  2. Magnesium Supplementation Diminishes Peripheral Blood Lymphocyte DNA Oxidative Damage in Athletes and Sedentary Young Man

    PubMed Central

    Petrović, Jelena; Stanić, Dušanka; Dmitrašinović, Gordana; Plećaš-Solarović, Bosiljka; Ignjatović, Svetlana; Batinić, Bojan; Popović, Dejana

    2016-01-01

    Sedentary lifestyle is highly associated with increased risk of cardiovascular disease, obesity, and type 2 diabetes. It is known that regular physical activity has positive effects on health; however several studies have shown that acute and strenuous exercise can induce oxidative stress and lead to DNA damage. As magnesium is essential in maintaining DNA integrity, the aim of this study was to determine whether four-week-long magnesium supplementation in students with sedentary lifestyle and rugby players could prevent or diminish impairment of DNA. By using the comet assay, our study demonstrated that the number of peripheral blood lymphocytes (PBL) with basal endogenous DNA damage is significantly higher in rugby players compared to students with sedentary lifestyle. On the other hand, magnesium supplementation significantly decreased the number of cells with high DNA damage, in the presence of exogenous H2O2, in PBL from both students and rugby players, and markedly reduced the number of cells with medium DNA damage in rugby players compared to corresponding control nonsupplemented group. Accordingly, the results of our study suggest that four-week-long magnesium supplementation has marked effects in protecting the DNA from oxidative damage in both rugby players and in young men with sedentary lifestyle. Clinical trial is registered at ANZCTR Trial Id: ACTRN12615001237572. PMID:27042258

  3. Effects of trophic poisoning with methylmercury on the appetitive elements of the agonistic sequence in fighting-fish (Betta splendens).

    PubMed

    Gouveia, Amauri; de Oliveira, Caio Maximino; Romão, Cynthia Ferreira; de Brito, Thiago Marques; Ventura, Dora Fix

    2007-11-01

    The aggressive display in Betta splendens is particularly prominent, and vital to its adaptation to the environment. Methylmercury is an organic variation of Hg that presents particularly pronounced neuro-behavioral effects. The present experiments aim to test the effect of acute and chronic poisoning with methylmercury on the display in Bettas. The animals were poisoned by trophic means in both experiments (16 ug/kg in acute poisoning; 16 ug/kg/day for chronic poisoning), and tested in agonistic pairs. The total frequency of the display was recorded, analyzing the topography of the agonistic response. The methylmercury seems to present a dose- and detoxification-dependent effect on these responses, with a more pronounced effect on motivity in acute poisoning and on emotionality in the chronic poisoning. It is possible that this effect could be mediated by alteration in the mono-amino-oxidase systems. PMID:17992970

  4. STARVATION INDUCED PROXIMAL GUT MUCOSAL ATROPHY DIMINISHED WITH AGING

    PubMed Central

    Song, Juquan; Wolf, Steven E.; Wu, Xiao-Wu; Finnerty, Celeste C.; Gauglitz, Gerd G.; Herndon, David N.; Jeschke, Marc G.

    2013-01-01

    Background Starvation induces small bowel atrophy with increased intestinal epithelial apoptosis and decreased proliferation. Here, we examined these parameters after starvation in aged animals. Methods Sixty-four 6 week-old and 26 month-old C57BL/6 mice were randomly assigned to either an ad libitum fed or fasted group. The small bowel was harvested at 12, 48, and 72 hours following starvation. Proximal gut mucosal height was measured and epithelial cells counted. Apoptosis was identified by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Proliferation was determined by immunohistochemical staining for proliferating cell nuclear antigen (PCNA). Comparison of fed vs. fasted and adult vs. old groups was done by one-way ANOVA with Tukey’s test and unpaired t-test. Significance was accepted at p<0.05. Results Aged mice had higher proximal gut weights, mucosal heights and cell numbers at baseline compared with the adult group (p<0.05). The rate of apoptosis was lower in the aged (p<0.05) while proliferation was not different between groups before starvation. After starvation, proximal gut wet weight decreased only in adult mice (p<0.05); Gut mucosal height and mucosal cell number decreased greater in adult than in aged mice (p<0.05). This was related to decreased proliferation only in the adult group (p<0.05). The fold of epithelial apoptosis increased was higher in the aged group than in the adult after starvation (p<0.05). Conclusions Gut mucosal kinetics change with age had lower rates of apoptosis and greater mucosal mass; the character of starvation-induced atrophy is diminished with aging. PMID:19126762

  5. Iron diminishes the in vitro biological effect of vanadium.

    PubMed

    Ghio, Andrew J; Stonehuerner, Jacqueline; Soukup, Joleen M; Dailey, Lisa A; Kesic, Matthew J; Cohen, Mitchell D

    2015-06-01

    Mechanistic pathways underlying inflammatory injury following exposures to vanadium-containing compounds are not defined. We tested the postulate that the in vitro biological effect of vanadium results from its impact on iron homeostasis. Human bronchial epithelial (HBE) cells exposed to vanadyl sulfate (VOSO4) showed a time- and dose-dependent increase in vanadium relative to PBS. HBE cells exposed to VOSO4 and then exposed to ferric ammonium citrate (FAC) significantly increased intracellular iron import supporting an interaction between the two metals. Following exposure to VOSO4, there was an increase (336±73%) in RNA for divalent metal transporter 1 (DMT1), a major iron importer. With inclusion of VOSO4 in the incubation, vanadium could be measured in the nuclear and mitochondrial fractions and the supernatant. Non-heme iron in the nuclear and mitochondrial fractions were decreased immediately following VOSO4 exposure while there was an increased concentration of non-heme iron in the supernatant. Provision of excess iron inhibited changes in the concentration of this metal provoked by VOSO4 exposures. Using Amplex Red, VOSO4 was shown to significantly increase oxidant generation by HBE cells in a time- and dose-dependent manner. HBE cells pre-treated with FAC and then exposed to VOSO4 demonstrated a decreased generation of oxidants. Similarly, activation of the transcription factor NF-ĸB promoter and release of interleukin-6 and -8 were increased following VOSO4 exposure and these effects were diminished by pre-treatment with FAC. We conclude that an initiating event in biological effect after exposure to vanadyl sulfate is a loss of requisite cell iron. PMID:25843360

  6. Rifaximin diminishes neutropenia following potentially lethal whole-body radiation.

    PubMed

    Jahraus, Christopher D; Schemera, Bettina; Rynders, Patricia; Ramos, Melissa; Powell, Charles; Faircloth, John; Brawner, William R

    2010-07-01

    Terrorist attacks involving radiological or nuclear weapons are a substantial geopolitical concern, given that large populations could be exposed to potentially lethal doses of radiation. Because of this, evaluating potential countermeasures against radiation-induced mortality is critical. Gut microflora are the most common source of systemic infection following exposure to lethal doses of whole-body radiation, suggesting that prophylactic antibiotic therapy may reduce mortality after radiation exposure. The chemical stability, easy administration and favorable tolerability profile of the non-systemic antibiotic, rifaximin, make it an ideal potential candidate for use as a countermeasure. This study evaluated the use of rifaximin as a countermeasure against low-to-intermediate-dose whole-body radiation in rodents. Female Wistar rats (8 weeks old) were irradiated with 550 cGy to the whole body and were evaluated for 30 d. Animals received methylcellulose, neomycin (179 mg/kg/d) or variably dosed rifaximin (150-2000 mg/kg/d) one hour after irradiation and daily throughout the study period. Clinical assessments (e.g. body weight) were made daily. On postirradiation day 30, blood samples were collected and a complete blood cell count was performed. Animals receiving high doses of rifaximin (i.e. 1000 or 2000 mg/kg/d) had a greater increase in weight from the day of irradiation to postirradiation day 30 compared with animals that received placebo or neomycin. For animals with an increase in average body weight from irradiation day within 80-110% of the group average, methylcellulose rendered an absolute neutrophil count (ANC) of 211, neomycin rendered an ANC of 334, rifaximin 300 mg/kg/d rendered an ANC of 582 and rifaximin 1000 mg/kg/d rendered an ANC of 854 (P = 0.05 for group comparison). Exposure to rifaximin after near-lethal whole-body radiation resulted in diminished levels of neutropenia. PMID:20558844

  7. Human's choices in situations of time-based diminishing returns.

    PubMed Central

    Hackenberg, T D; Axtell, S A

    1993-01-01

    Three experiments examined adult humans' choices in situations with contrasting short-term and long-term consequences. Subjects were given repeated choices between two time-based schedules of points exchangeable for money: a fixed schedule and a progressive schedule that began at 0 s and increased by 5 s with each point delivered by that schedule. Under "reset" conditions, choosing the fixed schedule not only produced a point but it also reset the requirements of the progressive schedule to 0 s. In the first two experiments, reset conditions alternated with "no-reset" conditions, in which progressive-schedule requirements were independent of fixed-schedule choices. Experiment 1 entailed choices between a progressive-interval schedule and a fixed-interval schedule, the duration of which varied across conditions. Switching from the progressive- to the fixed-interval schedule was systematically related to fixed-interval size in 4 of 8 subjects, and in all subjects occurred consistently sooner in the progressive-schedule sequence under reset than under no-reset procedures. The latter result was replicated in a second experiment, in which choices between progressive- and fixed-interval schedules were compared with choices between progressive- and fixed-time schedules. In Experiment 3, switching patterns under reset conditions were unrelated to variations in intertrial interval. In none of the experiments did orderly choice patterns depend on verbal descriptions of the contingencies or on schedule-controlled response patterns in the presence of the chosen schedules. The overall pattern of results indicates control of choices by temporarily remote consequences, and is consistent with versions of optimality theory that address performance in situations of diminishing returns. PMID:8315364

  8. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca2+ oscillations in mouse pancreatic acinar cells

    PubMed Central

    Huang, Zebing; Wang, Haiyan; Wang, Jingke; Zhao, Mengqin; Sun, Nana; Sun, Fangfang; Shen, Jianxin; Zhang, Haiying; Xia, Kunkun; Chen, Dejie; Gao, Ming; Hammer, Ronald P.; Liu, Qingrong; Xi, Zhengxiong; Fan, Xuegong; Wu, Jie

    2016-01-01

    Emerging evidence demonstrates that the blockade of intracellular Ca2+ signals may protect pancreatic acinar cells against Ca2+ overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca2+ signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca2+ oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca2+ oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca2+ oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca2+ oscillations and L-arginine-induced enhancement of Ca2+ signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. PMID:27432473

  9. Cannabinoid receptor subtype 2 (CB2R) agonist, GW405833 reduces agonist-induced Ca(2+) oscillations in mouse pancreatic acinar cells.

    PubMed

    Huang, Zebing; Wang, Haiyan; Wang, Jingke; Zhao, Mengqin; Sun, Nana; Sun, Fangfang; Shen, Jianxin; Zhang, Haiying; Xia, Kunkun; Chen, Dejie; Gao, Ming; Hammer, Ronald P; Liu, Qingrong; Xi, Zhengxiong; Fan, Xuegong; Wu, Jie

    2016-01-01

    Emerging evidence demonstrates that the blockade of intracellular Ca(2+) signals may protect pancreatic acinar cells against Ca(2+) overload, intracellular protease activation, and necrosis. The activation of cannabinoid receptor subtype 2 (CB2R) prevents acinar cell pathogenesis in animal models of acute pancreatitis. However, whether CB2Rs modulate intracellular Ca(2+) signals in pancreatic acinar cells is largely unknown. We evaluated the roles of CB2R agonist, GW405833 (GW) in agonist-induced Ca(2+) oscillations in pancreatic acinar cells using multiple experimental approaches with acute dissociated pancreatic acinar cells prepared from wild type, CB1R-knockout (KO), and CB2R-KO mice. Immunohistochemical labeling revealed that CB2R protein was expressed in mouse pancreatic acinar cells. Electrophysiological experiments showed that activation of CB2Rs by GW reduced acetylcholine (ACh)-, but not cholecystokinin (CCK)-induced Ca(2+) oscillations in a concentration-dependent manner; this inhibition was prevented by a selective CB2R antagonist, AM630, or was absent in CB2R-KO but not CB1R-KO mice. In addition, GW eliminated L-arginine-induced enhancement of Ca(2+) oscillations, pancreatic amylase, and pulmonary myeloperoxidase. Collectively, we provide novel evidence that activation of CB2Rs eliminates ACh-induced Ca(2+) oscillations and L-arginine-induced enhancement of Ca(2+) signaling in mouse pancreatic acinar cells, which suggests a potential cellular mechanism of CB2R-mediated protection in acute pancreatitis. PMID:27432473

  10. Peroxisome Proliferator-Activated Receptorα Agonists Differentially Regulate Inhibitor of DNA Binding Expression in Rodents and Human Cells

    PubMed Central

    González, María del Carmen; Corton, J. Christopher; Acero, Nuria; Muñoz-Mingarro, Dolores; Quirós, Yolanda; Álvarez-Millán, Juan José; Herrera, Emilio; Bocos, Carlos

    2012-01-01

    Inhibitor of DNA binding (Id2) is a helix-loop-helix (HLH) transcription factor that participates in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones, antidiabetic agents and peroxisome proliferator-activated receptor (PPAR) gamma agonists, have been reported to diminish Id2 expression in human cells. We hypothesized that PPARα activators may also alter Id2 expression. Fenofibrate diminished hepatic Id2 expression in both late pregnant and unmated rats. In 24 hour fasted rats, Id2 expression was decreased under conditions known to activate PPARα. In order to determine whether the fibrate effects were mediated by PPARα, wild-type mice and PPARα-null mice were treated with Wy-14,643 (WY). WY reduced Id2 expression in wild-type mice without an effect in PPARα-null mice. In contrast, fenofibrate induced Id2 expression after 24 hours of treatment in human hepatocarcinoma cells (HepG2). MK-886, a PPARα antagonist, did not block fenofibrate-induced activation of Id2 expression, suggesting a PPARα-independent effect was involved. These findings confirm that Id2 is a gene responsive to PPARα agonists. Like other genes (apolipoprotein A-I, apolipoprotein A-V), the opposite directional transcriptional effect in rodents and a human cell line further emphasizes that PPARα agonists have different effects in rodents and humans. PMID:22701468

  11. Peroxisome proliferator-activated receptorα agonists differentially regulate inhibitor of DNA binding expression in rodents and human cells.

    PubMed

    González, María Del Carmen; Corton, J Christopher; Acero, Nuria; Muñoz-Mingarro, Dolores; Quirós, Yolanda; Alvarez-Millán, Juan José; Herrera, Emilio; Bocos, Carlos

    2012-01-01

    Inhibitor of DNA binding (Id2) is a helix-loop-helix (HLH) transcription factor that participates in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones, antidiabetic agents and peroxisome proliferator-activated receptor (PPAR) gamma agonists, have been reported to diminish Id2 expression in human cells. We hypothesized that PPARα activators may also alter Id2 expression. Fenofibrate diminished hepatic Id2 expression in both late pregnant and unmated rats. In 24 hour fasted rats, Id2 expression was decreased under conditions known to activate PPARα. In order to determine whether the fibrate effects were mediated by PPARα, wild-type mice and PPARα-null mice were treated with Wy-14,643 (WY). WY reduced Id2 expression in wild-type mice without an effect in PPARα-null mice. In contrast, fenofibrate induced Id2 expression after 24 hours of treatment in human hepatocarcinoma cells (HepG2). MK-886, a PPARα antagonist, did not block fenofibrate-induced activation of Id2 expression, suggesting a PPARα-independent effect was involved. These findings confirm that Id2 is a gene responsive to PPARα agonists. Like other genes (apolipoprotein A-I, apolipoprotein A-V), the opposite directional transcriptional effect in rodents and a human cell line further emphasizes that PPARα agonists have different effects in rodents and humans. PMID:22701468

  12. Apoptosis inhibitor of macrophage (AIM) diminishes lipid droplet-coating proteins leading to lipolysis in adipocytes

    SciTech Connect

    Iwamura, Yoshihiro; Mori, Mayumi; Nakashima, Katsuhiko; Mikami, Toshiyuki; Murayama, Katsuhisa; Arai, Satoko; Miyazaki, Toru

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer AIM induces lipolysis in a distinct manner from that of hormone-dependent lipolysis. Black-Right-Pointing-Pointer AIM ablates activity of peroxisome proliferator-activated receptor in adipocytes. Black-Right-Pointing-Pointer AIM reduces mRNA levels of lipid-droplet coating proteins leading to lipolysis. -- Abstract: Under fasting conditions, triacylglycerol in adipose tissue undergoes lipolysis to supply fatty acids as energy substrates. Such lipolysis is regulated by hormones, which activate lipases via stimulation of specific signalling cascades. We previously showed that macrophage-derived soluble protein, AIM induces obesity-associated lipolysis, triggering chronic inflammation in fat tissue which causes insulin resistance. However, the mechanism of how AIM mediates lipolysis remains unknown. Here we show that AIM induces lipolysis in a manner distinct from that of hormone-dependent lipolysis, without activation or augmentation of lipases. In vivo and in vitro, AIM did not enhance phosphorylation of hormone-sensitive lipase (HSL) in adipocytes, a hallmark of hormone-dependent lipolysis activation. Similarly, adipose tissue from obese AIM-deficient and wild-type mice showed comparable HSL phosphorylation. Consistent with the suppressive effect of AIM on fatty acid synthase activity, the amount of saturated and unsaturated fatty acids was reduced in adipocytes treated with AIM. This response ablated transcriptional activity of peroxisome proliferator-activated receptor (PPAR{gamma}), leading to diminished gene expression of lipid-droplet coating proteins including fat-specific protein 27 (FSP27) and Perilipin, which are indispensable for triacylglycerol storage in adipocytes. Accordingly, the lipolytic effect of AIM was overcome by a PPAR{gamma}-agonist or forced expression of FSP27, while it was synergized by a PPAR{gamma}-antagonist. Overall, distinct modes of lipolysis appear to take place in different physiological

  13. beta2-Agonists at the Olympic Games.

    PubMed

    Fitch, Kenneth D

    2006-01-01

    The different approaches that the International Olympic Committee (IOC) had adopted to beta2-agonists and the implications for athletes are reviewed by a former Olympic team physician who later became a member of the Medical Commission of the IOC (IOC-MC). Steadily increasing knowledge of the effects of inhaled beta2-agonists on health, is concerned with the fact that oral beta2-agonists may be anabolic, and rapid increased use of inhaled beta2-agonists by elite athletes has contributed to the changes to the IOC rules. Since 2001, the necessity for athletes to meet IOC criteria (i.e., that they have asthma and/or exercise-induced asthma [EIA]) has resulted in improved management of athletes. The prevalence of beta2-agonist use by athletes mirrors the known prevalence of asthma symptoms in each country, although athletes in endurance events have the highest prevalence. The age-of-onset of asthma/EIA in elite winter athletes may be atypical. Of the 193 athletes at the 2006 Winter Olympics who met th IOC's criteria, only 32.1% had childhood asthma and 48.7% of athletes reported onset at age 20 yr or older. These findings lead to speculation that years of intense endurance training may be a causative factor in bronchial hyperreactivity. The distinction between oral (prohibited in sports) and inhaled salbutamol is possible, but athletes must be warned that excessive use of inhaled salbutamol can lead to urinary concentrations similar to those observed after oral administration. This article provides justification that athletes should provide evidence of asthma or EIA before being permitted to use inhaled beta2-agonists. PMID:17085798

  14. Acute Heart Failure Treatment.

    PubMed

    Levy, Phillip D; Bellou, Abdel

    2013-06-01

    Dyspnea is the predominant symptom for patients with acute heart failure and initial treatment is largely directed towards the alleviation of this. Contrary to conventional belief, not all patients present with fluid overload and the approach to management is rapidly evolving from a solitary focus on diuresis to one that more accurately reflects the complex interplay of underlying cardiac dysfunction and acute precipitant. Effective treatment thus requires an understanding of divergent patient profiles and an appreciation of various therapeutic options for targeted patient stabilization. The key principle within this paradigm is directed management that aims to diminish the work of breathing through situation appropriate ventillatory support, volume reduction and hemodynamic improvement. With such an approach, clinicians can more efficiently address respiratory discomfort while reducing the likelihood of avoidable harm. PMID:24223323

  15. Introduction of a single isomer beta agonist.

    PubMed

    Rau, J L

    2000-08-01

    The release of levalbuterol offers the first approved single-isomer beta agonist for oral inhalation. Data from in vitro studies support the concept that S albuterol is not inactive and may have properties antagonistic to bronchodilation. There is some variability in the results of clinical studies with the separate isomers of albuterol, which suggests the need for further study. The introduction of levalbuterol into general clinical use in managing asthma and chronic obstructive disease should begin to offer additional information on the effects of a single isomer beta agonist in comparison to previous racemic mixtures. PMID:10963321

  16. How to diminish calcium loss and muscle atrophy in space

    NASA Astrophysics Data System (ADS)

    Gorgolewski, S.

    perfect relaxation when asleep or awake. We have to check in space if we can thus diminish the use of medicaments or even eliminate them. Slow Yoga exercises decrease also the amount on food required because life is not so energy demanding in space as it is here under the earth's gravitation. We can stay lean and healthy with such static yet most effective physical exercises. In addition it gives us for free a vegetarian life style, just another benefit so useful in space travel.

  17. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    NASA Astrophysics Data System (ADS)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface

  18. Diminished Baroreflex Control of Forearm Vascular Resistance Following Training

    NASA Technical Reports Server (NTRS)

    Mack, G. W.; Thompson, C. A.; Doerr, D. F.; Nadel, E. R.; Convertino, V. A.

    1991-01-01

    The stimulus-response characteristics of cardiopulmonary baroreflex control of forearm vascular resistance (FVR units in mm Hg x min x I00 ml/ml) were studied in 14 volunteers before and after 10 wk of endurance training. We assessed the relationship betaleen reflex stimulus (changes in central venous pressure, CVP) and response (FVR) during unloading of cardiopulmonary baroreceptors with lower body negative pressure (LBNP, 0 to - 2O mm Hg). Changes in CVP during LBNP were estimated from pressure changes in a large peripheral vein in the dependent arm of the subject in the right lateral decubitus position. Maximal oxygen uptake (VO(sub 2max)) and total blood volume increased with endurance training from 37.8 +/- 1.4 ml/min x kg and 63.6 +/- 2.1 ml/kg to 45.3 +/- 1.4 ml/ min x kg and 69.3 +/- 2.8 ml/kg respectively (P less than 0.05). Reflex forearm vasoconstriction occurred in response to a reduction in estimated CVP, and the absolute change in FVR per unit of CVP was reduced from -5.96 +/- 0.79 to -4.06 +/- 0.52 units x mm/ Hg (P less than 0.05) following exercise training but was unchanged from -6.10 to 0.57 to -6.22 +/- 0.94 units x mm/ Hg for the time control group (N = 7). Resting values for FVR were similar before and after exercise training; however, resting estimated CVP was elevated from 9.5 +/- 0.5 mm x Hg before training to 11.3 +/- 0.6 mm x Hg after training. The reduction in sensitivity of the cardiopulmonary baroreflex control of FVR was linearly related to the increase in blood volume (r = 0.65, P less than 0.05). suggesting that diminished cardiopulmonary baroreflex control of FVR in physically fit individuals is related, in part, to a training-induced blood volume expansion.

  19. Potential antidepressant-like properties of the TC G-1008, a GPR39 (zinc receptor) agonist.

    PubMed

    Młyniec, Katarzyna; Starowicz, Gabriela; Gaweł, Magdalena; Frąckiewicz, Ewelina; Nowak, Gabriel

    2016-09-01

    Some forms of depression appear to be more related to the glutamatergic system. G-coupled protein receptor 39 (GPR39) is the metabotropic zinc receptor, which may be involved in the pathophysiology of depression and in the antidepressant response. Its deficiency abolishes the antidepressant response, which means that GPR39 is required to obtain a therapeutic effect in depression. This raises the possibility that agonists of the zinc receptor may have a role in antidepressant treatment. To explore this possibility we investigated animal behaviour in the forced swim test, the tail suspension test (to assess antidepressant-like properties), the light/dark test and the elevated plus maze test (to assess anxiolytic-like properties), following acute administration of a GPR39 agonist (TC G-1008). We found an antidepressant response (as measured by the forced swim test but not by the tail suspension test) in mice following the GPR39 agonist treatment. Additionally, we observed the opposite results in the light/dark box (decreased overall distance; increased time spent in the lit compartment; decreased time spent in the dark compartment; increased freezing time) and elevated plus maze (no significant changes), which may be a consequence of the sedative effect of TC G-1008. We also found hippocampal GPR39 and brain-derived neurotrophic factor (BDNF) up-regulation following administration of the GPR39 agonist, which may be undiscovered so far as a possible novel agent in the treatment of mood disorders. PMID:27235821

  20. Small Molecule Agonists of Cell Adhesion Molecule L1 Mimic L1 Functions In Vivo.

    PubMed

    Kataria, Hardeep; Lutz, David; Chaudhary, Harshita; Schachner, Melitta; Loers, Gabriele

    2016-09-01

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery after injury, leading to severe disabilities in motor functions and pain. Peripheral nerve injury impairs motor, sensory, and autonomic functions, particularly in cases where nerve gaps are large and chronic nerve injury ensues. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration after acute injury. We screened libraries of known drugs for small molecule agonists of L1 and evaluated the effect of hit compounds in cell-based assays in vitro and in mice after femoral nerve and spinal cord injuries in vivo. We identified eight small molecule L1 agonists and showed in cell-based assays that they stimulate neuronal survival, neuronal migration, and neurite outgrowth and enhance Schwann cell proliferation and migration and myelination of neurons in an L1-dependent manner. In a femoral nerve injury mouse model, enhanced functional regeneration and remyelination after application of the L1 agonists were observed. In a spinal cord injury mouse model, L1 agonists improved recovery of motor functions, being paralleled by enhanced remyelination, neuronal survival, and monoaminergic innervation, reduced astrogliosis, and activation of microglia. Together, these findings suggest that application of small organic compounds that bind to L1 and stimulate the beneficial homophilic L1 functions may prove to be a valuable addition to treatments of nervous system injuries. PMID:26253722

  1. Acute Bronchitis

    MedlinePlus

    ... or though physical contact (for example, on unwashed hands). Being exposed to tobacco smoke, air pollution, dusts, vapors, and fumes can also cause acute bronchitis. Less often, bacteria can also cause acute bronchitis. To diagnose acute ...

  2. Cystitis - acute

    MedlinePlus

    Uncomplicated urinary tract infection; UTI - acute; Acute bladder infection; Acute bacterial cystitis ... control. Menopause also increases the risk for a urinary tract infection. The following also increase your chances of having ...

  3. Beta-3 adrenergic agonists reduce pulmonary vascular resistance and improve right ventricular performance in a porcine model of chronic pulmonary hypertension.

    PubMed

    García-Álvarez, Ana; Pereda, Daniel; García-Lunar, Inés; Sanz-Rosa, David; Fernández-Jiménez, Rodrigo; García-Prieto, Jaime; Nuño-Ayala, Mario; Sierra, Federico; Santiago, Evelyn; Sandoval, Elena; Campelos, Paula; Agüero, Jaume; Pizarro, Gonzalo; Peinado, Víctor I; Fernández-Friera, Leticia; García-Ruiz, José M; Barberá, Joan A; Castellá, Manuel; Sabaté, Manel; Fuster, Valentín; Ibañez, Borja

    2016-07-01

    Beta-3 adrenergic receptor (β3AR) agonists have been shown to produce vasodilation and prevention of ventricular remodeling in different conditions. Given that these biological functions are critical in pulmonary hypertension (PH), we aimed to demonstrate a beneficial effect of β3AR agonists in PH. An experimental study in pigs (n = 34) with chronic PH created by pulmonary vein banding was designed to evaluate the acute hemodynamic effect and the long-term effect of β3AR agonists on hemodynamics, vascular remodeling and RV performance in chronic PH. Ex vivo human experiments were performed to explore the expression of β3AR mRNA and the vasodilator response of β3AR agonists in pulmonary arteries. Single intravenous administration of the β3AR agonist BRL37344 produced a significant acute reduction in PVR, and two-weeks treatment with two different β3AR selective agonists, intravenous BRL37344 or oral mirabegron, resulted in a significant reduction in PVR (median of -2.0 Wood units/m(2) for BRL37344 vs. +1.5 for vehicle, p = 0.04; and -1.8 Wood units/m(2) for mirabegron vs. +1.6 for vehicle, p = 0.002) associated with a significant improvement in magnetic resonance-measured RV performance. Histological markers of pulmonary vascular proliferation (p27 and Ki67) were significantly attenuated in β3AR agonists-treated pigs. β3AR was expressed in human pulmonary arteries and β3AR agonists produced vasodilatation. β3AR agonists produced a significant reduction in PVR and improved RV performance in experimental PH, emerging as a potential novel approach for treating patients with chronic PH. PMID:27328822

  4. A Polymeric Nanomedicine Diminishes Inflammatory Events in Renal Tubular Cells

    PubMed Central

    Ocaña-Salceda, Carlos; Sancho, Mónica; Orzáez, Mar; Messeguer, Angel; Ruiz-Ortega, Marta; Egido, Jesús; Vicent, María J.; Ortiz, Alberto; Ramos, Adrián M.

    2013-01-01

    The polyglutamic acid/peptoid 1 (QM56) nanoconjugate inhibits apoptosis by interfering with Apaf-1 binding to procaspase-9. We now describe anti-inflammatory properties of QM56 in mouse kidney and renal cell models. In cultured murine tubular cells, QM56 inhibited the inflammatory response to Tweak, a non-apoptotic stimulus. Tweak induced MCP-1 and Rantes synthesis through JAK2 kinase and NF-κB activation. Similar to JAK2 kinase inhibitors, QM56 inhibited Tweak-induced NF-κB transcriptional activity and chemokine expression, despite failing to inhibit NF-κB-p65 nuclear translocation and NF-κB DNA binding. QM56 prevented JAK2 activation and NF-κB-p65(Ser536) phosphorylation. The anti-inflammatory effect and JAK2 inhibition by QM56 were observed in Apaf-1−/− cells. In murine acute kidney injury, QM56 decreased tubular cell apoptosis and kidney inflammation as measured by down-modulations of MCP-1 and Rantes mRNA expression, immune cell infiltration and activation of the JAK2-dependent inflammatory pathway. In conclusion, QM56 has an anti-inflammatory activity which is independent from its role as inhibitor of Apaf-1 and apoptosis and may have potential therapeutic relevance. PMID:23300960

  5. Airway Peroxidases Catalyze Nitration of the β2-Agonist Salbutamol and Decrease Its Pharmacological Activity

    PubMed Central

    Sallans, Larry; Macha, Stephen; Brown, Kari; McGraw, Dennis W.; Kovacic, Melinda Butsch; Britigan, Bradley E.

    2011-01-01

    β2-Agonists are the most effective bronchodilators for the rapid relief of asthma symptoms, but for unclear reasons, their effectiveness may be decreased during severe exacerbations. Because peroxidase activity and nitrogen oxides are increased in the asthmatic airway, we examined whether salbutamol, a clinically important β2-agonist, is subject to potentially inactivating nitration. When salbutamol was exposed to myeloperoxidase, eosinophil peroxidase or lactoperoxidase in the presence of hydrogen peroxide (H2O2) and nitrite (NO2−), both absorption spectroscopy and mass spectrometry indicated formation of a new metabolite with features expected for the nitrated drug. The new metabolites showed an absorption maximum at 410 nm and pKa of 6.6 of the phenolic hydroxyl group. In addition to nitrosalbutamol (m/z 285.14), a salbutamol-derived nitrophenol, formed by elimination of the formaldehyde group, was detected (m/z 255.13) by mass spectrometry. It is noteworthy that the latter metabolite was detected in exhaled breath condensates of asthma patients receiving salbutamol but not in unexposed control subjects, indicating the potential for β2-agonist nitration to occur in the inflamed airway in vivo. Salbutamol nitration was inhibited in vitro by ascorbate, thiocyanate, and the pharmacological agents methimazole and dapsone. The efficacy of inhibition depended on the nitrating system, with the lactoperoxidase/H2O2/NO2− being the most affected. Functionally, nitrated salbutamol showed decreased affinity for β2-adrenergic receptors and impaired cAMP synthesis in airway smooth muscle cells compared with the native drug. These results suggest that under inflammatory conditions associated with asthma, phenolic β2-agonists may be subject to peroxidase-catalyzed nitration that could potentially diminish their therapeutic efficacy. PMID:20974700

  6. Antagonist but not agonist labeling of serotonin-1A receptors is decreased in major depressive disorder

    PubMed Central

    Stockmeier, Craig A.; Howley, Eimear; Shi, Xiaochun; Sobanska, Anna; Clarke, Gerard; Friedman, Lee; Rajkowska, Grazyna

    2009-01-01

    Serotonin-1A receptors may play a role in the pathophysiology of depression and suicide. In postmortem brain tissue, agonist binding to serotonin-1A receptors is reportedly increased or unchanged in depression or suicide, while neuroimaging studies report a decrease in antagonist binding to these receptors in subjects with depression. In this study, both agonist and antagonist radioligand binding to serotonin-1A receptors were examined in postmortem orbitofrontal cortex from subjects with major depressive disorder (MDD). Brain tissue was collected at autopsy from 11 subjects with MDD and 11 age- and gender-matched normal control subjects. Two depressed subjects had a recent psychoactive substance use disorder. Six subjects with MDD had a prescription for an antidepressant drug in the last month of life, and, of these six, postmortem bloods from only two subjects tested positive for an antidepressant drug. There was no significant difference between cohorts for age, postmortem interval or tissue pH. The receptor agonist [3H]8-OH-DPAT or the antagonist [3H]MPPF were used to autoradiographically label serotonin-1A receptors in frozen sections from cytoarchitectonically-defined left rostral orbitofrontal cortex (area 47). There was no significant difference between depressed and control subjects in agonist binding to serotonin-1A receptors. However, antagonist binding was significantly decreased in outer layers of orbitofrontal cortex in MDD. This observation in postmortem tissue confirms reports using an antagonist radioligand in living subjects with depression. Decreased antagonist binding to serotonin-1A receptors in outer layers of orbitofrontal cortex suggests diminished receptor signaling and may be linked to corresponding neuronal changes detected previously in these depressed subjects. PMID:19215942

  7. Multiple tyrosine metabolites are GPR35 agonists

    PubMed Central

    Deng, Huayun; Hu, Haibei; Fang, Ye

    2012-01-01

    Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including β-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3′,5′-triiodothyronine, 3,3′,5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism. PMID:22523636

  8. Reciprocity of agonistic support in ravens

    PubMed Central

    Fraser, Orlaith N.; Bugnyar, Thomas

    2012-01-01

    Cooperative behaviour through reciprocation or interchange of valuable services in primates has received considerable attention, especially regarding the timeframe of reciprocation and its ensuing cognitive implications. Much less, however, is known about reciprocity in other animals, particularly birds. We investigated patterns of agonistic support (defined as a third party intervening in an ongoing conflict to attack one of the conflict participants, thus supporting the other) in a group of 13 captive ravens, Corvus corax. We found support for long-term, but not short-term, reciprocation of agonistic support. Ravens were more likely to support individuals who preened them, kin and dominant group members. These results suggest that ravens do not reciprocate on a calculated tit-for-tat basis, but aid individuals from whom reciprocated support would be most useful and those with whom they share a good relationship. Additionally, dyadic levels of agonistic support and consolation (postconflict affiliation from a bystander to the victim) correlated strongly with each other, but we found no evidence to suggest that receiving agonistic support influences the victim’s likelihood of receiving support (consolation) after the conflict ends. Our findings are consistent with an emotionally mediated form of reciprocity in ravens and provide additional support for convergent cognitive evolution in birds and mammals. PMID:22298910

  9. Small molecule TSHR agonists and antagonists.

    PubMed

    Neumann, S; Gershengorn, M C

    2011-04-01

    TSH activates the TSH receptor (TSHR) thereby stimulating the function of thyroid follicular cells (thyrocytes) leading to biosynthesis and secretion of thyroid hormones. Because TSHR is involved in several thyroid pathologies, there is a strong rationale for the design of small molecule "drug-like" ligands. Recombinant human TSH (rhTSH, Thyrogen(®)) has been used in the follow-up of patients with thyroid cancer to increase the sensitivity for detection of recurrence or metastasis. rhTSH is difficult to produce and must be administered by injection. A small molecule TSHR agonist could produce the same beneficial effects as rhTSH but with greater ease of oral administration. We developed a small molecule ligand that is a full agonist at TSHR. Importantly for its clinical potential, this agonist elevated serum thyroxine and stimulated thyroidal radioiodide uptake in mice after its absorption from the gastrointestinal tract following oral administration. Graves' disease (GD) is caused by persistent, unregulated stimulation of thyrocytes by thyroid-stimulating antibodies (TSAbs) that activate TSHR. We identified the first small molecule TSHR antagonists that inhibited TSH- and TSAb-stimulated signalling in primary cultures of human thyrocytes. Our results provide proof-of-principle for effectiveness of small molecule agonists and antagonists for TSHR. We suggest that these small molecule ligands are lead compounds for the development of higher potency ligands that can be used as probes of TSHR biology with therapeutic potential. PMID:21511239

  10. Reciprocity of agonistic support in ravens.

    PubMed

    Fraser, Orlaith N; Bugnyar, Thomas

    2012-01-01

    Cooperative behaviour through reciprocation or interchange of valuable services in primates has received considerable attention, especially regarding the timeframe of reciprocation and its ensuing cognitive implications. Much less, however, is known about reciprocity in other animals, particularly birds. We investigated patterns of agonistic support (defined as a third party intervening in an ongoing conflict to attack one of the conflict participants, thus supporting the other) in a group of 13 captive ravens, Corvus corax. We found support for long-term, but not short-term, reciprocation of agonistic support. Ravens were more likely to support individuals who preened them, kin and dominant group members. These results suggest that ravens do not reciprocate on a calculated tit-for-tat basis, but aid individuals from whom reciprocated support would be most useful and those with whom they share a good relationship. Additionally, dyadic levels of agonistic support and consolation (postconflict affiliation from a bystander to the victim) correlated strongly with each other, but we found no evidence to suggest that receiving agonistic support influences the victim's likelihood of receiving support (consolation) after the conflict ends. Our findings are consistent with an emotionally mediated form of reciprocity in ravens and provide additional support for convergent cognitive evolution in birds and mammals. PMID:22298910

  11. Diminishing Apoptosis by Deletion of Bax or Overexpression of Bcl-2 Does Not Protect against Infectious Prion Toxicity In Vivo

    PubMed Central

    Steele, Andrew D.; King, Oliver D.; Jackson, Walker S.; Hetz, Claudio A.; Borkowski, Andrew W.; Thielen, Peter; Wollmann, Robert; Lindquist, Susan

    2008-01-01

    B-cell lymphoma protein 2 (Bcl-2) and Bcl-2-associated X protein (Bax), key antiapoptotic and proapoptotic proteins, respectively, have important roles in acute and chronic models of neurologic disease. Several studies have implicated Bax and Bcl-2 in mediating neurotoxicity in prion diseases. To determine whether diminishing apoptotic cell death is protective in an infectious prion disease model we inoculated mice that either were null for proapoptotic Bax or overexpressed antiapoptotic Bcl-2. Interestingly, genetic manipulation of apoptosis did not lessen the clinical severity of disease. Moreover, some disease parameters, such as behavioral alterations and death, occurred slightly earlier in mice that are null for Bax or overexpress Bcl-2. These results suggest that Bax and Bcl-2 mediated apoptotic pathways are not the major contributing factor to the clinical or pathological features of infectious prion disease. PMID:18032675

  12. Agonist and antagonist effects of cytisine in vivo.

    PubMed

    Radchenko, Elena V; Dravolina, Olga A; Bespalov, Anton Y

    2015-08-01

    Varenicline, the most successful smoking cessation aid, is a selective partial agonists at α4β2* nicotinic receptors. Its efficacy is likely to be shared by other drugs with similar receptor action, including cytisine. The present study aimed to characterize behavioral effects of cytisine compared with nicotine using locomotor activity tests, intracranial self-stimulation of ventral tegmental area (discrete-trial threshold current intensity titration procedure), drug discrimination (0.6 mg/kg nicotine from vehicle), physical dependence (osmotic minipumps delivering 6 mg/kg/day of nicotine) and intravenous nicotine self-administration (0.01 mg/kg per infusion) in adult Wistar rats. Cytisine (1-3 mg/kg) partially substituted for nicotine and at the highest dose tended to antagonize nicotine's discriminative stimulus effects. Nicotine (0.05-0.4 mg/kg), but not cytisine (0.3-3 mg/kg), lowered ICSS thresholds and cytisine dose-dependently reversed effects of nicotine. Nicotine (0.15-0.6 mg/kg), but not cytisine (0.3-3 mg/kg), stimulated locomotor activity and cytisine (3 mg/kg) fully reversed these effects of nicotine. Acute pretreatment with nicotine (0.15-0.6 mg/kg), but not cytisine (0.3-3 mg/kg), reinstated extinguished nicotine self-administration. Continuous infusion of nicotine induced physical dependence, as indicated by reduced rates of food-reinforced responding induced by a challenge dose of mecamylamine. At the highest tested dose (3 mg/kg), cytisine tended to reduce response rates irrespective of whether the rats were continuously exposed to nicotine or saline. Cytisine behaves like a weak partial agonist, mimicking effects of nicotine to a limited degree. Although cytisine reversed several effects of nicotine, it seemed to have a reduced potential to produce withdrawal signs in nicotine-dependent subjects. PMID:25839895

  13. Effects of acetorphan, an enkephalinase inhibitor, on experimental and acute diarrhoea.

    PubMed Central

    Baumer, P; Danquechin Dorval, E; Bertrand, J; Vetel, J M; Schwartz, J C; Lecomte, J M

    1992-01-01

    Acetorphan is an orally active inhibitor of enkephalinase (EC 3.4.24.11) with antidiarrhoeal activity in rodents apparently through protection of endogenous enkephalins and a purely antisecretory mechanism. Its antidiarrhoeal activity in man was assessed in an experimental model of cathartic induced secretory diarrhoea as well as in acute diarrhoea of presumed infectious origin. In six healthy volunteers receiving castor oil and pretreated with acetorphan or placebo in a crossover controlled trial, the drug significantly decreased the number and weight of stools passed during 24 hours. About 200 outpatients with severe acute diarrhoea (more than five stools per day) were included in a randomised double blind study of acetorphan against placebo. The significant antidiarrhoeal activity of acetorphan was established using a variety of criteria: (i) the duration of both diarrhoea and treatment were diminished; (ii) no acetorphan treated patient withdrew from the study whereas five dropped out because of worsening in the placebo group; (iii) the frequency of symptoms associated with diarrhoea--for example, abdominal pain or distension, nausea and anorexia--remaining after two weeks was nearly halved; (iv) using visual analogue scales acetorphan treatment was found more effective than placebo by both investigators and patients. There was statistically no significant difference between acetorphan and placebo in respect of side effects, particularly constipation, which often accompanies the antidiarrhoeal activity of mu opioid receptor agonists this difference is attributable to the lack of antipropulsive activity of acetorphan in man. The efficacy and tolerance of acetorphan suggest that enkephalinase inhibition may represent a novel therapeutic approach for the symptomatic management of acute secretory diarrhoea without impairing intestinal transit. PMID:1624154

  14. A new sign of callosal disconnection syndrome: agonistic dyspraxia. A case study.

    PubMed

    Lavados, Manuel; Carrasco, Ximena; Peña, Marcela; Zaidel, Eran; Zaidel, Dahlia; Aboitiz, Francisco

    2002-01-01

    We report a patient with callosal haemorrhage and no extracallosal involvement who developed a unique form of intermanual conflict. In the acute phase the patient showed a mild speech disturbance and right hemiparesis, and in her right hand, a grasp reflex and compulsive manipulation of tools, all attributable to transient frontal involvement. In the chronic phase there was intermanual conflict occasionally associated with the sensation of a second left hand. The patient also presented a sign consisting of compulsive, automatic execution of orders by one hand (the left or the right) when the patient was specifically asked to perform the movement with the other hand (the right or the left, respectively). There was no left-right confusion in this patient. We call this condition agonistic dyspraxia. In contrast with diagonistic dyspraxia, this consists of the agonistic behaviour of the other hand under conditions in which the hand that has been instructed to respond cannot execute the request. PMID:12529456

  15. Modulation of pre- and postsynaptic dopamine D2 receptor function by the selective kappa-opioid receptor agonist U69593.

    PubMed

    Acri, J B; Thompson, A C; Shippenberg, T

    2001-03-15

    The repeated administration of selective kappa-opioid receptor agonists prevents the locomotor activation produced by acute cocaine administration and the development of cocaine-induced behavioral sensitization. Previous studies have shown that dopamine (DA) D2 autoreceptors modulate the synthesis and release of DA in the striatum. Evidence that kappa agonist treatment downregulates DA D2 receptors in this same brain region has recently been obtained. Accordingly, the present studies were undertaken to examine the influence of repeated kappa-opioid receptor agonist administration on pre- and postsynaptic DA D2 receptor function in the dorsal striatum using pre- and postsynaptic receptor-selective doses of quinpirole. Rats were injected once daily with the selective kappa-opioid receptor agonist U69593 (0.16-0.32 mg/kg s.c.) or vehicle for 3 days. Microdialysis studies assessing basal and quinpirole-evoked (0.05 mg/kg s.c.) DA levels were conducted 2 days later. Basal and quinpirole-stimulated locomotor activity were assessed in a parallel group of animals. The no-net flux method of quantitative microdialysis revealed no effect of U69593 on basal DA dynamics, in that extracellular DA concentration and extraction fraction did not differ in control and U69593-treated animals. Acute administration of quinpirole significantly decreased striatal DA levels in control animals, but in animals treated with U69593, the inhibitory effects of quinpirole were significantly reduced. Quinpirole produced a dose-related increase in locomotor activity in control animals, and this effect was significantly attenuated in U69593-treated animals. These data reveal that prior repeated administration of a selective kappa-opioid receptor agonist attenuates quinpirole-induced alterations in DA neurotransmission and locomotor activity. These results suggest that both pre- and postsynaptic striatal DA D2 receptors may be downregulated following repeated kappa-opioid receptor agonist

  16. Peroxidative Metabolism of β2-Agonists Salbutamol and Fenoterol and Their Analogs

    PubMed Central

    Reszka, Krzysztof J.; McGraw, Dennis W.; Britigan, Bradley E.

    2009-01-01

    Phenolic β2-adrenoreceptor agonists salbutamol, fenoterol and terbutaline relax smooth muscle cells that relieve acute airway bronchospasm associated with asthma. Why their use sometimes fails to relieve bronchospasm, and why the drugs appear to be less effective in patients with severe asthma exacerbations, remains unclear. We show that in the presence of hydrogen peroxide, both myeloperoxidase, secreted by activated neutrophils present in inflamed airways, and lactoperoxidase, which is naturally present in the respiratory system, catalyze oxidation of these β2-agonists. Azide, cyanide, thiocyanate, ascorbate, glutathione, and methimazole inhibited this process, while methionine was without effect. Inhibition by ascorbate and glutathione was associated with their oxidation to corresponding radical species by the agonists’-derived phenoxyl radicals. Using electron paramagnetic resonance (EPR), we detected free radical metabolites from β2-agonists by spin trapping with 2-methyl-2-nitrosopropane (MNP). Formation of these radicals was inhibited by pharmacologically-relevant concentrations of methimazole and dapsone. In alkaline buffers radicals from fenoterol and its structural analog, metaproteronol, were detected by direct EPR. Analysis of these spectra suggests that oxidation of fenoterol and metaproterenol, but not terbutaline, causes their transformation through intramolecular cyclization by addition of their amino nitrogen to the aromatic ring. Together, these results indicate that phenolic β2-agonists function as substrates for airway peroxidases and that the resulting products differ in their structural and functional properties from their parent compounds. They also suggest that these transformations can be modulated by pharmacological approaches using appropriate peroxidase inhibitors or alternative substrates. These processes may affect therapeutic efficacy and also play a role in adverse reactions of the β2-agonists. PMID:19462961

  17. Lorcaserin, a selective 5-HT(2C) receptor agonist, decreases alcohol intake in female alcohol preferring rats.

    PubMed

    Rezvani, Amir H; Cauley, Marty C; Levin, Edward D

    2014-10-01

    Serotonergic systems in the brain have been found to be important in the addiction to alcohol. The purpose of this study was to evaluate the efficacy of a novel 5-HT2c receptor agonist, lorcaserin for reducing alcohol consumption in alcohol-preferring (P) rats. Adult female rats were allowed to drink water or alcohol (12%, v/v) using a standard two-bottle choice procedure. Once stable baselines were established, the acute (0, 0.3125, 0.625 and 1.25 mg/kg, s.c.), and chronic (0, 0.625 mg/kg, sc for 10 days) effects of lorcaserin on alcohol intake and preference were assessed at different time points. In a separate experiment, the effects of lorcaserin on locomotor activity were determined. Our results show that both 0.625 and 1.25 mg/kg lorcaserin significantly reduced alcohol intake at 2, 4 and 6 h. after the drug administration. The chronic administration of 0.625 mg/kg lorcaserin significantly reduced alcohol intake up to 6h every day after the injection and there was no sign of diminished efficacy of the drug during 10-day treatment. To determine the effects of lorcaserin on sucrose intake, rats were put on a two-bottle choice of water vs a solution of 7% sucrose. The high dose of lorcaserin (1.25 mg/kg, s.c.) reduced sucrose intake only for up to 2 h. When tested for locomotor activity, lorcaserin injected 20 min before testing significantly reduced locomotor activity at all doses. However, when it was injected 5.5h before the start of the 1-h session, neither dose had a significant effect on locomotor activity. These results show the efficacy of lorcaserin in reducing alcohol intake without a significant effect on water intake and locomotion suggesting the involvement of 5-HT2c receptors in alcohol seeking behavior. Further research is warranted to determine the possible efficacy of lorcaserin or similar drugs as treatments for the treatment of alcoholism. PMID:25109272

  18. HERG1 Channel Agonists and Cardiac Arrhythmia

    PubMed Central

    Sanguinetti, Michael

    2014-01-01

    Type 1 human ether-a-go-go-related gene (hERG1) potassium channels are a key determinant of normal repolarization of cardiac action potentials. Loss of function mutations in hERG1 channels cause inherited long QT syndrome and increased risk of cardiac arrhythmia and sudden death. Many common medications that block hERG1 channels as an unintended side effect also increase arrhythmic risk. Routine preclinical screening for hERG1 block led to the discovery of agonists that shorten action potential duration and QT interval. Agonists have the potential to be used as pharmacotherapy for long QT syndrome, but can also be proarrhythmic. Recent studies have elucidated multiple mechanisms of action for these compounds and the structural basis for their binding to the pore domain of the hERG1 channel. PMID:24721650

  19. HERG1 channel agonists and cardiac arrhythmia.

    PubMed

    Sanguinetti, Michael C

    2014-04-01

    Type 1 human ether-a-go-go-related gene (hERG1) potassium channels are a key determinant of normal repolarization of cardiac action potentials. Loss of function mutations in hERG1 channels cause inherited long QT syndrome and increased risk of cardiac arrhythmia and sudden death. Many common medications that block hERG1 channels as an unintended side effect also increase arrhythmic risk. Routine preclinical screening for hERG1 block led to the discovery of agonists that shorten action potential duration and QT interval. Agonists have the potential to be used as pharmacotherapy for long QT syndrome, but can also be proarrhythmic. Recent studies have elucidated multiple mechanisms of action for these compounds and the structural basis for their binding to the pore domain of the hERG1 channel. PMID:24721650

  20. Melanocortin 1 Receptor Agonists Reduce Proteinuria

    PubMed Central

    Ebefors, Kerstin; Johansson, Martin E.; Stefánsson, Bergur; Granqvist, Anna; Arnadottir, Margret; Berg, Anna-Lena; Nyström, Jenny; Haraldsson, Börje

    2010-01-01

    Membranous nephropathy is one of the most common causes of nephrotic syndrome in adults. Recent reports suggest that treatment with adrenocorticotropic hormone (ACTH) reduces proteinuria, but the mechanism of action is unknown. Here, we identified gene expression of the melanocortin receptor MC1R in podocytes, glomerular endothelial cells, mesangial cells, and tubular epithelial cells. Podocytes expressed most MC1R protein, which colocalized with synaptopodin but not with an endothelial-specific lectin. We treated rats with passive Heymann nephritis (PHN) with MS05, a specific MC1R agonist, which significantly reduced proteinuria compared with untreated PHN rats (P < 0.01). Furthermore, treatment with MC1R agonists improved podocyte morphology and reduced oxidative stress. In summary, podocytes express MC1R, and MC1R agonism reduces proteinuria, improves glomerular morphology, and reduces oxidative stress in nephrotic rats with PHN. These data may explain the proteinuria-reducing effects of ACTH observed in patients with membranous nephropathy, and MC1R agonists may provide a new therapeutic option for these patients. PMID:20507942

  1. Signal Use by Octopuses in Agonistic Interactions.

    PubMed

    Scheel, David; Godfrey-Smith, Peter; Lawrence, Matthew

    2016-02-01

    Cephalopods show behavioral parallels to birds and mammals despite considerable evolutionary distance [1, 2]. Many cephalopods produce complex body patterns and visual signals, documented especially in cuttlefish and squid, where they are used both in camouflage and a range of interspecific interactions [1, 3-5]. Octopuses, in contrast, are usually seen as solitary and asocial [6, 7]; their body patterns and color changes have primarily been interpreted as camouflage and anti-predator tactics [8-12], though the familiar view of the solitary octopus faces a growing list of exceptions. Here, we show by field observation that in a shallow-water octopus, Octopus tetricus, a range of visible displays are produced during agonistic interactions, and these displays correlate with the outcome of those interactions. Interactions in which dark body color by an approaching octopus was matched by similar color in the reacting octopus were more likely to escalate to grappling. Darkness in an approaching octopus met by paler color in the reacting octopus accompanied retreat of the paler octopus. Octopuses also displayed on high ground and stood with spread web and elevated mantle, often producing these behaviors in combinations. This study is the first to document the systematic use of signals during agonistic interactions among octopuses. We show prima facie conformity of our results to an influential model of agonistic signaling [13]. These results suggest that interactions have a greater influence on octopus evolution than has been recognized and show the importance of convergent evolution in behavioral traits. PMID:26832440

  2. Asthma in adults (acute)

    PubMed Central

    2011-01-01

    Introduction About 10% of adults have suffered an attack of asthma, and up to 5% of these have severe disease that responds poorly to treatment. Patients with severe disease have an increased risk of death, but patients with mild to moderate disease are also at risk of exacerbations. Most guidelines about the management of asthma follow stepwise protocols. This review does not endorse or follow any particular protocol, but presents the evidence about specific interventions. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of treatments for acute asthma? We searched: Medline, Embase, The Cochrane Library, and other important databases up to April 2010 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 100 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: beta2 agonists (plus ipratropium bromide, pressured metered-dose inhalers, short-acting continuous nebulised, short-acting intermittent nebulised, short-acting iv, and inhaled formoterol); corticosteroids (inhaled); corticosteroids (single oral, combined inhaled, and short courses); education about acute asthma; generalist care; helium–oxygen mixture (heliox); magnesium sulphate (iv and adding isotonic nebulised magnesium to inhaled beta2 agonists); mechanical ventilation; oxygen supplementation (controlled 28% oxygen and controlled 100% oxygen); and specialist care. PMID:21463536

  3. Confirmational analysis of beta-agonists by cryotrapping gas chromatography-Fourier transform infrared spectrometry.

    PubMed

    Visser, T; Vredenbregt, M J; de Jong, A P; van Rossum, H J; Stephany, R W; van Ginkel, L A

    1994-12-01

    Cryotrapping gas chromatography-Fourier transform infrared spectrometry has been used for confirmation analysis of the beta-agonists clenbuterol, salbutamol, mabuterol, bromobuterol, cimaterol, cimbuterol and mapenterol in urine and liver samples of veal calves, subsequent to selected ion detection gas chromatography-mass spectrometry. Samples have been analysed as their trimethylsilyl and methylboronate derivatives. Methylboronate derivatives yielded strongly diminished chemical background and interference levels in the infrared chromatograms of standards and samples. The limit of identification for methylboronate derivatives was at the low ppb level in incurred samples. The similarity of analyte and reference spectra, together with the retention time, was found to be a useful criterion for confirmation of unknown compounds. PMID:7879875

  4. Nerve Injury Diminishes Opioid Analgesia through Lysine Methyltransferase-mediated Transcriptional Repression of μ-Opioid Receptors in Primary Sensory Neurons.

    PubMed

    Zhang, Yuhao; Chen, Shao-Rui; Laumet, Geoffroy; Chen, Hong; Pan, Hui-Lin

    2016-04-15

    The μ-opioid receptor (MOR, encoded by Oprm1) agonists are the mainstay analgesics for treating moderate to severe pain. Nerve injury causes down-regulation of MORs in the dorsal root ganglion (DRG) and diminishes the opioid effect on neuropathic pain. However, the epigenetic mechanisms underlying the diminished MOR expression caused by nerve injury are not clear. G9a (encoded by Ehmt2), a histone 3 at lysine 9 methyltransferase, is a key chromatin regulator responsible for gene silencing. In this study, we determined the role of G9a in diminished MOR expression and opioid analgesic effects in animal models of neuropathic pain. We found that nerve injury in rats induced a long-lasting reduction in the expression level of MORs in the DRG but not in the spinal cord. Nerve injury consistently increased the enrichment of the G9a product histone 3 at lysine 9 dimethylation in the promoter of Oprm1 in the DRG. G9a inhibition or siRNA knockdown fully reversed MOR expression in the injured DRG and potentiated the morphine effect on pain hypersensitivity induced by nerve injury. In mice lacking Ehmt2 in DRG neurons, nerve injury failed to reduce the expression level of MORs and the morphine effect. In addition, G9a inhibition or Ehmt2 knockout in DRG neurons normalized nerve injury-induced reduction in the inhibitory effect of the opioid on synaptic glutamate release from primary afferent nerves. Our findings indicate that G9a contributes critically to transcriptional repression of MORs in primary sensory neurons in neuropathic pain. G9a inhibitors may be used to enhance the opioid analgesic effect in the treatment of chronic neuropathic pain. PMID:26917724

  5. Emergency presentation and management of acute severe asthma in children

    PubMed Central

    Øymar, Knut; Halvorsen, Thomas

    2009-01-01

    Acute severe asthma is one of the most common medical emergency situations in childhood, and physicians caring for acutely ill children are regularly faced with this condition. In this article we present a summary of the pathophysiology as well as guidelines for the treatment of acute severe asthma in children. The cornerstones of the management of acute asthma in children are rapid administration of oxygen, inhalations with bronchodilators and systemic corticosteroids. Inhaled bronchodilators may include selective b2-agonists, adrenaline and anticholinergics. Additional treatment in selected cases may involve intravenous administration of theophylline, b2-agonists and magnesium sulphate. Both non-invasive and invasive ventilation may be options when medical treatment fails to prevent respiratory failure. It is important that relevant treatment algorithms exist, applicable to all levels of the treatment chain and reflecting local considerations and circumstances. PMID:19732437

  6. Acute Bronchitis

    MedlinePlus

    Bronchitis is an inflammation of the bronchial tubes, the airways that carry air to your lungs. It ... chest tightness. There are two main types of bronchitis: acute and chronic. Most cases of acute bronchitis ...

  7. Orally Active Adenosine A1 Receptor Agonists with Antinociceptive Effects in Mice

    PubMed Central

    Korboukh, Ilia; Hull-Ryde, Emily A.; Rittiner, Joseph E.; Randhawa, Amarjit S.; Coleman, Jennifer; Fitzpatrick, Brendan J.; Setola, Vincent; Janzen, William P.; Frye, Stephen V.; Zylka, Mark J.; Jin, Jian

    2012-01-01

    Adenosine A1 receptor (A1AR) agonists have antinociceptive effects in multiple preclinical models of acute and chronic pain. Although numerous A1AR agonists have been developed, clinical applications of these agents have been hampered by their cardiovascular side effects. Herein we report a series of novel A1AR agonists, some of which are structurally related to adenosine 5′-monophosphate (5′-AMP), a naturally occurring nucleotide that itself activates A1AR. These novel compounds potently activate A1AR in several orthogonal in vitro assays and are subtype selective for A1AR over A2AAR, A2BAR, and A3AR. Among them, UNC32A (3a) is orally active and has dose-dependent antinociceptive effects in wild-type mice. The antinociceptive effects of 3a were completely abolished in A1AR knockout mice, revealing a strict dependence on A1AR for activity. The apparent lack of cardiovascular side effects when administered orally and high affinity (Ki of 36 nM for the human A1AR) make this compound potentially suitable as a therapeutic. PMID:22738238

  8. LXR agonist rescued the deficit in the proliferation of the cerebellar granule cells induced by dexamethasone.

    PubMed

    Bian, Xuting; Zhong, Hongyu; Li, Fen; Cai, Yulong; Li, Xin; Wang, Lian; Fan, Xiaotang

    2016-09-01

    Dexamethasone (DEX) exposure during early postnatal life produces permanent neuromotor and intellectual deficits and stunts cerebellar growth. The liver X receptor (LXR) plays important roles in CNS development. However, the effects of LXR on the DEX-mediated impairment of cerebellar development remain undetermined. Thus, mice were pretreated with LXR agonist TO901317 (TO) and were later exposed to DEX to evaluate its protective effects on DEX-mediated deficit during cerebellar development. The results showed that an acute exposure of DEX on postnatal day 7 resulted in a significant impairment in cerebellar development and decreased the proliferation of granule neuron precursors in the external granule layer of cerebellum. This effect was attenuated by pretreatment with TO. We further found that the decrease in the proliferation caused by DEX occurred via up-regulation of glucocorticoid receptor and p27kip1, which could be partially prevented by LXR agonist pretreatment. Overall, our results suggest that LXR agonist pretreatment could protect against DEX-induced deficits in cerebellar development in postnatal mice and may thus be perspective recruited to counteract such GC side effects. PMID:27369072

  9. Suppression of interleukin-6-induced C-reactive protein expression by FXR agonists

    SciTech Connect

    Zhang Songwen Liu Qiangyuan; Wang Juan; Harnish, Douglas C.

    2009-02-06

    C-reactive protein (CRP), a human acute-phase protein, is a risk factor for future cardiovascular events and exerts direct pro-inflammatory and pro-atherogenic properties. The farnesoid X receptor (FXR), a member of the nuclear hormone receptor superfamily, plays an essential role in the regulation of enterohepatic circulation and lipid homeostasis. In this study, we report that two synthetic FXR agonists, WAY-362450 and GW4064, suppressed interleukin-6-induced CRP expression in human Hep3B hepatoma cells. Knockdown of FXR by short interfering RNA attenuated the inhibitory effect of the FXR agonists and also increased the ability of interleukin-6 to induce CRP production. Furthermore, treatment of wild type C57BL/6 mice with the FXR agonist, WAY-362450, attenuated lipopolysaccharide-induced serum amyloid P component and serum amyloid A3 mRNA levels in the liver, whereas no effect was observed in FXR knockout mice. These data provide new evidence for direct anti-inflammatory properties of FXR.

  10. D-cycloserine, sarcosine and D-serine diminish the expression of cocaine-induced conditioned place preference.

    PubMed

    Yang, Fu-Yung; Lee, Yung-Shuan; Cherng, Chianfang G; Cheng, Ling-Yi; Chang, Wan-Ting; Chuang, Jia-Ying; Kao, Gour-Shenq; Yu, Lung

    2013-06-01

    Reactivation of cocaine-associated memories plays a critical role in reinstating the cocaine-seeking behavior and causing relapse. Cocaine-induced conditioned place preference (CPP) was used as a behavioral paradigm indicative of cocaine-associated memory and repeated cocaine-free preference tests served as a behavioral procedure to retrieve such a memory in this study. Since D-cycloserine was reported to eradicate drug-associated memories, two other N-methyl-D-aspartate (NMDA) receptor agonists were assessed for their efficacy on facilitating the extinction of cocaine-induced CPP. Although D-cycloserine (30 mg/kg) abolished cocaine (10 mg/kg)-induced CPP, sarcosine (300 and 600 mg/kg) and D-serine (600 mg/kg) diminished the expression of such a cocaine memory. Sarcosine (600 mg/kg) and D-serine (600 mg/kg) did not affect the storage of this cocaine memory. It was of interest to note that D-cycloserine facilitated the extinction of cocaine-induced CPP in a fast and early-onset manner, while sarcosine and D-serine decreased cocaine-induced CPP expression in a delay-onset manner. D-cycloserine (30 mg/kg), D-serine (600 mg/kg) and sarcosine (600 mg/kg) did not affect the consolidation of cocaine (5 mg/kg)-induced CPP. Finally, sarcosine (at 600 mg/kg/day for 3 consecutive days) and D-serine (at 600 mg/kg/day for 3 consecutive days) did not produce observable aversive effect associated with their administration in a conditioned place aversion paradigm. Likewise, a similar dosing regimen of sarcosine or D-serine did not cause evident activity-impairing effect. In addition to D-cycloserine treatment, our results indicate that long-term treatment with D-serine and sarcosine may afford a therapeutic advance in suppressing the expression of cocaine-associated memory. PMID:21106609

  11. Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons.

    PubMed

    Du, Fang; Li, Rui; Huang, Yuangui; Li, Xuping; Le, Weidong

    2005-11-01

    Anti-parkinsonian agents, pramipexole (PPX) and ropinirole (ROP), have been reported to possess neuroprotective properties, both in vitro and in vivo. The mechanisms underlying neuroprotection afforded by the D3-preferring receptor agonists remain poorly understood. The present study demonstrates that incubation of primary mesencephalic cultures with PPX and ROP or the conditioned medium from PPX- or ROP-treated primary cultures induced a marked increase in the number of dopamine (DA) neurons in the cultures. Similar effects can be observed after incubating with the conditioned medium derived from PPX- and ROP-treated substantia nigra astroglia. Meanwhile, PPX and ROP can protect the primary cells from insult of 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). Furthermore, the neurotrophic effects of PPX and ROP on mesencephalic dopamine neurons could be significantly blocked by D3 receptor antagonist, but not by D2 receptor antagonist. Moreover, we found that the levels of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in the conditioned medium of mesencephalic cultures treated with PPX and ROP were significantly increased. Blocking GDNF and BDNF with the neutralizing antibodies, the neurotrophic effects of PPX and ROP were greatly diminished. These results suggest that D3 dopamine receptor-preferring agonists, PPX and ROP, exert neurotrophic effects on cultured DA neurons by modulating the production of endogenous GDNF and BDNF, which may participate in their neuroprotection. PMID:16307585

  12. Dopamine agonist: pathological gambling and hypersexuality.

    PubMed

    2008-10-01

    (1) Pathological gambling and increased sexual activity can occur in patients taking dopaminergic drugs. Detailed case reports and small case series mention serious familial and social consequences. The frequency is poorly documented; (2) Most affected patients are being treated for Parkinson's disease, but cases have been reported among patients prescribed a dopamine agonist for restless legs syndrome or pituitary adenoma; (3) Patients treated with this type of drug, and their relatives, should be informed of these risks so that they can watch for changes in behaviour. If such disorders occur, it may be necessary to reduce the dose or to withdraw the drug or replace it with another medication. PMID:19536937

  13. Modulation of Innate Immune Responses via Covalently Linked TLR Agonists

    PubMed Central

    2015-01-01

    We present the synthesis of novel adjuvants for vaccine development using multivalent scaffolds and bioconjugation chemistry to spatially manipulate Toll-like receptor (TLR) agonists. TLRs are primary receptors for activation of the innate immune system during vaccination. Vaccines that contain a combination of small and macromolecule TLR agonists elicit more directed immune responses and prolong responses against foreign pathogens. In addition, immune activation is enhanced upon stimulation of two distinct TLRs. Here, we synthesized combinations of TLR agonists as spatially defined tri- and di-agonists to understand how specific TLR agonist combinations contribute to the overall immune response. We covalently conjugated three TLR agonists (TLR4, 7, and 9) to a small molecule core to probe the spatial arrangement of the agonists. Treating immune cells with the linked agonists increased activation of the transcription factor NF-κB and enhanced and directed immune related cytokine production and gene expression beyond cells treated with an unconjugated mixture of the same three agonists. The use of TLR signaling inhibitors and knockout studies confirmed that the tri-agonist molecule activated multiple signaling pathways leading to the observed higher activity. To validate that the TLR4, 7, and 9 agonist combination would activate the immune response to a greater extent, we performed in vivo studies using a vaccinia vaccination model. Mice vaccinated with the linked TLR agonists showed an increase in antibody depth and breadth compared to mice vaccinated with the unconjugated mixture. These studies demonstrate how activation of multiple TLRs through chemically and spatially defined organization assists in guiding immune responses, providing the potential to use chemical tools to design and develop more effective vaccines. PMID:26640818

  14. Mechanisms of agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Lin, Hong; Strange, Philip G

    2004-12-01

    In this study, we investigated the biochemical mechanisms of agonist action at the G protein-coupled D2 dopamine receptor expressed in Chinese hamster ovary cells. Stimulation of guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding by full and partial agonists was determined at different concentrations of [35S]GTPgammaS (0.1 and 10 nM) and in the presence of different concentrations of GDP. At both concentrations of [35S]GTPgammaS, increasing GDP decreased the [35S]GTPgammaS binding observed with maximally stimulating concentrations of agonist, with partial agonists exhibiting greater sensitivity to the effects of GDP than full agonists. The relative efficacy of partial agonists was greater at the lower GDP concentrations. Concentration-response experiments were performed for a range of agonists at the two [35S]GTPgammaS concentrations and with different concentrations of GDP. At 0.1 nM [35S]GTPgammaS, the potency of both full and partial agonists was dependent on the GDP concentration in the assays. At 10 nM [35S]GTPgammaS, the potency of full agonists exhibited a greater dependence on the GDP concentration, whereas the potency of partial agonists was virtually independent of GDP. We concluded that at the lower [35S]GTPgammaS concentration, the rate-determining step in G protein activation is the binding of [35S]GTPgammaS to the G protein. At the higher [35S]GTPgammaS concentration, for full agonists, [35S]GTPgammaS binding remains the slowest step, whereas for partial agonists, another (GDP-independent) step, probably ternary complex breakdown, becomes rate-determining. PMID:15340043

  15. Quantitative analysis of the agonist and antagonist actions of some ATP analogues at P2X-purinoceptors in the rabbit ear artery.

    PubMed

    Leff, P; Wood, B E; O'Connor, S E; McKechnie, K

    1993-02-01

    1. The agonist and antagonist effects of a series of beta, gamma-methylene dihalo- and 2-methylthio-substituted analogues of ATP at P2x-purinoceptors have been analysed on the rabbit isolated ear artery preparation. Cumulative and sequential dosing experimental protocols were employed in the construction of agonist concentration-effect curves in order to address the possible influence of acute receptor desensitization on subsequent analyses. 2. Using the cumulative curve design the following results were obtained: D-AMP-PCBr2P, 2-methylthio-D-AMP-PCCl2P, L-AMP-PCF2P, L-AMP-PCCl2P and LAMP-PCBr2P each behaved as partial agonists. D-AMP-CPP was used as a reference full agonist and these analogues were analysed by the comparative method of Barlow et al. (1967), to provide estimates of affinity and efficacy. 2-Methylthio-L-AMP-PCBr2P was virtually silent as an agonist and was analysed as a competitive antagonist by Schild analysis. 3. Two agonists, L-AMP-PCCl2P and L-AMP-PCBr2P, were analysed by the sequential curve design, and the antagonist effects of one of the agonists, L-AMP-PCBr2P were also analysed using this protocol. The resulting estimates of affinity and efficacy, while similar to those obtained with the cumulative design, indicated that acute desensitization may affect curve definition and estimation of these quantities. 4. The following structure-activity trends emerged: D-analogues tended to have higher efficacy but lower affinity than L-analogues; efficacy varied markedly and inversely with the atomic weight of the halogen while affinity was only minimally affected; 2-methylthio- substitution also reduced efficacy with minimal effect on affinity. 5. The results of this analysis are discussed in terms of the utility of affinity and efficacy information in the classification of purinoceptors and the design of chemical probes for them. PMID:8448598

  16. The CB2 cannabinoid receptor-selective agonist O-3223 reduces pain and inflammation without apparent cannabinoid behavioral effects.

    PubMed

    Kinsey, Steven G; Mahadevan, Anu; Zhao, Bingjun; Sun, Hang; Naidu, Pattipati S; Razdan, Raj K; Selley, Dana E; Imad Damaj, M; Lichtman, Aron H

    2011-01-01

    Although Δ(9)-tetrahydrocannabinol (THC) and other mixed CB(1)/CB(2) receptor agonists are well established to elicit antinociceptive effects, their psychomimetic actions and potential for abuse have dampened enthusiasm for their therapeutic development. Conversely, CB(2) receptor-selective agonists have been shown to reduce pain and inflammation, without eliciting apparent cannabinoid behavioral effects. In the present study, we developed a novel ethyl sulfonamide THC analog, O-3223, and compared its pharmacological effects to those of the potent, mixed CB(1)/CB(2) receptor agonist, CP55,940, in a battery of preclinical pain models. Competitive cannabinoid receptor binding experiments revealed that O-3223 was approximately 80-fold more selective for CB(2) than CB(1) receptors. Additionally, O-3223 behaved as a full CB(2) receptor agonist in [(35)S]GTPγS binding. O-3223 reduced nociceptive behavior in both phases of the formalin test, reduced thermal hyperalgesia in the chronic constriction injury of the sciatic nerve (CCI) model, and reduced edema and thermal hyperalgesia elicited by intraplantar injection of LPS. These effects were blocked by pretreatment with the CB(2) receptor-selective antagonist SR144528, but not by the CB(1) receptor antagonist, rimonabant. Unlike CP55,940, O-3223 did not elicit acute antinociceptive effects in the hot-plate test, hypothermia, or motor disturbances, as assessed in the rotarod test. These data indicate that the CB(2) receptor-selective agonist, O-3223, reduces inflammatory and neuropathic nociception, without affecting basal nociception or eliciting overt behavioral effects. Moreover, this compound can serve as a template to develop new CB(2) receptor agonists with increased receptor selectivity and increased potency in treating inflammatory and neuropathic pain. PMID:20849866

  17. Effects of nicotinic acetylcholine receptor agonists on cognition in rhesus monkeys with a chronic cocaine self-administration history.

    PubMed

    Gould, Robert W; Garg, Pradeep K; Garg, Sudha; Nader, Michael A

    2013-01-01

    Cocaine use is associated with impaired cognitive function, which may negatively impact treatment outcomes. One pharmacological strategy to improve cognition involves nicotinic acetylcholine receptor (nAChR) stimulation. However, the effects of chronic cocaine exposure on nAChR distribution and function have not been characterized. Thus, one goal of this study was to examine nAChR availability in rhesus monkeys with an extensive cocaine self-administration history (n = 4; ~6 years, mean intake, 1463 mg/kg) compared to age-matched cocaine-naive control monkeys (n = 5). Using [¹¹C]-nicotine and positron emission tomography (PET) imaging, cocaine-experienced monkeys showed significantly higher receptor availability in the hippocampus compared to cocaine-naive monkeys. A second goal was to examine the effects of nAChR agonists on multiple domains of cognitive performance in these same monkeys. For these studies, working memory was assessed using a delayed match-to-sample (DMS) task, associative learning and behavioral flexibility using stimulus discrimination and reversal learning tasks. When administered acutely, the nonselective high-efficacy agonist nicotine, the low-efficacy α4β2* subtype-selective agonist varenicline and the high-efficacy α7 subtype-selective agonist, PNU-282987 significantly improved DMS performance in both cocaine-naive and cocaine-experienced monkeys. Individual doses of nicotine and varenicline that engendered maximum cognitive enhancing effects on working memory did not affect discrimination or reversal learning, while PNU-282987 disrupted reversal learning in the cocaine-naive monkeys. These findings indicate that a cocaine self-administration history influenced nAChR distribution and the effects of nAChR agonists on cognitive performance, including a reduced sensitivity to the disrupting effects on reversal learning. The cognitive enhancing effects of nAChR agonists may be beneficial in combination with behavioral treatments for

  18. Computational modeling toward understanding agonist binding on dopamine 3.

    PubMed

    Zhao, Yaxue; Lu, Xuefeng; Yang, Chao-Yie; Huang, Zhimin; Fu, Wei; Hou, Tingjun; Zhang, Jian

    2010-09-27

    The dopamine 3 (D3) receptor is a promising therapeutic target for the treatment of nervous system disorders, such as Parkinson's disease, and current research interests primarily focus on the discovery/design of potent D3 agonists. Herein, a well-designed computational protocol, which combines pharmacophore identification, homology modeling, molecular docking, and molecular dynamics (MD) simulations, was employed to understand the agonist binding on D3 aiming to provide insights into the development of novel potent D3 agonists. We (1) identified the chemical features required in effective D3 agonists by pharmacophore modeling based upon 18 known diverse D3 agonists; (2) constructed the three-dimensional (3D) structure of D3 based on homology modeling and the pharmacophore hypothesis; (3) identified the binding modes of the agonists to D3 by the correlation between the predicted binding free energies and the experimental values; and (4) investigated the induced fit of D3 upon agonist binding through MD simulations. The pharmacophore models of the D3 agonists and the 3D structure of D3 can be used for either ligand- or receptor-based drug design. Furthermore, the MD simulations further give the insight that the long and flexible EL2 acts as a "door" for agonist binding, and the "ionic lock" at the bottom of TM3 and TM6 is essential to transduce the activation signal. PMID:20695484

  19. δ-Opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice

    PubMed Central

    Pradhan, Amynah A; Smith, Monique L; Zyuzin, Jekaterina; Charles, Andrew

    2014-01-01

    Background and Purpose Migraine is an extraordinarily common brain disorder for which treatment options continue to be limited. Agonists that activate the δ-opioid receptor may be promising for the treatment of migraine as they are highly effective for the treatment of chronic rather than acute pain, do not induce hyperalgesia, have low abuse potential and have anxiolytic and antidepressant properties. The aim of this study was to investigate the therapeutic potential of δ-opioid receptor agonists for migraine by characterizing their effects in mouse migraine models. Experimental Approach Mechanical hypersensitivity was assessed in mice treated with acute and chronic doses of nitroglycerin (NTG), a known human migraine trigger. Conditioned place aversion to NTG was also measured as a model of migraine-associated negative affect. In addition, we assessed evoked cortical spreading depression (CSD), an established model of migraine aura, in a thinned skull preparation. Key Results NTG evoked acute and chronic mechanical and thermal hyperalgesia in mice, as well as conditioned place aversion. Three different δ-opioid receptor agonists, SNC80, ARM390 and JNJ20788560, significantly reduced NTG-evoked hyperalgesia. SNC80 also abolished NTG-induced conditioned place aversion, suggesting that δ-opioid receptor activation may also alleviate the negative emotional state associated with migraine. We also found that SNC80 significantly attenuated CSD, a model that is considered predictive of migraine preventive therapies. Conclusions and Implications These data show that δ-opioid receptor agonists modulate multiple basic mechanisms associated with migraine, indicating that δ-opioid receptors are a promising therapeutic target for this disorder. PMID:24467301

  20. Chimpanzees Extract Social Information from Agonistic Screams

    PubMed Central

    Slocombe, Katie E.; Kaller, Tanja; Call, Josep; Zuberbühler, Klaus

    2010-01-01

    Chimpanzee (Pan troglodytes) agonistic screams are graded vocal signals that are produced in a context-specific manner. Screams given by aggressors and victims can be discriminated based on their acoustic structure but the mechanisms of listener comprehension of these calls are currently unknown. In this study, we show that chimpanzees extract social information from these vocal signals that, combined with their more general social knowledge, enables them to understand the nature of out-of-sight social interactions. In playback experiments, we broadcast congruent and incongruent sequences of agonistic calls and monitored the response of bystanders. Congruent sequences were in accordance with existing social dominance relations; incongruent ones violated them. Subjects looked significantly longer at incongruent sequences, despite them being acoustically less salient (fewer call types from fewer individuals) than congruent ones. We concluded that chimpanzees categorised an apparently simple acoustic signal into victim and aggressor screams and used pragmatics to form inferences about third-party interactions they could not see. PMID:20644722

  1. Proglumide exhibits delta opioid agonist properties.

    PubMed

    Rezvani, A; Stokes, K B; Rhoads, D L; Way, E L

    1987-01-01

    Recently, it was reported that proglumide, a cholecystokinin (CCK) antagonist, potentiates the analgetic effects of morphine and endogenous opioid peptides and reverses morphine tolerance by antagonizing the CCK system in the central nervous system of the rat. In order to provide additional insight into the mode of action of this agent, we assessed the effect of proglumide in the isolated guinea pig ileum and the mouse, rat and rabbit vas deferens. Furthermore, we studied the in vitro binding affinity of this substance to mouse brain synaptosomes. Our results show that proglumide inhibits, dose dependently, the electrically stimulated twitches in the mouse vas deferens and guinea pig ileum, but not in the rat or rabbit vas deferens. The inhibitory action of proglumide on the mouse vas deferens, but not on the guinea pig ileum, is antagonized by naloxone and by the selective delta-antagonist, ICI 174,864, in a competitive fashion. Other CCK antagonists were found to be devoid of such activity on the mouse vas deferens. In vitro binding studies showed that proglumide displaces D-ala-D-[leucine]5-enkephalin (DADLE), a delta agonist, but not ethylketocyclazocine (EKC), a preferentially selective kappa agonist. The effect of proglumide appeared to be elicited presynaptically since it did not alter the norepinephrine-induced contractions of the mouse vas deferens. Our results suggest that proglumide might exert its opiate-like effects by activation of delta-opioid receptors. PMID:3030338

  2. Strategies for designing synthetic immune agonists.

    PubMed

    Wu, Tom Y-H

    2016-08-01

    Enhancing the immune system is a validated strategy to combat infectious disease, cancer and allergy. Nevertheless, the development of immune adjuvants has been hampered by safety concerns. Agents that can stimulate the immune system often bear structural similarities with pathogen-associated molecular patterns found in bacteria or viruses and are recognized by pattern recognition receptors (PRRs). Activation of these PRRs results in the immediate release of inflammatory cytokines, up-regulation of co-stimulatory molecules, and recruitment of innate immune cells. The distribution and duration of these early inflammatory events are crucial in the development of antigen-specific adaptive immunity in the forms of antibody and/or T cells capable of searching for and destroying the infectious pathogens or cancer cells. However, systemic activation of these PRRs is often poorly tolerated. Hence, different strategies have been employed to modify or deliver immune agonists in an attempt to control the early innate receptor activation through temporal or spatial restriction. These approaches include physicochemical manipulation, covalent conjugation, formulation and conditional activation/deactivation. This review will describe recent examples of discovery and optimization of synthetic immune agonists towards clinical application. PMID:27213842

  3. Estrogen Receptor Beta and 2-arachidonoylglycerol Mediate the Suppressive Effects of Estradiol on Frequency of Postsynaptic Currents in Gonadotropin-Releasing Hormone Neurons of Metestrous Mice: An Acute Slice Electrophysiological Study

    PubMed Central

    Bálint, Flóra; Liposits, Zsolt; Farkas, Imre

    2016-01-01

    Gonadotropin-releasing hormone (GnRH) neurons are controlled by 17β-estradiol (E2) contributing to the steroid feedback regulation of the reproductive axis. In rodents, E2 exerts a negative feedback effect upon GnRH neurons throughout the estrus-diestrus phase of the ovarian cycle. The present study was undertaken to reveal the role of estrogen receptor subtypes in the mediation of the E2 signal and elucidate the downstream molecular machinery of suppression. The effect of E2 administration at low physiological concentration (10 pM) on GnRH neurons in acute brain slices obtained from metestrous GnRH-green fluorescent protein (GFP) mice was studied under paradigms of blocking or activating estrogen receptor subtypes and interfering with retrograde 2-arachidonoylglycerol (2-AG) signaling. Whole-cell patch clamp recordings revealed that E2 significantly diminished the frequency of spontaneous postsynaptic currents (sPSCs) in GnRH neurons (49.62 ± 7.6%) which effect was abolished by application of the estrogen receptor (ER) α/β blocker Faslodex (1 μM). Pretreatment of the brain slices with cannabinoid receptor type 1 (CB1) inverse agonist AM251 (1 μM) and intracellularly applied endocannabinoid synthesis blocker THL (10 μM) significantly attenuated the effect of E2 on the sPSCs. E2 remained effective in the presence of tetrodotoxin (TTX) indicating a direct action of E2 on GnRH cells. The ERβ specific agonist DPN (10 pM) also significantly decreased the frequency of miniature postsynaptic currents (mPSCs) in GnRH neurons. In addition, the suppressive effect of E2 was completely blocked by the selective ERβ antagonist PHTPP (1 μM) indicating that ERβ is required for the observed rapid effect of the E2. In contrast, the ERα agonist PPT (10 pM) or the membrane-associated G protein-coupled estrogen receptor (GPR30) agonist G1 (10 pM) had no significant effect on the frequency of mPSCs in these neurons. AM251 and tetrahydrolipstatin (THL) significantly abolished

  4. Acute nephritic syndrome

    MedlinePlus

    Glomerulonephritis - acute; Acute glomerulonephritis; Nephritis syndrome - acute ... Acute nephritic syndrome is often caused by an immune response triggered by an infection or other disease. Common causes ...

  5. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury

    PubMed Central

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F.; Liu, Boyi; Kaelberer, Melanie M.; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S.; Ye, Guosen; Willette, Robert N.; Thorneloe, Kevin S.; Bradshaw, Heather B.; Matalon, Sadis

    2014-01-01

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  6. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury.

    PubMed

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F; Liu, Boyi; Kaelberer, Melanie M; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S; Ye, Guosen; Willette, Robert N; Thorneloe, Kevin S; Bradshaw, Heather B; Matalon, Sadis; Jordt, Sven-Eric

    2014-07-15

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  7. The sphingosine 1-phosphate receptor agonist FTY720 is neuroprotective after cuprizone-induced CNS demyelination

    PubMed Central

    Slowik, A; Schmidt, T; Beyer, C; Amor, S; Clarner, T; Kipp, M

    2015-01-01

    BACKGROUND AND PURPOSE Modulation of the sphingosine 1-phosphate receptor is an approved treatment for relapsing multiple sclerosis because of its anti-inflammatory effect of retaining lymphocytes within the lymph nodes. Here, we evaluated the potential of an agonist at this receptor, FTY720 (fingolimod), to activate the promyelinating pathways within the brain to encourage remyelination and neuroprotection. EXPERIMENTAL APPROACH In this study, we used the cuprizone model in male C57BL/6 mice and tested the promyelinating and neuroprotective effects of FTY720 after acute and chronic toxin-induced experimental demyelination. We used histological, immunohistochemical and gene expression methods. KEY RESULTS The midline of the corpus callosum was severely demyelinated after acute and chronic cuprizone-induced demyelination. Robust endogenous remyelination was evident after acute, but impaired after chronic, demyelination. FTY720 treatment modestly accelerated myelin recovery after acute but not chronic cuprizone exposure. Markers of gliosis (astrocyte and microglia activation) were not affected by FTY720 treatment. Remarkably, the accumulation of amyloid precursor protein-positive spheroids in axons was less distinct in FTY720-treated animals, indicating that this compound alleviated ongoing axonal damage. CONCLUSIONS AND IMPLICATIONS We show that even during endogenous remyelination, axonal degeneration continued at a low level, accumulating over time. This continuous neurodegenerative process was ameliorated by FTY720 treatment. FTY720 preserved CNS integrity by direct interaction with brain resident cells, the actions of which are still to be defined. PMID:25220526

  8. TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...

  9. Physical Chemistry to the Rescue: Differentiating Nicotinic and Cholinergic Agonists

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researches suggest that two agonists can bind to the same binding site of an important transmembrane protein and elicit a biological response through strikingly different binding interactions. Evidence is provided which suggests two possible types of nicotinic acetylcholine receptor agonist binding like acetlycholine (cholinergic) or like nicotine…

  10. Cell-phone use diminishes self-awareness of impaired driving.

    PubMed

    Sanbonmatsu, David M; Strayer, David L; Biondi, Francesco; Behrends, Arwen A; Moore, Shannon M

    2016-04-01

    Multitasking diminishes the self-awareness of performance that is often essential for self-regulation and self-knowledge. Participants drove in a simulator while either talking or not talking on a hands-free cell phone. Following previous research, participants who talked on a cell phone made more serious driving errors than control participants who did not use a phone while driving. Control participants' assessments of the safeness of their driving and general ability to drive safely while distracted were negatively correlated with the actual number of errors made when they were driving. By contrast, cell-phone participants' assessments of the safeness of their driving and confidence in their driving abilities were uncorrelated with their actual errors. Thus, talking on a cell phone not only diminished the safeness of participants' driving, it diminished their awareness of the safeness of their driving. PMID:26282831

  11. Gait Variability in Chronic Back Pain Sufferers With Experimentally Diminished Visual Feedback: A Pilot Study.

    PubMed

    Hamacher, Dennis; Hamacher, Daniel; Krowicki, Martin; Schega, Lutz

    2016-01-01

    Increased gait variability is common in chronic low back pain patients, which is a sign of their diminished proprioceptive feedback. When proprioceptive information is reduced, vision partly takes over the role of proprioception. Therefore, a loss of visual feedback would have a more negative effect in individuals with diminished proprioception. To test this hypothesis, 14 healthy individuals and 14 chronic low back pain patients walked with and without impairment goggles manipulating visual feedback. The variability of stride time, stride length, and minimum foot clearance was evaluated. The authors observed an interaction effect regarding minimum foot clearance variability indicating that pain patients showed higher gait variability with manipulated visual feedback. Reduced vision may cause exceeded tripping risk in individuals with diminished proprioception. PMID:26339981

  12. Estrogen receptor beta agonists in neurobehavioral investigations.

    PubMed

    Choleris, Elena; Clipperton, Amy E; Phan, Anna; Kavaliers, Martin

    2008-07-01

    Neurobehavioral investigations into the functions of estrogen receptor (ER)alpha and ERbeta have utilized 'knockout' mice, phytoestrogens and, more recently, ER-specific agonists. Feeding, sexual, aggressive and social behavior, anxiety, depression, drug abuse, pain perception, and learning (and associated synaptic plasticity) are affected by ERalpha and ERbeta in a manner that is dependent upon the specific behavior studied, gender and developmental stage. Overall, ERalpha and ERbeta appear to function together to foster sociosexual behavior while inhibiting behaviors that, if occurring at the time of behavioral estrous, may compete with reproduction (eg, feeding). Recently developed pharmacological tools have limited selectivity and availability to the research community at large, as they are not commercially available. The development of highly selective, commercially available ERbeta-specific antagonists would greatly benefit preclinical and applied research. PMID:18600582

  13. Non-Benzodiazepine Receptor Agonists for Insomnia.

    PubMed

    Becker, Philip M; Somiah, Manya

    2015-03-01

    Because of proven efficacy, reduced side effects, and less concern about addiction, non-benzodiazepine receptor agonists (non-BzRA) have become the most commonly prescribed hypnotic agents to treat onset and maintenance insomnia. First-line treatment is cognitive-behavioral therapy. When pharmacologic treatment is indicated, non-BzRA are first-line agents for the short-term and long-term management of transient and chronic insomnia related to adjustment, psychophysiologic, primary, and secondary causation. In this article, the benefits and risks of non-BzRA are reviewed, and the selection of a hypnotic agent is defined, based on efficacy, pharmacologic profile, and adverse events. PMID:26055674

  14. Cytomegalovirus generates long-lived antigen-specific NK cells with diminished bystander activation to heterologous infection

    PubMed Central

    Min-Oo, Gundula

    2014-01-01

    Natural killer (NK) cells play a key role in the host response to cytomegalovirus (CMV) and can mediate an enhanced response to secondary challenge with CMV. We assessed the ability of mouse CMV (MCMV)–induced memory Ly49H+ NK cells to respond to challenges with influenza, an acute viral infection localized to the lung, and Listeria monocytogenes, a systemic bacterial infection. MCMV-memory NK cells did not display enhanced activation or proliferation after infection with influenza or Listeria, as compared with naive Ly49H+ or Ly49H− NK cells. Memory NK cells also showed impaired activation compared with naive cells when challenged with a mutant MCMV lacking m157, highlighting their antigen-specific response. Ex vivo, MCMV-memory NK cells displayed reduced phosphorylation of STAT4 and STAT1 in response to stimulation by IL-12 and type I interferon (IFN), respectively, and IFN-γ production was reduced in response to IL-12 + IL-18 compared with naive NK cells. However, costimulation of MCMV-memory NK cells with IL-12 and m157 antigen rescues their impaired response compared with cytokines alone. These findings reveal that MCMV-primed memory NK cells are diminished in their response to cytokine-driven bystander responses to heterologous infections as they become specialized and antigen-specific for the control of MCMV upon rechallenge. PMID:25422494

  15. Diminished but Not Abolished Effect of Two His351 Mutants of Anthrax Edema Factor in a Murine Model

    PubMed Central

    Zhao, Taoran; Zhao, Xinghui; Liu, Ju; Meng, Yingying; Feng, Yingying; Fang, Ting; Zhang, Jinlong; Yang, Xiuxu; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-01-01

    Edema toxin (ET), which is composed of a potent adenylate cyclase (AC), edema factor (EF), and protective antigen (PA), is one of the major toxicity factors of Bacillus anthracis. In this study, we introduced mutations in full-length EF to generate alanine EF(H351A) and arginine EF(H351R) variants. In vitro activity analysis displayed that the adenylyl cyclase activity of both the mutants was significantly diminished compared with the wild-type EF. When the native and mutant toxins were administered subcutaneously in a mouse footpad edema model, severe acute swelling was evoked by wild-type ET, while the symptoms induced by mutant toxins were very minor. Systemic administration of these EF variants caused non-lethal hepatotoxicity. In addition, EF(H351R) exhibited slightly higher activity in causing more severe edema than EF(H351A). Our findings demonstrate that the toxicity of ET is not abolished by substitution of EF residue His351 by alanine or arginine. These results also indicate the potential of the mouse footpad edema model as a sensitive method for evaluating both ET toxicity and the efficacy of candidate therapeutic agents. PMID:26848687

  16. Diminished but Not Abolished Effect of Two His351 Mutants of Anthrax Edema Factor in a Murine Model.

    PubMed

    Zhao, Taoran; Zhao, Xinghui; Liu, Ju; Meng, Yingying; Feng, Yingying; Fang, Ting; Zhang, Jinlong; Yang, Xiuxu; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-02-01

    Edema toxin (ET), which is composed of a potent adenylate cyclase (AC), edema factor (EF), and protective antigen (PA), is one of the major toxicity factors of Bacillus anthracis. In this study, we introduced mutations in full-length EF to generate alanine EF(H351A) and arginine EF(H351R) variants. In vitro activity analysis displayed that the adenylyl cyclase activity of both the mutants was significantly diminished compared with the wild-type EF. When the native and mutant toxins were administered subcutaneously in a mouse footpad edema model, severe acute swelling was evoked by wild-type ET, while the symptoms induced by mutant toxins were very minor. Systemic administration of these EF variants caused non-lethal hepatotoxicity. In addition, EF(H351R) exhibited slightly higher activity in causing more severe edema than EF(H351A). Our findings demonstrate that the toxicity of ET is not abolished by substitution of EF residue His351 by alanine or arginine. These results also indicate the potential of the mouse footpad edema model as a sensitive method for evaluating both ET toxicity and the efficacy of candidate therapeutic agents. PMID:26848687

  17. The transcriptional PPARβ/δ network in human macrophages defines a unique agonist-induced activation state

    PubMed Central

    Adhikary, Till; Wortmann, Annika; Schumann, Tim; Finkernagel, Florian; Lieber, Sonja; Roth, Katrin; Toth, Philipp M.; Diederich, Wibke E.; Nist, Andrea; Stiewe, Thorsten; Kleinesudeik, Lara; Reinartz, Silke; Müller-Brüsselbach, Sabine; Müller, Rolf

    2015-01-01

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a lipid ligand-inducible transcription factor with established metabolic functions, whereas its anti-inflammatory function is poorly understood. To address this issue, we determined the global PPARβ/δ-regulated signaling network in human monocyte-derived macrophages. Besides cell type-independent, canonical target genes with metabolic and immune regulatory functions we identified a large number of inflammation-associated NFκB and STAT1 target genes that are repressed by agonists. Accordingly, PPARβ/δ agonists inhibited the expression of multiple pro-inflammatory mediators and induced an anti-inflammatory, IL-4-like morphological phenotype. Surprisingly, bioinformatic analyses also identified immune stimulatory effects. Consistent with this prediction, PPARβ/δ agonists enhanced macrophage survival under hypoxic stress and stimulated CD8+ T cell activation, concomitantly with the repression of immune suppressive target genes and their encoded products CD274 (PD-1 ligand), CD32B (inhibitory Fcγ receptor IIB) and indoleamine 2,3-dioxygenase 1 (IDO-1), as well as a diminished release of the immune suppressive IDO-1 metabolite kynurenine. Comparison with published data revealed a significant overlap of the PPARβ/δ transcriptome with coexpression modules characteristic of both anti-inflammatory and pro-inflammatory cytokines. Our findings indicate that PPARβ/δ agonists induce a unique macrophage activation state with strong anti-inflammatory but also specific immune stimulatory components, pointing to a context-dependent function of PPARβ/δ in immune regulation. PMID:25934804

  18. Interactions between cannabinoid receptor agonists and mu opioid receptor agonists in rhesus monkeys discriminating fentanyl.

    PubMed

    Maguire, David R; France, Charles P

    2016-08-01

    Cannabinoid receptor agonists such as delta-9-tetrahydrocannabinol (Δ(9)-THC) enhance some (antinociceptive) but not other (positive reinforcing) effects of mu opioid receptor agonists, suggesting that cannabinoids might be combined with opioids to treat pain without increasing, and possibly decreasing, abuse. The degree to which cannabinoids enhance antinociceptive effects of opioids varies across drugs insofar as Δ(9)-THC and the synthetic cannabinoid receptor agonist CP55940 increase the potency of some mu opioid receptor agonists (e.g., fentanyl) more than others (e.g., nalbuphine). It is not known whether interactions between cannabinoids and opioids vary similarly for other (abuse-related) effects. This study examined whether Δ(9)-THC and CP55940 differentially impact the discriminative stimulus effects of fentanyl and nalbuphine in monkeys (n=4) discriminating 0.01mg/kg of fentanyl (s.c.) from saline. Fentanyl (0.00178-0.0178mg/kg) and nalbuphine (0.01-0.32mg/kg) dose-dependently increased drug-lever responding. Neither Δ(9)-THC (0.032-1.0mg/kg) nor CP55940 (0.0032-0.032mg/kg) enhanced the discriminative stimulus effects of fentanyl or nalbuphine; however, doses of Δ(9)-THC and CP55940 that shifted the nalbuphine dose-effect curve markedly to the right and/or down were less effective or ineffective in shifting the fentanyl dose-effect curve. The mu opioid receptor antagonist naltrexone (0.032mg/kg) attenuated the discriminative stimulus effects of fentanyl and nalbuphine similarly. These data indicate that the discriminative stimulus effects of nalbuphine are more sensitive to attenuation by cannabinoids than those of fentanyl. That the discriminative stimulus effects of some opioids are more susceptible to modification by drugs from other classes has implications for developing maximally effective therapeutic drug mixtures with reduced abuse liability. PMID:27184925

  19. Acute sacroiliitis.

    PubMed

    Slobodin, Gleb; Rimar, Doron; Boulman, Nina; Kaly, Lisa; Rozenbaum, Michael; Rosner, Itzhak; Odeh, Majed

    2016-04-01

    The purpose of this study was to review the data on the etiology, risk factors, clinical presentations, and diagnosis of acute sacroiliitis. A Pubmed search utilizing the indexing term "acute sacroiliitis" was conducted and the data pertinent to the aim of the review was extracted and organized in accordance with the preplanned structure of the manuscript. The diagnosis of acute sacroiliitis is often challenging because of both the relative rarity of this presentation and diverse character of acute sacroiliac pain, frequently mimicking other, more prevalent disorders. Technetium bone scintigraphy can localize the disease process to the sacroiliac joint, while computed tomography or magnetic resonance imaging can be used for the detailed characterization and the extent of the disease as well as the diagnosis of complications. Pyogenic sacroiliitis is by far the most common cause of acute sacroiliitis. Brucellosis, acute sacroiliitis in the course of reactive arthritis, and crystalline-induced sacroiliitis frequently imitate pyogenic sacroiliitis. Acute sacroiliitis can rarely be also related to hematological malignancies or treatment with isotretinoin. Awareness to the possibility of acute sacroiliitis and a thorough physical examination are the necessary prerequisites to its timely diagnosis, while the appropriate laboratory and imaging studies should confirm the precise diagnosis and direct the appropriate treatment strategy. PMID:26847855

  20. Emerging Role of Melatonin and Melatonin Receptor Agonists in Sleep and Delirium in Intensive Care Unit Patients.

    PubMed

    Mo, Yoonsun; Scheer, Corey E; Abdallah, George T

    2016-08-01

    Delirium, an acute state of mental confusion, can lead to many adverse sequelae in intensive care unit (ICU) patients. Although the etiology of ICU delirium is often multifactorial, and at times not fully understood, sleep deprivation is considered to be a major contributing factor to its development. It has been postulated that administration of exogenous melatonin and melatonin receptor agonists such as ramelteon may prevent delirium by promoting nocturnal sleep in ICU patients. The purpose of this review is to summarize the pharmacology of melatonin and melatonin receptor agonists and investigate their potential roles in sleep promotion and delirium prevention in ICU patients. Although few studies evaluating the impact of melatonergic agents on sleep and delirium in the ICU have been completed, some data suggest their potential positive effects on sleep and delirium. However, large-scale randomized controlled trials are warranted to determine the optimal role of melatonergic agents in the prevention of ICU delirium. PMID:26092575

  1. Effects of the TLR2 Agonists MALP-2 and Pam3Cys in Isolated Mouse Lungs

    PubMed Central

    Barrenschee, Martina; Lex, Dennis; Uhlig, Stefan

    2010-01-01

    Background Gram-positive and Gram-negative bacteria are main causes of pneumonia or acute lung injury. They are recognized by the innate immune system via toll-like receptor-2 (TLR2) or TLR4, respectively. Among all organs, the lungs have the highest expression of TLR2 receptors, but little is known about the pulmonary consequences of their activation. Here we studied the effects of the TLR2/6 agonist MALP-2, the TLR2/1 agonist Pam3Cys and the TLR4 agonist lipopolysaccharide (LPS) on pro-inflammatory responses in isolated lungs. Methodology/Principal Findings Isolated perfused mouse lungs were perfused for 60 min or 180 min with MALP-2 (25 ng/mL), Pam3Cys (160 ng/mL) or LPS (1 µg/mL). We studied mediator release by enzyme linked immunosorbent assay (ELISA), the activation of mitogen activated protein kinase (MAPK) and AKT/protein kinase B by immunoblotting, and gene induction by quantitative polymerase chain reaction. All agonists activated the MAPK ERK1/2 and p38, but neither JNK or AKT kinase. The TLR ligands upregulated the inflammation related genes Tnf, Il1β, Il6, Il10, Il12, Ifng, Cxcl2 (MIP-2α) and Ptgs2. MALP-2 was more potent than Pam3Cys in inducing Slpi, Cxcl10 (IP10) and Parg. Remarkable was the strong induction of Tnc by MALP2, which was not seen with Pam3Cys or LPS. The growth factor related genes Areg and Hbegf were not affected. In addition, all three TLR agonists stimulated the release of IL-6, TNF, CXCL2 and CXCL10 protein from the lungs. Conclusions/Significance TLR2 and TLR4 activation leads to similar reactions in the lungs regarding MAPK activation, gene induction and mediator release. Several genes studied here have not yet been appreciated as targets of TLR2-activation in the lungs before, i.e., Slpi, tenascin C, Parg and Traf1. In addition, the MALP-2 dependent induction of Tnc may indicate the existence of TLR2/6-specific pathways. PMID:21124967

  2. Rural Areas in the Information Society: Diminishing Distance or Increasing Learning Capacity?

    ERIC Educational Resources Information Center

    Grimes, Seamus

    2000-01-01

    Examines prospects for rural areas within the Information Society, referring particularly to the European Union. Discusses effects of diminished distance from core markets, increased learning capacity through improved access to information, public policy emphasis on building infrastructure, disappointing outcomes for telecommunications initiatives…

  3. Can Using Human Examples Diminish the Number of Misconceptions Held Concerning Mendelian Genetics Concepts?

    ERIC Educational Resources Information Center

    Moore, John M.

    2000-01-01

    Explores high school biology and the teaching of genetics. The question is asked, Can the use of relevant, meaningful human genetics concepts diminish the number of misconceptions formed between new and existing concepts? Can the application of the Ausubelian learning theory also decrease the acquisition of misconceptions? (SAH)

  4. Direct Instruction and Music Literacy: One Approach to Augmenting the Diminishing?

    ERIC Educational Resources Information Center

    Lowe, Geoffrey; Belcher, Steven

    2012-01-01

    One of the many challenges facing music educators is diminishing class time in lower secondary school in the face of the increasingly crowded curriculum and the advent of arts "taster" courses. However, music educators are still expected to be able to produce musically literate students capable of completing high level music courses in upper…

  5. Less Guilty by Reason of Adolescence: Developmental Immaturity, Diminished Responsibility, and the Juvenile Death Penalty

    ERIC Educational Resources Information Center

    Steinberg, Laurence; Scott, Elizabeth S.

    2003-01-01

    The authors use a developmental perspective to examine questions about the criminal culpability of juveniles and the juvenile death penalty. Under principles of criminal law, culpability is mitigated when the actor's decision-making capacity is diminished, when the criminal act was coerced, or when the act was out of character. The authors argue…

  6. Epstein-Barr Virus Reactivation Associated with Diminished Cell-Mediated Immunity in Antarctic Expeditioners

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Mehta, Satish K.; Cooley, Helen; Dubow, Robin; Lugg, Desmond

    1999-01-01

    Reactivation of Epstein-Barr virus (EBV) and cell-mediated immune (CMI) responses were followed in 16 Antarctic expeditioners during winter-over isolation at two Australian National Antarctic Research Expedition stations. Delayed-type hypersensitivity skin testing was used as an indicator of the CMI response, which was evaluated two times before winter isolation and three times during isolation. At all five evaluation times, 8 or more of the 16 subjects had a diminished. CMI response. Diminished CMI was observed on every test occasion in 4/16 subjects; only 2/16 subjects exhibited normal CMI responses for all five tests. A polymerase chain reaction (PCR) assay was used to detect EBV DNA in saliva specimens collected before, after, and during the winter isolation. EBV DNA was present in 17% (111/642) of the saliva specimens; all 16 subjects shed EBV in their saliva on at least one occasion. The probability of EBV shedding increased (p=0.013) from 6% before or after winter isolation to 13% during the winter period. EBV appeared in saliva during the winter isolation more frequently (p<0.0005) when CMI responsiveness was diminished than when CMI status was normal. The findings indicate that the psychosocial, physical, and other stresses associated with working and living in physical isolation during the Antarctic winter results in diminished CMI and an accompanying increased reactivation and shedding of latent viruses.

  7. Epstein-Barr virus reactivation associated with diminished cell-mediated immunity in antarctic expeditioners

    NASA Technical Reports Server (NTRS)

    Mehta, S. K.; Pierson, D. L.; Cooley, H.; Dubow, R.; Lugg, D.

    2000-01-01

    Epstein-Barr virus (EBV) reactivation and cell-mediated immune (CMI) responses were followed in 16 Antarctic expeditioners during winter-over isolation at 2 Australian National Antarctic Research Expedition stations. Delayed-type hypersensitivity (DTH) skin testing was used as an indicator of the CMI response, that was evaluated 2 times before winter isolation and 3 times during isolation. At all 5 evaluation times, 8 or more of the 16 subjects had a diminished CMI response. Diminished DTH was observed on every test occasion in 4/16 subjects; only 2/16 subjects exhibited normal DTH responses for all 5 tests. A polymerase chain reaction (PCR) assay was used to detect EBV DNA in saliva specimens collected before, during, and after the winter isolation. EBV DNA was present in 17% (111/642) of the saliva specimens; all 16 subjects shed EBV in their saliva on at least 1 occasion. The probability of EBV shedding increased (P = 0.013) from 6% before or after winter isolation to 13% during the winter period. EBV appeared in saliva during the winter isolation more frequently (P < 0.0005) when DTH response was diminished than when DTH was normal. The findings indicate that the psychosocial, physical, and other stresses associated with working and living in physical isolation during the Antarctic winter result in diminished CMI and an accompanying increased reactivation and shedding of latent viruses.

  8. Challenging the Presumption of Diminished Capacity to Parent: Does Divorce Really Change Parenting Practices?

    ERIC Educational Resources Information Center

    Strohschein, Lisa

    2007-01-01

    The purpose of this paper is to determine whether divorced parents exhibit a diminished capacity to parent in the period following divorce. Using 2 waves of data from a national survey of Canadian children, the current study prospectively follows 5,004 children living in 2-biological parent households at initial interview and compares changes in…

  9. Rehearsal Strategies Can Enlarge or Diminish the Spacing Effect: Pure versus Mixed Lists and Encoding Strategy

    ERIC Educational Resources Information Center

    Delaney, Peter F.; Verkoeijen, Peter P. J. L.

    2009-01-01

    Using 5 experiments, the authors explored the dependency of spacing effects on rehearsal patterns. Encouraging rehearsal borrowing produced opposing effects on mixed lists (containing both spaced and massed repetitions) and pure lists (containing only one or the other), magnifying spacing effects on mixed lists but diminishing spacing effects on…

  10. Perceptions of Absenteeism and Diminished Engagement among Instructors and Nonlicensed Students in Medical Assistant Programs

    ERIC Educational Resources Information Center

    Miller, Russell

    2012-01-01

    Adult nonlicensed students can experience diminished engagement and increased absenteeism while attempting to complete medical assistant programs. The purpose of this qualitative, multisite narrative case study was to explore the perceptions, meanings, and interpretations of instructors and students. The theoretical foundation focused on the…

  11. A Test of Spearman's ''Law of Diminishing Returns'' in Two Large Samples of Danish Military Draftees

    ERIC Educational Resources Information Center

    Hartmann, Peter; Teasdale, Thomas W.

    2004-01-01

    Spearman's ''Law of Diminishing Returns'' (SLODR) predicts that "g" saturation for cognitive tests will be lower at high ability levels than at low ability levels. This hypothesis was tested in two large samples of Danish military draftees (n=33,833 and n=25,020). The subjects were representative samples of the young adult male population and 95%…

  12. Dietary long-chain omega-3 fatty acids do not diminish eosinophilic pulmonary inflammation in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of fish oil supplements on diminishing airway inflammation in asthma have been studied in mouse models and human intervention trials with varying results. However, the independent effects of the main omega-3 PUFAs found in fish oil, eicosapentaenoic acid (EPA) and docosahexaenoic acid (D...

  13. Diminishing Marginal Returns and the Production of Education: An International Analysis

    ERIC Educational Resources Information Center

    Harris, Douglas N.

    2007-01-01

    Diminishing marginal returns (DMR) to school inputs could explain a wide variety of findings in the research literature. One important example is the influential finding by Heyneman and Loxley that school inputs are the 'predominant influence' on achievement in developing nations, where input levels are low, even though the same school inputs have…

  14. DIMINISHED INJURY IN HYPOTRANSFERENEMIC MICE AFTER EXPOSURE TO A METAL-RICH PARTICLE

    EPA Science Inventory

    Using the hypotransferrinemic (Hp) mouse model, we studied the effect of altered iron homeostasis on the lung?s defense against catalytically active metal. The homozygotic (hpx/hpx) Hp mice had greatly diminished concentrations of both serum and lavage transferrin relative to ...

  15. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation. PMID:22269613

  16. [PPAR receptors and insulin sensitivity: new agonists in development].

    PubMed

    Pégorier, J-P

    2005-04-01

    Thiazolidinediones (or glitazones) are synthetic PPARgamma (Peroxisome Proliferator-Activated Receptors gamma) ligands with well recognized effects on glucose and lipid metabolism. The clinical use of these PPARgamma agonists in type 2 diabetic patients leads to an improved glycemic control and an inhanced insulin sensitivity, and at least in animal models, to a protective effect on pancreatic beta-cell function. However, they can produce adverse effects, generally mild or moderate, but some of them (mainly peripheral edema and weight gain) may conduct to treatment cessation. Several pharmacological classes are currently in pre-clinical or clinical development, with the objective to retain the beneficial metabolic properties of PPARgamma agonists, either alone or in association with the PPARalpha agonists (fibrates) benefit on lipid profile, but devoid of the side-effects on weight gain and fluid retention. These new pharmacological classes: partial PPARgamma agonists, PPARgamma antagonists, dual PPARalpha/PPARgamma agonists, pan PPARalpha/beta(delta)/gamma agonists, RXR receptor agonists (rexinoids), are presented in this review. Main results from in vitro cell experiments and animal model studies are discussed, as well as the few published short-term studies in type 2 diabetic patients. PMID:15959400

  17. Effects of Long-Term Treatment with Estradiol and Estrogen Receptor Subtype Agonists on Serotonergic Function in Ovariectomized Rats.

    PubMed

    Benmansour, Saloua; Adeniji, Opeyemi S; Privratsky, Anthony A; Frazer, Alan

    2016-01-01

    Acute estradiol treatment was reported to slow the clearance of serotonin via activation of estrogen receptors (ER)β and/or GPR30 and to block the ability of a selective serotonin reuptake inhibitor (SSRI) to slow serotonin clearance via activation of ERα. In this study, the behavioral consequences of longer-term treatments with estradiol or ER subtype-selective agonists and/or an SSRI were examined in the forced swim test (FST). Ovariectomized rats were administered the following for 2 weeks: estradiol, ERβ agonist (diarylpropionitrile, DPN), GPR30 agonist (G1), ERα agonist (PPT), and/or the SSRI sertraline. Similar to sertraline, longer-term treatment with estradiol, DPN or G1 induced an antidepressant-like effect. By contrast, PPT did not, even though it blocked the antidepressant-like effect of sertraline. Uterus weights, used as a peripheral measure of estrogenic activity, were increased by estradiol and PPT but not DPN or G1 treatment. A second part of this study investigated, using Western blot analyses in homogenates from hippocampus, whether these behavioral effects are accompanied by changes in the activation of specific signaling pathways and/or TrkB. Estradiol and G1 increased phosphorylation of Akt, ERK and TrkB. These effects were similar to those obtained after treatment with sertraline. Treatment with DPN increased phosphorylation of ERK and TrkB, but it did not alter that of Akt. Treatment with PPT increased phosphorylation of Akt and ERK without altering that of TrkB. In conclusion, activation of at least TrkB and possibly ERK may be involved in the antidepressant-like effect of estradiol, ERβ and GPR30 agonists whereas Akt activation may not be necessary. PMID:26159182

  18. Resolution of Acute Inflammation In The Lung

    PubMed Central

    Levy, Bruce D.; Serhan, Charles N.

    2015-01-01

    Acute inflammation in the lung is essential to health. So too is its resolution. In response to invading microbes, noxious stimuli or tissue injury, an acute inflammatory response is mounted to protect the host. To limit inflammation and prevent collateral injury of healthy, uninvolved tissue, the lung orchestrates the formation of specialized pro-resolving mediators, specifically lipoxins, resolvins, protectins and maresins. These immunoresolvents are agonists for resolution that interact with specific receptors on leukocytes and structural cells to blunt further inflammation and promote catabasis. This process appears to be defective in several common lung diseases that are characterized by excess or chronic inflammation. Here, we review the molecular and cellular effectors of resolution of acute inflammation in the lung. PMID:24313723

  19. Resolution of acute inflammation in the lung.

    PubMed

    Levy, Bruce D; Serhan, Charles N

    2014-01-01

    Acute inflammation in the lung is essential to health. So too is its resolution. In response to invading microbes, noxious stimuli, or tissue injury, an acute inflammatory response is mounted to protect the host. To limit inflammation and prevent collateral injury of healthy, uninvolved tissue, the lung orchestrates the formation of specialized proresolving mediators, specifically lipoxins, resolvins, protectins, and maresins. These immunoresolvents are agonists for resolution that interact with specific receptors on leukocytes and structural cells to blunt further inflammation and promote catabasis. This process appears to be defective in several common lung diseases that are characterized by excess or chronic inflammation. Here, we review the molecular and cellular effectors of resolution of acute inflammation in the lung. PMID:24313723

  20. Dopamine agonist withdrawal syndrome: implications for patient care.

    PubMed

    Nirenberg, Melissa J

    2013-08-01

    Dopamine agonists are effective treatments for a variety of indications, including Parkinson's disease and restless legs syndrome, but may have serious side effects, such as orthostatic hypotension, hallucinations, and impulse control disorders (including pathological gambling, compulsive eating, compulsive shopping/buying, and hypersexuality). The most effective way to alleviate these side effects is to taper or discontinue dopamine agonist therapy. A subset of patients who taper a dopamine agonist, however, develop dopamine agonist withdrawal syndrome (DAWS), which has been defined as a severe, stereotyped cluster of physical and psychological symptoms that correlate with dopamine agonist withdrawal in a dose-dependent manner, cause clinically significant distress or social/occupational dysfunction, are refractory to levodopa and other dopaminergic medications, and cannot be accounted for by other clinical factors. The symptoms of DAWS include anxiety, panic attacks, dysphoria, depression, agitation, irritability, suicidal ideation, fatigue, orthostatic hypotension, nausea, vomiting, diaphoresis, generalized pain, and drug cravings. The severity and prognosis of DAWS is highly variable. While some patients have transient symptoms and make a full recovery, others have a protracted withdrawal syndrome lasting for months to years, and therefore may be unwilling or unable to discontinue DA therapy. Impulse control disorders appear to be a major risk factor for DAWS, and are present in virtually all affected patients. Thus, patients who are unable to discontinue dopamine agonist therapy may experience chronic impulse control disorders. At the current time, there are no known effective treatments for DAWS. For this reason, providers are urged to use dopamine agonists judiciously, warn patients about the risks of DAWS prior to the initiation of dopamine agonist therapy, and follow patients closely for withdrawal symptoms during dopamine agonist taper. PMID:23686524

  1. Acute malocclusion.

    PubMed

    Dupont, John S

    2006-01-01

    Acute malocclusion can result from disturbances in the maxillary/mandibular tooth relationship. These alterations in the occlusal position can result from high fillings, sinus problems, abscesses, periodontal disease, and moving or erupting teeth. Conditions seen less frequently include acute malocclusions secondary to an event (such as trauma) that make a stable dental relationship an unstable one. Patients can demonstrate any of a number of clinical conditions that interfere with their comfort and ability to function. This article provides information on some of the less familiar causes of acute malocclusion. PMID:16689064

  2. Supra-physiological efficacy at GPCRs: superstition or super agonists?

    PubMed

    Langmead, Christopher J; Christopoulos, Arthur

    2013-05-01

    The concept of 'super agonism' has been described since the discovery of peptide hormone analogues that yielded greater functional responses than the endogenous agonists, in the early 1980s. It has remained an area of debate as to whether such compounds can really display greater efficacy than an endogenous agonist. However, recent pharmacological data, combined with crystal structures of different GPCR conformations and improved analytical methods for quantifying drug action, are starting to shed light on this phenomenon and indicate that super agonists may be more than superstition. PMID:23441648

  3. Acute Bronchitis

    MedlinePlus

    ... bronchitis? Acute bronchitis is almost always caused by viruses that attack the lining of the bronchial tree ... infection. As your body fights back against these viruses, more swelling occurs and more mucus is produced. ...

  4. Acute Pericarditis

    MedlinePlus

    ... large pericardial effusions). Acute pericarditis usually responds to colchicine or NSAIDs (such as aspirin and ibuprofen ) taken ... reduce pain but relieves it by reducing inflammation. Colchicine also decreases the chance of pericarditis returning later. ...

  5. Relamorelin: A Novel Gastrocolokinetic Synthetic Ghrelin Agonist

    PubMed Central

    Camilleri, Michael; Acosta, Andres

    2015-01-01

    Synthetic ghrelin agonists, predominantly small molecules, are being developed as prokinetic agents that may prove useful in the treatment of gastrointestinal motility disorders. Relamorelin (RM-131) is a pentapeptide synthetic ghrelin analog that activates the growth hormone secretagogue (GHS)-1a (also called the ghrelin) receptor with approximately 6-fold greater potency than natural ghrelin. The ability of relamorelin to stimulate growth hormone (GH) release is comparable to that of native ghrelin. Relamorelin has enhanced efficacy and plasma stability compared to native ghrelin. In this review, we discuss the pharmacokinetics, pharmacodynamics and potential indications for relamorelin. Relamorelin is administered subcutaneously, dosed daily or twice daily. Relamorelin is being studied for the treatment of patients with gastrointestinal motility disorders. Phase IIA pharmacodynamic studies have demonstrated acceleration of gastric emptying in patients with type 1 diabetes mellitus (T1DM) and type 2 DM (T2DM) and upper gastrointestinal symptoms. In a phase IIA study in patients with diabetic gastroparesis, relamorelin accelerated gastric emptying and significantly improved vomiting frequency compared to placebo and improved other symptoms of gastroparesis in a pre-specified subgroup of patients with vomiting at baseline. In patients with chronic idiopathic constipation with defined transit profile at baseline, relamorelin relieved constipation and accelerated colonic transit compared to placebo. These characteristics suggest that this new ghrelin analog shows great promise to relieve patients with upper or lower gastrointestinal motility disorders. PMID:25545036

  6. Noribogaine is a G-protein biased κ-opioid receptor agonist.

    PubMed

    Maillet, Emeline L; Milon, Nicolas; Heghinian, Mari D; Fishback, James; Schürer, Stephan C; Garamszegi, Nandor; Mash, Deborah C

    2015-12-01

    Noribogaine is the long-lived human metabolite of the anti-addictive substance ibogaine. Noribogaine efficaciously reaches the brain with concentrations up to 20 μM after acute therapeutic dose of 40 mg/kg ibogaine in animals. Noribogaine displays atypical opioid-like components in vivo, anti-addictive effects and potent modulatory properties of the tolerance to opiates for which the mode of action remained uncharacterized thus far. Our binding experiments and computational simulations indicate that noribogaine may bind to the orthosteric morphinan binding site of the opioid receptors. Functional activities of noribogaine at G-protein and non G-protein pathways of the mu and kappa opioid receptors were characterized. Noribogaine was a weak mu antagonist with a functional inhibition constants (Ke) of 20 μM at the G-protein and β-arrestin signaling pathways. Conversely, noribogaine was a G-protein biased kappa agonist 75% as efficacious as dynorphin A at stimulating GDP-GTP exchange (EC50=9 μM) but only 12% as efficacious at recruiting β-arrestin, which could contribute to the lack of dysphoric effects of noribogaine. In turn, noribogaine functionally inhibited dynorphin-induced kappa β-arrestin recruitment and was more potent than its G-protein agonistic activity with an IC50 of 1 μM. This biased agonist/antagonist pharmacology is unique to noribogaine in comparison to various other ligands including ibogaine, 18-MC, nalmefene, and 6'-GNTI. We predict noribogaine to promote certain analgesic effects as well as anti-addictive effects at effective concentrations>1 μM in the brain. Because elevated levels of dynorphins are commonly observed and correlated with anxiety, dysphoric effects, and decreased dopaminergic tone, a therapeutically relevant functional inhibition bias to endogenously released dynorphins by noribogaine might be worthy of consideration for treating anxiety and substance related disorders. PMID:26302653

  7. Cannabinoid agonists rearrange synaptic vesicles at excitatory synapses and depress motoneuron activity in vivo.

    PubMed

    García-Morales, Victoria; Montero, Fernando; Moreno-López, Bernardo

    2015-05-01

    Impairment of motor skills is one of the most common acute adverse effects of cannabis. Related studies have focused mainly on psychomotor alterations, and little is known about the direct impact of cannabinoids (CBs) on motoneuron physiology. As key modulators of synaptic function, CBs regulate multiple neuronal functions and behaviors. Presynaptic CB1 mediates synaptic strength depression by inhibiting neurotransmitter release, via a poorly understood mechanism. The present study examined the effect of CB agonists on excitatory synaptic inputs incoming to hypoglossal motoneurons (HMNs) in vitro and in vivo. The endocannabinoid anandamide (AEA) and the synthetic CB agonist WIN 55,212-2 rapidly and reversibly induced short-term depression (STD) of glutamatergic synapses on motoneurons by a presynaptic mechanism. Presynaptic effects were fully reversed by the CB1-selective antagonist AM281. Electrophysiological and electron microscopy analysis showed that WIN 55,212-2 reduced the number of synaptic vesicles (SVs) docked to active zones in excitatory boutons. Given that AM281 fully abolished depolarization-induced depression of excitation, motoneurons can be feasible sources of CBs, which in turn act as retrograde messengers regulating synaptic function. Finally, microiontophoretic application of the CB agonist O-2545 reversibly depressed, presumably via CB1, glutamatergic inspiratory-related activity of HMNs in vivo. Therefore, evidence support that CBs, via presynaptic CB1, induce excitatory STD by reducing the readily releasable pool of SVs at excitatory synapses, then attenuating motoneuron activity. These outcomes contribute a possible mechanistic basis for cannabis-associated motor performance disturbances such as ataxia, dysarthria and dyscoordination. PMID:25595101

  8. Behavioral effects of a synthetic agonist selective for nociceptin/orphanin FQ peptide receptors in monkeys.

    PubMed

    Ko, Mei-Chuan; Woods, James H; Fantegrossi, William E; Galuska, Chad M; Wichmann, Jürgen; Prinssen, Eric P

    2009-08-01

    Behavioral effects of a nonpeptidic NOP (nociceptin/orphanin FQ Peptide) receptor agonist, Ro 64-6198, have not been studied in primate species. The aim of the study was to verify the receptor mechanism underlying the behavioral effects of Ro 64-6198 and to systematically compare behavioral effects of Ro 64-6198 with those of a mu-opioid receptor agonist, alfentanil, in monkeys. Both Ro 64-6198 (0.001-0.06 mg/kg, s.c.) and alfentanil (0.001-0.06 mg/kg, s.c.) produced antinociception against an acute noxious stimulus (50 degrees C water) and capsaicin-induced allodynia. An NOP receptor antagonist, J-113397 (0.01-0.1 mg/kg, s.c.), dose-dependently produced rightward shifts of the dose-response curve of Ro 64-6198-induced antinociception. The apparent pA(2) value of J-113397 was 8.0. Antagonist studies using J-113397 and naltrexone revealed that Ro 64-6198 produced NOP receptor-mediated antinociception independent of mu-opioid receptors. In addition, alfentanil dose-dependently produced respiratory depression and itch/scratching responses, but antinociceptive doses of Ro 64-6198 did not produce such effects. More important, Ro 64-6198 did not produce reinforcing effects comparable with those of alfentanil, cocaine, or methohexital under self-administration procedures in monkeys. These results provide the first functional evidence that the activation of NOP receptors produces antinociception without reinforcing effects in primates. Non-peptidic NOP receptor agonists may have therapeutic value as novel analgesics without abuse liability in humans. PMID:19279568

  9. Inactivation of G(i) proteins by pertussis toxin diminishes the effectiveness of adrenergic stimuli in conduit arteries from spontaneously hypertensive rats.

    PubMed

    Zemancíková, A; Török, J; Zicha, J; Kunes, J

    2008-01-01

    Treatment with pertussis toxin (PTX) which eliminates the activity of G(i) proteins effectively reduces blood pressure (BP) and vascular resistance in spontaneously hypertensive rats (SHR). In this study we have compared the functional characteristics of isolated arteries from SHR with and without PTX-treatment (10 microg/kg i.v., 48 h before the experiment). Rings of thoracic aorta, superior mesenteric artery and main pulmonary artery were studied under isometric conditions to measure the reactivity of these vessels to receptor agonists and to transmural electrical stimuli. We have found that the treatment of SHR with PTX had no effect on endothelium-dependent relaxation of thoracic aorta induced by acetylcholine. In PTX-treated SHR, the maximum contraction of mesenteric artery to exogenous noradrenaline was reduced and the dose-response curve to cumulative concentration of noradrenaline was shifted to the right. Similarly, a reduction in the magnitude of neurogenic contractions elicited by electrical stimulation of perivascular nerves was observed in the mesenteric artery from PTX-treated SHR. PTX treatment of SHR also abolished the potentiating effect of angiotensin II on neurogenic contractions of the main pulmonary artery. These results indicate that PTX treatment markedly diminishes the effectiveness of adrenergic stimuli in vasculature of SHR. This could importantly affect BP regulation in genetic hypertension. PMID:18570536

  10. Selecting agonists from single cells infected with combinatorial antibody libraries.

    PubMed

    Zhang, Hongkai; Yea, Kyungmoo; Xie, Jia; Ruiz, Diana; Wilson, Ian A; Lerner, Richard A

    2013-05-23

    We describe a system for direct selection of antibodies that are receptor agonists. Combinatorial antibody libraries in lentiviruses are used to infect eukaryotic cells that contain a fluorescent reporter system coupled to the receptor for which receptor agonist antibodies are sought. In this embodiment of the method, very large numbers of candidate antibodies expressing lentivirus and eukaryotic reporter cells are packaged together in a format where each is capable of replication, thereby forging a direct link between genotype and phenotype. Following infection, cells that fluoresce are sorted and the integrated genes encoding the agonist antibodies recovered. We validated the system by illustrating its ability to generate rapidly potent antibody agonists that are complete thrombopoietin phenocopies. The system should be generalizable to any pathway where its activation can be linked to production of a selectable phenotype. PMID:23706638

  11. Therapeutic Potential of 5-HT6 Receptor Agonists.

    PubMed

    Karila, Delphine; Freret, Thomas; Bouet, Valentine; Boulouard, Michel; Dallemagne, Patrick; Rochais, Christophe

    2015-10-22

    Given its predominant expression in the central nervous system (CNS), 5-hydroxytryptamine (5-HT: serotonin) subtype 6 receptor (5-HT6R) has been considered as a valuable target for the development of CNS drugs with limited side effects. After 2 decades of intense research, numerous selective ligands have been developed to target this receptor; this holds potential interest for the treatment of neuropathological disorders. In fact, some agents (mainly antagonists) are currently undergoing clinical trial. More recently, a series of potent and selective agonists have been developed, and preclinical studies have been conducted that suggest the therapeutic interest of 5-HT6R agonists. This review details the medicinal chemistry of these agonists, highlights their activities, and discusses their potential for treating cognitive issues associated with Alzheimer's disease (AD), depression, or obesity. Surprisingly, some studies have shown that both 5-HT6R agonists and antagonists exert similar procognitive activities. This article summarizes the hypotheses that could explain this paradox. PMID:26099069

  12. Selective 5-HT2C agonists as potential antidepressants.

    PubMed

    Leysen, D C

    1999-02-01

    The antidepressants currently used need improvement, especially in terms of efficacy, relapse rate and onset of action. In this review the clinical and experimental data which support the rationale for 5-HT2C agonists in the treatment of depression are listed. Next, the results obtained with the non-selective 5-HT2C agonists on the market and in clinical development are described. Finally, the preclinical data on the more selective 5-HT2C agonists are summarized. These recent preclinical results reveal a greater potency and effect size compared to fluoxetine, good tolerability and no evidence of tolerance development. Selective 5-HT2C agonists might become innovative drugs for the treatment of depression, panic, obsessive-compulsive disorder (OCD), some forms of aggression and eating disorders. PMID:16160946

  13. Agonist pharmacology of two Drosophila GABA receptor splice variants.

    PubMed Central

    Hosie, A. M.; Sattelle, D. B.

    1996-01-01

    1. The Drosophila melanogaster gamma-aminobutyric acid (GABA) receptor subunits, RDLac and DRC 17-1-2, form functional homo-oligomeric receptors when heterologously expressed in Xenopus laevis oocytes. The subunits differ in only 17 amino acids, principally in regions of the N-terminal domain which determine agonist pharmacology in vertebrate ionotropic neurotransmitter receptors. A range of conformationally restricted GABA analogues were tested on the two homo-oligomers and their agonists pharmacology compared with that of insect and vertebrate iontropic GABA receptors. 2. The actions of GABA, isoguvacine and isonipecotic acid on RDLac and DRC 17-1-2 homo-oligomers were compared, by use of two-electrode voltage-clamp. All three compounds were full agonists of both receptors, but were 4-6 fold less potent agonists of DRC 17-1-2 homo-oligomers than of RDLac. However, the relative potencies of these agonists on each receptor were very similar. 3. A more complete agonist profile was established for RDLac homo-oligomers. The most potent agonists of these receptors were GABA, muscimol and trans-aminocrotonic acid (TACA), which were approximately equipotent. RDLac homo-oligomers were fully activated by a range of GABA analogues, with the order of potency: GABA > ZAPA ((Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid) > isoguvacine > imidazole-4-acetic acid > or = isonipecotic acid > or = cis-aminocrotonic acid (CACA) > beta-alanine. 3-Aminopropane sulphonic acid (3-APS), a partial agonist of RDLac homo-oligomers, was the weakest agonist tested and 100 fold less potent than GABA. 4. SR95531, an antagonist of vertebrate GABAA receptors, competitively inhibited the GABA responses of RDLac homo-oligomers, which have previously been found to insensitive to bicuculline. However, its potency (IC50 500 microM) was much reduced when compared to GABAA receptors. 5. The agonist pharmacology of Drosophila RDLac homo-oligomers exhibits aspects of the characteristic pharmacology of

  14. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. PMID:25326839

  15. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. PMID:25437461

  16. Sleep attacks in patients taking dopamine agonists: review

    PubMed Central

    Homann, Carl Nikolaus; Wenzel, Karoline; Suppan, Klaudia; Ivanic, Gerd; Kriechbaum, Norbert; Crevenna, Richard; Ott, Erwin

    2002-01-01

    Objectives To assess the evidence for the existence and prevalence of sleep attacks in patients taking dopamine agonists for Parkinson's disease, the type of drugs implicated, and strategies for prevention and treatment. Design Review of publications between July 1999 and May 2001 in which sleep attacks or narcoleptic-like attacks were discussed in patients with Parkinson's disease. Results 124 patients with sleep events were found in 20 publications. Overall, 6.6% of patients taking dopamine agonists who attended movement disorder centres had sleep events. Men were over-represented. Sleep events occurred at both high and low doses of the drugs, with different durations of treatment (0-20 years), and with or without preceding signs of tiredness. Sleep attacks are a class effect, having been found in patients taking the following dopamine agonists: levodopa (monotherapy in 8 patients), ergot agonists (apomorphine in 2 patients, bromocriptine in 13, cabergoline in 1, lisuride or piribedil in 23, pergolide in 5,) and non-ergot agonists (pramipexole in 32, ropinirole in 38). Reports suggest two distinct types of events: those of sudden onset without warning and those of slow onset with prodrome drowsiness. Conclusion Insufficient data are available to provide effective guidelines for prevention and treatment of sleep events in patients taking dopamine agonists for Parkinson's disease. Prospective population based studies are needed to provide this information. What is already known on this topicCar crashes in patients with Parkinson's disease have been associated with sleep attacks caused by the dopamine agonists pramipexole and ropiniroleWhether sleep attacks exist, their connection with certain agonists, prevention or treatment, and the justification of legal actions are controversialWhat this study addsSleep attacks as a phenomenon distinct from normal somnolence really do existThey are a class effect of all dopamine drugsEffective prevention and treatment

  17. Identification of M-CSF agonists and antagonists

    DOEpatents

    Pandit, Jayvardhan; Jancarik, Jarmila; Kim, Sung-Hou; Koths, Kirston; Halenbeck, Robert; Fear, Anna Lisa; Taylor, Eric; Yamamoto, Ralph; Bohm, Andrew

    2000-02-15

    The present invention is directed to methods for crystallizing macrophage colony stimulating factor. The present invention is also directed to methods for designing and producing M-CSF agonists and antagonists using information derived from the crystallographic structure of M-CSF. The invention is also directed to methods for screening M-CSF agonists and antagonists. In addition, the present invention is directed to an isolated, purified, soluble and functional M-CSF receptor.

  18. Mechanisms of inverse agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Strange, Philip G

    2005-05-01

    Mechanisms of inverse agonist action at the D2(short) dopamine receptor have been examined. Discrimination of G-protein-coupled and -uncoupled forms of the receptor by inverse agonists was examined in competition ligand-binding studies versus the agonist [3H]NPA at a concentration labelling both G-protein-coupled and -uncoupled receptors. Competition of inverse agonists versus [3H]NPA gave data that were fitted best by a two-binding site model in the absence of GTP but by a one-binding site model in the presence of GTP. K(i) values were derived from the competition data for binding of the inverse agonists to G-protein-uncoupled and -coupled receptors. K(coupled) and K(uncoupled) were statistically different for the set of compounds tested (ANOVA) but the individual values were different in a post hoc test only for (+)-butaclamol. These observations were supported by simulations of these competition experiments according to the extended ternary complex model. Inverse agonist efficacy of the ligands was assessed from their ability to reduce agonist-independent [35S]GTP gamma S binding to varying degrees in concentration-response curves. Inverse agonism by (+)-butaclamol and spiperone occurred at higher potency when GDP was added to assays, whereas the potency of (-)-sulpiride was unaffected. These data show that some inverse agonists ((+)-butaclamol, spiperone) achieve inverse agonism by stabilising the uncoupled form of the receptor at the expense of the coupled form. For other compounds tested, we were unable to define the mechanism. PMID:15735658

  19. PPAR dual agonists: are they opening Pandora's Box?

    PubMed

    Balakumar, Pitchai; Rose, Madhankumar; Ganti, Subrahmanya S; Krishan, Pawan; Singh, Manjeet

    2007-08-01

    Cardiovascular disorders are the major cause of mortality in patients of diabetes mellitus. Peroxisome proliferator activated receptors (PPARs) are ligand-activated transcription factors of nuclear hormone receptor superfamily comprising of three subtypes such as PPARalpha, PPARgamma and PPARdelta/beta. Activation of PPARalpha reduces triglycerides and involves in regulation of energy homeostasis. Activation of PPARgamma causes insulin sensitization and enhances glucose metabolism, whereas activation of PPARdelta enhances fatty acid metabolism. Current therapeutic strategies available for the treatment of diabetes do not inhibit the associated secondary cardiovascular complications. Hence, the development of multimodal drugs which can reduce hyperglycemia and concomitantly inhibit the progression of secondary cardiovascular complications may offer valuable therapeutic option. Several basic and clinical studies have exemplified the beneficial effects of PPARalpha and PPARgamma ligands in preventing the cardiovascular risks. The PPARalpha/gamma dual agonists are developed to increase insulin sensitivity and simultaneously prevent diabetic cardiovascular complications. Such compounds are under clinical trials and proposed for treatment of Type II diabetes with secondary cardiovascular complications. However, PPARalpha/gamma dual agonists such as muraglitazar, tesaglitazar and ragaglitazar have been noted to produce several cardiovascular risks and carcinogenicity, which raised number of questions about the clinical applications of dual agonists in diabetes and its associated complications. The ongoing basic studies have elucidated the cardio protective role of PPARdelta. Therefore, further studies are on the track to develop PPARalpha/delta and PPAR gamma/delta dual agonists and PPARalpha/gamma/delta pan agonists for the treatment of diabetic cardiovascular complications. The present review critically analyzes the protective and detrimental effect of PPAR agonists in

  20. β2-Adrenergic agonists augment air pollution–induced IL-6 release and thrombosis

    PubMed Central

    Chiarella, Sergio E.; Soberanes, Saul; Urich, Daniela; Morales-Nebreda, Luisa; Nigdelioglu, Recep; Green, David; Young, James B.; Gonzalez, Angel; Rosario, Carmen; Misharin, Alexander V.; Ghio, Andrew J.; Wunderink, Richard G.; Donnelly, Helen K.; Radigan, Kathryn A.; Perlman, Harris; Chandel, Navdeep S.; Budinger, G.R. Scott; Mutlu, Gökhan M.

    2014-01-01

    Acute exposure to particulate matter (PM) air pollution causes thrombotic cardiovascular events, leading to increased mortality rates; however, the link between PM and cardiovascular dysfunction is not completely understood. We have previously shown that the release of IL-6 from alveolar macrophages is required for a prothrombotic state and acceleration of thrombosis following exposure to PM. Here, we determined that PM exposure results in the systemic release of catecholamines, which engage the β2-adrenergic receptor (β2AR) on murine alveolar macrophages and augment the release of IL-6. In mice, β2AR signaling promoted the development of a prothrombotic state that was sufficient to accelerate arterial thrombosis. In primary human alveolar macrophages, administration of a β2AR agonist augmented IL-6 release, while the addition of a beta blocker inhibited PM-induced IL-6 release. Genetic loss or pharmacologic inhibition of the β2AR on murine alveolar macrophages attenuated PM-induced IL-6 release and prothrombotic state. Furthermore, exogenous β2AR agonist therapy further augmented these responses in alveolar macrophages through generation of mitochondrial ROS and subsequent increase of adenylyl cyclase activity. Together, these results link the activation of the sympathetic nervous system by β2AR signaling with metabolism, lung inflammation, and an enhanced susceptibility to thrombotic cardiovascular events. PMID:24865431

  1. Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice.

    PubMed

    Vang, Derek; Paul, Jinny A; Nguyen, Julia; Tran, Huy; Vincent, Lucile; Yasuda, Dennis; Zaveri, Nurulain T; Gupta, Kalpna

    2015-12-01

    Treatment of pain with morphine and its congeners in sickle cell anemia is suboptimal, warranting the need for analgesics devoid of side effects, addiction and tolerance liability. Small-molecule nociceptin opioid receptor ligands show analgesic efficacy in acute and chronic pain models. We show that AT-200, a high affinity nociceptin opioid receptor agonist with low efficacy at the mu opioid receptor, ameliorated chronic and hypoxia/reoxygenation-induced mechanical, thermal and deep tissue/musculoskeletal hyperalgesia in HbSS-BERK sickle mice. The antinociceptive effect of AT-200 was antagonized by SB-612111, a nociceptin opioid receptor antagonist, but not naloxone, a non-selective mu opioid receptor antagonist. Daily 7-day treatment with AT-200 did not develop tolerance and showed a sustained anti-nociceptive effect, which improved over time and led to reduced plasma serum amyloid protein, neuropeptides, inflammatory cytokines and mast cell activation in the periphery. These data suggest that AT-200 ameliorates pain in sickle mice via the nociceptin opioid receptor by reducing inflammation and mast cell activation without causing tolerance. Thus, nociceptin opioid receptor agonists are promising drugs for treating pain in sickle cell anemia. PMID:26294734

  2. Small-molecule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice

    PubMed Central

    Vang, Derek; Paul, Jinny A.; Nguyen, Julia; Tran, Huy; Vincent, Lucile; Yasuda, Dennis; Zaveri, Nurulain T.; Gupta, Kalpna

    2015-01-01

    Treatment of pain with morphine and its congeners in sickle cell anemia is suboptimal, warranting the need for analgesics devoid of side effects, addiction and tolerance liability. Small-molecule nociceptin opioid receptor ligands show analgesic efficacy in acute and chronic pain models. We show that AT-200, a high affinity nociceptin opioid receptor agonist with low efficacy at the mu opioid receptor, ameliorated chronic and hypoxia/reoxygenation-induced mechanical, thermal and deep tissue/musculoskeletal hyperalgesia in HbSS-BERK sickle mice. The antinociceptive effect of AT-200 was antagonized by SB-612111, a nociceptin opioid receptor antagonist, but not naloxone, a non-selective mu opioid receptor antagonist. Daily 7-day treatment with AT-200 did not develop tolerance and showed a sustained anti-nociceptive effect, which improved over time and led to reduced plasma serum amyloid protein, neuropeptides, inflammatory cytokines and mast cell activation in the periphery. These data suggest that AT-200 ameliorates pain in sickle mice via the nociceptin opioid receptor by reducing inflammation and mast cell activation without causing tolerance. Thus, nociceptin opioid receptor agonists are promising drugs for treating pain in sickle cell anemia. PMID:26294734

  3. Side effects of a dopamine agonist therapy for Parkinson’s disease: a mini-review of clinical pharmacology

    PubMed Central

    Borovac, Josip Anđelo

    2016-01-01

    Dopamine agonists (DA) are therapeutic agents that are commonly used in the treatment of Parkinson’s disease (PD). They can reduce undesired motor fluctuations and delay the administration of levodopa therapy. However, this drug family is associated with specific side effects that can significantly diminish the quality of life among PD patients. Some of them impose significant risks for individuals who have a history of cardiovascular diseases, psychosis, and depression, or those older patients who suffer from renal or hepatic insufficiency. Various pharmacokinetic and pharmacodynamic considerations need to be taken into account when administering DA therapy. The goal of this review is to provide a comprehensive, up-to-date overview of DA therapeutic modalities for PD. PMID:27505015

  4. Differential effects of AMPK agonists on cell growth and metabolism

    PubMed Central

    Vincent, Emma E.; Coelho, Paula P.; Blagih, Julianna; Griss, Takla; Viollet, Benoit; Jones, Russell G.

    2016-01-01

    As a sensor of cellular energy status, the AMP-activated protein kinase (AMPK) is believed to act in opposition to the metabolic phenotypes favored by proliferating tumor cells. Consequently, compounds known to activate AMPK have been proposed as cancer therapeutics. However, the extent to which the anti-neoplastic properties of these agonists are mediated by AMPK is unclear. Here we examined the AMPK-dependence of six commonly used AMPK agonists (metformin, phenformin, AICAR, 2DG, salicylate and A-769662) and their influence on cellular processes often deregulated in tumor cells. We demonstrate that the majority of these agonists display AMPK-independent effects on cell proliferation and metabolism with only the synthetic activator, A-769662, exerting AMPK-dependent effects on these processes. We find that A-769662 promotes an AMPK-dependent increase in mitochondrial spare respiratory capacity (SRC). Finally, contrary to the view of AMPK activity being tumor suppressive, we find A-769662 confers a selective proliferative advantage to tumor cells growing under nutrient deprivation. Our results indicate that many of the anti-growth properties of these agonists cannot be attributed to AMPK activity in cells, and thus any observed effects using these agonists should be confirmed using AMPK-deficient cells. Ultimately, our data urge caution, not only regarding the type of AMPK agonist proposed for cancer treatment, but also the context in which they are used. PMID:25241895

  5. Identification and optimization of small-molecule agonists of the human relaxin hormone receptor RXFP1

    PubMed Central

    Xiao, Jingbo; Huang, Zaohua; Chen, Catherine Z.; Agoulnik, Irina U.; Southall, Noel; Hu, Xin; Jones, Raisa E.; Ferrer, Marc; Zheng, Wei; Agoulnik, Alexander I.; Marugan, Juan J.

    2016-01-01

    The anti-fibrotic, vasodilatory, and pro-angiogenic therapeutic properties of recombinant relaxin peptide hormone have been investigated in several diseases and recent clinical trial data has shown benefit in treating acute heart failure. However, the remodeling capacity of these peptide hormones is difficult to study in chronic settings due to their short half-life and the need for intravenous administration. Here we present the first small-molecule series of human relaxin receptor 1 (RXFP1) agonists. These molecules display similar efficacy as the natural hormone in several functional assays. Mutagenesis studies indicate that the small molecules activate relaxin receptor through an allosteric site. These compounds have excellent physical and in vivo pharmacokinetic properties to support further investigation of relaxin biology and animal efficacy studies of the therapeutic benefits of RXFP1 activation. PMID:23764525

  6. Identification and optimization of small-molecule agonists of the human relaxin hormone receptor RXFP1.

    PubMed

    Xiao, Jingbo; Huang, Zaohua; Chen, Catherine Z; Agoulnik, Irina U; Southall, Noel; Hu, Xin; Jones, Raisa E; Ferrer, Marc; Zheng, Wei; Agoulnik, Alexander I; Marugan, Juan J

    2013-01-01

    The anti-fibrotic, vasodilatory and pro-angiogenic therapeutic properties of recombinant relaxin peptide hormone have been investigated in several diseases, and recent clinical trial data has shown benefit in treating acute heart failure. However, the remodelling capacity of these peptide hormones is difficult to study in chronic settings because of their short half-life and the need for intravenous administration. Here we present the first small-molecule series of human relaxin/insulin-like family peptide receptor 1 agonists. These molecules display similar efficacy as the natural hormone in several functional assays. Mutagenesis studies indicate that the small molecules activate relaxin receptor through an allosteric site. These compounds have excellent physical and in vivo pharmacokinetic properties to support further investigation of relaxin biology and animal efficacy studies of the therapeutic benefits of relaxin/insulin-like family peptide receptor 1 activation. PMID:23764525

  7. Acute and Chronic Regulation of Aldosterone Production

    PubMed Central

    Hattangady, Namita; Olala, Lawrence; Bollag, Wendy B.; Rainey, William E.

    2011-01-01

    Aldosterone is the major mineralocorticoid synthesized by the adrenal. Secretion of aldosterone is regulated tightly by the adrenocortical glomerulosa cells due to the selective expression of CYP11B2 in the outermost zone, the zona glomerulosa. Aldosterone is largely responsible for regulation of systemic blood pressure through the absorption of electrolytes and water under the regulation of certain specific agonists. Angiotensin II (Ang II), potassium (K+) and adrenocorticotropin (ACTH) are the main physiological agonists which regulate aldosterone secretion. The mechanisms involved in this process may be regulated minutes after a stimulus (acutely) through increased expression and phosphorylation of the steroidogenic acute regulatory (StAR) protein, over hours to days (chronically) by increased expression of the enzymes involved in the synthesis of aldosterone, particularly aldosterone synthase (CYP11B2). Imbalance in any of these processes may lead to several aldosterone excess disorders. In this review we attempt to summarize the key molecular events involved in and specifically attributed to the acute and chronic phases of aldosterone secretion. PMID:21839803

  8. Diminished growth hormone secretion in blind males after L-dopa stimulation.

    PubMed

    Fatranská, M; Jurcovicová, J; Németh, S; Vigas, M

    1988-12-01

    Growth hormone secretion after L-dopa administration (1000 mg p.o.) was investigated in young adult normal and blind volunteers. The average increment of plasma growth hormone after L-dopa stimulation in the blind was below the criterion for a positive response (less than 5 ng ml-1). The control volunteers showed normal response. After L-dopa stimulation there was a significantly diminished growth hormone response in the young adult blind compared to control volunteers. PMID:3243205

  9. Ventral striatal hypoactivation is associated with apathy but not diminished expression in patients with schizophrenia

    PubMed Central

    Kirschner, Matthias; Hager, Oliver M.; Bischof, Martin; Hartmann, Matthias N.; Kluge, Agne; Seifritz, Erich; Tobler, Philippe N.; Kaiser, Stefan

    2016-01-01

    Background Negative symptoms of schizophrenia can be grouped in 2 dimensions: apathy and diminished expression. Increasing evidence suggests that negative symptoms are associated with altered neural activity of subcortical and cortical regions in the brain reward system. However, the neurobiological basis of the distinct symptom dimensions within negative symptoms is still poorly understood. The primary aim of our study was to examine the neural correlates of the negative symptom dimensions apathy and diminished expression during a reward processing task. Methods Patients with schizophrenia and healthy controls underwent event-related fMRI while performing a variant of the Monetary Incentive Delay Task. We assessed negative symptom dimensions using the Brief Negative Symptom Scale. Results We included 27 patients and 25 controls in our study. Both groups showed neural activation indicated by blood oxygen–level dependent signal in the ventral striatum during reward anticipation. Ventral striatal activation during reward anticipation showed a strong negative correlation with apathy. Importantly, this effect was not driven by cognitive ability, medication, depressive or positive symptoms. In contrast, no significant correlation with the diminished expression dimension was observed. Limitations Although the results remain significant when controlling for chlorpromazine equivalents, we cannot fully exclude potential confounding effects of medication with atypical antipsychotics. Conclusion The specific correlation of ventral striatal hypoactivation during reward anticipation with apathy demonstrates a differentiation of apathy and diminished expression on a neurobiological level and provides strong evidence for different pathophysiological mechanisms underlying these 2 negative symptom dimensions. Our findings contribute to a multilevel framework in which apathy and motivational impairment in patients with schizophrenia can be described on psychopathological

  10. Acute myelogenous leukemia (AML) - children

    MedlinePlus

    Acute myelogenous leukemia - children; AML; Acute myeloid leukemia - children; Acute granulocytic leukemia - children; Acute myeloblastic leukemia - children; Acute non-lymphocytic leukemia (ANLL) - children