Sample records for agricultural crop conditions

  1. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  2. USDA Foreign Agricultural Service overview for operational monitoring of current crop conditions and production forecasts.

    NASA Astrophysics Data System (ADS)

    Crutchfield, J.

    2016-12-01

    The presentation will discuss the current status of the International Production Assessment Division of the USDA ForeignAgricultural Service for operational monitoring and forecasting of current crop conditions, and anticipated productionchanges to produce monthly, multi-source consensus reports on global crop conditions including the use of Earthobservations (EO) from satellite and in situ sources.United States Department of Agriculture (USDA) Foreign Agricultural Service (FAS) International Production AssessmentDivision (IPAD) deals exclusively with global crop production forecasting and agricultural analysis in support of the USDAWorld Agricultural Outlook Board (WAOB) lockup process and contributions to the World Agricultural Supply DemandEstimates (WASE) report. Analysts are responsible for discrete regions or countries and conduct in-depth long-termresearch into national agricultural statistics, farming systems, climatic, environmental, and economic factors affectingcrop production. IPAD analysts become highly valued cross-commodity specialists over time, and are routinely soughtout for specialized analyses to support governmental studies. IPAD is responsible for grain, oilseed, and cotton analysison a global basis. IPAD is unique in the tools it uses to analyze crop conditions around the world, including customweather analysis software and databases, satellite imagery and value-added image interpretation products. It alsoincorporates all traditional agricultural intelligence resources into its forecasting program, to make the fullest use ofavailable information in its operational commodity forecasts and analysis. International travel and training play animportant role in learning about foreign agricultural production systems and in developing analyst knowledge andcapabilities.

  3. Hydrological Responses of Weather Conditions and Crop Change of Agricultural Area in the Rincon Valley, New Mexico

    NASA Astrophysics Data System (ADS)

    Ahn, S.; Sheng, Z.; Abudu, S.

    2017-12-01

    Hydrologic cycle of agricultural area has been changing due to the impacts of climate and land use changes (crop coverage changes) in an arid region of Rincon Valley, New Mexico. This study is to evaluate the impacts of weather condition and crop coverage change on hydrologic behavior of agricultural area in Rincon Valley (2,466km2) for agricultural watershed management using a watershed-scale hydrologic model, SWAT (Soil and Water Assessment Tool). The SWAT model was developed to incorporate irrigation of different crops using auto irrigation function. For the weather condition and crop coverage change evaluation, three spatial crop coverages including a normal (2008), wet (2009), and dry (2011) years were prepared using USDA crop data layer (CDL) for fourteen different crops. The SWAT model was calibrated for the period of 2001-2003 and validated for the period of 2004-2006 using daily-observed streamflow data. Scenario analysis was performed for wet and dry years based on the unique combinations of crop coverages and releases from Caballo Reservoir. The SWAT model simulated the present vertical water budget and horizontal water transfer considering irrigation practices in the Rincon Valley. Simulation results indicated the temporal and spatial variability for irrigation and non-irrigation seasons of hydrologic cycle in agricultural area in terms of surface runoff, evapotranspiration, infiltration, percolation, baseflow, soil moisture, and groundwater recharge. The water supply of the dry year could not fully cover whole irrigation period due to dry weather conditions, resulting in reduction of crop acreage. For extreme weather conditions, the temporal variation of water budget became robust, which requires careful irrigation management of the agricultural area. The results could provide guidelines for farmers to decide crop patterns in response to different weather conditions and water availability.

  4. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    NASA Astrophysics Data System (ADS)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  5. Daily monitoring of 30 m crop condition over complex agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Sun, L.; Gao, F.; Xie, D.; Anderson, M. C.; Yang, Y.

    2017-12-01

    Crop progress provides information necessary for efficient irrigation, scheduling fertilization and harvesting operations at optimal times for achieving higher yields. In the United States, crop progress reports are released online weekly by US Department of Agriculture (USDA) - National Agricultural Statistics Service (NASS). However, the ground data collection is time consuming and subjective, and these reports are provided at either district (multiple counties) or state level. Remote sensing technologies have been widely used to map crop conditions, to extract crop phenology, and to predict crop yield. However, for current satellite-based sensors, it is difficult to acquire both high spatial resolution and frequent coverage. For example, Landsat satellites are capable to capture 30 m resolution images, while the long revisit cycles, cloud contamination further limited their use in detecting rapid surface changes. On the other hand, MODIS can provide daily observations, but with coarse spatial resolutions range from 250 to 1000 m. In recent years, multi-satellite data fusion technology such as the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) has been used to combine the spatial resolution of Landsat with the temporal frequency of MODIS. It has been found that this synthetic dataset could provide more valuable information compared to the images acquired from only one single sensor. However, accuracy of STARFM depends on heterogeneity of landscape and available clear image pairs of MODIS and Landsat. In this study, a new fusion method was developed using the crop vegetation index (VI) timeseries extracted from "pure" MODIS pixels and Landsat overpass images to generate daily 30 m VI for crops. The fusion accuracy was validated by comparing to the original Landsat images. Results show that the relative error in non-rapid growing period is around 3-5% and in rapid growing period is around 6-8% . The accuracy is much better than that of STARFM which

  6. Effects of agricultural practices of three crops on the soil communities under Mediterranean conditions: field evaluation.

    NASA Astrophysics Data System (ADS)

    Leitão, Sara; José Cerejeira, Maria; Abreu, Manuela; Sousa, José Paulo

    2014-05-01

    Sustainable agricultural production relies on soil communities as the main actors in key soil processes necessary to maintain sustainable soil functioning. Soil biodiversity influences soil physical and chemical characteristics and thus the sustainability of crop and agro-ecosystems functioning. Agricultural practices (e.g.: soil tillage, pesticides and fertilizer applications, irrigation) may affects negatively or positively soil biodiversity and abundances by modifying the relationships between organisms in the soil ecosystem. The present study aimed to study the influence of agricultural practices of three crops (potato, onion and maize) under Mediterranean climate conditions on soil macro- and mesofauna during their entire crop cycles. Effects on soil communities were assessed at a higher tier of environmental risk assessment comprising field testing of indigenous edaphic communities in a selected study-site located in a major agriculture region of Central Portugal, Ribatejo e Oeste, neighbouring protected wetlands. A reference site near the agricultural field site was selected as a Control site to compare the terrestrial communities' composition and variation along the crop cycle. The field soil and Control site soil are sandy loam soils. Crops irrigation was performed by center-pivot (automated sprinkler that rotates in a half a circle area) and by sprinklers. Soil macro- and mesofauna were collected at both sites (field and Control) using two methodologies through pitfall trapping and soil sampling. The community of soil macro- and mesofauna of the three crops field varied versus control site along the crops cycles. Main differences were due to arachnids, coleopterans, ants and adult Diptera presence and abundance. The feeding activity of soil fauna between control site and crop areas varied only for potato and onion crops vs. control site but not among crops. Concentration of pesticides residues in soil did not cause apparent negative effects on the soil

  7. [Effects of agricultural activities and transgenic crops on agricultural biodiversity].

    PubMed

    Zhang, Xi-Tao; Luo, Hong-Bing; Li, Jun-Sheng; Huang, Hai; Liu, Yong-Bo

    2014-09-01

    Agricultural biodiversity is a key part of the ecosystem biodiversity, but it receives little concern. The monoculture, environmental pollution and habitat fragmentation caused by agricultural activities have threatened agricultural biodiversity over the past 50 years. To optimize agricultural management measures for crop production and environmental protection, we reviewed the effects of agricultural activities, including cultivation patterns, plastic mulching, chemical additions and the cultivation of transgenic crops, on agricultural biodiversity. The results showed that chemical pesticides and fertilizers had the most serious influence and the effects of transgenic crops varied with other factors like the specific transgene inserted in crops. The environmental risk of transgenic crops should be assessed widely through case-by-case methods, particularly its potential impacts on agricultural biodiversity. It is important to consider the protection of agricultural biodiversity before taking certain agricultural practices, which could improve agricultural production and simultaneously reduce the environmental impacts.

  8. Early warning and crop condition assessment research

    NASA Technical Reports Server (NTRS)

    Boatwright, G. O.; Whitehead, V. S.

    1986-01-01

    The Early Warning Crop Condition Assessment Project of AgRISTARS was a multiagency and multidisciplinary effort. Its mission and objectives were centered around development and testing of remote-sensing techniques that enhance operational methodologies for global crop-condition assessments. The project developed crop stress indicators models that provide data filter and alert capabilities for monitoring global agricultural conditions. The project developed a technique for using NOAA-n satellite advanced very-high-resolution radiometer (AVHRR) data for operational crop-condition assessments. This technology was transferred to the Foreign Agricultural Service of the USDA. The project developed a U.S. Great Plains data base that contains various meteorological parameters and vegetative index numbers (VIN) derived from AVHRR satellite data. It developed cloud screening techniques and scan angle correction models for AVHRR data. It also developed technology for using remotely acquired thermal data for crop water stress indicator modeling. The project provided basic technology including spectral characteristics of soils, water, stressed and nonstressed crop and range vegetation, solar zenith angle, and atmospheric and canopy structure effects.

  9. VegScape: U.S. Crop Condition Monitoring Service

    NASA Astrophysics Data System (ADS)

    mueller, R.; Yang, Z.; Di, L.

    2013-12-01

    Since 1995, the US Department of Agriculture (USDA)/National Agricultural Statistics Service (NASS) has provided qualitative biweekly vegetation condition indices to USDA policymakers and the public on a weekly basis during the growing season. Vegetation indices have proven useful for assessing crop condition and identifying the areal extent of floods, drought, major weather anomalies, and vulnerabilities of early/late season crops. With growing emphasis on more extreme weather events and food security issues rising to the forefront of national interest, a new vegetation condition monitoring system was developed. The new vegetation condition portal named VegScape was initiated at the start of the 2013 growing season. VegScape delivers web mapping service based interactive vegetation indices. Users can use an interactive map to explore, query and disseminate current crop conditions. Vegetation indices like Normal Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), and mean, median, and ratio comparisons to prior years can be constructed for analytical purposes and on-demand crop statistics. The NASA MODIS satellite with 250 meter (15 acres) resolution and thirteen years of data history provides improved spatial and temporal resolutions and delivers improved detailed timely (i.e., daily) crop specific condition and dynamics. VegScape thus provides supplemental information to support NASS' weekly crop reports. VegScape delivers an agricultural cultivated crop mask and the most recent Cropland Data Layer (CDL) product to exploit the agricultural domain and visualize prior years' planted crops. Additionally, the data can be directly exported to Google Earth for web mashups or delivered via web mapping services for uses in other applications. VegScape supports the ethos of data democracy by providing free and open access to digital geospatial data layers using open geospatial standards, thereby supporting transparent and collaborative government

  10. Modelling crop yield in Iberia under drought conditions

    NASA Astrophysics Data System (ADS)

    Ribeiro, Andreia; Páscoa, Patrícia; Russo, Ana; Gouveia, Célia

    2017-04-01

    The improved assessment of the cereal yield and crop loss under drought conditions are essential to meet the increasing economy demands. The growing frequency and severity of the extreme drought conditions in the Iberian Peninsula (IP) has been likely responsible for negative impacts on agriculture, namely on crop yield losses. Therefore, a continuous monitoring of vegetation activity and a reliable estimation of drought impacts is crucial to contribute for the agricultural drought management and development of suitable information tools. This works aims to assess the influence of drought conditions in agricultural yields over the IP, considering cereal yields from mainly rainfed agriculture for the provinces with higher productivity. The main target is to develop a strategy to model drought risk on agriculture for wheat yield at a province level. In order to achieve this goal a combined assessment was made using a drought indicator (Standardized Precipitation Evapotranspiration Index, SPEI) to evaluate drought conditions together with a widely used vegetation index (Normalized Difference Vegetation Index, NDVI) to monitor vegetation activity. A correlation analysis between detrended wheat yield and SPEI was performed in order to assess the vegetation response to each time scale of drought occurrence and also identify the moment of the vegetative cycle when the crop yields are more vulnerable to drought conditions. The time scales and months of SPEI, together with the months of NDVI, better related with wheat yield were chosen to perform a multivariate regression analysis to simulate crop yield. Model results are satisfactory and highlighted the usefulness of such analysis in the framework of developing a drought risk model for crop yields. In terms of an operational point of view, the results aim to contribute to an improved understanding of crop yield management under dry conditions, particularly adding substantial information on the advantages of combining

  11. Plants & Crops | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag , tables, graphs), Agricultural Products html Useful to Usable: Developing usable climate science for climatology, crop modeling, agronomy, cyber-technology, agricultural economics, sociology, Extension and

  12. Monitoring Global Crop Condition Indicators Using a Web-Based Visualization Tool

    Treesearch

    Bob Tetrault; Bob Baldwin

    2006-01-01

    Global crop condition information for major agricultural regions in the world can be monitored using the web-based application called Crop Explorer. With this application, U.S. and international producers, traders, researchers, and the public can access remote sensing information used by agricultural economists and scientists who predict crop production worldwide. For...

  13. Sustainable Agriculture: Cover Cropping

    ERIC Educational Resources Information Center

    Webster, Megan

    2018-01-01

    Sustainable agriculture practices are increasingly being used by farmers to maintain soil quality, increase biodiversity, and promote production of food that is environmentally safe. There are several types of sustainable agriculture practices such as organic farming, crop rotation, and aquaculture. This lesson plan focuses on the sustainable…

  14. Radio/antenna mounting system for wireless networking under row-crop agriculture conditions

    USDA-ARS?s Scientific Manuscript database

    Interest in and deployment of wireless monitoring systems is increasing in many diverse environments, including row-crop agricultural fields. While many studies have been undertaken to evaluate various aspects of wireless monitoring and networking, such as electronic hardware components, data-colle...

  15. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    USDA-ARS?s Scientific Manuscript database

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  16. Crop modeling applications in agricultural water management

    USGS Publications Warehouse

    Kisekka, Isaya; DeJonge, Kendall C.; Ma, Liwang; Paz, Joel; Douglas-Mankin, Kyle R.

    2017-01-01

    This article introduces the fourteen articles that comprise the “Crop Modeling and Decision Support for Optimizing Use of Limited Water” collection. This collection was developed from a special session on crop modeling applications in agricultural water management held at the 2016 ASABE Annual International Meeting (AIM) in Orlando, Florida. In addition, other authors who were not able to attend the 2016 ASABE AIM were also invited to submit papers. The articles summarized in this introductory article demonstrate a wide array of applications in which crop models can be used to optimize agricultural water management. The following section titles indicate the topics covered in this collection: (1) evapotranspiration modeling (one article), (2) model development and parameterization (two articles), (3) application of crop models for irrigation scheduling (five articles), (4) coordinated water and nutrient management (one article), (5) soil water management (two articles), (6) risk assessment of water-limited irrigation management (one article), and (7) regional assessments of climate impact (two articles). Changing weather and climate, increasing population, and groundwater depletion will continue to stimulate innovations in agricultural water management, and crop models will play an important role in helping to optimize water use in agriculture.

  17. Global gridded crop specific agricultural areas from 1961-2014

    NASA Astrophysics Data System (ADS)

    Konar, M.; Jackson, N. D.

    2017-12-01

    Current global cropland datasets are limited in crop specificity and temporal resolution. Time series maps of crop specific agricultural areas would enable us to better understand the global agricultural geography of the 20th century. To this end, we develop a global gridded dataset of crop specific agricultural areas from 1961-2014. To do this, we downscale national cropland information using a probabilistic approach. Our method relies upon gridded Global Agro-Ecological Zones (GAEZ) maps, the History Database of the Global Environment (HYDE), and crop calendars from Sacks et al. (2010). We estimate crop-specific agricultural areas for a 0.25 degree spatial grid and annual time scale for all major crops. We validate our global estimates for the year 2000 with Monfreda et al. (2008) and our time series estimates within the United States using government data. This database will contribute to our understanding of global agricultural change of the past century.

  18. Overview and highlights of Early Warning and Crop Condition Assessment project

    NASA Technical Reports Server (NTRS)

    Boatwright, G. O.; Whitehead, V. S.

    1985-01-01

    Work of the Early Warning and Crop Condition Assessment (EW/CCA) project, one of eight projects in the Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing (AgRISTARS), is reviewed. Its mission, to develop and test remote sensing techniques that enhance operational methodologies for crop condition assessment, was in response to initiatives issued by the Secretary of Agriculture. Meteorologically driven crop stress indicator models have been developed or modified for wheat, maize, grain sorghum, and soybeans. These models provide early warning alerts of potential or actual crop stresses due to water deficits, adverse temperatures, and water excess that could delay planting or harvesting operations. Recommendations are given for future research involving vegetative index numbers and the NOAA and Landsat satellites.

  19. International Global Crop Condition Assessments in the framework of GEOGLAM

    NASA Astrophysics Data System (ADS)

    Becker-Reshef, I.; Justice, C. O.; Vermote, E.; Whitcraft, A. K.; Claverie, M.

    2013-12-01

    The Group on Earth Observations (partnership of governments and international organizations) developed the Global Agricultural Monitoring (GEOGLAM) initiative in response to the growing calls for improved agricultural information. The goal of GEOGLAM is to strengthen the international community's capacity to produce and disseminate relevant, timely and accurate forecasts of agricultural production at national, regional and global scales through the use of Earth observations. This initiative is designed to build on existing agricultural monitoring initiatives at national, regional and global levels and to enhance and strengthen them through international networking, operationally focused research, and data/method sharing. GEOGLAM was adopted by the G20 as part of the action plan on food price volatility and agriculture and is being implemented through building on the extensive GEO Agricultural Community of Practice (CoP) that was initiated in 2007 and includes key national and international agencies, organizations, and universities involved in agricultural monitoring. One of the early GEOGLAM activities is to provide harmonized global crop outlooks that offer timely qualitative consensus information on crop status and prospects. This activity is being developed in response to a request from the G-20 Agricultural Market Information System (AMIS) and is implemented within the global monitoring systems component of GEOGLAM. The goal is to develop a transparent, international, multi-source, consensus assessment of crop growing conditions, status, and agro-climatic conditions, likely to impact global production. These assessments are focused on the four primary crop types (corn, wheat, soy and rice) within the main agricultural producing regions of the world. The GEOGLAM approach is to bring together international experts from global, regional and national monitoring systems that can share and discuss information from a variety of independent complementary sources in

  20. Transgenic Crops: Implications for Biodiversity and Sustainable Agriculture

    ERIC Educational Resources Information Center

    Garcia, Maria Alice; Altieri, Miguel A.

    2005-01-01

    The potential for genetically modified (GM) crops to threaten biodiversity conservation and sustainable agriculture is substantial. Megadiverse countries and centers of origin and/or diversity of crop species are particularly vulnerable regions. The future of sustainable agriculture may be irreversibly jeopardized by contamination of in situ…

  1. Germany wide seasonal flood risk analysis for agricultural crops

    NASA Astrophysics Data System (ADS)

    Klaus, Stefan; Kreibich, Heidi; Kuhlmann, Bernd; Merz, Bruno; Schröter, Kai

    2016-04-01

    In recent years, large-scale flood risk analysis and mapping has gained attention. Regional to national risk assessments are needed, for example, for national risk policy developments, for large-scale disaster management planning and in the (re-)insurance industry. Despite increasing requests for comprehensive risk assessments some sectors have not received much scientific attention, one of these is the agricultural sector. In contrast to other sectors, agricultural crop losses depend strongly on the season. Also flood probability shows seasonal variation. Thus, the temporal superposition of high flood susceptibility of crops and high flood probability plays an important role for agricultural flood risk. To investigate this interrelation and provide a large-scale overview of agricultural flood risk in Germany, an agricultural crop loss model is used for crop susceptibility analyses and Germany wide seasonal flood-frequency analyses are undertaken to derive seasonal flood patterns. As a result, a Germany wide map of agricultural flood risk is shown as well as the crop type most at risk in a specific region. The risk maps may provide guidance for federal state-wide coordinated designation of retention areas.

  2. GEOGLAM Crop Assessment Tool: Adapting from global agricultural monitoring to food security monitoring

    NASA Astrophysics Data System (ADS)

    Humber, M. L.; Becker-Reshef, I.; Nordling, J.; Barker, B.; McGaughey, K.

    2014-12-01

    The GEOGLAM Crop Monitor's Crop Assessment Tool was released in August 2013 in support of the GEOGLAM Crop Monitor's objective to develop transparent, timely crop condition assessments in primary agricultural production areas, highlighting potential hotspots of stress/bumper crops. The Crop Assessment Tool allows users to view satellite derived products, best available crop masks, and crop calendars (created in collaboration with GEOGLAM Crop Monitor partners), then in turn submit crop assessment entries detailing the crop's condition, drivers, impacts, trends, and other information. Although the Crop Assessment Tool was originally intended to collect data on major crop production at the global scale, the types of data collected are also relevant to the food security and rangelands monitoring communities. In line with the GEOGLAM Countries at Risk philosophy of "foster[ing] the coordination of product delivery and capacity building efforts for national and regional organizations, and the development of harmonized methods and tools", a modified version of the Crop Assessment Tool is being developed for the USAID Famine Early Warning Systems Network (FEWS NET). As a member of the Countries at Risk component of GEOGLAM, FEWS NET provides agricultural monitoring, timely food security assessments, and early warnings of potential significant food shortages focusing specifically on countries at risk of food security emergencies. While the FEWS NET adaptation of the Crop Assessment Tool focuses on crop production in the context of food security rather than large scale production, the data collected is nearly identical to the data collected by the Crop Monitor. If combined, the countries monitored by FEWS NET and GEOGLAM Crop Monitor would encompass over 90 countries representing the most important regions for crop production and food security.

  3. Agricultural Development Workers Training Manual. Volume III. Crops.

    ERIC Educational Resources Information Center

    Leonard, David; And Others

    This training manual, the third volume in a four-volume series of curriculum guides for use in training Peace Corps agricultural development workers, deals with crops. The first chapter provides suggested guidelines for setting up and carrying out the crops component of the agricultural development worker training series. Included in the second…

  4. Commercial Crop Yields Reveal Strengths and Weaknesses for Organic Agriculture in the United States.

    PubMed

    Kniss, Andrew R; Savage, Steven D; Jabbour, Randa

    2016-01-01

    Land area devoted to organic agriculture has increased steadily over the last 20 years in the United States, and elsewhere around the world. A primary criticism of organic agriculture is lower yield compared to non-organic systems. Previous analyses documenting the yield deficiency in organic production have relied mostly on data generated under experimental conditions, but these studies do not necessarily reflect the full range of innovation or practical limitations that are part of commercial agriculture. The analysis we present here offers a new perspective, based on organic yield data collected from over 10,000 organic farmers representing nearly 800,000 hectares of organic farmland. We used publicly available data from the United States Department of Agriculture to estimate yield differences between organic and conventional production methods for the 2014 production year. Similar to previous work, organic crop yields in our analysis were lower than conventional crop yields for most crops. Averaged across all crops, organic yield averaged 67% of conventional yield [corrected]. However, several crops had no significant difference in yields between organic and conventional production, and organic yields surpassed conventional yields for some hay crops. The organic to conventional yield ratio varied widely among crops, and in some cases, among locations within a crop. For soybean (Glycine max) and potato (Solanum tuberosum), organic yield was more similar to conventional yield in states where conventional yield was greatest. The opposite trend was observed for barley (Hordeum vulgare), wheat (Triticum aestevum), and hay crops, however, suggesting the geographical yield potential has an inconsistent effect on the organic yield gap.

  5. Commercial Crop Yields Reveal Strengths and Weaknesses for Organic Agriculture in the United States

    PubMed Central

    Savage, Steven D.; Jabbour, Randa

    2016-01-01

    Land area devoted to organic agriculture has increased steadily over the last 20 years in the United States, and elsewhere around the world. A primary criticism of organic agriculture is lower yield compared to non-organic systems. Previous analyses documenting the yield deficiency in organic production have relied mostly on data generated under experimental conditions, but these studies do not necessarily reflect the full range of innovation or practical limitations that are part of commercial agriculture. The analysis we present here offers a new perspective, based on organic yield data collected from over 10,000 organic farmers representing nearly 800,000 hectares of organic farmland. We used publicly available data from the United States Department of Agriculture to estimate yield differences between organic and conventional production methods for the 2014 production year. Similar to previous work, organic crop yields in our analysis were lower than conventional crop yields for most crops. Averaged across all crops, organic yield averaged 80% of conventional yield. However, several crops had no significant difference in yields between organic and conventional production, and organic yields surpassed conventional yields for some hay crops. The organic to conventional yield ratio varied widely among crops, and in some cases, among locations within a crop. For soybean (Glycine max) and potato (Solanum tuberosum), organic yield was more similar to conventional yield in states where conventional yield was greatest. The opposite trend was observed for barley (Hordeum vulgare), wheat (Triticum aestevum), and hay crops, however, suggesting the geographical yield potential has an inconsistent effect on the organic yield gap. PMID:27552217

  6. Assessment of future crop yield and agricultural sustainable water use in north china plain using multiple crop models

    NASA Astrophysics Data System (ADS)

    Huang, G.

    2016-12-01

    Currently, studying crop-water response mechanism has become an important part in the development of new irrigation technology and optimal water allocation in water-scarce regions, which is of great significance to crop growth guidance, sustainable utilization of agricultural water, as well as the sustainable development of regional agriculture. Using multiple crop models(AquaCrop,SWAP,DNDC), this paper presents the results of simulating crop growth and agricultural water consumption of the winter-wheat and maize cropping system in north china plain. These areas are short of water resources, but generates about 23% of grain production for China. By analyzing the crop yields and the water consumption of the traditional flooding irrigation, the paper demonstrates quantitative evaluation of the potential amount of water use that can be reduced by using high-efficient irrigation approaches, such as drip irrigation. To maintain food supply and conserve water resources, the research concludes sustainable irrigation methods for the three provinces for sustainable utilization of agricultural water.

  7. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are

  8. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Other agricultural seeds (crop seeds). 201.18 Section 201.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling...

  9. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Other agricultural seeds (crop seeds). 201.18 Section 201.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling...

  10. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Other agricultural seeds (crop seeds). 201.18 Section 201.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling...

  11. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Other agricultural seeds (crop seeds). 201.18 Section 201.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling...

  12. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Other agricultural seeds (crop seeds). 201.18 Section 201.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling...

  13. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    PubMed Central

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3 —N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems. PMID:26600462

  14. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    PubMed

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  15. Volatile Organic Compound Emissions by Agricultural Crops

    NASA Astrophysics Data System (ADS)

    Ormeno, E.; Farres, S.; Gentner, D.; Park, J.; McKay, M.; Karlik, J.; Goldstein, A.

    2008-12-01

    Biogenic Volatile Organic Compounds (BVOCs) participate in ozone and aerosol formation, and comprise a substantial fraction of reactive VOC emission inventories. In the agriculturally intensive Central Valley of California, emissions from crops may substantially influence regional air quality, but emission potentials have not been extensively studied with advanced instrumentation for many important crops. Because crop emissions may vary according to the species, and California emission inventories are constructed via a bottom-up approach, a better knowledge of the emission rate at the species-specific level is critical for reducing uncertainties in emission inventories and evaluating emission model performance. In the present study we identified and quantified the BVOCs released by dominant agricultural crops in California. A screening study to investigate both volatile and semivolatile BVOC fractions (oxygenated VOCs, isoprene, monoterepenes, sesquiterpenes, etc.) was performed for 25 crop species (at least 3 replicates plants each), including branch enclosures of woody species (e.g. peach, mandarin, grape, pistachio) and whole plant enclosures for herbaceous species (e.g. onion, alfalfa, carrot), through a dynamic cuvette system with detection by PTRMS, in-situ GCMS/FID, and collection on carbon-based adsorbents followed by extraction and GCMS analysis. Emission data obtained in this study will allow inclusion of these crops in BVOC emission inventories and air quality simulations.

  16. Strengthening Agricultural Decisions in Countries at Risk of Food Insecurity: The GEOGLAM Crop Monitor for Early Warning

    NASA Astrophysics Data System (ADS)

    Becker-Reshef, I.; Barker, B.; McGaughey, K.; Humber, M. L.; Sanchez, A.; Justice, C. O.; Rembold, F.; Verdin, J. P.

    2016-12-01

    Timely, reliable information on crop conditions, and prospects at the subnational scale, is critical for making informed policy and agricultural decisions for ensuring food security, particularly for the most vulnerable countries. However, such information is often incomplete or lacking. As such, the Crop Monitor for Early Warning (CM for EW) was developed with the goal to reduce uncertainty and strengthen decision support by providing actionable information on a monthly basis to national, regional and global food security agencies through timely consensus assessments of crop conditions. This information is especially critical in recent years, given the extreme weather conditions impacting food supplies including the most recent El Nino event. This initiative brings together the main international food security monitoring agencies and organizations to develop monthly crop assessments based on satellite observations, meteorological information, field observations and ground reports, which reflect an international consensus. This activity grew out of the successful Crop Monitor for the G20 Agricultural Market Information System (AMIS), which provides operational monthly crop assessments of the main producing countries of the world. The CM for EW was launched in February 2016 and has already become a trusted source of information internationally and regionally. Its assessments have been featured in a large number of news articles, reports, and press releases, including a joint statement by the USAID's FEWS NET, UN World Food Program, European Commission Joint Research Center, and the UN Food and Agriculture Organziation, on the devastating impacts of the southern African drought due to El Nino. One of the main priorities for this activity going forward is to expand its partnership with regional and national monitoring agencies, and strengthen capacity for national crop condition assessments.

  17. Estimating crop yields and crop evapotranspiration distributions from remote sensing and geospatial agricultural data

    NASA Astrophysics Data System (ADS)

    Smith, T.; McLaughlin, D.

    2017-12-01

    Growing more crops to provide a secure food supply to an increasing global population will further stress land and water resources that have already been significantly altered by agriculture. The connection between production and resource use depends on crop yields and unit evapotranspiration (UET) rates that vary greatly, over both time and space. For regional and global analyses of food security it is appropriate to treat yield and UET as uncertain variables conditioned on climatic and soil properties. This study describes how probability distributions of these variables can be estimated by combining remotely sensed land use and evapotranspiration data with in situ agronomic and soils data, all available at different resolutions and coverages. The results reveal the influence of water and temperature stress on crop yield at large spatial scales. They also provide a basis for stochastic modeling and optimization procedures that explicitly account for uncertainty in the environmental factors that affect food production.

  18. Priorities for worldwide remote sensing of agricultural crops

    NASA Technical Reports Server (NTRS)

    Bowker, D. E.

    1985-01-01

    The world's crops are ranked according to total harvested area, and comparisons are made among major world regions of differences in crops produced. The eight leading world crops are wheat, rice, corn, barley, millet, soybeans, sorghum, and cotton. Regionally, millet and sorghum are most important in Africa, wheat is the most extensively grown crop in north-central America, Europe, USSR, and Oceania; corn is the dominant crop in South America; and rice is the most extensively grown crop in Asia. Agriculture in the USA is considered in more detail to show the national economic impact of variations in value per hectare among crops. On the world scene, the cereals are the most important crops, but locally, such crops as tobacco can play a dominant role.

  19. A study on agricultural drought vulnerability at disaggregated level in a highly irrigated and intensely cropped state of India.

    PubMed

    Murthy, C S; Yadav, Manoj; Mohammed Ahamed, J; Laxman, B; Prawasi, R; Sesha Sai, M V R; Hooda, R S

    2015-03-01

    Drought is an important global hazard, challenging the sustainable agriculture and food security of nations. Measuring agricultural drought vulnerability is a prerequisite for targeting interventions to improve and sustain the agricultural performance of both irrigated and rain-fed agriculture. In this study, crop-generic agricultural drought vulnerability status is empirically measured through a composite index approach. The study area is Haryana state, India, a prime agriculture state of the country, characterised with low rainfall, high irrigation support and stable cropping pattern. By analysing the multiyear rainfall and crop condition data of kharif crop season (June-October) derived from satellite data and soil water holding capacity and groundwater quality, nine contributing indicators were generated for 120 blocks (sub-district administrative units). Composite indices for exposure, sensitivity and adaptive capacity components were generated after assigning variance-based weightages to the respective input indicators. Agricultural Drought Vulnerability Index (ADVI) was developed through a linear combination of the three component indices. ADVI-based vulnerability categorisation revealed that 51 blocks are with vulnerable to very highly vulnerable status. These blocks are located in the southern and western parts of the state, where groundwater quality is saline and water holding capacity of soils is less. The ADVI map has effectively captured the spatial pattern of agricultural drought vulnerability in the state. Districts with large number of vulnerable blocks showed considerably larger variability of de-trended crop yields. Correlation analysis reveals that crop condition variability, groundwater quality and soil factors are closely associated with ADVI. The vulnerability index is useful to prioritise the blocks for implementation of long-term drought management plans. There is scope for improving the methodology by adding/fine-tuning the indicators and

  20. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa

    PubMed Central

    Chivenge, Pauline; Mabhaudhi, Tafadzwanashe; Modi, Albert T.; Mafongoya, Paramu

    2015-01-01

    Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS). The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA), and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i) what can grow under water-scarce conditions, (ii) water requirements, and (iii) water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture. PMID:26016431

  1. Introducing perennial biomass crops into agricultural landscapes to address water quality challenges and provide other environmental services: Integrating perennial bioenergy crops into agricultural landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cacho, J. F.; Negri, M. C.; Zumpf, C. R.

    The world is faced with a difficult multiple challenge of meeting nutritional, energy, and other basic needs, under a limited land and water budget, of between 9 and 10 billion people in the next three decades, mitigating impacts of climate change, and making agricultural production resilient. More productivity is expected from agricultural lands, but intensification of production could further impact the integrity of our finite surface water and groundwater resources. Integrating perennial bioenergy crops in agricultural lands could provide biomass for biofuel and potential improvements on the sustainability of commodity crop production. This article provides an overview of ways inmore » which research has shown that perennial bioenergy grasses and short rotation woody crops can be incorporated into agricultural production systems with reduced indirect land use change, while increasing water quality benefits. Current challenges and opportunities as well as future directions are also highlighted.« less

  2. Crop Farm Employee. Agricultural Cooperative Training. Vocational Agriculture. Revised.

    ERIC Educational Resources Information Center

    Boyd, Chester; And Others

    Designed for students enrolled in the Vocational Agricultural Cooperative Part-Time Training Program, this course of study contains 13 units for crop farm employees. Units include (examples of unit topics in parentheses): introduction (opportunities in farming, farming as a science, and farming in the United States), farm records (keeping farm…

  3. Using NASA UAVSAR Datasets to Link Soil Moisture to Crop Conditions

    NASA Astrophysics Data System (ADS)

    Davitt, A. W. D.; McDonald, K. C.; Azarderakhsh, M.; Winter, J.

    2015-12-01

    California and The Central Valley are experiencing one of that region's worst, persistent droughts, which represents the continuation of a prolonged drought that started in the early 2000's. Due to the continued drought, many agricultural regions in The Central Valley have been experiencing water shortages, negatively impacting agricultural production and the socio-economics of the region. Due to these impacts, there has been an increased incentive to find new ways to conserve water for use in irrigation. Recent advances in remote sensing techniques provide the ability for end users to better understand field conditions so they may make more informed decisions on irrigation timing and amounts. However, a good understanding of soil moisture and its role in crop health and yield is lacking to support informed water management decisions. Though known to be important, a robust understanding of the role of the spatio-temporal patterns in soil moisture linked to crop health is lacking. Remote sensing platforms such as NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) provide the capacity to obtain within-field measurements to estimate within-field and field-to-field variability in soil moisture. UAVSAR radar images acquired from 2010 to 2014 for Yolo County, California are being examined to determine the suitability of high resolution (field scale) multi-temporal L-band radar backscatter imagery for soil moisture assessment and crop conditions through the growing season. By using such data and linking to in-situ meteorology measurements, modeling (MIMICS), and other remote sensing derived datasets (Sentinel, Landsat, MODIS, and TOPS-SIMS), an integrated monitoring system can potentially support the assessment of agricultural field conditions. This allows growers to optimize the use of limited water supplies through informed water management practices, potentially improving crop conditions and yield in a water stressed region.

  4. Assessing cover crop management under actual and climate change conditions.

    PubMed

    Alonso-Ayuso, María; Quemada, Miguel; Vanclooster, Marnik; Ruiz-Ramos, Margarita; Rodriguez, Alfredo; Gabriel, José Luis

    2018-04-15

    The termination date is recognized as a key management factor to enhance cover crops for multiple benefits and to avoid competition with the following cash crop. However, the optimum date depends on annual meteorological conditions, and climate variability induces uncertainty in a decision that needs to be taken every year. One of the most important cover crop benefits is reducing nitrate leaching, a major concern for irrigated agricultural systems and highly affected by the termination date. This study aimed to determine the effects of cover crops and their termination date on the water and N balances of an irrigated Mediterranean agroecosystem under present and future climate conditions. For that purpose, two field experiments were used for inverse calibration and validation of the WAVE model (Water and Agrochemicals in the soil and Vadose Environment), based on continuous soil water content data, soil nitrogen content and crop measurements. The calibrated and validated model was subsequently used in advanced scenario analysis under present and climate change conditions. Under present conditions, a late termination date increased cover crop biomass and subsequently soil water and N depletion. Hence, preemptive competition risk with the main crop was enhanced, but a reduction of nitrate leaching also occurred. The hypothetical planting date of the following cash crop was also an important tool to reduce preemptive competition. Under climate change conditions, the simulations showed that the termination date will be even more important to reduce preemptive competition and nitrate leaching. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. WEBGIS based CropWatch online agriculture monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wu, B.; Zeng, H.; Zhang, M.; Yan, N.

    2015-12-01

    CropWatch, which was developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), has achieved breakthrough results in the integration of methods, independence of the assessments and support to emergency response by periodically releasing global agricultural information. Taking advantages of the multi-source remote sensing data and the openness of the data sharing policies, CropWatch group reported their monitoring results by publishing four bulletins one year. In order to better analysis and generate the bulletin and provide an alternative way to access agricultural monitoring indicators and results in CropWatch, The CropWatch online system based on the WEBGIS techniques has been developed. Figure 1 shows the CropWatch online system structure and the system UI in Clustering mode. Data visualization is sorted into three different modes: Vector mode, Raster mode and Clustering mode. Vector mode provides the statistic value for all the indicators over each monitoring units which allows users to compare current situation with historical values (average, maximum, etc.). Users can compare the profiles of each indicator over the current growing season with the historical data in a chart by selecting the region of interest (ROI). Raster mode provides pixel based anomaly of CropWatch indicators globally. In this mode, users are able to zoom in to the regions where the notable anomaly was identified from statistic values in vector mode. Data from remote sensing image series at high temporal and low spatial resolution provide key information in agriculture monitoring. Clustering mode provides integrated information on different classes in maps, the corresponding profiles for each class and the percentage of area of each class to the total area of all classes. The time series data is categorized into limited types by the ISODATA algorithm. For each clustering type, pixels on the map, profiles, and percentage legend are all linked

  6. Preparing Youths for Careers in Agriculture through State Crop Scouting Competitions

    ERIC Educational Resources Information Center

    Freije, Anna N.; Sisson, Adam; VanDeWalle, Brandy; Gerber, Corey; Mueller, Daren; Wise, Kiersten A.

    2017-01-01

    State crop scouting competitions (CSCs) promote agriculture by introducing youths in Indiana, Iowa, and Nebraska to various agricultural disciplines while focusing on integrated pest management (IPM). High school students compete as teams to address crop management issues at various stations. Each station is led by university representatives. Two…

  7. Hyperspectral imagery for mapping crop yield for precision agriculture

    USDA-ARS?s Scientific Manuscript database

    Crop yield is perhaps the most important piece of information for crop management in precision agriculture. It integrates the effects of various spatial variables such as soil properties, topographic attributes, tillage, plant population, fertilization, irrigation, and pest infestations. A yield map...

  8. Investigate the Capabilities of Remotely Sensed Crop Indicators for Agricultural Drought Monitoring in Kansas

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Becker-Reshef, I.; Justice, C. O.

    2013-12-01

    Although agricultural production has been rising in the past years, drought remains the primary cause of crop failure, leading to food price instability and threatening food security. The recent 'Global Food Crisis' in 2008, 2011 and 2012 has put drought and its impact on crop production at the forefront, highlighting the need for effective agricultural drought monitoring. Satellite observations have proven a practical, cost-effective and dynamic tool for drought monitoring. However, most satellite based methods are not specially developed for agriculture and their performances for agricultural drought monitoring still need further development. Wheat is the most widely grown crop in the world, and the recent droughts highlight the importance of drought monitoring in major wheat producing areas. As the largest wheat producing state in the US, Kansas plays an important role in both global and domestic wheat markets. Thus, the objective of this study is to investigate the capabilities of remotely sensed crop indicators for effective agricultural drought monitoring in Kansas wheat-grown regions using MODIS data and crop yield statistics. First, crop indicators such as NDVI, anomaly and cumulative metrics were calculated. Second, the varying impacts of agricultural drought at different stages were explored by examining the relationship between the derived indicators and yields. Also, the starting date of effective agricultural drought early detection and the key agricultural drought alert period were identified. Finally, the thresholds of these indicators for agricultural drought early warning were derived and the implications of these indicators for agricultural drought monitoring were discussed. The preliminary results indicate that drought shows significant impacts from the mid-growing-season (after Mid-April); NDVI anomaly shows effective drought early detection from Late-April, and Late-April to Early-June can be used as the key alert period for agricultural

  9. [Wildlife damage mitigation in agricultural crops in a Bolivian montane forest].

    PubMed

    Perez, Eddy; Pacheco, Luis F

    2014-12-01

    Wildlife is often blamed for causing damage to human activities, including agricultural practices and the result may be a conflict between human interests and species conservation. A formal assessment of the magnitude of damage is necessary to adequately conduct management practices and an assessment of the efficiency of different management practices is necessary to enable managers to mitigate the conflict with rural people. This study was carried out to evaluate the effectiveness of agricultural management practices and controlled hunting in reducing damage to subsistence annual crops at the Cotapata National Park and Natural Area of Integrated Management. The design included seven fields with modified agricultural practices, four fields subjected to control hunting, and five fields held as controls. We registered cultivar type, density, frequency of visiting species to the field, crops lost to wildlife, species responsible for damage, and crop biomass. Most frequent species in the fields were Dasyprocta punctata and Dasypus novemcinctus. Hunted plots were visited 1.6 times more frequently than agriculturally managed plots. Crop lost to wildlife averaged 7.28% at agriculturally managed plots, 4.59% in plots subjected to hunting, and 27.61% in control plots. Species mainly responsible for damage were Pecari tajacu, D. punctata, and Sapajus apella. We concluded that both management strategies were effective to reduce damage by >50% as compared to unmanaged crop plots.

  10. Future Climate Impacts on Crop Water Demand and Groundwater Longevity in Agricultural Regions

    NASA Astrophysics Data System (ADS)

    Russo, T. A.; Sahoo, S.; Elliott, J. W.; Foster, I.

    2016-12-01

    Improving groundwater management practices under future drought conditions in agricultural regions requires three steps: 1) estimating the impacts of climate and drought on crop water demand, 2) projecting groundwater availability given climate and demand forcing, and 3) using this information to develop climate-smart policy and water use practices. We present an innovative combination of models to address the first two steps, and inform the third. Crop water demand was simulated using biophysical crop models forced by multiple climate models and climate scenarios, with one case simulating climate adaptation (e.g. modify planting or harvest time) and another without adaptation. These scenarios were intended to represent a range of drought projections and farm management responses. Nexty, we used projected climate conditions and simulated water demand across the United States as inputs to a novel machine learning-based groundwater model. The model was applied to major agricultural regions relying on the High Plains and Mississippi Alluvial aquifer systems in the US. The groundwater model integrates input data preprocessed using single spectrum analysis, mutual information, and a genetic algorithm, with an artificial neural network model. Model calibration and test results indicate low errors over the 33 year model run, and strong correlations to groundwater levels in hundreds of wells across each aquifer. Model results include a range of projected groundwater level changes from the present to 2050, and in some regions, identification and timeframe of aquifer depletion. These results quantify aquifer longevity under climate and crop scenarios, and provide decision makers with the data needed to compare scenarios of crop water demand, crop yield, and groundwater response, as they aim to balance water sustainability with food security.

  11. Interaction of turbine-generated turbulence with agricultural crops: Conceptual framework and preliminary results

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Rajewski, D. A.; Segal, M.; Elmore, R.; Hatfield, J.; Prueger, J. H.; Taylor, S. E.

    2009-12-01

    The US Midwest is a unique location for wind power production because wind farms in this region, unlike any other, are co-located within major agricultural production systems that are among the most highly productive in the world. Iowa has over 3,000 MW of installed power in wind farms typically consisting of 75-120 turbines positioned within agricultural fields with irregular spacing but inter-turbine distances in some cases less than 300 m. Wind turbines extract energy from the ambient flow and change mean and turbulent characteristics of wind flow over and within the crop canopy. Turbulent exchange of air from within the crop canopy regulates vertical fluxes of heat, moisture, momentum, and CO2. Changes in wind speed and turbulence structure by wind farms and isolated wind turbines will influence crop growth, productivity, and seed quality in unknown ways. For instance, enhanced vertical fluxes of heat and moisture may help cool the crop on hot summer days (beneficial) but may enhance loss of soil moisture (detrimental). Faster drying of dew from the crop in the morning reduces leaf wetness, which is a condition favoring growth of fungus, mold and toxins. Corn and soybeans typically draw down ambient CO2 levels by 15-20% during the day in the peak growing season, providing an opportunity to enhance downward fluxes of CO2 into the crop canopy by turbine-induced turbulence. Reduction of high winds and resulting leaf shredding and stalk lodging are documented positive effects of agricultural shelterbelts and may be benefits of turbines as well. Enhanced surface evaporation during fall dry-down would improve seed readiness for storage and reduce artificial drying costs. Modification of surface wind convergence/divergence patterns may enhance convection and change rainfall patterns and modify snow deposition, melting, and soil-moisture-recharge in winter. Wind machines are widely used in orchards and vineyards for avoiding killing freezes, but turbine benefits for

  12. Agricultural field reclamation utilizing native grass crop production

    Treesearch

    J. Cure

    2013-01-01

    Developing a method of agricultural field reclamation to native grasses in the Lower San Pedro Watershed could prove to be a valuable tool for educational and practical purposes. Agricultural field reclamation utilizing native grass crop production will address water table depletion, soil degradation and the economic viability of the communities within the watershed....

  13. Agriculture sows pests: how crop domestication, host shifts, and agricultural intensification can create insect pests from herbivores.

    PubMed

    Bernal, Julio S; Medina, Raul F

    2018-04-01

    We argue that agriculture as practiced creates pests. We use three examples (Corn leafhopper, Dalbulus maidis; Western corn rootworm, Diabrotica virgifera virgifera; Cotton fleahopper, Pseudatomoscelis seriatus) to illustrate: firstly, how since its origins, agriculture has proven conducive to transforming selected herbivores into pests, particularly through crop domestication and spread, and agricultural intensification, and; secondly, that the herbivores that became pests were among those hosted by crop wild relatives or associates, and were pre-adapted either as whole species or component subpopulations. Two of our examples, Corn leafhopper and Western corn rootworm, illustrate how following a host shift to a domesticated host, emergent pests 'hopped' onto crops and rode expansion waves to spread far beyond the geographic ranges of their wild hosts. Western corn rootworm exemplifies how an herbivore-tolerant crop was left vulnerable when it was bred for yield and protected with insecticides. Cotton fleahopper illustrates how removing preferred wild host plants from landscapes and replacing them with crops, allows herbivores with flexible host preferences to reach pest-level populations. We conclude by arguing that in the new geological epoch we face, the Anthropocene, we can improve agriculture by looking to our past to identify and avoid missteps of early and recent farmers. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Biotech crops: imperative for achieving the millenium development goals and sustainability of agriculture in the climate change era.

    PubMed

    Husaini, Amjad M; Tuteja, Narendra

    2013-01-01

    Biotechnological intervention in the development of crops has opened new vistas in agriculture. Central to the accomplishment of the Millennium Development Goals (MDGs), biotech-agriculture is essential in meeting these targets. Biotech crops have already made modest contributions toward ensuring food and nutrition security by reducing losses and increasing productivity, with less pesticide input. These crops could help address some of the major challenges in agriculture-based economies created by climate change. Projections of global climate change expect the concentration of greenhouse gases to increase, aridization of the environment to increase, temperature fluctuations to occur sharply and frequently, and spatial and temporal distribution of rainfall to be disturbed-all of which will increase abiotic stress-related challenges to crops. Countering these challenges and to meet the food requirement of the ever-increasing world population (expected to reach 9 billion by 2030) we need to (1) develop and use biotech crops for mitigating adverse climatic changes; (2) develop biotech crops resilient to adverse environmental conditions; and (3) address the issues/non-issues raised by NGO's and educate the masses about the benefits of biotech crops.

  15. The Joint Experiment for Crop Assessment and Monitoring (JECAM) Initiative: Developing methods and best practices for global agricultural monitoring

    NASA Astrophysics Data System (ADS)

    Champagne, C.; Jarvis, I.; Defourny, P.; Davidson, A.

    2014-12-01

    Agricultural systems differ significantly throughout the world, making a 'one size fits all' approach to remote sensing and monitoring of agricultural landscapes problematic. The Joint Experiment for Crop Assessment and Monitoring (JECAM) was established in 2009 to bring together the global scientific community to work towards a set of best practices and recommendations for using earth observation data to map, monitor and report on agricultural productivity globally across an array of diverse agricultural systems. These methods form the research and development component of the Group on Earth Observation Global Agricultural Monitoring (GEOGLAM) initiative to harmonize global monitoring efforts and increase market transparency. The JECAM initiative brings together researchers from a large number of globally distributed, well monitored agricultural test sites that cover a range of crop types, cropping systems and climate regimes. Each test site works independently as well as together across multiple sites to test methods, sensors and field data collection techniques to derive key agricultural parameters, including crop type, crop condition, crop yield and soil moisture. The outcome of this project will be a set of best practices that cover the range of remote sensing monitoring and reporting needs, including satellite data acquisition, pre-processing techniques, information retrieval and ground data validation. These outcomes provide the research and development foundation for GEOGLAM and will help to inform the development of the GEOGLAM "system of systems" for global agricultural monitoring. The outcomes of the 2014 JECAM science meeting will be discussed as well as examples of methods being developed by JECAM scientists.

  16. Proximity to crops and residential to agricultural herbicides in Iowa

    USGS Publications Warehouse

    Ward, M.H.; Lubin, J.; Giglierano, J.; Colt, J.S.; Wolter, C.; Bekiroglu, N.; Camann, D.; Hartge, P.; Nuckols, J.R.

    2006-01-01

    Rural residents can be exposed to agricultural pesticides through the proximity of their homes to crop fields. Previously, we developed a method to create historical crop maps using a geographic information system. The aim of the present study was to determine whether crop maps are useful for predicting levels of crop herbicides in carpet dust samples from residences. From homes of participants in a case-control study of non-Hodgkin lymphoma in Iowa (1998-2000), we collected vacuum cleaner dust and measured 14 herbicides with high use on corn and soybeans in Iowa. Of 112 homes, 58% of residences had crops within 500 m of their home, an intermediate distance for primary drift from aerial and ground applications. Detection rates for herbicides ranged from 0% for metribuzin and cyanazine to 95% for 2,4-dichlorophenoxyacetic acid. Six herbicides used almost exclusively in agriculture were detected in 28% of homes. Detections and concentrations were highest in homes with an active farmer. Increasing acreage of corn and soybean fields within 750 m of homes was associated with significantly elevated odds of detecting agricultural herbicides compared with homes with no crops within 750 m (adjusted odds ratio per 10 acres = 1.06; 95% confidence interval, 1.02-1.11). Herbicide concentrations also increased significantly with increasing acreage within 750 m. We evaluated the distance of crop fields from the home at < 100, 101-250, 251-500, and 501-750 m. Including the crop buffer distance parameters in the model did not significantly improve the fit compared with a model with total acres within 750 m. Our results indicate that crop maps may be a useful method for estimating levels of herbicides in homes from nearby crop fields.

  17. Early forecasting of crop condition using an integrative remote sensing method for corn and soybeans in Iowa and Illinois, USA

    NASA Astrophysics Data System (ADS)

    Seo, Bumsuk; Lee, Jihye; Kang, Sinkyu

    2017-04-01

    The weather-related risks in crop production is not only crucial for farmers but also for market participants and policy makers since securing food supply is an important issue for society. While crop growth condition and phenology are essential information about such risks, the extensive observations on those are often non-existent in many parts of the world. In this study, we have developed a novel integrative approach to remotely sense crop growth condition and phenology at a large scale. For corn and soybeans in Iowa and Illinois of USA (2003-2014), we assessed crop growth condition and crop phenology by EO data and validated it against the United States Department of Agriculture (USDA) National Agriculture Statistics System (NASS) crop statistics. For growth condition, we used two distinguished approaches to acquire crop condition indicators: a process-based crop growth modelling and a satellite NDVI based method. Based on their pixel-wise historic distributions, we determined relative growth conditions and scaled-down to the state-level. For crop phenology, we calculated three crop phenology metrics [i.e., start of season (SOS), end of season (EOS), and peak of season (POS)] at the pixel level from MODIS 8-day Normalized Difference Vegetation Index (NDVI). The estimates were compared with the Crop Progress and Condition (CPC) data of NASS. For the condition, the state-level 10-day estimates showed a moderate agreement (RMSE < 15.0%) and the average accuracy of the normal/bad year classification was well (> 70%). Notably, the condition estimates corresponded to the severe soybeans disease in 2003 and the drought in 2012 for both crops. For the phenology, the average RMSE of the estimates was 8.6 day for the all three metrics. The average |ME| was smaller than 1.0 day after bias correction. The proposed method enables us to evaluate crop growth at any given period and place. Global climate changes are increasing the risk in agricultural production such as long

  18. Separability of agricultural crops with airborne scatterometry

    NASA Technical Reports Server (NTRS)

    Mehta, N. C.

    1983-01-01

    Backscattering measurements were acquired with airborne scatterometers over a site in Cass County, North Dakota on four days in the 1981 crop growing season. Data were acquired at three frequencies (L-, C- and Ku-bands), two polarizations (like and cross) and ten incidence angles (5 degrees to 50 degrees in 5 degree steps). Crop separability is studied in an hierarchical fashion. A two-class separability measure is defined, which compares within-class to between-class variability, to determine crop separability. The scatterometer channels with the best potential for crop separability are determined, based on this separability measure. Higher frequencies are more useful for discriminating small grains, while lower frequencies tend to separate non-small grains better. Some crops are more separable when row direction is taken into account. The effect of pixel purity is to increase the separability between all crops while not changing the order of useful scatterometer channels. Crude estimates of separability errors are calculated based on these analyses. These results are useful in selecting the parameters of active microwave systems in agricultural remote sensing.

  19. The value of seasonal forecasting and crop mix adaptation to climate variability for agriculture under climate change

    NASA Astrophysics Data System (ADS)

    Choi, H. S.; Schneider, U.; Schmid, E.; Held, H.

    2012-04-01

    Changes to climate variability and frequency of extreme weather events are expected to impose damages to the agricultural sector. Seasonal forecasting and long range prediction skills have received attention as an option to adapt to climate change because seasonal climate and yield predictions could improve farmers' management decisions. The value of seasonal forecasting skill is assessed with a crop mix adaptation option in Spain where drought conditions are prevalent. Yield impacts of climate are simulated for six crops (wheat, barely, cotton, potato, corn and rice) with the EPIC (Environmental Policy Integrated Climate) model. Daily weather data over the period 1961 to 1990 are used and are generated by the regional climate model REMO as reference period for climate projection. Climate information and its consequent yield variability information are given to the stochastic agricultural sector model to calculate the value of climate information in the agricultural market. Expected consumers' market surplus and producers' revenue is compared with and without employing climate forecast information. We find that seasonal forecasting benefits not only consumers but also producers if the latter adopt a strategic crop mix. This mix differs from historical crop mixes by having higher shares of crops which fare relatively well under climate change. The corresponding value of information is highly sensitive to farmers' crop mix choices.

  20. Attitudes of Agricultural Experts Toward Genetically Modified Crops: A Case Study in Southwest Iran.

    PubMed

    Ghanian, Mansour; Ghoochani, Omid M; Kitterlin, Miranda; Jahangiry, Sheida; Zarafshani, Kiumars; Van Passel, Steven; Azadi, Hossein

    2016-04-01

    The production of genetically modified (GM) crops is growing around the world, and with it possible opportunities to combat food insecurity and hunger, as well as solutions to current problems facing conventional agriculture. In this regard the use of GMOs in food and agricultural applications has increased greatly over the past decade. However, the development of GM crops has been a matter of considerable interest and worldwide public controversy. This, in addition to skepticism, has stifled the use of this practice on a large scale in many areas, including Iran. It stands to reason that a greater understanding of this practice could be formed after a review of the existing expert opinions surrounding GM crops. Therefore, the purpose of this study was to analyze the predictors that influence agricultural experts' attitudes toward the development of and policies related to GM crops. Using a descriptive correlational research method, questionnaire data was collected from 65 experts from the Agricultural Organization in the Gotvand district in Southwest Iran. Results indicated that agricultural experts were aware of the environmental benefits and possible risks associated with GM crops. The majority of participants agreed that GM crops could improve food security and accelerate rural development, and were proponents of labeling practices for GM crops. Finally, there was a positive correlation between the perception of benefits and attitudes towards GM crops.

  1. Agricultural Management Practices Explain Variation in Global Yield Gaps of Major Crops

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Gerber, J. S.; Ray, D. K.; Ramankutty, N.; Foley, J. A.

    2010-12-01

    The continued expansion and intensification of agriculture are key drivers of global environmental change. Meeting a doubling of food demand in the next half-century will further induce environmental change, requiring either large cropland expansion into carbon- and biodiversity-rich tropical forests or increasing yields on existing croplands. Closing the “yield gaps” between the most and least productive farmers on current agricultural lands is a necessary and major step towards preserving natural ecosystems and meeting future food demand. Here we use global climate, soils, and cropland datasets to quantify yield gaps for major crops using equal-area climate analogs. Consistent with previous studies, we find large yield gaps for many crops in Eastern Europe, tropical Africa, and parts of Mexico. To analyze the drivers of yield gaps, we collected sub-national agricultural management data and built a global dataset of fertilizer application rates for over 160 crops. We constructed empirical crop yield models for each climate analog using the global management information for 17 major crops. We find that our climate-specific models explain a substantial amount of the global variation in yields. These models could be widely applied to identify management changes needed to close yield gaps, analyze the environmental impacts of agricultural intensification, and identify climate change adaptation techniques.

  2. Tracing crop-specific sediment sources in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Blake, William H.; Ficken, Katherine J.; Taylor, Philip; Russell, Mark A.; Walling, Desmond E.

    2012-02-01

    A Compound Specific Stable Isotope (CSSI) sediment tracing approach is evaluated for the first time in an agricultural catchment setting against established geochemical fingerprinting techniques. The work demonstrates that novel CSSI techniques have the potential to provide important support for soil resource management policies and inform sediment risk assessment for the protection of aquatic habitats and water resources. Analysis of soil material from a range of crop covers in a mixed land-use agricultural catchment shows that the carbon CSSI signatures of particle-reactive fatty acids label surface agricultural soil with distinct crop-specific signatures, thus permitting sediment eroded from each land-cover to be tracked downstream. High resolution sediment sampling during a storm event and analysis for CSSI and conventional geochemical fingerprints elucidated temporal patterns of sediment mobilisation under different crop regimes and the specific contribution that each crop type makes to downstream sediment load. Pasture sources (65% of the catchment area) dominated the sediment load but areal yield (0.13 ± 0.02 t ha - 1 ) was considerably less than that for winter wheat (0.44 ± 0.15 t ha - 1 ). While temporal patterns in crop response matched runoff and erosion response predictions based on plot-scale rainfall simulation experiments, comparison of biomarker and geochemical fingerprinting data indicated that the latter overestimated cultivated land inputs to catchment sediment yield due to inability to discriminate temporary pasture (in rotation) from cultivated land. This discrepancy, however, presents an opportunity since combination of the two datasets revealed the extremely localised nature of erosion from permanent pasture fields in this system (estimated at up to 0.5 t ha - 1 ). The novel use of CSSI and geochemical tracers in tandem provided unique insights into sediment source dynamics that could not have been derived from each method alone. Research

  3. Use of Unmanned Aerial Vehicles for Improving Farm Scale Agricultural Water Management in Agriculture at a Farm Scale. A case study for field crops in the California's Central Valley

    NASA Astrophysics Data System (ADS)

    Medellin-Azuara, J.; Morande, J. A.; Jin, Y.; Chen, Y.; Paw U, K. T.; Viers, J. H.

    2016-12-01

    Traditional methods for estimating consumptive water use as evapotranspiration (ET) for agriculture in areas with water limitations such as California have always been a challenge for farmers, water managers, researchers and government agencies. Direct measurement of evapotranspiration (ET) and crop water stress in agriculture can be a cumbersome and costly task. Furthermore, spatial variability of applied water and irrigation and stress level in crops, due to inherent heterogeneity in soil conditions, topography, management practices, and lack of uniformity in water applications may affect estimates water use efficiency and water balances. This situation difficult long-term management of agroecosystems. This paper presents a case study for various areas in California's Central Valley using Unmanned Aerial Vehicles (UAVs) for a late portion of the 2016 irrigation season These estimates are compared those obtained by direct measurement (from previously deployed stations), and energy balance approaches with remotely sensed data in a selection of field crop parcels. This research improves information on water use and site conditions in agriculture by enhancing remote sensing-based estimations through the use of higher resolution multi-spectral and thermal imagery captured by UAV. We assess whether more frequent information at higher spatial resolution from UAVs can improve estimations of overall ET through energy balance and imagery. Stress levels and ET are characterized spatially to examine irrigation practices and their performance to improve water use in the agroecosystem. Ground based data such as air and crop temperature and stem water potential is collected to validate UAV aerial measurements. Preliminary results show the potential of UAV technology to improve timing, resolution and accuracy in the ET estimation and assessment of crop stress at a farm scales. Side to side comparison with ground level stations employing surface renewal, eddy covariance and

  4. Agricultural water use, crop water footprints and irrigation strategies in the seasonally dry Guanacaste region in Costa Rica

    NASA Astrophysics Data System (ADS)

    Morillas, Laura; Johnson, Mark S.; Hund, Silja V.; Steyn, Douw G.

    2017-04-01

    micrometeorological variables, vegetative status, and soil conditions. In this presentation, we present measured crop water footprints (total crop water consumption as blue and green water), crop water use efficiencies (water used per unit of agricultural production), and crop physiological status (PRI and NDVI index) under drought conditions (2015) and under average rainfall conditions (2016). We will use these data to evaluate the resilience to drought of these crops, which is crucial for the economy of the region. We will also evaluate the impact of agricultural water use for the local water balance and implications of irrigation practices for catchment-scale hydrological processes. Finally, we will explore the feasibility and potential of using CROPWAT 8.0 modelling software to generate estimates of crops water footprint for regional water planning decision-making and farm irrigation planning. The implications of these findings will be discussed in the context of the regional socio-hydrological system that is facing a likely increase in water scarcity due to climate change and demand intensification.

  5. Extreme temperature trends in major cropping systems and their relation to agricultural land use change

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Butler, E. E.; McKinnon, K. A.; Rhines, A. N.; Tingley, M.; Siebert, S.; Holbrook, N. M.; Huybers, P. J.

    2015-12-01

    High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we investigate growing season climate trends in major cropping systems and their relationship with agricultural land use change. In the US Midwest, 100-year trends exhibit a transition towards more favorable conditions, with cooler summer temperature extremes and increased precipitation. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that cooling is primarily associated with agricultural intensification increasing the potential for evapotranspiration, consistent with our finding that cooling trends are greatest for the highest temperature percentiles, and that increased evapotranspiration generally leads to greater precipitation. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes. Preliminary results indicate these relationships between temperature extremes, irrigation, and intensification are also observed in other major summer cropping systems, including northeast China, Argentina, and the Canadian Prairies.

  6. Agricultural Issues of Significance to Iowa Crop Producers and Their Educational Implications

    ERIC Educational Resources Information Center

    Licht, Melea A. R.; Martin, Robert A.

    2007-01-01

    The purpose of this study was to determine the agricultural information preferences of crop producers in Iowa and the implications for agricultural extension education. The objective was to identify agricultural information issues producers perceive as significant to their businesses. The results will help agricultural extension educators and…

  7. Modeling technical change in climate analysis: evidence from agricultural crop damages.

    PubMed

    Ahmed, Adeel; Devadason, Evelyn S; Al-Amin, Abul Quasem

    2017-05-01

    This study accounts for the Hicks neutral technical change in a calibrated model of climate analysis, to identify the optimum level of technical change for addressing climate changes. It demonstrates the reduction to crop damages, the costs to technical change, and the net gains for the adoption of technical change for a climate-sensitive Pakistan economy. The calibrated model assesses the net gains of technical change for the overall economy and at the agriculture-specific level. The study finds that the gains of technical change are overwhelmingly higher than the costs across the agriculture subsectors. The gains and costs following technical change differ substantially for different crops. More importantly, the study finds a cost-effective optimal level of technical change that potentially reduces crop damages to a minimum possible level. The study therefore contends that the climate policy for Pakistan should consider the role of technical change in addressing climate impacts on the agriculture sector.

  8. E-precision agriculture for small scale cash crops in Tobasa regency

    NASA Astrophysics Data System (ADS)

    Putra Simanjuntak, Panca; Tiurniari Napitupulu, Pangeran; Pratama Silalahi, Soni; Kisno; Pasaribu, Norlina; Valešová, Libuše

    2017-09-01

    Cash crop is a promising sector in Tobasa regency; however, the trend showed a negative change of the cash crop production in. This research aims to develop an application which is based on Arduino for watering and fertilizing corn land. The result of using e-precision agriculture based on embedded system is 100% higher than the conventional one and the risk of harvesting failure using the embedded system decreased to 50%. Embedded system in this study acquired critical environment measurements which at last affected the yield raising and risk reduction. As the result, the use of e-precision agriculture provided a framework to be used by different stakeholders to implement e-agriculture platform that supports marketing of agricultural production since the system is proven to save the material and time which finally reduces the risk of harvesting failure and increases the yield. In other words, the system is able to economize the use of water and fertilizer on a small corn land. The system will be developed for more efficiency in material loss and the mobile-based application development to reach sustainable rural development particularly for cash-crop farmers.

  9. Technical Guidelines and References: Crops Training Component. From: Agricultural Development Workers Training Manual. Volume III: Crops.

    ERIC Educational Resources Information Center

    Peace Corps, Washington, DC. Information Collection and Exchange Div.

    This reference manual for training Peace Corps agricultural development workers deals with crops. The document begins with common units of area, length, weight, volume, and conversions between them. A practice problem is worked and other conversion problems are given. The second section is intended to show agricultural field workers how to survey…

  10. Why we need GMO crops in agriculture

    USDA-ARS?s Scientific Manuscript database

    The fact that in a very short period of 35 years the global population will reach an estimated 9 billion people presents a massive challenge to agriculture: how do we feed all of these people with nutritious food in a sustainable way? At the present time the yields of most of our major crops are sta...

  11. The potential of agricultural practices to increase C storage in cropped soils: an assessment for France

    NASA Astrophysics Data System (ADS)

    Chenu, Claire; Angers, Denis; Métay, Aurélie; Colnenne, Caroline; Klumpp, Katja; Bamière, Laure; Pardon, Lenaic; Pellerin, Sylvain

    2014-05-01

    Though large progress has been achieved in the last decades, net GHG emissions from the agricultural sector are still more poorly quantified than in other sectors. In this study, we examined i) technical mitigation options likely to store carbon in agricultural soils, ii) their potential of additional C storage per unit surface area and iii) applicable areas in mainland France. We considered only agricultural practices being technically feasible by farmers and involving no major change in either production systems or production levels. Moreover, only currently available techniques with validated efficiencies and presenting no major negative environmental impacts were taken into account. Four measures were expected to store additional C in agricultural soils: - Reducing tillage: either a switch to continuous direct seeding, direct seeding with occasional tillage once every five years, or continuous superficial (<15 cm) tillage. - Introducing cover crops in cropping systems: sown between two cash crops on arable farms, in orchards and vineyards (permanent or temporary cover cropping) . - Expanding agroforestry systems; planting of tree lines in cultivated fields and grasslands, and hedges around the field edges. - Increasing the life time of temporary sown grasslands: increase of life time to 5 years. The recent literature was reviewed in order to determine long term (>20yrs) C storage rates (MgC ha-1 y-1,) of cropping systems with and without the proposed practice. Then we analysed the conditions for potential application, in terms of feasibility, acceptance, limitation of yield losses and of other GHG emissions. According to the literature, additional C storage rates were 0.15 (0-0.3) MgC ha-1 y-1 for continuous direct seeding, 0.10 (0-0.2) MgC ha-1 y-1for occasional tillage one year in five, and 0.0 MgC ha-1 y-1 for superficial tillage. Cover crops were estimated to store 0.24 (0.13-0.37) MgC ha-1 y-1 between cash crops and 0.49 (0.23-0.72) MgC ha-1 y-1 when

  12. A spectrum fractal feature classification algorithm for agriculture crops with hyper spectrum image

    NASA Astrophysics Data System (ADS)

    Su, Junying

    2011-11-01

    A fractal dimension feature analysis method in spectrum domain for hyper spectrum image is proposed for agriculture crops classification. Firstly, a fractal dimension calculation algorithm in spectrum domain is presented together with the fast fractal dimension value calculation algorithm using the step measurement method. Secondly, the hyper spectrum image classification algorithm and flowchart is presented based on fractal dimension feature analysis in spectrum domain. Finally, the experiment result of the agricultural crops classification with FCL1 hyper spectrum image set with the proposed method and SAM (spectral angle mapper). The experiment results show it can obtain better classification result than the traditional SAM feature analysis which can fulfill use the spectrum information of hyper spectrum image to realize precision agricultural crops classification.

  13. Fluorescence of crop residue: postmortem analysis of crop conditions

    NASA Astrophysics Data System (ADS)

    McMurtrey, James E., III; Kim, Moon S.; Daughtry, Craig S. T.; Corp, Lawrence A.; Chappelle, Emmett W.

    1997-07-01

    Fluorescence of crop residues at the end of the growing season may provide an indicator of the past crop's vegetative condition. Different levels of nitrogen (N) fertilization were applied to field grown corn and wheat at Beltsville, Maryland. The N fertilizer treatments produce a range of physiological conditions, pigment concentrations, biomass levels, and grain yields that resulted in varying growth and stress conditions in the living crops. After normal harvesting procedures the crop residues remained. The fluorescence spectral characteristics of the plant residues from crops grown under different levels of N nutrition were analyzed. The blue-green fluorescence response of in-vitro residue biomass of the N treated field corn had different magnitudes. A blue-green- yellow algorithm, (460/525)*600 nm, gave the best separations between prior corn growth conditions at different N fertilization levels. Relationships between total dry biomass, the grain yield, and fluorescence properties in the 400 - 670 nm region of the spectrum were found in both corn and wheat residues. The wheat residue was analyzed to evaluate the constituents responsible for fluorescence. A ratio of the blue-green, 450/550 nm, images gave the best separation among wheat residues at different N fertilization levels. Fluorescence of extracts from wheat residues showed inverse fluorescence intensities as a function of N treatments compared to that of the intact wheat residue or ground residue samples. The extracts also had an additional fluorescence emission peak in the red, 670 nm. Single band fluorescence intensity in corn and wheat residues is due mostly to the quantity of the material on the soil surface. Ratios of fluorescence bands varied as a result of the growth conditions created by the N treatments and are thought to be indicative of the varying concentrations of the plant residues fluorescing constituents. Estimates of the amount and cost effectiveness of N fertilizers to satisfy

  14. Engineering crop nutrient efficiency for sustainable agriculture.

    PubMed

    Chen, Liyu; Liao, Hong

    2017-10-01

    Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.

  15. Even the Smallest Non-Crop Habitat Islands Could Be Beneficial: Distribution of Carabid Beetles and Spiders in Agricultural Landscape

    PubMed Central

    Knapp, Michal; Řezáč, Milan

    2015-01-01

    Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island

  16. Even the smallest non-crop habitat islands could be beneficial: distribution of carabid beetles and spiders in agricultural landscape.

    PubMed

    Knapp, Michal; Řezáč, Milan

    2015-01-01

    Carabid beetles and ground-dwelling spiders inhabiting agroecosystems are beneficial organisms with a potential to control pest species. Intensification of agricultural management and reduction of areas covered by non-crop vegetation during recent decades in some areas has led to many potentially serious environmental problems including a decline in the diversity and abundance of beneficial arthropods in agricultural landscapes. This study investigated carabid beetle and spider assemblages in non-crop habitat islands of various sizes (50 to 18,000 square metres) within one large field, as well as the arable land within the field, using pitfall traps in two consecutive sampling periods (spring to early summer and peak summer). The non-crop habitat islands situated inside arable land hosted many unique ground-dwelling arthropod species that were not present within the surrounding arable land. Even the smallest non-crop habitat islands with areas of tens of square metres were inhabited by assemblages substantially different from these inhabiting arable land and thus enhanced the biodiversity of agricultural landscapes. The non-crop habitat area substantially affected the activity density, recorded species richness and recorded species composition of carabid and ground-dwelling spider assemblages; however, the effects were weakened when species specialised to non-crop habitats species were analysed separately. Interestingly, recorded species richness of spiders increased with non-crop habitat area, whereas recorded species richness of carabid beetles exhibited an opposite trend. There was substantial temporal variation in the spatial distribution of ground-dwelling arthropods, and contrasting patterns were observed for particular taxa (carabid beetles and spiders). In general, local environmental conditions (i.e., non-crop habitat island tree cover, shrub cover, grass cover and litter depth) were better determinants of arthropod assemblages than non-crop habitat island

  17. Using a Decision Support System to Optimize Production of Agricultural Crop Residue Biofeedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed L. Hoskinson; Ronald C. Rope; Raymond K. Fink

    2007-04-01

    For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest, for growing a crop such as wheat, potatoes, corn, or cotton. In support of the growing interest in agricultural crop residues as a bioenergy feedstock, we have extended the capability ofmore » the DSS4Ag to develop a variable-rate fertilizer recipe for the simultaneous economically optimum production of both grain and straw, and have been conducting field research to test this new DSS4Ag. In this paper we report the results of two years of field research testing and enhancing the DSS4Ag’s ability to economically optimize the fertilization for the simultaneous production of both grain and its straw, where the straw is an agricultural crop residue that can be used as a biofeedstock.« less

  18. The biospeckle method for the investigation of agricultural crops: A review

    NASA Astrophysics Data System (ADS)

    Zdunek, Artur; Adamiak, Anna; Pieczywek, Piotr M.; Kurenda, Andrzej

    2014-01-01

    Biospeckle is a nondestructive method for the evaluation of living objects. It has been applied to medicine, agriculture and microbiology for monitoring processes related to the movement of material particles. Recently, this method is extensively used for evaluation of quality of agricultural crops. In the case of botanical materials, the sources of apparent biospeckle activity are the Brownian motions and biological processes such as cyclosis, growth, transport, etc. Several different applications have been shown to monitor aging and maturation of samples, organ development and the detection and development of defects and diseases. This review will focus on three aspects: on the image analysis and mathematical methods for biospeckle activity evaluation, on published applications to botanical samples, with special attention to agricultural crops, and on interpretation of the phenomena from a biological point of view.

  19. Biofuels, bioenergy, and bioproducts from sustainable agricultural and forest crops: proceedings of the short rotation crops international conference

    Treesearch

    Ronald S., Jr. Zalesny; Rob Mitchell; Jim, eds. Richardson

    2008-01-01

    The goal of this conference was to initiate and provide opportunities for an international forum on the science and application of producing both agricultural and forest crops for biofuels, bioenergy, and bioproducts. There is a substantial global need for development of such systems and technologies that can economically and sustainably produce short rotation crops...

  20. Genetically Engineered Crops and Certified Organic Agriculture for Improving Nutrition Security in Africa and South Asia.

    PubMed

    Pray, Carl; Ledermann, Samuel

    2016-01-01

    In Africa and South Asia, where nutrition insecurity is severe, two of the most prominent production technologies are genetically modified (GM) crops and certified organic agriculture. We analyze the potential impact pathways from agricultural production to nutrition. Our review of data and the literature reveals increasing farm-level income from cash crop production as the main pathway by which organic agriculture and GM agriculture improve nutrition. Potential secondary pathways include reduced prices of important food crops like maize due to GM maize production and increased food production using organic technology. Potential tertiary pathways are improvements in health due to reduced insecticide use. Challenges to the technologies achieving their impact include the politics of GM agriculture and the certification costs of organic agriculture. Given the importance of agricultural production in addressing nutrition security, accentuated by the post-2015 sustainable development agenda, the chapter concludes by stressing the importance of private and public sector research in improving the productivity and adoption of both GM and organic crops. In addition, the chapter reminds readers that increased farm income and productivity require complementary investments in health, education, food access and women's empowerment to actually improve nutrition security. © 2016 S. Karger AG, Basel.

  1. Agricultural pesticide emissions associated with common crops in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjey, W.G.

    Annual emissions for the year 1987 from the application of agricultural pesticides have been estimated by crop type by county for the United States using a geographic information system. The emissions estimates are based upon computed volatilization rates accounting for the properties of each pesticide, evaporation rates, mode of application (surface or soil incorporation) and percent of interception by leaves. Key pesticide properties include the Henry's Law constant, half-life in soil and the organic carbon partitioning coefficient. The volatilization rates are multiplied by the amount of pesticide applied by crop acreage in each county as determined from agricultural census andmore » pesticide sales data. The geographic distribution of the dominant emissions, such as atrazine and diazinon, etc. are presented by crop type and state. For a given pesticide, the geographic variability is controlled principally by amount applied and water availability as reflected in evaporation rates.« less

  2. Agricultural sectoral demand and crop productivity response across the world

    NASA Astrophysics Data System (ADS)

    Johnston, M.; Ray, D. K.; Cassidy, E. S.; Foley, J. A.

    2013-12-01

    With an increasing and increasingly affluent population, humans will need to roughly double agricultural production by 2050. Continued yield growth forms the foundation of all future strategies aiming to increase agricultural production while slowing or eliminating cropland expansion. However, a recent analysis by one of our co-authors has shown that yield trends in many important maize, wheat and rice growing regions have begun stagnating or declining from the highs seen during the green revolution (Ray et al. 2013). Additional research by our group has shown that nearly 50% of new agricultural production since the 1960s has gone not to direct human consumption, but instead to animal feed and other industrial uses. Our analysis for GLP looks at the convergence of these two trends by examining time series utilization data for 16 of the biggest crops to determine how demand from different sectors has shaped our land-use and intensification strategies around the world. Before rushing headlong into the next agricultural doubling, it would be prudent to first consult our recent agricultural history to better understand what was driving past changes in production. Using newly developed time series dataset - a fusion of cropland maps with historic agricultural census data gathered from around the world - we can examine yield and harvested area trends over the last half century for 16 top crops. We combine this data with utilization rates from the FAO Food Balance Sheet to see how demand from different sectors - food, feed, and other - has influenced long-term growth trends from the green revolution forward. We will show how intensification trends over time and across regions have grown or contracted depending on what is driving the change in production capacity. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 8(6): e66428. doi:10.1371/journal.pone.0066428

  3. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe.

    PubMed

    Hass, Annika L; Kormann, Urs G; Tscharntke, Teja; Clough, Yann; Baillod, Aliette Bosem; Sirami, Clélia; Fahrig, Lenore; Martin, Jean-Louis; Baudry, Jacques; Bertrand, Colette; Bosch, Jordi; Brotons, Lluís; Burel, Françoise; Georges, Romain; Giralt, David; Marcos-García, María Á; Ricarte, Antonio; Siriwardena, Gavin; Batáry, Péter

    2018-02-14

    Agricultural intensification is one of the main causes for the current biodiversity crisis. While reversing habitat loss on agricultural land is challenging, increasing the farmland configurational heterogeneity (higher field border density) and farmland compositional heterogeneity (higher crop diversity) has been proposed to counteract some habitat loss. Here, we tested whether increased farmland configurational and compositional heterogeneity promote wild pollinators and plant reproduction in 229 landscapes located in four major western European agricultural regions. High-field border density consistently increased wild bee abundance and seed set of radish ( Raphanus sativus ), probably through enhanced connectivity. In particular, we demonstrate the importance of crop-crop borders for pollinator movement as an additional experiment showed higher transfer of a pollen analogue along crop-crop borders than across fields or along semi-natural crop borders. By contrast, high crop diversity reduced bee abundance, probably due to an increase of crop types with particularly intensive management. This highlights the importance of crop identity when higher crop diversity is promoted. Our results show that small-scale agricultural systems can boost pollinators and plant reproduction. Agri-environmental policies should therefore aim to halt and reverse the current trend of increasing field sizes and to reduce the amount of crop types with particularly intensive management. © 2018 The Author(s).

  4. Ruminant Grazing of Cover Crops: Effects on Soil Properties and Agricultural Production

    ERIC Educational Resources Information Center

    Poffenbarger, Hanna

    2010-01-01

    Integrating livestock into a cropping system by allowing ruminant animals to graze cover crops may yield economic and environmental benefits. The effects of grazing on soil physical properties, soil organic matter, nitrogen cycling and agricultural production are presented in this literature review. The review found that grazing cover crops…

  5. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    PubMed

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  6. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region

    PubMed Central

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, W. Dean; Lang, Megan W.

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  7. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to

  8. Watershed-Scale Cover Crops Reduce Nutrient Export From Agricultural Landscapes.

    NASA Astrophysics Data System (ADS)

    Tank, J. L.; Hanrahan, B.; Christopher, S. F.; Trentman, M. T.; Royer, T. V.; Prior, K.

    2016-12-01

    The Midwestern US has undergone extensive land use change as forest, wetlands, and prairies have been converted to agroecosystems. Today, excess fertilizer nutrients from farm fields enter Midwestern agricultural streams, which degrades both local and downstream water quality, resulting in algal blooms and subsequent hypoxic "dead zones" far from the nutrient source. We are quantifying the benefits of watershed-scale conservation practices that may reduce nutrient runoff from adjacent farm fields. Specifically, research is lacking on whether the planting of winter cover crops in watersheds currently dominated by row-crop agriculture can significantly reduce nutrient inputs to adjacent streams. Since 2013, farmers have planted cover crops on 70% of croppable acres in the Shatto Ditch Watershed (IN), and "saturation level" implementation of this conservation practice has been sustained for 3 years. Every 14 days, we have quantified nutrient loss from fields by sampling nutrient fluxes from multiple subsurface tile drains and longitudinally along the stream channel throughout the watershed. Cover crops improved stream water quality by reducing dissolved inorganic nutrients exported downstream; nitrate-N and DRP concentrations and fluxes were significantly lower in tiles draining fields with cover crops compared to those without. Annual watershed nutrient export also decreased, and reductions in N and P loss ( 30-40%) exceeded what we expected based on only a 6-10% reduction in runoff due to increased watershed water holding capacity. We are also exploring the processes responsible for increased nutrient retention, where they are occurring (terrestrial vs. aquatic) and when (baseflow vs. storms). For example, whole-stream metabolism also responded to cover crop planting, showing reduced variation in primary production and respiration in years after watershed-scale planting of cover crops. In summary, widespread land cover change, through cover crop planting, can

  9. Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, Brian; Lundquist, Julie K.

    2016-03-01

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  10. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    DOE PAGES

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less

  11. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderwende, Brian; Lundquist, Julie K.

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less

  12. Drought Effects on Agricultural Yield: Comparison Across Regions and Crop Types

    NASA Astrophysics Data System (ADS)

    Daryanto, S.; Wang, L.; Jacinthe, P. A.

    2014-12-01

    Global agricultural production is dominated by rainfed agriculture, and is therefore prone to disruption from climate extreme weathers. These uncertainties become more problematic when considering the projection of increased drought frequency suggested by several climate models for various world regions. Curiously, few regional analyses of drought impact of food production have been attempted. We collated and analyzed data from the last 25 years to disentangle the effects of drought (i.e. timing, intensity and duration) on agricultural production in different eco-regions and with varying crop types. Our preliminary results suggested greater yield reduction in annual (-21.5%) than perennial plants (-16%), in C4 (-21%) compared to C3 crops (-17%), and when drought occurred during generative (i.e. flowering until maturity; -16.5%) than vegetative stage (-15.5%). Although drought caused similar amounts of yield reduction in both tropical and subtropical regions (i.e. -17%), it carries a greater food security risk in the tropics due to inherently low productivity (i.e. less than half than in the subtropical regions). Consequently, cultivating drought-resistant C3 perennial plants (e.g. sweet potato and cassava) in the tropics could prove a viable adaptive strategy to mitigate the effects of climate variability. In addition, these crops have limited input requirements, are well adapted to nutrient-poor Oxisols and Ultisols of the tropics, and generally outyield cereal crops in the region. Our analysis is ongoing and needs to take into account agronomic traits (e.g. water requirement), as well as the energy and nutritional values (e.g. protein, minerals) of alternative crops. Our results could inform the selection and development of new cultivars for the drought-prone regions of the world.

  13. Potential impacts of agricultural drought on crop yield variability under a changing climate in Texas

    NASA Astrophysics Data System (ADS)

    Lee, K.; Leng, G.; Huang, M.; Sheffield, J.; Zhao, G.; Gao, H.

    2017-12-01

    Texas has the largest farm area in the U.S, and its revenue from crop production ranks third overall. With the changing climate, hydrological extremes such as droughts are becoming more frequent and intensified, causing significant yield reduction in rainfed agricultural systems. The objective of this study is to investigate the potential impacts of agricultural drought on crop yields (corn, sorghum, and wheat) under a changing climate in Texas. The Variable Infiltration Capacity (VIC) model, which is calibrated and validated over 10 major Texas river basins during the historical period, is employed in this study.The model is forced by a set of statistically downscaled climate projections from Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The CMIP5 projections contain four Representative Concentration Pathways (RCP) that represent different greenhouse gas concentration (4.5 and 8.5 w/m2 are selected in this study). To carry out the analysis, VIC simulations from 1950 to 2099 are first analyzed to investigate how the frequency and severity of agricultural droughts will be altered in Texas (under a changing climate). Second, future crop yields are projected using a statistical crop model. Third, the effects of agricultural drought on crop yields are quantitatively analyzed. The results are expected to contribute to future water resources planning, with a goal of mitigating the negative impacts of future droughts on agricultural production in Texas.

  14. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    NASA Astrophysics Data System (ADS)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of

  15. Agriculture: Climate

    EPA Pesticide Factsheets

    Climate change affects agricultural producers because agriculture and fisheries depend on specific climate conditions. Temperature changes can cause crop planting dates to shift. Droughts and floods due to climate change may hinder farming practices.

  16. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.

    PubMed

    Blank, Peter J; Williams, Carol L; Sample, David W; Meehan, Timothy D; Turner, Monica G

    2016-01-01

    Increased demand and government mandates for bioenergy crops in the United States could require a large allocation of agricultural land to bioenergy feedstock production and substantially alter current landscape patterns. Incorporating bioenergy landscape design into land-use decision making could help maximize benefits and minimize trade-offs among alternative land uses. We developed spatially explicit landscape scenarios of increased bioenergy crop production in an 80-km radius agricultural landscape centered on a potential biomass-processing energy facility and evaluated the consequences of each scenario for bird communities. Our scenarios included conversion of existing annual row crops to perennial bioenergy grasslands and conversion of existing grasslands to annual bioenergy row crops. The scenarios explored combinations of four biomass crop types (three potential grassland crops along a gradient of plant diversity and one annual row crop [corn]), three land conversion percentages to bioenergy crops (10%, 20%, or 30% of row crops or grasslands), and three spatial configurations of biomass crop fields (random, clustered near similar field types, or centered on the processing plant), yielding 36 scenarios. For each scenario, we predicted the impact on four bird community metrics: species richness, total bird density, species of greatest conservation need (SGCN) density, and SGCN hotspots (SGCN birds/ha ≥ 2). Bird community metrics consistently increased with conversion of row crops to bioenergy grasslands and consistently decreased with conversion of grasslands to bioenergy row crops. Spatial arrangement of bioenergy fields had strong effects on the bird community and in some cases was more influential than the amount converted to bioenergy crops. Clustering grasslands had a stronger positive influence on the bird community than locating grasslands near the central plant or at random. Expansion of bioenergy grasslands onto marginal agricultural lands will

  17. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture

    PubMed Central

    Shen, Yan-Jun; Ji, Xiang-Yun; Wu, Xiang-Wen; Zheng, Xiang-Rong; Cheng, Wei; Li, Jun; Jiang, Yao-Pei; Chen, Xin; Weiner, Jacob; Nie, Ming; Ju, Rui-Ting; Yuan, Tao; Tang, Jian-Jun; Tian, Wei-Dong; Zhang, Hao

    2018-01-01

    Urban agriculture is making an increasing contribution to food security in large cities around the world. The potential contribution of biodiversity to ecological intensification in urban agricultural systems has not been investigated. We present monitoring data collected from rice fields in 34 community farms in mega-urban Shanghai, China, from 2001 to 2015, and show that the presence of a border crop of soybeans and neighboring crops (maize, eggplant and Chinese cabbage), both without weed control, increased invertebrate predator abundance, decreased the abundance of pests and dependence on insecticides, and increased grain yield and economic profits. Two 2 year randomized experiments with the low and high diversity practices in the same locations confirmed these results. Our study shows that diversifying farming practices can make an important contribution to ecological intensification and the sustainable use of associated ecosystem services in an urban ecosystem. PMID:29792597

  18. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture.

    PubMed

    Wan, Nian-Feng; Cai, You-Ming; Shen, Yan-Jun; Ji, Xiang-Yun; Wu, Xiang-Wen; Zheng, Xiang-Rong; Cheng, Wei; Li, Jun; Jiang, Yao-Pei; Chen, Xin; Weiner, Jacob; Jiang, Jie-Xian; Nie, Ming; Ju, Rui-Ting; Yuan, Tao; Tang, Jian-Jun; Tian, Wei-Dong; Zhang, Hao; Li, Bo

    2018-05-24

    Urban agriculture is making an increasing contribution to food security in large cities around the world. The potential contribution of biodiversity to ecological intensification in urban agricultural systems has not been investigated. We present monitoring data collected from rice fields in 34 community farms in mega-urban Shanghai, China, from 2001 to 2015, and show that the presence of a border crop of soybeans and neighboring crops (maize, eggplant and Chinese cabbage), both without weed control, increased invertebrate predator abundance, decreased the abundance of pests and dependence on insecticides, and increased grain yield and economic profits. Two 2 year randomized experiments with the low and high diversity practices in the same locations confirmed these results. Our study shows that diversifying farming practices can make an important contribution to ecological intensification and the sustainable use of associated ecosystem services in an urban ecosystem. © 2018, Wan et al.

  19. Assessing the agricultural costs of climate change: Combining results from crop and economic models

    NASA Astrophysics Data System (ADS)

    Howitt, R. E.

    2016-12-01

    Any perturbation to a resource system used by humans elicits both technical and behavioral changes. For agricultural production, economic criteria and their associated models are usually good predictors of human behavior in agricultural production. Estimation of the agricultural costs of climate change requires careful downscaling of global climate models to the level of agricultural regions. Plant growth models for the dominant crops are required to accurately show the full range of trade-offs and adaptation mechanisms needed to minimize the cost of climate change. Faced with the shifts in the fundamental resource base of agriculture, human behavior can either exacerbate or offset the impact of climate change on agriculture. In addition, agriculture can be an important source of increased carbon sequestration. However the effectiveness and timing of this sequestration depends on agricultural practices and farmer behavior. Plant growth models and economic models have been shown to interact in two broad fashions. First there is the direct embedding of a parametric representation plant growth simulations in the economic model production function. A second and more general approach is to have plant growth and crop process models interact with economic models as they are simulated. The development of more general wrapper programs that transfer information between models rapidly and efficiently will encourage this approach. However, this method does introduce complications in terms of matching up disparate scales both in time and space between models. Another characteristic behavioral response of agricultural production is the distinction between the intensive margin which considers the quantity of resource, for example fertilizer, used for a given crop, and the extensive margin of adjustment that measures how farmers will adjust their crop proportions in response to climate change. Ideally economic models will measure the response to both these margins of adjustment

  20. Airborne Hyperspectral Imagery for the Detection of Agricultural Crop Stress

    NASA Technical Reports Server (NTRS)

    Cassady, Philip E.; Perry, Eileen M.; Gardner, Margaret E.; Roberts, Dar A.

    2001-01-01

    Multispectral digital imagery from aircraft or satellite is presently being used to derive basic assessments of crop health for growers and others involved in the agricultural industry. Research indicates that narrow band stress indices derived from hyperspectral imagery should have improved sensitivity to provide more specific information on the type and cause of crop stress, Under funding from the NASA Earth Observation Commercial Applications Program (EOCAP) we are identifying and evaluating scientific and commercial applications of hyperspectral imagery for the remote characterization of agricultural crop stress. During the summer of 1999 a field experiment was conducted with varying nitrogen treatments on a production corn-field in eastern Nebraska. The AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) hyperspectral imager was flown at two critical dates during crop development, at two different altitudes, providing images with approximately 18m pixels and 3m pixels. Simultaneous supporting soil and crop characterization included spectral reflectance measurements above the canopy, biomass characterization, soil sampling, and aerial photography. In this paper we describe the experiment and results, and examine the following three issues relative to the utility of hyperspectral imagery for scientific study and commercial crop stress products: (1) Accuracy of reflectance derived stress indices relative to conventional measures of stress. We compare reflectance-derived indices (both field radiometer and AVIRIS) with applied nitrogen and with leaf level measurement of nitrogen availability and chlorophyll concentrations over the experimental plots (4 replications of 5 different nitrogen levels); (2) Ability of the hyperspectral sensors to detect sub-pixel areas under crop stress. We applied the stress indices to both the 3m and 18m AVIRIS imagery for the entire production corn field using several sub-pixel areas within the field to compare the relative

  1. Sustainable Agriculture - Enhancing environmental benefits, food nutritional quality and building crop resilience to abiotic and biotic stresses

    USDA-ARS?s Scientific Manuscript database

    Feeding nutrition-dense food to future world populations presents agriculture with enormous challenges as estimates indicate that crop production must as much as double. Crop production cannot be increased to meet this challenge simply by increasing land acreage or using past agricultural intensific...

  2. Quantification of the impact of hydrology on agricultural production as a result of too dry, too wet or too saline conditions

    NASA Astrophysics Data System (ADS)

    Hack-ten Broeke, Mirjam J. D.; Kroes, Joop G.; Bartholomeus, Ruud P.; van Dam, Jos C.; de Wit, Allard J. W.; Supit, Iwan; Walvoort, Dennis J. J.; van Bakel, P. Jan T.; Ruijtenberg, Rob

    2016-08-01

    For calculating the effects of hydrological measures on agricultural production in the Netherlands a new comprehensive and climate proof method is being developed: WaterVision Agriculture (in Dutch: Waterwijzer Landbouw). End users have asked for a method that considers current and future climate, that can quantify the differences between years and also the effects of extreme weather events. Furthermore they would like a method that considers current farm management and that can distinguish three different causes of crop yield reduction: drought, saline conditions or too wet conditions causing oxygen shortage in the root zone. WaterVision Agriculture is based on the hydrological simulation model SWAP and the crop growth model WOFOST. SWAP simulates water transport in the unsaturated zone using meteorological data, boundary conditions (like groundwater level or drainage) and soil parameters. WOFOST simulates crop growth as a function of meteorological conditions and crop parameters. Using the combination of these process-based models we have derived a meta-model, i.e. a set of easily applicable simplified relations for assessing crop growth as a function of soil type and groundwater level. These relations are based on multiple model runs for at least 72 soil units and the possible groundwater regimes in the Netherlands. So far, we parameterized the model for the crops silage maize and grassland. For the assessment, the soil characteristics (soil water retention and hydraulic conductivity) are very important input parameters for all soil layers of these 72 soil units. These 72 soil units cover all soils in the Netherlands. This paper describes (i) the setup and examples of application of the process-based model SWAP-WOFOST, (ii) the development of the simplified relations based on this model and (iii) how WaterVision Agriculture can be used by farmers, regional government, water boards and others to assess crop yield reduction as a function of groundwater

  3. Future market scenarios for pulpwood supply from agricultural short-rotation woody crops

    Treesearch

    Alexander N. Moiseyev; Daniel G. de la Torre Ugarte; Peter J. Ince

    2000-01-01

    The North American Pulp And Paper (NAPAP) model and USDA POLYSYS agricultural policy analysis model were linked to project future market scenarios for pulpwood supply from agricultural short-rotation woody crops in the United States. Results suggest that pulpwood supply from fast- growing hybrid poplars and cottonwoods will become marginally economical but fairly...

  4. "Development of an interactive crop growth web service architecture to review and forecast agricultural sustainability"

    NASA Astrophysics Data System (ADS)

    Seamon, E.; Gessler, P. E.; Flathers, E.; Walden, V. P.

    2014-12-01

    As climate change and weather variability raise issues regarding agricultural production, agricultural sustainability has become an increasingly important component for farmland management (Fisher, 2005, Akinci, 2013). Yet with changes in soil quality, agricultural practices, weather, topography, land use, and hydrology - accurately modeling such agricultural outcomes has proven difficult (Gassman et al, 2007, Williams et al, 1995). This study examined agricultural sustainability and soil health over a heterogeneous multi-watershed area within the Inland Pacific Northwest of the United States (IPNW) - as part of a five year, USDA funded effort to explore the sustainability of cereal production systems (Regional Approaches to Climate Change for Pacific Northwest Agriculture - award #2011-68002-30191). In particular, crop growth and soil erosion were simulated across a spectrum of variables and time periods - using the CropSyst crop growth model (Stockle et al, 2002) and the Water Erosion Protection Project Model (WEPP - Flanagan and Livingston, 1995), respectively. A preliminary range of historical scenarios were run, using a high-resolution, 4km gridded dataset of surface meteorological variables from 1979-2010 (Abatzoglou, 2012). In addition, Coupled Model Inter-comparison Project (CMIP5) global climate model (GCM) outputs were used as input to run crop growth model and erosion future scenarios (Abatzoglou and Brown, 2011). To facilitate our integrated data analysis efforts, an agricultural sustainability web service architecture (THREDDS/Java/Python based) is under development, to allow for the programmatic uploading, sharing and processing of variable input data, running model simulations, as well as downloading and visualizing output results. The results of this study will assist in better understanding agricultural sustainability and erosion relationships in the IPNW, as well as provide a tangible server-based tool for use by researchers and farmers - for both

  5. The impact of Genetically Modified (GM) crops in modern agriculture: A review.

    PubMed

    Raman, Ruchir

    2017-10-02

    Genetic modification in plants was first recorded 10,000 years ago in Southwest Asia where humans first bred plants through artificial selection and selective breeding. Since then, advancements in agriculture science and technology have brought about the current GM crop revolution. GM crops are promising to mitigate current and future problems in commercial agriculture, with proven case studies in Indian cotton and Australian canola. However, controversial studies such as the Monarch Butterfly study (1999) and the Séralini affair (2012) along with current problems linked to insect resistance and potential health risks have jeopardised its standing with the public and policymakers, even leading to full and partial bans in certain countries. Nevertheless, the current growth rate of the GM seed market at 9.83-10% CAGR along with promising research avenues in biofortification, precise DNA integration and stress tolerance have forecast it to bring productivity and prosperity to commercial agriculture.

  6. Could Crop Height Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, B. J.; Lundquist, J. K.

    2013-12-01

    The agriculture-intensive United States Midwest and Great Plains regions feature some of the best wind resources in the nation. Collocation of cropland and wind turbines introduces complex meteorological interactions that could affect both agriculture and wind power production. Crop management practices may modify the wind resource through alterations of land-surface properties. In this study, we used the Weather Research and Forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. We parameterized a hypothetical array of 121 1.8 MW turbines at the site of the 2011 Crop/Wind-energy Experiment field campaign using the WRF wind farm parameterization. We estimated the impact of crop choices on power production by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 10 cm and 25 cm represent a mature soy crop and a mature corn crop respectively. Results suggest that the presence of the mature corn crop reduces hub-height wind speeds and increases rotor-layer wind shear, even in the presence of a large wind farm which itself modifies the flow. During the night, the influence of the surface was dependent on the boundary layer stability, with strong stability inhibiting the surface drag from modifying the wind resource aloft. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop management practices.

  7. Virtual water flows and water-footprint of agricultural crop production, import and export: A case study for Israel.

    PubMed

    Shtull-Trauring, E; Bernstein, N

    2018-05-01

    Agriculture is the largest global consumer of freshwater. As the volume of international trade continues to rise, so does the understanding that trade of water-intensive crops from areas with high precipitation, to arid regions can help mitigate water scarcity, highlighting the importance of crop water accounting. Virtual-Water, or Water-Footprint [WF] of agricultural crops, is a powerful indicator for assessing the extent of water use by plants, contamination of water bodies by agricultural practices and trade between countries, which underlies any international trade of crops. Most available studies of virtual-water flows by import/export of agricultural commodities were based on global databases, which are considered to be of limited accuracy. The present study analyzes the WF of crop production, import, and export on a country level, using Israel as a case study, comparing data from two high-resolution local databases and two global datasets. Results for local datasets demonstrate a WF of ~1200Million Cubic Meters [MCM]/year) for total crop production, ~1000MCM/year for import and ~250MCM/year for export. Fruits and vegetables comprise ~80% of Export WF (~200MCM/year), ~50% of crop production and only ~20% of the imports. Economic Water Productivity [EWP] ($/m 3 ) for fruits and vegetables is 1.5 higher compared to other crops. Moreover, the results based on local and global datasets varied significantly, demonstrating the importance of developing high-resolution local datasets based on local crop coefficients. Performing high resolution WF analysis can help in developing agricultural policies that include support for low WF/high EWP and limit high WF/low EWP crop export, where water availability is limited. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Integrating multiple satellite data for crop monitoring

    USDA-ARS?s Scientific Manuscript database

    Remote sensing provides a valuable data source for detecting crop types, monitoring crop condition and predicting crop yields from space. Routine and continuous remote sensing data are critical for agricultural research and operational applications. Since crop field dimensions tend to be relatively ...

  9. Assessing Climate Risk on Agricultural Production: Insights Using Retrospective Analysis of Crop Insurance and Climatic Trends

    NASA Astrophysics Data System (ADS)

    Reyes, J. J.; Elias, E.; Eischens, A.; Shilts, M.; Rango, A.; Steele, R.

    2017-12-01

    The collaborative synthesis of existing datasets, such as long-term climate observations and farmers' crop insurance payments, can increase their overall collective value and societal application. The U.S. Department of Agriculture (USDA) Climate Hubs were created to develop and deliver science-based information and technologies to agricultural and natural resource managers to enable climate-informed decision-making. As part of this mission, Hubs work across USDA and other climate service agencies to synthesize existing information. The USDA Risk Management Agency (RMA) is responsible for overseeing the Federal crop insurance program which currently insures over $100 billion in crops annually. RMA hosts data describing the cause for loss (e.g. drought, wind, irrigation failure) and indemnity amount (i.e. total cost of loss) at multiple spatio-temporal scales (i.e. state, county, year, month). The objective of this paper is to link climate information with indemnities, and their associated cause of loss, to assess climate risk on agricultural production and provide regionally-relevant information to stakeholders to promote resilient working landscapes. We performed a retrospective trend analysis at the state-level for the American Southwest (SW). First, we assessed indemnity-only trends by cause of loss and crop type at varying temporal scales. Historical monthly weather data (i.e. precipitation and temperature) and long-term drought indices (e.g. Palmer Drought Severity Index) were then linked with indemnities and grouped by different causes of loss. Climatological ranks were used to integrate historical comparative intensity of acute and long-term climatic events. Heat and drought as causes of loss were most correlated with temperature and drought indicators, respectively. Across all SW states increasing indemnities were correlated with warmer conditions. Multiple statistical trend analyses suggest a framework is necessary to appropriately measure the biophysical

  10. Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts

    NASA Astrophysics Data System (ADS)

    Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja

    2010-10-01

    Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.

  11. AquaCrop-OS: A tool for resilient management of land and water resources in agriculture

    NASA Astrophysics Data System (ADS)

    Foster, Timothy; Brozovic, Nicholas; Butler, Adrian P.; Neale, Christopher M. U.; Raes, Dirk; Steduto, Pasquale; Fereres, Elias; Hsiao, Theodore C.

    2017-04-01

    Water managers, researchers, and other decision makers worldwide are faced with the challenge of increasing food production under population growth, drought, and rising water scarcity. Crop simulation models are valuable tools in this effort, and, importantly, provide a means of quantifying rapidly crop yield response to water, climate, and field management practices. Here, we introduce a new open-source crop modelling tool called AquaCrop-OS (Foster et al., 2017), which extends the functionality of the globally used FAO AquaCrop model. Through case studies focused on groundwater-fed irrigation in the High Plains and Central Valley of California in the United States, we demonstrate how AquaCrop-OS can be used to understand the local biophysical, behavioural, and institutional drivers of water risks in agricultural production. Furthermore, we also illustrate how AquaCrop-OS can be combined effectively with hydrologic and economic models to support drought risk mitigation and decision-making around water resource management at a range of spatial and temporal scales, and highlight future plans for model development and training. T. Foster, et al. (2017) AquaCrop-OS: An open source version of FAO's crop water productivity model. Agricultural Water Management. 181: 18-22. http://dx.doi.org/10.1016/j.agwat.2016.11.015.

  12. Development of an agricultural biotechnology crop product: testing from discovery to commercialization.

    PubMed

    Privalle, Laura S; Chen, Jingwen; Clapper, Gina; Hunst, Penny; Spiegelhalter, Frank; Zhong, Cathy X

    2012-10-17

    "Genetically modified" (GM) or "biotech" crops have been the most rapidly adopted agricultural technology in recent years. The development of a GM crop encompasses trait identification, gene isolation, plant cell transformation, plant regeneration, efficacy evaluation, commercial event identification, safety evaluation, and finally commercial authorization. This is a lengthy, complex, and resource-intensive process. Crops produced through biotechnology are the most highly studied food or food component consumed. Before commercialization, these products are shown to be as safe as conventional crops with respect to feed, food, and the environment. This paper describes this global process and the various analytical tests that must accompany the product during the course of development, throughout its market life, and beyond.

  13. Simulating crop growth with Expert-N-GECROS under different site conditions in Southwest Germany

    NASA Astrophysics Data System (ADS)

    Poyda, Arne; Ingwersen, Joachim; Demyan, Scott; Gayler, Sebastian; Streck, Thilo

    2016-04-01

    When feedbacks between the land surface and the atmosphere are investigated by Atmosphere-Land surface-Crop-Models (ALCM) it is fundamental to accurately simulate crop growth dynamics as plants directly influence the energy partitioning at the plant-atmosphere interface. To study both the response and the effect of intensive agricultural crop production systems on regional climate change in Southwest Germany, the crop growth model GECROS (YIN & VAN LAAR, 2005) was calibrated based on multi-year field data from typical crop rotations in the Kraichgau and Swabian Alb regions. Additionally, the SOC (soil organic carbon) model DAISY (MÜLLER et al., 1998) was implemented in the Expert-N model tool (ENGEL & PRIESACK, 1993) and combined with GECROS. The model was calibrated based on a set of plant (BBCH, LAI, plant height, aboveground biomass, N content of biomass) and weather data for the years 2010 - 2013 and validated with the data of 2014. As GECROS adjusts the root-shoot partitioning in response to external conditions (water, nitrogen, CO2), it is suitable to simulate crop growth dynamics under changing climate conditions and potentially more frequent stress situations. As C and N pools and turnover rates in soil as well as preceding crop effects were expected to considerably influence crop growth, the model was run in a multi-year, dynamic way. Crop residues and soil mineral N (nitrate, ammonium) available for the subsequent crop were accounted for. The model simulates growth dynamics of winter wheat, winter rape, silage maize and summer barley at the Kraichgau and Swabian Alb sites well. The Expert-N-GECROS model is currently parameterized for crops with potentially increasing shares in future crop rotations. First results will be shown.

  14. Biochemical production of bioenergy from agricultural crops and residue in Iran.

    PubMed

    Karimi Alavijeh, Masih; Yaghmaei, Soheila

    2016-06-01

    The present study assessed the potential for biochemical conversion of energy stored in agricultural waste and residue in Iran. The current status of agricultural residue as a source of bioenergy globally and in Iran was investigated. The total number of publications in this field from 2000 to 2014 was about 4294. Iran ranked 21st with approximately 54 published studies. A total of 87 projects have been devised globally to produce second-generation biofuel through biochemical pathways. There are currently no second-generation biorefineries in Iran and agricultural residue has no significant application. The present study determined the amount and types of sustainable agricultural residue and oil-rich crops and their provincial distribution. Wheat, barley, rice, corn, potatoes, alfalfa, sugarcane, sugar beets, apples, grapes, dates, cotton, soybeans, rapeseed, sesame seeds, olives, sunflowers, safflowers, almonds, walnuts and hazelnuts have the greatest potential as agronomic and horticultural crops to produce bioenergy in Iran. A total of 11.33million tonnes (Mt) of agricultural biomass could be collected for production of bioethanol (3.84gigaliters (Gl)), biobutanol (1.07Gl), biogas (3.15billion cubic meters (BCM)), and biohydrogen (0.90BCM). Additionally, about 0.35Gl of biodiesel could be obtained using only 35% of total Iranian oilseed. The potential production capacity of conventional biofuel blends in Iran, environmental and socio-economic impacts including well-to-wheel greenhouse gas (GHG) emissions, and the social cost of carbon dioxide reduction are discussed. The cost of emissions could decrease up to 55.83% by utilizing E85 instead of gasoline. The possible application of gaseous biofuel in Iran to produce valuable chemicals and provide required energy for crop cultivation is also studied. The energy recovered from biogas produced by wheat residue could provide energy input for 115.62 and 393.12 thousand hectares of irrigated and rain-fed wheat

  15. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems

    USGS Publications Warehouse

    Glenn, E.P.; Neale, C. M. U.; Hunsaker, D.J.; Nagler, P.L.

    2011-01-01

    Crop coefficients were developed to determine crop water needs based on the evapotranspiration (ET) of a reference crop under a given set of meteorological conditions. Starting in the 1980s, crop coefficients developed through lysimeter studies or set by expert opinion began to be supplemented by remotely sensed vegetation indices (VI) that measured the actual status of the crop on a field-by-field basis. VIs measure the density of green foliage based on the reflectance of visible and near infrared (NIR) light from the canopy, and are highly correlated with plant physiological processes that depend on light absorption by a canopy such as ET and photosynthesis. Reflectance-based crop coefficients have now been developed for numerous individual crops, including corn, wheat, alfalfa, cotton, potato, sugar beet, vegetables, grapes and orchard crops. Other research has shown that VIs can be used to predict ET over fields of mixed crops, allowing them to be used to monitor ET over entire irrigation districts. VI-based crop coefficients can help reduce agricultural water use by matching irrigation rates to the actual water needs of a crop as it grows instead of to a modeled crop growing under optimal conditions. Recently, the concept has been applied to natural ecosystems at the local, regional and continental scales of measurement, using time-series satellite data from the MODIS sensors on the Terra satellite. VIs or other visible-NIR band algorithms are combined with meteorological data to predict ET in numerous biome types, from deserts, to arctic tundra, to tropical rainforests. These methods often closely match ET measured on the ground at the global FluxNet array of eddy covariance moisture and carbon flux towers. The primary advantage of VI methods for estimating ET is that transpiration is closely related to radiation absorbed by the plant canopy, which is closely related to VIs. The primary disadvantage is that they cannot capture stress effects or soil

  16. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification

    PubMed Central

    Potts, Simon G.; Steffan-Dewenter, Ingolf; Vaissière, Bernard E.; Woyciechowski, Michal; Krewenka, Kristin M.; Tscheulin, Thomas; Roberts, Stuart P.M.; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in

  17. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification.

    PubMed

    Bartomeus, Ignasi; Potts, Simon G; Steffan-Dewenter, Ingolf; Vaissière, Bernard E; Woyciechowski, Michal; Krewenka, Kristin M; Tscheulin, Thomas; Roberts, Stuart P M; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in

  18. Catchments Under Change: Assessing Impacts and Feedbacks from New Biomass Crops in the Agricultural Midwestern USA

    NASA Astrophysics Data System (ADS)

    Yaeger, Mary; Housh, Mashor; Ng, Tze Ling; Cai, Ximing; Sivapalan, Murugesu

    2013-04-01

    In order to meet the challenges of future change, it is essential to understand the environmental response to current conditions and historical changes. The central Midwestern US is an example of anthropogenic change and environmental feedbacks, having been transformed from a natural grassland system to an artificially-drained agricultural system. Environmental feedbacks from reduced soil residence times coupled with increasing crop fertilization have manifested as a hypoxic zone in the Gulf of Mexico. In an effort to address these feedbacks while meeting new crop demands, large-scale planting of high-yielding perennial biomass crops has been proposed. This could be detrimental to both human and environmental streamflow users because these plants require more water than do current crops. The lowest natural flows in this shallow groundwater-dependent region coincide with the peak of the growing season, thus compounding the problem. Therefore, for large-scale biomass crop production to be sustainable, these tradeoffs between water quality and water quantity must be fully understood. To better understand the catchment response to current conditions, we have analyzed streamflow data in a central Illinois agricultural watershed. To deal with future changes, we have developed an integrated systems model which provides, among other outputs, the land usage that maximizes the benefit to the human system. This land use is then implemented in a separate hydrologic model to determine the impact to the environmental system. Interactively running the two models, taking into account the catchment response to human actions as well as possible anthropogenic responses to the environment, allows us to examine the feedbacks between the two systems. This lets us plot the trajectory of the state of the system, which we hypothesize will show emergent internal properties of the coupled system. Initial tests of this modeling framework show promise that this may indeed be the case. External

  19. Impact of nowcasting on the production and processing of agricultural crops. [in the US

    NASA Technical Reports Server (NTRS)

    Dancer, W. S.; Tibbitts, T. W.

    1973-01-01

    The value was studied of improved weather information and weather forecasting to farmers, growers, and agricultural processing industries in the United States. The study was undertaken to identify the production and processing operations that could be improved with accurate and timely information on changing weather patterns. Estimates were then made of the potential savings that could be realized with accurate information about the prevailing weather and short term forecasts for up to 12 hours. This weather information has been termed nowcasting. The growing, marketing, and processing operations of the twenty most valuable crops in the United States were studied to determine those operations that are sensitive to short-term weather forecasting. Agricultural extension specialists, research scientists, growers, and representatives of processing industries were consulted and interviewed. The value of the crops included in this survey and their production levels are given. The total value for crops surveyed exceeds 24 billion dollars and represents more than 92 percent of total U.S. crop value.

  20. An Updated Decision Support Interface: A Tool for Remote Monitoring of Crop Growing Conditions

    NASA Astrophysics Data System (ADS)

    Husak, G. J.; Budde, M. E.; Rowland, J.; Verdin, J. P.; Funk, C. C.; Landsfeld, M. F.

    2014-12-01

    Remote sensing of agroclimatological variables to monitor food production conditions is a critical component of the Famine Early Warning Systems Network portfolio of tools for assessing food security in the developing world. The Decision Support Interface (DSI) seeks to integrate a number of remotely sensed and modeled variables to create a single, simplified portal for analysis of crop growing conditions. The DSI has been reformulated to incorporate more variables and give the user more freedom in exploring the available data. This refinement seeks to transition the DSI from a "first glance" agroclimatic indicator to one better suited for the differentiation of drought events. The DSI performs analysis of variables over primary agricultural zones at the first sub-national administrative level. It uses the spatially averaged rainfall, normalized difference vegetation index (NDVI), water requirement satisfaction index (WRSI), and actual evapotranspiration (ETa) to identify potential hazards to food security. Presenting this information in a web-based client gives food security analysts and decision makers a lightweight portal for information on crop growing conditions in the region. The crop zones used for the aggregation contain timing information which is critical to the DSI presentation. Rainfall and ETa are accumulated from different points in the crop phenology to identify season-long deficits in rainfall or transpiration that adversely affect the crop-growing conditions. Furthermore, the NDVI and WRSI serve as their own seasonal accumulated measures of growing conditions by capturing vegetation vigor or actual evapotranspiration deficits. The DSI is currently active for major growing regions of sub-Saharan Africa, with intention of expanding to other areas over the coming years.

  1. Sustainability of Italian Agriculture: A Methodological Approach for Assessing Crop Water Footprint at Local Scale

    NASA Astrophysics Data System (ADS)

    Altobelli, F.; Dalla Marta, A.; Cimino, O.; Orlandini, S.; Natali, F.

    2014-12-01

    In a world where population is rapidly growing and where several planetary boundaries (i.e. climate change, biodiversity loss and nitrogen cycle) have already been crossed, agriculture is called to respond to the needs of food security through a sustainable use of natural resources. In particular, water is one of the main elements of fertility so the agricultural activity, and the whole agro-food chain, is one of the productive sectors more dependent on water resource and it is able to affect, at regional level, its availability for all the other sectors. In this study, we proposed a methodology for assessing the green and blue water footprint of the main Italian crops typical of the different geographical areas (northwest, northeast, center, and south) based on data extracted from Italian Farm Accountancy Data Network (FADN). FADN is an instrument for evaluating the income of agricultural holdings and the impacts of the Common Agricultural Policy. Crops were selected based on incidence of cultivated area on the total arable land of FADN farms net. Among others, the database contains data on irrigation management (irrigated surface, length of irrigation season, volumes of water, etc.), and crop production. Meteorological data series were obtained by a combination of local weather stations and ECAD E-obs spatialized database. Crop water footprints were evaluated against water availability and risk of desertification maps of Italy. Further, we compared the crop water footprints obtained with our methodology with already existing data from similar studies in order to highlight the effects of spatial scale and level of detail of available data.

  2. Grassland-Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality

    NASA Astrophysics Data System (ADS)

    Lemaire, Gilles; Gastal, François; Franzluebbers, Alan; Chabbi, Abad

    2015-11-01

    A need to increase agricultural production across the world to ensure continued food security appears to be at odds with the urgency to reduce the negative environmental impacts of intensive agriculture. Around the world, intensification has been associated with massive simplification and uniformity at all levels of organization, i.e., field, farm, landscape, and region. Therefore, we postulate that negative environmental impacts of modern agriculture are due more to production simplification than to inherent characteristics of agricultural productivity. Thus by enhancing diversity within agricultural systems, it should be possible to reconcile high quantity and quality of food production with environmental quality. Intensification of livestock and cropping systems separately within different specialized regions inevitably leads to unacceptable environmental impacts because of the overly uniform land use system in intensive cereal areas and excessive N-P loads in intensive animal areas. The capacity of grassland ecosystems to couple C and N cycles through microbial-soil-plant interactions as a way for mitigating the environmental impacts of intensive arable cropping system was analyzed in different management options: grazing, cutting, and ley duration, in order to minimize trade-offs between production and the environment. We suggest that integrated crop-livestock systems are an appropriate strategy to enhance diversity. Sod-based rotations can temporally and spatially capture the benefits of leys for minimizing environmental impacts, while still maintaining periods and areas of intensive cropping. Long-term experimental results illustrate the potential of such systems to sequester C in soil and to reduce and control N emissions to the atmosphere and hydrosphere.

  3. Grassland-Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality.

    PubMed

    Lemaire, Gilles; Gastal, François; Franzluebbers, Alan; Chabbi, Abad

    2015-11-01

    A need to increase agricultural production across the world to ensure continued food security appears to be at odds with the urgency to reduce the negative environmental impacts of intensive agriculture. Around the world, intensification has been associated with massive simplification and uniformity at all levels of organization, i.e., field, farm, landscape, and region. Therefore, we postulate that negative environmental impacts of modern agriculture are due more to production simplification than to inherent characteristics of agricultural productivity. Thus by enhancing diversity within agricultural systems, it should be possible to reconcile high quantity and quality of food production with environmental quality. Intensification of livestock and cropping systems separately within different specialized regions inevitably leads to unacceptable environmental impacts because of the overly uniform land use system in intensive cereal areas and excessive N-P loads in intensive animal areas. The capacity of grassland ecosystems to couple C and N cycles through microbial-soil-plant interactions as a way for mitigating the environmental impacts of intensive arable cropping system was analyzed in different management options: grazing, cutting, and ley duration, in order to minimize trade-offs between production and the environment. We suggest that integrated crop-livestock systems are an appropriate strategy to enhance diversity. Sod-based rotations can temporally and spatially capture the benefits of leys for minimizing environmental impacts, while still maintaining periods and areas of intensive cropping. Long-term experimental results illustrate the potential of such systems to sequester C in soil and to reduce and control N emissions to the atmosphere and hydrosphere.

  4. Applications of UAVs in row-crop agriculture: advantages and limitations

    NASA Astrophysics Data System (ADS)

    Basso, B.; Putnam, G.; Price, R.; Zhang, J.

    2016-12-01

    The application of Unmanned Aerial Vehicles (UAV) to monitor agricultural fields has increased over the last few years due to advances in the technology, sensors, post-processing software for image analysis, along with more favorable regulations that allowed UAVs to be flown for commercial use. UAV have several capabilities depending on the type of sensors that are mounted onboard. The most widely used application remains crop scouting to identify areas within fields where the crops underperform for various reasons (nutritional status and water stress, presence of weeds, poor stands etc). In this talk, we present the preliminary results of UAVs field based research to better understand spatial and temporal variability of crop yield. Their advantage in providing timely information is critical, but adaptive management requires a system approach to account for the interactions occurring between genetics, environment and management.

  5. Agricultural biotechnology for crop improvement in a variable climate: hope or hype?

    PubMed

    Varshney, Rajeev K; Bansal, Kailash C; Aggarwal, Pramod K; Datta, Swapan K; Craufurd, Peter Q

    2011-07-01

    Developing crops that are better adapted to abiotic stresses is important for food production in many parts of the world today. Anticipated changes in climate and its variability, particularly extreme temperatures and changes in rainfall, are expected to make crop improvement even more crucial for food production. Here, we review two key biotechnology approaches, molecular breeding and genetic engineering, and their integration with conventional breeding to develop crops that are more tolerant of abiotic stresses. In addition to a multidisciplinary approach, we also examine some constraints that need to be overcome to realize the full potential of agricultural biotechnology for sustainable crop production to meet the demands of a projected world population of nine billion in 2050. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Near-Real-Time Monitoring and Reporting of Crop Growth Condition and Harvest Status Using an Integrated Optical and Radar Approach at the National-Scale in Canada

    NASA Astrophysics Data System (ADS)

    Shang, J.

    2015-12-01

    There has been an increasing need to have accurate and spatially detailed information on crop growth condition and harvest status over Canada's agricultural land so that the impacts of environmental conditions, market supply and demand, and transportation network limitations on crop production can be understood fully and acted upon in a timely manner. Presently, Canada doesn't have a national dataset that can provide near-real-time geospatial information on crop growth stage and harvest systematically so that reporting on risk events can be linked directly to the grain supply chain and crop production fluctuations. The intent of this study is to develop an integrated approach using Earth observation (EO) technology to provide a consistent, comprehensive picture of crop growth cycles (growth conditions and stages) and agricultural management activities (field preparation for seeding, harvest, and residue management). Integration of the optical and microwave satellite remote sensing technologies is imperative for robust methodology development and eventually for operational implementation. Particularly, the current synthetic aperture radar (SAR) system Radarsat-2 and to be launched Radarsat Constellation Mission (RCM) are unique EO resources to Canada. Incorporating these Canadian SAR resources with international SAR missions such as the Cosmesky-Med and TerraSAR, could be of great potential for developing change detection technologies particularly useful for monitoring harvest as well as other types of agricultural management events. The study revealed that radar and multi-scale (30m and 250m) optical satellite data can directly detect or infer 1) seeding date, 2) crop growth stages and gross primary productivity (GPP), and 3) harvest progress. Operational prototypes for providing growing-season information at the crop-specific level will be developed across the Canadian agricultural land base.

  7. [Responses of agricultural crops of free-air CO2 enrichment].

    PubMed

    Kimball, B A; Zhu, Jianguo; Cheng, Lei; Kobayashi, K; Bindi, M

    2002-10-01

    Over the past decade, free-air CO2 enrichment (FACE) experiments have been conducted on several agricultural crops: wheat(Triticum aestivum L.), perennial ryegrass (Lolium perenne), and rice(Oryza sativa L.) which are C3 grasses; sorghum (Sorghum bicolor (L.) Möench), a C4 grass; white clover (Trifolium repens), a C3 legume; potato (Solanum tuberosum L.), a C3 forb with tuber storage; and cotton (Gossypium hirsutum L.) and grape (Vitis vinifera L.) which are C3 woody perennials. Using reports from these experiments, the relative responses of these crops was discussed with regard to photosynthesis, stomatal conductance, canopy temperature, water use, water potential, leaf area index, shoot and root biomass accumulation, agricultural yield, radiation use efficiency, specific leaf area, tissue nitrogen concentration, nitrogen yield, carbohydrate concentration, phenology, soil microbiology, soil respiration, trace gas emissions, and soil carbon sequestration. Generally, the magnitude of these responses varied with the functional type of plant and with the soil nitrogen and water status. As expected, the elevated CO2 increased photosynthesis and biomass production and yield substantially in C3 species, but little in C4, and it decreased stomatal conductance and transpiration in both C3 and C4 species and greatly improved water-use efficiency in all the crops. Growth stimulations were as large or larger under water-stress compared to well-watered conditions. Growth stimulations of non-legumes were reduced at low soil nitrogen, whereas elevated CO2 strongly stimulated the growth of the clover legume both at ample and under low N conditions. Roots were generally stimulated more than shoots. Woody perennials had larger growth responses to elevated CO2, while at the same time, their reductions in stomatal conductance were smaller. Tissue nitrogen concentrations went down while carbohydrate and some other carbon-based compounds went up due to elevated CO2, with leaves and

  8. Simulated crop yield in response to changes in climate and agricultural practices: results from a simple process based model

    NASA Astrophysics Data System (ADS)

    Caldararu, S.; Smith, M. J.; Purves, D.; Emmott, S.

    2013-12-01

    Global agriculture will, in the future, be faced with two main challenges: climate change and an increase in global food demand driven by an increase in population and changes in consumption habits. To be able to predict both the impacts of changes in climate on crop yields and the changes in agricultural practices necessary to respond to such impacts we currently need to improve our understanding of crop responses to climate and the predictive capability of our models. Ideally, what we would have at our disposal is a modelling tool which, given certain climatic conditions and agricultural practices, can predict the growth pattern and final yield of any of the major crops across the globe. We present a simple, process-based crop growth model based on the assumption that plants allocate above- and below-ground biomass to maintain overall carbon optimality and that, to maintain this optimality, the reproductive stage begins at peak nitrogen uptake. The model includes responses to available light, water, temperature and carbon dioxide concentration as well as nitrogen fertilisation and irrigation. The model is data constrained at two sites, the Yaqui Valley, Mexico for wheat and the Southern Great Plains flux site for maize and soybean, using a robust combination of space-based vegetation data (including data from the MODIS and Landsat TM and ETM+ instruments), as well as ground-based biomass and yield measurements. We show a number of climate response scenarios, including increases in temperature and carbon dioxide concentrations as well as responses to irrigation and fertiliser application.

  9. Not all GMOs are crop plants: non-plant GMO applications in agriculture.

    PubMed

    Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J

    2014-12-01

    Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.

  10. Long-term observations of CO2 exchange over agricultural crops in two regional climates of Southwest Germany

    NASA Astrophysics Data System (ADS)

    Poyda, Arne; Wizemann, Hans-Dieter; Ingwersen, Joachim; Wulfmeyer, Volker; Streck, Thilo

    2017-04-01

    The impact of agricultural land use on soil organic carbon (SOC) dynamics has been widely studied in the past few decades, particularly in context of the SOC forcing or mitigation potential of global climate change. Grassland utilization can increase or maintain SOC stocks. Arable cropping tends to decrease SOC stocks, at least for some time after land use change (SMITH, 2008). In the long run, it can be assumed that SOC reaches a steady state where the production of roots and aboveground crop residues and possibly organic fertilization level out soil respiration. To study the effects of crop type, year and regional site conditions on CO2 exchange and C budgets of arable cropping systems in Southwest Germany, eddy covariance measurements were conducted on a total of six sites in the two climatically contrasting regions of Kraichgau and Swabian Alb since 2009. Main crops were winter wheat, silage maize and winter rapeseed but also winter barley, summer barley and spelt were cultivated on the Swabian Alb sites. Cover crops were grown between winter and summer crops on all sites. Net ecosystem exchange (NEE) data were gap-filled following REICHSTEIN et al. (2005) and partitioned into ecosystem respiration (RECO) and gross primary production (GPP) using seasonally differing temperature response functions of nighttime NEE. Furthermore, different approaches for filling long data gaps of several months in winter were evaluated. Considering C inputs by organic fertilizers and C removals by harvest, C budgets were calculated per site and year. First results indicate that the variability of NEE fluxes between different crops is much higher compared to the variability between different years of a certain crop. However, regional differences in soil and weather conditions significantly influence plant growth dynamics and thus CO2 exchange.

  11. Development and implementation of a GEOGLAM Crop Monitor web interface

    NASA Astrophysics Data System (ADS)

    Oliva, P.; Sanchez, A.; Humber, M. L.; Becker-Reshef, I.; Justice, C. J.; McGaughey, K.; Barker, B.

    2016-12-01

    Beginning in September 2013, the GEOGLAM Crop Monitor activity has provided earth observation (EO) data to a network of partners and collected crop assessments on a subnational basis through a web interface known as the Crop Assessment Tool. Based on the collection of monthly crop assessments, a monthly crop condition bulletin is published in the Agricultural Market Information System (AMIS) Market Monitor report. This workflow has been successfully applied to food security applications through the Early Warning Crop Monitor activity. However, a lack of timely and accurate information on crop conditions and prospects at the national scale is a critical issue in the majority of southern and eastern African countries and some South American countries. Such information is necessary for informed and prompt decision making in the face of emergencies, food insecurity and planning requirements for agricultural markets. This project addresses these needs through the development of relevant, user-friendly remote sensing monitor systems, collaborative internet technology, and collaboration with national and regional agricultural monitoring networks. By building on current projects and relationships established through the various GEOGLAM Crop Monitor activities, this project aims to ultimately provide EO-informed crop condition maps and charts designed for economics and policy oriented audiences, thereby providing quick and easy to understand products on crop conditions as the season progresses. Integrating these data and assessments vertically throughout the system provides a basis for regional sharing and collaboration in food security applications.

  12. An Analysis of the Impact of Heat Waves in Labor and Crop Productivity in the Agricultural Sector in California

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Wehner, M. F.; Gilless, J. K.

    2017-12-01

    California agriculture is an important economic activity for the state. California leads the nation in farms sales since 1950. In addition, agricultural employment in California reached approximately 410,000. Production of many fruits and vegetables is labor intensive and labor costs represent anywhere from 20% to 40% of total production costs. In additon, agricutlural production growth has been the highest for labor intensive crops such as berries (all types) and nuts. Given the importance of the agricultural sector and the labor component whithin it, the analysis of the impact of climate change on the agricultural sector of California becomes imperative. Heat waves are a weather related extreme that impact labor productivity, specially outdoor labor producitivity. We use crop production function analysis that incorporates socio economic variables such as crop prices, total acreage, production levels and harvest timiline with climate related variables such as an estimated Heat Index (HI) to analize the impact of heat waves on crop production via an impact on labor productivity for selected crops in the Central and Imperial Valleys in California. The analysis finds that the impact of heat waves varies by the degree of labor intensity of the crop and the relative intensity of the heat wave.

  13. Probabilistic estimates of drought impacts on agricultural production

    NASA Astrophysics Data System (ADS)

    Madadgar, Shahrbanou; AghaKouchak, Amir; Farahmand, Alireza; Davis, Steven J.

    2017-08-01

    Increases in the severity and frequency of drought in a warming climate may negatively impact agricultural production and food security. Unlike previous studies that have estimated agricultural impacts of climate condition using single-crop yield distributions, we develop a multivariate probabilistic model that uses projected climatic conditions (e.g., precipitation amount or soil moisture) throughout a growing season to estimate the probability distribution of crop yields. We demonstrate the model by an analysis of the historical period 1980-2012, including the Millennium Drought in Australia (2001-2009). We find that precipitation and soil moisture deficit in dry growing seasons reduced the average annual yield of the five largest crops in Australia (wheat, broad beans, canola, lupine, and barley) by 25-45% relative to the wet growing seasons. Our model can thus produce region- and crop-specific agricultural sensitivities to climate conditions and variability. Probabilistic estimates of yield may help decision-makers in government and business to quantitatively assess the vulnerability of agriculture to climate variations. We develop a multivariate probabilistic model that uses precipitation to estimate the probability distribution of crop yields. The proposed model shows how the probability distribution of crop yield changes in response to droughts. During Australia's Millennium Drought precipitation and soil moisture deficit reduced the average annual yield of the five largest crops.

  14. Response to issues on GM agriculture in Africa: Are transgenic crops safe?

    PubMed

    Adenle, Ademola A

    2011-10-08

    The controversies surrounding transgenic crops, often called Genetically Modified Organisms (GMOs), call for a need to raise the level of public awareness of Genetic Modification (GM) technology in Africa. This should be accomplished by educating the public about the potential benefits and risks that may be associated with this new technology. In the last 15 years, GM crop producing countries have benefited from adoption of this new technology in the form of improved crop productivity, food security, and quality of life. The increased income to resource-poor farmers is a key benefit at the individual level especially as most countries using this technology are in the developing world, including three African countries (South Africa, Burkina Faso and Egypt). Despite clear benefits to countries and farmers who grow GMOs, many people are concerned about suspected potential risks associated with GMOs. This sparks debate as to whether GM technology should be adopted or not. Given the concerns regarding the safety of GMO products, thorough scientific investigation of safe application of GMOs is required. The objective of this paper is to respond to the issues of GM agriculture in Africa and some of the issues surrounding the adoption of GM crops between developed and developing countries. In this article, I analyse relevant papers relating to the adoption of GM technology particularly in developing countries including the few African countries that have adopted GM crops. The issues discussed span a wide range including: safety; potential benefits and risks; disputes between the United States of America (USA) and the European Union (EU) over adoption of GM crops with a focus on Africa continent. This article is concluded by summarising the issues raised and how GM technology can be adopted for agricultural development in Africa.

  15. Response to issues on GM agriculture in Africa: Are transgenic crops safe?

    PubMed Central

    2011-01-01

    The controversies surrounding transgenic crops, often called Genetically Modified Organisms (GMOs), call for a need to raise the level of public awareness of Genetic Modification (GM) technology in Africa. This should be accomplished by educating the public about the potential benefits and risks that may be associated with this new technology. In the last 15 years, GM crop producing countries have benefited from adoption of this new technology in the form of improved crop productivity, food security, and quality of life. The increased income to resource-poor farmers is a key benefit at the individual level especially as most countries using this technology are in the developing world, including three African countries (South Africa, Burkina Faso and Egypt). Despite clear benefits to countries and farmers who grow GMOs, many people are concerned about suspected potential risks associated with GMOs. This sparks debate as to whether GM technology should be adopted or not. Given the concerns regarding the safety of GMO products, thorough scientific investigation of safe application of GMOs is required. The objective of this paper is to respond to the issues of GM agriculture in Africa and some of the issues surrounding the adoption of GM crops between developed and developing countries. In this article, I analyse relevant papers relating to the adoption of GM technology particularly in developing countries including the few African countries that have adopted GM crops. The issues discussed span a wide range including: safety; potential benefits and risks; disputes between the United States of America (USA) and the European Union (EU) over adoption of GM crops with a focus on Africa continent. This article is concluded by summarising the issues raised and how GM technology can be adopted for agricultural development in Africa. PMID:21981823

  16. Could Crop Roughness Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, B. J.; Lundquist, J. K.

    2014-12-01

    The high concentration of both large-scale agriculture and wind power production in the United States Midwest region raises new questions concerning the interaction of the two activities. For instance, it is known from internal boundary layer theory that changes in the roughness of the land-surface resulting from crop choices could modify the momentum field aloft. Upward propagation of such an effect might impact the properties of the winds encountered by modern turbines, which typically span a layer from about 40 to 120 meters above the surface. As direct observation of such interaction would require impractical interference in the planting schedules of farmers, we use numerical modeling to quantify the magnitude of crop-roughness effects. To simulate a collocated farm and turbine array, we use version 3.4.1 of the Weather Research and Forecasting model (WRF). The hypothetical farm is inserted near the real location of the 2013 Crop Wind Energy Experiment (CWEX). Reanalyses provide representative initial and boundary conditions. A month-long period spanning August 2013 is used to evaluate the differences in flows above corn (maize) and soybean crops at the mature, reproductive stage. Simulations are performed comparing the flow above each surface regime, both in the absence and presence of a wind farm, which consists of a parameterized 11x11 array of 1.8 MW Vestas V90 turbines. Appreciable differences in rotor-layer wind speeds emerge. The use of soybeans results in an increase in wind speeds and a corresponding reduction in rotor-layer shear when compared to corn. Despite the turbulent nature of flow within a wind farm, high stability reduces the impact of crop roughness on the flow aloft, particularly in the upper portion of the rotor disk. We use these results to estimate the economic impact of crop selection on wind power producers.

  17. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    NASA Astrophysics Data System (ADS)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  18. Carbon and water fluxes and footprints in tropical agricultural systems under rainfed and irrigated conditions

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Lathuilliere, M. J.; Morillas, L.; Dalmagro, H. J.; D'Acunha, B.; Kim, Y.; Suarez, A.; Couto, E. G.

    2017-12-01

    In this talk, we will summarize results obtained using three tropical agricultural water observatories in Guanacaste, Costa Rica and Mato Grosso, Brazil. These flux towers and associated sensors enable detailed assessments of carbon use and water use efficiencies for crops under rain-fed and irrigated conditions. In addition to directly assessing water consumption from crops via eddy covariance, determination of water footprints and water use efficiencies using sensors and integrating it with remotely sensed data make it possible to (i) evaluate and compare different irrigation systems used in the study regions (drip, pivot and flood irrigation), (ii) assess the effect of irrigation over the local water balance to identify vulnerabilities associated with intensive water extraction for irrigation, and (iii) study the effect of inter-annual water availability fluctuations on crop water use. We conclude by comparing volumetric water footprints for crops, their carbon footprints, and water and carbon use efficiencies of crops produced under business-as-usual and alternative soil and water management scenarios.

  19. Monitoring water use and crop condition in California vineyards at multiple scales using multi-sensor satellite data fusion

    USDA-ARS?s Scientific Manuscript database

    Recent weather patterns have left California’s agricultural areas in severe drought. Given the reduced water availability in much of California it is critical to be able to measure water use and crop condition over large areas, but also in fine detail at scales of individual fields to support water...

  20. Climate Change Impacts on Crop Production in Nigeria

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2011-12-01

    The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have

  1. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species.

    PubMed

    Menardo, Fabrizio; Praz, Coraline R; Wyder, Stefan; Ben-David, Roi; Bourras, Salim; Matsumae, Hiromi; McNally, Kaitlin E; Parlange, Francis; Riba, Andrea; Roffler, Stefan; Schaefer, Luisa K; Shimizu, Kentaro K; Valenti, Luca; Zbinden, Helen; Wicker, Thomas; Keller, Beat

    2016-02-01

    Throughout the history of agriculture, many new crop species (polyploids or artificial hybrids) have been introduced to diversify products or to increase yield. However, little is known about how these new crops influence the evolution of new pathogens and diseases. Triticale is an artificial hybrid of wheat and rye, and it was resistant to the fungal pathogen powdery mildew (Blumeria graminis) until 2001 (refs. 1,2,3). We sequenced and compared the genomes of 46 powdery mildew isolates covering several formae speciales. We found that B. graminis f. sp. triticale, which grows on triticale and wheat, is a hybrid between wheat powdery mildew (B. graminis f. sp. tritici) and mildew specialized on rye (B. graminis f. sp. secalis). Our data show that the hybrid of the two mildews specialized on two different hosts can infect the hybrid plant species originating from those two hosts. We conclude that hybridization between mildews specialized on different species is a mechanism of adaptation to new crops introduced by agriculture.

  2. Assessing the remote sensing derived evaporative stress index with ground observations of crop conditions to advance drought early warning

    USDA-ARS?s Scientific Manuscript database

    Drought has significant impacts over broad spatial and temporal scales, and information about the timing and extent of such conditions is of critical importance to many end users in the agricultural and water resource management communities. The ability to accurately monitor effects on crops, and p...

  3. Agricultural Intensification in the Amazon: Tracking Nitrogen Fertilizer from Soy-Maize Double Cropping to Streams

    NASA Astrophysics Data System (ADS)

    Cabrera, V. D.; Jankowski, K.; Neill, C.; Macedo, M.; Deegan, L.; Brando, P. M.; Nascimento, S.; Nascimento, E.; Rocha, S.; Coe, M. T.; Nunes, D.

    2015-12-01

    Globalization and the increasing demand for food create pressure to both expand and intensify agriculture. These changes have potentially large consequences for the solute concentrations and functioning of streams. In the Brazilian Amazon, crop agriculture expanded greatly during the last 20 years. More recently, farmers have intensified production on existing cropland by double cropping of soy and maize during the same year. Maize, a novel crop for the region, requires much higher applications of nitrogen (N) fertilizer than soybeans. To determine whether this novel land use and associated N addition influenced N concentrations in groundwater and stream water, we measured N concentrations in groundwater wells and streams from small headwater watersheds across three land uses (soy-maize, soy, and tropical forest) in the Upper Xingu Basin, a region of rapid cropland intensification in the southern Amazon. Each watershed contained six groundwater wells arranged in a transect reaching cropland field edge on either side of the stream. Total inorganic N concentrations were higher in wells adjacent to fields where double cropping occurred, while stream concentrations did not differ overall among land uses. This suggests the riparian zones are critical in the removal of N, but as the intensification of agriculture continues the ability of the riparian zone to prevent N from traveling to streams is unknown. Their protection is critical to the functioning of tropical watersheds.

  4. Economic potential of short-rotation woody crops on agricultural land for pulp fiber production in the United States.

    Treesearch

    Ralph J. Alig; Darius M. Adams; Bruce A. McCarl; Peter J. Ince

    2000-01-01

    A model of the U.S. forestry and agricultural sectors is used to simulate the consequences of growing short-rotation woody crops on agricultural lands as a fiber source for pulp and paper production. Hybrid poplar, a short-rotation woody crop, annually produces 4 to 7 dry tons per acre of hardwood pulpwood over a 6- to 10-year rotation. When harvested, the material...

  5. Identification of the condition of crops based on geospatial data embedded in graph databases

    NASA Astrophysics Data System (ADS)

    Idziaszek, P.; Mueller, W.; Górna, K.; Okoń, P.; Boniecki, P.; Koszela, K.; Fojud, A.

    2017-07-01

    The Web application presented here supports plant production and works with the graph database Neo4j shell to support the assessment of the condition of crops on the basis of geospatial data, including raster and vector data. The adoption of a graph database as a tool to store and manage the data, including geospatial data, is completely justified in the case of those agricultural holdings that have a wide range of types and sizes of crops. In addition, the authors tested the option of using the technology of Microsoft Cognitive Services at the level of produced application that enables an image analysis using the services provided. The presented application was designed using ASP.NET MVC technology and a wide range of leading IT tools.

  6. The development, evaluation, and application of O3 flux and flux-response models for additional agricultural crops

    Treesearch

    L. D. Emberson; W. J. Massman; P. Buker; G. Soja; I. Van De Sand; G. Mills; C. Jacobs

    2006-01-01

    Currently, stomatal O3 flux and flux-response models only exist for wheat and potato (LRTAP Convention, 2004), as such there is a need to extend these models to include additional crop types. The possibility of establishing robust stomatal flux models for five agricultural crops (tomato, grapevine, sugar beet, maize and sunflower) was investigated. These crops were...

  7. Agricultural interventions for water saving and crop yield improvement, in a Mediterranean area - an experimental design

    NASA Astrophysics Data System (ADS)

    Morianou, Giasemi; Kourgialas, Nektarios; Psarras, George; Koubouris, George; Arampatzis, George; Karatzas, George; Pavlidou, Elisavet

    2017-04-01

    This work is a part of LIFE+ AGROCLIMAWATER project and the aim is to improve the water efficiency, increase the adaptive capacity of tree corps and save water, in a Mediterranean area, under different climatic conditions and agricultural practices. The experimental design as well as preliminary results at farm and river basin scales are presented in this work. Specifically, ten (10) pilot farms, both organic and conventional ones have been selected in the sub-basin of Platanias in western Crete - Greece. These ten pilot farms were selected representing the most typical crops in Platanias area (olive trees and citrus trees), as well as the typical soil, landscape and agricultural practices differentiation for each crop (field slope, water availability, soil type, management regime). From the ten pilot farms, eight were olive farms and the rest two citrus. This proportion correspond adequacy to the presentence of olive and citrus crops in the extended area of Platanias prefecture. Each of the ten pilot farm has been divided in two parts, the first one will be used as a control part, while the other one as the demonstration part where the interventions will be applied. The action plans for each selected farm are based on the following groups of possible interventions: a) reduction of water evaporation losses from soil surface, b) reduction of transpiration water losses through winter pruning and summer pruning, c) reduction of deep percolation water and nutrient losses, d) reduction of surface runoff, e) measures in order to maximize the efficiency of irrigation and f) rationalization of fertilizers and agrochemicals utilized. Preliminary results indicate that water saving and crop yield can be significantly improved based on the above innervations both at farm and river basin scale.

  8. Hand-held radiometer red and photographic infrared spectral measurements of agricultural crops

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Fan, C. J.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III

    1978-01-01

    Red and photographic infrared radiance data, collected under a variety of conditions at weekly intervals throughout the growing season using a hand-held radiometer, were used to monitor crop growth and development. The vegetation index transformation was used to effectively compensate for the different irradiational conditions encountered during the study period. These data, plotted against time, compared the different crops measured by comparing their green leaf biomass dynamics. This approach, based entirely upon spectral inputs, closely monitors crop growth and development and indicates the promise of ground-based hand-held radiometer measurements of crops.

  9. Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change

    DOE PAGES

    Mistry, Malcolm N.; Wing, Ian Sue; De Cian, Enrica

    2017-07-10

    Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and implications of this divergence—both among GGCMs and between GGCMs and historical observations. We examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981–2004 hindcast yields over the coterminous United States (US) against US Departmentmore » of Agriculture (USDA) time series for about 1000 counties. Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that up to 60% of the variance in both simulated and observed yields is attributable to weather variation. A majority of the GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate responses that show yields to be more weather-sensitive than in the observational record over the predominant range of temperature and precipitation conditions. In conclusion, this disparity is largely attributable to heterogeneity in GGCMs' responses, as opposed to uncertainty in historical weather forcings, and is responsible for widely divergent impacts of climate on future crop yields.« less

  10. Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mistry, Malcolm N.; Wing, Ian Sue; De Cian, Enrica

    Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and implications of this divergence—both among GGCMs and between GGCMs and historical observations. We examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981–2004 hindcast yields over the coterminous United States (US) against US Departmentmore » of Agriculture (USDA) time series for about 1000 counties. Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that up to 60% of the variance in both simulated and observed yields is attributable to weather variation. A majority of the GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate responses that show yields to be more weather-sensitive than in the observational record over the predominant range of temperature and precipitation conditions. In conclusion, this disparity is largely attributable to heterogeneity in GGCMs' responses, as opposed to uncertainty in historical weather forcings, and is responsible for widely divergent impacts of climate on future crop yields.« less

  11. Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change

    NASA Astrophysics Data System (ADS)

    Mistry, Malcolm N.; Wing, Ian Sue; De Cian, Enrica

    2017-07-01

    Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and implications of this divergence—both among GGCMs and between GGCMs and historical observations. We examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981-2004 hindcast yields over the coterminous United States (US) against US Department of Agriculture (USDA) time series for about 1000 counties. Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that up to 60% of the variance in both simulated and observed yields is attributable to weather variation. A majority of the GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate responses that show yields to be more weather-sensitive than in the observational record over the predominant range of temperature and precipitation conditions. This disparity is largely attributable to heterogeneity in GGCMs’ responses, as opposed to uncertainty in historical weather forcings, and is responsible for widely divergent impacts of climate on future crop yields.

  12. Differential Impacts of Climate Change on Crops and Agricultural Regions in India

    NASA Astrophysics Data System (ADS)

    Sharma, A. N.

    2015-12-01

    As India's farmers and policymakers consider potential adaptation strategies to climate change, some questions loom large: - Which climate variables best explain the variability of crop yields? - How does the vulnerability of crop yields to climate vary regionally? - How are these risks likely to change in the future? While process-based crop modelling has started to answer many of these questions, we believe statistical approaches can complement these in improving our understanding of climate vulnerabilities and appropriate responses. We use yield data collected over three decades for more than ten food crops grown in India along with a variety of statistical approaches to answer the above questions. The ability of climate variables to explain yield variation varies greatly by crop and season, which is expected. Equally important, the ability of models to predict crop yields as well as their coefficients varies greatly by district even for districts which are relatively close to each other and similar in their agricultural practices. We believe these results encourage caution and nuance when making projections about climate impacts on crop yields in the future. Most studies about climate impacts on crop yields focus on a handful of major food crops. By extending our analysis to all the crops with long-term district level data in India as well as two growing seasons we gain a more comprehensive picture. Our results indicate that there is a great deal of variability even at relatively small scales, and that this must be taken into account if projections are to be made useful to policymakers.

  13. Estimating Hydrologic Fluxes, Crop Water Use, and Agricultural Land Area in China using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Smith, Tiziana; McLaughlin, Dennis B.; Hoisungwan, Piyatida

    2016-04-01

    Crop production has significantly altered the terrestrial environment by changing land use and by altering the water cycle through both co-opted rainfall and surface water withdrawals. As the world's population continues to grow and individual diets become more resource-intensive, the demand for food - and the land and water necessary to produce it - will continue to increase. High-resolution quantitative data about water availability, water use, and agricultural land use are needed to develop sustainable water and agricultural planning and policies. However, existing data covering large areas with high resolution are susceptible to errors and can be physically inconsistent. China is an example of a large area where food demand is expected to increase and a lack of data clouds the resource management dialogue. Some assert that China will have insufficient land and water resources to feed itself, posing a threat to global food security if they seek to increase food imports. Others believe resources are plentiful. Without quantitative data, it is difficult to discern if these concerns are realistic or overly dramatized. This research presents a quantitative approach using data assimilation techniques to characterize hydrologic fluxes, crop water use (defined as crop evapotranspiration), and agricultural land use at 0.5 by 0.5 degree resolution and applies the methodology in China using data from around the year 2000. The approach uses the principles of water balance and of crop water requirements to assimilate existing data with a least-squares estimation technique, producing new estimates of water and land use variables that are physically consistent while minimizing differences from measured data. We argue that this technique for estimating water fluxes and agricultural land use can provide a useful basis for resource management modeling and policy, both in China and around the world.

  14. Effects of climatic conditions and management practices on agricultural carbon and water budgets in the Inland Pacific Northwest USA

    USDA-ARS?s Scientific Manuscript database

    Cropland is an important land cover influencing global carbon and water cycles. Variability of agricultural carbon and water fluxes depends on crop species, management practices, soil characteristics, and climatic conditions. In the context of climate change, it is critical to quantify the long-term...

  15. Rice crop risk map in Babahoyo canton (Ecuador)

    NASA Astrophysics Data System (ADS)

    Valverde Arias, Omar; Tarquis, Ana; Garrido, Alberto

    2016-04-01

    It is widely known that extreme climatic phenomena occur with more intensity and frequency. This fact has put more pressure over farming, making agricultural and livestock production riskier. In order to reduce hazards and economic loses that could jeopardize farmer's incomes and even its business continuity, it is very important to implement agriculture risk management plans by governments and institutions. One of the main strategies is transfer risk by agriculture insurance. Agriculture insurance based in indexes has a significant growth in the last decade. And consist in a comparison between measured index values with a defined threshold that triggers damage losses. However, based index insurance could not be based on an isolated measurement. It is necessary to be integrated in a complete monitoring system that uses many sources of information and tools. For example, index influence areas, crop production risk maps, crop yields, claim statistics, and so on. Crop production risk is related with yield variation of crops and livestock, due to weather, pests, diseases, and other factors that affect both the quantity and quality of commodities produced. This is the risk which farmers invest more time managing, and it is completely under their control. The aim of this study is generate a crop risk map of rice that can provide risk manager important information about the status of crop facing production risks. Then, based on this information, it will be possible to make best decisions to deal with production risk. The rice crop risk map was generated qualifying a 1:25000 scale soil and climatic map of Babahoyo canton, which is located in coast region of Ecuador, where rice is one of the main crops. The methodology to obtain crop risk map starts by establishing rice crop requirements and indentifying the risks associated with this crop. A second step is to evaluate soil and climatic conditions of the study area related to optimal crop requirements. Based on it, we can

  16. Cover crops support ecological intensification of arable cropping systems

    NASA Astrophysics Data System (ADS)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  17. Agricultural water demand, water quality and crop suitability in Souk-Alkhamis Al-Khums, Libya

    NASA Astrophysics Data System (ADS)

    Abunnour, Mohamed Ali; Hashim, Noorazuan Bin Md.; Jaafar, Mokhtar Bin

    2016-06-01

    Water scarcity, unequal population distribution and agricultural activities increased in the coastal plains, and the probability of seawater intrusion with ground water. According to this, the quantitative and qualitative deterioration of underground water quality has become a potential for the occurrence, in addition to the decline in agricultural production in the study area. This paper aims to discover the use of ground water for irrigation in agriculture and their suitability and compatibility for agricultural. On the other hand, the quality is determines by the cultivated crops. 16 random samples of regular groundwater are collected and analyzed chemically. Questionnaires are also distributed randomly on regular basis to farmers.

  18. A National Crop Progress Monitoring System Based on NASA Earth Science Results

    NASA Astrophysics Data System (ADS)

    Di, L.; Yu, G.; Zhang, B.; Deng, M.; Yang, Z.

    2011-12-01

    Crop progress is an important piece of information for food security and agricultural commodities. Timely monitoring and reporting are mandated for the operation of agricultural statistical agencies. Traditionally, the weekly reporting issued by the National Agricultural Statistics Service (NASS) of the United States Department of Agriculture (USDA) is based on reports from the knowledgeable state and county agricultural officials and farmers. The results are spatially coarse and subjective. In this project, a remote-sensing-supported crop progress monitoring system is being developed intensively using the data and derived products from NASA Earth Observing satellites. Moderate Resolution Imaging Spectroradiometer (MODIS) Level 3 product - MOD09 (Surface Reflectance) is used for deriving daily normalized vegetation index (NDVI), vegetation condition index (VCI), and mean vegetation condition index (MVCI). Ratio change to previous year and multiple year mean can be also produced on demand. The time-series vegetation condition indices are further combined with the NASS' remote-sensing-derived Cropland Data Layer (CDL) to estimate crop condition and progress crop by crop. To facilitate the operational requirement and increase the accessibility of data and products by different users, each component of the system has being developed and implemented following open specifications under the Web Service reference model of Open Geospatial Consortium Inc. Sensor observations and data are accessed through Web Coverage Service (WCS), Web Feature Service (WFS), or Sensor Observation Service (SOS) if available. Products are also served through such open-specification-compliant services. For rendering and presentation, Web Map Service (WMS) is used. A Web-service based system is set up and deployed at dss.csiss.gmu.edu/NDVIDownload. Further development will adopt crop growth models, feed the models with remotely sensed precipitation and soil moisture information, and incorporate

  19. Farmer's Incentives for Adoption of Recommended Farm Practices in Wheat Crop in Aligarh Intensive Agricultural District, India.

    ERIC Educational Resources Information Center

    Vidyarthy, Gopal Saran

    This study was undertaken to identify farmer incentives that led them to adopt wheat crop practices in Aligarh Intensive Agricultural District Program: the association between the farmer's characteristics and adoption groups; the incentives that lead the farmers to adopt recommended wheat crop practices; relationship between identified incentives…

  20. Review of anthraquinone applications for pest management and agricultural crop protection.

    PubMed

    DeLiberto, Shelagh T; Werner, Scott J

    2016-10-01

    We have reviewed published anthraquinone applications for international pest management and agricultural crop protection from 1943 to 2016. Anthraquinone (AQ) is commonly found in dyes, pigments and many plants and organisms. Avian repellent research with AQ began in the 1940s. In the context of pest management, AQ is currently used as a chemical repellent, perch deterrent, insecticide and feeding deterrent in many wild birds, and in some mammals, insects and fishes. Criteria for evaluation of effective chemical repellents include efficacy, potential for wildlife hazards, phytotoxicity and environmental persistence. As a biopesticide, AQ often meets these criteria of efficacy for the non-lethal management of agricultural depredation caused by wildlife. We summarize published applications of AQ for the protection of newly planted and maturing crops from pest birds. Conventional applications of AQ-based repellents include preplant seed treatments [e.g. corn (Zea mays L.), rice (Oryza sativa L.), sunflower (Helianthus annuus L.), wheat (Triticum spp.), millet (Panicum spp.), sorghum (Sorghum bicolor L.), pelletized feed and forest tree species] and foliar applications for rice, sunflower, lettuce (Lactuca sativa L.), turf, sugar beets (Beta vulgaris L.), soybean (Glycine max L.), sweet corn and nursery, fruit and nut crops. In addition to agricultural repellent applications, AQ has also been used to treat toxicants for the protection of non-target birds. Few studies have demonstrated AQ repellency in mammals, including wild boar (Sus scrofa, L.), thirteen-lined ground squirrels (Ictidomys tridecemlineatus, Mitchill), black-tailed prairie dogs (Cyomys ludovicainus, Ord.), common voles (Microtus arvalis, Pallas), house mice (Mus musculus, L.), Tristram's jirds (Meriones tristrami, Thomas) and black rats (Rattus rattus L.). Natural sources of AQ and its derivatives have also been identified as insecticides and insect repellents. As a natural or synthetic biopesticide, AQ

  1. Precision agriculture in dry land: spatial variability of crop yield and roles of soil surveys, aerial photos, and digital elevation models

    NASA Astrophysics Data System (ADS)

    Nachabe, Mahmood; Ahuja, Laj; Shaffer, Mary Lou; Ascough, J.; Flynn, Brian; Cipra, J.

    1998-12-01

    In dryland, yield of crop varies substantially in space, often changing by an order of magnitude within few meters. Precision agriculture aims at exploiting this variability by changing agriculture management practices in space according to site specific conditions. Thus instead of managing a field (typical area 50 to 100 hectares) as a single unit using average conditions, the field is partitioned into small pieces of land known as management units. The size of management units can be in the order of 100 to 1,000 m2 to capture the patterns of variation of yield in the field. Agricultural practices like seeding rate, type of crop, and tillage and fertilizers are applied at the scale of the management unit to suit local agronomic conditions in unit. If successfully practiced, precision agriculture has the potential of increasing income and minimizing environmental impacts by reducing over application of crop production inputs. In the 90s, the implementation of precision agriculture was facilitated tremendously due to the wide availability and use of three technologies: (1) the Global Positioning System (GPS), (2) the Geographic Information System (GIS), and (3) remote sensing. The introduction of the GPS allowed the farmer to determine his coordinate location as equipments are moved in the field. Thus, any piece of equipment can be easily programmed to vary agricultural practices according to coordinate location over the field. The GIS allowed the storage and manipulation of large sets of data and the production of yield maps. Yield maps can be correlated with soil attributes from soil survey, and/or topographical attributes from a Digital Elevation Model (DEM). This helps predicting variation of potential yield over the landscape based on the spatial distribution of soil and topographical attributes. Soil attributes may include soil PH, Organic Matter, porosity, and hydraulic conductivity, whereas topographical attributes involve the estimations of elevation, slope

  2. Crop insurance: a tool to stabilize Spanish agricultural income

    NASA Astrophysics Data System (ADS)

    Calatayud Piñero, E.; Escribano Pintor, S.

    2009-04-01

    Agricultural insurance was born as a need for farmers, opposite to the erratic behavior of the climatology, natural disaster, which strangles the farmer during the cycle of his crops and harvest, reverberating negatively in the economy of the farmer. Before this situation, it became necessary to determine, inside the agricultural policies, a specific regulation of the agricultural insurance across a participation of the State by means of contributions to the agricultural insurance which result was, in Spain, the current Law 87/1978, of December 28 of Agricultural Insurance. The benefits of the existence of a good system of agricultural insurance not only are to level of the farmer but also to regional level and top areas, since to the regional production turns diminished, it reverberates in the economic productivity and in the rest of economic sectors, with the consequent tensions and imbalances, and the probability of being translated in a decrease of the quality of life of the rural way. But the analysis of the importance of his situation, not only must be carried out from a theoretical perspective, where already there exist numerous studies that treat the relation and importance of the agricultural insurance with regard to the traditional agriculture characterized by his limited capacity of innovation. For it, in this paper, we will proceed to realize an empirical analysis, inside our country, across the principal agrarian information statistics, as faithful reflection of the economic dimension of the sector, for across his evolution as well as that of the indemnifications paid for the agricultural insurance, to be able to show the importance of the same one in his contribution to the maintenance and improvement of the agriculture, avoiding the uncertainty of the farmer By means of the utilization of mobile averages, which eliminate the erratic behavior in the annual series, first we will realize a national analysis for the set of the lines of agricultural

  3. Efforts Toward an Early Warning Crop Monitor for Countries at Risk

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Verdin, J. P.; Barker, B.; Humber, M. L.; Becker-Reshef, I.; Justice, C. O.; Magadzire, T.; Galu, G.; Rodriguez, M.; Jayanthi, H.

    2015-12-01

    Assessing crop growing conditions is a crucial aspect of monitoring food security in the developing world. One of the core components of the Group on Earth Observations - Global Agricultural Monitoring (GEOGLAM) targets monitoring Countries at Risk (component 3). The Famine Early Warning Systems Network (FEWS NET) has a long history of utilizing remote sensing and crop modeling to address food security threats in the form of drought, floods, pest infestation, and climate change in some of the world's most at risk countries. FEWS NET scientists at the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center and the University of Maryland Department of Geography have undertaken efforts to address component 3, by promoting the development of a collaborative Early Warning Crop Monitor (EWCM) that would specifically address Countries at Risk. A number of organizations utilize combinations of satellite earth observations, field campaigns, network partner inputs, and crop modeling techniques to monitor crop conditions throughout the world. Agencies such as the Food and Agriculture Organization of the United Nations (FAO), United Nations World Food Programme (WFP), and the European Commission's Joint Research Centre (JRC) provide agricultural monitoring information and reporting across a broad number of areas at risk and in many cases, organizations routinely report on the same countries. The latter offers an opportunity for collaboration on crop growing conditions among agencies. The reduction of uncertainty and achievement of consensus will help strengthen confidence in decisions to commit resources for mitigation of acute food insecurity and support for resilience and development programs. In addition, the development of a collaborative global EWCM will provide each of the partner agencies with the ability to quickly gather crop condition information for areas where they may not typically work or have access to local networks. Using a framework

  4. Time to Redefine Organic Agriculture: Can’t GM Crops Be Certified as Organics?

    PubMed Central

    Husaini, Amjad M.; Sohail, Muhammad

    2018-01-01

    The challenges of sustainable food production without damaging the environment for a growing human population have increased considerably. The current agricultural practices involving chemical fertilizers and even organic farming are not sustainable in the long run and can have deleterious effects on the environment. Thus, new, innovative solutions need to be identified and propagated for tackling this. Among such innovations, that can complement conventional as well as organic farming methods, are genetic modification (GM) and aquaculture. Yet, GM technologies often face resistance from civil groups owing to an ‘unknown’ fear, akin to Frankenstein’s monster. How real is this fear? Our discussion rests on basic questions like, why can’t ‘organics’ include GM crops that do not require chemical inputs for cultivation, and can GM crops like Golden rice qualify to be ‘organic’ if cultivated through organic practices? Do we need to rethink organic agriculture in the context of the present and future challenges of 21st century? PMID:29692789

  5. Time to Redefine Organic Agriculture: Can't GM Crops Be Certified as Organics?

    PubMed

    Husaini, Amjad M; Sohail, Muhammad

    2018-01-01

    The challenges of sustainable food production without damaging the environment for a growing human population have increased considerably. The current agricultural practices involving chemical fertilizers and even organic farming are not sustainable in the long run and can have deleterious effects on the environment. Thus, new, innovative solutions need to be identified and propagated for tackling this. Among such innovations, that can complement conventional as well as organic farming methods, are genetic modification (GM) and aquaculture. Yet, GM technologies often face resistance from civil groups owing to an 'unknown' fear, akin to Frankenstein's monster. How real is this fear? Our discussion rests on basic questions like, why can't 'organics' include GM crops that do not require chemical inputs for cultivation, and can GM crops like Golden rice qualify to be 'organic' if cultivated through organic practices? Do we need to rethink organic agriculture in the context of the present and future challenges of 21st century?

  6. Modeling the impact of conservation agriculture on crop production and soil properties in Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed

    2015-04-01

    In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.

  7. A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability.

    PubMed

    Williams, Alwyn; Jordan, Nicholas R; Smith, Richard G; Hunter, Mitchell C; Kammerer, Melanie; Kane, Daniel A; Koide, Roger T; Davis, Adam S

    2018-05-31

    Climate models predict increasing weather variability, with negative consequences for crop production. Conservation agriculture (CA) may enhance climate resilience by generating certain soil improvements. However, the rate at which these improvements accrue is unclear, and some evidence suggests CA can lower yields relative to conventional systems unless all three CA elements are implemented: reduced tillage, sustained soil cover, and crop rotational diversity. These cost-benefit issues are important considerations for potential adopters of CA. Given that CA can be implemented across a wide variety of regions and cropping systems, more detailed and mechanistic understanding is required on whether and how regionally-adapted CA can improve soil properties while minimizing potential negative crop yield impacts. Across four US states, we assessed short-term impacts of regionally-adapted CA systems on soil properties and explored linkages with maize and soybean yield stability. Structural equation modeling revealed increases in soil organic matter generated by cover cropping increased soil cation exchange capacity, which improved soybean yield stability. Cover cropping also enhanced maize minimum yield potential. Our results demonstrate individual CA elements can deliver rapid improvements in soil properties associated with crop yield stability, suggesting that regionally-adapted CA may play an important role in developing high-yielding, climate-resilient agricultural systems.

  8. CropWatch agroclimatic indicators (CWAIs) for weather impact assessment on global agriculture.

    PubMed

    Gommes, René; Wu, Bingfang; Zhang, Ning; Feng, Xueliang; Zeng, Hongwei; Li, Zhongyuan; Chen, Bo

    2017-02-01

    CropWatch agroclimatic indicators (CWAIs) are a monitoring tool developed by the CropWatch global crop monitoring system in the Chinese Academy of Sciences (CAS; www.cropwatch.com.cn , Wu et al Int J Digital Earth 7(2):113-137, 2014, Wu et al Remote Sens 7:3907-3933, 2015). Contrary to most other environmental and agroclimatic indicators, they are "agronomic value-added", i.e. they are spatial values averaged over agricultural areas only and they include a weighting that enhances the contribution of the areas with the largest production potential. CWAIs can be computed for any time interval (starting from dekads) and yield one synthetic value per variable over a specific area and time interval, for instance a national annual value. Therefore, they are very compatible with socio-economic and other variables that are usually reported at regular time intervals over administrative units, such as national environmental or agricultural statistics. Two of the CWAIs are satellite-based (RAIN and Photosynthetically Active radiation, PAR) while the third is ground based (TEMP, air temperature); capitals are used when specifically referring to CWAIs rather than the climate variables in general. The paper first provides an overview of some common agroclimatic indicators, describing their procedural, systemic and normative features in subsequent sections, following the terminology of Binder et al Environ Impact Assess Rev 30:71-81 (2010). The discussion focuses on the systemic and normative aspects: the CWAIs are assessed in terms of their coherent description of the agroclimatic crop environment, at different spatial scales (systemic). The final section shows that the CWAIs retain key statistical properties of the underlying climate variables and that they can be compared to a reference value and used as monitoring and early warning variables (normative).

  9. CropWatch agroclimatic indicators (CWAIs) for weather impact assessment on global agriculture

    NASA Astrophysics Data System (ADS)

    Gommes, René; Wu, Bingfang; Zhang, Ning; Feng, Xueliang; Zeng, Hongwei; Li, Zhongyuan; Chen, Bo

    2017-02-01

    CropWatch agroclimatic indicators (CWAIs) are a monitoring tool developed by the CropWatch global crop monitoring system in the Chinese Academy of Sciences (CAS; http://www.cropwatch.com.cn, Wu et al Int J Digital Earth 7(2):113-137, 2014, Wu et al Remote Sens 7:3907-3933, 2015). Contrary to most other environmental and agroclimatic indicators, they are "agronomic value-added", i.e. they are spatial values averaged over agricultural areas only and they include a weighting that enhances the contribution of the areas with the largest production potential. CWAIs can be computed for any time interval (starting from dekads) and yield one synthetic value per variable over a specific area and time interval, for instance a national annual value. Therefore, they are very compatible with socio-economic and other variables that are usually reported at regular time intervals over administrative units, such as national environmental or agricultural statistics. Two of the CWAIs are satellite-based (RAIN and Photosynthetically Active radiation, PAR) while the third is ground based (TEMP, air temperature); capitals are used when specifically referring to CWAIs rather than the climate variables in general. The paper first provides an overview of some common agroclimatic indicators, describing their procedural, systemic and normative features in subsequent sections, following the terminology of Binder et al Environ Impact Assess Rev 30:71-81 (2010). The discussion focuses on the systemic and normative aspects: the CWAIs are assessed in terms of their coherent description of the agroclimatic crop environment, at different spatial scales (systemic). The final section shows that the CWAIs retain key statistical properties of the underlying climate variables and that they can be compared to a reference value and used as monitoring and early warning variables (normative).

  10. Standing crops and ecology of aquatic invertebrates in agricultural drainwater ponds in California

    USGS Publications Warehouse

    Euliss, N.H.; Jarvis, R.L.; Gilmer, D.S.

    1991-01-01

    We examined standing crops and ecology of aquatic invertebrates in agricultural drainwater evaporation ponds in California from October 1982 to March 1983 and September 1983 to March 1984. Evaporation ponds supported low diversities but high standing crops of aquatic invertebrates. A water boatman (Trichocorixa reticulata) and a midge (Tanypus grodhausi) were the most abundant invertebrates, constituting 44.9% and 51.4% of total macroinvertebrate biomass. Regression models indicated that of 6 environmental variables measured, only electrical conductivity (EC) and Julian date affected biomass and density of water boatmen. EC was the only significant correlate of midge biomass in evaporation ponds.

  11. Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale.

    PubMed

    Figuerola, Eva L M; Guerrero, Leandro D; Türkowsky, Dominique; Wall, Luis G; Erijman, Leonardo

    2015-03-01

    The goal of this study was to investigate the spatial turnover of soil bacterial communities in response to environmental changes introduced by the practices of soybean monoculture or crop rotations, relative to grassland soils. Amplicon sequencing of the 16S rRNA gene was used to analyse bacterial diversity in producer fields through three successive cropping cycles within one and a half years, across a regional scale of the Argentinean Pampas. Unlike local diversity, which was not significantly affected by land use type, agricultural management had a strong influence on β-diversity patterns. Distributions of pairwise distances between all soils samples under soybean monoculture had significantly lower β-diversity and narrower breadth compared with distributions of pairwise distances between soils managed with crop rotation. Interestingly, good agricultural practices had similar degree of β-diversity as natural grasslands. The higher phylogenetic relatedness of bacterial communities in soils under monoculture across the region was likely determined by the observed loss of endemic species, and affected mostly to phyla with low regional diversity, such as Acidobacteria, Verrucomicrobia and the candidates phyla SPAM and WS3. These results suggest that the implementation of good agricultural practices, including crop rotation, may be critical for the long-term conservation of soil biodiversity. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Net carbon balance of three full crop rotations at an agricultural site near Gebesee, Germany

    NASA Astrophysics Data System (ADS)

    Hurkuck, M.; Brümmer, C.; Kolle, O.; Kutsch, W. L.; Moffat, A. M.; Mukwashi, K.; Truckenbrodt, S. C.; Herbst, M.

    2015-12-01

    Continuous eddy-covariance (EC) measurements of biosphere-atmosphere CO2 and H2O exchange have been conducted since 2001 at an agricultural site near Gebesee, Germany, thus providing one of the longest EC time series of European croplands. During the experimental period, winter wheat and winter barley were alternately planted with potatoes, sugar beet, rape, and peppermint covering three full crop rotations (2001-2004, 2005-2009, and 2010-2014). In this study, data of 14 years of net ecosystem CO2 exchange (NEE) and evapotranspiration (E) were re-calculated. Based on these data, we present the net carbon (C) balance (net biome production, NBP) accounting for any additional C input by fertilization and C output by harvest. Further emphasis was placed on the sensitivity of water use efficiency (WUE) and E to climate and crop type. The main aim was to investigate the interannual variability in both NBP and WUE, thus disentangling the impacts of climatic conditions and land management on the net C balance as well as on WUE and E.

  13. Application of water footprint in a fertirrigated melon crop under semiarid conditions: A review.

    NASA Astrophysics Data System (ADS)

    Castellanos Serrano, María Teresa; Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; María Tarquis Alfonso, Ana

    2015-04-01

    In recent times, there has been a major increase in the use of water and fertilizers in order to increase agricultural production, while at the same time there has increased evidence that aquifers are reducing their water level, enriched by nutrient and degraded as a result of pollution. So best management practices are needed for much of cropped, irrigated and fertirrigated land, to avoid contamination of fresh water and groundwater. The concept of "water footprint" (WF) was introduced as an indicator for the total volume of direct and indirect freshwater used, consumed and/or polluted [1]. The WF distinguishes between blue water (volume of surface and groundwater consumed), green water (rain-water consumed), and grey water (volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards). This study is focused in calculating the crops WF using a real case of study in a fertirrigated melon crop under semiarid conditions which is principally cultivated in the centre of Spain declared vulnerable zone to nitrate pollution by applying the Directive 91/676/CEE. During successive years, a melon crop (Cucumis melo L.) was grown under field conditions applying mineral and organic fertilizers. Different doses of ammonium nitrate were used as well as compost derived from the wine-distillery industry which is relevant in this area. This application help us to review the different concepts in which is based WF. Acknowledgements: This project has been supported by INIA-RTA04-111-C3 and INIA-RTA2010-00110-C03-01. Keywords: Water footprint, nitrogen, fertirrigation, inorganic fertilizers, organic amendments, winery waste, semiarid conditions. [1] Hoekstra, A.Y. 2003. Virtual water trade. Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, The Netherlands, 12-13 December 2002. Value of Water Research Report Series No. 12, UNESCO-IHE, Delft, The Netherlands.

  14. Monitoring Agricultural Cropping Patterns in the Great Lakes Basin Using MODIS-NDVI Time Series Data

    EPA Science Inventory

    This research examined changes in agricultural cropping patterns across the Great Lakes Basin (GLB) using the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. Specific research objectives were to characterize the distribut...

  15. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Crop year. 1221.6 Section 1221.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year...

  16. 7 CFR 1221.6 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Crop year. 1221.6 Section 1221.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... INFORMATION ORDER Sorghum Promotion, Research, and Information Order Definitions § 1221.6 Crop year. Crop year...

  17. Remote sensing in Virginia agriculture

    NASA Technical Reports Server (NTRS)

    Pettry, D. E.; Newhouse, M. E.; Dunton, E. M., Jr.; Scott, J. H., Jr.

    1972-01-01

    An experimental investigation, designed to develop and evaluate multispectral sensing techniques used in sensing agricultural crops, is described. Initial studies were designed to detect plant species and associated diseases, soil variations, and cultural practices under natural environment conditions. In addition, crop varieties, age, spacing, plant height, percentage of ground cover, and plant vigor are determined.

  18. Integrating NASA Earth Science Enterprise (ESE) Data Into Global Agricultural Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Teng, W.; Kempler, S.; Chiu, L.; Doraiswamy, P.; Liu, Z.; Milich, L.; Tetrault, R.

    2003-12-01

    Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of U.S. agricultural products and for global food security. Two major operational users of satellite remote sensing for global crop monitoring are the USDA Foreign Agricultural Service (FAS) and the U.N. World Food Programme (WFP). The primary goal of FAS is to improve foreign market access for U.S. agricultural products. The WFP uses food to meet emergency needs and to support economic and social development. Both use global agricultural decision support systems that can integrate and synthesize a variety of data sources to provide accurate and timely information on global crop conditions. The Goddard Space Flight Center Earth Sciences Distributed Active Archive Center (GES DAAC) has begun a project to provide operational solutions to FAS and WFP, by fully leveraging results from previous work, as well as from existing capabilities of the users. The GES DAAC has effectively used its recently developed prototype TRMM Online Visualization and Analysis System (TOVAS) to provide ESE data and information to the WFP for its agricultural drought monitoring efforts. This prototype system will be evolved into an Agricultural Information System (AIS), which will operationally provide ESE and other data products (e.g., rainfall, land productivity) and services, to be integrated into and thus enhance the existing GIS-based, decision support systems of FAS and WFP. Agriculture-oriented, ESE data products (e.g., MODIS-based, crop condition assessment product; TRMM derived, drought index product) will be input to a crop growth model in collaboration with the USDA Agricultural Research Service, to generate crop condition and yield prediction maps. The AIS will have the capability for remotely accessing distributed data, by being compliant with community-based interoperability standards, enabling easy access to

  19. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery

    USDA-ARS?s Scientific Manuscript database

    Crop progress and condition are required for crop management and yield estimation. In the United States, they are reported weekly at state or district level by the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) using the field observations provided by local far...

  20. Operationalizing crop monitoring system for informed decision making related to food security in Nepal

    NASA Astrophysics Data System (ADS)

    Qamer, F. M.; Shah, S. N. Pd.; Murthy, M. S. R.; Baidar, T.; Dhonju, K.; Hari, B. G.

    2014-11-01

    In Nepal, two thirds of the total population depend on agriculture for their livelihoods and more than one third of Gross Domestic Product (GDP) comes from the agriculture sector. However, effective agriculture production across the country remains a serious challenge due to various factors, such as a high degree of spatial and temporal climate variability, irrigated and rain-fed agriculture systems, farmers' fragile social and economic fabric, and unique mountain practices. ICIMOD through SERVIR-Himalaya initiative with collaboration of Ministry of Agricultural Development (MoAD) is working on developing a comprehensive crop monitoring system which aims to provide timely information on crop growth and drought development conditions. This system analyzes historical climate and crop conditions patterns and compares this data with the current growing season to provide timely assessment of crop growth. Using remote sensing data for vegetation indices, temperature and rainfall, the system generated anomaly maps are inferred to predict the increase or shortfall in production. Comparisons can be made both spatially and in graphs and figures at district and Village Developmental Committee (VDC) levels. Timely information on possible anomaly in crop production is later used by the institutions like Ministry of Agricultural Development, Nepal and World Food Programme, Nepal to trigger appropriate management response. Future potential includes integrating data on agricultural inputs, socioeconomics, demographics, and transportation to holistically assess food security in the region served by SERVIR-Himalaya.

  1. 7 CFR 987.6 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 987.6 Section 987.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... RIVERSIDE COUNTY, CALIFORNIA Order Regulating Handling Definitions § 987.6 Crop year. Crop year means the 12...

  2. 7 CFR 987.6 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 987.6 Section 987.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... RIVERSIDE COUNTY, CALIFORNIA Order Regulating Handling Definitions § 987.6 Crop year. Crop year means the 12...

  3. Salt tolerant green crop species for sodium management in space agriculture

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Hashimoto, Hirofumi; Tomita-Yokotani, Kaori; Shimoda, Toshifumi; Nose, Akihiro; Space Agriculture Task Force, J.

    Ecological system and materials recycling loop of space agriculture are quite tight compared to natural ecological system on Earth. Sodium management will be a keen issue for space agricul-ture. Human nutritional requirements include sodium salt. Since sodium at high concentration is toxic for most of plant growth, excreted sodium of human waste should be removed from compost fertilizer. Use of marine algae is promising for harvesting potassium and other min-erals required for plant growth and returning remained sodium to satisfy human need of its intake. Farming salt tolerant green crop species is another approach to manage sodium problem in both space and terrestrial agriculture. We chose ice plant and New Zealand spinach. These two plant species are widely accepted green vegetable with many recipe. Ice plant can grow at the salinity level of sea water, and contain sodium salt up to 30% of its dry mass. Sodium distributes mainly in its bladder cells. New Zealand spinach is a plant species found in the front zone of sea shore, and tolerant against high salinity as well. Plant body size of both species at harvest is quite large, and easy to farm. Capability of bio-remediation of high saline soil is examined with ice plant and New Zealand spinach. Incubation medium was chosen to contain high concentration of sodium and potassium at the Na/K ratio of human excreta. In case Na/K ratio of plant body grown by this medium is greatly higher than that of incubation medium or soil, these halophytes are effective to remediate soil for farming less tolerant plant crop. Experimental results was less positive in this context.

  4. Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field

    Treesearch

    Xiuwei Liu; Xuejun Dong; Qingwu Xue; Daniel I. Leskovar; John Jifon; John R. Butnor; Thomas Marek

    2018-01-01

    Aim Ground penetrating radar (GPR) as a non-invasive technique is widely used in coarse root detection. However, the applicability of the technique to detect fine roots of agricultural crops is unknown. The objective of this study was to assess the feasibility of utilizing GPR to detect fine roots in the field.

  5. Comparison of soil microbial respiration and carbon turnover under perennial and annual biofuel crops in two agricultural soils

    NASA Astrophysics Data System (ADS)

    Szymanski, L. M.; Marin-Spiotta, E.; Sanford, G. R.; Jackson, R. D.; Heckman, K. A.

    2015-12-01

    Bioenergy crops have the potential to provide a low carbon-intensive alternative to fossil fuels. More than a century of agricultural research has shown that conventional cropping systems can reduce soil organic matter (SOM) reservoirs, which cause long-term soil nutrient loss and C release to the atmosphere. In the face of climate change and other human disruptions to biogeochemical cycles, identifying biofuel crops that can maintain or enhance soil resources is desirable for the sustainable production of bioenergy. The objective of our study was to compare the effects of four biofuel crop treatments on SOM dynamics in two agricultural soils: Mollisols at Arlington Agricultural Research Station in Wisconsin and Alfisols at Kellogg Biological Station in Michigan, USA. We used fresh soils collected in 2013 and archived soils from 2008 to measure the effects of five years of crop management. Using a one-year long laboratory soil incubation coupled with a regression model and radiocarbon measurements, we separated soils into three SOM pools and their corresponding C turnover times. We found that the active pool, or biologically available C, was more sensitive to management and is an earlier indicator of changes to soil C dynamics than bulk soil C measurements. There was no effect of treatment on the active pool size at either site; however, the percent C in the active pool decreased, regardless of crop type, in surface soils with high clay content. At depth, the response of the slow pool differed between annual and perennial cropping systems. The distribution of C among SOM fractions varied between the two soil types, with greater C content associated with the active fraction in the coarser textured-soil and greater C content associated with the slow-cycling fraction in the soils with high clay content. These results suggest that the effects of bioenergy crops on soil resources will vary geographically, with implications for the carbon-cost of biocrop production.

  6. Using daily field-scale evapotranspiration (ET) derived with multi-sensor data fusion for monitoring crop condition and yield in central Iowa, United States

    USDA-ARS?s Scientific Manuscript database

    Drought has significant impacts over broad spatial and temporal scales, and information about the timing and extent of such conditions is of critical importance to many end users in the agricultural and water resource management communities. The ability to accurately monitor effects on crops and pr...

  7. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Xu, Cong; Dungait, Jennifer A. J.; Bol, Roland; Wang, Xiaojie; Wu, Wenliang; Meng, Fanqiao

    2018-04-01

    Loss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI) has gradually been implemented across China in the context of agricultural intensification and rural livelihood improvement. A meta-analysis of data published before the end of 2016 was undertaken to investigate the effects of SI on crop production and SOC sequestration. The results of 68 experimental studies throughout China in different edaphic conditions, climate regions and farming regimes were analyzed. Compared with straw removal (SR), SI significantly sequestered SOC (0-20 cm depth) at the rate of 0.35 (95 % CI, 0.31-0.40) Mg C ha-1 yr-1, increased crop grain yield by 13.4 % (9.3-18.4 %) and had a conversion efficiency of the incorporated straw C of 16 % ± 2 % across China. The combined SI at the rate of 3 Mg C ha-1 yr-1 with mineral fertilizer of 200-400 kg N ha-1 yr-1 was demonstrated to be the best farming practice, where crop yield increased by 32.7 % (17.9-56.4 %) and SOC sequestrated by the rate of 0.85 (0.54-1.15) Mg C ha-1 yr-1. SI achieved a higher SOC sequestration rate and crop yield increment when applied to clay soils under high cropping intensities, and in areas such as northeast China where the soil is being degraded. The SOC responses were highest in the initial starting phase of SI, then subsequently declined and finally became negligible after 28-62 years. However, crop yield responses were initially low and then increased, reaching their highest level at 11-15 years after SI. Overall, our study confirmed that SI created a positive feedback loop of SOC enhancement together with increased crop production, and this is of great practical importance to straw management as agriculture

  8. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species.

    PubMed

    Martín-Robles, Nieves; Lehmann, Anika; Seco, Erica; Aroca, Ricardo; Rillig, Matthias C; Milla, Rubén

    2018-04-01

    The arbuscular mycorrhizal (AM) symbiosis is key to plant nutrition, and hence is potentially key in sustainable agriculture. Fertilization and other agricultural practices reduce soil AM fungi and root colonization. Such conditions might promote the evolution of low mycorrhizal responsive crops. Therefore, we ask if and how evolution under domestication has altered AM symbioses of crops. We measured the effect of domestication on mycorrhizal responsiveness across 27 crop species and their wild progenitors. Additionally, in a subset of 14 crops, we tested if domestication effects differed under contrasting phosphorus (P) availabilities. The response of AM symbiosis to domestication varied with P availability. On average, wild progenitors benefited from the AM symbiosis irrespective of P availability, while domesticated crops only profited under P-limited conditions. Magnitudes and directions of response were diverse among the 27 crops, and were unrelated to phylogenetic affinities or to the coordinated evolution with fine root traits. Our results indicate disruptions in the efficiency of the AM symbiosis linked to domestication. Under high fertilization, domestication could have altered the regulation of resource trafficking between AM fungi and associated plant hosts. Provided that crops are commonly raised under high fertilization, this result has important implications for sustainable agriculture. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Cover Crops and Fertilization Alter Nitrogen Loss in Organic and Conventional Conservation Agriculture Systems

    PubMed Central

    Shelton, Rebecca E.; Jacobsen, Krista L.; McCulley, Rebecca L.

    2018-01-01

    Agroecosystem nitrogen (N) loss produces greenhouse gases, induces eutrophication, and is costly for farmers; therefore, conservation agricultural management practices aimed at reducing N loss are increasingly adopted. However, the ecosystem consequences of these practices have not been well-studied. We quantified N loss via leaching, NH3 volatilization, N2O emissions, and N retention in plant and soil pools of corn conservation agroecosystems in Kentucky, USA. Three systems were evaluated: (1) an unfertilized, organic system with cover crops hairy vetch (Vicia villosa), winter wheat (Triticum aestivum), or a mix of the two (bi-culture); (2) an organic system with a hairy vetch cover crop employing three fertilization schemes (0 N, organic N, or a fertilizer N-credit approach); and (3) a conventional system with a winter wheat cover crop and three fertilization schemes (0 N, urea N, or organic N). In the unfertilized organic system, cover crop species affected NO3-N leaching (vetch > bi-culture > wheat) and N2O-N emissions and yield during corn growth (vetch, bi-culture > wheat). Fertilization increased soil inorganic N, gaseous N loss, N leaching, and yield in the organic vetch and conventional wheat systems. Fertilizer scheme affected the magnitude of growing season N2O-N loss in the organic vetch system (organic N > fertilizer N-credit) and the timing of loss (organic N delayed N2O-N loss vs. urea) and NO3-N leaching (urea >> organic N) in the conventional wheat system, but had no effect on yield. Cover crop selection and N fertilization techniques can reduce N leaching and greenhouse gas emissions without sacrificing yield, thereby enhancing N conservation in both organic and conventional conservation agriculture systems. PMID:29403512

  10. Spatial and temporal contrasts in the distribution of crops and pastures across Amazonia: A new agricultural land use data set from census data since 1950.

    PubMed

    Imbach, P; Manrow, M; Barona, E; Barretto, A; Hyman, G; Ciais, P

    2015-06-01

    Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage. Agricultural census database covers Amazon basin municipalities from 1950 to 2012Harmonized database groups crops and pastures by cropping system, C3/C4, and main cropsWe explored

  11. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering.

    PubMed

    Robson, T C; Braungardt, C B; Rieuwerts, J; Worsfold, P

    2014-01-01

    The biogeochemistry and bioavailability of cadmium, released during sphalerite weathering in soils, were investigated under contrasting agricultural scenarios to assess health risks associated with sphalerite dust transport to productive soils from mining. Laboratory experiments (365 d) on temperate and sub-tropical soils amended with sphalerite (<63 μm, 0.92 wt.% Cd) showed continuous, slow dissolution (0.6-1.2% y(-1)). Wheat grown in spiked temperate soil accumulated ≈38% (29 μmol kg(-1)) of the liberated Cd, exceeding food safety limits. In contrast, rice grown in flooded sub-tropical soil accumulated far less Cd (0.60 μmol kg(-1)) due to neutral soil pH and Cd bioavailability was possibly also controlled by secondary sulfide formation. The results demonstrate long-term release of Cd to soil porewaters during sphalerite weathering. Under oxic conditions, Cd may be sufficiently bioavailable to contaminate crops destined for human consumption; however flooded rice production limits the impact of sphalerite contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. 7 CFR 457.133 - Prune crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Prune crop insurance provisions. 457.133 Section 457.133 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.133 Prune crop insurance...

  13. 7 CFR 457.132 - Cranberry crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Cranberry crop insurance provisions. 457.132 Section 457.132 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.132 Cranberry crop insurance...

  14. 7 CFR 457.159 - Stonefruit crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Stonefruit crop insurance provisions. 457.159 Section 457.159 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.159 Stonefruit crop insurance...

  15. 7 CFR 457.141 - Rice crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Rice crop insurance provisions. 457.141 Section 457.141 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.141 Rice crop insurance...

  16. 7 CFR 457.138 - Grape crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Grape crop insurance provisions. 457.138 Section 457.138 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.138 Grape crop insurance...

  17. 7 CFR 457.158 - Apple crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Apple crop insurance provisions. 457.158 Section 457.158 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance...

  18. 7 CFR 457.157 - Plum crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Plum crop insurance provisions. 457.157 Section 457.157 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.157 Plum crop insurance...

  19. 7 CFR 457.135 - Onion crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Onion crop insurance provisions. 457.135 Section 457.135 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.135 Onion crop insurance...

  20. 7 CFR 457.136 - Tobacco crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Tobacco crop insurance provisions. 457.136 Section 457.136 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.136 Tobacco crop insurance...

  1. 7 CFR 457.134 - Peanut crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Peanut crop insurance provisions. 457.134 Section 457.134 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.134 Peanut crop insurance...

  2. 7 CFR 457.153 - Peach crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Peach crop insurance provisions. 457.153 Section 457.153 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.153 Peach crop insurance...

  3. Optimization based trade-off analysis of biodiesel crop production for managing a German agricultural catchment

    USDA-ARS?s Scientific Manuscript database

    In agricultural production, the existence of multiple trade-offs among several conflicting objectives, such as food production, water quantity, water quality, biodiversity and ecosystem services, is well known. However, quantification of the trade-offs among objectives in bioenergy crop production i...

  4. A Modernized System for Agricultural Monitoring for Food Security in Tanzania

    NASA Astrophysics Data System (ADS)

    Dempewolf, J.; Nakalembe, C. L.; Becker-Reshef, I.; Justice, C. J.; Tumbo, S.; Mbilinyi, B.; Maurice, S.; Mtalo, M.

    2016-12-01

    Accurate and timely information on agriculture, particularly in many countries dominated by complex smallholder, subsistence agricultural systems is often difficult to obtain or not available. This includes up-to-date information during the growing season on crop type, crop area and crop condition such as developmental stage, damage from pests and diseases, drought or flooding. These data are critical for government decision making on production forecasts, planning for commodity market transactions, food aid delivery, responding to disease outbreaks and for implementing agricultural extension and development efforts. In Tanzania we have been working closely with the National Food Security Division (NFSD) at the Ministry of Agriculture, Livestock and Fisheries (MALF) on designing and implementing an advanced agricultural monitoring system, utilizing satellite remote sensing, smart phone and internet technologies. Together with our local implementing partner, the Sokoine University of Agriculture we trained a large number of agricultural extension agents in different regions of Tanzania to deliver field data in near-realtime. Using our collaborative internet portal (Crop Monitor) the team of analysts compiles pertinent information on current crop and weather conditions from throughout the country in a standardized, consistent manner. Using the portal traditionally collected data are combined with electronically collected field data and MODIS satellite image time series from GLAM East-Africa (Global Agricultural Monitoring System, customized for stakeholders in East Africa). The main outcome of this work has been the compilation of the National Food Security Bulletin for Tanzania with plans for a public release and the intention for it to become the main avenue to dispense current updates and analysis on agriculture in the country. The same information is also a potential contribution to the international Early Warning Crop Monitor, which currently covers Tanzania

  5. The Climate-Agriculture-Modeling and Decision Tool (CAMDT) for Climate Risk Management in Agriculture

    NASA Astrophysics Data System (ADS)

    Ines, A. V. M.; Han, E.; Baethgen, W.

    2017-12-01

    Advances in seasonal climate forecasts (SCFs) during the past decades have brought great potential to improve agricultural climate risk managements associated with inter-annual climate variability. In spite of popular uses of crop simulation models in addressing climate risk problems, the models cannot readily take seasonal climate predictions issued in the format of tercile probabilities of most likely rainfall categories (i.e, below-, near- and above-normal). When a skillful SCF is linked with the crop simulation models, the informative climate information can be further translated into actionable agronomic terms and thus better support strategic and tactical decisions. In other words, crop modeling connected with a given SCF allows to simulate "what-if" scenarios with different crop choices or management practices and better inform the decision makers. In this paper, we present a decision support tool, called CAMDT (Climate Agriculture Modeling and Decision Tool), which seamlessly integrates probabilistic SCFs to DSSAT-CSM-Rice model to guide decision-makers in adopting appropriate crop and agricultural water management practices for given climatic conditions. The CAMDT has a functionality to disaggregate a probabilistic SCF into daily weather realizations (either a parametric or non-parametric disaggregation method) and to run DSSAT-CSM-Rice with the disaggregated weather realizations. The convenient graphical user-interface allows easy implementation of several "what-if" scenarios for non-technical users and visualize the results of the scenario runs. In addition, the CAMDT also translates crop model outputs to economic terms once the user provides expected crop price and cost. The CAMDT is a practical tool for real-world applications, specifically for agricultural climate risk management in the Bicol region, Philippines, having a great flexibility for being adapted to other crops or regions in the world. CAMDT GitHub: https://github.com/Agro-Climate/CAMDT

  6. Water and Land Limitations to Future Agricultural Production in the Middle East

    NASA Astrophysics Data System (ADS)

    Koch, J. A. M.; Wimmer, F.; Schaldach, R.

    2015-12-01

    Countries in the Middle East use a large fraction of their scarce water resources to produce cash crops, such as fruit and vegetables, for international markets. At the same time, these countries import large amounts of staple crops, such as cereals, required to meet the nutritional demand of their populations. This makes food security in the Middle East heavily dependent on world market prices for staple crops. Under these preconditions, increasing food demand due to population growth, urban expansion on fertile farmlands, and detrimental effects of a changing climate on the production of agricultural commodities present major challenges to countries in the Middle East that try to improve food security by increasing their self-sufficiency rate of staple crops.We applied the spatio-temporal land-use change model LandSHIFT.JR to simulate how an expansion of urban areas may affect the production of agricultural commodities in Jordan. We furthermore evaluated how climate change and changes in socio-economic conditions may influence crop production. The focus of our analysis was on potential future irrigated and rainfed production (crop yield and area demand) of fruit, vegetables, and cereals. Our simulation results show that the expansion of urban areas and the resulting displacement of agricultural areas does result in a slight decrease in crop yields. This leads to almost no additional irrigation water requirements due to the relocation of agricultural areas, i.e. there is the same amount of "crop per drop". However, taking into account projected changes in socio-economic conditions and climate conditions, a large volume of water would be required for cereal production in order to safeguard current self-sufficiency rates for staple crops. Irrigation water requirements are expected to double until 2025 and to triple until 2050. Irrigated crop yields are projected to decrease by about 25%, whereas there is no decrease in rainfed crop yields to be expected.

  7. An Interoperable, Agricultural Information System Based on Satellite Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Teng, William; Chiu, Long; Doraiswamy, Paul; Kempler, Steven; Liu, Zhong; Pham, Long; Rui, Hualan

    2005-01-01

    Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of US. agricultural products and for global food security. The Goddard Space Flight Center Earth Sciences Data and Information Services Center Distributed Active Archive Center (GES DISC DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide satellite remote sensing data products (e.g., rainfall) and services. The data products will include crop condition and yield prediction maps, generated from a crop growth model with satellite data inputs, in collaboration with the USDA Agricultural Research Service. The AIS will enable the remote, interoperable access to distributed data, by using the GrADS-DODS Server (GDS) and by being compliant with Open GIS Consortium standards. Users will be able to download individual files, perform interactive online analysis, as well as receive operational data flows. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as those of the USDA Foreign Agricultural Service and the U.N. World Food Program.

  8. Winter Crop Mapping for Improving Crop Production Estimates in Argentina Using Moderation Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Humber, M. L.; Copati, E.; Sanchez, A.; Sahajpal, R.; Puricelli, E.; Becker-Reshef, I.

    2017-12-01

    Accurate crop production data is fundamental for reducing uncertainly and volatility in the domestic and international agricultural markets. The Agricultural Estimates Department of the Buenos Aires Grain Exchange has worked since 2000 on the estimation of different crop production data. With this information, the Grain Exchange helps different actors of the agricultural chain, such as producers, traders, seed companies, market analyst, policy makers, into their day to day decision making. Since 2015/16 season, the Grain Exchange has worked on the development of a new earth observations-based method to identify winter crop planted area at a regional scale with the aim of improving crop production estimates. The objective of this new methodology is to create a reliable winter crop mask at moderate spatial resolution using Landsat-8 imagery by exploiting bi-temporal differences in the phenological stages of winter crops as compared to other landcover types. In collaboration with the University of Maryland, the map has been validated by photointerpretation of a stratified statistically random sample of independent ground truth data in the four largest producing provinces of Argentina: Buenos Aires, Cordoba, La Pampa, and Santa Fe. In situ measurements were also used to further investigate conditions in the Buenos Aires province. Preliminary results indicate that while there are some avenues for improvement, overall the classification accuracy of the cropland and non-cropland classes are sufficient to improve downstream production estimates. Continuing research will focus on improving the methodology for winter crop mapping exercises on a yearly basis as well as improving the sampling methodology to optimize collection of validation data in the future.

  9. Selected examples of dispersal of arthropods associated with agricultural crop and animal production

    NASA Technical Reports Server (NTRS)

    Henneberry, T. J.

    1979-01-01

    The economic importance of arthropods in agricultural production systems and the possibilities of using dispersal behavior to develop and manipulate control are examined. Examples of long and short distance dispersal of economic insect pests and beneficial species from cool season host reservoirs and overwintering sites are presented. Significant dispersal of these species often occurring during crop and animal production is discussed.

  10. How can crop intra-specific biodiversity mitigate the vulnerability of agricultural systems to climate change? A case study on durum wheat in Southern Italy

    NASA Astrophysics Data System (ADS)

    Monaco, Eugenia; Alfieri, Silvia Maria; Basile, Angelo; Menenti, Massimo; Bonfante, Antonello; De Lorenzi, Fracesca

    2014-05-01

    Climate evolution may lead to changes in the amount and distribution of precipitations and to reduced water availability, with constraints on the cultivation of some crops. Recently, foreseen crop responses to climate change raise a crucial question for the agricultural stakeholders: are the current production systems resilient to this change? An active debate is in progress about the definition of adaptation of agricultural systems, particularly about the integrated assessment of climate stressors, vulnerability and resilece towards the evaluation of climate impact on agricultural systems. Climate change represents a risk for rain-fed agricultural systems, where irrigations cannot compensate reductions in precipitations. The intra-specific biodiversity of crops can be a resource towards adaptation. The knowledge of the responses to environmental conditions (temperature and water availability) of different cultivars can allow to identify options for adaptation to future climate. Simulation models of water flow in the soil-plant-atmosphere system, driven by different climate scenarios, can describe present and foreseen soil water regime. The present work deals with a case-study on the adaptive capacity of durum wheat to climate change. The selected study area is a hilly region in Southern Italy (Fortore Beneventano, Campania Region). Two climate cases were studied: "reference" (1961-1990) and "future" (2021-2050). A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was run to determine the water regime in some soil units, representative of the soil variability in the study area. From model output, the Relative Evapotranspiration Deficit (RETD) was determined as an indicator of hydrological conditions during the crop growing period for each year and climate case; and periods with higher frequencies of soil water deficits were identified. The timing of main crop development stages was calculated. The occurrence of water deficit at different

  11. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer must..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop...

  12. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer must..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop...

  13. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer must..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop...

  14. 7 CFR 205.203 - Soil fertility and crop nutrient management practice standard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Soil fertility and crop nutrient management practice... Requirements § 205.203 Soil fertility and crop nutrient management practice standard. (a) The producer must..., and biological condition of soil and minimize soil erosion. (b) The producer must manage crop...

  15. GIS based evaluation of crop suitability for agricultural sustainability around Kolaghat thermal power plant, India.

    PubMed

    Adak, Subhas; Adhikari, Kalyan; Brahmachari, Koushik

    2016-09-01

    Fly ash exhaust from Kolaghat thermal power plant, West Bengal, India,?? affects the areas within the radius of 3 - 4 km. Land information system indicated that surface texture within 4 km was silty loam and clay content increased with increase of distance. Soil pH was alkaline (7.58-8.01) in affected circles, whereas soil was acidic (5.95-6.41) in rest of block. Organic carbon (OC) is roving from 0.36 to 0.64% in the nearer circles which is lesser from others. The present Crop suitability analysis revealed that 96.98 % area was suitable (S1) for maize, sesame, jute, whereas these were cultivated in less than 1% of land. Flowers are the best suitable (S1) in 88.9 % but it was grown in 6.02 % area.? The present rice area within 4 km of KTPP is showing moderately suitable (S2) and S1 for the rest. Wheat is moderately suitable (S2) in the almost all the circles.? Cultivation of vegetable crops is limited in the affected circles while the highly suitable (S1) comprises 67.49 % for the remaining areas though it covered only 6.01 % of the block.? This evaluation precisely improves more than 300% from the earlier cropping intensity of 177.95 %. Suitability based land use allocation serves as stepping stone to promote agricultural sustainability. Geographic information system (GIS) model has been developed to assess site specific crop suitability for sustainable agricultural planning.

  16. Energy crop mapping with enhanced TM/MODIS time series in the BCAP agricultural lands

    NASA Astrophysics Data System (ADS)

    Wang, Cuizhen; Fan, Qian; Li, Qingting; SooHoo, William M.; Lu, Linlin

    2017-02-01

    Since the mid-2000s, agricultural lands in the United States have been undergoing rapid change to meet the increasing bioenergy demand. In 2009 the USDA Biomass Crop Assistance Program (BCAP) was established. In its Project Area 1, land owners are financially supported to grow perennial prairie grasses (switchgrass) in their row-crop lands. To promote the program, this study tested the feasibility of biomass crop mapping based on unique timings of crop development. With a previously published data fusion algorithm - the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), a 10-day normalized difference vegetation index (NDVI) time series in 2007 was established by fusing MODIS reflectance into TM image series. Two critical dates - peak growing (PG) and peak drying (PD) - were extracted and a unique "PG-0-PD" timing sequence was defined for each crop. With a knowledge-based decision tree approach, the classification of enhanced TM/MODIS time series reached an overall accuracy of 76% against the USDA Crop Data layer (CDL). Especially, our results showed that winter wheat single cropping and wheat-soybean double cropping were much better classified, which may provide additional information for the CDL product. More importantly, this study extracted the first spatial layer of warm-season prairie grasses that have not been published in any national land cover products, which could serve as a base map for decision making of bioenergy land use in BCAP land.

  17. The Value of SMAP Soil Moisture Observations For Agricultural Applications

    NASA Astrophysics Data System (ADS)

    Mladenova, I. E.; Bolten, J. D.; Crow, W.; Reynolds, C. A.

    2017-12-01

    Knowledge of the amount of soil moisture (SM) in the root zone (RZ) is critical source of information for crop analysts and agricultural agencies as it controls crop development and crop condition changes and can largely impact end-of-season yield. Foreign Agricultural Services (FAS), a subdivision of U.S. Department of Agriculture (USDA) that is in charge with providing information on current and expected global crop supply and demand estimates, has been relying on RZSM estimates generated by the modified two-layer Palmer model, which has been enhanced to allow the assimilation of satellite-based soil moisture data. Generally the accuracy of model-based soil moisture estimates is dependent on the precision of the forcing data that drives the model and more specifically, the accuracy of the precipitation data. Data assimilation gives the opportunity to correct for such precipitation-related inaccuracies and enhance the quality of the model estimates. Here we demonstrate the value of ingesting passive-based soil moisture observations derived from the Soil Moisture Active Passive (SMAP) mission. In terms of agriculture, general understanding is that the change in soil moisture conditions precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop conditions. Therefore, we assess the accuracy of the SMAP enhanced Palmer model by examining the lag rank cross-correlation coefficient between the model generated soil moisture observations and the Normalized Difference Vegetation Index (NDVI).

  18. Climate-Agriculture-Modeling and Decision Tool for Disease (CAMDT-Disease) for seasonal climate forecast-based crop disease risk management in agriculture

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Lee, S.; Han, E.; Ines, A. V. M.

    2017-12-01

    Climate-Agriculture-Modeling and Decision Tool (CAMDT) is a decision support system (DSS) tool that aims to facilitate translations of probabilistic seasonal climate forecasts (SCF) to crop responses such as yield and water stress. Since CAMDT is a software framework connecting different models and algorithms with SCF information, it can be easily customized for different types of agriculture models. In this study, we replaced the DSSAT-CSM-Rice model originally incorporated in CAMDT with a generic epidemiological model, EPIRICE, to generate a seasonal pest outlook. The resulting CAMDT-Disease generates potential risks for selected fungal, viral, and bacterial diseases of rice over the next months by translating SCFs into agriculturally-relevant risk information. The integrated modeling procedure of CAMDT-Disease first disaggregates a given SCF using temporal downscaling methods (predictWTD or FResampler1), runs EPIRICE with the downscaled weather inputs, and finally visualizes the EPIRICE outputs as disease risk compared to that of the previous year and the 30-year-climatological average. In addition, the easy-to-use graphical user interface adopted from CAMDT allows users to simulate "what-if" scenarios of disease risks over different planting dates with given SCFs. Our future work includes the simulation of the effect of crop disease on yields through the disease simulation models with the DSSAT-CSM-Rice model, as disease remains one of the most critical yield-reducing factors in the field.

  19. A National Crop Progress Monitoring and Decision Support System Based on NASA Earth Science Results

    NASA Astrophysics Data System (ADS)

    di, L.; Yang, Z.

    2009-12-01

    Timely and accurate information on weekly crop progress and development is essential to a dynamic agricultural industry in the U. S. and the world. By law, the National Agricultural Statistics Service (NASS) of the U. S. Department of Agriculture’s (USDA) is responsible for monitoring and assessing U.S. agricultural production. Currently NASS compiles and issues weekly state and national crop progress and development reports based on reports from knowledgeable state and county agricultural officials and farmers. Such survey-based reports are subjectively estimated for an entire county, lack spatial coverage, and are labor intensive. There has been limited use of remote sensing data to assess crop conditions. NASS produces weekly 1-km resolution un-calibrated AVHRR-based NDVI static images to represent national vegetation conditions but there is no quantitative crop progress information. This presentation discusses the early result for developing a National Crop Progress Monitoring and Decision Support System. The system will overcome the shortcomings of the existing systems by integrating NASA satellite and model-based land surface and weather products, NASS’ wealth of internal crop progress and condition data and Cropland Data Layers (CDL), and the Farm Service Agency’s (FSA) Common Land Units (CLU). The system, using service-oriented architecture and web service technologies, will automatically produce and disseminate quantitative national crop progress maps and associated decision support data at 250-m resolution, as well as summary reports to support NASS and worldwide users in their decision-making. It will provide overall and specific crop progress for individual crops from the state level down to CLU field level to meet different users’ needs on all known croplands. This will greatly enhance the effectiveness and accuracy of the NASS aggregated crop condition data and charts of and provides objective and scientific evidence and guidance for the

  20. Midwestern US Farmers Perceive Crop Advisers as Conduits of Information on Agricultural Conservation Practices

    NASA Astrophysics Data System (ADS)

    Eanes, Francis R.; Singh, Ajay S.; Bulla, Brian R.; Ranjan, Pranay; Prokopy, Linda S.; Fales, Mary; Wickerham, Benjamin; Doran, Patrick J.

    2017-11-01

    Nonpoint source pollution from agricultural land uses continues to pose one of the most significant threats to water quality in the US, with measurable impacts across local, regional, and national scales. The impact and the influence of targeted conservation efforts are directly related to the degree to which farmers are familiar with and trust the entities providing the information and/or outreach. Recent research suggests that farmers consistently rank independent and retail-affiliated crop advisers as among the most trusted and influential sources for agronomic information, but little is understood about whether farmers are willing to receive advice from crop advisers on the use of practices that conserve soil and water, and, if so, whether crop advisers will be perceived as influential. We present survey data from farmers ( n = 1461) in Michigan's Saginaw Bay (Lake Huron) watershed to explore these questions. Results suggest that farmers view crop advisers as trustworthy sources of information about conservation, and influential on management practices that have large conservation implications. We discuss these results, along with perceived barriers and opportunities to crop advisers partnering with traditional conservation agencies to enhance the impact of voluntary conservation programs.

  1. Midwestern US Farmers Perceive Crop Advisers as Conduits of Information on Agricultural Conservation Practices.

    PubMed

    Eanes, Francis R; Singh, Ajay S; Bulla, Brian R; Ranjan, Pranay; Prokopy, Linda S; Fales, Mary; Wickerham, Benjamin; Doran, Patrick J

    2017-11-01

    Nonpoint source pollution from agricultural land uses continues to pose one of the most significant threats to water quality in the US, with measurable impacts across local, regional, and national scales. The impact and the influence of targeted conservation efforts are directly related to the degree to which farmers are familiar with and trust the entities providing the information and/or outreach. Recent research suggests that farmers consistently rank independent and retail-affiliated crop advisers as among the most trusted and influential sources for agronomic information, but little is understood about whether farmers are willing to receive advice from crop advisers on the use of practices that conserve soil and water, and, if so, whether crop advisers will be perceived as influential. We present survey data from farmers (n = 1461) in Michigan's Saginaw Bay (Lake Huron) watershed to explore these questions. Results suggest that farmers view crop advisers as trustworthy sources of information about conservation, and influential on management practices that have large conservation implications. We discuss these results, along with perceived barriers and opportunities to crop advisers partnering with traditional conservation agencies to enhance the impact of voluntary conservation programs.

  2. Development of the Land-use and Agricultural Management Practice web-Service (LAMPS) for generating crop rotations in space and time

    USDA-ARS?s Scientific Manuscript database

    Agroecosystem models and conservation planning tools require spatially and temporally explicit input data about agricultural management operations. The Land-use and Agricultural Management Practices web-Service (LAMPS) provides crop rotation and management information for user-specified areas within...

  3. Metamorphosis of cisgenic insect resistance research in the transgenic crop era

    USDA-ARS?s Scientific Manuscript database

    The biotechnological revolution has forever changed agricultural research and crop production worldwide. Commercial agriculture now includes plants that produce enhanced yield and quality, survival in hostile environmental conditions, manufacture and express defensive toxins, and yield grains with ...

  4. A methodological approach for deriving regional crop rotations as basis for the assessment of the impact of agricultural strategies using soil erosion as example.

    PubMed

    Lorenz, Marco; Fürst, Christine; Thiel, Enrico

    2013-09-01

    Regarding increasing pressures by global societal and climate change, the assessment of the impact of land use and land management practices on land degradation and the related decrease in sustainable provision of ecosystem services gains increasing interest. Existing approaches to assess agricultural practices focus on the assessment of single crops or statistical data because spatially explicit information on practically applied crop rotations is mostly not available. This provokes considerable uncertainties in crop production models as regional specifics have to be neglected or cannot be considered in an appropriate way. In a case study in Saxony, we developed an approach to (i) derive representative regional crop rotations by combining different data sources and expert knowledge. This includes the integration of innovative crop sequences related to bio-energy production or organic farming and different soil tillage, soil management and soil protection techniques. Furthermore, (ii) we developed a regionalization approach for transferring crop rotations and related soil management strategies on the basis of statistical data and spatially explicit data taken from so called field blocks. These field blocks are the smallest spatial entity for which agricultural practices must be reported to apply for agricultural funding within the frame of the European Agricultural Fund for Rural Development (EAFRD) program. The information was finally integrated into the spatial decision support tool GISCAME to assess and visualize in spatially explicit manner the impact of alternative agricultural land use strategies on soil erosion risk and ecosystem services provision. Objective of this paper is to present the approach how to create spatially explicit information on agricultural management practices for a study area around Dresden, the capital of the German Federal State Saxony. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. ADJUSTMENT, MAINTENANCE, AND REPAIR OF CROP HARVESTING MACHINERY. AGRICULTURAL MACHINERY--SERVICE OCCUPATIONS, MODULE NUMBER 11.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED FOR HELPING TEACHERS PREPARE POSTSECONDARY-LEVEL STUDENTS FOR AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, AND SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT COMPETENCY IN ADJUSTING, REPAIRING, AND MAINTAINING CROP HARVESTING MACHINERY. SUGGESTIONS FOR INTRODUCTION OF THE…

  6. Spatial and temporal contrasts in the distribution of crops and pastures across Amazonia: A new agricultural land use data set from census data since 1950

    PubMed Central

    Imbach, P; Manrow, M; Barona, E; Barretto, A; Hyman, G; Ciais, P

    2015-01-01

    Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage. Key Points Agricultural census database covers Amazon basin municipalities from 1950 to 2012Harmonized database groups crops and pastures by cropping system, C3/C4, and main crops

  7. 7 CFR 457.140 - Dry pea crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Dry pea crop insurance provisions. 457.140 Section 457.140 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.140 Dry pea crop insurance...

  8. 7 CFR 457.149 - Table grape crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Table grape crop insurance provisions. 457.149 Section 457.149 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.149 Table grape crop insurance...

  9. 7 CFR 457.137 - Green pea crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Green pea crop insurance provisions. 457.137 Section 457.137 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.137 Green pea crop insurance...

  10. 7 CFR 457.150 - Dry bean crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Dry bean crop insurance provisions. 457.150 Section 457.150 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.150 Dry bean crop insurance...

  11. 7 CFR 457.2 - Availability of Federal crop insurance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of Federal crop insurance. 457.2 Section 457.2 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.2 Availability of Federal crop...

  12. Detection of anomalous crop condition and soil variability mapping using a 26 year Landsat record and the Palmer crop moisture index

    NASA Astrophysics Data System (ADS)

    Venteris, E. R.; Tagestad, J. D.; Downs, J. L.; Murray, C. J.

    2015-07-01

    Cost-effective and reliable vegetation monitoring methods are needed for applications ranging from traditional agronomic mapping, to verifying the safety of geologic injection activities. A particular challenge is defining baseline crop conditions and subsequent anomalies from long term imagery records (Landsat) in the face of large spatiotemporal variability. We develop a new method for defining baseline crop response (near peak growth) using the normalized difference vegetation index (NDVI) from 26 years (1986-2011) of Landsat data for 400 km2 surrounding a planned geologic carbon sequestration site near Jacksonville, Illinois. The normal score transform (yNDVI) was applied on a field by field basis to accentuate spatial patterns and level differences due to planting times. We tested crop type and soil moisture (Palmer crop moisture index (CMI)) as predictors of expected crop condition. Spatial patterns in yNDVI were similar between corn and soybeans - the two major crops. Linear regressions between yNDVI and the cumulative CMI (CCMI) exposed complex interactions between crop condition, field location (topography and soils), and annual moisture. Wet toposequence positions (depressions) were negatively correlated to CCMI and dry positions (crests) positively correlated. However, only 21% of the landscape showed a statistically significant (p < 0.05) linear relationship. To map anomalous crop conditions, we defined a tolerance interval based on yNDVI statistics. Tested on an independent image (2013), 63 of 1483 possible fields showed unusual crop condition. While the method is not directly suitable for crop health assessment, the spatial patterns in correlation between yNDVI and CCMI have potential applications for pest damage detection and edaphological soil mapping, especially in the developing world.

  13. Ground-Based Robotic Sensing of an Agricultural Sub-Canopy Environment

    NASA Astrophysics Data System (ADS)

    Burns, A.; Peschel, J.

    2015-12-01

    Airborne remote sensing is a useful method for measuring agricultural crop parameters over large areas; however, the approach becomes limited to above-canopy characterization as a crop matures due to reduced visual access of the sub-canopy environment. During the growth cycle of an agricultural crop, such as soybeans, the micrometeorology of the sub-canopy environment can significantly impact pod development and reduced yields may result. Larger-scale environmental conditions aside, the physical structure and configuration of the sub-canopy matrix will logically influence local climate conditions for a single plant; understanding the state and development of the sub-canopy could inform crop models and improve best practices but there are currently no low-cost methods to quantify the sub-canopy environment at a high spatial and temporal resolution over an entire growth cycle. This work describes the modification of a small tactical and semi-autonomous, ground-based robotic platform with sensors capable of mapping the physical structure of an agricultural row crop sub-canopy; a soybean crop is used as a case study. Point cloud data representing the sub-canopy structure are stored in LAS format and can be used for modeling and visualization in standard GIS software packages.

  14. Vulnerability of Agriculture to Climate Change as Revealed by Relationships between Simulated Crop Yield and Climate Change Indices

    NASA Astrophysics Data System (ADS)

    King, A. W.; Absar, S. M.; Nair, S.; Preston, B. L.

    2012-12-01

    The vulnerability of agriculture is among the leading concerns surrounding climate change. Agricultural production is influenced by drought and other extremes in weather and climate. In regions of subsistence farming, worst case reductions in yield lead to malnutrition and famine. Reduced surplus contributes to poverty in agrarian economies. In more economically diverse and industrialized regions, variations in agricultural yield can influence the regional economy through market mechanisms. The latter grows in importance as agriculture increasingly services the energy market in addition to markets for food and fiber. Agriculture is historically a highly adaptive enterprise and will respond to future changes in climate with a variety of adaptive mechanisms. Nonetheless, the risk, if not expectation, of increases in climate extremes and hazards exceeding historical experience motivates scientifically based anticipatory assessment of the vulnerability of agriculture to climate change. We investigate the sensitivity component of that vulnerability using EPIC, a well established field-scale model of cropping systems that includes the simulation of economic yield. The core of our analysis is the relationship between simulated yield and various indices of climate change, including the CCI/CLIVAR/JCOM ETCCDI indices, calculated from weather inputs to the model. We complement this core with analysis using the DSSAT cropping system model and exploration of relationships between historical yield statistics and climate indices calculated from weather records. Our analyses are for sites in the Southeast/Gulf Coast region of the United States. We do find "tight" monotonic relationships between annual yield and climate for some indices, especially those associated with available water. More commonly, however, we find an increase in the variability of yield as the index value becomes more extreme. Our findings contribute to understanding the sensitivity of crop yield as part of

  15. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

    PubMed Central

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  16. Food crop production, nutrient availability, and nutrient intakes in Bangladesh: exploring the agriculture-nutrition nexus with the 2010 Household Income and Expenditure Survey.

    PubMed

    Fiedler, John L

    2014-12-01

    Systematic collection of national agricultural data has been neglected in many low- and middle-income countries for the past 20 years. Commonly conducted nationally representative household surveys collect substantial quantities of highly underutilized food crop production data. To demonstrate the potential usefulness of commonly available household survey databases for analyzing the agriculture-nutrition nexus. Using household data from the 2010 Bangladesh Household Income and Expenditure Survey, the role and significance of crop selection, area planted, yield, nutrient production, and the disposition of 34 food crops in affecting the adequacy of farming households' nutrient availability and nutrient intake status are explored. The adequacy of each farming household's available energy, vitamin A, calcium, iron, and zinc and households' apparent intakes and intake adequacies are estimated. Each household's total apparent nutrient intake adequacies are estimated, taking into account the amount of each crop that households consume from their own production, together with food purchased or obtained from other sources. Even though rice contains relatively small amounts of micronutrients, has relatively low nutrient density, and is a relatively poor source of nutrients compared with what other crops can produce on a given tract of land, because so much rice is produced in Bangladesh, it is the source of 90% of the total available energy, 85% of the zinc, 67% of the calcium, and 55% of the iron produced by the agricultural sector. The domination of agriculture and diet by rice is a major constraint to improving nutrition in Bangladesh. Simple examples of how minor changes in the five most common cropping patterns could improve farming households' nutritional status are provided. Household surveys' agricultural modules can provide a useful tool for better understanding national nutrient production realities and possibilities.

  17. Cover crop biomass harvest for bioenergy: implications for crop productivity

    USDA-ARS?s Scientific Manuscript database

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  18. Humans as Sensors: Assessing the Information Value of Qualitative Farmer's Crop Condition Surveys for Crop Yield Monitoring and Forecasting

    NASA Astrophysics Data System (ADS)

    Beguería, S.

    2017-12-01

    While large efforts are devoted to developing crop status monitoring and yield forecasting systems trough the use of Earth observation data (mostly remotely sensed satellite imagery) and observational and modeled weather data, here we focus on the information value of qualitative data on crop status from direct observations made by humans. This kind of data has a high value as it reflects the expert opinion of individuals directly involved in the development of the crop. However, they have issues that prevent their direct use in crop monitoring and yield forecasting systems, such as their non-spatially explicit nature, or most importantly their qualitative nature. Indeed, while the human brain is good at categorizing the status of physical systems in terms of qualitative scales (`very good', `good', `fair', etcetera), it has difficulties in quantifying it in physical units. This has prevented the incorporation of this kind of data into systems that make extensive use of numerical information. Here we show an example of using qualitative crop condition data to estimate yields of the most important crops in the US early in the season. We use USDA weekly crop condition reports, which are based on a sample of thousands of reporters including mostly farmers and people in direct contact with them. These reporters provide subjective evaluations of crop conditions, in a scale including five levels ranging from `very poor' to `excellent'. The USDA report indicates, for each state, the proportion of reporters fort each condition level. We show how is it possible to model the underlying non-observed quantitative variable that reflects the crop status on each state, and how this model is consistent across states and years. Furthermore, we show how this information can be used to monitor the status of the crops and to produce yield forecasts early in the season. Finally, we discuss approaches for blending this information source with other, more classical earth data sources

  19. Crop diversification and livelihoods of smallholder farmers in Zimbabwe: adaptive management for environmental change.

    PubMed

    Makate, Clifton; Wang, Rongchang; Makate, Marshall; Mango, Nelson

    2016-01-01

    This paper demonstrates how crop diversification impacts on two outcomes of climate smart agriculture; increased productivity (legume and cereal crop productivity) and enhanced resilience (household income, food security, and nutrition) in rural Zimbabwe. Using data from over 500 smallholder farmers, we jointly estimate crop diversification and each of the outcome variables within a conditional (recursive) mixed process framework that corrects for selectivity bias arising due to the voluntary nature of crop diversification. We find that crop diversification depends on the land size, farming experience, asset wealth, location, access to agricultural extension services, information on output prices, low transportation costs and general information access. Our results also indicate that an increase in the rate of adoption improves crop productivity, income, food security and nutrition at household level. Overall, our results are indicative of the importance of crop diversification as a viable climate smart agriculture practice that significantly enhances crop productivity and consequently resilience in rural smallholder farming systems. We, therefore, recommend wider adoption of diversified cropping systems notably those currently less diversified for greater adaptation to the ever-changing climate.

  20. Towards a Quantitative Use of Satellite Remote Sensing in Crop Growth Models for Large Scale Agricultural Production Estimate (Invited)

    NASA Astrophysics Data System (ADS)

    Defourny, P.

    2013-12-01

    The development of better agricultural monitoring capabilities is clearly considered as a critical step for strengthening food production information and market transparency thanks to timely information about crop status, crop area and yield forecasts. The documentation of global production will contribute to tackle price volatility by allowing local, national and international operators to make decisions and anticipate market trends with reduced uncertainty. Several operational agricultural monitoring systems are currently operating at national and international scales. Most are based on the methods derived from the pioneering experiences completed some decades ago, and use remote sensing to qualitatively compare one year to the others to estimate the risks of deviation from a normal year. The GEO Agricultural Monitoring Community of Practice described the current monitoring capabilities at the national and global levels. An overall diagram summarized the diverse relationships between satellite EO and agriculture information. There is now a large gap between the current operational large scale systems and the scientific state of the art in crop remote sensing, probably because the latter mainly focused on local studies. The poor availability of suitable in-situ and satellite data over extended areas hampers large scale demonstrations preventing the much needed up scaling research effort. For the cropland extent, this paper reports a recent research achievement using the full ENVISAT MERIS 300 m archive in the context of the ESA Climate Change Initiative. A flexible combination of classification methods depending to the region of the world allows mapping the land cover as well as the global croplands at 300 m for the period 2008 2012. This wall to wall product is then compared with regards to the FP 7-Geoland 2 results obtained using as Landsat-based sampling strategy over the IGADD countries. On the other hand, the vegetation indices and the biophysical variables

  1. Agricultural Policy Environmental eXtender simulation of three adjacent row-crop watersheds in the claypan region

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Policy Environmental Extender (APEX) model can simulate crop yields, and pollutant loadings in whole farms or small watersheds with variety of management practices. The study objectives were to identify sensitive parameters and parameterize, calibrate and validate the APEX model fo...

  2. SACRA - global data sets of satellite-derived crop calendars for agricultural simulations: an estimation of a high-resolution crop calendar using satellite-sensed NDVI

    NASA Astrophysics Data System (ADS)

    Kotsuki, S.; Tanaka, K.

    2015-01-01

    To date, many studies have performed numerical estimations of food production and agricultural water demand to understand the present and future supply-demand relationship. A crop calendar (CC) is an essential input datum to estimate food production and agricultural water demand accurately with the numerical estimations. CC defines the date or month when farmers plant and harvest in cropland. This study aims to develop a new global data set of a satellite-derived crop calendar for agricultural simulations (SACRA) and reveal advantages and disadvantages of the satellite-derived CC compared to other global products. We estimate global CC at a spatial resolution of 5 min (≈10 km) using the satellite-sensed NDVI data, which corresponds well to vegetation growth and death on the land surface. We first demonstrate that SACRA shows similar spatial pattern in planting date compared to a census-based product. Moreover, SACRA reflects a variety of CC in the same administrative unit, since it uses high-resolution satellite data. However, a disadvantage is that the mixture of several crops in a grid is not considered in SACRA. We also address that the cultivation period of SACRA clearly corresponds to the time series of NDVI. Therefore, accuracy of SACRA depends on the accuracy of NDVI used for the CC estimation. Although SACRA shows different CC from a census-based product in some regions, multiple usages of the two products are useful to take into consideration the uncertainty of the CC. An advantage of SACRA compared to the census-based products is that SACRA provides not only planting/harvesting dates but also a peak date from the time series of NDVI data.

  3. Changing techniques in crop plant classification: molecularization at the National Institute of Agricultural Botany during the 1980s.

    PubMed

    Holmes, Matthew

    2017-04-01

    Modern methods of analysing biological materials, including protein and DNA sequencing, are increasingly the objects of historical study. Yet twentieth-century taxonomic techniques have been overlooked in one of their most important contexts: agricultural botany. This paper addresses this omission by harnessing unexamined archival material from the National Institute of Agricultural Botany (NIAB), a British plant science organization. During the 1980s the NIAB carried out three overlapping research programmes in crop identification and analysis: electrophoresis, near infrared spectroscopy (NIRS) and machine vision systems. For each of these three programmes, contemporary economic, statutory and scientific factors behind their uptake by the NIAB are discussed. This approach reveals significant links between taxonomic practice at the NIAB and historical questions around agricultural research, intellectual property and scientific values. Such links are of further importance given that the techniques developed by researchers at the NIAB during the 1980s remain part of crop classification guidelines issued by international bodies today.

  4. Estimating riparian and agricultural evapotranspiration by reference crop evapotranspiration and MODIS Enhanced Vegetation Index

    USGS Publications Warehouse

    Nagler, Pamela L.; Glenn, Edward P.; Nguyen, Uyen; Scott, Russell; Doody, Tania

    2013-01-01

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo). The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI) − c], where the term (1 − e−bEVI) is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73). It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89) difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  5. Reusable Software and Open Data Incorporate Ecological Understanding To Optimize Agriculture and Improveme Crops.

    NASA Astrophysics Data System (ADS)

    LeBauer, D.

    2015-12-01

    Humans need a secure and sustainable food supply, and science can help. We have an opportunity to transform agriculture by combining knowledge of organisms and ecosystems to engineer ecosystems that sustainably produce food, fuel, and other services. The challenge is that the information we have. Measurements, theories, and laws found in publications, notebooks, measurements, software, and human brains are difficult to combine. We homogenize, encode, and automate the synthesis of data and mechanistic understanding in a way that links understanding at different scales and across domains. This allows extrapolation, prediction, and assessment. Reusable components allow automated construction of new knowledge that can be used to assess, predict, and optimize agro-ecosystems. Developing reusable software and open-access databases is hard, and examples will illustrate how we use the Predictive Ecosystem Analyzer (PEcAn, pecanproject.org), the Biofuel Ecophysiological Traits and Yields database (BETYdb, betydb.org), and ecophysiological crop models to predict crop yield, decide which crops to plant, and which traits can be selected for the next generation of data driven crop improvement. A next step is to automate the use of sensors mounted on robots, drones, and tractors to assess plants in the field. The TERRA Reference Phenotyping Platform (TERRA-Ref, terraref.github.io) will provide an open access database and computing platform on which researchers can use and develop tools that use sensor data to assess and manage agricultural and other terrestrial ecosystems. TERRA-Ref will adopt existing standards and develop modular software components and common interfaces, in collaboration with researchers from iPlant, NEON, AgMIP, USDA, rOpenSci, ARPA-E, many scientists and industry partners. Our goal is to advance science by enabling efficient use, reuse, exchange, and creation of knowledge.

  6. Productivity limits and potentials of the principles of conservation agriculture.

    PubMed

    Pittelkow, Cameron M; Liang, Xinqiang; Linquist, Bruce A; van Groenigen, Kees Jan; Lee, Juhwan; Lundy, Mark E; van Gestel, Natasja; Six, Johan; Venterea, Rodney T; van Kessel, Chris

    2015-01-15

    One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the

  7. Changes in rainfed and irrigated crop yield response to climate in the western US

    NASA Astrophysics Data System (ADS)

    Li, X.; Troy, T. J.

    2018-06-01

    As the global population increases and the climate changes, ensuring a secure food supply is increasingly important. One strategy is irrigation, which allows for crops to be grown outside their optimal climate growing regions and which buffers against climate variability. Although irrigation is a positive climate adaptation mechanism for agriculture, it has a potentially negative effect on water resources as it can lead to groundwater depletion and diminished surface water supplies. This study quantifies how crop yields are affected by climate variability and extremes and the impact of irrigation on crop yield increases under various growing-season climate conditions. To do this, we use historical climate data and county-level rainfed and irrigated crop yields for maize, soybean, winter and spring wheat over the US to analyze the relationship between climate, crop yields, and irrigation. We find that there are optimal climates, specific to each crop, where irrigation provides a benefit and other conditions where irrigation proves to have marginal, if any, benefits. Furthermore, the relationship between crop yields and climate has changed over the last decades, with a changing sensitivity in the relationship of soybean and winter wheat yields to certain climate variables, like crop reference evapotranspiration. These two conclusions have important implications for agricultural and water resource system planning, as it implies there are more optimal climate conditions where irrigation is particularly productive and regions where irrigation should be reconsidered as there is not a significant agricultural benefit and the water could be used more productively.

  8. Anatomy of a local-scale drought: Application of assimilated remote sensing products, crop model, and statistical methods to an agricultural drought study

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok K.; Ines, Amor V. M.; Das, Narendra N.; Prakash Khedun, C.; Singh, Vijay P.; Sivakumar, Bellie; Hansen, James W.

    2015-07-01

    Drought is of global concern for society but it originates as a local problem. It has a significant impact on water quantity and quality and influences food, water, and energy security. The consequences of drought vary in space and time, from the local scale (e.g. county level) to regional scale (e.g. state or country level) to global scale. Within the regional scale, there are multiple socio-economic impacts (i.e., agriculture, drinking water supply, and stream health) occurring individually or in combination at local scales, either in clusters or scattered. Even though the application of aggregated drought information at the regional level has been useful in drought management, the latter can be further improved by evaluating the structure and evolution of a drought at the local scale. This study addresses a local-scale agricultural drought anatomy in Story County in Iowa, USA. This complex problem was evaluated using assimilated AMSR-E soil moisture and MODIS-LAI data into a crop model to generate surface and sub-surface drought indices to explore the anatomy of an agricultural drought. Quantification of moisture supply in the root zone remains a gray area in research community, this challenge can be partly overcome by incorporating assimilation of soil moisture and leaf area index into crop modeling framework for agricultural drought quantification, as it performs better in simulating crop yield. It was noted that the persistence of subsurface droughts is in general higher than surface droughts, which can potentially improve forecast accuracy. It was found that both surface and subsurface droughts have an impact on crop yields, albeit with different magnitudes, however, the total water available in the soil profile seemed to have a greater impact on the yield. Further, agricultural drought should not be treated equal for all crops, and it should be calculated based on the root zone depth rather than a fixed soil layer depth. We envisaged that the results of

  9. From Concept to Commerce: Developing a Successful Fungal Endophyte Inoculant for Agricultural Crops

    PubMed Central

    Doohan, Fiona M.; Hodkinson, Trevor R.

    2018-01-01

    The development of endophyte inoculants for agricultural crops has been bedevilled by the twin problems of a lack of reliability and consistency, with a consequent lack of belief among end users in the efficacy of such treatments. We have developed a successful research pipeline for the production of a reliable, consistent and environmentally targeted fungal endophyte seed-delivered inoculant for barley cultivars. Our approach was developed de novo from an initial concept to source candidate endophyte inoculants from a wild relative of barley, Hordeum murinum (wall barley). A careful screening and selection procedure and extensive controlled environment testing of fungal endophyte strains, followed by multi-year field trials has resulted in the validation of an endophyte consortium suitable for barley crops grown on relatively dry sites. Our approach can be adapted for any crop or environment, provided that the set of first principles we have developed is followed. Here, we report how we developed the successful pipeline for the production of an economically viable fungal endophyte inoculant for barley cultivars. PMID:29439471

  10. From Concept to Commerce: Developing a Successful Fungal Endophyte Inoculant for Agricultural Crops.

    PubMed

    Murphy, Brian R; Doohan, Fiona M; Hodkinson, Trevor R

    2018-02-11

    The development of endophyte inoculants for agricultural crops has been bedevilled by the twin problems of a lack of reliability and consistency, with a consequent lack of belief among end users in the efficacy of such treatments. We have developed a successful research pipeline for the production of a reliable, consistent and environmentally targeted fungal endophyte seed-delivered inoculant for barley cultivars. Our approach was developed de novo from an initial concept to source candidate endophyte inoculants from a wild relative of barley, Hordeum murinum (wall barley). A careful screening and selection procedure and extensive controlled environment testing of fungal endophyte strains, followed by multi-year field trials has resulted in the validation of an endophyte consortium suitable for barley crops grown on relatively dry sites. Our approach can be adapted for any crop or environment, provided that the set of first principles we have developed is followed. Here, we report how we developed the successful pipeline for the production of an economically viable fungal endophyte inoculant for barley cultivars.

  11. Digital soil mapping as a basis for climatically oriented agriculture a thematic on the territory of the national crop testing fields of the Republic of Tatarstan, Russia

    NASA Astrophysics Data System (ADS)

    Sahabiev, I. A.; Giniyatullin, K. G.; Ryazanov, S. S.

    2018-01-01

    The concept of climate-optimized agriculture (COA) of the UN FAO implies the transformation of agriculture techniques in conditions of changing climate. It is important to implement a timely transition to the concept of COA and sustainable development of soil resources, accurate digital maps of spatial distribution of soils and soil properties are needed. Digital mapping of soil humus content was carried out on the territory of the national crop testing fields (NCTF) of the Republic of Tatarstan (Russian Federation) and the accuracy of the maps obtained was estimated.

  12. 7 CFR 760.816 - Value loss crops.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Value loss crops. 760.816 Section 760.816 Agriculture... SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS 2005-2007 Crop Disaster Program § 760.816 Value loss crops. (a) Notwithstanding any other provisions of this part, this section applies to value loss crops and tropical crops...

  13. 7 CFR 457.145 - Potato crop insurance-certified seed endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Potato crop insurance-certified seed endorsement. 457.145 Section 457.145 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.145 Potato crop...

  14. Mapping Crop Patterns in Central US Agricultural Systems from 2000 to 2014 Based on Landsat Data: To What Degree Does Fusing MODIS Data Improve Classification Accuracies?

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Radeloff, V.; Ives, A. R.; Barton, B.

    2015-12-01

    Deriving crop pattern with high accuracy is of great importance for characterizing landscape diversity, which affects the resilience of food webs in agricultural systems in the face of climatic and land cover changes. Landsat sensors were originally designed to monitor agricultural areas, and both radiometric and spatial resolution are optimized for monitoring large agricultural fields. Unfortunately, few clear Landsat images per year are available, which has limited the use of Landsat for making crop classification, and this situation is worse in cloudy areas of the Earth. Meanwhile, the MODerate Resolution Imaging Spectroradiometer (MODIS) data has better temporal resolution but cannot capture fine spatial heterogeneity of agricultural systems. Our question was to what extent fusing imagery from both sensors could improve crop classifications. We utilized the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to simulate Landsat-like images at MODIS temporal resolution. Based on Random Forests (RF) classifier, we tested whether and by what degree crop maps from 2000 to 2014 of the Arlington Agricultural Research Station (Wisconsin, USA) were improved by integrating available clear Landsat images each year with synthetic images. We predicted that the degree to which classification accuracy can be improved by incorporating synthetic imagery depends on the number and acquisition time of clear Landsat images. Moreover, multi-season data are essential for mapping crop types by capturing their phenological dynamics, and STARFM-simulated images can be used to compensate for missing Landsat observations. Our study is helpful for eliminating the limits of the use of Landsat data in mapping crop patterns, and can provide a benchmark of accuracy when choosing STARFM-simulated images to make crop classification at broader scales.

  15. A preliminary study of the statistical analyses and sampling strategies associated with the integration of remote sensing capabilities into the current agricultural crop forecasting system

    NASA Technical Reports Server (NTRS)

    Sand, F.; Christie, R.

    1975-01-01

    Extending the crop survey application of remote sensing from small experimental regions to state and national levels requires that a sample of agricultural fields be chosen for remote sensing of crop acreage, and that a statistical estimate be formulated with measurable characteristics. The critical requirements for the success of the application are reviewed in this report. The problem of sampling in the presence of cloud cover is discussed. Integration of remotely sensed information about crops into current agricultural crop forecasting systems is treated on the basis of the USDA multiple frame survey concepts, with an assumed addition of a new frame derived from remote sensing. Evolution of a crop forecasting system which utilizes LANDSAT and future remote sensing systems is projected for the 1975-1990 time frame.

  16. Climate Variability and Yields of Major Staple Food Crops in Northern Ghana

    NASA Astrophysics Data System (ADS)

    Amikuzuno, J.

    2012-12-01

    Climate variability, the short-term fluctuations in average weather conditions, and agriculture affect each other. Climate variability affects the agroecological and growing conditions of crops and livestock, and is recently believed to be the greatest impediment to the realisation of the first Millennium Development Goal of reducing poverty and food insecurity in arid and semi-arid regions of developing countries. Conversely, agriculture is a major contributor to climate variability and change by emitting greenhouse gases and reducing the agroecology's potential for carbon sequestration. What however, is the empirical evidence of this inter-dependence of climate variability and agriculture in Sub-Sahara Africa? In this paper, we provide some insight into the long run relationship between inter-annual variations in temperature and rainfall, and annual yields of the most important staple food crops in Northern Ghana. Applying pooled panel data of rainfall, temperature and yields of the selected crops from 1976 to 2010 to cointegration and Granger causality models, there is cogent evidence of cointegration between seasonal, total rainfall and crop yields; and causality from rainfall to crop yields in the Sudano-Guinea Savannah and Guinea Savannah zones of Northern Ghana. This suggests that inter-annual yields of the crops have been influenced by the total mounts of rainfall in the planting season. Temperature variability over the study period is however stationary, and is suspected to have minimal effect if any on crop yields. Overall, the results confirm the appropriateness of our attempt in modelling long-term relationships between the climate and crop yield variables.

  17. An integrated landscape designed for commodity and bioenergy crops for a tile-drained agricultural watershed

    DOE PAGES

    Ssegane, Herbert; Negri, M. Cristina

    2016-09-16

    Here, locating bioenergy crops on strategically selected subfield areas of marginal interest for commodity agriculture can increase environmental sustainability. Location and choice of bioenergy crops should improve environmental benefits with minimal disruption of current food production systems. We identified subfield soils of a tile-drained agricultural watershed as marginal if they had areas of low crop productivity index (CPI), were susceptible to nitrate-nitrogen (NO 3–N) leaching, or were susceptible to at least two other forms of environmental degradation (marginal areas). In the test watershed (Indian Creek watershed, IL) with annual precipitation of 852 mm, 3% of soils were CPI areas andmore » 22% were marginal areas. The Soil and Water Assessment Tool was used to forecast the impact of growing switchgrass ( Panicum virgatum L.), willow ( Salix spp.), and big bluestem ( Andropogon gerardi Vitman) in these subfield areas on annual grain yields, NO 3–N and sediment exports, and water yield. Simulated conversion of CPI areas from current land use to bioenergy crops had no significant (p ≤ 0.05) impact on grain production and reduced NO 3–N and sediment exports by 5.0 to 6.0% and 3.0%, respectively. Conversion of marginal areas from current land use to switchgrass forecasted the production of 34,000 t of biomass and reductions in NO 3–N (26.0%) and sediment (33.0%) exports. Alternatively, conversion of marginal areas from current land use to willow forecasted similar reductions as switchgrass for sediment but significantly (p ≤ 0.01) lower reductions in annual NO 3–N export (18.0 vs. 26.0%).« less

  18. An integrated landscape designed for commodity and bioenergy crops for a tile-drained agricultural watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ssegane, Herbert; Negri, M. Cristina

    Here, locating bioenergy crops on strategically selected subfield areas of marginal interest for commodity agriculture can increase environmental sustainability. Location and choice of bioenergy crops should improve environmental benefits with minimal disruption of current food production systems. We identified subfield soils of a tile-drained agricultural watershed as marginal if they had areas of low crop productivity index (CPI), were susceptible to nitrate-nitrogen (NO 3–N) leaching, or were susceptible to at least two other forms of environmental degradation (marginal areas). In the test watershed (Indian Creek watershed, IL) with annual precipitation of 852 mm, 3% of soils were CPI areas andmore » 22% were marginal areas. The Soil and Water Assessment Tool was used to forecast the impact of growing switchgrass ( Panicum virgatum L.), willow ( Salix spp.), and big bluestem ( Andropogon gerardi Vitman) in these subfield areas on annual grain yields, NO 3–N and sediment exports, and water yield. Simulated conversion of CPI areas from current land use to bioenergy crops had no significant (p ≤ 0.05) impact on grain production and reduced NO 3–N and sediment exports by 5.0 to 6.0% and 3.0%, respectively. Conversion of marginal areas from current land use to switchgrass forecasted the production of 34,000 t of biomass and reductions in NO 3–N (26.0%) and sediment (33.0%) exports. Alternatively, conversion of marginal areas from current land use to willow forecasted similar reductions as switchgrass for sediment but significantly (p ≤ 0.01) lower reductions in annual NO 3–N export (18.0 vs. 26.0%).« less

  19. Spatial Optimization of Cropping Pattern in an Agricultural Watershed for Food and Biofuel Production with Minimum Downstream Pollution

    NASA Astrophysics Data System (ADS)

    Pv, F.; Sudheer, K.; Chaubey, I.; RAJ, C.; Her, Y.

    2013-05-01

    Biofuel is considered to be a viable alternative to meet the increasing fuel demand, and therefore many countries are promoting agricultural activities that help increase production of raw material for biofuel production. Mostly, the biofuel is produced from grain based crops such as Corn, and it apparently create a shortage in food grains. Consequently, there have been regulations to limit the ethanol production from grains, and to use cellulosic crops as raw material for biofuel production. However, cultivation of such cellulosic crops may have different effects on water quality in the watershed. Corn stover, one of the potential cellulosic materials, when removed from the agricultural field for biofuel production, causes a decrease in the organic nutrients in the field. This results in increased use of pesticides and fertilizers which in turn affect the downstream water quality due to leaching of the chemicals. On the contrary, planting less fertilizer-intensive cellulosic crops, like Switch Grass and Miscanthus, is expected to reduce the pollutant loadings from the watershed. Therefore, an ecologically viable land use scenario would be a mixed cropping of grain crops and cellulosic crops, that meet the demand for food and biofuel without compromising on the downstream water quality. Such cropping pattern can be arrived through a simulation-optimization framework. Mathematical models can be employed to evaluate various management scenarios related to crop production and to assess its impact on water quality. Soil and Water Assessment Tool (SWAT) model is one of the most widely used models in this context. SWAT can simulate the water and nutrient cycles, and also quantify the long-term impacts of land management practices, in a watershed. This model can therefore help take decisions regarding the type of cropping and management practices to be adopted in the watershed such that the water quality in the rivers is maintained at acceptable level. In this study, it

  20. Agroforestry: Enhancing resiliency in U.S. agricultural landscapes under changing conditions

    Treesearch

    Michele M. Schoeneberger; Gary Bentrup; Toral Patel-Weynand

    2017-01-01

    Agroforestry, the intentional integration of trees and shrubs into crop and animal production systems, is being deployed to enhance productivity, profitability, and environmental stewardship of agricultural operations and lands across the United States. This assessment provides a science-based synthesis on the use of agroforestry for mitigation and adaptation services...

  1. 7 CFR 457.151 - Forage seeding crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Forage seeding crop insurance provisions. 457.151 Section 457.151 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.151 Forage seeding...

  2. 7 CFR 457.142 - Northern potato crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Northern potato crop insurance provisions. 457.142 Section 457.142 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.142 Northern potato...

  3. 7 CFR 457.131 - Macadamia nut crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Macadamia nut crop insurance provisions. 457.131 Section 457.131 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.131 Macadamia nut...

  4. 7 CFR 457.130 - Macadamia tree crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Macadamia tree crop insurance provisions. 457.130 Section 457.130 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.130 Macadamia tree...

  5. 7 CFR 457.155 - Processing bean crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Processing bean crop insurance provisions. 457.155 Section 457.155 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.155 Processing bean...

  6. Assessing COSMO-SkyMed capability for crops identification and monitoring

    NASA Astrophysics Data System (ADS)

    Guarini, R.; Dini, L.

    2015-12-01

    In the last decade, it has been possible to better understand the impact of agricultural human practices on the global environmental change at different spatial (from local to global) and time (from seasonal to decadal) scales. This has been achieved thanks to: big dataset continuously acquired by Earth Observation (EO) satellites; the improved capabilities of remote sensing techniques in extracting valuable information from the EO datasets; the new EO data policy which allowed unrestricted data usage; the net technologies which allowed to quickly and easily share national, international and market-derived information; an increasingly performing computing technology which allows to massively process large amount of data easier and at decreasing costs. To better understand the environmental impacts of agriculture and to monitor the consequences of human agricultural activities on the biosphere, scientists require to better identify crops and monitor crop conditions over time and space. Traditionally, NDVI time series maps derived from optical sensors have been used to this aim. As well-known this important source of information is conditioned by cloud cover. Unlike passive systems, synthetic aperture radar (SAR) ones are almost insensitive to atmospheric influences; thus, they are especially suitable for crop identification and condition monitoring. Among the other SAR systems currently in orbit, the Italian Space Agency (ASI) COSMO Sky-Med® (CSK®) constellation (X-band, frequency 9.6 GHz, wavelength 3.1 cm), especially for its peculiar high revisit capability (up to four images in 16 days with same acquisition geometry) seems to be particular suitable for providing information in addition and/or in alternative to other optical EO systems. To assess the capability of the CSK® constellation in identifying crops and in monitoring crops condition in 2013 ASI started the "AGRICIDOT" project. Some of the main project achievements will be presented at the congress.

  7. Use of crop residues for the control of Meloidogyne incognita under laboratory conditions.

    PubMed

    Piedrabuena, Ana; García-Alvarez, Avelino; Díez-Rojo, Miguel A; Bello, Antonio

    2006-10-01

    This laboratory study evaluates the biofumigant effect of different organic materials with the aim of developing non-chemical alternatives for the management of Meloidogyne incognita (Kofoid & White) Chitwood populations. Sources of organic material from the production system were selected with the aim of reducing agricultural residue accumulation problems as well as decreasing the costs due to the use of chemical fertilizers and pesticides. The selected materials were residues from pepper, strawberry, tomato and cucumber crops, orange juice industry residues, commercial manure and sheep manure, applied at different dosages. Two biofumigation assays were performed under laboratory conditions, using alkaline soils from the Torreblanca area (Murcia, Spain) and acidic soils from the Villa del Prado area (Madrid, Spain). The assays evaluated the effect of the treatments on M. incognita juveniles and other soil organisms, the nematode galling index on tomato roots (susceptible cv. Marmande) grown in the biofumigated soil and soil fertility parameters. The results showed that all biofumigant materials significantly decreased M. incognita populations and galling indices in tomato cv. Marmande. A greater effect was observed on galling indices when applying crop residues together with manure than with the residues alone. Biofumigation had a general beneficial effect on soil fertility, generally increasing nitrogen, organic carbon, pH and potassium levels, and also calcium levels when crop residues of pepper and strawberry were applied. There were no important variations in the number of saprophagous nematodes, dorylaimids and enchytraeids.

  8. Cassava; African perspective on space agriculture

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Njemanze, Philip; Nweke, Felix; Space Agriculture Task Force, J.; Katayama, Naomi; Yamashita, Masamichi

    Looking on African perspective in space agriculture may contribute to increase diversity, and enforce robustness for advanced life support capability. Cassava, Manihot esculentaand, is one of major crop in Africa, and could be a candidate of space food materials. Since resource is limited for space agriculture in many aspects, crop yield should be high in efficiency, and robust as well. The efficiency is measured by farming space and time. Harvest yield of cassava is about 41 MJ/ m2 (70 ton/ha) after 11 months of farming. Among rice, wheat, potato, and sweet potato, cassava is ranked to the first place (40 m2 ) in terms of farming area required to supply energy of 5 MJ/day, which is recommended for one person. Production of cassava could be made under poor condition, such as acidic soil, shortage of fertilizer, draught. Laterite, similar to Martian regolith. Propagation made by stem cutting is an advantage of cassava in space agriculture avoiding entomophilous or anemophilous process to pollinate. Feature of crop storage capability is additional factor that determines the efficiency in the whole process of agriculture. Cassava root tuber can be left in soil until its consumption. Cassava might be an African contribution to space agriculture.

  9. Reconsidering Tree Fruit as Candidate Crops Through the Use of Rapid Cycle Crop Breeding Technologies

    NASA Technical Reports Server (NTRS)

    Graham, Gary Thomas

    2014-01-01

    Tree fruit, although desirable from a crew nutrition and menu diversity perspective, have long been dismissed as candidate crops based on their long juvenile phase, large architecture, low short-term harvest index, and dormancy requirements. Recent developments in Rapid Cycle Crop Breeding (RCCB) have overcome these historical limitations, opening the door to a new era in candidate crop research. Researchers at the United States Department of Agriculture (USDA) have developed FT-construct (Flowering Locus T) dwarf plum lines that have a very short juvenile phase, vine-like architecture, and no obligate dormancy period. In a collaborative research effort, NASA and the USDA are evaluating the performance of these FT-lines under controlled environment conditions relevant to spaceflight.

  10. 7 CFR 457.166 - Blueberry crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Blueberry crop insurance provisions. 457.166 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.166 Blueberry crop insurance provisions. The Blueberry Crop Insurance Provisions for the 2005 and succeeding crop years are as follows...

  11. 7 CFR 457.166 - Blueberry crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Blueberry crop insurance provisions. 457.166 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.166 Blueberry crop insurance provisions. The Blueberry Crop Insurance Provisions for the 2005 and succeeding crop years are as follows...

  12. 7 CFR 457.166 - Blueberry crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Blueberry crop insurance provisions. 457.166 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.166 Blueberry crop insurance provisions. The Blueberry Crop Insurance Provisions for the 2005 and succeeding crop years are as follows...

  13. Crop improvement using life cycle datasets acquired under field conditions.

    PubMed

    Mochida, Keiichi; Saisho, Daisuke; Hirayama, Takashi

    2015-01-01

    Crops are exposed to various environmental stresses in the field throughout their life cycle. Modern plant science has provided remarkable insights into the molecular networks of plant stress responses in laboratory conditions, but the responses of different crops to environmental stresses in the field need to be elucidated. Recent advances in omics analytical techniques and information technology have enabled us to integrate data from a spectrum of physiological metrics of field crops. The interdisciplinary efforts of plant science and data science enable us to explore factors that affect crop productivity and identify stress tolerance-related genes and alleles. Here, we describe recent advances in technologies that are key components for data driven crop design, such as population genomics, chronological omics analyses, and computer-aided molecular network prediction. Integration of the outcomes from these technologies will accelerate our understanding of crop phenology under practical field situations and identify key characteristics to represent crop stress status. These elements would help us to genetically engineer "designed crops" to prevent yield shortfalls because of environmental fluctuations due to future climate change.

  14. Sensitivity analysis of the STICS-MACRO model to identify cropping practices reducing pesticides losses.

    PubMed

    Lammoglia, Sabine-Karen; Makowski, David; Moeys, Julien; Justes, Eric; Barriuso, Enrique; Mamy, Laure

    2017-02-15

    STICS-MACRO is a process-based model simulating the fate of pesticides in the soil-plant system as a function of agricultural practices and pedoclimatic conditions. The objective of this work was to evaluate the influence of crop management practices on water and pesticide flows in contrasted environmental conditions. We used the Morris screening sensitivity analysis method to identify the most influential cropping practices. Crop residues management and tillage practices were shown to have strong effects on water percolation and pesticide leaching. In particular, the amount of organic residues added to soil was found to be the most influential input. The presence of a mulch could increase soil water content so water percolation and pesticide leaching. Conventional tillage was also found to decrease pesticide leaching, compared to no-till, which is consistent with many field observations. The effects of the soil, crop and climate conditions tested in this work were less important than those of cropping practices. STICS-MACRO allows an ex ante evaluation of cropping systems and agricultural practices, and of the related pesticides environmental impacts. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Order Regulating Handling Definitions § 993.20 Crop year. Crop year means the 12-month period beginning August 1 of any year and ending July 31 of the following year. ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 993.20 Section 993.20 Agriculture...

  16. Assessing the probability of infection by Salmonella due to sewage sludge use in agriculture under several exposure scenarios for crops and soil ingestion.

    PubMed

    Krzyzanowski, Flávio; de Souza Lauretto, Marcelo; Nardocci, Adelaide Cássia; Sato, Maria Inês Zanoli; Razzolini, Maria Tereza Pepe

    2016-10-15

    A deeper understanding about the risks involved in sewage sludge practice in agriculture is required. The aims of the present study were to determine the annual risk of infection of consuming lettuce, carrots and tomatoes cultivated in soil amended with sewage sludge. The risk to agricultural workers of accidental ingestion of sludge or amended soil was also investigated. A Quantitative Microbial Risk Assessment was conducted based on Salmonella concentrations from five WWTPs were used to estimate the probability of annual infection associated with crops and soil ingestion. The risk of infection was estimated for nine exposure scenarios considering concentration of the pathogen, sewage sludge dilution in soil, variation of Salmonella concentration in soil, soil attachment to crops, seasonal average temperatures, hours of post-harvesting exposure, Salmonella regrowth in lettuce and tomatoes, Salmonella inhibition factor in carrots, crop ingestion and frequency of exposure, sludge/soil ingestion by agricultural workers and frequency of exposure. Annual risks values varied across the scenarios evaluated. Highest values of annual risk were found for scenarios in which the variation in the concentration of Salmonella spp. in both soil and crops (scenario 1) and without variation in the concentration of Salmonella spp. in soil and variation in crops (scenario 3) ranging from 10(-3) to 10(-2) for all groups considered. For agricultural workers, the highest annual risks of infection were found when workers applied sewage sludge to agricultural soils (2.26×10(-2)). Sensitivity analysis suggests that the main drivers for the estimated risks are Salmonella concentration and ingestion rate. These risk values resulted from conservative scenarios since some assumptions were derived from local or general studies. Although these scenarios can be considered conservative, the sensitivity analysis yielded the drivers of the risks, which can be useful for managing risks from the

  17. 7 CFR 457.126 - Popcorn crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Popcorn crop insurance provisions. 457.126 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.126 Popcorn crop insurance provisions. The Popcorn Crop Insurance Provisions for the 1999 and succeeding crop years are as follows: FCIC...

  18. 7 CFR 457.126 - Popcorn crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Popcorn crop insurance provisions. 457.126 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.126 Popcorn crop insurance provisions. The Popcorn Crop Insurance Provisions for the 1999 and succeeding crop years are as follows: FCIC...

  19. 7 CFR 457.126 - Popcorn crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Popcorn crop insurance provisions. 457.126 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.126 Popcorn crop insurance provisions. The Popcorn Crop Insurance Provisions for the 1999 and succeeding crop years are as follows: FCIC...

  20. 7 CFR 457.158 - Apple crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Apple crop insurance provisions. 457.158 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance provisions. The apple crop insurance provisions for the 2011 and succeeding crop years are as follows: FCIC...

  1. 7 CFR 457.158 - Apple crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Apple crop insurance provisions. 457.158 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance provisions. The apple crop insurance provisions for the 2011 and succeeding crop years are as follows: FCIC...

  2. 7 CFR 457.158 - Apple crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Apple crop insurance provisions. 457.158 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance provisions. The apple crop insurance provisions for the 2011 and succeeding crop years are as follows: FCIC...

  3. 7 CFR 457.158 - Apple crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Apple crop insurance provisions. 457.158 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.158 Apple crop insurance provisions. The apple crop insurance provisions for the 2011 and succeeding crop years are as follows: FCIC...

  4. 7 CFR 457.138 - Grape crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Grape crop insurance provisions. 457.138 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.138 Grape crop insurance provisions. The grape crop insurance provisions for the 2010 and succeeding crop years are as follows: United...

  5. 7 CFR 457.138 - Grape crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Grape crop insurance provisions. 457.138 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.138 Grape crop insurance provisions. The grape crop insurance provisions for the 2010 and succeeding crop years are as follows: United...

  6. 7 CFR 457.138 - Grape crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Grape crop insurance provisions. 457.138 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.138 Grape crop insurance provisions. The grape crop insurance provisions for the 2010 and succeeding crop years are as follows: United...

  7. 7 CFR 457.138 - Grape crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Grape crop insurance provisions. 457.138 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.138 Grape crop insurance provisions. The grape crop insurance provisions for the 2010 and succeeding crop years are as follows: United...

  8. 7 CFR 457.104 - Cotton crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Cotton crop insurance provisions. 457.104 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.104 Cotton crop insurance provisions. The cotton crop insurance provisions for the 2011 and succeeding crop years are as follows...

  9. 7 CFR 457.104 - Cotton crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Cotton crop insurance provisions. 457.104 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.104 Cotton crop insurance provisions. The cotton crop insurance provisions for the 2011 and succeeding crop years are as follows...

  10. 7 CFR 457.104 - Cotton crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Cotton crop insurance provisions. 457.104 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.104 Cotton crop insurance provisions. The cotton crop insurance provisions for the 2011 and succeeding crop years are as follows...

  11. 7 CFR 457.123 - Almond crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Almond crop insurance provisions. 457.123 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.123 Almond crop insurance provisions. The Almond Crop Insurance Provisions for the 2008 and succeeding crop years are as follows: FCIC...

  12. 7 CFR 457.123 - Almond crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Almond crop insurance provisions. 457.123 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.123 Almond crop insurance provisions. The Almond Crop Insurance Provisions for the 2008 and succeeding crop years are as follows: FCIC...

  13. Biogenic Volatile Organic Compound (BVOC) emissions from agricultural crop species: is guttation a possible source for methanol emissions following light/dark transition ?

    NASA Astrophysics Data System (ADS)

    Mozaffar, Ahsan; Amelynck, Crist; Bachy, Aurélie; Digrado, Anthony; Delaplace, Pierre; du Jardin, Patrick; Fauconnier, Marie-Laure; Schoon, Niels; Aubinet, Marc; Heinesch, Bernard

    2015-04-01

    In the framework of the CROSTVOC (CROp STress VOC) project, the exchange of biogenic volatile organic compounds (BVOCs) between two important agricultural crop species, maize and winter wheat, and the atmosphere has recently been measured during an entire growing season by using the eddy covariance technique. Because of the co-variation of BVOC emission drivers in field conditions, laboratory studies were initiated in an environmental chamber in order to disentangle the responses of the emissions to variations of the individual environmental parameters (such as PPFD and temperature) and to diverse abiotic stress factors. Young plants were enclosed in transparent all-Teflon dynamic enclosures (cuvettes) through which BVOC-free and RH-controlled air was sent. BVOC enriched air was subsequently sampled from the plant cuvettes and an empty cuvette (background) and analyzed for BVOCs in a high sensitivity Proton Transfer Reaction Mass Spectrometer (hs-PTR-MS) and for CO2 in a LI-7000 non-dispersive IR gas analyzer. Emissions were monitored at constant temperature (25 °C) and at a stepwise varying PPFD pattern (0-650 µmol m-2 s-1). For maize plants, sudden light/dark transitions at the end of the photoperiod were accompanied by prompt and considerable increases in methanol (m/z 33) and water vapor (m/z 39) emissions. Moreover, guttation droplets appeared on the sides and the tips of the leaves within a few minutes after light/dark transition. Therefore the assumption has been raised that methanol is also coming out with guttation fluid from the leaves. Consequently, guttation fluid was collected from young maize and wheat plants, injected in an empty enclosure and sampled by PTR-MS. Methanol and a large number of other compounds were observed from guttation fluid. Recent studies have shown that guttation from agricultural crops frequently occurs in field conditions. Further research is required to find out the source strength of methanol emissions by this guttation

  14. Chemical usage in production agriculture: do crop insurance and off-farm work play a part?

    PubMed

    Chang, Hung-Hao; Mishra, Ashok K

    2012-08-30

    In recent years a growing body of literature in the agricultural policy arena has examined the association between crop insurance and off-farm employment. However, little is known about the extent to which these two activities may be related to environmental quality, in particular their impacts on fertilizer/chemical use of the farm. To fill this gap, this paper examines the effect of crop insurance and off-farm work on fertilizer/chemical expenses within the farm household framework. Quantile regression results from a national representative farm-level data show that off-farm work by the farm operator tends to decrease fertilizer/chemical expenses, and the effect is more pronounced at the higher percentiles of the distribution of fertilizer/chemical expense. In contrast, a positive effect of crop insurance on fertilizer/chemical expenses is evident, and the effect is robust across the entire distribution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development

    PubMed Central

    Hooftman, Danny A P; Flavell, Andrew J; Jansen, Hans; den Nijs, Hans C M; Syed, Naeem H; Sørensen, Anker P; Orozco-ter Wengel, Pablo; van de Wiel, Clemens C M

    2011-01-01

    Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serriola. Three generations of hybrids (S1, BC1, and BC1S1) were grown in habitats mimicking the wild parent's habitat. As control, we harvested S1 seedlings grown under controlled conditions, providing very limited possibility for selection. We used 89 AFLP loci, as well as more recently developed dominant markers, 115 retrotransposon markers (SSAP), and 28 NBS loci linked to resistance genes. For many loci, allele frequencies were biased in plants exposed to natural field conditions, including over-representation of crop alleles for various loci. Furthermore, Linkage disequilibrium was locally changed, allegedly by selection caused by the natural field conditions, providing ample opportunity for genetic hitchhiking. Our study indicates that when developing genetically modified crops, a judicious selection of insertion sites, based on knowledge of selective (dis)advantages of the surrounding crop genome under field conditions, could diminish transgene persistence. PMID:25568012

  16. Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development.

    PubMed

    Hooftman, Danny A P; Flavell, Andrew J; Jansen, Hans; den Nijs, Hans C M; Syed, Naeem H; Sørensen, Anker P; Orozco-Ter Wengel, Pablo; van de Wiel, Clemens C M

    2011-09-01

    Gene escape from crops has gained much attention in the last two decades, as transgenes introgressing into wild populations could affect the latter's ecological characteristics. However, different genes have different likelihoods of introgression. The mixture of selective forces provided by natural conditions creates an adaptive mosaic of alleles from both parental species. We investigated segregation patterns after hybridization between lettuce (Lactuca sativa) and its wild relative, L. serriola. Three generations of hybrids (S1, BC1, and BC1S1) were grown in habitats mimicking the wild parent's habitat. As control, we harvested S1 seedlings grown under controlled conditions, providing very limited possibility for selection. We used 89 AFLP loci, as well as more recently developed dominant markers, 115 retrotransposon markers (SSAP), and 28 NBS loci linked to resistance genes. For many loci, allele frequencies were biased in plants exposed to natural field conditions, including over-representation of crop alleles for various loci. Furthermore, Linkage disequilibrium was locally changed, allegedly by selection caused by the natural field conditions, providing ample opportunity for genetic hitchhiking. Our study indicates that when developing genetically modified crops, a judicious selection of insertion sites, based on knowledge of selective (dis)advantages of the surrounding crop genome under field conditions, could diminish transgene persistence.

  17. Environmental factors that influence the location of crop agriculture in the conterminous United States

    USGS Publications Warehouse

    Baker, Nancy T.; Capel, Paul D.

    2011-01-01

    Most crops are grown on land with shallow slope where the temperature, precipitation, and soils are favorable. In areas that are too steep, wet, or dry, landscapes have been modified to allow cultivation. Some of the limitations of the environmental factors that determine the location of agriculture can be overcome through modifications, but others cannot. On a larger-than-field scale, agricultural modifications commonly influence water availability through irrigation and (or) drainage and soil fertility and (or) organic-matter content through amendments such as manure, commercial fertilizer and lime. In general, it is not feasible to modify the other environmental factors, soil texture, soil depth, soil mineralogy, temperature, and terrain at large scales.

  18. Rhizo-lysimetry: facilities for the simultaneous study of root behaviour and resource use by agricultural crop and pasture systems

    PubMed Central

    2013-01-01

    Background Rhizo-lysimeters offer unique advantages for the study of plants and their interactions with soils. In this paper, an existing facility at Charles Sturt University in Wagga Wagga Australia is described in detail and its potential to conduct both ecophysiological and ecohydrological research in the study of root interactions of agricultural crops and pastures is quantitatively assessed. This is of significance to future crop research efforts in southern Australia, in light of recent significant long-term drought events, as well as potential impacts of climate change as predicted for the region. The rhizo-lysimeter root research facility has recently been expanded to accommodate larger research projects over multiple years and cropping rotations. Results Lucerne, a widely-grown perennial pasture in southern Australia, developed an expansive root system to a depth of 0.9 m over a twelve month period. Its deeper roots particularly at 2.05 m continued to expand for the duration of the experiment. In succeeding experiments, canola, a commonly grown annual crop, developed a more extensive (approximately 300%) root system than wheat, but exhibited a slower rate of root elongation at rates of 7.47 x 10–3 m day–1 for canola and 1.04 x10–2 m day–1 for wheat. A time domain reflectometry (TDR) network was designed to accurately assess changes in soil water content, and could assess water content change to within 5% of the amount of water applied. Conclusions The rhizo-lysimetry system provided robust estimates of root growth and soil water change under conditions representative of a field setting. This is currently one of a very limited number of global research facilities able to perform experimentation under field conditions and is the largest root research experimental laboratory in the southern hemisphere. PMID:23363534

  19. Amazon river flow regime and flood recessional agriculture: Flood stage reversals and risk of annual crop loss

    NASA Astrophysics Data System (ADS)

    Coomes, Oliver T.; Lapointe, Michel; Templeton, Michael; List, Geneva

    2016-08-01

    The annual flood cycle is an important driver of ecosystem structure and function in large tropical rivers such as the Amazon. Riparian peasant communities rely on river fishing and annual floodplain agriculture, closely adapted to the recession phase of the flood pulse. This article reports on a poorly documented but important challenge facing farmers practicing flood recessional agriculture along the Amazon river: frequent, unpredictable stage reversals (repiquetes) which threaten to ruin crops growing on channel bars. We assess the severity of stage reversals for rice production on exposed river mud bars (barreales) near Iquitos, Peru. Crop loss risk is estimated based on a quantitative analysis of 45 years of daily Amazon stage data and field data from floodplain communities nearby in the Muyuy archipelago, upstream of Iquitos. Rice varieties selected, elevations of silt rich bars where rice is sown, as well as planting and harvest dates are analyzed in the light of the timing, frequencies and amplitudes of observed stage reversals that have the potential to destroy growing rice. We find that unpredictable stage reversals can produce substantial crop losses and shorten significantly the length of average growing seasons on lower elevation river bars. The data reveal that local famers extend planting down to lower bar elevations where the mean probabilities of re-submergence before rice maturity (due to reversals) approach 50%, below which they implicitly consider that the risk of crop loss outweighs the potential reward of planting.

  20. 7 CFR 457.143 - Northern potato crop insurance-quality endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Northern potato crop insurance-quality endorsement. 457.143 Section 457.143 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.143...

  1. Assessing the impact of climate variability on cropping patterns in Kenya

    NASA Astrophysics Data System (ADS)

    Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.

    2017-12-01

    Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm

  2. 7 CFR 457.152 - Hybrid seed corn crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Hybrid seed corn crop insurance provisions. 457.152 Section 457.152 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.152 Hybrid seed...

  3. 7 CFR 457.148 - Fresh market pepper crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Fresh market pepper crop insurance provisions. 457.148 Section 457.148 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.148 Fresh market...

  4. 7 CFR 457.154 - Processing sweet corn crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Processing sweet corn crop insurance provisions. 457.154 Section 457.154 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.154 Processing...

  5. 7 CFR 996.3 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.3 Crop year. Crop year means the 12-month period beginning with July 1 of any year and ending with June 30 of the following year... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 996.3 Section 996.3 Agriculture Regulations...

  6. Classification of crops across heterogeneous agricultural landscape in Kenya using AisaEAGLE imaging spectroscopy data

    NASA Astrophysics Data System (ADS)

    Piiroinen, Rami; Heiskanen, Janne; Mõttus, Matti; Pellikka, Petri

    2015-07-01

    Land use practices are changing at a fast pace in the tropics. In sub-Saharan Africa forests, woodlands and bushlands are being transformed for agricultural use to produce food for the rapidly growing population. The objective of this study was to assess the prospects of mapping the common agricultural crops in highly heterogeneous study area in south-eastern Kenya using high spatial and spectral resolution AisaEAGLE imaging spectroscopy data. Minimum noise fraction transformation was used to pack the coherent information in smaller set of bands and the data was classified with support vector machine (SVM) algorithm. A total of 35 plant species were mapped in the field and seven most dominant ones were used as classification targets. Five of the targets were agricultural crops. The overall accuracy (OA) for the classification was 90.8%. To assess the possibility of excluding the remaining 28 plant species from the classification results, 10 different probability thresholds (PT) were tried with SVM. The impact of PT was assessed with validation polygons of all 35 mapped plant species. The results showed that while PT was increased more pixels were excluded from non-target polygons than from the polygons of the seven classification targets. This increased the OA and reduced salt-and-pepper effects in the classification results. Very high spatial resolution imagery and pixel-based classification approach worked well with small targets such as maize while there was mixing of classes on the sides of the tree crowns.

  7. 7 CFR 457.131 - Macadamia nut crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Macadamia nut crop insurance provisions. 457.131... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.131 Macadamia nut crop insurance provisions. The macadamia nut crop insurance provisions for the 2012 and succeeding crop...

  8. 7 CFR 457.131 - Macadamia nut crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Macadamia nut crop insurance provisions. 457.131... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.131 Macadamia nut crop insurance provisions. The macadamia nut crop insurance provisions for the 2012 and succeeding crop...

  9. 7 CFR 457.131 - Macadamia nut crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Macadamia nut crop insurance provisions. 457.131... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.131 Macadamia nut crop insurance provisions. The macadamia nut crop insurance provisions for the 2012 and succeeding crop...

  10. Midwest Agriculture: A comparison of AVHRR NDVI3g data and crop yields in Corn Belt region of the United States from 1982 to 2014

    NASA Astrophysics Data System (ADS)

    Glennie, E.; Anyamba, A.; Eastman, R.

    2016-12-01

    A time series of Advanced Very High Resolution Radiometer (AVHRR) derived normalized difference vegetation index (NDVI) images was compared to National Agricultural Statistics Service (NASS) corn yield data in the Corn Belt of the United States from 1982 to 2014. The relationship between NDVI and crop yields under El Nino, neutral, and La Nina conditions was used to assess 1) the reliability of using NDVI as an indicator of crop productivity, and 2) the response of the Corn Belt to El Nino/ Southern Oscillation (ENSO) teleconnection effects. First, bi-monthly NDVI data were combined into monthly data using the maximum value compositing technique to reduce cloud contamination and other effects. The most representative seasonal curve of NDVI values over the course of the study period was extracted to define the growing season in the region - May to October. Standardized NDVI anomalies were calculated and averaged to produce a growing season NDVI metrics to represent each Agricultural Statistics Division (ASD) for each year in the study period. The corn yields were detrended in order to remove effects of technological advancements on crop productivity (use of genetically modified seeds, fertilizer, herbicides). Correlation (R) values between the NDVI anomalies and detrended corn yields varied across the Corn Belt, with a maximum of 0.81 and mean of 0.49. While corn is the dominant crop in the region, some inconsistencies between corn yield and NDVI may be accounted for by an increase in soy yield for a given year due to crop rotation practices. The 10 El Nino events and 9 La Nina events that occurred between 1982 and 2014 are not reflected in a consistent manner in NDVI or corn yield data. However, composites of NDVI and crop yields for all El Nino events indicate there is a tendency for higher than normal NDVI and increased corn yields. Conversely, the composite crop yield image for La Nina events shows a slight decrease in productivity.

  11. Carbon stocks quantification in agricultural systems employing succession and rotation of crops in Rio Grande do Sul State, Brazil.

    NASA Astrophysics Data System (ADS)

    Walter, Michele K. C.; Marinho, Mara de A.; Denardin, José E.; Zullo, Jurandir, Jr.; Paz-González, Antonio

    2013-04-01

    Soil and vegetation constitute respectively the third and the fourth terrestrial reservoirs of Carbon (C) on Earth. C sequestration in these reservoirs includes the capture of the CO2 from the atmosphere by photosynthesis and its storage as organic C. Consequently, changes in land use and agricultural practices affect directly the emissions of the greenhouse gases and the C sequestration. Several studies have already demonstrated that conservation agriculture, and particularly zero tillage (ZT), has a positive effect on soil C sequestration. The Brazilian federal program ABC (Agriculture of Low Carbon Emission) was conceived to promote agricultural production with environmental protection and represents an instrument to achieve voluntary targets to mitigate emissions or NAMAS (National Appropriated Mitigation Actions). With financial resources of about US 1.0 billion until 2020 the ABC Program has a target of expand ZT in 8 million hectares of land, with reduction of 16 to 20 million of CO2eq. Our objective was to quantify the C stocks in soil, plants and litter of representative grain crops systems under ZT in Rio Grande do Sul State, Brazil. Two treatments of a long term experimental essay (> 20 years) were evaluated: 1) Crop succession with wheat (Triticum aestivum L.)/soybean (Glycine max (L.) Merril); 2) Crop rotation with wheat/soybean (1st year), vetch (Vicia sativa L.)/soybean (2nd year), and white oat (Avena sativa L.)/sorghum (Sorghum bicolor L.) (3rd year). C quantification in plants and in litter was performed using the direct method of biomass quantification. The soil type evaluated was a Humic Rhodic Hapludox, and C quantification was executed employing the method referred by "C mass by unit area". Results showed that soybean plants under crop succession presented greater C stock (4.31MgC ha-1) comparing with soybean plants cultivated under crop rotation (3.59 MgC ha-1). For wheat, however, greater C stock was quantified in plants under rotation

  12. Nitrous oxide emissions from intensive agricultural systems: Variations between crops and seasons, key driving variables, and mean emission factors

    NASA Astrophysics Data System (ADS)

    Dobbie, K. E.; McTaggart, I. P.; Smith, K. A.

    1999-11-01

    Emissions of nitrous oxide from intensively managed agricultural fields were measured over 3 years. Exponential increases in flux occurred with increasing soil water- filled pore space (WFPS) and temperature; increases in soil mineral N content due to fertilizer application also stimulated emissions. Fluxes were low when any of these variables was below a critical value. The largest fluxes occurred when WFPS values were very high (70-90%), indicating that denitrification was the major process responsible. The relationships with the driving variables showed strong similarities to those reported for very different environments: irrigated sugar cane crops, pastures, and forest in the tropics. Annual emissions varied widely (0.3-18.4 kg N2O-N ha-1). These variations were principally due to the degree of coincidence of fertilizer application and major rainfall events. It is concluded therefore that several years' data are required from any agricultural ecosystem in a variable climate to obtain a robust estimate of mean N2O fluxes. The emissions from small-grain cereals (winter wheat and spring barley) were consistently lower (0.2-0.7 kg N2O-N per 100 kg N applied) than from cut grassland (0.3-5.8 kg N2O- N per 100 kg N). Crops such as broccoli and potatoes gave emissions of the same order as those from the grassland. Although these differences between crop types are not apparent in general data comparisons, there may well be distinct regional differences in the relative and absolute emissions from different crops, due to local factors relating to soil type, weather patterns, and agricultural management practices. This will only be determined by more detailed comparative studies.

  13. 7 CFR 760.810 - Qualifying 2005, 2006, or 2007 quantity crop losses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... containment or release of the water; or (9) If losses could be attributed to conditions occurring outside of... 7 Agriculture 7 2010-01-01 2010-01-01 false Qualifying 2005, 2006, or 2007 quantity crop losses... Disaster Program § 760.810 Qualifying 2005, 2006, or 2007 quantity crop losses. (a) To receive benefits...

  14. How do soil physical conditions for crop growth vary over time under established contrasting tillage regimes?

    NASA Astrophysics Data System (ADS)

    Hallett, Paul; Stobart, Ron; Valentine, Tracy; George, Timothy; Morris, Nathan; Newton, Adrian; McKenzie, Blair

    2014-05-01

    When plant breeders develop modern cereal varieties for the sustainable intensification of agriculture, insufficient thought is given to the impact of tillage on soil physical conditions for crop production. In earlier work, we demonstrated that barley varieties that perform best in ploughed soil (the approach traditionally used for breeding trials) were not the same as those performing best under shallow non-inversion or zero-tillage. We also found that the Quantitative Trait Loci (QTL) associated with improved phosphorus uptake, and hence useful for marker assisted breeding, were not robust between different tillage regimes. The impact of the soil environment had greater impact than the genetics in GxE interactions. It is obvious that soil tillage should be considered when breeding the next generation of crops. Tillage may also have important impacts on carbon storage, but we found that despite greater soil carbon at shallow depths under non-inversion tillage, the carbon stored throughout the soil profile was not affected by tillage. Studies on soil tillage impacts to crop productivity and soil quality are often performed in one season, on single sites that have had insufficient time to develop. Our current research explores multiple sites, on different soils, with temporal measurements of soil physical conditions under contrasting tillage regimes. We use the oldest established contemporary tillage experiments in the United Kingdom, with all sites sharing ploughed and shallow (7cm) non-inversion tillage treatments. In eastern Scotland (Mid Pilmore), the site also has zero tillage and deep ploughing (40 cm) treatments, and was established 11 years ago. In east England there are two sites, both also having a deep non-inversion tillage treatment, and they were established 6 (New Farm Systems) and 8 (STAR) years ago. We measure a range of crop and soil properties at sowing, one month after sowing and post-harvest, including rapid lab based assays that allow high

  15. Environmental and socio-economic vulnerability of agricultural sector in Armenia.

    PubMed

    Melkonyan, Ani

    2014-08-01

    Being a mountainous country, Armenia has undergone different kinds of natural disasters, such as droughts, floods, and storms, which have a direct influence on economy and are expected to occur more frequently in terms of climate change, raising the need to estimate economic vulnerability especially in agricultural sector. Agriculture plays a great role in national economy of Armenia, with 21% share in Gross Domestic Production (GDP). For this reason, the estimation of agricultural resources of the country, their vulnerability towards current and future climate, and assessment of economical loss of the agricultural crop production due to climate change are the main goals of the given study. Crop productivity in dependence on climatic elements - temperature, radiation, precipitation, wind field, etc. has been estimated, further on interpolating these relations for future climate conditions using climate projections in the region for the time period of 2011-2040. Data on air temperature, precipitation, relative humidity, wind speed and direction for the period of 1966-2011 have been taken from 30 stations from the measuring network of Armenian State Hydrometeorological Service. Other climatic parameters like potential and actual evapotranspiration, soil temperature and humidity, field capacity, and wilting point have been calculated with the help of an AMBAV/AMBETTI (agroclimatic) model (German Weather Service). The results showed that temperature increase accompanied with evapotranspiration increase and water availability decrease especially in low and mid-low altitudes (where the main national crop production is centralized) caused a significant shift in the phenological phases of crops, which is very important information for effective farming dates, giving an opportunity to raise efficiency of agricultural production through minimizing the yield loss due to unfavorable climatic conditions. With the help of macroeconomical analysis of the crop market, it was

  16. Food Crops Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Butler, E.; Huybers, P.

    2009-12-01

    Projections of future climate show a warming world and heterogeneous changes in precipitation. Generally, warming temperatures indicate a decrease in crop yields where they are currently grown. However, warmer climate will also open up new areas at high latitudes for crop production. Thus, there is a question whether the warmer climate with decreased yields but potentially increased growing area will produce a net increase or decrease of overall food crop production. We explore this question through a multiple linear regression model linking temperature and precipitation to crop yield. Prior studies have emphasised temporal regression which indicate uniformly decreased yields, but neglect the potentially increased area opened up for crop production. This study provides a compliment to the prior work by exploring this spatial variation. We explore this subject with a multiple linear regression model from temperature, precipitation and crop yield data over the United States. The United States was chosen as the training region for the model because there are good crop data available over the same time frame as climate data and presumably the yield from crops in the United States is optimized with respect to potential yield. We study corn, soybeans, sorghum, hard red winter wheat and soft red winter wheat using monthly averages of temperature and precipitation from NCEP reanalysis and yearly yield data from the National Agriculture Statistics Service for 1948-2008. The use of monthly averaged temperature and precipitation, which neglect extreme events that can have a significant impact on crops limits this study as does the exclusive use of United States agricultural data. The GFDL 2.1 model under a 720ppm CO2 scenario provides temperature and precipitation fields for 2040-2100 which are used to explore how the spatial regions available for crop production will change under these new conditions.

  17. 7 CFR 930.4 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Definitions § 930.4 Crop year. Crop year means the 12-month period beginning on July 1 of any year and ending on June 30 of the following year, or such other period as the Board, with the approval of the... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 930.4 Section 930.4 Agriculture Regulations...

  18. 7 CFR 457.150 - Dry bean crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Dry bean crop insurance provisions. 457.150 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.150 Dry bean crop insurance provisions. The dry bean crop insurance provisions for the 2003 and succeeding crop years are as follows...

  19. 7 CFR 457.150 - Dry bean crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Dry bean crop insurance provisions. 457.150 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.150 Dry bean crop insurance provisions. The dry bean crop insurance provisions for the 2003 and succeeding crop years are as follows...

  20. 7 CFR 457.150 - Dry bean crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Dry bean crop insurance provisions. 457.150 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.150 Dry bean crop insurance provisions. The dry bean crop insurance provisions for the 2003 and succeeding crop years are as follows...

  1. 7 CFR 457.149 - Table grape crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Table grape crop insurance provisions. 457.149 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.149 Table grape crop insurance provisions. The Table Grape Crop Insurance Provisions for the 2010 and succeeding crop years are as follows...

  2. 7 CFR 457.149 - Table grape crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Table grape crop insurance provisions. 457.149 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.149 Table grape crop insurance provisions. The Table Grape Crop Insurance Provisions for the 2010 and succeeding crop years are as follows...

  3. 7 CFR 457.149 - Table grape crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Table grape crop insurance provisions. 457.149 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.149 Table grape crop insurance provisions. The Table Grape Crop Insurance Provisions for the 2010 and succeeding crop years are as follows...

  4. 7 CFR 457.149 - Table grape crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Table grape crop insurance provisions. 457.149 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.149 Table grape crop insurance provisions. The Table Grape Crop Insurance Provisions for the 2010 and succeeding crop years are as follows...

  5. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries with...

  6. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries with...

  7. 7 CFR 457.109 - Sugar Beet Crop Insurance Provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Sugar Beet Crop Insurance Provisions. 457.109 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.109 Sugar Beet Crop Insurance Provisions. The Sugar Beet Crop Insurance Provisions for the 1998 and succeeding crop years in countries with...

  8. Crop Yield Simulations Using Multiple Regional Climate Models in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Stack, D.; Kafatos, M.; Kim, S.; Kim, J.; Walko, R. L.

    2013-12-01

    Agricultural productivity (described by crop yield) is strongly dependent on climate conditions determined by meteorological parameters (e.g., temperature, rainfall, and solar radiation). California is the largest producer of agricultural products in the United States, but crops in associated arid and semi-arid regions live near their physiological limits (e.g., in hot summer conditions with little precipitation). Thus, accurate climate data are essential in assessing the impact of climate variability on agricultural productivity in the Southwestern United States and other arid regions. To address this issue, we produced simulated climate datasets and used them as input for the crop production model. For climate data, we employed two different regional climate models (WRF and OLAM) using a fine-resolution (8km) grid. Performances of the two different models are evaluated in a fine-resolution regional climate hindcast experiment for 10 years from 2001 to 2010 by comparing them to the North American Regional Reanalysis (NARR) dataset. Based on this comparison, multi-model ensembles with variable weighting are used to alleviate model bias and improve the accuracy of crop model productivity over large geographic regions (county and state). Finally, by using a specific crop-yield simulation model (APSIM) in conjunction with meteorological forcings from the multi-regional climate model ensemble, we demonstrate the degree to which maize yields are sensitive to the regional climate in the Southwestern United States.

  9. Integrating High Resolution Water Footprint and GIS for Promoting Water Efficiency in the Agricultural Sector: A Case Study of Plantation Crops in the Jordan Valley

    PubMed Central

    Shtull-Trauring, Eliav; Aviani, Ido; Avisar, Dror; Bernstein, Nirit

    2016-01-01

    Addressing the global challenges to water security requires a better understanding of humanity's use of water, especially the agricultural sector that accounts for 70% of global withdrawals. This study combined high resolution-data with a GIS system to analyze the impact of agricultural practices, crop type, and spatial factors such as drainage basins, climate, and soil type on the Water Footprint (WF) of agricultural crops. The area of the study, the northern Lower Jordan Valley, covers 1121 ha in which three main plantation crops are grown: banana (cultivated in open-fields or net-houses), avocado and palm-dates. High-resolution data sources included GIS layers of the cultivated crops and a drainage pipe-system installed in the study area; meteorological data (2000–2013); and crop parameters (yield and irrigation recommendations). First, the study compared the WF of the different crops on the basis of yield and energy produced as well as a comparison to global values and local irrigation recommendations. The results showed that net-house banana has the lowest WF based on all different criteria. However, while palm-dates showed the highest WF for the yield criteria, it had the second lowest WF for energy produced, emphasizing the importance of using multiple parameters for low and high yield crop comparisons. Next, the regional WF of each drainage basin in the study area was calculated, demonstrating the strong influence of the Gray WF, an indication of the amount of freshwater required for pollution assimilation. Finally, the benefits of integrating GIS and WF were demonstrated by computing the effect of adopting net-house cultivation throughout the area of study with a result a reduction of 1.3 MCM irrigation water per year. Integrating the WF methodology and local high-resolution data using GIS can therefore promote and help quantify the benefits of adopting site-appropriate crops and agricultural practices that lower the WF by increasing yield, reducing

  10. Integrating High Resolution Water Footprint and GIS for Promoting Water Efficiency in the Agricultural Sector: A Case Study of Plantation Crops in the Jordan Valley.

    PubMed

    Shtull-Trauring, Eliav; Aviani, Ido; Avisar, Dror; Bernstein, Nirit

    2016-01-01

    Addressing the global challenges to water security requires a better understanding of humanity's use of water, especially the agricultural sector that accounts for 70% of global withdrawals. This study combined high resolution-data with a GIS system to analyze the impact of agricultural practices, crop type, and spatial factors such as drainage basins, climate, and soil type on the Water Footprint (WF) of agricultural crops. The area of the study, the northern Lower Jordan Valley, covers 1121 ha in which three main plantation crops are grown: banana (cultivated in open-fields or net-houses), avocado and palm-dates. High-resolution data sources included GIS layers of the cultivated crops and a drainage pipe-system installed in the study area; meteorological data (2000-2013); and crop parameters (yield and irrigation recommendations). First, the study compared the WF of the different crops on the basis of yield and energy produced as well as a comparison to global values and local irrigation recommendations. The results showed that net-house banana has the lowest WF based on all different criteria. However, while palm-dates showed the highest WF for the yield criteria, it had the second lowest WF for energy produced, emphasizing the importance of using multiple parameters for low and high yield crop comparisons. Next, the regional WF of each drainage basin in the study area was calculated, demonstrating the strong influence of the Gray WF, an indication of the amount of freshwater required for pollution assimilation. Finally, the benefits of integrating GIS and WF were demonstrated by computing the effect of adopting net-house cultivation throughout the area of study with a result a reduction of 1.3 MCM irrigation water per year. Integrating the WF methodology and local high-resolution data using GIS can therefore promote and help quantify the benefits of adopting site-appropriate crops and agricultural practices that lower the WF by increasing yield, reducing water

  11. Water savings of redistributing global crop production

    NASA Astrophysics Data System (ADS)

    Davis, Kyle; Seveso, Antonio; Rulli, Maria Cristina; D'Odorico, Paolo

    2016-04-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. For food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine what distribution of crops would maintain current calorie production and agricultural value while minimizing the water demand of crop production. In doing this, our study provides a novel tool for policy makers and managers to integrate food security, environmental sustainability, and rural livelihoods by improving the use of freshwater resources without compromising crop calorie production or rural livelihoods.

  12. Agricultural residues and energy crops as potentially economical and novel substrates for microbial production of butanol (a biofuel)

    USDA-ARS?s Scientific Manuscript database

    This review describes production of acetone butanol ethanol (ABE) from a variety of agricultural residues and energy crops employing biochemical or fermentation processes. A number of organisms are available for this bioconversion including Clostridium beijerinckii P260, C. beijerinckii BA101, C. a...

  13. Large scale maps of cropping intensity in Asia from MODIS

    NASA Astrophysics Data System (ADS)

    Gray, J. M.; Friedl, M. A.; Frolking, S. E.; Ramankutty, N.; Nelson, A.

    2013-12-01

    Agricultural systems are geographically extensive, have profound significance to society, and also affect regional energy, carbon, and water cycles. Since most suitable lands worldwide have been cultivated, there is growing pressure to increase yields on existing agricultural lands. In tropical and sub-tropical regions, multi-cropping is widely used to increase food production, but regional-to-global information related to multi-cropping practices is poor. Such information is of critical importance to ensure sustainable food production while mitigating against negative environmental impacts associated with agriculture such as contamination and depletion of freshwater resources. Unfortunately, currently available large-area inventory statistics are inadequate because they do not capture important spatial patterns in multi-cropping, and are generally not available in a timeframe that can be used to help manage cropping systems. High temporal resolution sensors such as MODIS provide an excellent source of information for addressing this need. However, relative to studies that document agricultural extensification, systematic assessment of agricultural intensification via multi-cropping has received relatively little attention. The goal of this work is to help close this methodological and information gap by developing methods that use multi-temporal remote sensing to map multi-cropping systems in Asia. Image time series analysis is especially challenging in Asia because atmospheric conditions including clouds and aerosols lead to high frequencies of missing or low quality remote sensing observations, especially during the Asian Monsoon. The methodology that we use for this work builds upon the algorithm used to produce the MODIS Land Cover Dynamics product (MCD12Q2), but employs refined methods to segment, smooth, and gap-fill 8-day EVI time series calculated from MODIS BRDF corrected surface reflectances. Crop cycle segments are identified based on changes in slope

  14. Assessment of Climate Change Impacts on Agricultural Water Demands and Crop Yields in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Tansey, M. K.; Flores-Lopez, F.; Young, C. A.; Huntington, J. L.

    2012-12-01

    Long term planning for the management of California's water resources requires assessment of the effects of future climate changes on both water supply and demand. Considerable progress has been made on the evaluation of the effects of future climate changes on water supplies but less information is available with regard to water demands. Uncertainty in future climate projections increases the difficulty of assessing climate impacts and evaluating long range adaptation strategies. Compounding the uncertainty in the future climate projections is the fact that most readily available downscaled climate projections lack sufficient meteorological information to compute evapotranspiration (ET) by the widely accepted ASCE Penman-Monteith (PM) method. This study addresses potential changes in future Central Valley water demands and crop yields by examining the effects of climate change on soil evaporation, plant transpiration, growth and yield for major types of crops grown in the Central Valley of California. Five representative climate scenarios based on 112 bias corrected spatially downscaled CMIP 3 GCM climate simulations were developed using the hybrid delta ensemble method to span a wide range future climate uncertainty. Analysis of historical California Irrigation Management Information System meteorological data was combined with several meteorological estimation methods to compute future solar radiation, wind speed and dew point temperatures corresponding to the GCM projected temperatures and precipitation. Future atmospheric CO2 concentrations corresponding to the 5 representative climate projections were developed based on weighting IPCC SRES emissions scenarios. The Land, Atmosphere, and Water Simulator (LAWS) model was used to compute ET and yield changes in the early, middle and late 21st century for 24 representative agricultural crops grown in the Sacramento, San Joaquin and Tulare Lake basins. Study results indicate that changes in ET and yield vary

  15. Dormancy and germination: How does the crop seed decide?

    PubMed

    Shu, K; Meng, Y J; Shuai, H W; Liu, W G; Du, J B; Liu, J; Yang, W Y

    2015-11-01

    Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre-harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Crops Models for Varying Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Cavazzoni, James; Keas, Paul

    2001-01-01

    New variable environment Modified Energy Cascade (MEC) crop models were developed for all the Advanced Life Support (ALS) candidate crops and implemented in SIMULINK. The MEC models are based on the Volk, Bugbee, and Wheeler Energy Cascade (EC) model and are derived from more recent Top-Level Energy Cascade (TLEC) models. The MEC models simulate crop plant responses to day-to-day changes in photosynthetic photon flux, photoperiod, carbon dioxide level, temperature, and relative humidity. The original EC model allows changes in light energy but uses a less accurate linear approximation. The simulation outputs of the new MEC models for constant nominal environmental conditions are very similar to those of earlier EC models that use parameters produced by the TLEC models. There are a few differences. The new MEC models allow setting the time for seed emergence, have realistic exponential canopy growth, and have corrected harvest dates for potato and tomato. The new MEC models indicate that the maximum edible biomass per meter squared per day is produced at the maximum allowed carbon dioxide level, the nominal temperatures, and the maximum light input. Reducing the carbon dioxide level from the maximum to the minimum allowed in the model reduces crop production significantly. Increasing temperature decreases production more than it decreases the time to harvest, so productivity in edible biomass per meter squared per day is greater at nominal than maximum temperatures, The productivity in edible biomass per meter squared per day is greatest at the maximum light energy input allowed in the model, but the edible biomass produced per light energy input unit is lower than at nominal light levels. Reducing light levels increases light and power use efficiency. The MEC models suggest we can adjust the light energy day-to- day to accommodate power shortages or Lise excess power while monitoring and controlling edible biomass production.

  17. Impact of vegetable crop agriculture on anopheline agressivity and malaria transmission in urban and less urbanized settings of the South region of Cameroon.

    PubMed

    Akono, Patrick Ntonga; Mbida, Jean Arthur Mbida; Tonga, Calvin; Belong, Philippe; Ngo Hondt, Odette Etoile; Magne, Gaëlle Tamdem; Peka, Marie Florence; Lehman, Leopold Gustave

    2015-05-28

    The use of inland valley swamps for vegetable crop agriculture contributes to food security in urban and less urbanized settings in Africa. The impact of this agriculture on aggressive mosquitoes' diversity and malaria transmission in central Africa is poorly documented. This study is aimed at assessing the impact of vegetable crop agriculture on these entomological parameters in urban and less urbanized settings of the forest area, south of Cameroon. The human bait technique was used for the capture of aggressive mosquitoes from January to December 2012. For three consecutive days each month, captures were performed on volunteers in hydro-agricultural and river bank sites of Akonolinga and Yaoundé. Physico-chemical characteristics of mosquito breeding sites were recorded. Molecular alongside morpho-taxonomic techniques were used for the identification of mosquito species; ELISA test was used to reveal Plasmodium falciparum infected mosquitoes through the detection of CSP. Mosquito diversity, aggressivity and malaria transmission in sites and settings were determined and compared. Biting rates were higher in hydro-agricultural sites of less urbanized and urban settings (31.8 b/p/n and 28.6 b/p/n respectively) than in river banks sites (6.83 b/p/n and 3.64 b/p/n respectively; p < 0.0001). Physico-chemical parameters of breeding sites were not fundamentally different. Five anopheline species were identified; An. gambiae, An. funestus s.s., An. moucheti s.s., An. hancocki and An. nili s.s. In hydro-agricultural sites 2 species were captured in the urban setting versus 4 in the less urbanized setting, meanwhile in river bank sites, 3 species were captured in the urban setting versus 4 species in the less urbanized setting. An. nili s.s. was found in river banks only. An. hancocki was not found to insure Plasmodium falciparum Welch transmission. EIR in hydro-agricultural sites varied from 1.86 ib/p/n (urban area) to 2.13 ib/p/n (less urbanized area) with higher

  18. An energy balance approach for mapping crop waterstress and yield impacts over the Czech Republic

    USDA-ARS?s Scientific Manuscript database

    There is a growing demand for timely, spatially distributed information regarding crop condition and water use to inform agricultural decision making and yield forecasting efforts. Remote sensing of land-surface temperature has proven valuable for mapping evapotranspiration (ET) and crop stress from...

  19. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy.

    PubMed

    Qin, Hai-Bo; Zhu, Jian-Ming; Lin, Zhi-Qing; Xu, Wen-Po; Tan, De-Can; Zheng, Li-Rong; Takahashi, Yoshio

    2017-06-01

    Selenium (Se) speciation in soil is critically important for understanding the solubility, mobility, bioavailability, and toxicity of Se in the environment. In this study, Se fractionation and chemical speciation in agricultural soils from seleniferous areas were investigated using the elaborate sequential extraction and X-ray absorption near-edge structure (XANES) spectroscopy. The speciation results quantified by XANES technique generally agreed with those obtained by sequential extraction, and the combination of both approaches can reliably characterize Se speciation in soils. Results showed that dominant organic Se (56-81% of the total Se) and lesser Se(IV) (19-44%) were observed in seleniferous agricultural soils. A significant decrease in the proportion of organic Se to the total Se was found in different types of soil, i.e., paddy soil (81%) > uncultivated soil (69-73%) > upland soil (56-63%), while that of Se(IV) presented an inverse tendency. This suggests that Se speciation in agricultural soils can be significantly influenced by different cropping systems. Organic Se in seleniferous agricultural soils was probably derived from plant litter, which provides a significant insight for phytoremediation in Se-laden ecosystems and biofortification in Se-deficient areas. Furthermore, elevated organic Se in soils could result in higher Se accumulation in crops and further potential chronic Se toxicity to local residents in seleniferous areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fungal community profiles in agricultural soils of a long-term field trial under different tillage, fertilization and crop rotation conditions analyzed by high-throughput ITS-amplicon sequencing

    PubMed Central

    Geistlinger, Joerg; Wibberg, Daniel; Deubel, Annette; Zwanzig, Jessica; Babin, Doreen; Schlüter, Andreas; Schellenberg, Ingo

    2018-01-01

    Fungal communities in agricultural soils are assumed to be affected by soil and crop management. Our intention was to investigate the impact of different tillage and fertilization practices on fungal communities in a long-term crop rotation field trial established in 1992 in Central Germany. Two winter wheat fields in replicated strip-tillage design, comprising conventional vs. conservation tillage, intensive vs. extensive fertilization and different pre-crops (maize vs. rapeseed) were analyzed by a metabarcoding approach applying Illumina paired-end sequencing of amplicons generated by two recently developed primer pairs targeting the two fungal Internal Transcribed Spacer regions (ITS1, ITS2). Analysis of 5.1 million high-quality sequence reads uncovered a diverse fungal community in the two fields, composed of 296 fungal genera including 3,398 Operational Taxonomic Units (OTUs) at the 97% sequence similarity threshold. Both primer pairs detected the same fungal phyla (Basidio-, Asco-, Zygo-, Glomero- and Chytridiomycota), but in different relative abundances. OTU richness was higher in the ITS1 dataset, while ITS2 data were more diverse and of higher evenness. Effects of farming practice on fungal community structures were revealed. Almost two-thirds of the fungal genera were represented in all different soil treatments, whereas the remaining genera clearly responded to farming practice. Principal Component Analysis revealed four distinct clusters according to tillage practice and pre-crop. Analysis of Variance (ANOVA) substantiated the results and proved significant influences of tillage and pre-crop, while fertilization had the smallest and non-significant effect. In-depth analysis of putative phytopathogenic and plant beneficial fungal groups indicated distinct responses; for example Fusarium was significantly enriched in the intensively fertilized conservation tillage variants with the pre-crop maize, while Phoma displayed significant association with

  1. 7 CFR 457.146 - Northern potato crop insurance-storage coverage endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Northern potato crop insurance-storage coverage endorsement. 457.146 Section 457.146 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.146...

  2. 7 CFR 457.147 - Central and Southern potato crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Central and Southern potato crop insurance provisions. 457.147 Section 457.147 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.147...

  3. 7 CFR 457.144 - Northern potato crop insurance-processing quality endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Northern potato crop insurance-processing quality endorsement. 457.144 Section 457.144 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.144...

  4. 7 CFR 457.155 - Processing bean crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Processing bean crop insurance provisions. 457.155... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.155 Processing bean crop insurance provisions. The Processing Bean Crop Insurance Provisions for the 1998 and succeeding...

  5. 7 CFR 457.155 - Processing bean crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Processing bean crop insurance provisions. 457.155... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.155 Processing bean crop insurance provisions. The Processing Bean Crop Insurance Provisions for the 1998 and succeeding...

  6. 7 CFR 457.155 - Processing bean crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Processing bean crop insurance provisions. 457.155... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.155 Processing bean crop insurance provisions. The Processing Bean Crop Insurance Provisions for the 1998 and succeeding...

  7. 7 CFR 457.155 - Processing bean crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Processing bean crop insurance provisions. 457.155... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.155 Processing bean crop insurance provisions. The Processing Bean Crop Insurance Provisions for the 1998 and succeeding...

  8. 7 CFR 457.173 - Florida Avocado crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Florida Avocado crop insurance provisions. 457.173... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.173 Florida Avocado crop insurance provisions. The Florida Avocado Crop Insurance Provisions for the 2011 and succeeding...

  9. 7 CFR 457.173 - Florida Avocado crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Florida Avocado crop insurance provisions. 457.173... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.173 Florida Avocado crop insurance provisions. The Florida Avocado Crop Insurance Provisions for the 2011 and succeeding...

  10. 7 CFR 457.108 - Sunflower seed crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Sunflower seed crop insurance provisions. 457.108... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.108 Sunflower seed crop insurance provisions. The sunflower seed crop insurance provisions for the 2011 and succeeding...

  11. 7 CFR 457.108 - Sunflower seed crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Sunflower seed crop insurance provisions. 457.108... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.108 Sunflower seed crop insurance provisions. The sunflower seed crop insurance provisions for the 2011 and succeeding...

  12. 7 CFR 457.108 - Sunflower seed crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Sunflower seed crop insurance provisions. 457.108... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.108 Sunflower seed crop insurance provisions. The sunflower seed crop insurance provisions for the 2011 and succeeding...

  13. Soil- and crop-dependent variation in correlation lag between precipitation and agricultural drought indices as predicted by the SWAP model

    NASA Astrophysics Data System (ADS)

    Wright, Azin; Cloke, Hannah; Verhoef, Anne

    2017-04-01

    Droughts have a devastating impact on agriculture and economy. The risk of more frequent and more severe droughts is increasing due to global warming and certain anthropogenic activities. At the same time, the global population continues to rise and the need for sustainable food production is becoming more and more pressing. In light of this, drought prediction can be of great value; in the context of early warning, preparedness and mitigation of drought impacts. Prediction of meteorological drought is associated with uncertainties around precipitation variability. As meteorological drought propagates, it can transform into agricultural drought. Determination of the maximum correlation lag between precipitation and agricultural drought indices can be useful for prediction of agricultural drought. However, the influence of soil and crop type on the lag needs to be considered, which we explored using a 1-D Soil-Vegetation-Atmosphere-Transfer model (SWAP (http://www.swap.alterra.nl/), with the following configurations, all forced with ERA-Interim weather data (1979 to 2014): i) different crop types in the UK; ii) three generic soil types (clay, loam and sand) were considered. A Sobol sensitivity analysis was carried out (perturbing the SWAP model van Genuchten soil hydraulic parameters) to study the effect of soil type uncertainty on the water balance variables. Based on the sensitivity analysis results, a few variations of each soil type were selected. Agricultural drought indices including Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) were calculated. The maximum correlation lag between precipitation and these drought indices was calculated, and analysed in the context of crop and soil model parameters. The findings of this research can be useful to UK farming, by guiding government bodies such as the Environment Agency when issuing drought warnings and implementing drought measures.

  14. The Joint Experiment for Crop Assessment and Monitoring (JECAM): Update on Multisite Inter-comparison Experiments

    NASA Astrophysics Data System (ADS)

    Jarvis, I.; Gilliams, S. J. B.; Defourny, P.

    2016-12-01

    Globally there is significant convergence on agricultural monitoring research questions. The focus of interest usually revolves around crop type, crop area estimation and near real time crop condition and yield forecasting. Notwithstanding this convergence, agricultural systems differ significantly throughout the world, reflecting the diversity of ecosystems they are located in. Consequently, a global system of systems for operational monitoring must be based on multiple approaches. Research is required to compare and assess these approaches to identify which are most appropriate for any given location. To this end the Joint Experiments for Crop Assessment and Monitoring (JECAM) was established in 2009 to as a research platform to allow the global agricultural monitoring community to work towards a set of best practices and recommendations for using earth observation data to map, monitor and report on agricultural productivity globally. The JECAM initiative brings together researchers from a large number of globally distributed, well monitored agricultural test sites that cover a range of crop types, cropping systems and climate regimes. The results of JECAM optical inter-comparison research taking place in the Stimulating Innovation for Global Monitoring of Agriculture (SIGMA) project and the Sentinel-2 for Agriculture project will be discussed. The presentation will also highlight upcoming work on a Synthetic Aperture Radar (SAR) inter-comparison study. The outcome of these projects will result in a set of best practices that cover the range of remote sensing monitoring and reporting needs, including satellite data acquisition, pre-processing techniques, information retrieval and ground data validation. These outcomes provide the R&D foundation for GEOGLAM and will help to inform the development of the GEOGLAM system of systems for global agricultural monitoring.

  15. Integrated crop-livestock systems and cover crop grazing in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Integrating crops and livestock has been identified as an approach to sustainably intensify agricultural systems, increasing production while reducing the need for external inputs, building soil health, and increasing economic returns. Cover crops and grazing these cover crops are a natural fit with...

  16. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Fresh market sweet corn crop insurance provisions. 457.129 Section 457.129 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.129 Fresh market...

  17. A summary of the history of the development of automated remote sensing for agricultural applications

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.

    1984-01-01

    An historical account is given of the development of technology for the processing of satellite-acquired multispectral data aimed at the identification of the type, condition, and ontogenic stages of agricultural areas. During 1972 and 1973, research established the feasibility of automating digital classification for the processing of large volumes of Landsat MSS data. This capability was successfully demonstrated during the Large Area Crop Inventory Experiment, which estimated wheat crop production on a global basis. This achievement in turn led to the Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing, which investigated other portions of the electromagnetic spectrum and expanded the study of key commercial crops in important agricultural areas.

  18. 7 CFR 1405.6 - Crop insurance requirement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... contributed in the previous year, or is expected to contribute in the current crop year, 10 percent or more of... 7 Agriculture 10 2011-01-01 2011-01-01 false Crop insurance requirement. 1405.6 Section 1405.6 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT...

  19. 7 CFR 201.49 - Other crop seed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Other crop seed. 201.49 Section 201.49 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Purity Analysis in the Administration of the Act § 201.49 Other crop seed. (a) Seeds of plants...

  20. 7 CFR 201.49 - Other crop seed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Other crop seed. 201.49 Section 201.49 Agriculture..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Purity Analysis in the Administration of the Act § 201.49 Other crop seed. (a) Seeds of plants...

  1. Monitoring Crop Phenology and Growth Stages from Space: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.; Mladenova, I. E.; Kustas, W. P.; Alfieri, J. G.

    2014-12-01

    Crop growth stages in concert with weather and soil moisture conditions can have a significant impact on crop yields. In the U.S., crop growth stages and conditions are reported by farmers at the county level. These reports are somewhat subjective and fluctuate between different reporters, locations and times. Remote sensing data provide an alternative approach to monitoring crop growth over large areas in a more consistent and quantitative way. In the recent years, remote sensing data have been used to detect vegetation phenology at 1-km spatial resolution globally. However, agricultural applications at field scale require finer spatial resolution remote sensing data. Landsat (30-m) data have been successfully used for agricultural applications. There are many medium resolution sensors available today or in near future. These include Landsat, SPOT, RapidEye, ASTER and future Sentinel-2 etc. Approaches have been developed in the past several years to integrate remote sensing data from different sensors which may have different sensor characteristics, and spatial and temporal resolutions. This allows us opportunities today to map crop growth stages and conditions using dense time-series remote sensing at field scales. However, remotely sensed phenology (or phenological metrics) is normally derived based on the mathematical functions of the time-series data. The phenological metrics are determined by either identifying inflection (curvature) points or some pre-defined thresholds in the remote sensing phenology algorithms. Furthermore, physiological crop growth stages may not be directly correlated to the remotely sensed phenology. The relationship between remotely sensed phenology and crop growth stages is likely to vary for specific crop types and varieties, growing stages, conditions and even locations. In this presentation, we will examine the relationship between remotely sensed phenology and crop growth stages using in-situ measurements from Fluxnet sites and

  2. Projected climate change impacts and short term predictions on staple crops in Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Spano, D.; Gallo, A.; Carboni, G.

    2013-12-01

    Agriculture in Sub-Saharan Africa (SSA) drives the economy of many African countries and it is mainly rain-fed agriculture used for subsistence. Increasing temperatures, changed precipitation patterns and more frequent droughts may lead to a substantial decrease of crop yields. The projected impacts of future climate change on agriculture are expected to be significant and extensive in the SSA due to the shortening of the growing seasons and the increasing of water-stress risk. Differences in Agro-Ecological Zones and geographical characteristics of SSA influence the diverse impacts of climate change, which can greatly differ across the continent and within countries. The vulnerability of African Countries to climate change is aggravated by the low adaptive capacity of the continent, due to the increasing of its population, the widespread poverty, and other social factors. In this contest, the assessment of climate change impact on agricultural sector has a particular interest to stakeholder and policy makers, in order to identify specific agricultural sectors and Agro-Ecological Zones that could be more vulnerable to changes in climatic conditions and to develop the most appropriate policies to cope with these threats. For these reasons, the evaluation of climate change impacts for key crops in SSA was made exploring climate uncertainty and focusing on short period monitoring, which is particularly useful for food security and risk management analysis. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT-CSM are tools that allow to simulate physiological process of crop growth, development and production, by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were used, after a parameterization phase, to evaluate climate change impacts on crop phenology and production

  3. Agroforestry: Enhancing resiliency in U.S. agricultural landscapes under changing conditions - executive summary

    Treesearch

    Toral Patel-Weynand; Gary Bentrup; Michele M. Schoeneberger

    2017-01-01

    Agroforestry, the intentional integration of trees and shrubs into crop and animal production systems, is being deployed to enhance productivity, profitability, and environmental stewardship of agricultural operations and lands across the United States. The full assessment at https://doi.org/10.2737/WO-GTR-96...

  4. Replacing fallow by cover crops: economic sustainability

    NASA Astrophysics Data System (ADS)

    Gabriel, José Luis; Garrido, Alberto; Quemada, Miguel

    2013-04-01

    Replacing fallow by cover crops in intensive fertilized systems has been demonstrated as an efficient tool for reducing nitrate leaching. However, despite the evident environmental services provided and the range of agronomic benefits documented in the literature, farmers' adoption of this new technology is still limited because they are either unwilling or unable, although adoption reluctance is frequently rooted in low economic profitability, low water se efficiency or poor knowledge. Economic analyses permit a comparison between the profit that farmers obtain from agricultural products and the cost of adopting specific agricultural techniques. The goal of this study was to evaluate the economic impact of replacing the usual winter fallow with cover crops (barley (Hordeum vulgare L., cv. Vanessa), vetch (Vicia villosa L., cv. Vereda) and rapeseed (Brassica napus L., cv. Licapo)) in irrigated maize systems and variable Mediterranean weather conditions using stochastic Monte-Carlo simulations of key farms' financial performance indicators. The three scenarios studied for each cover crop were: i) just leaving the cover crop residue in the ground, ii) leaving the cover crop residue but reduce following maize fertilization according to the N available from the previous cover crop and iii) selling the cover crop residue for animal feeding. All the scenarios were compared with respect to a typical maize-fallow rotation. With observed data from six different years and in various field trials, looking for different weather conditions, probability distribution functions of maize yield, cover crop biomass production and N fertilizer saving was fitted. Based in statistical sources maize grain price, different forage prices and the cost of fertilizer were fitted to probability distribution functions too. As result, introducing a cover crop involved extra costs with respect to fallow as the initial investment, because new seed, herbicide or extra field operations. Additional

  5. Tracing organic and inorganic pollution sources of agricultural crops and water resources in Güzelhisar Basin of the Aegean Region - Turkey

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Anac, Dilek; Düring, Rolf-Alexander

    2014-05-01

    The study area Güzelhisar Basin is 6 km far from the city Aliaga, Aegean Region in Turkey which represents a rather industrialized area having five large iron and steel factories, but also areas of agriculture. Steel industry in Aliaga is causing metal pollution. Around Güzelhisar Basin and nearby, the dominant crop fields are cotton, maize, vegetables, olive trees and vineyards. Güzelhisar stream and dam water is used for irrigation of the agricultural land. Due to contamination from metal industry in Aliaga, organic farming is not allowed in this region. Industrial activities in the region present a threat on sustainable agriculture. The region is a multi-impacted area in terms of several pollutant sources affecting soil and water quality. The overall objective of the project is to trace back plant nutrients (N, P, K, Ca, Mg, Na, Fe, Mn, Zn, Cu, and B), hazardous substances (i. e. persistent organic pollutants), radionuclides (40K, 232Th, 226Ra/238U), and metal contents (As, Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, and Zn) by examining the soils, agricultural crops and natural plants from Güzelhisar Basin and water and sediments from Güzelhisar stream and dam. Spatial distribution of pollution will be evaluated by regionalization methods. For this, an advanced analytical methodology will be applied which provides an understanding of sources and occurrence of the respective substances of concern. An innovative multi-tracer approach comprising organic and inorganic marker substances, will identify and quantitatively assess sources and their impact on water pollution and the pollutant pathways in this agricultural crop production system.

  6. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... product stored or handled in the warehouse on a demand made by: (1) The holder of the warehouse receipt... 7 Agriculture 7 2010-01-01 2010-01-01 false Conditions for delivery of agricultural products. 735... ACT Warehouse Licensing § 735.110 Conditions for delivery of agricultural products. (a) In the absence...

  7. Modeling salt movement and halophytic crop growth on marginal lands with the APEX model

    NASA Astrophysics Data System (ADS)

    Goehring, N.; Saito, L.; Verburg, P.; Jeong, J.; Garrett, A.

    2016-12-01

    Saline soils negatively impact crop productivity in nearly 20% of irrigated agricultural lands worldwide. At these saline sites, cultivation of highly salt-tolerant plants, known as halophytes, may increase productivity compared to conventional salt-sensitive crops (i.e., glycophytes), thereby increasing the economic potential of marginal lands. Through a variety of mechanisms, halophytes are more effective than glycophytes at excluding, accumulating, and secreting salts from their tissues. Each mechanism can have a different impact on the salt balance in the plant-soil-water system. To date, little information is available to understand the long-term impacts of halophyte cultivation on environmental quality. This project utilizes the Agricultural Policy/Environmental Extender (APEX) model, developed by the US Department of Agriculture, to model the growth and production of two halophytic crops. The crops being modeled include quinoa (Chenopodium quinoa), which has utilities for human consumption and forage, and AC Saltlander green wheatgrass (Elymus hoffmannii), which has forage utility. APEX simulates salt movement between soil layers and accounts for the salt balance in the plant-soil-water system, including salinity in irrigation water and crop-specific salt uptake. Key crop growth parameters in APEX are derived from experimental growth data obtained under non-stressed conditions. Data from greenhouse and field experiments in which quinoa and AC Saltlander were grown under various soil salinity and irrigation salinity treatments are being used to parameterize, calibrate, and test the model. This presentation will discuss progress on crop parameterization and completed model runs under different salt-affected soil and irrigation conditions.

  8. Trichoderma for climate resilient agriculture.

    PubMed

    Kashyap, Prem Lal; Rai, Pallavi; Srivastava, Alok Kumar; Kumar, Sudheer

    2017-08-01

    Climate change is one of the biggest challenges of the twenty-first century for sustainable agricultural production. Several reports highlighted the need for better agricultural practices and use of eco-friendly methods for sustainable crop production under such situations. In this context, Trichoderma species could be a model fungus to sustain crop productivity. Currently, these are widely used as inoculants for biocontrol, biofertilization, and phytostimulation. They are reported to improve photosynthetic efficiency, enhance nutrient uptake and increase nitrogen use efficiency in crops. Moreover, they can be used to produce bio-energy, facilitate plants for adaptation and mitigate adverse effect of climate change. The technological advancement in high throughput DNA sequencing and biotechnology provided deep insight into the complex and diverse biotic interactions established in nature by Trichoderma spp. and efforts are being made to translate this knowledge to enhance crop growth, resistance to disease and tolerance to abiotic stresses under field conditions. The discovery of several traits and genes that are involved in the beneficial effects of Trichoderma spp. has resulted in better understanding of the performance of bioinoculants in the field, and will lead to more efficient use of these strains and possibly to their improvement by genetic modification. The present mini-review is an effort to elucidate the molecular basis of plant growth promotion and defence activation by Trichoderma spp. to garner broad perspectives regarding their functioning and applicability for climate resilient agriculture.

  9. Operational seasonal forecasting of crop performance.

    PubMed

    Stone, Roger C; Meinke, Holger

    2005-11-29

    Integrated, interdisciplinary crop performance forecasting systems, linked with appropriate decision and discussion support tools, could substantially improve operational decision making in agricultural management. Recent developments in connecting numerical weather prediction models and general circulation models with quantitative crop growth models offer the potential for development of integrated systems that incorporate components of long-term climate change. However, operational seasonal forecasting systems have little or no value unless they are able to change key management decisions. Changed decision making through incorporation of seasonal forecasting ultimately has to demonstrate improved long-term performance of the cropping enterprise. Simulation analyses conducted on specific production scenarios are especially useful in improving decisions, particularly if this is done in conjunction with development of decision-support systems and associated facilitated discussion groups. Improved management of the overall crop production system requires an interdisciplinary approach, where climate scientists, agricultural scientists and extension specialists are intimately linked with crop production managers in the development of targeted seasonal forecast systems. The same principle applies in developing improved operational management systems for commodity trading organizations, milling companies and agricultural marketing organizations. Application of seasonal forecast systems across the whole value chain in agricultural production offers considerable benefits in improving overall operational management of agricultural production.

  10. Operational seasonal forecasting of crop performance

    PubMed Central

    Stone, Roger C; Meinke, Holger

    2005-01-01

    Integrated, interdisciplinary crop performance forecasting systems, linked with appropriate decision and discussion support tools, could substantially improve operational decision making in agricultural management. Recent developments in connecting numerical weather prediction models and general circulation models with quantitative crop growth models offer the potential for development of integrated systems that incorporate components of long-term climate change. However, operational seasonal forecasting systems have little or no value unless they are able to change key management decisions. Changed decision making through incorporation of seasonal forecasting ultimately has to demonstrate improved long-term performance of the cropping enterprise. Simulation analyses conducted on specific production scenarios are especially useful in improving decisions, particularly if this is done in conjunction with development of decision-support systems and associated facilitated discussion groups. Improved management of the overall crop production system requires an interdisciplinary approach, where climate scientists, agricultural scientists and extension specialists are intimately linked with crop production managers in the development of targeted seasonal forecast systems. The same principle applies in developing improved operational management systems for commodity trading organizations, milling companies and agricultural marketing organizations. Application of seasonal forecast systems across the whole value chain in agricultural production offers considerable benefits in improving overall operational management of agricultural production. PMID:16433097

  11. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    NASA Astrophysics Data System (ADS)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  12. Spectrally-Based Assessment of Crop Seasonal Performance and Yield

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Borisova, Denitsa; Georgiev, Georgy

    The rapid advances of space technologies concern almost all scientific areas from aeronautics to medicine, and a wide range of application fields from communications to crop yield predictions. Agricultural monitoring is among the priorities of remote sensing observations for getting timely information on crop development. Monitoring agricultural fields during the growing season plays an important role in crop health assessment and stress detection provided that reliable data is obtained. Successfully spreading is the implementation of hyperspectral data to precision farming associated with plant growth and phenology monitoring, physiological state assessment, and yield prediction. In this paper, we investigated various spectral-biophysical relationships derived from in-situ reflectance measurements. The performance of spectral data for the assessment of agricultural crops condition and yield prediction was examined. The approach comprisesd development of regression models between plant spectral and state-indicative variables such as biomass, vegetation cover fraction, leaf area index, etc., and development of yield forecasting models from single-date (growth stage) and multitemporal (seasonal) reflectance data. Verification of spectral predictions was performed through comparison with estimations from biophysical relationships between crop growth variables. The study was carried out for spring barley and winter wheat. Visible and near-infrared reflectance data was acquired through the whole growing season accompanied by detailed datasets on plant phenology and canopy structural and biochemical attributes. Empirical relationships were derived relating crop agronomic variables and yield to various spectral predictors. The study findings were tested using airborne remote sensing inputs. A good correspondence was found between predicted and actual (ground-truth) estimates

  13. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  14. Understanding crop genetic diversity under modern plant breeding.

    PubMed

    Fu, Yong-Bi

    2015-11-01

    Maximizing crop yield while at the same time minimizing crop failure for sustainable agriculture requires a better understanding of the impacts of plant breeding on crop genetic diversity. This review identifies knowledge gaps and shows the need for more research into genetic diversity changes under plant breeding. Modern plant breeding has made a profound impact on food production and will continue to play a vital role in world food security. For sustainable agriculture, a compromise should be sought between maximizing crop yield under changing climate and minimizing crop failure under unfavorable conditions. Such a compromise requires better understanding of the impacts of plant breeding on crop genetic diversity. Efforts have been made over the last three decades to assess crop genetic diversity using molecular marker technologies. However, these assessments have revealed some temporal diversity patterns that are largely inconsistent with our perception that modern plant breeding reduces crop genetic diversity. An attempt was made in this review to explain such discrepancies by examining empirical assessments of crop genetic diversity and theoretical investigations of genetic diversity changes over time under artificial selection. It was found that many crop genetic diversity assessments were not designed to assess diversity impacts from specific plant breeding programs, while others were experimentally inadequate and contained technical biases from the sampling of cultivars and genomes. Little attention has been paid to theoretical investigations on crop genetic diversity changes from plant breeding. A computer simulation of five simplified breeding schemes showed the substantial effects of plant breeding on the retention of heterozygosity over generations. It is clear that more efforts are needed to investigate crop genetic diversity in space and time under plant breeding to achieve sustainable crop production.

  15. Development of agriculture biotechnology in Pakistan.

    PubMed

    Zafar, Yusuf

    2007-01-01

    Agriculture plays an important role in the national economy of Pakistan, where most of the rapidly increasing population resides in rural areas and depends on agriculture for subsistence. Biotechnology has considerable potential for promoting the efficiency of crop improvement, food production, and poverty reduction. Use of modern biotechnology started in Pakistan since 1985. Currently, there are 29 biotech centers/institutes in the country. However, few centers have appropriate physical facilities and trained manpower to develop genetically modified (GM) crops. Most of the activities have been on rice and cotton, which are among the top 5 crops of Pakistan. Biotic (virus/bacterial/insect) and abiotic (salt) resistant and quality (male sterility) genes have already been incorporated in some crop plants. Despite acquiring capacity to produce transgenic plants, no GM crops, either produced locally or imported, have been released in the country. Pakistan is signatory to the World Trade Organization, Convention on Biological Diversity, and Cartagena protocols. Several legislations under the Agreement on Trade-Related Aspects of Intellectual Property Rights have been promulgated in the country. National Biosafety Guidelines have been promulgated in April 2005. The Plant Breeders Rights Act, Amendment in Seed Act-1976, and Geographical Indication for Goods are still passing through discussion, evaluation, and analysis phases. Meanwhile, an illegal GM crop (cotton) has already sneaked into farmer's field. Concerted and coordinated efforts are needed among various ministries for implementation of regulation and capacity building for import/export and local handling of GM crops. Pakistan could easily benefit from the experience of Asian countries, especially China and India, where conditions are similar and the agriculture sector is almost like that of Pakistan. Thus, the exchange of information and experiences is important among these nations.

  16. The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation research activity for historical period model intercomparison and future climate change conditions with participation of multiple crop and agricultural economic model groups around the...

  17. Global agricultural intensification during climate change: a role for genomics.

    PubMed

    Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Bryant, John; Cai, Hongwei; Cockram, James; de Oliveira, Antonio Costa; Cseke, Leland J; Dempewolf, Hannes; De Pace, Ciro; Edwards, David; Gepts, Paul; Greenland, Andy; Hall, Anthony E; Henry, Robert; Hori, Kiyosumi; Howe, Glenn Thomas; Hughes, Stephen; Humphreys, Mike; Lightfoot, David; Marshall, Athole; Mayes, Sean; Nguyen, Henry T; Ogbonnaya, Francis C; Ortiz, Rodomiro; Paterson, Andrew H; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K; Yano, Masahiro

    2016-04-01

    Agriculture is now facing the 'perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic-assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Increased occurrence of pesticide residues on crops grown in protected environments compared to crops grown in open field conditions.

    PubMed

    Allen, Gina; Halsall, Crispin J; Ukpebor, Justina; Paul, Nigel D; Ridall, Gareth; Wargent, Jason J

    2015-01-01

    Crops grown under plastic-clad structures or in greenhouses may be prone to an increased frequency of pesticide residue detections and higher concentrations of pesticides relative to equivalent crops grown in the open field. To test this we examined pesticide data for crops selected from the quarterly reports (2004-2009) of the UK's Pesticide Residue Committee. Five comparison crop pairs were identified whereby one crop of each pair was assumed to have been grown primarily under some form of physical protection ('protected') and the other grown primarily in open field conditions ('open'). For each pair, the number of detectable pesticide residues and the proportion of crop samples containing pesticides were statistically compared (n=100 s samples for each crop). The mean concentrations of selected photolabile pesticides were also compared. For the crop pairings of cabbage ('open') vs. lettuce ('protected') and 'berries' ('open') vs. strawberries ('protected') there was a significantly higher number of pesticides and proportion of samples with multiple residues for the protected crops. Statistically higher concentrations of pesticides, including cypermethrin, cyprodinil, fenhexamid, boscalid and iprodione were also found in the protected crops compared to the open crops. The evidence here demonstrates that, in general, the protected crops possess a higher number of detectable pesticides compared to analogous crops grown in the open. This may be due to different pesticide-use regimes, but also due to slower rates of pesticide removal in protected systems. The findings of this study raise implications for pesticide management in protected-crop systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Energy crop (Sida hermaphrodita) fertilization using digestate under marginal soil conditions: A dose-response experiment

    NASA Astrophysics Data System (ADS)

    Nabel, Moritz; Bueno Piaz Barbosa, Daniela; Horsch, David; Jablonowski, Nicolai David

    2014-05-01

    The global demand for energy security and the mitigation of climate change are the main drivers pushing energy-plant production in Germany. However, the cultivation of these plants can cause land use conflicts since agricultural soil is mostly used for plant production. A sustainable alternative to the conventional cultivation of food-based energy-crops is the cultivation of special adopted energy-plants on marginal lands. To further increase the sustainability of energy-plant cultivation systems the dependency on synthetic fertilizers needs to be reduced via closed nutrient loops. In the presented study the energy-plant Sida hermaphrodita (Malvaceae) will be used to evaluate the potential to grow this high potential energy-crop on a marginal sandy soil in combination with fertilization via digestate from biogas production. With this dose-response experiment we will further identify an optimum dose, which will be compared to equivalent doses of NPK-fertilizer. Further, lethal doses and deficiency doses will be observed. Two weeks old Sida seedlings were transplanted to 1L pots and fertilized with six doses of digestate (equivalent to a field application of 5, 10, 20, 40, 80, 160t/ha) and three equivalent doses of NPK-fertilizer. Control plants were left untreated. Sida plants will grow for 45 days under greenhouse conditions. We hypothesize that the nutrient status of the marginal soil can be increased and maintained by defined digestate applications, compared to control plants suffering of nutrient deficiency due to the low nutrient status in the marginal substrate. The dose of 40t/ha is expected to give a maximum biomass yield without causing toxicity symptoms. Results shall be used as basis for further experiments on the field scale in a field trial that was set up to investigate sustainable production systems for energy crop production under marginal soil conditions.

  20. Development of a European Ensemble System for Seasonal Prediction: Application to crop yield

    NASA Astrophysics Data System (ADS)

    Terres, J. M.; Cantelaube, P.

    2003-04-01

    Western European agriculture is highly intensive and the weather is the main source of uncertainty for crop yield assessment and for crop management. In the current system, at the time when a crop yield forecast is issued, the weather conditions leading up to harvest time are unknown and are therefore a major source of uncertainty. The use of seasonal weather forecast would bring additional information for the remaining crop season and has valuable benefit for improving the management of agricultural markets and environmentally sustainable farm practices. An innovative method for supplying seasonal forecast information to crop simulation models has been developed in the frame of the EU funded research project DEMETER. It consists in running a crop model on each individual member of the seasonal hindcasts to derive a probability distribution of crop yield. Preliminary results of cumulative probability function of wheat yield provides information on both the yield anomaly and the reliability of the forecast. Based on the spread of the probability distribution, the end-user can directly quantify the benefits and risks of taking weather-sensitive decisions.

  1. Ecoclimatic indicators to study crop suitability in present and future climatic conditionsTIC CONDITIONS

    NASA Astrophysics Data System (ADS)

    Caubel, Julie; Garcia de Cortazar Atauri, Inaki; Huard, Frédéric; Launay, Marie; Ripoche, Dominique; Gouache, David; Bancal, Marie-Odile; Graux, Anne-Isabelle; De Noblet, Nathalie

    2013-04-01

    Climate change is expected to affect both regional and global food production through changes in overall agroclimatic conditions. It is therefore necessary to develop simple tools of crop suitability diagnosis in a given area so that stakeholders can envisage land use adaptations under climate change conditions. The most common way to investigate potential impacts of climate on the evolution of agrosystems is to make use of an array of agroclimatic indicators, which provide synthetic information derived from climatic variables and calculated within fixed periods (i.e. January first - 31th July). However, the information obtained during these periods does not enable to take account of the plant response to climate. In this work, we present some results of the research program ORACLE (Opportunities and Risks of Agrosystems & forests in response to CLimate, socio-economic and policy changEs in France (and Europe). We proposed a suite of relevant ecoclimatic indicators, based on temperature and rainfall, in order to evaluate crop suitability for both present and new climatic conditions. Ecoclimatic indicators are agroclimatic indicators (e.g., grain heat stress) calculated during specific phenological phases so as to take account of the plant response to climate (e.g., the grain filling period, flowering- harvest). These indicators are linked with the ecophysiological processes they characterize (for e.g., the grain filling). To represent this methodology, we studied the suitability of winter wheat in future climatic conditions through three distinct French sites, Toulouse, Dijon and Versailles. Indicators have been calculated using climatic data from 1950 to 2100 simulated by the global climate model ARPEGE forced by a greenhouse effect corresponding to the SRES A1B scenario. The Quantile-Quantile downscaling method was applied to obtain data for the three locations. Phenological stages (emergence, ear 1 cm, flowering, beginning of grain filling and harvest) have been

  2. Modelling crop land use change derived from influencing factors selected and ranked by farmers in North temperate agricultural regions.

    PubMed

    Mehdi, Bano; Lehner, Bernhard; Ludwig, Ralf

    2018-08-01

    To develop meaningful land use scenarios, drivers that affect changes in the landscape are required. In this study, driving factors that influence farmers to change crops on their farm were determined. A questionnaire was administered to four independent groups of farmers who identified and ranked influencing factors pertaining to their choices of crops. The farmers were located in two mid-latitude agricultural watersheds (in Germany and Canada). The ranked influencing factors were used to develop a "farmer driven" scenario to 2040 in both watersheds. Results showed that the most important influencing factors for farmers to change crops were the "economic return of the crop" and "market factors". Yet, when the drivers of crop land use change were grouped into two categories of "financial" and "indirectly-related financial" factors, the "financial" factors made up approximately half of the influencing factors. For some responses, the "indirectly-related financial" factors (i.e. "access to farm equipment", the "farm experience", and "climate") ranked higher than or just as high as the financial factors. Overall, in the four farmer groups the differences between the rankings of the influencing factors were minor, indicating that drivers may be transferable between farms if the farmers are full-time and the farming regions have comparable growing seasons, access to markets, similar technology, and government programs for farm income. In addition to the "farmer driven" scenario, a "policy driven" scenario was derived for each watershed based only on available information on the financial incentives provided to farmers (i.e. agricultural subsidies, income support, crop insurance). The influencing factors ranked by the farmers provided in-depth information that was not captured by the "policy driven" scenario and contributed to improving predictions for crop land use development. This straight-forward method to rank qualitative data provided by farmers can easily be

  3. Nature-based agricultural solutions: Scaling perennial grains across Africa.

    PubMed

    Peter, Brad G; Mungai, Leah M; Messina, Joseph P; Snapp, Sieglinde S

    2017-11-01

    Modern plant breeding tends to focus on maximizing yield, with one of the most ubiquitous implementations being shorter-duration crop varieties. It is indisputable that these breeding efforts have resulted in greater yields in ideal circumstances; however, many farmed locations across Africa suffer from one or more conditions that limit the efficacy of modern short-duration hybrids. In view of global change and increased necessity for intensification, perennial grains and long-duration varieties offer a nature-based solution for improving farm productivity and smallholder livelihoods in suboptimal agricultural areas. Specific conditions where perennial grains should be considered include locations where biophysical and social constraints reduce agricultural system efficiency, and where conditions are optimal for crop growth. Using a time-series of remotely-sensed data, we locate the marginal agricultural lands of Africa, identifying suboptimal temperature and precipitation conditions for the dominant crop, i.e., maize, as well as optimal climate conditions for two perennial grains, pigeonpea and sorghum. We propose that perennial grains offer a lower impact, sustainable nature-based solution to this subset of climatic drivers of marginality. Using spatial analytic methods and satellite-derived climate information, we demonstrate the scalability of perennial pigeonpea and sorghum across Africa. As a nature-based solution, we argue that perennial grains offer smallholder farmers of marginal lands a sustainable solution for enhancing resilience and minimizing risk in confronting global change, while mitigating social and edaphic drivers of low and variable production. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Improving crop condition monitoring at field scale by using optimal Landsat and MODIS images

    USDA-ARS?s Scientific Manuscript database

    Satellite remote sensing data at coarse resolution (kilometers) have been widely used in monitoring crop condition for decades. However, crop condition monitoring at field scale requires high resolution data in both time and space. Although a large number of remote sensing instruments with different...

  5. 7 CFR 457.139 - Fresh market tomato (dollar plan) crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Fresh market tomato (dollar plan) crop insurance provisions. 457.139 Section 457.139 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.139...

  6. A process-based agricultural model for the irrigated agriculture sector in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Ammar, M. E.; Davies, E. G.

    2015-12-01

    Connections between land and water, irrigation, agricultural productivity and profitability, policy alternatives, and climate change and variability are complex, poorly understood, and unpredictable. Policy assessment for agriculture presents a large potential for development of broad-based simulation models that can aid assessment and quantification of policy alternatives over longer temporal scales. The Canadian irrigated agriculture sector is concentrated in Alberta, where it represents two thirds of the irrigated land-base in Canada and is the largest consumer of surface water. Despite interest in irrigation expansion, its potential in Alberta is uncertain given a constrained water supply, significant social and economic development and increasing demands for both land and water, and climate change. This paper therefore introduces a system dynamics model as a decision support tool to provide insights into irrigation expansion in Alberta, and into trade-offs and risks associated with that expansion. It is intended to be used by a wide variety of users including researchers, policy analysts and planners, and irrigation managers. A process-based cropping system approach is at the core of the model and uses a water-driven crop growth mechanism described by AquaCrop. The tool goes beyond a representation of crop phenology and cropping systems by permitting assessment and quantification of the broader, long-term consequences of agricultural policies for Alberta's irrigation sector. It also encourages collaboration and provides a degree of transparency that gives confidence in simulation results. The paper focuses on the agricultural component of the systems model, describing the process involved; soil water and nutrients balance, crop growth, and water, temperature, salinity, and nutrients stresses, and how other disciplines can be integrated to account for the effects of interactions and feedbacks in the whole system. In later stages, other components such as

  7. 7 CFR 457.145 - Potato crop insurance-certified seed endorsement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Potato crop insurance-certified seed endorsement. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.145 Potato crop insurance—certified seed endorsement. The Potato Crop Insurance Certified Seed Endorsement Provisions for...

  8. 7 CFR 457.145 - Potato crop insurance-certified seed endorsement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Potato crop insurance-certified seed endorsement. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.145 Potato crop insurance—certified seed endorsement. The Potato Crop Insurance Certified Seed Endorsement Provisions for...

  9. 7 CFR 457.145 - Potato crop insurance-certified seed endorsement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Potato crop insurance-certified seed endorsement. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.145 Potato crop insurance—certified seed endorsement. The Potato Crop Insurance Certified Seed Endorsement Provisions for...

  10. 7 CFR 457.145 - Potato crop insurance-certified seed endorsement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Potato crop insurance-certified seed endorsement. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.145 Potato crop insurance—certified seed endorsement. The Potato Crop Insurance Certified Seed Endorsement Provisions for...

  11. The use of body condition and haematology to detect widespread threatening processes in sleepy lizards (Tiliqua rugosa) in two agricultural environments.

    PubMed

    Smyth, Anita K; Smee, Elizabeth; Godfrey, Stephanie S; Crowther, Mathew; Phalen, David

    2014-12-01

    Agricultural practices, including habitat alteration and application of agricultural chemicals, can impact wildlife resulting in their decline. Determining which of these practices are contributing to declines is essential if the declines are to be reversed. In this study, the health of two geographically separated sleepy lizard (Tiliqua rugosa) populations was compared between a rangeland environment and cropping environment using linear body size index (LBSI) and haematology. Animals in the cropping site were smaller, suggesting genetic differences as the result of geographical isolation. The animals in the cropping site had a lower LBSI and many were experiencing a regenerative anaemia. The anaemia was postulated to be the cause of the low LBSI. The anaemia appeared to be the result of haemolysis and was likely to be caused by exposure to agricultural chemicals applied in the cropping site but not the rangeland site. Elevated white blood cell counts in lizards in the rangeland site suggested that they were experiencing an inflammatory disease of possible ecological significance. Together, these results demonstrate the value of combining physical and haematological parameters when studying the impact of agricultural practices on wildlife. They also show that reptiles may be useful as sentinel species for livestock and humans.

  12. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    PubMed

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  13. Agricultural crop harvest progress monitoring by fully polarimetric synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Zhao, Chunjiang; Yang, Guijun; Li, Zengyuan; Chen, Erxue; Yuan, Lin; Yang, Xiaodong; Xu, Xingang

    2015-01-01

    Dynamic mapping and monitoring of crop harvest on a large spatial scale will provide critical information for the formulation of optimal harvesting strategies. This study evaluates the feasibility of C-band polarimetric synthetic aperture radar (PolSAR) for monitoring the harvesting progress of oilseed rape (Brassica napus L.) fields. Five multitemporal, quad-pol Radarsat-2 images and one optical ZY-1 02C image were acquired over a farmland area in China during the 2013 growing season. Typical polarimetric signatures were obtained relying on polarimetric decomposition methods. Temporal evolutions of these signatures of harvested fields were compared with the ones of unharvested fields in the context of the entire growing cycle. Significant sensitivity was observed between the specific polarimetric parameters and the harvest status of oilseed rape fields. Based on this sensitivity, a new method that integrates two polarimetric features was devised to detect the harvest status of oilseed rape fields using a single image. The validation results are encouraging even for the harvested fields covered with high residues. This research demonstrates the capability of PolSAR remote sensing in crop harvest monitoring, which is a step toward more complex applications of PolSAR data in precision agriculture.

  14. Agricultural machineries wheeling and soil qualities mapping in climatic changes conditions

    NASA Astrophysics Data System (ADS)

    Bergonzoli, S.; Servadio, P.

    2012-04-01

    and on control areas, a software GIS was used. Results shown the highest level of soil compaction caused by the traffic of WTN in term of CI and SS. In fact, increment ratio respect to the control measured after the tractors pass were: CI = 0.65 and 0.14 for WTN and for WTEL respectively; SS = 0.65 and 0.46 for WTN and WTEL respectively. Comparing the two different tires, significant differences were found particularly in the surface layers (0-0.20 m depth): mean values of CI and SS were higher for WTN (0.47 and 1.60 respectively) respect to WTEL. Track area covered by the two treatments respect to the whole field (16.32 ha) were: 0.025 for treatment WTN (0.27 m tires width) having an operative work width of 24 m ; 0.075 for treatment WTEL (0.85 m tires width) having an operative work width of 14 m. Results of this study highlighted that, in these field conditions (clay soil, water content over field capacity), tractor pass with very narrow tires caused a soil compaction level too high up to be impossible to traffic into the field. To operate at these soil water content conditions a tractors fitted with low aspect ratio and low inflation pressure tires is necessary. With lower soil water content, narrow tires allow carrying out fertilization into the inter-row avoiding crop trampling and compacting less percentage of field area respect to the a tractor equipped with large tires. Key words: Tractor, Soil trafficability, Soil compaction, Tires, GPS, GIS. Acknowledgements This work was carried out under the auspices of the special project "Sceneries of adaptation of the Italian agriculture to the climatic changes" (AGROSCENARI) of the Agricultural Research Council, and Italian Ministry of the Agricultural and Forestry Politics.

  15. Precision agriculture in large-scale mechanized farming

    USDA-ARS?s Scientific Manuscript database

    Precision agriculture involves a great deal of technologies and requires additional investments of money and time, but it can be practiced at different levels depending on the specific field and crop conditions and the resources and technology services available to the farmer. If practiced properly,...

  16. Introduction to Agronomy, Grain Crops, Weeds and Controls. A Learning Activity Pac in Agricultural Education Courses in Wisconsin.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Public Instruction, Madison. Div. of Instructional Services.

    This learning activity pac contains information to help the teachers of high school vocational agriculture in the instructional area of agronomy. Each of the two main sections, grain crops and weeds and controls, includes teacher and student units for the section lessons. Teacher units include special instructions--equipment needed (film…

  17. Systems Biology for Smart Crops and Agricultural Innovation: Filling the Gaps between Genotype and Phenotype for Complex Traits Linked with Robust Agricultural Productivity and Sustainability

    PubMed Central

    Pathak, Rajesh Kumar; Gupta, Sanjay Mohan; Gaur, Vikram Singh; Pandey, Dinesh

    2015-01-01

    Abstract In recent years, rapid developments in several omics platforms and next generation sequencing technology have generated a huge amount of biological data about plants. Systems biology aims to develop and use well-organized and efficient algorithms, data structure, visualization, and communication tools for the integration of these biological data with the goal of computational modeling and simulation. It studies crop plant systems by systematically perturbing them, checking the gene, protein, and informational pathway responses; integrating these data; and finally, formulating mathematical models that describe the structure of system and its response to individual perturbations. Consequently, systems biology approaches, such as integrative and predictive ones, hold immense potential in understanding of molecular mechanism of agriculturally important complex traits linked to agricultural productivity. This has led to identification of some key genes and proteins involved in networks of pathways involved in input use efficiency, biotic and abiotic stress resistance, photosynthesis efficiency, root, stem and leaf architecture, and nutrient mobilization. The developments in the above fields have made it possible to design smart crops with superior agronomic traits through genetic manipulation of key candidate genes. PMID:26484978

  18. 7 CFR 457.106 - Texas citrus tree crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Texas citrus tree crop insurance provisions. 457.106... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.106 Texas citrus tree crop insurance provisions. The Texas Citrus Tree Crop Insurance Provisions for the 2011 and...

  19. 7 CFR 457.106 - Texas citrus tree crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Texas citrus tree crop insurance provisions. 457.106... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.106 Texas citrus tree crop insurance provisions. The Texas Citrus Tree Crop Insurance Provisions for the 2011 and...

  20. 7 CFR 457.119 - Texas citrus fruit crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Texas citrus fruit crop insurance provisions. 457.119... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.119 Texas citrus fruit crop insurance provisions. The Texas citrus fruit crop insurance provisions for the 2000 and...

  1. 7 CFR 457.106 - Texas citrus tree crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Texas citrus tree crop insurance provisions. 457.106... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.106 Texas citrus tree crop insurance provisions. The Texas Citrus Tree Crop Insurance Provisions for the 2011 and...

  2. 7 CFR 457.119 - Texas citrus fruit crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Texas citrus fruit crop insurance provisions. 457.119... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.119 Texas citrus fruit crop insurance provisions. The Texas citrus fruit crop insurance provisions for the 2000 and...

  3. 7 CFR 457.106 - Texas citrus tree crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Texas citrus tree crop insurance provisions. 457.106... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.106 Texas citrus tree crop insurance provisions. The Texas Citrus Tree Crop Insurance Provisions for the 2011 and...

  4. 7 CFR 457.119 - Texas citrus fruit crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Texas citrus fruit crop insurance provisions. 457.119... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.119 Texas citrus fruit crop insurance provisions. The Texas citrus fruit crop insurance provisions for the 2000 and...

  5. 7 CFR 457.119 - Texas citrus fruit crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Texas citrus fruit crop insurance provisions. 457.119... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.119 Texas citrus fruit crop insurance provisions. The Texas citrus fruit crop insurance provisions for the 2000 and...

  6. 7 CFR 457.119 - Texas citrus fruit crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Texas citrus fruit crop insurance provisions. 457.119... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.119 Texas citrus fruit crop insurance provisions. The Texas citrus fruit crop insurance provisions for the 2000 and...

  7. 7 CFR 457.170 - Cultivated wild rice crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Cultivated wild rice crop insurance provisions. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.170 Cultivated wild rice crop insurance provisions. The Cultivated Wild Rice Crop Insurance Provisions for the 2009 and...

  8. 7 CFR 457.170 - Cultivated wild rice crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Cultivated wild rice crop insurance provisions. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.170 Cultivated wild rice crop insurance provisions. The Cultivated Wild Rice Crop Insurance Provisions for the 2009 and...

  9. 7 CFR 457.170 - Cultivated wild rice crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Cultivated wild rice crop insurance provisions. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.170 Cultivated wild rice crop insurance provisions. The Cultivated Wild Rice Crop Insurance Provisions for the 2009 and...

  10. 7 CFR 457.170 - Cultivated wild rice crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Cultivated wild rice crop insurance provisions. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.170 Cultivated wild rice crop insurance provisions. The Cultivated Wild Rice Crop Insurance Provisions for the 2009 and...

  11. 7 CFR 457.170 - Cultivated wild rice crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Cultivated wild rice crop insurance provisions. 457... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.170 Cultivated wild rice crop insurance provisions. The Cultivated Wild Rice Crop Insurance Provisions for the 2009 and...

  12. Halophytes As Bioenergy Crops

    PubMed Central

    Sharma, Rita; Wungrampha, Silas; Singh, Vinay; Pareek, Ashwani; Sharma, Manoj K.

    2016-01-01

    Shrinking arable land due to soil salinization and, depleting fresh water resources pose serious worldwide constraints to crop productivity. A vision of using plant feedstock for biofuel production can only be realized if we can identify alternate species that can be grown on saline soils and therefore, would not compete for the resources required for conventional agriculture. Halophytes have remarkable ability to grow under high salinity conditions. They can be irrigated with seawater without compromising their biomass and seed yields making them good alternate candidates as bioenergy crops. Both oil produced from the seeds and the lignocellulosic biomass of halophytes can be utilized for biofuel production. Several researchers across the globe have recognized this potential and assessed several halophytes for their tolerance to salt, seed oil contents and composition of their lignocellulosic biomass. Here, we review current advances and highlight the key species of halophytes analyzed for this purpose. We have critically assessed the challenges and opportunities associated with using halophytes as bioenergy crops. PMID:27679645

  13. Study on nitrogen load reduction efficiency of agricultural conservation management in a small agricultural watershed.

    PubMed

    Liu, Xiaoli; Chen, Qiuwen; Zeng, Zhaoxia

    2014-01-01

    Different crops can generate different non-point source (NPS) loads because of their spatial topography heterogeneity and variable fertilization application rates. The objective of this study was to assess nitrogen NPS load reduction efficiency by spatially adjusting crop plantings as an agricultural conservation management (ACM) measure in a typical small agricultural watershed in the black soil region in northeast China. The assessment was undertaken using the Soil and Water Assessment Tool (SWAT). Results showed that lowland crops produce higher nitrogen NPS loads than those in highlands. It was also found that corn gave a comparatively larger NPS load than soybeans due to its larger fertilization demand. The ACM assessed was the conversion of lowland corn crops into soybean crops and highland soybean crops into corn crops. The verified SWAT model was used to evaluate the impact of the ACM action on nitrogen loads. The results revealed that the ACM could reduce NO3-N and total nitrogen loads by 9.5 and 10.7%, respectively, without changing the area of crops. Spatially optimized regulation of crop planting according to fertilizer demand and geological landscapes can effectively decrease NPS nitrogen exports from agricultural watersheds.

  14. Effects of Climatic Conditions and Management Practices on Agricultural Carbon and Water Budgets in the Inland Pacific Northwest USA

    NASA Astrophysics Data System (ADS)

    Chi, Jinshu; Waldo, Sarah; Pressley, Shelley N.; Russell, Eric S.; O'Keeffe, Patrick T.; Pan, William L.; Huggins, David R.; Stöckle, Claudio O.; Brooks, Erin S.; Lamb, Brian K.

    2017-12-01

    Cropland is an important land cover influencing global carbon and water cycles. Variability of agricultural carbon and water fluxes depends on crop species, management practices, soil characteristics, and climatic conditions. In the context of climate change, it is critical to quantify the long-term effects of these environmental drivers and farming activities on carbon and water dynamics. Twenty site-years of carbon and water fluxes covering a large precipitation gradient and a variety of crop species and management practices were measured in the inland Pacific Northwest using the eddy covariance method. The rain-fed fields were net carbon sinks, while the irrigated site was close to carbon neutral during the winter wheat crop years. Sites growing spring crops were either carbon sinks, sources, or neutral, varying with crops, rainfall zones, and tillage practices. Fluxes were more sensitive to variability in precipitation than temperature: annual carbon and water fluxes increased with the increasing precipitation while only respiration increased with temperature in the high-rainfall area. Compared to a nearby rain-fed site, irrigation improved winter wheat production but resulted in large losses of carbon and water to the atmosphere. Compared to conventional tillage, no-till had significantly lower respiration but resulted in slightly lower yields and water use efficiency over 4 years. Under future climate change, it is expected that more carbon fixation by crops and evapotranspiration would occur in a warmer and wetter environment.

  15. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops

    NASA Astrophysics Data System (ADS)

    Mills, G.; Buse, A.; Gimeno, B.; Bermejo, V.; Holland, M.; Emberson, L.; Pleijel, H.

    Crop-response data from over 700 published papers and conference proceedings have been analysed with the aim of establishing ozone dose-response functions for a wide range of European agricultural and horticultural crops. Data that met rigorous selection criteria (e.g. field-based, ozone concentrations within European range, full season exposure period) were used to derive AOT40-yield response functions for 19 crops by first converting the published ozone concentration data into AOT40 (AOT40 is the hourly mean ozone concentration accumulated over a threshold ozone concentration of 40 ppb during daylight hours, units ppm h). For any individual crop, there were no significant differences in the linear response functions derived for experiments conducted in the USA or Europe, or for individual cultivars. Three statistically independent groups were identified: ozone sensitive crops (wheat, water melon, pulses, cotton, turnip, tomato, onion, soybean and lettuce); moderately sensitive crops (sugar beet, potato, oilseed rape, tobacco, rice, maize, grape and broccoli) and ozone resistant (barley and fruit represented by plum and strawberry). Critical levels of a 3 month AOT40 of 3 ppm h and a 3.5 month AOT40 of 6 ppm h were derived from the functions for wheat and tomato, respectively.

  16. Remote sensing of agricultural crops and soils

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator)

    1983-01-01

    Research in the correlative and noncorrelative approaches to image registration and the spectral estimation of corn canopy phytomass and water content is reported. Scene radiation research results discussed include: corn and soybean LANDSAT MSS classification performance as a function of scene characteristics; estimating crop development stages from MSS data; the interception of photosynthetically active radiation in corn and soybean canopies; costs of measuring leaf area index of corn; LANDSAT spectral inputs to crop models including the use of the greenness index to assess crop stress and the evaluation of MSS data for estimating corn and soybean development stages; field research experiment design data acquisition and preprocessing; and Sun-view angles studies of corn and soybean canopies in support of vegetation canopy reflection modeling.

  17. Ethoprophos fate on soil-water interface and effects on non-target terrestrial and aquatic biota under Mediterranean crop-based scenarios.

    PubMed

    Leitão, Sara; Moreira-Santos, Matilde; Van den Brink, Paul J; Ribeiro, Rui; José Cerejeira, M; Sousa, José Paulo

    2014-05-01

    The present study aimed to assess the environmental fate of the insecticide and nematicide ethoprophos in the soil-water interface following the pesticide application in simulated maize and potato crops under Mediterranean agricultural conditions, particularly of irrigation. Focus was given to the soil-water transfer pathways (leaching and runoff), to the pesticide transport in soil between pesticide application (crop row) and non-application areas (between crop rows), as well as to toxic effects of the various matrices on terrestrial and aquatic biota. A semi-field methodology mimicking a "worst-case" ethoprophos application (twice the recommended dosage for maize and potato crops: 100% concentration v/v) in agricultural field situations was used, in order to mimic a possible misuse by the farmer under realistic conditions. A rainfall was simulated under a slope of 20° for both crop-based scenarios. Soil and water samples were collected for the analysis of pesticide residues. Ecotoxicity of soil and aquatic samples was assessed by performing lethal and sublethal bioassays with organisms from different trophic levels: the collembolan Folsomia candida, the earthworm Eisenia andrei and the cladoceran Daphnia magna. Although the majority of ethoprophos sorbed to the soil application area, pesticide concentrations were detected in all water matrices illustrating pesticide transfer pathways of water contamination between environmental compartments. Leaching to groundwater proved to be an important transfer pathway of ethoprophos under both crop-based scenarios, as it resulted in high pesticide concentration in leachates from Maize (130µgL(-1)) and Potato (630µgL(-1)) crop scenarios, respectively. Ethoprophos application at the Potato crop scenario caused more toxic effects on terrestrial and aquatic biota than at the Maize scenario at the recommended dosage and lower concentrations. In both crop-based scenarios, ethoprophos moved with the irrigation water flow to the

  18. The Joint Experiment for Crop Assessment and Monitoring (JECAM): Synthetic Aperture Radar (SAR) Inter-Comparison Experiment

    NASA Astrophysics Data System (ADS)

    Dingle Robertson, L.; Hosseini, M.; Davidson, A. M.; McNairn, H.

    2017-12-01

    The Joint Experiment for Crop Assessment and Monitoring (JECAM) is the research and development branch of GEOGLAM (Group on Earth Observations Global Agricultural Monitoring), a G20 initiative to improve the global monitoring of agriculture through the use of Earth Observation (EO) data and remote sensing. JECAM partners represent a diverse network of researchers collaborating towards a set of best practices and recommendations for global agricultural analysis using EO data, with well monitored test sites covering a wide range of agriculture types, cropping systems and climate regimes. Synthetic Aperture Radar (SAR) for crop inventory and condition monitoring offers many advantages particularly the ability to collect data under cloudy conditions. The JECAM SAR Inter-Comparison Experiment is a multi-year, multi-partner project that aims to compare global methods for (1) operational SAR & optical; multi-frequency SAR; and compact polarimetry methods for crop monitoring and inventory, and (2) the retrieval of Leaf Area Index (LAI) and biomass estimations using models such as the Water Cloud Model (WCM) employing single frequency SAR; multi-frequency SAR; and compact polarimetry. The results from these activities will be discussed along with an examination of the requirements of a global experiment including best-date determination for SAR data acquisition, pre-processing techniques, in situ data sharing, model development and statistical inter-comparison of the results.

  19. Research on agricultural ecology and environment analysis and modeling based on RS and GIS

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Chen, Hongfu; Wang, Mingsheng

    2009-07-01

    Analysis of agricultural ecology and environment is based on the data of agricultural resources, which are obtained by RS monitoring. The over-exploitation of farmlands will cause structural changes of the soil composition, and damage the planting environment and the agro-ecosystem. Through the research on the dynamic monitoring methods of multitemporal RS images and GIS technology, the crop growth status, crop acreage and other relevant information in agricultural production are extracted based on the monitor and analysis of the conditions of the fields and crop growth. The agro-ecological GIS platform is developed with the establishment of the agricultural resources management database, which manages spatial data, RS data and attribute data of agricultural resources. Using the RS, GIS analysis results, the reasons of agro-ecological destruction are analyzed and the evaluation methods are established. This paper puts forward the concept of utilization capacity of farmland, which describes farmland space for development and utilization that is influenced by the conditions of the land, water resources, climate, pesticides and chemical fertilizers and many other agricultural production factors. Assessment model of agricultural land use capacity is constructed with the help of Fuzzy. Assessing the utilization capacity of farmland can be helpful to agricultural production and ecological protection of farmland. This paper describes the application of the capacity evaluation model with simulated data in two aspects, namely, in evaluating the status of farmland development and utilization and in optimal planting.

  20. The AgMIP Coordinated Climate-Crop Modeling Project (C3MP): Methods and Protocols

    NASA Technical Reports Server (NTRS)

    Shukla, Sonali P.; Ruane, Alexander Clark

    2014-01-01

    Climate change is expected to alter a multitude of factors important to agricultural systems, including pests, diseases, weeds, extreme climate events, water resources, soil degradation, and socio-economic pressures. Changes to carbon dioxide concentration ([CO2]), temperature, and water (CTW) will be the primary drivers of change in crop growth and agricultural systems. Therefore, establishing the CTW-change sensitivity of crop yields is an urgent research need and warrants diverse methods of investigation. Crop models provide a biophysical, process-based tool to investigate crop responses across varying environmental conditions and farm management techniques, and have been applied in climate impact assessment by using a variety of methods (White et al., 2011, and references therein). However, there is a significant amount of divergence between various crop models' responses to CTW changes (Rotter et al., 2011). While the application of a site-based crop model is relatively simple, the coordination of such agricultural impact assessments on larger scales requires consistent and timely contributions from a large number of crop modelers, each time a new global climate model (GCM) scenario or downscaling technique is created. A coordinated, global effort to rapidly examine CTW sensitivity across multiple crops, crop models, and sites is needed to aid model development and enhance the assessment of climate impacts (Deser et al., 2012). To fulfill this need, the Coordinated Climate-Crop Modeling Project (C3MP) (Ruane et al., 2014) was initiated within the Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013). The submitted results from C3MP Phase 1 (February 15, 2013-December 31, 2013) are currently being analyzed. This chapter serves to present and update the C3MP protocols, discuss the initial participation and general findings, comment on needed adjustments, and describe continued and future development. AgMIP aims to improve

  1. Spectral variations of canopy reflectance in support of precision agriculture

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Georgiev, Georgi; Borisova, Denitsa; Nikolov, Hristo

    2014-05-01

    Agricultural monitoring is an important and continuously spreading activity in remote sensing and applied Earth observations. It supplies precise, reliable and valuable information on current crop condition and growth processes. In agriculture, the timing of seasonal cycles of crop activity is important for species classification and evaluation of crop development, growing conditions and potential yield. The correct interpretation of remotely sensed data, however, and the increasing demand for data reliability require ground-truth knowledge of the seasonal spectral behavior of different species and their relation to crop vigor. For this reason, we performed ground-based study of the seasonal response of winter wheat reflectance patterns to crop growth patterns. The goal was to quantify crop seasonality by establishing empirical relationships between plant biophysical and spectral properties in main ontogenetic periods. Phenology and agro-specific relationships allow assessing crop condition during different portions of the growth cycle and thus effectively tracking plant development, and finally make yield predictions. The applicability of a number of vegetation indices (VIs) for monitoring crop seasonal dynamics, its health condition, and yield potential was examined. Special emphasis we put on narrow-band indices as the availability of data from hyperspectral imagers is unavoidable future. The temporal behavior of vegetation indices revealed increased sensitivity to crop growth. The derived spectral-biophysical relationships allowed extraction of quantitative information about crop variables and yield at different stages of the phenological development. Relating plant spectral and biophysical variables in a phenology-based manner allows crop monitoring, that is crop diagnosis and predictions to be performed multiple times during plant ontogenesis. During active vegetative periods spectral data was highly indicative of plant growth trends and yield potential. The

  2. Conservation Agriculture Improves Soil Quality, Crop Yield, and Incomes of Smallholder Farmers in North Western Ghana

    PubMed Central

    Naab, Jesse B.; Mahama, George Y.; Yahaya, Iddrisu; Prasad, P. V. V.

    2017-01-01

    Conservation agriculture (CA) practices are being widely promoted in many areas in sub-Saharan Africa to recuperate degraded soils and improve ecosystem services. This study examined the effects of three tillage practices [conventional moldboard plowing (CT), hand hoeing (MT) and no-tillage (NT)], and three cropping systems (continuous maize, soybean–maize annual rotation, and soybean/maize intercropping) on soil quality, crop productivity, and profitability in researcher and farmer managed on-farm trials from 2010 to 2013 in northwestern Ghana. In the researcher managed mother trial, the CA practices of NT, residue retention and crop rotation/intercropping maintained higher soil organic carbon, and total soil N compared to conventional tillage practices after 4 years. Soil bulk density was higher under NT than under CT soils in the researcher managed mother trails or farmers managed baby trials after 4 years. In the researcher managed mother trial, there was no significant difference between tillage systems or cropping systems in maize or soybean yields in the first three seasons. In the fourth season, crop rotation had the greatest impact on maize yields with CT maize following soybean increasing yields by 41 and 49% compared to MT and NT maize, respectively. In the farmers’ managed trials, maize yield ranged from 520 to 2700 kg ha-1 and 300 to 2000 kg ha-1 for CT and NT, respectively, reflecting differences in experience of farmers with NT. Averaged across farmers, CT cropping systems increased maize and soybean yield ranging from 23 to 39% compared with NT cropping systems. Partial budget analysis showed that the cost of producing maize or soybean is 20–29% cheaper with NT systems and gives higher returns to labor compared to CT practice. Benefit-to-cost ratios also show that NT cropping systems are more profitable than CT systems. We conclude that with time, implementation of CA practices involving NT, crop rotation, intercropping of maize and soybean

  3. Caesium-137 soil-to-plant transfer for representative agricultural crops of monocotyledonous and dicotyledonous plants in post-Chernobyl steppe landscape

    NASA Astrophysics Data System (ADS)

    Paramonova, Tatiana; Komissarova, Olga; Turykin, Leonid; Kuzmenkova, Natalia; Belyaev, Vladimir

    2016-04-01

    The accident at the Chernobyl nuclear power plant in 1986 had a large-scale action on more than 2.3 million hectares agricultural lands in Russia. The area of radioactively contaminated chernozems of semi-arid steppe zone with initial levels of Cs-137 185-555 kBq/m2 in Tula region received the name "Plavsky radioactive hotspot". Nowadays, after the first half-life period of Cs-137 arable chernozems of the region are still polluted with 3-6-fold excess above the radioactive safety standard (126-228 kBq/m2). Therefore, qualitative and quantitative characteristics of Cs-137 soil-to-plant transfer are currently a central problem for land use on the territory. The purpose of the present study was revealing the biological features of Cs-137 root uptake from contaminated arable chernozems by different agricultural crops. The components of a grass mixture growing at the central part of Plavsky radioactive hotspot with typical dicotyledonous and monocotyledonous plants - galega (Galega orientalis, Fabaceae family) and bromegrass (Bromus inermis, Gramineae family) respectively - were selected for the investigation, that was conducted during the period of harvesting in 2015. An important point was that the other factors influenced on Cs-137 soil-to-plant transfer - the level of soil pollution, soil properties, climatic conditions, vegetative phase, etc. - were equal. So, biological features of Cs-137 root uptake could be estimated the most credible manner. As a whole, general discrimination of Cs-137 root uptake was clearly shown for both agricultural crops. Whereas Cs-137 activity in rhizosphere 30-cm layer of arable chernozem was 371±74 Bq/kg (140±32 kBq/m2), Cs-137 activities in plant biomass were one-two orders of magnitude less, and transfer factor (TF) values (the ratio of the Cs-137 activities in vegetation and in soil) not exceeded 0.11. At the same time bioavailability of Cs-137 for bromegrass was significantly higher than for galega: TFs in total biomass of the

  4. Diversifying crops for food and nutrition security - a case of teff.

    PubMed

    Cheng, Acga; Mayes, Sean; Dalle, Gemedo; Demissew, Sebsebe; Massawe, Festo

    2017-02-01

    There are more than 50000 known edible plants in the world, yet two-thirds of global plant-derived food is provided by only three major cereals - maize (Zea mays), wheat (Triticum aestivum) and rice (Oryza sativa). The dominance of this triad, now considered truly global food commodities, has led to a decline in the number of crop species contributing to global food supplies. Our dependence on only a few crop species limits our capability to deal with challenges posed by the adverse effects of climate change and the consequences of dietary imbalance. Emerging evidence suggests that climate change will cause shifts in crop production and yield loss due to more unpredictable and hostile weather patterns. One solution to this problem is through the wider use of underutilised (also called orphan or minor) crops to diversify agricultural systems and food sources. In addition to being highly nutritious, underutilised crops are resilient in natural and agricultural conditions, making them a suitable surrogate to the major crops. One such crop is teff [Eragrostis tef (Zucc.) Trotter], a warm-season annual cereal with the tiniest grain in the world. Native to Ethiopia and often the sustenance for local small farmers, teff thrives in both moisture-stressed and waterlogged soil conditions, making it a dependable staple within and beyond its current centre of origin. Today, teff is deemed a healthy wheat alternative in the West and is sought-after by health aficionados and those with coeliac disease or gluten sensitivity. The blooming market for healthy food is breathing new life into this underutilised crop, which has received relatively limited attention from mainstream research perhaps due to its 'orphan crop' status. This review presents the past, present and future of an ancient grain with a potential beyond its size. © 2015 Cambridge Philosophical Society.

  5. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year. 993.20 Section 993.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA...

  6. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year. 993.20 Section 993.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA...

  7. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Crop year. 993.20 Section 993.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA...

  8. 7 CFR 993.20 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year. 993.20 Section 993.20 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN CALIFORNIA...

  9. Modifying agricultural crops for improved nutrition.

    PubMed

    McGloughlin, Martina Newell

    2010-11-30

    The first generation of biotechnology products commercialized were crops focusing largely on input agronomic traits whose value was often opaque to consumers. The coming generations of crop plants can be grouped into four broad areas each presenting what, on the surface, may appear as unique challenges and opportunities. The present and future focus is on continuing improvement of agronomic traits such as yield and abiotic stress resistance in addition to the biotic stress tolerance of the present generation; crop plants as biomass feedstocks for biofuels and "bio-synthetics"; value-added output traits such as improved nutrition and food functionality; and plants as production factories for therapeutics and industrial products. From a consumer perspective, the focus on value-added traits, especially improved nutrition, is undoubtedly one of the areas of greatest interest. From a basic nutrition perspective, there is a clear dichotomy in demonstrated need between different regions and socioeconomic groups, the starkest being inappropriate consumption in the developed world and under-nourishment in Less Developed Countries (LDCs). Dramatic increases in the occurrence of obesity and related ailments in affluent regions are in sharp contrast to chronic malnutrition in many LDCs. Both problems require a modified food supply, and the tools of biotechnology have a part to play. Developing plants with improved traits involves overcoming a variety of technical, regulatory and indeed perception hurdles inherent in perceived and real challenges of complex traits modifications. Continuing improvements in molecular and genomic technologies are contributing to the acceleration of product development to produce plants with the appropriate quality traits for the different regions and needs. Crops with improved traits in the pipeline, the evolving technologies and the opportunities and challenges that lie ahead are covered. Copyright © 2010. Published by Elsevier B.V.

  10. Strategies for soil-based precision agriculture in cotton

    NASA Astrophysics Data System (ADS)

    Neely, Haly L.; Morgan, Cristine L. S.; Stanislav, Scott; Rouze, Gregory; Shi, Yeyin; Thomasson, J. Alex; Valasek, John; Olsenholler, Jeff

    2016-05-01

    The goal of precision agriculture is to increase crop yield while maximizing the use efficiency of farm resources. In this application, UAV-based systems are presenting agricultural researchers with an opportunity to study crop response to environmental and management factors in real-time without disturbing the crop. The spatial variability soil properties, which drive crop yield and quality, cannot be changed and thus keen agronomic choices with soil variability in mind have the potential to increase profits. Additionally, measuring crop stress over time and in response to management and environmental conditions may enable agronomists and plant breeders to make more informed decisions about variety selection than the traditional end-of-season yield and quality measurements. In a previous study, seed-cotton yield was measured over 4 years and compared with soil variability as mapped by a proximal soil sensor. It was found that soil properties had a significant effect on seed-cotton yield and the effect was not consistent across years due to different precipitation conditions. However, when seed-cotton yield was compared to the normalized difference vegetation index (NDVI), as measured using a multispectral camera from a UAV, predictions improved. Further improvement was seen when soil-only pixels were removed from the analysis. On-going studies are using UAV-based data to uncover the thresholds for stress and yield potential. Long-term goals of this research include detecting stress before yield is reduced and selecting better adapted varieties.

  11. Climate change impacts on main agricultural activities in the Oltenia Plain (Romania)

    NASA Astrophysics Data System (ADS)

    Mitrica, B.; Mateescu, E.; Dragota, C.; Busuioc, A.; Grigorescu, I.; Popovici, A.

    2012-04-01

    Understanding the key drivers of agriculture in relation to climate change as well as their interrelationship with land management decisions and policies, one may be able to project future agricultural productions under certain economic, environmental, and social scenarios in order to minimize their negative impacts. The paper is aiming to stress upon the importance of modelling the potential impact of climate change on crop production, particularly under the current conditions when natural resources and food supplies are shortening in many parts of the world. Under the given circumstances, in assessing the impact of climate change on agriculture in the Oltenia Plain, the authors used a simulation model CERES (Crop-Environment Resource Synthesis), developed as a predictive and deterministic model, used for basic and applied research on the effects of climate (thermal regime, water stress) and management (fertilization practices, irrigation) on the growth and yield of different crops. In assessing the impact of climate change on maize and autumn wheat crops two applications of CERES model were used: CERES-Wheat and CERES-Maize overlapping two regional climatic scenarios for 2021-2050 and 2071-2100 periods. These models describe, based on daily data the basic biophysical processes which take place at the soil-plant-atmosphere interface as a response to the variability of different processes such as: photosynthesis, specific phonological phases, evapotranspiration, water dynamics in soil etc. Assessing the impact of climate change on agricultural productivity under the two regional climatic scenarios (2021-2050 and 2071-2100) will reveal their potential consequences on the main agricultural crops in the Oltenia Plain (autumn wheat and maize) depending on the interaction between local climatic conditions, the effect rising CO2 on photosynthesis and the genetical type of crops. Therefore, the autumn wheat benefits from the interaction between the rise of CO2 and air

  12. Evaluation of Crop-Water Consumption Simulation to Support Agricultural Water Resource Management using Satellite-based Water Cycle Observations

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Bolten, J. D.; Lakshmi, V.

    2016-12-01

    Water scarcity is one of the main factors limiting agricultural development. Numerical models integrated with remote sensing datasets are increasingly being used operationally as inputs for crop water balance models and agricultural forecasting due to increasing availability of high temporal and spatial resolution datasets. However, the model accuracy in simulating soil water content is affected by the accuracy of the soil hydraulic parameters used in the model, which are used in the governing equations. However, soil databases are known to have a high uncertainty across scales. Also, for agricultural sites, the in-situ measurements of soil moisture are currently limited to discrete measurements at specific locations, and such point-based measurements do not represent the spatial distribution at a larger scale accurately, as soil moisture is highly variable both spatially and temporally. The present study utilizes effective soil hydraulic parameters obtained using a 1-km downscaled microwave remote sensing soil moisture product based on the NASA Advanced Microwave Scanning Radiometer (AMSR-E) using the genetic algorithm inverse method within the Catchment Land Surface Model (CLSM). Secondly, to provide realistic irrigation estimates for agricultural sites, an irrigation scheme within the land surface model is triggered when the root-zone soil moisture deficit reaches the threshold, 50% with respect to the maximum available water capacity obtained from the effective soil hydraulic parameters. An additional important criterion utilized is the estimation of crop water consumption based on dynamic root growth and uptake in root zone layer. Model performance is evaluated using MODIS land surface temperature (LST) product. The soil moisture estimates for the root zone are also validated with the in situ field data, for three sites (2- irrigated and 1- rainfed) located at the University of Nebraska Agricultural Research and Development Center near Mead, NE and monitored

  13. Effects of a raised water table on greenhouse gas emissions and celery yield from agricultural peat under climate warming conditions

    NASA Astrophysics Data System (ADS)

    Matysek, Magdalena; Zona, Donatella; Leake, Jonathan; Banwart, Steven

    2017-04-01

    Peatlands are globally important areas for carbon preservation: covering only 3% of world's land, they store 30% of total soil carbon. At the same time, peat soils are widely utilised in agriculture: in Europe 14% of peatland area is under cultivation, 40% of UK peatlands have been drained for agricultural use and 24% of deep peat area in England is being farmed. One of the most important regions for crop production on lowland peats in the UK are the East Anglian Fenlands (the Fens): an area of drained peatlands in East England. 88% of the Fenland area is cultivated, sustaining around 4000 farms and supplying 37% of total vegetable production in England. The soils of the area are fertile (89% of agricultural land being classified as grade 1 or 2) and so crops with high nutritional demands tend to dominate. It is estimated that Fenland peats store 41 Tg of Carbon, which is lost from the ecosystem at a rate of 0.4 Tg C/yr. The Fens are at risk due to continued drainage-induced volume loss of the peat layer via shrinkage, compaction and oxidation, which are estimated to result in wastage rate of 2.1 cm/yr. Cultivation of peat soil requires drainage as most crops are intolerant of root-zone anoxia: this leads to creation of oxic conditions in which organic matter becomes vulnerable to mineralisation by aerobic microorganisms. It is, therefore, crucial to find a water table level which would minimise peat loss and at the same time allow for economically viable crop growth. Despite the importance of preservation of agricultural peats, there is a lack of studies which attempt to find water table level that strikes a balance between crop yield and greenhouse gas production. The future of the Fens is overshadowed by another uncertainty: increases in temperature brought by the climate change. It is estimated that average global temperature increase expected by the end of this century (relative to 1986-2005) would be within the range of 0.3-4.8°C, depending on the scenario

  14. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN...

  15. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN...

  16. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN...

  17. 7 CFR 989.21 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Crop year. 989.21 Section 989.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN...

  18. Methods to estimate irrigated reference crop evapotranspiration - a review.

    PubMed

    Kumar, R; Jat, M K; Shankar, V

    2012-01-01

    Efficient water management of crops requires accurate irrigation scheduling which, in turn, requires the accurate measurement of crop water requirement. Irrigation is applied to replenish depleted moisture for optimum plant growth. Reference evapotranspiration plays an important role for the determination of water requirements for crops and irrigation scheduling. Various models/approaches varying from empirical to physically base distributed are available for the estimation of reference evapotranspiration. Mathematical models are useful tools to estimate the evapotranspiration and water requirement of crops, which is essential information required to design or choose best water management practices. In this paper the most commonly used models/approaches, which are suitable for the estimation of daily water requirement for agricultural crops grown in different agro-climatic regions, are reviewed. Further, an effort has been made to compare the accuracy of various widely used methods under different climatic conditions.

  19. Agricultural Inputs and Efficiency in Tanzania Small Scale Agriculture: A Comparative Analysis of Tobacco and Selected Food Crops

    PubMed Central

    Kidane, A.; Hepelwa, A.; Tingum, E.; Hu, T.W.

    2016-01-01

    In this study an attempt is made to compare the efficiency in tobacco leaf production with three other cereals – maize, ground nut and rice – commonly grown by Tanzanian small scale farmers. The paper reviews the prevalence of tobacco use in Africa with that of the developed world; while there was a decline in the latter there appears to be an increase in the former. The economic benefit and costs of tobacco production and consumption in Tanzania are also compared. Using a nationally representative large scale data we were able to observe that modern agricultural inputs allotted to tobacco was much higher than those allotted to maize, ground nut and rice. Using A Frontier Production approach, the study shows that the efficiency of tobacco, maize, groundnuts and rice were 75.3%, 68.5%, 64.5% and 46.5% respectively. Despite the infusion of massive agricultural input allotted to it, tobacco is still 75.3% efficient-tobacco farmers should have produced the same amount by utilizing only 75.3% of realized inputs. The relatively high efficiency in tobacco can only be explained by the large scale allocation of modern agricultural inputs such as fertilizer, better seeds, credit facility and easy access to market. The situation is likely to be reversed if more allocation of inputs were directed to basic food crops such as maize, rice and ground nuts. Tanzania’s policy of food security and poverty alleviation can only be achieved by allocating more modern inputs to basic necessities such as maize and rice. PMID:28124032

  20. Large Area Crop Inventory Experiment (LACIE). Feasibility of assessing crop condition and yield from LANDSAT data

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The author has identified the following significant results. Yield modelling for crop production estimation derived a means of predicting the within-a-year yield and the year-to-year variability of yield over some fixed or randomly located unit of area. Preliminary studies indicated that the requirements for interpreting LANDSAT data for yield may be sufficiently similar to those of signature extension that it is feasible to investigate the automated estimation of production. The concept of an advanced yield model consisting of both spectral and meteorological components was endorsed. Rationale for using meteorological parameters originated from known between season and near harvest dynamics in crop environmental-condition-yield relationships.

  1. Agricultural response functions to changes in carbon, temperature, and water based on the C3MP data set

    NASA Astrophysics Data System (ADS)

    Snyder, A.; Ruane, A. C.; Phillips, M.; Calvin, K. V.; Clarke, L.

    2017-12-01

    Agricultural yields vary depending on temperature, precipitation/irrigation conditions, fertilizer application, and CO2 concentration. The Coordinated Climate-Crop Modeling Project (C3MP), conducted as a component of the Agricultural Model Intercomparison and Improvement Project (AgMIP), organized a sensitivity experiments across carbon-temperature-water (CTW) space across 1100 management conditions in 50+ countries, sampling 15 crop species and 20 crop models. Such coordinated sensitivity tests allow for the building of emulators of yield response to changes in CTW values, allowing rapid estimation of yield changes from the types of climate changes projected by the climate modeling community. The resulting emulator may be used to supply agricultural responses to climate change in any user-defined scenario, rather than the restriction to the RCPs in many past works. We present the resulting emulators built from the C3MP output data set for use in the Global Change Assessment Model (GCAM) integrated assessment model that allows for the co-evolution of socioeconomic development, greenhouse gas emissions, climate change, and agricultural sector ramifications. C3MP-based emulators may be of use in designing agricultural impact studies in other IAMs, and we place them in the context of past crop modeling efforts, including the Challinor et al. Meta-analysis, the AgMIP Wheat team results, the AgMIP Global Gridded Crop Model Intercomparison (GGCMI) fast-track modeling results, and the MACSUR impact response surface results.

  2. VIC-CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    NASA Astrophysics Data System (ADS)

    Malek, Keyvan; Stöckle, Claudio; Chinnayakanahalli, Kiran; Nelson, Roger; Liu, Mingliang; Rajagopalan, Kirti; Barik, Muhammad; Adam, Jennifer C.

    2017-08-01

    Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively). A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC) hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC-CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology), it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC-CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC-CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land-atmosphere interactions. The performance of VIC-CropSyst was evaluated on both regional (over the US Pacific Northwest) and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois). The agreement between recorded and simulated evapotranspiration (ET), applied irrigation water, soil moisture, leaf area index (LAI), and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  3. CropEx Web-Based Agricultural Monitoring and Decision Support

    NASA Technical Reports Server (NTRS)

    Harvey. Craig; Lawhead, Joel

    2011-01-01

    CropEx is a Web-based agricultural Decision Support System (DSS) that monitors changes in crop health over time. It is designed to be used by a wide range of both public and private organizations, including individual producers and regional government offices with a vested interest in tracking vegetation health. The database and data management system automatically retrieve and ingest data for the area of interest. Another stores results of the processing and supports the DSS. The processing engine will allow server-side analysis of imagery with support for image sub-setting and a set of core raster operations for image classification, creation of vegetation indices, and change detection. The system includes the Web-based (CropEx) interface, data ingestion system, server-side processing engine, and a database processing engine. It contains a Web-based interface that has multi-tiered security profiles for multiple users. The interface provides the ability to identify areas of interest to specific users, user profiles, and methods of processing and data types for selected or created areas of interest. A compilation of programs is used to ingest available data into the system, classify that data, profile that data for quality, and make data available for the processing engine immediately upon the data s availability to the system (near real time). The processing engine consists of methods and algorithms used to process the data in a real-time fashion without copying, storing, or moving the raw data. The engine makes results available to the database processing engine for storage and further manipulation. The database processing engine ingests data from the image processing engine, distills those results into numerical indices, and stores each index for an area of interest. This process happens each time new data is ingested and processed for the area of interest, and upon subsequent database entries, the database processing engine qualifies each value for each area of

  4. HyspIRI Measurements of Agricultural Systems in California: 2013-2015

    NASA Astrophysics Data System (ADS)

    Townsend, P. A.; Kruger, E. L.; Singh, A.; Jablonski, A. D.; Kochaver, S.; Serbin, S.

    2015-12-01

    During 2013-2015, NASA collected high-altitude AVIRIS hyperspectral and MASTER thermal infrared imagery across large swaths of California in support of the HyspIRI planning and prototyping activities. During these campaigns, we made extensive measurements of photosynthetic capacity—Vcmax and Jmax—and their temperature sensitivities across a range of sites, crop types and environmental conditions. Our objectives were to characterize the physiological diversity of agricultural vegetation in California and develop generalizable algorithms to map these physiological parameters across several image acquisitions, regardless of crop type and canopy temperatures. We employed AVIRIS imagery to scale and estimate the vegetation parameters and MASTER surface temperature to provide context, since physiology responds exponentially to leaf temperature. We demonstrate a segmentation approach to disentangling leaf and background soil temperature, and then illustrate our retrievals of Vcmax and Jmax during overflight conditions across a large number of the 2013-2015 HyspIRI acquisitions. Our results show >80% repeatability (R2) across split sample jack-knifing, with RMSEs within 15% of the range of our data. The approach was robust across crop types (e.g., grape, almond, pistachio, avocado, pomegranate, oats, peppers, citrus, date palm, alfalfa, melons, beets) and leaf temperatures. A global imaging spectroscopy system such as HyspIRI will offer unprecedented ability to monitor agricultural crop performance under widely varying surface conditions.

  5. Sorghum - An alternative energy crop for marginal lands and reclamation sites

    NASA Astrophysics Data System (ADS)

    Lukas, Stefan; Theiß, Markus; Jäkel, Kerstin

    2017-04-01

    The production of biogas and the associated cultivation of energy crops are still of great importance. Considering increasing restrictions for the cultivation of standard biogas crop maize regarding an environmentally friendly production of biomass, a wider range of energy crops is needed. The cultivation of sorghum can contribute to this. As maize, sorghum is a C4-plant and offers a high biomass yield potential. Originated in the semi-arid tropics, sorghum is well adapted to warm and dry climate and particularly noted for its drought tolerance compared to maize. It also makes few demands on soil quality and shows a good capability of nutrient acquisition. Therefore, particularly on marginal areas and reclamation sites with low soil nutrient and water content sorghum can contribute to secure crop yield and income of farmers. The applied research project aims at and reflects on the establishment of sorghum as a profitable and ecological friendly cropping alternative to maize, especially in the face of probable climate change with increasing risks for agriculture. For this purpose, site differentiated growing and cultivar trials with a standardized planting design as well as several practical on-farm field experiments were conducted. The agronomical and economic results will lead to scientifically based procedures and standards for agricultural practice with respect to cultivation methods (drilling, pest-management, fertilization), cropping sequence and technique, cropping period or position in crop rotation. Even by now there is a promising feedback from the agricultural practice linked with an increasing demand for information. Moreover, the specific cropping area is increasing continuously. Therefore, the leading signs for the establishment of sorghum as profitable alternative to maize biogas production are positive. Sorghum cultures perform best as main crops in the warm D locations in the middle and East German dry areas. Here, the contribution margin

  6. 7 CFR 457.128 - Guaranteed production plan of fresh market tomato crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Guaranteed production plan of fresh market tomato crop insurance provisions. 457.128 Section 457.128 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS...

  7. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana

    2016-04-01

    /institutes, providing the data at fine resolutions. The increased irrigated area was accounted according to the reported increased percentages of the irrigated area out of the total area equipped for irrigation, as an expected outcome of public irrigation systems rehabilitation schemes (MADR, 2011), while the optimum Nitrogen fertilizer rates for wheat and maize were established according to several field experiments made on irrigated and rain-fed wheat and maize plots in south Romania (Hera and Borlan, 1980). The effects of such farming measures on yields were compared to a baseline condition given by actual irrigated area and fertilization rates. The preliminary results show that potential gains in CWP could be obtained through improved fertilizer management and water allocation in winter wheat cropping systems, particularly in the dry periods, while in maize cropping systems CWP is more sensitive to water than to optimum fertilization rates. Irrigation water supply increases the stability of yields in both cropping systems, although regional differences can be observed across the study area, thus augmenting the relevance and the need for investigations on sustainable use of irrigation water in Romania. As such, this study could represent an information base for further analyses on yield potential under current and future climatic conditions, on impacts of land use patterns and farming practices on crop production in Romania, etc. Keywords: agricultural water use, crop water productivity, irrigation water, GEPIC, Romania References: Molden, D.J., Sakthivadivel, R., Perry, C.J., de Fraiture, C., Kloezen, W.H. (1998). Indicators for comparing performance of irrigated agricultural systems, Research Report 20, IWMI: Colombo, Sri Lanka. Sandu, I., Mateescu E. (2014). Current and prospective climate changes in Romania (in Romanian), in vol. Climate change: a major challenge for research in agriculture (ed. Saulescu, N.), Romanian Academy Publishing House, 17-36. Williams, J.R., Jones, C

  8. Herbicide-resistant crop biotechnology: potential and pitfalls

    USDA-ARS?s Scientific Manuscript database

    Herbicide-resistant crops are an important agricultural biotechnology that can enable farmers to effectively control weeds without harming their crops. Glyphosate-resistant (i.e. Roundup Ready) crops have been the most commercially successful varieties of herbicide-resistant crops and have been plan...

  9. An integrated approach to monitoring ecosystem services and agriculture: implications for sustainable agricultural intensification in Rwanda.

    PubMed

    Rosa, Melissa F; Bonham, Curan A; Dempewolf, Jan; Arakwiye, Bernadette

    2017-01-01

    Maintaining the long-term sustainability of human and natural systems across agricultural landscapes requires an integrated, systematic monitoring system that can track crop productivity and the impacts of agricultural intensification on natural resources. This study presents the design and practical implementation of a monitoring framework that combines satellite observations with ground-based biophysical measurements and household surveys to provide metrics on ecosystem services and agricultural production at multiple spatial scales, reaching from individual households and plots owned by smallholder farmers to 100-km 2 landscapes. We developed a set of protocols for monitoring and analyzing ecological and agricultural household parameters within two 10 × 10-km landscapes in Rwanda, including soil fertility, crop yield, water availability, and fuelwood sustainability. Initial results suggest providing households that rely on rainfall for crop irrigation with timely climate information and improved technical inputs pre-harvest could help increase crop productivity in the short term. The value of the monitoring system is discussed as an effective tool for establishing a baseline of ecosystem services and agriculture before further change in land use and climate, identifying limitations in crop production and soil fertility, and evaluating food security, economic development, and environmental sustainability goals set forth by the Rwandan government.

  10. Incorporating agricultural management into an earth system model for the Pacific Northwest region: Interactions between climate, hydrology, agriculture, and economics

    NASA Astrophysics Data System (ADS)

    Chinnayakanahalli, K.; Adam, J. C.; Stockle, C.; Nelson, R.; Brady, M.; Rajagopalan, K.; Barber, M. E.; Dinesh, S.; Malek, K.; Yorgey, G.; Kruger, C.; Marsh, T.; Yoder, J.

    2011-12-01

    For better management and decision making in the face of climate change, earth system models must explicitly account for natural resource and agricultural management activities. Including crop system, water management, and economic models into an earth system modeling framework can help in answering questions related to the impacts of climate change on irrigation water and crop productivity, how agricultural producers can adapt to anticipated climate change, and how agricultural practices can mitigate climate change. Herein we describe the coupling of the Variability Infiltration Capacity (VIC) land surface model, which solves the water and energy balances of the hydrologic cycle at regional scales, with a crop-growth model, CropSyst. This new model, VIC-CropSyst, is the land surface model that will be used in a new regional-scale model development project focused on the Pacific Northwest, termed BioEarth. Here we describe the VIC-CropSyst coupling process and its application over the Columbia River basin (CRB) using agricultural-specific land cover information. The Washington State Department of Agriculture (WSDA) and U. S. Department of Agriculture (USDA) cropland data layers were used to identify agricultural land use patterns, in which both irrigated and dry land crops were simulated. The VIC-CropSyst model was applied over the CRB for the historical period of 1976 - 2006 to establish a baseline for surface water availability, irrigation demand, and crop production. The model was then applied under future (2030s) climate change scenarios derived from statistically-downscaled Global Circulation Models output under two emission scenarios (A1B and B1). Differences between simulated future and historical irrigation demand, irrigation water availability, and crop production were used in an economics model to identify the most economically-viable future cropping pattern. The economics model was run under varying scenarios of regional growth, trade, water pricing, and

  11. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year. Crop...

  12. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year. Crop...

  13. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year. Crop...

  14. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year. Crop...

  15. 7 CFR 1218.4 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE BLUEBERRY PROMOTION, RESEARCH, AND INFORMATION ORDER Blueberry Promotion, Research, and Information Order Definitions § 1218.4 Crop year. Crop...

  16. Probabilistic assessment of phenophase-wise agricultural drought risk under different sowing windows: a case study with rainfed soybean.

    PubMed

    Dhakar, Rajkumar; Sarath Chandran, M A; Nagar, Shivani; Visha Kumari, V

    2017-11-23

    A new methodology for crop-growth stage-specific assessment of agricultural drought risk under a variable sowing window is proposed for the soybean crop. It encompasses three drought indices, which include Crop-Specific Drought Index (CSDI), Vegetation Condition Index (VCI), and Standardized Precipitation Evapotranspiration Index (SPEI). The unique features of crop-growth stage-specific nature and spatial and multi-scalar coverage provide a comprehensive assessment of agricultural drought risk. This study was conducted in 10 major soybean-growing districts of Madhya Pradesh state of India. These areas contribute about 60% of the total soybean production for the country. The phenophase most vulnerable to agricultural drought was identified (germination and flowering in our case) for each district across four sowing windows. The agricultural drought risk was quantified at various severity levels (moderate, severe, and very severe) for each growth stage and sowing window. Validation of the proposed new methodology also yielded results with a high correlation coefficient between percent probability of agricultural drought risk and yield risk (r = 0.92). Assessment by proximity matrix yielded a similar statistic. Expectations for the proposed methodology are better mitigation-oriented management and improved crop contingency plans for planners and decision makers.

  17. Occurrence of chemical contaminants in peri-urban agricultural irrigation waters and assessment of their phytotoxicity and crop productivity.

    PubMed

    Margenat, Anna; Matamoros, Víctor; Díez, Sergi; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2017-12-01

    Water scarcity and water pollution have increased the pressure on water resources worldwide. This pressure is particularly important in highly populated areas where water demand exceeds the available natural resources. In this regard, water reuse has emerged as an excellent water source alternative for peri-urban agriculture. Nevertheless, it must cope with the occurrence of chemical contaminants, ranging from trace elements (TEs) to organic microcontaminants. In this study, chemical contaminants (i.e., 15 TEs, 34 contaminants of emerging concern (CECs)), bulk parameters, and nutrients from irrigation waters and crop productivity (Lycopersicon esculentum Mill. cv. Bodar and Lactuca sativa L. cv. Batavia) were seasonally surveyed in 4 farm plots in the peri-urban area of the city of Barcelona. A pristine site, where rain-groundwater is used for irrigation, was selected for background concentrations. The average concentration levels of TEs and CECs in the irrigation water impacted by treated wastewater (TWW) were 3 (35±75μgL -1 ) and 13 (553±1050ngL -1 ) times higher than at the pristine site respectively. Principal component analysis was used to classify the irrigation waters by chemical composition. To assess the impact of the occurrence of these contaminants on agriculture, a seed germination assay (Lactuca sativa L) and real field-scale study of crop productivity (i.e., lettuce and tomato) were used. Although irrigation waters from the peri-urban area exhibited a higher frequency of detection and concentration of the assessed chemical contaminants than those of the pristine site (P1), no significant differences were found in seed phytotoxicity or crop productivity. In fact, the crops impacted by TWW showed higher productivity than the other farm plots studied, which was associated with the higher nutrient availability for plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Deriving crop calendar using NDVI time-series

    NASA Astrophysics Data System (ADS)

    Patel, J. H.; Oza, M. P.

    2014-11-01

    Agricultural intensification is defined in terms as cropping intensity, which is the numbers of crops (single, double and triple) per year in a unit cropland area. Information about crop calendar (i.e. number of crops in a parcel of land and their planting & harvesting dates and date of peak vegetative stage) is essential for proper management of agriculture. Remote sensing sensors provide a regular, consistent and reliable measurement of vegetation response at various growth stages of crop. Therefore it is ideally suited for monitoring purpose. The spectral response of vegetation, as measured by the Normalized Difference Vegetation Index (NDVI) and its profiles, can provide a new dimension for describing vegetation growth cycle. The analysis based on values of NDVI at regular time interval provides useful information about various crop growth stages and performance of crop in a season. However, the NDVI data series has considerable amount of local fluctuation in time domain and needs to be smoothed so that dominant seasonal behavior is enhanced. Based on temporal analysis of smoothed NDVI series, it is possible to extract number of crop cycles per year and their crop calendar. In the present study, a methodology is developed to extract key elements of crop growth cycle (i.e. number of crops per year and their planting - peak - harvesting dates). This is illustrated by analysing MODIS-NDVI data series of one agricultural year (from June 2012 to May 2013) over Gujarat. Such an analysis is very useful for analysing dynamics of kharif and rabi crops.

  19. The large area crop inventory experiment: A major demonstration of space remote sensing

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Hall, F. G.

    1977-01-01

    Strategies are presented in agricultural technology to increase the resistance of crops to a wider range of meteorological conditions in order to reduce year-to-year variations in crop production. Uncertainties in agricultral production, together with the consumer demands of an increasing world population, have greatly intensified the need for early and accurate annual global crop production forecasts. These forecasts must predict fluctuation with an accuracy, timeliness and known reliability sufficient to permit necessary social and economic adjustments, with as much advance warning as possible.

  20. Natural cycles and agricultural inputs: a farm gate Ecological Footprint analysis

    NASA Astrophysics Data System (ADS)

    Passeri, Nicolo; Blasi, Emanuele; Borucke, Michael; Galli, Alessandro; Franco, Silvio

    2014-05-01

    Land suitability for different crops depends on soil, water and climate conditions, as well as farmers' cultivation choices. Moreover, the use of agricultural inputs affects the natural cycles of crops and impacts their production. By assessing the ecological performance of farms as influenced by crop types, cultivation choices and land suitability one can therefore evaluate the effectiveness of agricultural practices and governance's options. Ecological Footprint accounts can be used to measure such ecological performance. These accounts track human demand for natural resources and ecological services and compare this demand with nature ability to regenerate these resource and services. This regenerative capacity is called biocapacity. Both demand (Footprint) and supply (biocapacity) are expressed in global hectares. Farming different from most other human activities, not only uses natural resources, but also enhances or erodes ecological supply. It therefore affects all factors that determine both Footprint and biocapacity. Climate, farmers' skills and choices (fertilizers, pesticides, machines) determine crop productivity, and to what extent crops preserve or compromise soils. The aim of this work is to evaluate how farmer's choices affect resources overexploitation. The study analysed how the use of inputs influences natural cycles within farm boundaries. This result from a pilot case study will show how particular farming practices affect both the farm's biocapacity and Ecological Footprint. Such analysis is relevant for informing involved stakeholders, namely the farmers on more sustainable agricultural practices and the policy makers on more suitable agricultural policies.

  1. Assessing and modelling ecohydrologic processes at the agricultural field scale

    NASA Astrophysics Data System (ADS)

    Basso, Bruno

    2015-04-01

    One of the primary goals of agricultural management is to increase the amount of crop produced per unit of fertilizer and water used. World record corn yields demonstrated that water use efficiency can increase fourfold with improved agronomic management and cultivars able to tolerate high densities. Planting crops with higher plant density can lead to significant yield increases, and increase plant transpiration vs. soil water evaporation. Precision agriculture technologies have been adopted for the last twenty years but seldom have the data collected been converted to information that led farmers to different agronomic management. These methods are intuitively appealing, but yield maps and other spatial layers of data need to be properly analyzed and interpreted to truly become valuable. Current agro-mechanic and geospatial technologies allow us to implement a spatially variable plan for agronomic inputs including seeding rate, cultivars, pesticides, herbicides, fertilizers, and water. Crop models are valuable tools to evaluate the impact of management strategies (e.g., cover crops, tile drains, and genetically-improved cultivars) on yield, soil carbon sequestration, leaching and greenhouse gas emissions. They can help farmers identify adaptation strategies to current and future climate conditions. In this paper I illustrate the key role that precision agriculture technologies (yield mapping technologies, within season soil and crop sensing), crop modeling and weather can play in dealing with the impact of climate variability on soil ecohydrologic processes. Case studies are presented to illustrate this concept.

  2. Comparing Soil Carbon of Short Rotation Poplar Plantations with Agricultural Crops and Woodlots in North Central United States

    Treesearch

    Mark D. Coleman; J.G. Isebrands; David N. Tolsted; Virginia R. Tolbert

    2004-01-01

    We collected soil samples from 27 study sites across North Central United States to compare the soil carbon of short rotation poplar plantations to adjacent agricultural crops and woodlots. Soil organic carbon (SOC) ranged from 20 to more than 160 Mg/ha across the sampled sites. Lowest SOC levels were found in uplands and highest levels in riparian soils. We attributed...

  3. Characterization of yield reduction in Ethiopia using a GIS-based crop water balance model

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.

    2003-01-01

    In many parts of sub-Saharan Africa, subsistence agriculture is characterized by significant fluctuations in yield and production due to variations in moisture availability to staple crops. Widespread drought can lead to crop failures, with associated deterioration in food security. Ground data collection networks are sparse, so methods using geospatial rainfall estimates derived from satellite and gauge observations, where available, have been developed to calculate seasonal crop water balances. Using conventional crop production data for 4 years in Ethiopia (1996-1999), it was found that water-limited and water-unlimited growing regions can be distinguished. Furthermore, maize growing conditions are also indicative of conditions for sorghum. However, another major staple, teff, was found to behave sufficiently differently from maize to warrant studies of its own.

  4. Impact of Seasonal Forecasts on Agriculture

    NASA Astrophysics Data System (ADS)

    Aldor-Noiman, S. C.

    2014-12-01

    More extreme and volatile weather conditions are a threat to U.S. agricultural productivity today, as multiple environmental conditions during the growing season impact crop yields. That's why farmers' agronomic management decisions are dominated by consideration for near, medium and seasonal forecasts of climate. The Climate Corporation aims to help farmers around the world protect and improve their farming operations by providing agronomic decision support tools that leverage forecasts on multiple timescales to provide valuable insights directly to farmers. In this talk, we will discuss the impact of accurate seasonal forecasts on major decisions growers face each season. We will also discuss assessment and evaluation of seasonal forecasts in the context of agricultural applications.

  5. [Towards a renewable and sustainable agriculture. Biological agriculture: from marginal vanguard to spearhead of the agriculture of the future].

    PubMed

    Diek Van Mansvelt, J

    1992-01-01

    This work seeks to demonstrate how different types of organic agriculture can meet the need for renewable and sustainable agriculture, rural development, and management of the land and water resources. An obstacle to the spread of organic agriculture is the widespread perception that without intensive factors of production, demographic growth will necessarily outstrip the available food resources. Calculation of economic costs and benefits at present carries greater weight in planning than do soil erosion, deforestation, extinction of species, disappearance of habitats, and similar environmental damage. The different types of organic agriculture do not follow rigid rules and are not defined solely by the nonuse of nitrogenous fertilizers and pesticides. One of the main principles or organic agriculture is to respect local soil and climatic conditions. Self-sufficiency regarding external factors of production and an emphasis on recycling and optimal use of natural resources were concept ahead of their time when they initially were introduced in the 1920s. The specialization which restructured agriculture over the past century has seriously damaged the system of mixed agriculture and the chain of food production. The solution will be to seek for each region an appropriate balance linking animals and agricultural production in an organic process. The objective of organic agriculture, also known as autonomous ecosystem management, is to preserve as far as possible the balance between needs for food and fiber on the 1 hand and the potential of local ecosystems on the other. General principles of organic agriculture include mixed exploitation in which both plants and animals have specific functions in the context of their local soil and climatic characteristics. Different types of crop rotation are practiced to optimize mutual interactions between crops, and the varied organic cycles are also optimized within the framework of anorganic management in accord with nature

  6. Soil Moisture Anomaly as Predictor of Crop Yield Deviation in Germany

    NASA Astrophysics Data System (ADS)

    Peichl, Michael; Thober, Stephan; Schwarze, Reimund; Meyer, Volker; Samaniego, Luis

    2016-04-01

    indicate that wet and dry soil moisture anomalies have a causal effect on crop yields. However, the effects vary in magnitude and direction for each crop depending on the month. For instance dry soil moisture anomalies in July, August and September reduce silo maize yield more than ten percent with respect to average conditions. Extreme wetness, however, increases silo maize yield in the same time period. A negative effect is observed for winter wheat during this period for both wet and dry anomalies. The reduction due to dry anomalies is smaller for winter wheat than for silo maize. This study shows that the impact of soil moisture anomalies varies dependent on months and crops. These evolving patterns provide new insights to improve adaptation measures for extreme soil moisture conditions. References Auffhammer, M., and W. Schlenker. 2014. "Empirical studies on agricultural impacts and adaptation." Energy Economics 46:555-561. COPA-COGECA. 2003. "Assessment of the impact of the heat wave and drought of the summer 2003 on agriculture and forestry." In Committee of Agricultural Organisations in the European Union General Committee for Agricultural Cooperation in the European Union, Brussels. p. 15.

  7. Safety and Certification Considerations for Expanding the Use of UAS in Precision Agriculture

    NASA Technical Reports Server (NTRS)

    Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Neogi, Natasha A.; Vertstynen, Harry A.

    2016-01-01

    The agricultural community is actively engaged in adopting new technologies such as unmanned aircraft systems (UAS) to help assess the condition of crops and develop appropriate treatment plans. In the United States, agricultural use of UAS has largely been limited to small UAS, generally weighing less than 55 lb and operating within the line of sight of a remote pilot. A variety of small UAS are being used to monitor and map crops, while only a few are being used to apply agricultural inputs based on the results of remote sensing. Larger UAS with substantial payload capacity could provide an option for site-specific application of agricultural inputs in a timely fashion, without substantive damage to the crops or soil. A recent study by the National Aeronautics and Space Administration (NASA) investigated certification requirements needed to enable the use of larger UAS to support the precision agriculture industry. This paper provides a brief introduction to aircraft certification relevant to agricultural UAS, an overview of and results from the NASA study, and a discussion of how those results might affect the precision agriculture community. Specific topics of interest include business model considerations for unmanned aerial applicators and a comparison with current means of variable rate application. The intent of the paper is to inform the precision agriculture community of evolving technologies that will enable broader use of unmanned vehicles to reduce costs, reduce environmental impacts, and enhance yield, especially for specialty crops that are grown on small to medium size farms.

  8. Monitoring cover crops using radar remote sensing in southern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Shang, J.; Huang, X.; Liu, J.; Wang, J.

    2016-12-01

    Information on agricultural land surface conditions is important for developing best land management practices to maintain the overall health of the fields. The climate condition supports one harvest per year for the majority of the field crops in Canada, with a relative short growing season between May and September. During the non-growing-season months (October to the following April), many fields are traditionally left bare. In more recent year, there has been an increased interest in planting cover crops. Benefits of cover crops include boosting soil organic matters, preventing soil from erosion, retaining soil moisture, and reducing surface runoff hence protecting water quality. Optical remote sensing technology has been exploited for monitoring cover crops. However limitations inherent to optical sensors such as cloud interference and signal saturation (when leaf area index is above 2.5) impeded its operational application. Radar remote sensing on the other hand is not hindered by unfavorable weather conditions, and the signal continues to be sensitive to crop growth beyond the saturation point of optical sensors. It offers a viable means for capturing timely information on field surface conditions (with or without crop cover) or crop development status. This research investigated the potential of using multi-temporal RADARSAT-2 C-band synthetic aperture radar (SAR) data collected in 2015 over multiple fields of winter wheat, corn and soybean crops in southern Ontario, Canada, to retrieve information on the presence of cover crops and their growth status. Encouraging results have been obtained. This presentation will report the methodology developed and the results obtained.

  9. Agricultural Chartbook 1988. Agriculture Handbook No. 673.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    These charts present an overview of the current economic health of American agriculture. The charts move from the national and international arenas to farm economic health measures and crop and livestock trends. A small amount of descriptive narrative accompanies most of the charts. Charts depicting the economic picture of U.S. agriculture include…

  10. 7 CFR 1437.504 - Notice of loss for covered tropical crops.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Notice of loss for covered tropical crops. 1437.504 Section 1437.504 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS NONINSURED CROP DISASTER ASSISTANCE PROGRAM Determining Coverage in...

  11. Global climate shocks to agriculture from 1950 - 2015

    NASA Astrophysics Data System (ADS)

    Jackson, N. D.; Konar, M.; Debaere, P.; Sheffield, J.

    2016-12-01

    Climate shocks represent a major disruption to crop yields and agricultural production, yet a consistent and comprehensive database of agriculturally relevant climate shocks does not exist. To this end, we conduct a spatially and temporally disaggregated analysis of climate shocks to agriculture from 1950-2015 using a new gridded dataset. We quantify the occurrence and magnitude of climate shocks for all global agricultural areas during the growing season using a 0.25-degree spatial grid and daily time scale. We include all major crops and both temperature and precipitation extremes in our analysis. Critically, we evaluate climate shocks to all potential agricultural areas to improve projections within our time series. To do this, we use Global Agro-Ecological Zones maps from the Food and Agricultural Organization, the Princeton Global Meteorological Forcing dataset, and crop calendars from Sacks et al. (2010). We trace the dynamic evolution of climate shocks to agriculture, evaluate the spatial heterogeneity in agriculturally relevant climate shocks, and identify the crops and regions that are most prone to climate shocks.

  12. The AgMIP GRIDded Crop Modeling Initiative (AgGRID) and the Global Gridded Crop Model Intercomparison (GGCMI)

    NASA Technical Reports Server (NTRS)

    Elliott, Joshua; Muller, Christoff

    2015-01-01

    Climate change is a significant risk for agricultural production. Even under optimistic scenarios for climate mitigation action, present-day agricultural areas are likely to face significant increases in temperatures in the coming decades, in addition to changes in precipitation, cloud cover, and the frequency and duration of extreme heat, drought, and flood events (IPCC, 2013). These factors will affect the agricultural system at the global scale by impacting cultivation regimes, prices, trade, and food security (Nelson et al., 2014a). Global-scale evaluation of crop productivity is a major challenge for climate impact and adaptation assessment. Rigorous global assessments that are able to inform planning and policy will benefit from consistent use of models, input data, and assumptions across regions and time that use mutually agreed protocols designed by the modeling community. To ensure this consistency, large-scale assessments are typically performed on uniform spatial grids, with spatial resolution of typically 10 to 50 km, over specified time-periods. Many distinct crop models and model types have been applied on the global scale to assess productivity and climate impacts, often with very different results (Rosenzweig et al., 2014). These models are based to a large extent on field-scale crop process or ecosystems models and they typically require resolved data on weather, environmental, and farm management conditions that are lacking in many regions (Bondeau et al., 2007; Drewniak et al., 2013; Elliott et al., 2014b; Gueneau et al., 2012; Jones et al., 2003; Liu et al., 2007; M¨uller and Robertson, 2014; Van den Hoof et al., 2011;Waha et al., 2012; Xiong et al., 2014). Due to data limitations, the requirements of consistency, and the computational and practical limitations of running models on a large scale, a variety of simplifying assumptions must generally be made regarding prevailing management strategies on the grid scale in both the baseline and

  13. Seed vigour and crop establishment: extending performance beyond adaptation.

    PubMed

    Finch-Savage, W E; Bassel, G W

    2016-02-01

    Seeds are central to crop production, human nutrition, and food security. A key component of the performance of crop seeds is the complex trait of seed vigour. Crop yield and resource use efficiency depend on successful plant establishment in the field, and it is the vigour of seeds that defines their ability to germinate and establish seedlings rapidly, uniformly, and robustly across diverse environmental conditions. Improving vigour to enhance the critical and yield-defining stage of crop establishment remains a primary objective of the agricultural industry and the seed/breeding companies that support it. Our knowledge of the regulation of seed germination has developed greatly in recent times, yet understanding of the basis of variation in vigour and therefore seed performance during the establishment of crops remains limited. Here we consider seed vigour at an ecophysiological, molecular, and biomechanical level. We discuss how some seed characteristics that serve as adaptive responses to the natural environment are not suitable for agriculture. Past domestication has provided incremental improvements, but further actively directed change is required to produce seeds with the characteristics required both now and in the future. We discuss ways in which basic plant science could be applied to enhance seed performance in crop production. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Agricultural Biodiversity.

    ERIC Educational Resources Information Center

    Postance, Jim

    1998-01-01

    The extinction of farm animals and crops is rarely brought up during discussions of endangered species and biodiversity; however, the loss of diversity in crops and livestock threatens the sustainability of agriculture. Presents three activities: (1) "The Colors of Diversity"; (2) "Biodiversity among Animals"; and (3) "Heirloom Plants." Discusses…

  15. Sustainable agricultural water management across climates

    NASA Astrophysics Data System (ADS)

    DeVincentis, A.

    2016-12-01

    Fresh water scarcity is a global problem with local solutions. Agriculture is one of many human systems threatened by water deficits, and faces unique supply, demand, quality, and management challenges as the global climate changes and population grows. Sustainable agricultural water management is paramount to protecting global economies and ecosystems, but requires different approaches based on environmental conditions, social structures, and resource availability. This research compares water used by conservation agriculture in temperate and tropical agroecosystems through data collected from operations growing strawberries, grapes, tomatoes, and pistachios in California and corn and soybeans in Colombia. The highly manipulated hydrologic regime in California has depleted water resources and incited various adaptive management strategies, varying based on crop type and location throughout the state. Operations have to use less water more efficiently, and sometimes that means fallowing land in select groundwater basins. At the opposite end of the spectrum, the largely untouched landscape in the eastern plains of Colombia are rapidly being converted into commercial agricultural operations, with a unique opportunity to manage and plan for agricultural development with sustainability in mind. Although influenced by entirely different climates and economies, there are some similarities in agricultural water management strategies that could be applicable worldwide. Cover crops are a successful management strategy for both agricultural regimes, and moving forward it appears that farmers who work in coordination with their neighbors to plan for optimal production will be most successful in both locations. This research points to the required coordination of agricultural extension services as a critical component to sustainable water use, successful economies, and protected environments.

  16. Prospects for dedicated energy crop production and attitudes towards agricultural straw use: The case of livestock farmers

    PubMed Central

    Wilson, P.; Glithero, N.J.; Ramsden, S.J.

    2014-01-01

    Second generation biofuels utilising agricultural by-products (e.g. straw), or dedicated energy crops (DECs) produced on ‘marginal’ land, have been called for. A structured telephone survey of 263 livestock farmers, predominantly located in the west or ‘marginal’ upland areas of England captured data on attitudes towards straw use and DECs. Combined with farm physical and business data, the survey results show that 7.2% and 6.3% of farmers would respectively consider growing SRC and miscanthus, producing respective maximum potential English crop areas of 54,603 ha and 43,859 ha. If higher market prices for straw occurred, most livestock farmers would continue to buy straw. Reasons for not being willing to consider growing DECs include concerns over land quality, committing land for a long time period, lack of appropriate machinery, profitability, and time to financial return; a range of moral, land quality, production conflict and lack of crop knowledge factors were also cited. Results demonstrate limited potential for the production of DECs on livestock farms in England. Changes in policy support to address farmer concerns with respect to DECs will be required to incentivise farmers to increase energy crop production. Policy support for DEC production must be cognisant of farm-level economic, tenancy and personal objectives. PMID:25844008

  17. Impact of GM crops on biodiversity.

    PubMed

    Carpenter, Janet E

    2011-01-01

    The potential impact of GM crops on biodiversity has been a topic of interest both in general as well as specifically in the context of the Convention on Biological Diversity. Agricultural biodiversity has been defined at levels from genes to ecosystems that are involved or impacted by agricultural production (www.cbd.int/agro/whatis.shtml). After fifteen years of commercial cultivation, a substantial body of literature now exists addressing the potential impacts of GM crops on the environment. This review takes a biodiversity lens to this literature, considering the impacts at three levels: the crop, farm and landscape scales. Within that framework, this review covers potential impacts of the introduction of genetically engineered crops on: crop diversity, biodiversity of wild relatives, non-target soil organisms, weeds, land use, non-target above-ground organisms, and area-wide pest suppression. The emphasis of the review is peer-reviewed literature that presents direct measures of impacts on biodiversity. In addition, possible impacts of changes in management practises such as tillage and pesticide use are also discussed to complement the literature on direct measures. The focus of the review is on technologies that have been commercialized somewhere in the world, while results may emanate from non-adopting countries and regions. Overall, the review finds that currently commercialized GM crops have reduced the impacts of agriculture on biodiversity, through enhanced adoption of conservation tillage practices, reduction of insecticide use and use of more environmentally benign herbicides and increasing yields to alleviate pressure to convert additional land into agricultural use.

  18. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?

    USDA-ARS?s Scientific Manuscript database

    Civilian applications of unmanned aircraft systems (UAS, also called drones) are rapidly expanding into crop production. UAS acquire high spatial resolution remote sensing imagery that can be used three different ways in agriculture. One is to assist crop scouts looking for problems in crop fields....

  19. Climate risks to agriculture in Amazon arc-of-deforestation create incentives to conserve local forests

    NASA Astrophysics Data System (ADS)

    Costa, M. H.; Fleck, L. C.; Cohn, A.; Abrahão, G. M.; Brando, P. M.; Coe, M. T.; Fu, R.; Lawrence, D.; Pires, G. F.; Pousa, R.; Soares, B. Filh

    2017-12-01

    Intensification of agriculture is a necessary condition for sustainably meeting global food demands without increasing deforestation. In southern Amazonia, a region that produces 7% of the world's soybeans, double cropping has become the preferred system for the intensification of agriculture, which is essentially rainfed. Rainy season is shortening in the region, due to climate change, and is predicted to become shorter in the future. The climate risks are worsened by the region's land use change. This increases the climate risk and even threat the intensive double-cropping agriculture that is currently practiced in that region, with potential perverse consequences to everyone. Repeated or widespread climate-driven crop failure could prompt a return to the single cropping system or even cropland abandonment. A shift to single cropping could decrease the agriculture output in this critical region, push up global food prices and heighten incentives to convert regional ecosystems to agricultural land. Further agricultural expansion into ecosystems would increase climate change. The more forest lost, the higher the climate risk will be, due to climate feedbacks from deforestation itself, triggering a spiraling decline of the rainforests and rainfall over southern Amazonia and other critical agricultural regions known to depend on the forests of Amazonia for rainfall. We show that there are economic and social reasons to preserve the forests, and it is in the best interest of the agribusiness, local governments and people, to conserve the remaining forests. The adaptation and mitigation needs, and policies to reconcile production and protection while mitigating supply chains risks are also discussed.

  20. Vocational Agriculture Computer Handbook.

    ERIC Educational Resources Information Center

    Kentucky State Dept. of Education, Frankfort.

    This document is a catalog of reviews of computer software suitable for use in vocational agriculture programs. The reviews were made by vocational agriculture teachers in Kentucky. The reviews cover software on the following topics: farm management, crop production, livestock production, horticulture, agricultural mechanics, general agriculture,…

  1. The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth's climate

    PubMed Central

    Smith, Keith A.; Mosier, Arvin R.; Crutzen, Paul J.; Winiwarter, Wilfried

    2012-01-01

    In earlier work, we compared the amount of newly fixed nitrogen (N, as synthetic fertilizer and biologically fixed N) entering agricultural systems globally to the total emission of nitrous oxide (N2O). We obtained an N2O emission factor (EF) of 3–5%, and applied it to biofuel production. For ‘first-generation’ biofuels, e.g. biodiesel from rapeseed and bioethanol from corn (maize), that require N fertilizer, N2O from biofuel production could cause (depending on N uptake efficiency) as much or more global warming as that avoided by replacement of fossil fuel by the biofuel. Our subsequent calculations in a follow-up paper, using published life cycle analysis (LCA) models, led to broadly similar conclusions. The N2O EF applies to agricultural crops in general, not just to biofuel crops, and has made possible a top-down estimate of global emissions from agriculture. Independent modelling by another group using bottom-up IPCC inventory methodology has shown good agreement at the global scale with our top-down estimate. Work by Davidson showed that the rate of accumulation of N2O in the atmosphere in the late nineteenth and twentieth centuries was greater than that predicted from agricultural inputs limited to fertilizer N and biologically fixed N (Davidson, E. A. 2009 Nat. Geosci. 2, 659–662.). However, by also including soil organic N mineralized following land-use change and NOx deposited from the atmosphere in our estimates of the reactive N entering the agricultural cycle, we have now obtained a good fit between the observed atmospheric N2O concentrations from 1860 to 2000 and those calculated on the basis of a 4 per cent EF for the reactive N. PMID:22451102

  2. Impact of Crop Conversions on Runoff and Sediment Output in the Lower Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Momm, H.; Bingner, R. L.; Elkadiri, R.; Yaraser, L.; Porter, W.

    2017-12-01

    Farming management practices influence sediment and agrochemical loads exiting fields and entering downstream water bodies. These practices impact multiple physical processes responsible for sediment and nutrient detachment, transport, and deposition. Recent changes in farming practices in the Southern United States coincide with increased grain production, replacing traditional crops such as cotton with corn and soybeans. To grow these crops in the South, adapted crop management practices are needed (irrigation, fertilizer, etc.). In this study, the impact of grain crop adoption on hydrologic processes and non-point source pollutant production is quantified. A watershed located in the Big Sunflower River drainage basin (14,179 km2) - a part of the greater Lower Mississippi River basin - was selected due to its economic relevance, historical agricultural output, and depiction of recent farming management trends. Estimates of runoff and sediment loads were produced using the U.S. Department of Agriculture supported Annualized Agriculture Non-Point Source Pollution (AnnAGNPS) watershed pollution and management model. Existing physical conditions during a 16-year period (2000-2015) were characterized using 3,992 sub-catchments and 1,602 concentrated flow paths. Algorithms were developed to integrate continuous land use/land cover information, variable spatio-temporal irrigation practices, and crop output yield in order to generate a total of 2,922 unique management practices and corresponding soil-disturbing operations. A simulation representing existing conditions was contrasted with simulations depicting alternatives of management, irrigation practices, and temporal variations in crop yield. Quantification of anthropogenic impacts to water quality and water availability at a watershed scale supports the development of targeted pollution mitigation and custom conservation strategies.

  3. [Modeling evapotranspiration of greenhouse tomato under different water conditions based on the dual crop coefficient method].

    PubMed

    Gong, Xue Wen; Liu, Hao; Sun, Jing Sheng; Ma, Xiao Jian; Wang, Wan Ning; Cui, Yong Sheng

    2017-04-18

    An experiment was conducted to investigate soil evaporation (E), crop transpiration (T), evapotranspiration (ET) and the ratio of evaporation to evapotranspiration (E/ET) of drip-irrigated tomato, which was planted in a typical solar greenhouse in the North China, under different water conditions [irrigation amount was determined based on accumulated pan evaporation (E p ) of 20 cm pan evaporation, and two treatments were designed with full irrigation (0.9E p ) and deficit irrigation (0.5E p )] at different growth stages in 2015 and 2016 at Xinxiang Comprehensive Experimental Station, Chinese Academy of Agricultural Sciences. Effects of deficit irrigation on crop coefficient (K c ) and variation of water stress coefficient (K s ) throughout the growing season were also discussed. E, T and ET of tomato were calculated with a dual crop coefficient approach, and compared with the measured data. Results indicated that E in the full irrigation was 21.5% and 20.4% higher than that in the deficit irrigation in 2015 and 2016, respectively, accounting for 24.0% and 25.0% of ET in the whole growing season. The maximum E/ET was measured in the initial stage of tomato, while the minimum obtained in the middle stage. The K c the full irrigation was 0.45, 0.89, 1.06 and 0.93 in the initial, development, middle, and late stage of tomato, and 0.45, 0.89, 0.87 and 0.41 the deficit irrigation. The K s the deficit irrigation was 0.98, 0.93, 0.78 and 0.39 in the initial, development, middle, and late stage, respectively. The dual crop coefficient method could accurately estimate ET of greenhouse tomato under different water conditions in 2015 and 2016 seasons with the mean absolute error (MAE) of 0.36-0.48 mm·d -1 , root mean square error (RMSE) of 0.44-0.65 mm·d -1 . The method also estimated E and T accurately with MAE of 0.15-0.19 and 0.26-0.56 mm·d -1 , and with RMSE of 0.20-0.24 and 0.33-0.72 mm·d -1 , respectively.

  4. Effects of crop rotation and management system on water-extractable organic matter concentration, structure, and bioavailability in a chernozemic agricultural soil.

    PubMed

    Xu, Na; Wilson, Henry F; Saiers, James E; Entz, Martin

    2013-01-01

    Water-extractable organic matter (WEOM) in soil affects contaminant mobility and toxicity, heterotrophic production, and nutrient cycling in terrestrial and aquatic ecosystems. This study focuses on the influences of land use history and agricultural management practices on the water extractability of organic matter and nutrients from soils. Water-extractable organic matter was extracted from soils under different crop rotations (an annual rotation of wheat-pea/bean-wheat-flax or a perennial-based rotation of wheat-alfalfa-alfalfa-flax) and management systems (organic or conventional) and examined for its concentration, composition, and biodegradability. The results show that crop rotations including perennial legumes increased the concentration of water-extractable organic carbon (WEOC) and water-extractable organic nitrogen (WEON) and the biodegradability of WEOC in soil but depleted the quantity of water-extractable organic phosphorus (WEOP) and water-extractable reactive phosphorus. The 30-d incubation experiments showed that bioavailable WEOC varied from 12.5% in annual systems to 22% for perennial systems. The value of bioavailable WEOC was found to positively correlate with WEON concentrations and to negatively correlate with C:N ratio and the specific ultraviolet absorbance of WEOM. No significant treatment effect was present with the conventional and organic management practices, which suggested that WEOM, as the relatively labile pool in soil organic matter, is more responsive to the change in crop rotation than to mineral fertilizer application. Our results indicated that agricultural landscapes with contrasting crop rotations are likely to differentially affect rates of microbial cycling of organic matter leached to soil waters. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Regional Climate Change Impact on Agricultural Land Use in West Africa

    NASA Astrophysics Data System (ADS)

    Ahmed, K. F.; Wang, G.; You, L.

    2014-12-01

    Agriculture is a key element of the human-induced land use land cover change (LULCC) that is influenced by climate and can potentially influence regional climate. Temperature and precipitation directly impact the crop yield (by controlling photosynthesis, respiration and other physiological processes) that then affects agricultural land use pattern. In feedback, the resulting changes in land use and land cover play an important role to determine the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. The assessment of future agricultural land use is, therefore, of great importance in climate change study. In this study, we develop a prototype land use projection model and, using this model, project the changes to land use pattern and future land cover map accounting for climate-induced yield changes for major crops in West Africa. Among the inputs to the land use projection model are crop yield changes simulated by the crop model DSSAT, driven with the climate forcing data from the regional climate model RegCM4.3.4-CLM4.5, which features a projected decrease of future mean crop yield and increase of inter-annual variability. Another input to the land use projection model is the projected changes of food demand in the future. In a so-called "dumb-farmer scenario" without any adaptation, the combined effect of decrease in crop yield and increase in food demand will lead to a significant increase in agricultural land use in future years accompanied by a decrease in forest and grass area. Human adaptation through land use optimization in an effort to minimize agricultural expansion is found to have little impact on the overall areas of agricultural land use. While the choice of the General Circulation Model (GCM) to derive initial and boundary conditions for the regional climate model can be a source of uncertainty in projecting the future LULCC, results from sensitivity experiments indicate that the changes

  6. 7 CFR 800.188 - Crop year, variety, and origin statements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Crop year, variety, and origin statements. 800.188 Section 800.188 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION... REGULATIONS Duties and Conduct of Licensed and Authorized Personnel § 800.188 Crop year, variety, and origin...

  7. 7 CFR 800.188 - Crop year, variety, and origin statements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Crop year, variety, and origin statements. 800.188 Section 800.188 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION... REGULATIONS Duties and Conduct of Licensed and Authorized Personnel § 800.188 Crop year, variety, and origin...

  8. 7 CFR 800.188 - Crop year, variety, and origin statements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Crop year, variety, and origin statements. 800.188 Section 800.188 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION... REGULATIONS Duties and Conduct of Licensed and Authorized Personnel § 800.188 Crop year, variety, and origin...

  9. 7 CFR 800.188 - Crop year, variety, and origin statements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Crop year, variety, and origin statements. 800.188 Section 800.188 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION... REGULATIONS Duties and Conduct of Licensed and Authorized Personnel § 800.188 Crop year, variety, and origin...

  10. 7 CFR 800.188 - Crop year, variety, and origin statements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Crop year, variety, and origin statements. 800.188 Section 800.188 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION... REGULATIONS Duties and Conduct of Licensed and Authorized Personnel § 800.188 Crop year, variety, and origin...

  11. Northward shift of the agricultural climate zone under 21st-century global climate change.

    PubMed

    King, Myron; Altdorff, Daniel; Li, Pengfei; Galagedara, Lakshman; Holden, Joseph; Unc, Adrian

    2018-05-21

    As agricultural regions are threatened by climate change, warming of high latitude regions and increasing food demands may lead to northward expansion of global agriculture. While socio-economic demands and edaphic conditions may govern the expansion, climate is a key limiting factor. Extant literature on future crop projections considers established agricultural regions and is mainly temperature based. We employed growing degree days (GDD), as the physiological link between temperature and crop growth, to assess the global northward shift of agricultural climate zones under 21 st -century climate change. Using ClimGen scenarios for seven global climate models (GCMs), based on greenhouse gas (GHG) emissions and transient GHGs, we delineated the future extent of GDD areas, feasible for small cereals, and assessed the projected changes in rainfall and potential evapotranspiration. By 2099, roughly 76% (55% to 89%) of the boreal region might reach crop feasible GDD conditions, compared to the current 32%. The leading edge of the feasible GDD will shift northwards up to 1200 km by 2099 while the altitudinal shift remains marginal. However, most of the newly gained areas are associated with highly seasonal and monthly variations in climatic water balances, a critical component of any future land-use and management decisions.

  12. Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions

    USDA-ARS?s Scientific Manuscript database

    Despite widespread application in studying climate change impacts, most crop models ignore complex interactions among air temperature, crop and soil water status, CO2 concentration and atmospheric conditions that influence crop canopy temperature. The current study extended previous studies by evalu...

  13. Impact of treated urban wastewater for reuse in agriculture on crop response and soil ecotoxicity.

    PubMed

    Belhaj, Dalel; Jerbi, Bouthaina; Medhioub, Mounir; Zhou, John; Kallel, Monem; Ayadi, Habib

    2016-08-01

    The scarcity of freshwater resources is a serious problem in arid regions, such as Tunisia, and marginal quality water is gradually being used in agriculture. This study aims to study the impact of treated urban wastewater for reuse in agriculture on the health of soil and food crops. The key findings are that the effluents of Sfax wastewater treatment plant (WWTP) did not meet the relevant guidelines, therefore emitting a range of organic (e.g., up to 90 mg L(-1) COD and 30 mg L(-1) BOD5) and inorganic pollutants (e.g., up to 0.5 mg L(-1) Cu and 0.1 mg L(-1) Cd) in the receiving aquatic environments. Greenhouse experiments examining the effects of wastewater reuse on food plants such as tomato, lettuce, and radish showed that the treated effluent adversely affected plant growth, photosynthesis, and antioxidant enzyme contents. However, the pollution burden and biological effects on plants were substantially reduced by using a 50 % dilution of treated sewage effluent, suggesting the potential of reusing treated effluent in agriculture so long as appropriate monitoring and control is in place.

  14. Interannual variability of crop water footprint

    NASA Astrophysics Data System (ADS)

    Tuninetti, M.; Tamea, S.; Laio, F.; Ridolfi, L.

    2016-12-01

    The crop water footprint, CWF, is a useful tool to investigate the water-food nexus, since it measures the water requirement for crop production. Heterogeneous spatial patterns of climatic conditions and agricultural practices have inspired a flourishing literature on the geographic assessment of CWF, mostly referred to a fixed (time-averaged) period. However, given that both climatic conditions and crop yield may vary substantially over time, also the CWF temporal dynamics need to be addressed. As other studies have done, we base the CWF variability on yield, while keeping the crop evapotranspiration constant over time. As a new contribution, we prove the feasibility of this approach by comparing these CWF estimates with the results obtained with a full model considering variations of crop evapotranspiration: overall, the estimates compare well showing high coefficients of determination that read 0.98 for wheat, 0.97 for rice, 0.97 for maize, and 0.91 for soybean. From this comparison, we derive also the precision of the method, which is around ±10% that is higher than the precision of the model used to evaluate the crop evapotranspiration (i.e., ±30%). Over the period between 1961 and 2013, the CWF of the most cultivated grains has sharply decreased on a global basis (i.e., -68% for wheat, -62% for rice, -66% for maize, and -52% for soybean), mainly driven by enhanced yield values. The higher water use efficiency in crop production implies a reduced virtual displacement of embedded water per ton of traded crop and as a result, the temporal variability of virtual water trade is different if considering constant or time-varying CWF. The proposed yield-based approach to estimate the CWF variability implies low computational costs and requires limited input data, thus, it represents a promising tool for time-dependent water footprint assessments.

  15. Nitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain.

    PubMed

    Gao, Jianmin; Xie, Yingxin; Jin, Haiyang; Liu, Yuan; Bai, Xueying; Ma, Dongyun; Zhu, Yunji; Wang, Chenyang; Guo, Tiancai

    2016-01-01

    The application of crop residues combined with Nitrogen (N) fertilizer has been broadly adopted in China. Crop residue amendments can provide readily available C and N, as well as other nutrients to agricultural soils, but also intensify the N fixation, further affecting N2O emissions. N2O pulses are obviously driven by rainfall, irrigation and fertilization. Fertilization before rainfall or followed by flooding irrigation is a general management practice for a wheat-maize rotation in the North China Plain. Yet, little is known on the impacts of crop residues combined with N fertilizer application on N2O emission under high soil moisture content. A laboratory incubation experiment was conducted to investigate the effects of two crop residue amendments (maize and wheat), individually or in combination with N fertilizer, on N2O emissions and denitrifier abundance in two main agricultural soils (one is an alluvial soil, pH 8.55, belongs to Ochri-Aquic Cambosols, OAC, the other is a lime concretion black soil, pH 6.61, belongs to Hapli-Aquic Vertosols, HAV) under 80% WFPS (the water filled pore space) in the North China Plain. Each type soil contains seven treatments: a control with no N fertilizer application (CK, N0), 200 kg N ha-1 (N200), 250 kg N ha-1 (N250), maize residue plus N200 (MN200), maize residue plus N250 (MN250), wheat residue plus N200 (WN200) and wheat residue plus N250 (WN250). Results showed that, in the HAV soil, MN250 and WN250 increased the cumulative N2O emissions by 60% and 30% compared with N250 treatment, respectively, but MN200 and WN200 decreased the cumulative N2O emissions by 20% and 50% compared with N200. In the OAC soil, compared with N200 or N250, WN200 and WN250 increased the cumulative N2O emission by 40%-50%, but MN200 and MN250 decreased the cumulative N2O emission by 10%-20%. Compared with CK, addition of crop residue or N fertilizer resulted in significant increases in N2O emissions in both soils. The cumulative N2O emissions

  16. Caesium-137 root uptake by agricultural and wild crops in post-Chernobyl landscape: the possibilities for phytoremediation?

    NASA Astrophysics Data System (ADS)

    Paramonova, Tatiana; Shamshurina, Eugenia; Komissarova, Olga; Belyaev, Vladimir

    2015-04-01

    In spite of long term period after Chernobyl fallout (≈25 years after the accident) the level of Cs-137 in soils of contaminated landscapes remains several times more than radiation safety standard (= 37 kBq/m2). In particular, within the area of Plavsk radioactive hot spot (Tula region, Russia) current Cs-137 activities in soil are 460-500 Bq/kg (170-200 kBq/m2) on watershed, 580-680 Bq/kg (200-220 kBq/m2) in arable lower parts of slopes and 620-710 Bq/kg (210-280 kBq/m2) in untilled foots of slopes and river floodplains. To estimate the process of Cs-137 root uptake and incorporation of the radionuclide in plant tissues 6 agricultural crops of typical field rotation (spring barley, maize, summer rape, galega, potatoes, amaranth) as well as natural ecosystems of dry and wet meadows were selected for the detailed study. Total bioproductivity of agricultural crops varies between 1.7-3.9 kg/m2, natural grass ecosystems - 1.9-2.2 g/m2, and is obviously unaffected by radioactive land contamination. At the same time Cs-137 activity in total biomass slightly increases with Cs-137 activity in soil (correlation coefficient r=0.45) and with total biomass (correlation coefficient r=0.51) in the row: rape (5 Bq/kg) < amaranth, galega (17-19 Bq/kg) < barley, potatoes (31-37 Bq/kg) < maize (58 Bq/kg) < dry meadow (73 Bq/kg) < wet meadow (120 Bq/kg). Commonly, Cs-137 activity in vegetation of natural ecosystems with predominance of perennial grasses is significantly higher than in agrosystems with annual crops. But a substantial portion of Cs-137 in meadow vegetation is associated with belowground biomass, where the radionuclide's activity is 3-5 times greater than in the aboveground part. The distribution of Cs-137 activities between above- and belowground parts of agricultural crops greatly varies depending on the biological characteristics of plants: barley and maize (Gramíneae family) are also characterized by elevated Cs-137 concentrations in belowground parts (12

  17. Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture

    PubMed Central

    Hämmerle, Martin; Höfle, Bernhard

    2014-01-01

    3D geodata play an increasingly important role in precision agriculture, e.g., for modeling in-field variations of grain crop features such as height or biomass. A common data capturing method is LiDAR, which often requires expensive equipment and produces large datasets. This study contributes to the improvement of 3D geodata capturing efficiency by assessing the effect of reduced scanning resolution on crop surface models (CSMs). The analysis is based on high-end LiDAR point clouds of grain crop fields of different varieties (rye and wheat) and nitrogen fertilization stages (100%, 50%, 10%). Lower scanning resolutions are simulated by keeping every n-th laser beam with increasing step widths n. For each iteration step, high-resolution CSMs (0.01 m2 cells) are derived and assessed regarding their coverage relative to a seamless CSM derived from the original point cloud, standard deviation of elevation and mean elevation. Reducing the resolution to, e.g., 25% still leads to a coverage of >90% and a mean CSM elevation of >96% of measured crop height. CSM types (maximum elevation or 90th-percentile elevation) react differently to reduced scanning resolutions in different crops (variety, density). The results can help to assess the trade-off between CSM quality and minimum requirements regarding equipment and capturing set-up. PMID:25521383

  18. Global emissions of PM10 and PM2.5 from agricultural tillage and harvesting operations

    NASA Astrophysics Data System (ADS)

    Chen, W.; Tong, D.; Lee, P.

    2014-12-01

    Soil particles emitted during agricultural activities is a major recurring source contributing to atmospheric aerosol loading. Emission inventories of agricultural dust emissions have been compiled in several regions. These inventories, compiled based on historic survey and activity data, may reflect the current emission strengths that introduce large uncertainties when they are used to drive chemical transport models. In addition, there is no global emission inventory of agricultural dust emissions required to support global air quality and climate modeling. In this study, we present our recent efforts to develop a global emission inventory of PM10 and PM2.5 released from field tillage and harvesting operations using an emission factors-based approach. Both major crops (e.g., wheat and corn) and forage production were considered. For each crop or forage, information of crop area, crop calendar, farming activities and emission factors of specified operations were assembled. The key issue of inventory compilation is the choice of suitable emission factors for specified operations over different parts of the world. Through careful review of published emission factors, we modified the traditional emission factor-based model by multiplying correction coefficient factors to reflect the relationship between emission factors, soil texture, and climate conditions. Then, the temporal (i.e., monthly) and spatial (i.e., 0.5º resolution) distribution of agricultural PM10 and PM2.5 emissions from each and all operations were estimated for each crop or forage. Finally, the emissions from individual crops were aggregated to assemble a global inventory from agricultural operations. The inventory was verified by comparing the new data with the existing agricultural fugitive dust inventory in North America and Europe, as well as satellite observations of anthropogenic agricultural dust emissions.

  19. Cultivar Mixture Cropping Increased Water Use Efficiency in Winter Wheat under Limited Irrigation Conditions

    PubMed Central

    Wang, Yunqi; Zhang, Yinghua; Ji, Wei; Yu, Peng; Wang, Bin; Li, Jinpeng; Han, Meikun; Xu, Xuexin; Wang, Zhimin

    2016-01-01

    The effects of cultivar mixture cropping on yield, biomass, and water use efficiency (WUE) in winter wheat (Triticum aestivum L.) were investigated under non-irrigation (W0, no irrigation during growth stage), one time irrigation (W1, irrigation applied at stem elongation) and two times irrigation (W2, irrigation applied at stem elongation and anthesis) conditions. Nearly 90% of cultivar mixture cropping treatments experienced an increase in grain yield as compared with the mean of the pure stands under W0, those for W1 and W2 were 80% and 85%, respectively. Over 75% of cultivar mixture cropping treatments got greater biomass than the mean of the pure stands under the three irrigation conditions. Cultivar mixture cropping cost more water than pure stands under W0 and W1, whereas the water consumption under W2 decreased by 5.9%–6.8% as compared with pure stands. Approximately 90% of cultivar mixtures showed an increase of 5.4%–34.5% in WUE as compared with the mean of the pure stands, and about 75% of cultivar mixtures had 0.8%–28.5% higher WUE than the better pure stands under W0. Similarly, there were a majority of mixture cropping treatments with higher WUE than the mean and the better one of the pure stands under W1 and W2. On the whole, proper cultivar mixture cropping could increase yield and WUE, and a higher increase in WUE occurred under limited irrigation condition. PMID:27362563

  20. Modelling adaptation to climate change of Ecuadorian agriculture and associated water resources: uncertainties in coastal and highland cropping systems

    NASA Astrophysics Data System (ADS)

    Ruiz-Ramos, Margarita; Bastidas, Wellington; Cóndor, Amparo; Villacís, Marcos; Calderón, Marco; Herrera, Mario; Zambrano, José Luis; Lizaso, Jon; Hernández, Carlos; Rodríguez, Alfredo; Capa-Morocho, Mirian

    2016-04-01

    Climate change threatens sustainability of farms and associated water resources in Ecuador. Although the last IPCC report (AR5) provides a general framework for adaptation, , impact assessment and especially adaptation analysis should be site-specific, taking into account both biophysical and social aspects. The objective of this study is to analyse the climate change impacts and to sustainable adaptations to optimize the crop yield. Furthermore is also aimed to weave agronomical and hydrometeorological aspects, to improve the modelling of the coastal ("costa") and highland ("sierra") cropping systems in Ecuador, from the agricultural production and water resources points of view. The final aim is to support decision makers, at national and local institutions, for technological implementation of structural adaptation strategies, and to support farmers for their autonomous adaptation actions to cope with the climate change impacts and that allow equal access to resources and appropriate technologies. . A diagnosis of the current situation in terms of data availability and reliability was previously done, and the main sources of uncertainty for agricultural projections have been identified: weather data, especially precipitation projections, soil data below the upper 30 cm, and equivalent experimental protocol for ecophysiological crop field measurements. For reducing these uncertainties, several methodologies are being discussed. This study was funded by PROMETEO program from Ecuador through SENESCYT (M. Ruiz-Ramos contract), and by the project COOP-XV-25 funded by Universidad Politécnica de Madrid.