Sample records for agricultural diffuse pollution

  1. Fuzzy rule based estimation of agricultural diffuse pollution concentration in streams.

    PubMed

    Singh, Raj Mohan

    2008-04-01

    Outflow from the agricultural fields carries diffuse pollutants like nutrients, pesticides, herbicides etc. and transports the pollutants into the nearby streams. It is a matter of serious concern for water managers and environmental researchers. The application of chemicals in the agricultural fields, and transport of these chemicals into streams are uncertain that cause complexity in reliable stream quality predictions. The chemical characteristics of applied chemical, percentage of area under the chemical application etc. are some of the main inputs that cause pollution concentration as output in streams. Each of these inputs and outputs may contain measurement errors. Fuzzy rule based model based on fuzzy sets suits to address uncertainties in inputs by incorporating overlapping membership functions for each of inputs even for limited data availability situations. In this study, the property of fuzzy sets to address the uncertainty in input-output relationship is utilized to obtain the estimate of concentrations of a herbicide, atrazine, in a stream. The data of White river basin, a part of the Mississippi river system, is used for developing the fuzzy rule based models. The performance of the developed methodology is found encouraging.

  2. Modelling of agricultural diffuse pollution and mitigation measures effectiveness in Wallonia (Belgium)

    NASA Astrophysics Data System (ADS)

    Sohier, C.; Deraedt, D.; Degré, A.

    2012-04-01

    Implementation of European directives in the environmental field and, specially, in the water management field, generates a request from policy-makers for news tools able to evaluate impact of management measures aiming at reducing pressures on ecosystems. In Wallonia (Southern Region of Belgium), the Nitrate Directive (EEC/676/91) was transposed into the "Walloon action plan for nitrogen sustainable management in agriculture" (PGDA1) in 2002. In 2007, a second plan was launched to reinforce some topics (PGDA2). Furthermore, the goal of "good quality" of surface waters and groundwater imposed by the Water Framework Directive poses new challenges in water management. In this context, a "soil and vadose" hydrological model is used in order to evaluate diffuse pollutions and efficiency of mitigation measures. This model, called EPICgrid, has been developed at catchment scale with an original modular concept on the basis of the field scale "water-soil-plant" EPIC model (Williams J.R., Jones C.A., Dyke P.T. (1984). A modelling approach to determining the relationship between erosion and soil productivity. Transactions of the ASAE. 27, 129-144). The model estimates, for each HRU identified into a 1km2 grid, water and nutrients flows into the plant-soil-vadose zone system (Sohier C., Degré A., Dautrebande S. (2009). From root zone modelling to regional forecasting of nitrate concentration in recharge flows - The case of the Walloon Region (Belgium). Journal of Hydrology, Volume 369, Issues 3-4, 15 May 2009, Pages 350-359). The model is used to make prospective simulations in order to evaluate the impact of measures currently performed to reduce the effect of diffuse pollution on water surface quality and groundwater quality, at regional scale. Response of the soil-vadose zone to agricultural practices modification is analyzed for the deadlines of the Water Framework Directive: 2015, 2021 and 2027, taking into account two climatic scenarios. Simulations results showed

  3. [Temporal-spatial distribution of agricultural diffuse nitrogen pollution and relationship with soil respiration and nitrification].

    PubMed

    Wei, Ouyang; Cai, Guan-Qing; Huang, Hao-Bo; Geng, Xiao-Jun

    2014-06-01

    The soil respiration, nitrification and denitrification processes play an important role on soil nitrogen transformation and diffuse nitrogen loading. These processes are also the chains for soil circle. In this study, the Zhegao watershed located north of Chaohu Lake was selected to explore the interactions of these processes with diffuse nitrogen pollution. The BaPS (Barometric Process Separation) was applied to analyze the soil respiration, nitrification and denitrification processes in farmland and forest. The SWAT (Soil and Water Assessment Tool) simulated the temporal and spatial pattern of diffuse nitrogen loading. As the expanding of farmland and higher level of fertilization, the yearly mean loading of diffuse nitrogen increased sustainably from 1980-1995 to 1996-2012. The monthly loading in 1996-2012 was also higher than that in the period of 1980-1995, which closely related to the precipitation. The statistical analysis indicated that there was a significant difference between two periods. The yearly averaged loading of the whole watershed in 1996-2012 was 10.40 kg x hm(-2), which was 8.10 kg x hm(-2) in 1980-1995. The variance analysis demonstrated that there was also a big difference between the spatial distributions of two periods. The forest soil had much higher soil respiration than the farmland soil. But the farmland had higher nitrification and denitrification rates. The more intensive nitrogen transformation in the farmland contributed to the less diffuse nitrogen loading. As the nitrification rate of farmland was higher than denitrification rate, agricultural diffuse nitrate nitrogen loading would increase and organic nitrogen loading would reduce. The analysis of soil respiration, nitrification and denitrification is helpful for the study of soil nitrogen circle form the aspect of soil biology, which also benefits the control of agricultural diffuse nitrogen pollution.

  4. Mapping for the management of diffuse pollution risks related to agricultural plant protection practices: case of the Etang de l'Or catchment area in France.

    PubMed

    Mghirbi, Oussama; Bord, Jean-Paul; Le Grusse, Philippe; Mandart, Elisabeth; Fabre, Jacques

    2018-03-08

    Faced with health, environmental, and socio-economic issues related to the heavy use of pesticides, diffuse phytosanitary pollution becomes a major concern shared by all the field actors. These actors, namely the farmers and territorial managers, have expressed the need to implement decision support tools for the territorial management of diffuse pollution resulting from the plant protection practices and their impacts. To meet these steadily increasing requests, a cartographic analysis approach was implemented based on GIS which allows the spatialization of the diffuse pollution impacts related to plant protection practices on the Etang de l'Or catchment area in the South of France. Risk mapping represents a support-decision tool that enables the different field actors to identify and locate vulnerable areas, so as to determine action plans and agri-environmental measures depending on the context of the natural environment. This work shows that mapping is helpful for managing risks related to the use of pesticides in agriculture by employing indicators of pressure (TFI) and risk on the applicator's health (IRSA) and on the environment (IRTE). These indicators were designed to assess the impact of plant protection practices at various spatial scales (field, farm, etc.). The cartographic analysis of risks related to plant protection practices shows that diffuse pollution is unequally located in the North (known for its abundant garrigues and vineyards) and in the South of the Etang de l'Or catchment area (the Mauguio-Lunel agricultural plain known for its diversified cropping systems). This spatial inequity is essentially related to land use and agricultural production system. Indeed, the agricultural lands cover about 60% of the total catchment area. Consequently, this cartographic analysis helps the territorial actors with the implementation of strategies for managing risks of diffuse pollution related to pesticides use in agriculture, based on environmental and

  5. Spatially-Distributed Cost–Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution

    PubMed Central

    Geng, Runzhe; Wang, Xiaoyan; Sharpley, Andrew N.; Meng, Fande

    2015-01-01

    Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program–FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ‘‘best approach” depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program

  6. Spatially-Distributed Cost-Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution.

    PubMed

    Geng, Runzhe; Wang, Xiaoyan; Sharpley, Andrew N; Meng, Fande

    2015-01-01

    Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program-FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ''best approach" depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program efficiency

  7. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    PubMed

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).

  8. Integrated climate-chemical indicators of diffuse pollution from land to water.

    PubMed

    Mellander, Per-Erik; Jordan, Phil; Bechmann, Marianne; Fovet, Ophélie; Shore, Mairead M; McDonald, Noeleen T; Gascuel-Odoux, Chantal

    2018-01-17

    Management of agricultural diffuse pollution to water remains a challenge and is influenced by the complex interactions of rainfall-runoff pathways, soil and nutrient management, agricultural landscape heterogeneity and biogeochemical cycling in receiving water bodies. Amplified cycles of weather can also influence nutrient loss to water although they are less considered in policy reviews. Here, we present the development of climate-chemical indicators of diffuse pollution in highly monitored catchments in Western Europe. Specifically, we investigated the influences and relationships between weather processes amplified by the North Atlantic Oscillation during a sharp upward trend (2010-2016) and the patterns of diffuse nitrate and phosphorus pollution in rivers. On an annual scale, we found correlations between local catchment-scale nutrient concentrations in rivers and the influence of larger, oceanic-scale climate patterns defined by the intensity of the North Atlantic Oscillation. These influences were catchment-specific showing positive, negative or no correlation according to a typology. Upward trends in these decadal oscillations may override positive benefits of local management in some years or indicate greater benefits in other years. Developing integrated climate-chemical indicators into catchment monitoring indicators will provide a new and important contribution to water quality management objectives.

  9. Mitigating Agricultural Diffuse Pollution: Learning from The River Eden Demonstration Test Catchment Experiments

    NASA Astrophysics Data System (ADS)

    Reaney, S. M.; Barker, P. A.; Haygarth, P.; Quinn, P. F.; Aftab, A.; Barber, N.; Burke, S.; Cleasby, W.; Jonczyk, J. C.; Owen, G. J.; Perks, M. T.; Snell, M. A.; Surridge, B.

    2016-12-01

    Freshwater systems continue to fail to achieve their ecological potential and provide associated ecological services due to poor water quality. A key driver of the failure to achieve good status under the EU Water Framework Directive derives from non-point (diffuse) pollution of sediment, phosphorus and nitrogen from agricultural landscapes. While many mitigation options exist, a framework is lacking which provides a holistic understanding of the impact of mitigation scheme design on catchment function and agronomics. The River Eden Demonstration Test Catchment project (2009-2017) in NW England uses an interdisciplinary approach including catchment hydrology, sediment-nutrient fluxes and farmer attitudes, to understand ecological function and diffuse pollution mitigation feature performance. Water flow (both surface and groundwater) and quality monitoring focused on three ca. 10km2 catchments with N and P measurements every 30 minutes. Ecological status was determined by monthly diatom community analysis and supplemented by macrophyte, macroinvertebrate and fish surveys. Changes in erosion potential and hydrological connectivity were monitored using extensive Landsat images and detailed UAV monitoring. Simulation modelling work utilised hydrological simulation models (CRAFT, CRUM3 and HBV-Light) and SCIMAP based risk mapping. Farmer behaviour and attitudes have been assessed with surveys, interviews and diaries. A suite of mitigation features have been installed including changes to land management - e.g. aeriation, storage features within a `treatment train', riparian fencing and woodland creation. A detailed dataset of the integrated catchment hydrological, water quality and ecological behaviour over multiple years, including a drought period and an extreme rainfall event, highlights the interaction between ecology, hydrological and nutrient dynamics that are driven by sediment and nutrients exported within a small number of high magnitude storm events. Hence

  10. Pollutant swapping: greenhouse gas emissions from wetland systems constructed to mitigate agricultural pollution

    NASA Astrophysics Data System (ADS)

    Freer, Adam; Quinton, John; Surridge, Ben; McNamara, Niall

    2014-05-01

    Diffuse (non-point) water pollution from agricultural land continues to challenge water quality management, requiring the adoption of new land management practices. The use of constructed agricultural wetlands is one such practice, designed to trap multiple pollutants mobilised by rainfall prior to them reaching receiving water. Through capturing and storing pollutants in bottom sediments, it could be hypothesised that the abundance of nutrients stored in the anoxic conditions commonly found in these zones may lead to pollutant swapping. Under these circumstances, trapped material may undergo biogeochemical cycling to change chemical or physical form and thereby become more problematic or mobile within the environment. Thus, constructed agricultural wetlands designed to mitigate against one form of pollution may in fact offset the created benefits by 'swapping' this pollution into other forms and pathways, such as through release to the atmosphere. Pollutant swapping to the atmosphere has been noted in analogous wetland systems designed to treat municipal and industrial wastewaters, with significant fluxes of CO2, CH4 and N2O being recorded in some cases. However the small size, low level of engineering and variable nutrient/sediment inputs which are features of constructed agricultural wetlands, means that this knowledge is not directly transferable. Therefore, more information is required when assessing whether a wetland's potential to act as hotspot for pollution swapping outweighs its potential to act as a mitigation tool for surface water pollution. Here we present results from an on-going monitoring study at a trial agricultural wetland located in small a mixed-use catchment in Cumbria, UK. Estimates were made of CH4, CO2 and N2O flux from the wetland surface using adapted floating static chambers, which were then directly compared with fluxes from an undisturbed riparian zone. Results indicate that while greenhouse gas flux from the wetland may be

  11. Spatially based management of agricultural phosphorus pollution from diffuse sources: the SCIMAP risk based approach

    NASA Astrophysics Data System (ADS)

    Reaney, S. M.; Heathwaite, L.; Lane, S. N.; Buckley, C.

    2007-12-01

    Pollution of rivers from agricultural phosphorus is recognised as a significant global problem and is a major management challenge as it involves processes that are small in magnitude, distributed over large areas, operating at fine spatial scales and associated with certain land use types when they are well connected to the receiving waters. Whilst some of these processes have been addressed in terms of water quality forecasting models and field measurements, we lack effective tools to prioritise where action should be taken to remediate the diffuse pollution problem. From a management perspective, the required information is on 'what to do where' rather than absolute values. This change in focus opens up the problem to be considered in a probabilistic / relative framework rather than concentrating on absolute values. The SCIMAP risk management framework is based on the critical source area concept whereby a risk and a connection are required to generate a problem. Treatments of both surface and subsurface hydrological connectivity have been developed. The approach is based on the philosophy that for a point to be considered connected there needs to be a continuous flow path to the receiving water. This information is calculated by simulating the possible flow paths from the source cell to the receiving water and recording the required catchment wetness to allow flow along that route. This algorithm gives information on the ease at which each point in the landscape can export risk along surface and subsurface pathways to the receiving waters. To understand the annual dynamics of the locational diffuse P risk, a temporal risk framework has been developed. This risk framework accounts for land management activies within the agricultural calendar. These events include the application of fertiliser, the P additions from livestock and the offtake of P in crops. Changes to these risks can be made to investigate management options. The SCIMAP risk mapping framework has

  12. AGRICULTURAL NONPOINT SOURCE POLLUTION (AGNPS)

    EPA Science Inventory

    Developed by the USDA Agricultural Research Service, Agricultural Nonpoint Source Pollution (AGNPS) model addresses concerns related to the potential impacts of point and nonpoint source pollution on surface and groundwater quality (Young et al., 1989). It was designed to quantit...

  13. Long-term diffuse phosphorus pollution dynamics under the combined influence of land use and soil property variations.

    PubMed

    Huang, Haobo; Ouyang, Wei; Wu, Haotian; Liu, Hongbin; Andrea, Critto

    2017-02-01

    Analyses of the spatial-temporal distribution of diffuse pollution in agricultural regions are essential to the sustained management of water resources. Although nutrients, such as phosphorus fertilizers, can promote crop growth while improving soil fertility, excessive nutrient inputs can produce diffuse pollution, which may results in water quality degradation. The objective of this paper is to employ the SWAT (Soil and Water Assessment Tool) to estimate diffuse P effects on temporal and spatial distributions for a typical agricultural watershed and to identify the conjunct and independent influences of long-term land use and soil properties variation on diffuse P. With the validated model, the four-period simulation results (from 1979 to 2009) indicate that land use changes from agricultural development increased diffuse P yields. However, regarding updated soil properties, no significant differences of P yield were found between 1979 and 2009, demonstrating that impact of the cropland expansion were naturalized with soil property variations. An F-test was employed to assess the essentiality of all of the variables examined during the simulation period, and the test results indicated that diffuse P loading was more sensitive to soil properties than to land use. Before the P pollution control project about the land use optimization planning, it is more effective to distinguish the impacts of land use and soil properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Engaging farmers to inform future diffuse pollution policy in England

    NASA Astrophysics Data System (ADS)

    Vrain, Emilie; Lovett, Andrew; Nobel, Lister; Grant, Fiona; Blundell, Paul; Cleasby, Will

    2013-04-01

    Stakeholder knowledge and engagement is increasingly seen as a necessary ingredient for catchment management. Whilst many agricultural management options remain voluntary, the implementation of diffuse pollution mitigation measures will only be effective with the cooperation of stakeholders. Anthony et al. (2009) and Zhang et al. (2012) state the need for more information on the realistic farmer uptake of methods to enhance analyses of the potential for pollution mitigation. A study engaging farmers to understand current agricultural practices and their attitudes towards mitigation measures has formed part of the Demonstration Test Catchment (DTC) programme in England. Interviews with over seventy farmers were conducted during 2012 in three contrasting areas of the UK: the grassland dominated Eden catchment in the North West of England; the arable dominated Wensum catchment in East Anglia and the mixed farming of the Hampshire Avon catchment in southern England. Results from the farmer survey provide a baseline regarding current agricultural practices and give insight regarding attitudes to the adoption of other mitigation measures in the future. Opinions were obtained on eighty different measures taken from a recent guide to possible measures prepared for the UK government (Newell-Price et al., 2011). Analyses have been conducted examining how current use and attitudes towards future adoption of measures varies according to different characteristics of farm businesses. These findings will be of benefit to researchers, policy makers and farm advisers, particularly aiding decision making with respect to strategies for future implementation of programmes of measures. References. Anthony, S.G. et al., 2009. Quantitative assessment of scenarios for managing trade-off between the economic performance of agriculture and the environment and between different environmental media. Available at: http

  15. Implications of salinity pollution hotspots on agricultural production

    NASA Astrophysics Data System (ADS)

    Floerke, Martina; Fink, Julia; Malsy, Marcus; Voelker, Jeanette; Alcamo, Joseph

    2016-04-01

    Salinity pollution can have many negative impacts on water resources used for drinking, irrigation, and industrial purposes. Elevated concentrations of salinity in irrigation water can lead to decreased crop production or crop death and, thus, causing an economic problem. Overall, salinity pollution is a global problem but tends to be more severe in arid and semi-arid regions where the dilution capacity of rivers and lakes is lower and the use of irrigation higher. Particularly in these regions agricultural production is exposed to high salinity of irrigation water as insufficient water quality further reduces the available freshwater resources. According to the FAO, irrigated agriculture contributes about 40 percent of the total food production globally, and therefore, high salinity pollution poses a major concern for food production and food security. We use the WaterGAP3 modeling framework to simulate hydrological, water use, and water quality conditions on a global scale for the time period 1990 to 2010. The modeling framework is applied to simulate total dissolved solids (TDS) loadings and in-stream concentrations from different point and diffuse sources to get an insight on potential environmental impacts as well as risks to agricultural food production. The model was tested and calibrated against observed data from GEMStat and literature sources. Although global in scope, the focus of this study is on developing countries, i.e., in Africa, Asia, and Latin America, as these are most threatened by salinity pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use are examined, indicating limitations to crop production. Our results show that elevated salinity concentrations in surface waters mainly occur in peak irrigation regions as irrigated agriculture is not only the most relevant water use sector contributing to water abstractions, but also the dominant source of salinity pollution. Additionally

  16. The Use of LiDAR Elevation Data and Satellite Imagery to Locate Critical Source Areas to Diffuse Pollution in Agricultural Watersheds

    NASA Astrophysics Data System (ADS)

    Drouin, Ariane; Michaud, Aubert; Thériault, Georges; Beaudin, Isabelle; Rodrigue, Jean-François; Denault, Jean-Thomas; Desjardins, Jacques; Côté, Noémi

    2013-04-01

    In Quebec / Canada, water quality improvement in rural areas greatly depends on the reduction of diffuse pollution. Indeed, point source pollution has been reduced significantly in Canada in recent years by creating circumscribed pits for manure and removing animals from stream. Diffuse pollution differs from point source pollution because it is spread over large areas. In agricultural areas, sediment loss by soil and riverbank erosion along with loss of nutrients (phosphorus, nitrogen, etc.) and pesticides from fields represent the main source of non-point source pollution. The factor mainly responsible for diffuse pollution in agricultural areas is surface runoff occurring in poorly drained areas in fields. The presence of these poorly drained areas is also one of the most limiting factors in crop productivity. Thus, a reconciliation of objectives at the farm (financial concern for farmers) and off-farm concerns (environmental concern) is possible. In short, drainage, runoff, erosion, water quality and crop production are all interconnected issues that need to be tackled together. Two complementary data sources are mainly used in the diagnosis of drainage, surface runoff and erosion : elevation data and multispectral satellite images. In this study of two watersheds located in Québec (Canada), LiDAR elevation data and satellite imagery (QuickBird, Spot and Landsat) were acquired. The studied territories have been partitioned in hydrologic response units (HRUs) according to sub-basins, soils, elevation (topographic index) and land use. These HRUs are afterwards used in a P index software (P-Edit) that calculates the quantities of sediments and phosphorus exported from each HRUs. These exports of sediments and phosphorus are validated with hydrometric and water quality data obtain in two sub-basins and are also compared to soil brightness index derived from multispectral images. This index is sensitive to soil moisture and thus highlights areas where the soil is

  17. SCIMAP: Modelling Diffuse Pollution in Large River Basins

    NASA Astrophysics Data System (ADS)

    Milledge, D.; Heathwaite, L.; Lane, S. N.; Reaney, S. M.

    2009-12-01

    Polluted rivers are a problem for the plants and animals that require clean water to survive. Watershed scale processes can influence instream aquatic ecosystems by delivering fine sediment, solutes and organic matter from diffuse sources. To improve our rivers we need to identify the pollution sources. Models can help us to do this but these rarely address the extent to which risky land uses are hydrologically-connected, and hence able to deliver, to the drainage network. Those that do tend to apply a full hydrological scheme, which is unfeasible for large watersheds. Here we develop a risk-based modelling framework, SCIMAP, for diffuse pollution from agriculture (Nitrate, Phosphate and Fine Sediment). In each case the basis of the analysis is the joint consideration of the probability of a unit of land (25 m2 cell) producing a particular environmental risk and then of that risk reaching the river. The components share a common treatment of hydrological connectivity but differ in their treatment of each pollution type. We test and apply SCIMAP using spatially-distributed instream water quality data for some of the UK’s largest catchments to infer the processes and the associated process parameters that matter in defining their concentrations. We use these to identify a series of risky field locations, where this land use is readily connected to the river system by overland flow.

  18. Diffuse pollution of soil and water: Long term trends at large scales?

    NASA Astrophysics Data System (ADS)

    Grathwohl, P.

    2012-04-01

    Industrialization and urbanization, which consequently increased pressure on the environment to cause degradation of soil and water quality over more than a century, is still ongoing. The number of potential environmental contaminants detected in surface and groundwater is continuously increasing; from classical industrial and agricultural chemicals, to flame retardants, pharmaceuticals, and personal care products. While point sources of pollution can be managed in principle, diffuse pollution is only reversible at very long time scales if at all. Compounds which were phased out many decades ago such as PCBs or DDT are still abundant in soils, sediments and biota. How diffuse pollution is processed at large scales in space (e.g. catchments) and time (centuries) is unknown. The relevance to the field of processes well investigated at the laboratory scale (e.g. sorption/desorption and (bio)degradation kinetics) is not clear. Transport of compounds is often coupled to the water cycle and in order to assess trends in diffuse pollution, detailed knowledge about the hydrology and the solute fluxes at the catchment scale is required (e.g. input/output fluxes, transformation rates at the field scale). This is also a prerequisite in assessing management options for reversal of adverse trends.

  19. Assessing the cost of groundwater pollution: the case of diffuse agricultural pollution in the Upper Rhine valley aquifer.

    PubMed

    Rinaudo, J-D; Arnal, C; Blanchin, R; Elsass, P; Meilhac, A; Loubier, S

    2005-01-01

    This paper presents an assessment of the costs of diffuse groundwater pollution by nitrates and pesticides for the industrial and the drinking water sectors in the Upper Rhine valley, France. Pollution costs which occurred between 1988 and 2002 are described and assessed using the avoidance cost method. Geo-statistical methods (kriging) are then used to construct three scenarios of nitrate concentration evolution. The economic consequences of each scenario are then assessed. The estimates obtained are compared with the results of a contingent valuation study carried out in the same study area ten years earlier.

  20. Tackling agricultural diffuse pollution: What might uptake of farmer-preferred measures deliver for emissions to water and air?

    PubMed

    Collins, A L; Zhang, Y S; Winter, M; Inman, A; Jones, J I; Johnes, P J; Cleasby, W; Vrain, E; Lovett, A; Noble, L

    2016-03-15

    Mitigation of agricultural diffuse pollution poses a significant policy challenge across Europe and particularly in the UK. Existing combined regulatory and voluntary approaches applied in the UK continue to fail to deliver the necessary environmental outcomes for a variety of reasons including failure to achieve high adoption rates. It is therefore logical to identify specific on-farm mitigation measures towards which farmers express positive attitudes for higher future uptake rates. Accordingly, a farmer attitudinal survey was undertaken during phase one of the Demonstration Test Catchment programme in England to understand those measures towards which surveyed farmers are most receptive to increasing implementation in the future. A total of 29 on-farm measures were shortlisted by this baseline farm survey. This shortlist comprised many low cost or cost-neutral measures suggesting that costs continue to represent a principal selection criterion for many farmers. The 29 measures were mapped onto relevant major farm types and input, assuming 95% uptake, to a national scale multi-pollutant modelling framework to predict the technically feasible impact on annual agricultural emissions to water and air, relative to business as usual. Simulated median emission reductions, relative to current practise, for water management catchments across England and Wales, were estimated to be in the order sediment (20%)>ammonia (16%)>total phosphorus (15%) ≫ nitrate/methane (11%)>nitrous oxide (7%). The corresponding median annual total cost of the modelled scenario to farmers was £3 ha(-1)yr(-1), with a corresponding range of -£84 ha(-1)yr(-1) (i.e. a net saving) to £33 ha(-1)yr(-1). The results suggest that those mitigation measures which surveyed farmers are most inclined to implement in the future would improve the environmental performance of agriculture in England and Wales at minimum to low cost per hectare. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Reduction potential, shadow prices, and pollution costs of agricultural pollutants in China.

    PubMed

    Tang, Kai; Gong, Chengzhu; Wang, Dong

    2016-01-15

    This paper analyses the reduction potential, shadow prices, and pollution costs of agricultural pollutants in China based on provincial panel data for 2001-2010. Using a parameterized quadratic form for the directional output distance function, we find that if agricultural sectors in all provinces were to produce on the production frontier, China could potentially reduce agricultural emissions of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) by 16.0%, 16.2%, and 20.4%, respectively. Additionally, our results show that the shadow price of TN increased rapidly and continuously, while that of COD and TP fluctuated for the whole period. For the whole country, the average shadow price of COD, TN, and TP are 8266 Yuan/tonne, 25,560 Yuan/tonne, and 10,160 Yuan/tonne, respectively. The regional shadow prices of agricultural pollutants are unbalanced. Furthermore, we show that the pollution costs from emissions of COD, TN, and TP are 6.09% of the annual gross output value of the agricultural sector and are highest in the Western and lowest in the Eastern provinces. Our estimates suggest that there is scope for further pollution abatement and simultaneous output expansion for China's agriculture if farmers promote greater efficiency in their production process. Policymakers are required to dynamically adjust the pollution tax rates and ascertain the initial permit price in an emission trading system. Policymakers should also consider the different pollution costs for each province when making the reduction allocations within the agricultural sector. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Disentangling the responses of boreal stream assemblages to low stressor levels of diffuse pollution and altered channel morphology.

    PubMed

    Turunen, Jarno; Muotka, Timo; Vuori, Kari-Matti; Karjalainen, Satu Maaria; Rääpysjärvi, Jaana; Sutela, Tapio; Aroviita, Jukka

    2016-02-15

    Non-point diffuse pollution from land use and alteration of hydromorphology are among the most detrimental stressors to stream ecosystems. We explored the independent and interactive effects of morphological channel alteration (channelization for water transport of timber) and diffuse pollution on species richness and community structure of four organism groups in boreal streams: diatoms, macrophytes, macroinvertebrates, and fish. Furthermore, the effect of these stressors on stream condition was evaluated by Ecological Quality Ratios (EQR) from the national Water Framework Directive (WFD) assessment system. We grouped 91 study sites into four groups that were impacted by either diffuse pollution or hydromorphological alteration, by both stressors, or by neither one. Macroinvertebrate richness was reduced by diffuse pollution, whereas other biological groups were unaltered. Hydromorphological modification had no effect on taxon richness of any of the assemblages. Community structure of all groups was significantly affected by diffuse pollution but not by hydromorphology. Similarly, EQRs indicated negative response by diatoms, macroinvertebrates and fish to diffuse pollution, but not to hydromorphological alteration. Agricultural diffuse pollution thus affected species identities and abundances rather than taxonomic richness. Our results suggest that channelization of boreal streams for timber transport has not altered hydromorphological conditions sufficiently to have a strong impact on stream biota, whereas even moderate nutrient enrichment may be ecologically harmful. Controlling diffuse pollution and associated land use stressors should be prioritized over restoration of in-stream habitat structure to improve the ecological condition of boreal streams. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. MANAGEMENT OF DIFFUSE POLLUTION IN AGRICULTURAL WATERSHEDS: LESSONS FROM THE MINNESOTA RIVER BASIN. (R825290)

    EPA Science Inventory

    Abstract

    The Minnesota River (Minnesota, USA) receives large non-point source pollutant loads. Complex interactions between agricultural, state agency, environmental groups, and issues of scale make watershed management difficult. Subdividing the basin's 12 major water...

  4. Farmland-atmosphere feedbacks amplify decreases in diffuse nitrogen pollution in a freeze-thaw agricultural area under climate warming conditions.

    PubMed

    Gao, Xiang; Ouyang, Wei; Hao, Zengchao; Shi, Yandan; Wei, Peng; Hao, Fanghua

    2017-02-01

    Although climate warming and agricultural land use changes are two of the primary instigators of increased diffuse pollution, they are usually considered separately or additively. This likely lead to poor decisions regarding climate adaptation. Climate warming and farmland responses have synergistic consequences for diffuse nitrogen pollution, which are hypothesized to present different spatio-temporal patterns. In this study, we propose a modeling framework to simulate the synergistic impacts of climate warming and warming-induced farmland shifts on diffuse pollution. Active accumulated temperature response for latitudinal and altitudinal directions was predicted based on a simple agro-climate model under different temperature increments (△T 0 is from 0.8°C to 1.4°C at an interval of 0.2°C). Spatial distributions of dryland shift to paddy land were determined by considering accumulated temperature. Different temperature increments and crop distributions were inserted into Soil and Water Assessment Tool model, which quantified the spatio-temporal changes of nitrogen. Warming led to a decrease of the annual total nitrogen loading (2.6%-14.2%) in the low latitudes compared with baseline, which was larger than the decrease (0.8%-6.2%) in the high latitudes. The synergistic impacts amplified the decrease of the loading in the low and high latitudes at the sub-basin scale. Warming led to a decrease of the loading at a rate of 0.35kg/ha/°C, which was lower than the synergistic impacts (3.67kg/ha/°C) at the watershed level. However, warming led to the slight increase of the annual averaged NO3 (LAT) (0.16kg/ha/°C), which was amplified by the synergistic impacts (0.22kg/ha/°C). Expansion of paddy fields led to a decrease in the monthly total nitrogen loading throughout the year, but amplified an increase in the loading in August and September. The decreased response in spatio-temporal nitrogen patterns is substantially amplified by farmland-atmosphere feedbacks

  5. Diffuse pollution by persistent organic pollutants as measured in plastic pellets sampled from various beaches in Greece.

    PubMed

    Karapanagioti, H K; Endo, S; Ogata, Y; Takada, H

    2011-02-01

    Plastic pellets found stranded on beaches are hydrophobic organic materials and thus, they are a favourable medium for persistent organic pollutants to absorb to. In the present study, plastic pellets are used to determine the diffuse pollution of selected Greek beaches. Samples of pellets were taken from these beaches and were analyzed for PCBs, DDTs, HCHs, and PAHs. The observed differences among pellets from various sampling sites are related to the pollution occurring at each site. Plastic pellets collected in Saronikos Gulf beaches demonstrate much higher pollutant loading than the ones collected in a remote island or close to an agricultural area. Based on data collected in this study and the International Pellet Watch program, pollution in Saronikos Gulf, Greece, is comparable to other heavily industrialized places of the world. The present study demonstrates the potential of pellet watch to be utilized as a detailed-scale monitoring tool within a single country. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Nonpoint Source Pollution: Agriculture, Forestry, and Mining. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    ERIC Educational Resources Information Center

    Buskirk, E. Drannon, Jr.

    Nonpoint sources of pollution have diffuse origins and are major contributors to water quality problems in both urban and rural areas. Addressed in this instructor's manual are the identification, assessment, and management of nonpoint source pollutants resulting from mining, agriculture, and forestry. The unit, part of the Working for Clean Water…

  7. Effects of Climate Change on Diffuse Pollution in Lake Mogan Watershed

    NASA Astrophysics Data System (ADS)

    Alp, E.; Özcan, Z.

    2017-12-01

    Climate change is putting increasing pressure on water bodies. It can affect the behavior of pollutants in the environment and their interaction with the hydrological cycle. For instance, changing precipitation patterns may result in higher volumes of runoff containing numerous contaminants to water bodies and eventually loss of life-supporting function of them. The purpose of this study is to evaluate the impacts of climate change on diffuse pollution in Lake Mogan watershed located in a climate change vulnerable region and where agricultural diffuse pollution is one of the significant concerns. Lake Mogan watershed has an area of 970 km2 and it is dominated by dry agricultural practices and characterized by intermittent creeks. The lake was declared as a special environmental protection region in 1990. In this study, the impacts of climate change on diffuse pollution in the Lake Mogan watershed was evaluated using with a water quality model, SWAT (Soil and Water Assessment Tool). SWAT is a conceptual, continuous time model that operates on a daily time step. The model has been used in many studies to estimate the impacts of climate change, to calculate pollutant loads and to evaluate the best management practices all over the world. The required inputs for SWAT model can be categorized under the following basic categories: topography, land use/land cover, soil properties, land management practices occurring in the watershed, and meteorological inputs. According to Turkish Ministry of Forestry and Water Affairs (2016), it is estimated that the annual average temperature values will increase up to 3.3°C during the 85 year projection period as compared to reference period in the RCP4.5 scenario in the study area. This increase is predicted as up to 5.7°C based on the RCP8.5 scenario. The calibrated SWAT model for the Lake Mogan Watershed is used for the climate change scenarios for a period of 2010 and 2100. It is aimed that the outcomes of this study will help

  8. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China.

    PubMed

    Xu, Xianghua; Zhao, Yongcun; Zhao, Xiaoyan; Wang, Yudong; Deng, Wenjing

    2014-10-01

    The rapid industrialization and urbanization in developing countries have increased pollution by heavy metals, which is a concern for human health and the environment. In this study, 230 surface soil samples (0-20cm) were collected from agricultural areas of Jiaxing, a rapidly industrializing area in the Yangtze Delta of China. Sequential Gaussian simulation (SGS) and multivariate factorial kriging analysis (FKA) were used to identify and explore the sources of heavy metal pollution for eight metals (Cu, Zn, Pb, Cr, Ni, Cd, Hg and As). Localized hot-spots of pollution were identified for Cu, Zn, Pb, Cr, Ni and Cd with area percentages of 0.48 percent, 0.58 percent, 2.84 percent, 2.41 percent, 0.74 percent, and 0.68 percent, respectively. The areas with Hg pollution covered approximately 38 percent whereas no potential pollution risk was found for As. The soil parent material and point sources of pollution had significant influences on Cr, Ni, Cu, Zn and Cd levels, except for the influence of agricultural management practices also accounted for micro-scale variations (nugget effect) for Cu and Zn pollution. Short-range (4km) diffusion processes had a significant influence on Cu levels, although they did not appear to be the dominant sources of Zn and Cd variation. The short-range diffusion pollution arising from current and historic industrial emissions and urbanization, and long-range (33km) variations in soil parent materials and/or diffusion jointly determined the current concentrations of soil Pb. The sources of Hg pollution risk may be attributed to the atmosphere deposition of industrial emission and historical use of Hg-containing pesticides. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Influence of Diffused Sourcers of Water Pollution In The Basin of Volga River

    NASA Astrophysics Data System (ADS)

    Vasilchenco, O.

    The intensive development of industry and agriculture, great growth of cities in the last decades result in an increase of the nature water consumption and deterioration. Different anthropogenic load change characteristics of water objects regime and de- pletion and qualitative degradation of water resources. Sources of pollution are divided on two classes: controlled and uncontrolled. The first includes industrial and domestic wastewater disposal. Their discharge and concentration of pollutants are quite stable. These sources of pollution are identified as "point". Surface run-off from of cities, industrial platforms, agricultural object, navigation, recreation are not controlled have dispersed nature and are identification as diffuse. Pollution from such sources is es- timates by computation. Quantitative assumption of pollution amounts reaches water objects is complicated and independent problem. The significant amount of full-scale observations and information processes of concerning dissolved and fluidized frag- ments movement are required. According to available guidelines the part of the pollu- tant entering water objects, is about 1-10For estimation of pollution mass and transport are mathematical modeling. Preliminary calculations of contaminants transport for different territories under an- thropogenic impact of river-Volga basin were made either for point sources of pol- lution or for non-point. Received data made it possible to analyze the correlation of contaminant volumes, coming from different sources pollution.

  10. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.

    PubMed

    Bouraoui, Fayçal; Grizzetti, Bruna

    2014-01-15

    Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability. © 2013.

  11. Dust pollution from agriculture

    USDA-ARS?s Scientific Manuscript database

    Fine dust particles emitted from agricultural facilities, lands and operations are considered pollutants when they affect public health and welfare. These particles, with a diameter of less than or equal to 2.5 µm (PM2.5) and less than or equal to 10 µm (PM10), are regulated by government agencies. ...

  12. Evaluation of agricultural nonpoint source pollution potential risk over China with a Transformed-Agricultural Nonpoint Pollution Potential Index method.

    PubMed

    Yang, Fei; Xu, Zhencheng; Zhu, Yunqiang; He, Chansheng; Wu, Genyi; Qiu, Jin Rong; Fu, Qiang; Liu, Qingsong

    2013-01-01

    Agricultural nonpoint source (NPS) pollution has been the most important threat to water environment quality. Understanding the spatial distribution of NPS pollution potential risk is important for taking effective measures to control and reduce NPS pollution. A Transformed-Agricultural Nonpoint Pollution Potential Index (T-APPI) model was constructed for evaluating the national NPS pollution potential risk in this study; it was also combined with remote sensing and geographic information system techniques for evaluation on the large scale and at 1 km2 spatial resolution. This model considers many factors contributing to the NPS pollution as the original APPI model, summarized as four indicators of the runoff, sediment production, chemical use and the people and animal load. These four indicators were analysed in detail at 1 km2 spatial resolution throughout China. The T-APPI model distinguished the four indicators into pollution source factors and transport process factors; it also took their relationship into consideration. The studied results showed that T-APPI is a credible and convenient method for NPS pollution potential risk evaluation. The results also indicated that the highest NPS pollution potential risk is distributed in the middle-southern Jiangsu province. Several other regions, including the North China Plain, Chengdu Basin Plain, Jianghan Plain, cultivated lands in Guangdong and Guangxi provinces, also showed serious NPS pollution potential. This study can provide a scientific reference for predicting the future NPS pollution risk throughout China and may be helpful for taking reasonable and effective measures for preventing and controlling NPS pollution.

  13. [Preliminary determination of organic pollutants in agricultural fertilizers].

    PubMed

    Mo, Ce-hui; Li, Yun-hui; Cai, Quan-ying; Zeng, Qiao-yun; Wang, Bo-guang; Li, Hai-qin

    2005-05-01

    Organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) in agricultural fertilizers are new problem deserved more study. Eight kinds of organic pollutants including 43 compounds classified as US EPA priority pollutants in twenty one agricultural fertilizers which were universally used in China were determined by Gas chromatography-mass spectrum (GC-MS). Three kinds of organic pollutants including more than 5 compounds were detected in most fertilizers, composing mainly of phthalic acid esters (PAEs), nitrobenzenes (NBs) and polycyclic aromatic hydrocarbons (PAHs). There were 26 compounds detected in at least one fertilizer, five of them especially PAEs detected in most fertilizer and even in all fertilizers. Benzo(a)pyrene, a strongly carcinogenic compound was detected in two fertilizers. Higher concentrations of compounds were determined in those fertilizers such as multifunction compound fertilizers and coated fertilizers.

  14. Assessing the potential impacts of a revised set of on-farm nutrient and sediment 'basic' control measures for reducing agricultural diffuse pollution across England.

    PubMed

    Collins, A L; Newell Price, J P; Zhang, Y; Gooday, R; Naden, P S; Skirvin, D

    2018-04-15

    The need for improved abatement of agricultural diffuse water pollution represents cause for concern throughout the world. A critical aspect in the design of on-farm intervention programmes concerns the potential technical cost-effectiveness of packages of control measures. The European Union (EU) Water Framework Directive (WFD) calls for Programmes of Measures (PoMs) to protect freshwater environments and these comprise 'basic' (mandatory) and 'supplementary' (incentivised) options. Recent work has used measure review, elicitation of stakeholder attitudes and a process-based modelling framework to identify a new alternative set of 'basic' agricultural sector control measures for nutrient and sediment abatement across England. Following an initial scientific review of 708 measures, 90 were identified for further consideration at an industry workshop and 63 had industry support. Optimisation modelling was undertaken to identify a shortlist of measures using the Demonstration Test Catchments as sentinel agricultural landscapes. Optimisation selected 12 measures relevant to livestock or arable systems. Model simulations of 95% implementation of these 12 candidate 'basic' measures, in addition to business-as-usual, suggested reductions in the national agricultural nitrate load of 2.5%, whilst corresponding reductions in phosphorus and sediment were 11.9% and 5.6%, respectively. The total cost of applying the candidate 'basic' measures across the whole of England was estimated to be £450 million per annum, which is equivalent to £52 per hectare of agricultural land. This work contributed to a public consultation in 2016. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Enhanced diffusion of pollutants by self-propulsion.

    PubMed

    Zhao, Guanjia; Stuart, Emma J E; Pumera, Martin

    2011-07-28

    Current environmental models mostly account for the passive participation of pollutants in their environmental propagation. Here we demonstrate the paradigm-changing concept that pollutants can propagate themselves with a rate that is greater than the rate for standard molecular diffusion by five orders of magnitude. This journal is © the Owner Societies 2011

  16. Establishment and application of the estimation model for pollutant concentrfation in agriculture drain

    NASA Astrophysics Data System (ADS)

    Li, Qiangkun; Hu, Yawei; Jia, Qian; Song, Changji

    2018-02-01

    It is the key point of quantitative research on agricultural non-point source pollution load, the estimation of pollutant concentration in agricultural drain. In the guidance of uncertainty theory, the synthesis of fertilization and irrigation is used as an impulse input to the farmland, meanwhile, the pollutant concentration in agricultural drain is looked as the response process corresponding to the impulse input. The migration and transformation of pollutant in soil is expressed by Inverse Gaussian Probability Density Function. The law of pollutants migration and transformation in soil at crop different growth periods is reflected by adjusting parameters of Inverse Gaussian Distribution. Based on above, the estimation model for pollutant concentration in agricultural drain at field scale was constructed. Taking the of Qing Tong Xia Irrigation District in Ningxia as an example, the concentration of nitrate nitrogen and total phosphorus in agricultural drain was simulated by this model. The results show that the simulated results accorded with measured data approximately and Nash-Sutcliffe coefficients were 0.972 and 0.964, respectively.

  17. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - USDA BELTSVILLE AGRICULTURAL RESEARCH CENTER

    EPA Science Inventory

    A pollution prevention opportunity assessment (PPOA) was performed during the spring of 1991 which identified areas for waste reduction at the U.S. Department of Agriculture's Beltsville Agricultural Research Center (BARC), Beltsville, Maryland. he areas selected for this joint E...

  18. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment.

    PubMed

    Yang, Qianqi; Li, Zhiyuan; Lu, Xiaoning; Duan, Qiannan; Huang, Lei; Bi, Jun

    2018-06-14

    Soil heavy metal pollution has been becoming serious and widespread in China. To date, there are few studies assessing the nationwide soil heavy metal pollution induced by industrial and agricultural activities in China. This review obtained heavy metal concentrations in soils of 402 industrial sites and 1041 agricultural sites in China throughout the document retrieval. Based on the database, this review assessed soil heavy metal concentration and estimated the ecological and health risks on a national scale. The results revealed that heavy metal pollution and associated risks posed by cadmium (Cd), lead (Pb) and arsenic (As) are more serious. Besides, heavy metal pollution and associated risks in industrial regions are severer than those in agricultural regions, meanwhile, those in southeast China are severer than those in northwest China. It is worth noting that children are more likely to be affected by heavy metal pollution than adults. Based on the assessment results, Cd, Pb and As are determined as the priority control heavy metals; mining areas are the priority control areas compared to other areas in industrial regions; food crop plantations are the priority control areas in agricultural regions; and children are determined as the priority protection population group. This paper provides a comprehensive ecological and health risk assessment on the heavy metals in soils in Chinese industrial and agricultural regions and thus provides insights for the policymakers regarding exposure reduction and management. Copyright © 2018. Published by Elsevier B.V.

  19. Agricultural pollution control under Spanish and European environmental policies

    NASA Astrophysics Data System (ADS)

    MartíNez, Yolanda; Albiac, José

    2004-10-01

    Nonpoint pollution from agriculture is an important environmental policy issue in Spain and the European Union. Agricultural pollution in Spain is being addressed by the National Irrigation Plan and by the European Water Framework Directive. This article contributes to the ongoing policy decision process by analyzing nonpoint pollution control and presenting results on the efficiency of abatement measures. Results question the reliance of the Water Framework Directive on water pricing as a pollution instrument for reaching good status for all waters because higher water prices close to full recovery cost advocated by the directive appear to be inefficient as an emission control instrument. Another important result is that abatement measures based on input taxes and standards on nitrogen appear to be more suitable than the National Irrigation Plan subsidies designed to promote irrigation investments. The results also contribute with further evidence to the discussion on the appropriate instrument base for pollution control, proving that nonpoint pollution control instruments cannot be assessed accurately without a correct understanding of the key underlying biophysical processes. Nonpoint pollution is characterized by nonlinearities, dynamics, and spatial dependency, and neglect of the dynamic aspects may lead to serious consequences for the design of measures. Finally, a quantitative assessment has been performed to explore discriminating measures based on crop pollution potential on vulnerable soils. No significant welfare gains are found from discriminating control, although results are contingent upon the level of damage, and discrimination could be justified in areas with valuable ecosystems and severe pollution damages.

  20. Soils as sinks or sources for diffuse pollution of the water cycle

    NASA Astrophysics Data System (ADS)

    Grathwohl, Peter

    2010-05-01

    Numerous chemical compounds have been released into the environment by human activities and can nowadays be found everywhere, i.e. in the compartments water, soil, and air, at the poles and in high mountains. Examples for a global distribution of toxic compounds are the persistent organic pollutants (PCB, dioxins, PAH, fluorinated surfactants and flame retardants, etc.: "the Stockholm dirty dozen") but also mercury and other metals. Many of these compounds reached a global distribution via the atmo¬sphere; others have been and are still directly applied to top soils at the large scale by agriculture or are released into groundwater at landfill sites or by discharge of treated or untreated waste waters. Sooner or later such compounds end up in the water cycle - often via an intermediate storage in soils. Pollutants in soils are leached by seepage waters, transferred to ground¬water, and transported to rivers via groundwater flow. Adsorbed compounds may be transported from soils into surface waters by erosion processes and will end up in the sediments. Diffuse pollution of the subsurface environment not only reflects the history of the economic development of the modern society but it is still ongoing - e.g. the number of organic pollutants released into the environment is increasing even though the con¬centrations may decrease compared to the past. Evidence shows that many compounds are persistent in the subsurface environment at large time scales (up to centuries). Thus polluted soils already are or may become a future source for pollution of adjacent compartments such as the atmosphere and groundwater. A profound understanding on how diffuse pollutants are stored and processed in the subsurface environment is crucial to assess their long term fate and transport at large scales. Thus integrated studies e.g. at the catchment scale and models are needed which couple not only the relevant compartments (soil - atmosphere - groundwater/surface waters) but also flow

  1. ALTERNATIVE POLICIES FOR CONTROLLING NONPOINT AGRICULTURAL SOURCES OF WATER POLLUTION

    EPA Science Inventory

    This study of policies for controlling water pollution from nonpoint agricultural sources includes a survey of existing state and Federal programs, agencies, and laws directed to the control of soil erosion. Six policies representing a variety of approaches to this pollution prob...

  2. Identifying hydrologically sensitive areas using LiDAR DEMs to mitigate critical source areas of diffuse pollution: development and application

    NASA Astrophysics Data System (ADS)

    Thomas, Ian; Jordan, Phil; Mellander, Per-Erik; Fenton, Owen; Shine, Oliver; hUallacháin, Daire Ó.; Creamer, Rachel; McDonald, Noeleen; Dunlop, Paul; Murphy, Paul

    2016-04-01

    Identifying critical source areas (CSAs) of diffuse pollution in agricultural catchments requires the accurate identification of hydrologically sensitive areas (HSAs) at highest propensity for generating surface runoff and transporting pollutants such as phosphorus (P). A new GIS-based HSA Index is presented that identifies HSAs at the sub-field scale. It uses a soil topographic index (STI) and accounts for the hydrological disconnection of overland flow via topographic impediment from flow sinks such as hedgerows and depressions. High resolution (0.25-2 m) LiDAR Digital Elevation Models (DEMs) are utilised to capture these microtopographic controls on flow pathways and hydrological connectivity. The HSA Index was applied to four agricultural catchments (~7.5-12 km2) with contrasting topography and soil types. Catchment HSA sizes were estimated using high resolution rainfall-quickflow measurements during saturated winter storm events in 2009-2014, and mapped using the HSA Index. HSA sizes ranged from 1.6-3.4% of the catchment area during median storm events and 2.9-8.5% during upper quartile events depending on whether well or poorly drained soils dominated, which validated HSA Index value distributions. Total flow sink volume capacities ranged from 8,298-59,584 m3 and caused 8.5-24.2% of overland-flow-generating-areas and 16.8-33.4% of catchment areas to become hydrologically disconnected from the open drainage channel network. HSA maps identified 'delivery points' along surface runoff pathways where transported pollutants such as P are delivered to the open drainage network. Using these as proposed locations for targeting mitigation measures such as riparian buffer strips (RBS) reduced costs compared to blanket implementation within an example agri-environment scheme by 66% and 91% over 1 and 5 years respectively, which included LiDAR DEM acquisition costs. Considering that HSAs are often the dominant P CSA factor in agricultural catchments and can override

  3. Diffusion of Technical Agricultural Information in Chile.

    ERIC Educational Resources Information Center

    Brown, Marion Ray

    This study examined current thought concerning the role of mass communication in economic development in developing nations; analyzed existing efforts to diffuse agricultural technology in Chile; assessed the effectiveness of various approaches; and tested the effects (primarily on knowledge levels) of an experimental technical information service…

  4. A Monte Carlo approach to the inverse problem of diffuse pollution risk in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Milledge, D.; Lane, S. N.; Heathwaite, A. L.; Reaney, S.

    2012-04-01

    The hydrological and biogeochemical processes that operate in catchments influence the ecological quality of freshwater systems through delivery of fine sediment, nutrients and organic matter. As an alternative to the, often complex, reductionist models we outline a - data-driven - approach based on 'inverse modelling'. We invert SCIMAP, a parsimonious risk based model that has an explicit treatment of hydrological connectivity, and use a Bayesian approach to determine the risk that must be assigned to different land uses in a catchment in order to explain the spatial patterns of measured in-stream nutrient concentrations. First, we apply the model to a set of eleven UK catchments to show that: 1) some land use generates a consistently high or low risk of diffuse nitrate (N) and Phosphate (P) pollution; but 2) the risks associated with different land uses vary both between catchments and between P and N delivery; and 3) that the dominant sources of P and N risk in the catchment are often a function of the spatial configuration of land uses. These results suggest that on a case by case basis, inverse modelling may be used to help prioritise the focus of interventions to reduce diffuse pollution risk for freshwater ecosystems. However, a key uncertainty in this approach is the extent to which it can recover the 'true' risks associated with a land cover given error in both the input parameters and equifinality in model outcomes. We test this using a set of synthetic scenarios in which the true risks can be pre-assigned then compared with those recovered from the inverse model. We use these scenarios to identify the number of simulations and observations required to optimize recovery of the true weights, then explore the conditions under which the inverse model becomes equifinal (hampering recovery of the true weights) We find that this is strongly dependent on the covariance in land covers between subcatchments, introducing the possibility that instream sampling could

  5. A stress ecology framework for comprehensive risk assessment of diffuse pollution.

    PubMed

    van Straalen, Nico M; van Gestel, Cornelis A M

    2008-12-01

    Environmental pollution is traditionally classified as either localized or diffuse. Local pollution comes from a point source that emits a well-defined cocktail of chemicals, distributed in the environment in the form of a gradient around the source. Diffuse pollution comes from many sources, small and large, that cause an erratic distribution of chemicals, interacting with those from other sources into a complex mixture of low to moderate concentrations over a large area. There is no good method for ecological risk assessment of such types of pollution. We argue that effects of diffuse contamination in the field must be analysed in the wider framework of stress ecology. A multivariate approach can be applied to filter effects of contaminants from the many interacting factors at the ecosystem level. Four case studies are discussed (1) functional and structural properties of terrestrial model ecosystems, (2) physiological profiles of microbial communities, (3) detritivores in reedfield litter, and (4) benthic invertebrates in canal sediment. In each of these cases the data were analysed by multivariate statistics and associations between ecological variables and the levels of contamination were established. We argue that the stress ecology framework is an appropriate assessment instrument for discriminating effects of pollution from other anthropogenic disturbances and naturally varying factors.

  6. Trash-polluted irrigation: characteristics and impact on agriculture

    NASA Astrophysics Data System (ADS)

    Sulaeman, D.; Arif, SS; Sudarmadji

    2018-04-01

    Trash pollution has been a problem in sustainable water resources management. Trash pollutes not only rivers, lakes and seas, but also irrigation canals and rice fields. This study aimed to identify the characteristics of solid waste (type, time of occurrence and sources of trash) and its impact on agriculture. The study was conducted in four irrigation areas, namely Gamping, Merdiko, Nglaren and Karangploso in Bantul District, Yogyakarta Special Region. We applied the Irrigation Rapid Trash Assessment (IRTA) as our field survey instrument. The results showed that trash was found throughout irrigation canals and rice fields, and the occurrence was influenced by water flow, time and farmer activities. The irrigation was dominantly polluted by plastic trash (52.2%), biodegradable waste (17.91%) and miscellaneous trash (12.3%). The IRTA score showed that Gamping Irrigation Area was at marginal condition, bearing a high risk of disturbing the operation and maintenance of the irrigation canals as well as farmers’ health. Trash in irrigation also generated technical impact of the irrigation operation and maintenance, environmental quality, and social life. This research also offered environmental policy integration approach and water-garbage governance approach as an alternative solution to manage water resources and agriculture in a sustainable manner, under the pressure of increasing amount of trash.

  7. Climatic Fluctuations and the Diffusion of Agriculture*

    PubMed Central

    Ashraf, Quamrul; Michalopoulos, Stelios

    2015-01-01

    This research examines the climatic origins of the diffusion of Neolithic agriculture across countries and archaeological sites. The theory suggests that a foraging society’s history of climatic shocks shaped the timing of its adoption of farming. Specifically, as long as climatic disturbances did not lead to a collapse of the underlying resource base, the rate at which hunter-gatherers were climatically propelled to experiment with their habitats determined the accumulation of tacit knowledge complementary to farming. Consistent with the proposed hypothesis, the empirical investigation demonstrates that, conditional on biogeographic endowments, climatic volatility has a hump-shaped effect on the timing of the adoption of agriculture. PMID:27019534

  8. The influence of farmland pollution on the quality and safety of agricultural products

    NASA Astrophysics Data System (ADS)

    Ma, Z. L.; Li, L. Y.; Ye, C.; Lin, X. Y.; B, C.; Wei

    2018-02-01

    The quality and safety of agricultural products is not only a major livelihood issues for people’s health, but also the main barriers to international trade of agricultural products nowadays. The soil is the foundation to the production of agricultural products and the guarantee of agricultural development. The farmland soil quality is directly related to the quality and safety of agricultural products. Our country’s soil has been polluted by a series of pollution, Such as the excessive discharge of industrial wastes, the encroachment of household waste, and the unreasonable use of pesticides and fertilizers. Soil degradation is a serious threat to the quality and safety of agricultural products, so eliminating soil degradation is the fundamental way out for quality and safety of agricultural products. By analyzing problems of the quality and safety of agricultural products in our country, and exploring the farmland soil influence on the quality and safety of agricultural products. This article provides a reference for improving the control level of quality and safety of agricultural products and the farmland soil quality.

  9. Effects of implementing organic rice-duck integrated farming on reducing agricultural diffuse pollution around Dianshan Lake in the western suburbs of Shanghai

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Feng; Teng, Qing

    2017-04-01

    Located in the western suburbs of Shanghai, Dianshan Lake is a major source of Huangpu River, a mother river flowing through the metropolitan area. To protect the drinking water source areas, the development of any industries and livestock breeding is forbidden around the lake since the early time. However, the lake is still under a eutrophic state throughout the year. In 2013, for example, total N and total P in the lake water were 2.98 mg L-1 and 0.17 mg L-1 on average, respectively. It is believed that 72.2% of N and 73.1% of P in the lake come from agricultural diffuse pollution. The areas surrounding the lake include six towns and are all low-lying in landform. There are 5975 ha paddy fields at the six towns, making up 33.1% of total farming land in the areas. According to our questionnaires to local farmers at Jinze Town, one of the six towns, for the consecutive five years, the amounts of N and P2O5 applied within the rice growing season under the conventional rice farming are 336.6 kg ha-1 and 76.9 kg ha-1 on average, respectively, and those lost through leaching and runoff are 15.42 kg ha-1 and 3.55 kg ha-1 on average, respectively. Further study estimated that the total amounts of N and P2O5 applied around the lake within the rice growing season are 2.01×106 kg year-1 and 4.59×105 kg year-1, respectively; those lost through leaching and runoff are 0.99×105 kg year-1 and 0.23×105 kg year-1, respectively; those discharged from the fields into the lake are 0.99×104 kg year-1 and 0.23×104 kg year-1, respectively. Our study also indicated that the amount of pesticides and herbicides discharged from the paddy fields at the six towns into the lake is approximately 1.67×104 kg year-1. Appreciately, the agricultural diffuse pollution from the paddy fields surrounding the lake have posed severe threat to the lake. The field experiments indicated that raising ducks in the paddy fields within the rice growing season can not only highly reduce weed hazards and

  10. PROBABILISTIC ASSESSMENT OF GROUNDWATER VULNERABILITY TO NONPOINT SOURCE POLLUTION IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    This paper presents a probabilistic framework for the assessment of groundwater pollution potential by pesticides in two adjacent agricultural watersheds in the Mid-Altantic Coastal Plain. Indices for estimating streams vulnerability to pollutants' load from the surficial aquifer...

  11. Contribution of atmospheric nitrogen deposition to diffuse pollution in a typical hilly red soil catchment in southern China.

    PubMed

    Shen, Jianlin; Liu, Jieyun; Li, Yong; Li, Yuyuan; Wang, Yi; Liu, Xuejun; Wu, Jinshui

    2014-09-01

    Atmospheric nitrogen (N) deposition is currently high and meanwhile diffuse N pollution is also serious in China. The correlation between N deposition and riverine N export and the contribution of N deposition to riverine N export were investigated in a typical hilly red soil catchment in southern China over a two-year period. N deposition was as high as 26.1 to 55.8kgN/(ha·yr) across different land uses in the studied catchment, while the riverine N exports ranged from 7.2 to 9.6kgN/(ha·yr) in the forest sub-catchment and 27.4 to 30.3kgN/(ha·yr) in the agricultural sub-catchment. The correlations between both wet N deposition and riverine N export and precipitation were highly positive, and so were the correlations between NH4(+)-N or NO3(-)-N wet deposition and riverine NH4(+)-N or NO3(-)-N exports except for NH4(+)-N in the agricultural sub-catchment, indicating that N deposition contributed to riverine N export. The monthly export coefficients of atmospheric deposited N from land to river in the forest sub-catchment (with a mean of 14%) presented a significant positive correlation with precipitation, while the monthly contributions of atmospheric deposition to riverine N export (with a mean of 18.7% in the agricultural sub-catchment and a mean of 21.0% in the whole catchment) were significantly and negatively correlated with precipitation. The relatively high contribution of N deposition to diffuse N pollution in the catchment suggests that efforts should be done to control anthropogenic reactive N emissions to the atmosphere in hilly red soil regions in southern China. Copyright © 2014. Published by Elsevier B.V.

  12. Managing Our Environment, A Report on Ways Agricultural Research Fights Pollution.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC.

    A report on the ways agricultural research attempts to fight pollution is presented in this series of articles covering some of the major challenges facing scientists and regulatory officials working in agricultural research. Improved resource management is stressed with the use of advanced technologies as the avenue to solving environmental…

  13. Evaluating agricultural nonpoint-source pollution programs in two Lake Erie tributaries.

    PubMed

    Forster, D Lynn; Rausch, Jonathan N

    2002-01-01

    During the past three decades, numerous government programs have encouraged Lake Erie basin farmers to adopt practices that reduce water pollution. The first section of this paper summarizes these state and federal government agricultural pollution abatement programs in watersheds of two prominent Lake Erie tributaries, the Maumee River and Sandusky River. Expenditures are summarized for each program, total expenditures in each county are estimated, and cost effectiveness of program expenditures (i.e., cost per metric ton of soil saved) are analyzed. Farmers received nearly $143 million as incentive payments to implement agricultural nonpoint source pollution abatement programs in the Maumee and Sandusky River watersheds from 1987 to 1997. About 95% of these funds was from federal sources. On average, these payments totaled about $7000 per farm or about $30 per farm acre (annualized equivalent of $2 per acre) within the watersheds. Our analysis raises questions about how efficiently these incentive payments were allocated. The majority of Agricultural Conservation Program (ACP) funds appear to have been spent on less cost-effective practices. Also, geographic areas with relatively low (high) soil erosion rates received relatively large (small) funding.

  14. Predicting diffuse microbial pollution risk across catchments: The performance of SCIMAP and recommendations for future development.

    PubMed

    Porter, Kenneth D H; Reaney, Sim M; Quilliam, Richard S; Burgess, Chris; Oliver, David M

    2017-12-31

    Microbial pollution of surface waters in agricultural catchments can be a consequence of poor farm management practices, such as excessive stocking of livestock on vulnerable land or inappropriate handling of manures and slurries. Catchment interventions such as fencing of watercourses, streamside buffer strips and constructed wetlands have the potential to reduce faecal pollution of watercourses. However these interventions are expensive and occupy valuable productive land. There is, therefore, a requirement for tools to assist in the spatial targeting of such interventions to areas where they will have the biggest impact on water quality improvements whist occupying the minimal amount of productive land. SCIMAP is a risk-based model that has been developed for this purpose but with a focus on diffuse sediment and nutrient pollution. In this study we investigated the performance of SCIMAP in predicting microbial pollution of watercourses and assessed modelled outputs of E. coli, a common faecal indicator organism (FIO), against observed water quality information. SCIMAP was applied to two river catchments in the UK. SCIMAP uses land cover risk weightings, which are routed through the landscape based on hydrological connectivity to generate catchment scale maps of relative in-stream pollution risk. Assessment of the model's performance and derivation of optimum land cover risk weightings was achieved using a Monte-Carlo sampling approach. Performance of the SCIMAP framework for informing on FIO risk was variable with better performance in the Yealm catchment (r s =0.88; p<0.01) than the Wyre (r s =-0.36; p>0.05). Across both catchments much uncertainty was associated with the application of optimum risk weightings attributed to different land use classes. Overall, SCIMAP showed potential as a useful tool in the spatial targeting of FIO diffuse pollution management strategies; however, improvements are required to transition the existing SCIMAP framework to a robust

  15. Importance of diffuse pollution control in the Patzcuaro Lake Basin in Mexico.

    PubMed

    Carro, Marco Mijangos; Dávila, Jorge Izurieta; Balandra, Antonieta Gómez; López, Rubén Hernández; Delgadillo, Rubén Huerto; Chávez, Javier Sánchez; Inclán, Luís Bravo

    2008-01-01

    In the catchment area of the Lake Patzcuaro in Central Mexico (933 km2) the apportionments of erosion, sediment, nutrients and pathogen coming from thirteen micro basins were estimated with the purpose of identifying critical areas in which best management practices need to be implemented in order to reduce their contribution to the lake pollution and eutrophication. The ArcView Generalized Watershed Loading Functions model (AV-GWLF) was applied to estimate the loads and sources of nutrients. The main results show that the total annual contribution of nitrogen from point sources were 491 tons and from diffuse pollution 2,065 tons, whereas phosphorus loads where 116 and 236 tons, respectively during a thirty year simulation period. Micro basins with predominant agricultural and animal farm land use (56% of the total area) accounts for a high percentage of nitrogen load 33% and phosphorus 52%. On the other hand, Patzcuaro and Quiroga micro basins which comprise approximately 10% of the total catchment area and are the most populated and visited towns by tourist 686,000 people every year, both contributes with 10.1% of the total nitrogen load and 3.2% of phosphorus. In terms of point sources of nitrogen and phosphorus the last towns contribute with 23.5% and 26.6% respectively. Under this situation the adoption of best management practices are an imperative task since the sedimentation and pollution in the lake has increased dramatically in the last twenty years. Copyright (c) IWA Publishing 2008.

  16. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models.

    PubMed

    Leone, A; Ripa, M N; Uricchio, V; Deák, J; Vargay, Z

    2009-07-01

    In recent years, the significant improvement in point source depuration technologies has highlighted problems regarding, in particular, phosphorus and nitrogen pollution of surface and groundwater caused by agricultural non-point (diffuse) sources (NPS). Therefore, there is an urgent need to determine the relationship between agriculture and chemical and ecological water quality. This is a worldwide problem, but it is particularly relevant in countries, such as Hungary, that have recently become members of the European Community. The Italian Foreign Ministry has financed the PECO (Eastern Europe Countries Project) projects, amongst which is the project that led to the present paper, aimed at agricultural sustainability in Hungary, from the point of view of NPS. Specifically, the aim of the present work has been to study nitrates in Hungary's main aquifer. This study compares a model showing aquifer intrinsic vulnerability to pollution (using the DRASTIC parameter method; Aller et al. [Aller, L., Truman, B., Leher, J.H., Petty, R.J., 1986. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. US NTIS, Springfield, VA.]) with a field-scale model (GLEAMS; Knisel [Knisel, W.G. (Ed.), 1993. GLEAMS--Groudwater Leaching Effects of Agricultural Management Systems, Version 3.10. University of Georgia, Coastal Plain Experimental Station, Tifton, GA.]) developed to evaluate the effects of agricultural management systems within and through the plant root zone. Specifically, GLEAMS calculates nitrate nitrogen lost by runoff, sediment and leachate. Groundwater monitoring probes were constructed for the project to measure: (i) nitrate content in monitored wells; (ii) tritium (3H) hydrogen radioisotope, as a tool to estimate the recharge conditions of the shallow groundwater; (iii) nitrogen isotope ratio delta15N, since nitrogen of organic and inorganic origin can easily be distinguished. The results obtained are satisfactory

  17. Potential risks of nitrate pollution in aquifers from agricultural practices in the Nurra region, northwestern Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Ghiglieri, Giorgio; Barbieri, Giulio; Vernier, Antonio; Carletti, Alberto; Demurtas, Nicola; Pinna, Rosanna; Pittalis, Daniele

    2009-12-01

    SummaryThe paper describes the methodological and innovative approach, which aims to evaluate the potential risk of nitrate pollution in aquifers from agricultural practices by combining intrinsic aquifer vulnerability to contamination, according to the SINTACS R5 method, with agricultural nitrates hazard assessment, according to the IPNOA index. The proposed parametric model adopts a geographically based integrated evaluation system, comprising qualitative and semi-quantitative indicators. In some cases, the authors have modified this model, revising and adjusting scores and weights of the parameter to account for the different environmental conditions, and calibrating accordingly. The method has been successfully implemented and validated in the pilot area of the Alghero coastal plain (northwestern Sardinia, Italy) where aquifers with high productivity are present. The classes with a major score (high potential risk) are in the central part of the plain, in correspondence with the most productive aquifers, where most actual or potential pollution sources are concentrated. These are mainly represented by intensive agricultural activities, by industrial agglomerate and diffused urbanisation. For calibrating the model and optimizing and/or weighting the examined factors, the modelling results were validated by comparison with groundwater quality data, in particular nitrate content, and with the potential pollution sources census data. The parametric method is a popular approach to groundwater vulnerability assessment, in contrast to groundwater flow model and statistical method ones: it is, indeed, relatively inexpensive and straightforward, and use data commonly available or that can be estimated. The zoning of nitrate vulnerable areas provides regional authorities with a useful decision support tool for planning land-use properly managing groundwater and combating and/or mitigating desertification processes. However, a careful validation of the results is

  18. An integrated modelling and multicriteria analysis approach to managing nitrate diffuse pollution: 2. A case study for a chalk catchment in England.

    PubMed

    Koo, B K; O'Connell, P E

    2006-04-01

    The site-specific land use optimisation methodology, suggested by the authors in the first part of this two-part paper, has been applied to the River Kennet catchment at Marlborough, Wiltshire, UK, for a case study. The Marlborough catchment (143 km(2)) is an agriculture-dominated rural area over a deep chalk aquifer that is vulnerable to nitrate pollution from agricultural diffuse sources. For evaluation purposes, the catchment was discretised into a network of 1 kmx1 km grid cells. For each of the arable-land grid cells, seven land use alternatives (four arable-land alternatives and three grassland alternatives) were evaluated for their environmental and economic potential. For environmental evaluation, nitrate leaching rates of land use alternatives were estimated using SHETRAN simulations and groundwater pollution potential was evaluated using the DRASTIC index. For economic evaluation, economic gross margins were estimated using a simple agronomic model based on nitrogen response functions and agricultural land classification grades. In order to see whether the site-specific optimisation is efficient at the catchment scale, land use optimisation was carried out for four optimisation schemes (i.e. using four sets of criterion weights). Consequently, four land use scenarios were generated and the site-specifically optimised land use scenario was evaluated as the best compromise solution between long term nitrate pollution and agronomy at the catchment scale.

  19. Modelling Urban diffuse pollution in groundwater

    NASA Astrophysics Data System (ADS)

    Jato, Musa; Smith, Martin; Cundy, Andrew

    2017-04-01

    Diffuse urban pollution of surface and ground waters is a growing concern in many cities and towns. Traffic-derived pollutants such as salts, heavy metals and polycyclic aromatic hydrocarbons (PAHs) may wash off road surfaces in soluble or particulate forms which later drain through soils and drainage systems into surface waters and groundwater. In Brighton, about 90% of drinking water supply comes from groundwater (derived from the Brighton Chalk block). In common with many groundwater sources the Chalk aquifer has been relatively extensively monitored and assessed for diffuse rural contaminants such as nitrate, but knowledge on the extent of contamination from road run-off is currently lacking. This project examines the transfer of traffic-derived contaminants from the road surface to the Chalk aquifer, via urban drainage systems. A transect of five boreholes have been sampled on a monthly basis and groundwater samples analysed to examine the concentrations of key, mainly road run-off derived, hydrocarbon and heavy metal contaminants in groundwater across the Brighton area. Trace concentrations of heavy metals and phenols have been observed in groundwater. Electrical conductivity changes in groundwater have also been used to assess local changes in ionic strength which may be associated with road-derived contaminants. This has been supplemented by systematic water and sediment sampling from urban gully pots, with further sampling planned from drainage and settlement ponds adjacent to major roads, to examine initial road to drainage system transport of major contaminants.

  20. Advection-diffusion model for the simulation of air pollution distribution from a point source emission

    NASA Astrophysics Data System (ADS)

    Ulfah, S.; Awalludin, S. A.; Wahidin

    2018-01-01

    Advection-diffusion model is one of the mathematical models, which can be used to understand the distribution of air pollutant in the atmosphere. It uses the 2D advection-diffusion model with time-dependent to simulate air pollution distribution in order to find out whether the pollutants are more concentrated at ground level or near the source of emission under particular atmospheric conditions such as stable, unstable, and neutral conditions. Wind profile, eddy diffusivity, and temperature are considered in the model as parameters. The model is solved by using explicit finite difference method, which is then visualized by a computer program developed using Lazarus programming software. The results show that the atmospheric conditions alone influencing the level of concentration of pollutants is not conclusive as the parameters in the model have their own effect on each atmospheric condition.

  1. Existing agricultural ecosystem in China leads to environmental pollution: an econometric approach.

    PubMed

    Hongdou, Lei; Shiping, Li; Hao, Li

    2018-06-17

    Sustainable agriculture ensures food security and prevents starvation. However, the need to meet the increasing food demands of the growing population has led to poor and unsustainable agricultural practices, which promote environmental degradation. Given the contributions of agricultural ecosystems to environmental pollution, we investigated the impact of the agricultural ecosystem on environmental pollution in China using time series data from 1960 to 2014. We employed several methods for econometric analysis including the unit root test, Johansen test of cointegration, Granger causality test, and vector error correction model. Evidence based on the long-run elasticity indicates that a 1% increase in the emissions of carbon dioxide (CO 2 ) equivalent to nitrous oxide from synthetic fertilizers will increase the emissions of CO 2 by 1.52% in the long run. Similarly, a 1% increase in the area of harvested rice paddy, cereal production, biomass of burned crop residues, and agricultural GDP will increase the carbon dioxide emissions by 0.85, 0.63, 0.37, and 0.22%, respectively. The estimated results indicate that there are long-term equilibrium relationships among the selected variables considered for the agricultural ecosystem and carbon dioxide emissions. In particular, we identified bidirectional causal associations between CO 2 emissions, biomass of burned crop residues, and cereal production. Graphical abstract ᅟ.

  2. Fingerprinting aliphatic hydrocarbon pollutants over agricultural lands surrounding Tehran oil refinery.

    PubMed

    Bayat, Javad; Hashemi, Seyed Hossein; Khoshbakht, Korros; Deihimfard, Reza

    2016-11-01

    The analysis of aliphatic hydrocarbons, which are composed of n-alkanes as well as branched and cyclic alkanes, can be used to distinguish between the sources of hydrocarbon contamination. In this study, the concentration of aliphatic hydrocarbons, soil pH, and organic matter in agricultural soils located south of Tehran were monitored. Eighty-three soil samples were taken from two depth ranges of 0-30 and 30-60 cm. The results showed that aliphatic compounds ranged from 0.22-68.11 mg kg -1 at the top to 0.33-53.18 mg kg -1 at subsoil. The amount of hydrocarbons increases from the northern parts toward the south, and hydrocarbon pollutants originated from both petroleum and non-petroleum sources. Higher concentrations of aliphatic compounds in the southern parts indicated that, aside from the practice of irrigating with untreated wastewater, leakage from oil refinery storage tanks possibly contributed to soil pollution. The results also showed that several sources have polluted the agricultural soils. It is necessary to develop a new local pollution criterion as a diagnostic index that includes not only hydrocarbons but also other parameters such as heavy metal content in both soil and untreated wastewater, surface runoff, and other irrigation water resources to determine the exact origin of pollution.

  3. Pollution Swapping in Agricultural Systems: deciding between mitigation measures with conflicting outcomes

    NASA Astrophysics Data System (ADS)

    Quinton, John; Stevens, Carly

    2010-05-01

    Pollution swapping occurs when a mitigation option introduced to reduce one pollutant results in an increase in a different pollutant. Although the concept of pollution swapping is widely understood it has received little attention in research and policy design. This study investigated diffuse pollution mitigation options applied in combinable crop systems. They are: cover crops, residue management, no-tillage, riparian buffer zones, contour grass strips and constructed wetlands. A wide range of water and atmospheric pollutants were considered, including nitrogen, phosphorus, carbon and sulphur. It is clear from this investigation that there is no single mitigation option that will reduce all pollutants and in this poster we consider how choices may be made between mitigation measures which may have a positive effect on one pollutant but a negative effect on another.

  4. Severe situation of rural nonpoint source pollution and efficient utilization of agricultural wastes in the Three Gorges Reservoir Area.

    PubMed

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2015-11-01

    Rural nonpoint source (NPS) pollution caused by agricultural wastes has become increasingly serious in the Three Gorges Reservoir Area (TGRA), significantly affecting the reservoir water quality. The grim situation of rural NPS pollution in the TGRA indicated that agrochemicals (chemical fertilizer and pesticide) were currently the highest contributor of rural NPS pollution (50.38%). The harmless disposal rates of livestock excrement, crop straws, rural domestic refuse, and sewage also cause severe water pollution. More importantly, the backward agricultural economy and the poor environmental awareness of farmers in the hinterland of the TGRA contribute to high levels of rural NPS pollution. Over the past decade, researchers and the local people have carried out various successful studies and practices to realize the effective control of rural NPS pollution by efficiently utilizing agricultural wastes in the TGRA, including agricultural waste biogas-oriented utilization, crop straw gasification, decentralized land treatment of livestock excrement technology, and crop straw modification. These technologies have greatly increased the renewable resource utilization of agricultural wastes and improved water quality and ecological environment in the TGRA.

  5. Agriculture is a major source of NO x pollution in California.

    PubMed

    Almaraz, Maya; Bai, Edith; Wang, Chao; Trousdell, Justin; Conley, Stephen; Faloona, Ian; Houlton, Benjamin Z

    2018-01-01

    Nitrogen oxides (NO x = NO + NO 2 ) are a primary component of air pollution-a leading cause of premature death in humans and biodiversity declines worldwide. Although regulatory policies in California have successfully limited transportation sources of NO x pollution, several of the United States' worst-air quality districts remain in rural regions of the state. Site-based findings suggest that NO x emissions from California's agricultural soils could contribute to air quality issues; however, a statewide estimate is hitherto lacking. We show that agricultural soils are a dominant source of NO x pollution in California, with especially high soil NO x emissions from the state's Central Valley region. We base our conclusion on two independent approaches: (i) a bottom-up spatial model of soil NO x emissions and (ii) top-down airborne observations of atmospheric NO x concentrations over the San Joaquin Valley. These approaches point to a large, overlooked NO x source from cropland soil, which is estimated to increase the NO x budget by 20 to 51%. These estimates are consistent with previous studies of point-scale measurements of NO x emissions from the soil. Our results highlight opportunities to limit NO x emissions from agriculture by investing in management practices that will bring co-benefits to the economy, ecosystems, and human health in rural areas of California.

  6. The Treatment Train approach to reducing non-point source pollution from agriculture

    NASA Astrophysics Data System (ADS)

    Barber, N.; Reaney, S. M.; Barker, P. A.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Snell, M. A.; Surridge, B.; Quinn, P. F.

    2016-12-01

    An experimental approach has been applied to an agricultural catchment in NW England, where non-point pollution adversely affects freshwater ecology. The aim of the work (as part of the River Eden Demonstration Test Catchment project) is to develop techniques to manage agricultural runoff whilst maintaining food production. The approach used is the Treatment Train (TT), which applies multiple connected mitigation options that control nutrient and fine sediment pollution at source, and address polluted runoff pathways at increasing spatial scale. The principal agricultural practices in the study sub-catchment (1.5 km2) are dairy and stock production. Farm yards can act as significant pollution sources by housing large numbers of animals; these areas are addressed initially with infrastructure improvements e.g. clean/dirty water separation and upgraded waste storage. In-stream high resolution monitoring of hydrology and water quality parameters showed high-discharge events to account for the majority of pollutant exports ( 80% total phosphorus; 95% fine sediment), and primary transfer routes to be surface and shallow sub-surface flow pathways, including drains. To manage these pathways and reduce hydrological connectivity, a series of mitigation features were constructed to intercept and temporarily store runoff. Farm tracks, field drains, first order ditches and overland flow pathways were all targeted. The efficacy of the mitigation features has been monitored at event and annual scale, using inflow-outflow sampling and sediment/nutrient accumulation measurements, respectively. Data presented here show varied but positive results in terms of reducing acute and chronic sediment and nutrient losses. An aerial fly-through of the catchment is used to demonstrate how the TT has been applied to a fully-functioning agricultural landscape. The elevated perspective provides a better understanding of the spatial arrangement of mitigation features, and how they can be

  7. Evaluating agricultural nonpoint-source pollution using integrated geographic information systems and hydrologic/water quality model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim, U.S.; Jolly, R.

    1994-01-01

    Considerable progress has been made in developing physically based, distributed parameter, hydrologic/water quality (HIWQ) models for planning and control of nonpoint-source pollution. The widespread use of these models is often constrained by the excessive and time-consuming input data demands and the lack of computing efficiencies necessary for iterative simulation of alternative management strategies. Recent developments in geographic information systems (GIS) provide techniques for handling large amounts of spatial data for modeling nonpoint-source pollution problems. Because a GIS can be used to combine information from several sources to form an array of model input data and to examine any combinations ofmore » spatial input/output data, it represents a highly effective tool for HiWQ modeling. This paper describes the integration of a distributed-parameter model (AGNPS) with a GIS (ARC/INFO) to examine nonpoint sources of pollution in an agricultural watershed. The ARC/INFO GIS provided the tools to generate and spatially organize the disparate data to support modeling, while the AGNPS model was used to predict several water quality variables including soil erosion and sedimentation within a watershed. The integrated system was used to evaluate the effectiveness of several alternative management strategies in reducing sediment pollution in a 417-ha watershed located in southern Iowa. The implementation of vegetative filter strips and contour buffer (grass) strips resulted in a 41 and 47% reduction in sediment yield at the watershed outlet, respectively. In addition, when the integrated system was used, the combination of the above management strategies resulted in a 71% reduction in sediment yield. In general, the study demonstrated the utility of integrating a simulation model with GIS for nonpoini-source pollution control and planning. Such techniques can help characterize the diffuse sources of pollution at the landscape level. 52 refs., 6 figs., 1 tab.« less

  8. Risk-based prioritization method for the classification of groundwater pesticide pollution from agricultural regions.

    PubMed

    Yang, Yu; Lian, Xin-Ying; Jiang, Yong-Hai; Xi, Bei-Dou; He, Xiao-Song

    2017-11-01

    Agricultural regions are a significant source of groundwater pesticide pollution. To ensure that agricultural regions with a significantly high risk of groundwater pesticide contamination are properly managed, a risk-based ranking method related to groundwater pesticide contamination is needed. In the present paper, a risk-based prioritization method for the classification of groundwater pesticide pollution from agricultural regions was established. The method encompasses 3 phases, including indicator selection, characterization, and classification. In the risk ranking index system employed here, 17 indicators involving the physicochemical properties, environmental behavior characteristics, pesticide application methods, and inherent vulnerability of groundwater in the agricultural region were selected. The boundary of each indicator was determined using K-means cluster analysis based on a survey of a typical agricultural region and the physical and chemical properties of 300 typical pesticides. The total risk characterization was calculated by multiplying the risk value of each indicator, which could effectively avoid the subjectivity of index weight calculation and identify the main factors associated with the risk. The results indicated that the risk for groundwater pesticide contamination from agriculture in a region could be ranked into 4 classes from low to high risk. This method was applied to an agricultural region in Jiangsu Province, China, and it showed that this region had a relatively high risk for groundwater contamination from pesticides, and that the pesticide application method was the primary factor contributing to the relatively high risk. The risk ranking method was determined to be feasible, valid, and able to provide reference data related to the risk management of groundwater pesticide pollution from agricultural regions. Integr Environ Assess Manag 2017;13:1052-1059. © 2017 SETAC. © 2017 SETAC.

  9. Does agricultural ecosystem cause environmental pollution in Pakistan? Promise and menace.

    PubMed

    Ullah, Arif; Khan, Dilawar; Khan, Imran; Zheng, Shaofeng

    2018-05-01

    The increasing trend of atmospheric carbon dioxide (CO 2 ) is the main cause of harmful anthropogenic greenhouse gas emissions, which may result in environmental pollution, global warming, and climate change. These issues are expected to adversely affect the agricultural ecosystem and well-being of the society. In order to minimize food insecurity and prevent hunger, a timely adaptation is desirable to reduce potential losses and to seek alternatives for promoting a global knowledge system for agricultural sustainability. This paper examines the causal relationship between agricultural ecosystem and CO 2 emissions as an environmental pollution indicator in Pakistan from the period 1972 to 2014 by employing Johansen cointegration, autoregressive distributed lag (ARDL) model, and Granger causality approach. The Johansen cointegration results show that there is a significant long-run relationship between the agricultural ecosystem and the CO 2 emissions. The long-run relationship shows that a 1% increase in biomass burned crop residues, emissions of CO 2 equivalent of nitrous oxide (N 2 O) from synthetic fertilizers, stock of livestock, agricultural machinery, cereal production, and other crop productions will increase CO 2 emissions by 1.29, 0.05, 0.45, 0.05, 0.03, and 0.65%, respectively. Further, our finding detects that there is a bidirectional causality of CO 2 emissions with rice area paddy harvested, cereal production, and other crop productions. The impulse response function analysis displays that biomass-burned crop residues, stock of livestock, agriculture machinery, cereal production, and other crop productions are significantly contributing to CO 2 emissions in Pakistan.

  10. Agriculture is a major source of NOx pollution in California

    PubMed Central

    Almaraz, Maya; Bai, Edith; Wang, Chao; Trousdell, Justin; Conley, Stephen; Faloona, Ian; Houlton, Benjamin Z.

    2018-01-01

    Nitrogen oxides (NOx = NO + NO2) are a primary component of air pollution—a leading cause of premature death in humans and biodiversity declines worldwide. Although regulatory policies in California have successfully limited transportation sources of NOx pollution, several of the United States’ worst–air quality districts remain in rural regions of the state. Site-based findings suggest that NOx emissions from California’s agricultural soils could contribute to air quality issues; however, a statewide estimate is hitherto lacking. We show that agricultural soils are a dominant source of NOx pollution in California, with especially high soil NOx emissions from the state’s Central Valley region. We base our conclusion on two independent approaches: (i) a bottom-up spatial model of soil NOx emissions and (ii) top-down airborne observations of atmospheric NOx concentrations over the San Joaquin Valley. These approaches point to a large, overlooked NOx source from cropland soil, which is estimated to increase the NOx budget by 20 to 51%. These estimates are consistent with previous studies of point-scale measurements of NOx emissions from the soil. Our results highlight opportunities to limit NOx emissions from agriculture by investing in management practices that will bring co-benefits to the economy, ecosystems, and human health in rural areas of California. PMID:29399630

  11. Estimating health and economic benefits of reductions in air pollution from agriculture.

    PubMed

    Giannadaki, Despina; Giannakis, Elias; Pozzer, Andrea; Lelieveld, Jos

    2018-05-01

    Agricultural ammonia emissions strongly contribute to fine particulate air pollution (PM 2.5 ) with significant impacts on human health, contributing to mortality. We used model calculated emission scenarios to examine the health and economic benefits accrued by reducing agricultural emissions. We applied the "value of statistical life" metric to monetize the associated health outcomes. Our analysis indicates that a 50% reduction in agricultural emissions could prevent >200 thousand deaths per year in the 59 countries included in our study, notably in Europe, Russia, Turkey, the US, Canada and China, accompanied with economic benefits of many billions US$. In the European Union (EU) mortality could be reduced by 18% with an annual economic benefit of 89 billion US$. A theoretical complete phase-out of agricultural emissions could lead to a reduction in PM 2.5 related mortality of >50% plus associated economic costs in 42 out of the 59 countries studied. Within the EU, 140 thousand deaths could be prevented per year with an associated economic benefit of about 407billionUS$/year. A cost-benefit assessment of ammonia emission abatement options for the EU indicates that the reduction of agricultural emissions generates net financial and social benefits. The monetization of the health benefits of air pollution abatement policies and the costs of implementation can help devise cost-effective air quality management strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Metal pollution (Cd, Pb, Zn, and As) in agricultural soils and soybean, Glycine max, in southern China.

    PubMed

    Zhao, Yunyun; Fang, Xiaolong; Mu, Yinghui; Cheng, Yanbo; Ma, Qibin; Nian, Hai; Yang, Cunyi

    2014-04-01

    Crops produced on metal-polluted agricultural soils may lead to chronic toxicity to humans via the food chain. To assess metal pollution in agricultural soils and soybean in southern China, 30 soybean grain samples and 17 soybean-field soil samples were collected from 17 sites in southern China, and metal concentrations of samples were analyzed by graphite furnace atomic absorption spectrophotometer. The integrated pollution index was used to evaluate if the samples were contaminated by Cd, Pb, Zn and As. Results showed that Cd concentration of 12 samples, Pb concentration of 2 samples, Zn concentration of 2 samples, and As concentrations of 2 samples were above the maximum permissible levels in soils. The integrated pollution index indicated that 11 of 17 soil samples were polluted by metals. Metal concentrations in soybean grain samples ranged from 0.11 to 0.91 mg kg(-1) for Cd; 0.34 to 2.83 mg kg(-1) for Pb; 42 to 88 mg kg(-1) for Zn; and 0.26 to 5.07 mg kg(-1) for As, which means all 30 soybean grain samples were polluted by Pb, Pb/Cd, Cd/Pb/As or Pb/As. Taken together, our study provides evidence that metal pollution is an important concern in agricultural soils and soybeans in southern China.

  13. Adaptive hierarchical grid model of water-borne pollutant dispersion

    NASA Astrophysics Data System (ADS)

    Borthwick, A. G. L.; Marchant, R. D.; Copeland, G. J. M.

    Water pollution by industrial and agricultural waste is an increasingly major public health issue. It is therefore important for water engineers and managers to be able to predict accurately the local behaviour of water-borne pollutants. This paper describes the novel and efficient coupling of dynamically adaptive hierarchical grids with standard solvers of the advection-diffusion equation. Adaptive quadtree grids are able to focus on regions of interest such as pollutant fronts, while retaining economy in the total number of grid elements through selective grid refinement. Advection is treated using Lagrangian particle tracking. Diffusion is solved separately using two grid-based methods; one is by explicit finite differences, the other a diffusion-velocity approach. Results are given in two dimensions for pure diffusion of an initially Gaussian plume, advection-diffusion of the Gaussian plume in the rotating flow field of a forced vortex, and the transport of species in a rectangular channel with side wall boundary layers. Close agreement is achieved with analytical solutions of the advection-diffusion equation and simulations from a Lagrangian random walk model. An application to Sepetiba Bay, Brazil is included to demonstrate the method with complex flows and topography.

  14. Identify source location and release time for pollutants undergoing super-diffusion and decay: Parameter analysis and model evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Sun, HongGuang; Lu, Bingqing; Garrard, Rhiannon; Neupauer, Roseanna M.

    2017-09-01

    Backward models have been applied for four decades by hydrologists to identify the source of pollutants undergoing Fickian diffusion, while analytical tools are not available for source identification of super-diffusive pollutants undergoing decay. This technical note evaluates analytical solutions for the source location and release time of a decaying contaminant undergoing super-diffusion using backward probability density functions (PDFs), where the forward model is the space fractional advection-dispersion equation with decay. Revisit of the well-known MADE-2 tracer test using parameter analysis shows that the peak backward location PDF can predict the tritium source location, while the peak backward travel time PDF underestimates the tracer release time due to the early arrival of tracer particles at the detection well in the maximally skewed, super-diffusive transport. In addition, the first-order decay adds additional skewness toward earlier arrival times in backward travel time PDFs, resulting in a younger release time, although this impact is minimized at the MADE-2 site due to tritium's half-life being relatively longer than the monitoring period. The main conclusion is that, while non-trivial backward techniques are required to identify pollutant source location, the pollutant release time can and should be directly estimated given the speed of the peak resident concentration for super-diffusive pollutants with or without decay.

  15. Impact of nitrogen reduction measures on nitrogen surplus, income and production of German agriculture.

    PubMed

    Gömann, H; Kreins, P; Møller, C

    2004-01-01

    Among the numerous non-point sources of diffuse water pollution with nitrogen, agriculture is counted one of the main sources. The agricultural policies of the Agenda 2000 and a decoupling of direct payments for farmers from their production decisions are exemplarily evaluated as nitrogen reduction measures using the Regional Agricultural and Environmental Information System RAUMIS. The results show that until the target year 2010 the risk of diffuse pollution of water bodies with nitrogen is a regional problem in Germany. These problems are neither mitigated by the policies of Agenda 2000 nor by a decoupling of direct payments from production decisions of farmers. While total nitrogen surplus reduces considerably after a decoupling of direct payments due to decreases of land-use the nitrogen surplus on the remaining cultivated area increases resulting from structural changes. Granting the same amount of direct payments to farmers in both policy alternatives the agricultural sector income would be higher after a decoupling of direct payments opposed to the Agenda 2000 resulting from a more efficient allocation of inputs.

  16. Setting priorities for research on pollution reduction functions of agricultural buffers

    Treesearch

    Michael G. Dosskey

    2002-01-01

    The success of buffer installation initiatives and programs to reduce nonpoint source pollution of streams on agricultural lands will depend the ability of local planners to locate and design buffers for specific circumstances with substantial and predictable results. Current predictive capabilities are inadequate, and major sources of uncertainty remain. An...

  17. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale.

    PubMed

    Wang, Qi; Xie, Zhiyi; Li, Fangbai

    2015-11-01

    This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. [Spatial heterogeneity and classified control of agricultural non-point source pollution in Huaihe River Basin].

    PubMed

    Zhou, Liang; Xu, Jian-Gang; Sun, Dong-Qi; Ni, Tian-Hua

    2013-02-01

    Agricultural non-point source pollution is of importance in river deterioration. Thus identifying and concentrated controlling the key source-areas are the most effective approaches for non-point source pollution control. This study adopts inventory method to analysis four kinds of pollution sources and their emissions intensity of the chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in 173 counties (cities, districts) in Huaihe River Basin. The four pollution sources include livestock breeding, rural life, farmland cultivation, aquacultures. The paper mainly addresses identification of non-point polluted sensitivity areas, key pollution sources and its spatial distribution characteristics through cluster, sensitivity evaluation and spatial analysis. A geographic information system (GIS) and SPSS were used to carry out this study. The results show that: the COD, TN and TP emissions of agricultural non-point sources were 206.74 x 10(4) t, 66.49 x 10(4) t, 8.74 x 10(4) t separately in Huaihe River Basin in 2009; the emission intensity were 7.69, 2.47, 0.32 t.hm-2; the proportions of COD, TN, TP emissions were 73%, 24%, 3%. The paper achieves that: the major pollution source of COD, TN and TP was livestock breeding and rural life; the sensitivity areas and priority pollution control areas among the river basin of non-point source pollution are some sub-basins of the upper branches in Huaihe River, such as Shahe River, Yinghe River, Beiru River, Jialu River and Qingyi River; livestock breeding is the key pollution source in the priority pollution control areas. Finally, the paper concludes that pollution type of rural life has the highest pollution contribution rate, while comprehensive pollution is one type which is hard to control.

  19. Dutch approach to abating agricultural non-point pollution: farmers' behaviour and their motivation.

    PubMed

    Sloots, K; Spierenburg, P; van der Vlies, A W

    2004-01-01

    In The Netherlands, agricultural activities are one of the major diffuse sources of nutrients and crop protection chemicals. A national legal and regulatory framework has been developed to combat the environmental burden from the agricultural industry. This resulted in the implementation of a government decree (AMvB) in the year 2000. Under pressure from NGOs, the Hollandse Eilanden en Waarden Water Board worked on a regional regulation in advance of this national legislation. ZHEW followed an approach of research, communication and partnering prior to implementing the national decree. The most important result of the chosen approach is that compliance with one of the most important measures, the crop-free zone, is close to 100%. There has been little improvement in the amount of pesticides in the open waters. Both water board and farmers are positive about the approach followed. Monitoring and evaluation proved to be essential when communicating with the agricultural sector. The results of attempts to influence behaviour must be recorded in order maintain the motivation to change behaviour. Information on the effects of the approach adopted to combating diffuse agricultural sources is gathered from a number of sources.

  20. Optimization of typical diffuse herbicide pollution control by soil amendment configurations under four levels of rainfall intensities.

    PubMed

    Ouyang, Wei; Huang, Weijia; Wei, Peng; Hao, Fanghua; Yu, Yongyong

    2016-06-15

    Herbicides are a main source of agricultural diffuse pollution due to their wide application in tillage practices. The aim of this study is to optimize the control efficiency of the herbicide atrazine with the aid of modified soil amendments. The soil amendments were composed of a combination of biochar and gravel. The biochar was created from corn straw with a catalytic pyrolysis of ammonium dihydrogen phosphate. The leaching experiments under four rainfall conditions were measured for the following designs: raw soil, soil amended with gravel, biochar individually and together with gravel. The control efficiency of each design was also identified. With the designed equipment, the atrazine content in the contaminant load layer, gravel substrate layer, biochar amendment layer and soil layer was measured under four types of rainfall intensities (1.25 mm/h, 2.50 mm/h, 5.00 mm/h and 10.00 mm/h). Furthermore, the vertical distribution of atrazine in the soil sections was also monitored. The results showed that the herbicide leaching load increased under the highest rainfall intensity in all designs. The soil with the combination of gravel and biochar provided the highest control efficiency of 87.85% on atrazine when the additional proportion of biochar was 3.0%. The performance assessment under the four kinds of rainfall intensity conditions provided the guideline for the soil amendment configuration. The combination of gravel and biochar is recommended as an efficient method for controlling diffuse herbicide pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Calculation method for steady-state pollutant concentration in mixing zones considering variable lateral diffusion coefficient.

    PubMed

    Wu, Wen; Wu, Zhouhu; Song, Zhiwen

    2017-07-01

    Prediction of the pollutant mixing zone (PMZ) near the discharge outfall in Huangshaxi shows large error when using the methods based on the constant lateral diffusion assumption. The discrepancy is due to the lack of consideration of the diffusion coefficient variation. The variable lateral diffusion coefficient is proposed to be a function of the longitudinal distance from the outfall. Analytical solution of the two-dimensional advection-diffusion equation of a pollutant is derived and discussed. Formulas to characterize the geometry of the PMZ are derived based on this solution, and a standard curve describing the boundary of the PMZ is obtained by proper choices of the normalization scales. The change of PMZ topology due to the variable diffusion coefficient is then discussed using these formulas. The criterion of assuming the lateral diffusion coefficient to be constant without large error in PMZ geometry is found. It is also demonstrated how to use these analytical formulas in the inverse problems including estimating the lateral diffusion coefficient in rivers by convenient measurements, and determining the maximum allowable discharge load based on the limitations of the geometrical scales of the PMZ. Finally, applications of the obtained formulas to onsite PMZ measurements in Huangshaxi present excellent agreement.

  2. The Role of Different Agricultural Plant Species in Air Pollution

    NASA Astrophysics Data System (ADS)

    Fiala, P.; Miller, D.; Shivers, S.; Pusede, S.; Roberts, D. A.

    2017-12-01

    The goal of this research project is to use remote sensing data to study the relationship between different plant species and the pollutants in the air. It is known that chemical reactions within plants serve as both sources and sinks for different types of Volatile Organic Compounds. However, the species-specific relationships have not been well studied. Through the better characterization of this relationship, certain aspects of air pollution may be more effectively managed. For this project, I used Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and trace gas measurements from instruments on board the NASA DC-8 to assess the relationship between different plant species and the pollutants in the air. I used measurements primarily from the agricultural land surrounding Bakersfield, CA. I created a map of the crop species in this area using Multiple Endmember Spectral Mixture Analysis (MESMA) on the AVIRIS imagery, and matched this to trace gas measurements taken on the DC-8. I used a Hysplit matrix trajectory to account for the air transport over the vegetation and up to contact with the plane. Finally, I identified correlations between the plant types and the concentration of the pollutants. The results showed that there were significant relationships between specific species and pollutants, with lemons and grapes contributing to enhanced pollution, and tree nuts reducing pollution. Specifically, almonds produced significantly lower levels of O3 , NO, and NO2. Lemons and grapes had high O3 levels, and lemons had high levels of isoprene. In total, these data show that it may be possible to mitigate airborne pollution via selective planting; however, the overall environmental effects are much more complicated and must be analyzed further.

  3. Combining land use information and small stream sampling with PCR-based methods for better characterization of diffuse sources of human fecal pollution.

    PubMed

    Peed, Lindsay A; Nietch, Christopher T; Kelty, Catherine A; Meckes, Mark; Mooney, Thomas; Sivaganesan, Mano; Shanks, Orin C

    2011-07-01

    Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between human and other animal sources of fecal pollution making it difficult to identify diffuse pollution sources. Human-associated quantitative real-time PCR (qPCR) methods in combination with low-order headwatershed sampling, precipitation information, and high-resolution geographic information system land use data can be useful for identifying diffuse source of human fecal pollution in receiving waters. To test this assertion, this study monitored nine headwatersheds over a two-year period potentially impacted by faulty septic systems and leaky sanitary sewer lines. Human fecal pollution was measured using three different human-associated qPCR methods and a positive significant correlation was seen between abundance of human-associated genetic markers and septic systems following wet weather events. In contrast, a negative correlation was observed with sanitary sewer line densities suggesting septic systems are the predominant diffuse source of human fecal pollution in the study area. These results demonstrate the advantages of combining water sampling, climate information, land-use computer-based modeling, and molecular biology disciplines to better characterize diffuse sources of human fecal pollution in environmental waters.

  4. Catchment Models and Management Tools for diffuse Contaminants (Sediment, Phosphorus and Pesticides): DIFFUSE Project

    NASA Astrophysics Data System (ADS)

    Mockler, Eva; Reaney, Simeon; Mellander, Per-Erik; Wade, Andrew; Collins, Adrian; Arheimer, Berit; Bruen, Michael

    2017-04-01

    The agricultural sector is the most common suspected source of nutrient pollution in Irish rivers. However, it is also often the most difficult source to characterise due to its predominantly diffuse nature. Particulate phosphorus in surface water and dissolved phosphorus in groundwater are of particular concern in Irish water bodies. Hence the further development of models and indices to assess diffuse sources of contaminants are required for use by the Irish Environmental Protection Agency (EPA) to provide support for river basin planning. Understanding connectivity in the landscape is a vital component of characterising the source-pathway-receptor relationships for water-borne contaminants, and hence is a priority in this research. The DIFFUSE Project will focus on connectivity modelling and incorporation of connectivity into sediment, nutrient and pesticide risk mapping. The Irish approach to understanding and managing natural water bodies has developed substantially in recent years assisted by outputs from multiple research projects, including modelling and analysis tools developed during the Pathways and CatchmentTools projects. These include the Pollution Impact Potential (PIP) maps, which are an example of research output that is used by the EPA to support catchment management. The PIP maps integrate an understanding of the pollution pressures and mobilisation pathways and, using the source-pathways-receptor model, provide a scientific basis for evaluation of mitigation measures. These maps indicate the potential risk posed by nitrate and phosphate from diffuse agricultural sources to surface and groundwater receptors and delineate critical source areas (CSAs) as a means of facilitating the targeting of mitigation measures. Building on this previous research, the DIFFUSE Project will develop revised and new catchment managements tools focused on connectivity, sediment, phosphorus and pesticides. The DIFFUSE project will strive to identify the state

  5. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia.

    PubMed

    Marrugo-Negrete, José; Pinedo-Hernández, José; Díez, Sergi

    2017-04-01

    The presence of metals in agricultural soils from anthropogenic activities such as mining and agricultural use of metals and metal-containing compounds is a potential threat for human health through the food chain. In this study, the concentration of heavy metals in 83 agricultural soils irrigated by the Sinú River, in northern Colombia, affected by mining areas upstream and inundated during seasonal floods events were determined to evaluate their sources and levels of pollution. The average concentrations of Cu, Ni, Pb, Cd, Hg and Zn were 1149, 661, 0.071, 0.040, 0.159 and 1365mg/kg respectively and exceeded the world normal averages, with the exception of Pb and Cd. Moreover, all values surpassed the background levels of soils in the same region. Soil pollution assessment was carried out using contamination factor (CF), enrichment factor (EF), geoaccumulation index (Igeo) and a risk assessment code (RAC). According to these indexes, the soils show a high degree of pollution of Ni and a moderate to high contamination of Zn and Cu; whereas, Pb, Cd and Hg present moderate pollution. However, based on the RAC index, a low environmental risk is found for all the analysed heavy metals. Multivariate statistical analyses, principal component and cluster analyses, suggest that soil contamination was mainly derived from agricultural practices, except for Hg, which was caused probably by atmospheric and river flow transport from upstream gold mining. Finally, high concentrations of Ni indicate a mixed pollution source from agricultural and ferronickel mining activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. New technological methods for protecting underground waters from agricultural pollution

    NASA Astrophysics Data System (ADS)

    Mavlyanov, Gani

    2015-04-01

    The agricultural production on the irrigated grounds can not carry on without mineral fertilizers, pesticides and herbicides. Especially it is shown in Uzbekistan, in cultivation of cotton. There is an increase in mineralization, rigidity, quantity of heavy metals, phenols and other pollutions in the cotton fields. Thus there is an exhaustion of stocks of fresh underground waters. In the year 2003 we were offered to create the ecological board to prevent pollution to get up to a level of subsoil waters in the top 30 centimeter layer of the ground. We carried out an accumulation and pollution processing. This layer possesses a high adsorbing ability for heavy metals, mineral oil, mineral fertilizers remnants, defoliants and pesticides. In order to remediate a biological pollution treatment processing should be take into account. The idea is consisted in the following. The adsorption properties of coal is all well-known that the Angren coal washing factories in Tashkent area have collected more than 10 million tons of the coal dust to mix with clays. We have picked up association of anaerobic microorganisms which, using for development, destroys nutrients of coal waste pollutions to a harmless content for people. Coal waste inoculation also are scattered by these microorganisms on the field before plowing. Deep (up to 30 cm) plowing brings them on depth from 5 up to 30 cm. Is created by a plough a layer with necessary protective properties. The norm of entering depends on the structure of ground and the intensity of pollutions. Laboratory experiments have shown that 50% of pollutions can be treated by the ecological board and are processed up to safe limit.

  7. A geographic information system screening tool to tackle diffuse pollution through the use of sustainable drainage systems.

    PubMed

    Todorovic, Zorica; Breton, Neil P

    2014-01-01

    Sustainable drainage systems (SUDS) offer many benefits that traditional solutions do not. Traditional approaches are unable to offer a solution to problems of flood management and water quality. Holistic consideration of the wide range of benefits from SUDS can result in advantages such as improved flood resilience and water quality enhancement through consideration of diffuse pollution sources. Using a geographical information system (GIS) approach, diffuse pollutant sources and opportunities for SUDS are easily identified. Consideration of potential SUDS locations results in source, site and regional controls, leading to improved water quality (to meet Water Framework Directive targets). The paper will discuss two different applications of the tool, the first of which is where the pollutant of interest is known. In this case the outputs of the tool highlight and isolate the areas contributing the pollutants and suggest the adequate SUDS measures to meet the required criteria. The second application is where the tool identifies likely pollutants at a receiving location, and SUDS measures are proposed to reduce pollution with assessed efficiencies.

  8. User's Guide for the Agricultural Non-Point Source (AGNPS) Pollution Model Data Generator

    USGS Publications Warehouse

    Finn, Michael P.; Scheidt, Douglas J.; Jaromack, Gregory M.

    2003-01-01

    BACKGROUND Throughout this user guide, we refer to datasets that we used in conjunction with developing of this software for supporting cartographic research and producing the datasets to conduct research. However, this software can be used with these datasets or with more 'generic' versions of data of the appropriate type. For example, throughout the guide, we refer to national land cover data (NLCD) and digital elevation model (DEM) data from the U.S. Geological Survey (USGS) at a 30-m resolution, but any digital terrain model or land cover data at any appropriate resolution will produce results. Another key point to keep in mind is to use a consistent data resolution for all the datasets per model run. The U.S. Department of Agriculture (USDA) developed the Agricultural Nonpoint Source (AGNPS) pollution model of watershed hydrology in response to the complex problem of managing nonpoint sources of pollution. AGNPS simulates the behavior of runoff, sediment, and nutrient transport from watersheds that have agriculture as their prime use. The model operates on a cell basis and is a distributed parameter, event-based model. The model requires 22 input parameters. Output parameters are grouped primarily by hydrology, sediment, and chemical output (Young and others, 1995.) Elevation, land cover, and soil are the base data from which to extract the 22 input parameters required by the AGNPS. For automatic parameter extraction, follow the general process described in this guide of extraction from the geospatial data through the AGNPS Data Generator to generate input parameters required by the pollution model (Finn and others, 2002.)

  9. An enhanced export coefficient based optimization model for supporting agricultural nonpoint source pollution mitigation under uncertainty.

    PubMed

    Rong, Qiangqiang; Cai, Yanpeng; Chen, Bing; Yue, Wencong; Yin, Xin'an; Tan, Qian

    2017-02-15

    In this research, an export coefficient based dual inexact two-stage stochastic credibility constrained programming (ECDITSCCP) model was developed through integrating an improved export coefficient model (ECM), interval linear programming (ILP), fuzzy credibility constrained programming (FCCP) and a fuzzy expected value equation within a general two stage programming (TSP) framework. The proposed ECDITSCCP model can effectively address multiple uncertainties expressed as random variables, fuzzy numbers, pure and dual intervals. Also, the model can provide a direct linkage between pre-regulated management policies and the associated economic implications. Moreover, the solutions under multiple credibility levels can be obtained for providing potential decision alternatives for decision makers. The proposed model was then applied to identify optimal land use structures for agricultural NPS pollution mitigation in a representative upstream subcatchment of the Miyun Reservoir watershed in north China. Optimal solutions of the model were successfully obtained, indicating desired land use patterns and nutrient discharge schemes to get a maximum agricultural system benefits under a limited discharge permit. Also, numerous results under multiple credibility levels could provide policy makers with several options, which could help get an appropriate balance between system benefits and pollution mitigation. The developed ECDITSCCP model can be effectively applied to addressing the uncertain information in agricultural systems and shows great applicability to the land use adjustment for agricultural NPS pollution mitigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Typical agricultural diffuse herbicide sorption with agricultural waste-derived biochars amended soil of high organic matter content.

    PubMed

    Ouyang, Wei; Zhao, Xuchen; Tysklind, Mats; Hao, Fanghua

    2016-04-01

    Biochar application has been identified as the effective soil amendment and the materials to control the diffuse herbicide pollution. The atrazine was selected as the typical diffuse herbicide pollutant as the dominant proportion in applications. The biochar treated from four types of crops biomass were added to soil with high organic matter content. The basic sorption characteristics of biocahrs from corn cob (CC), corn stalk (CS), soybean straw (SS), rice straw (RS) and corn stalk paralyzed with 5% of ammonium dihydrogen phosphate (ACS) were analyzed, along with the comparison of the sorption difference of the raw soil and soil amended with biochars at four levels of ratio (0.5%, 1.0%, 3.0% and 5.0%). It was found that the linear distribution isotherm of raw soil was much effective due to the high organic matter background concentration. The addition of five types of biochars under two kinds of initial atrazine concentration (1 mg/L and 20 mg/L) demonstrated the sorption variances. Results showed the soil amended with RS and CS biochar had the biggest removal rate in four regular biochars and the removal rate of the ACS was the biggest. The sorption coefficient and the normalized sorption coefficient from Freundlich modeling presented the isothermal sorption characteristics of atrazine with soil of high organic matter content. The normalized sorption coefficient increased with the equilibrium concentration decreased in the biochar amended soil, which indicated the sorption performance will be better due to the low atrazine concentration in practice. Results showed that biochar amendment is the effective way to prevent leakage of diffuse herbicide loss. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Monitoring and Analysis of Nonpoint Source Pollution - Case study on terraced paddy fields in an agricultural watershed

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Yeh, Chun-Lin

    2013-04-01

    The intensive use of chemical fertilizer has negatively impacted environments in recent decades, mainly through water pollution by nitrogen (N) and phosphate (P) originating from agricultural activities. As a main crop with the largest cultivation area about 0.25 million ha per year in Taiwan, rice paddies account for a significant share of fertilizer consumption among agriculture crops. This study evaluated the fertilization of paddy fields impacting return flow water quality in an agricultural watershed located at Hsinchu County, northern Taiwan. Water quality monitoring continued for two crop-periods in 2012, around subject to different water bodies, including the irrigation water, drainage water, and shallow groundwater. The results indicated that obviously increasing of ammonium-N, nitrate-N and TP concentrations in the surface drainage water were observed immediately following three times of fertilizer applications (including basal, tillering, and panicle fertilizer application), but reduced to relatively low concentrations after 7-10 days after each fertilizer application. Groundwater quality monitoring showed that the observation wells with the more shallow water depth, the more significant variation of concentrations of ammonium-N, nitrate-N and TP could be observed, which means that the contamination potential of nutrient of groundwater is related not only to the impermeable plow sole layer but also to the length of percolation route in this area. The study also showed that the potential pollution load of nutrient could be further reduced by well drainage water control and rational fertilizer management, such as deep-water irrigation, reuse of return flow, the rational application of fertilizers, and the SRI (The System of Rice Intensification) method. The results of this study can provide as an evaluation basis to formulate effective measures for agricultural non-point source pollution control and the reuse of agricultural return flow. Keywords

  12. The strategic significance of wastewater sources to pollutant phosphorus levels in English rivers and to environmental management for rural, agricultural and urban catchments.

    PubMed

    Neal, Colin; Jarvie, Helen P; Withers, Paul J A; Whitton, Brian A; Neal, Margaret

    2010-03-01

    The relationship between soluble and particulate phosphorus was examined for 9 major UK rivers including 26 major tributaries and 68 monitoring points, covering wide-ranging rural and agricultural/urban impacted systems with catchment areas varying from 1 to 6000km(2) scales. Phosphorus concentrations in Soluble Reactive (SRP), Total Dissolved (TDP), Total (TP), Dissolved Hydrolysable (DHP) and Particulate (PP) forms correlated with effluent markers (sodium and boron) and SRP was generally dominant signifying the importance of sewage sources. Low flows were particularly enriched in SRP, TDP and TP for average SRP>100microg/l indicating low effluent dilution. At particularly low average concentrations, SRP increased with flow but effluent sources were still implicated as the effluent markers (boron in particular) increased likewise. For rural areas, DHP had proportionately high concentrations and SRP+DHP concentrations could exceed environmental thresholds currently set for SRP. Given DHP has a high bioavailability the environmental implications need further consideration. PP concentrations were generally highest at high flows but PP in the suspended solids was generally at its lowest and in general PP correlated with particulate organic carbon and more so than the suspended sediment in total. Separation of pollutant inputs solely between effluent and diffuse (agriculture) components is misleading, as part of the "diffuse" term comprises effluents flushed from the catchments during high flow. Effluent sources of phosphorus supplied directly or indirectly to the river coupled with within-river interactions between water/sediment/biota largely determine pollutant levels. The study flags the fundamental need of placing direct and indirect effluent sources and contaminated storage with interchange to/from the river at the focus for remediation strategies for UK rivers in relation to eutrophication and the WFD.

  13. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    NASA Astrophysics Data System (ADS)

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same

  14. Biomonitoring of atmospheric pollution by moss bags: Discriminating urban-rural structure in a fragmented landscape.

    PubMed

    Capozzi, F; Giordano, S; Di Palma, A; Spagnuolo, V; De Nicola, F; Adamo, P

    2016-04-01

    In this paper we investigated the possibility to use moss bags to detect pollution inputs - metals, metalloids and polycyclic aromatic hydrocarbons (PAHs) - in sites chosen for their different land use (agricultural, urban/residential scenarios) and proximity to roads (sub-scenarios), in a fragmented conurbation of Campania (southern Italy). We focused on thirty-nine elements including rare earths. For most of them, moss uptake was higher in agricultural than in urban scenarios and in front road sites. Twenty PAHs were analyzed in a subset of agricultural sites; 4- and 5-ringed PAHs were the most abundant, particularly chrysene, fluoranthene and pyrene. Overall results indicated that investigated pollutants have a similar spatial distribution pattern over the entire study area, with road traffic and agricultural practices as the major diffuse pollution sources. Moss bags proved a very sensitive tool, able to discriminate between different land use scenarios and proximity to roads in a mixed rural-urban landscape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Modelling of point and diffuse pollution: application of the Moneris model in the Ipojuca river basin, Pernambuco State, Brazil.

    PubMed

    de Lima Barros, Alessandra Maciel; do Carmo Sobral, Maria; Gunkel, Günter

    2013-01-01

    Emissions of pollutants and nutrients are causing several problems in aquatic ecosystems, and in general an excess of nutrients, specifically nitrogen and phosphorus, is responsible for the eutrophication process in water bodies. In most developed countries, more attention is given to diffuse pollution because problems with point pollution have already been solved. In many non-developed countries basic data for point and diffuse pollution are not available. The focus of the presented studies is to quantify nutrient emissions from point and diffuse sources in the Ipojuca river basin, Pernambuco State, Brazil, using the Moneris model (Modelling Nutrient Emissions in River Systems). This model has been developed in Germany and has already been implemented in more than 600 river basins. The model is mainly based on river flow, water quality and geographical information system data. According to the Moneris model results, untreated domestic sewage is the major source of nutrients in the Ipojuca river basin. The Moneris model has shown itself to be a useful tool that allows the identification and quantification of point and diffuse nutrient sources, thus enabling the adoption of measures to reduce them. The Moneris model, conducted for the first time in a tropical river basin with intermittent flow, can be used as a reference for implementation in other watersheds.

  16. Distribution of selected carcinogenic hydrocarbon and heavy metals in an oil-polluted agriculture zone.

    PubMed

    Nwaichi, E O; Wegwu, M O; Nwosu, U L

    2014-12-01

    Owing to the importance of clean and fertile agricultural soil for the continued existence of man, this study investigated the concentrations of total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs) and some heavy metals in soils and selected commonly consumed vegetables and tubers from oil-polluted active agricultural farmland in Gokana of Ogoniland, Rivers State, Nigeria. Samples from Umuchichi, Osisioma Local Government Area in Abia State, Nigeria, a non-oil-polluted area constituted the control. In test and control, up to 3,830 ± 19.6 mgkg(-1) dw and 6,950 ± 68.3 mgkg(-1) dw (exceeding DPR set limits) and 11.3 ± 0.04 mgkg(-1) dw and 186 ± 0.02 mgkg(-1) dw for TPH and PAHs, respectively, were recorded in test soil and plant samples, respectively. Among the metals studied (Pb, Cd, Cr, Mn, Fe and Zn), Pb and Cr uptake exceeded WHO set limits for crops in test samples. Combined sources of pollution were evident from our studies. Bitterleaf and Waterleaf could be tried as bioindicators owing to expressed contaminants uptake pattern.

  17. Tracing organic and inorganic pollution sources of agricultural crops and water resources in Güzelhisar Basin of the Aegean Region - Turkey

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Anac, Dilek; Düring, Rolf-Alexander

    2014-05-01

    The study area Güzelhisar Basin is 6 km far from the city Aliaga, Aegean Region in Turkey which represents a rather industrialized area having five large iron and steel factories, but also areas of agriculture. Steel industry in Aliaga is causing metal pollution. Around Güzelhisar Basin and nearby, the dominant crop fields are cotton, maize, vegetables, olive trees and vineyards. Güzelhisar stream and dam water is used for irrigation of the agricultural land. Due to contamination from metal industry in Aliaga, organic farming is not allowed in this region. Industrial activities in the region present a threat on sustainable agriculture. The region is a multi-impacted area in terms of several pollutant sources affecting soil and water quality. The overall objective of the project is to trace back plant nutrients (N, P, K, Ca, Mg, Na, Fe, Mn, Zn, Cu, and B), hazardous substances (i. e. persistent organic pollutants), radionuclides (40K, 232Th, 226Ra/238U), and metal contents (As, Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, and Zn) by examining the soils, agricultural crops and natural plants from Güzelhisar Basin and water and sediments from Güzelhisar stream and dam. Spatial distribution of pollution will be evaluated by regionalization methods. For this, an advanced analytical methodology will be applied which provides an understanding of sources and occurrence of the respective substances of concern. An innovative multi-tracer approach comprising organic and inorganic marker substances, will identify and quantitatively assess sources and their impact on water pollution and the pollutant pathways in this agricultural crop production system.

  18. Recent climate and air pollution impacts on Indian agriculture.

    PubMed

    Burney, Jennifer; Ramanathan, V

    2014-11-18

    Recent research on the agricultural impacts of climate change has primarily focused on the roles of temperature and precipitation. These studies show that India has already been negatively affected by recent climate trends. However, anthropogenic climate changes are a result of both global emissions of long-lived greenhouse gases (LLGHGs) and other short-lived climate pollutants (SLCPs). Two potent SLCPs, tropospheric ozone and black carbon, have direct effects on crop yields beyond their indirect effects through climate; emissions of black carbon and ozone precursors have risen dramatically in India over the past three decades. Here, to our knowledge for the first time, we present results of the combined effects of climate change and the direct effects of SLCPs on wheat and rice yields in India from 1980 to 2010. Our statistical model suggests that, averaged over India, yields in 2010 were up to 36% lower for wheat than they otherwise would have been, absent climate and pollutant emissions trends, with some densely populated states experiencing 50% relative yield losses. [Our point estimates for rice (-20%) are similarly large, but not statistically significant.] Upper-bound estimates suggest that an overwhelming fraction (90%) of these losses is due to the direct effects of SLCPs. Gains from addressing regional air pollution could thus counter expected future yield losses resulting from direct climate change effects of LLGHGs.

  19. Recent climate and air pollution impacts on Indian agriculture

    PubMed Central

    Burney, Jennifer; Ramanathan, V.

    2014-01-01

    Recent research on the agricultural impacts of climate change has primarily focused on the roles of temperature and precipitation. These studies show that India has already been negatively affected by recent climate trends. However, anthropogenic climate changes are a result of both global emissions of long-lived greenhouse gases (LLGHGs) and other short-lived climate pollutants (SLCPs). Two potent SLCPs, tropospheric ozone and black carbon, have direct effects on crop yields beyond their indirect effects through climate; emissions of black carbon and ozone precursors have risen dramatically in India over the past three decades. Here, to our knowledge for the first time, we present results of the combined effects of climate change and the direct effects of SLCPs on wheat and rice yields in India from 1980 to 2010. Our statistical model suggests that, averaged over India, yields in 2010 were up to 36% lower for wheat than they otherwise would have been, absent climate and pollutant emissions trends, with some densely populated states experiencing 50% relative yield losses. [Our point estimates for rice (−20%) are similarly large, but not statistically significant.] Upper-bound estimates suggest that an overwhelming fraction (90%) of these losses is due to the direct effects of SLCPs. Gains from addressing regional air pollution could thus counter expected future yield losses resulting from direct climate change effects of LLGHGs. PMID:25368149

  20. A study of atmospheric diffusion from the LANDSAT imagery. [pollution transport over the ocean

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Viswanadham, Y.; Torsani, J. A.

    1981-01-01

    LANDSAT multispectral scanner data of the smoke plumes which originated in eastern Cabo Frio, Brazil and crossed over into the Atlantic Ocean, are analyzed to illustrate how high resolution LANDSAT imagery can aid meteorologists in evaluating specific air pollution events. The eleven LANDSAT images selected are for different months and years. The results show that diffusion is governed primarily by water and air temperature differences. With colder water, low level air is very stable and the vertical diffusion is minimal; but water warmer than the air induces vigorous diffusion. The applicability of three empirical methods for determining the horizontal eddy diffusivity coefficient in the Gaussian plume formula was evaluated with the estimated standard deviation of the crosswind distribution of material in the plume from the LANDSAT imagery. The vertical diffusion coefficient in stable conditions is estimated using Weinstock's formulation. These results form a data base for use in the development and validation of meso scale atmospheric diffusion models.

  1. Trade-off between water pollution prevention, agriculture profit, and farmer practice--an optimization methodology for discussion on land-use adjustment in China.

    PubMed

    Liu, Jianchang; Zhang, Luoping; Zhang, Yuzhen; Deng, Hongbing

    2015-01-01

    Agricultural decision-making to control nonpoint source (NPS) water pollution may not be efficiently implemented, if there is no appropriate cost-benefit analysis on agricultural management practices. This paper presents an interval-fuzzy linear programming (IFLP) model to deal with the trade-off between agricultural revenue, NPS pollution control, and alternative practices through land adjustment for Wuchuan catchment, a typical agricultural area in Jiulong River watershed, Fujian Province of China. From the results, the lower combination of practice 1, practice 2, practice 3, and practice 7 with the land area of 12.6, 5.2, 145.2, and 85.3 hm(2), respectively, could reduce NPS pollution load by 10%. The combination yields an income of 98,580 Chinese Yuan/a. If the pollution reduction is 15%, the higher combination need practice 1, practice 2, practice 3, practice 5, and practice 7 with the land area of 54.4, 23.6, 18.0, 6.3, and 85.3 hm(2), respectively. The income of this combination is 915,170 Chinese Yuan/a. The sensitivity analysis of IFLP indicates that the cost-effective practices are ranked as follows: practice 7 > practice 2 > practice 1 > practice 5 > practice 3 > practice 6 > practice 4. In addition, the uncertainties in the agriculture NPS pollution control system could be effectively quantified by the IFLP model. Furthermore, to accomplish a reasonable and applicable project of land-use adjustment, decision-makers could also integrate above solutions with their own experience and other information.

  2. Setting priorities for research on pollution reduction functions of agricultural buffers.

    PubMed

    Dosskey, Michael G

    2002-11-01

    The success of buffer installation initiatives and programs to reduce nonpoint source pollution of streams on agricultural lands will depend the ability of local planners to locate and design buffers for specific circumstances with substantial and predictable results. Current predictive capabilities are inadequate, and major sources of uncertainty remain. An assessment of these uncertainties cautions that there is greater risk of overestimating buffer impact than underestimating it. Priorities for future research are proposed that will lead more quickly to major advances in predictive capabilities. Highest priority is given for work on the surface runoff filtration function, which is almost universally important to the amount of pollution reduction expected from buffer installation and for which there remain major sources of uncertainty for predicting level of impact. Foremost uncertainties surround the extent and consequences of runoff flow concentration and pollutant accumulation. Other buffer functions, including filtration of groundwater nitrate and stabilization of channel erosion sources of sediments, may be important in some regions. However, uncertainty surrounds our ability to identify and quantify the extent of site conditions where buffer installation can substantially reduce stream pollution in these ways. Deficiencies in predictive models reflect gaps in experimental information as well as technology to account for spatial heterogeneity of pollutant sources, pathways, and buffer capabilities across watersheds. Since completion of a comprehensive watershed-scale buffer model is probably far off, immediate needs call for simpler techniques to gage the probable impacts of buffer installation at local scales.

  3. Effects of agricultural, industrial, and municipal pollutants on wetlands and wildlife and wildlife health

    USGS Publications Warehouse

    Converse, Kathryn A.

    1995-01-01

    Wetlands accumulate pollutants from adjacent areas through intentional discharge of sewage or industrial wastes, runoff of agricultural fertilizers and pesticides, and discharge from municipal storm drains.  Coastal wetlands receive more pollutants indirectly as the endpoint for upland drainage systems and directly through petroleum spills and insect abatement.  Wetlands that serve as evaporation basins during seasonally high water, especially in more arid climates, concentrate natural compounds and as well as pollutants.  The ability of wetlands to be effective filtration systems for wastewater nutrients through microbial transformations, uptake by plants, and deposition of particulate matter, and the shortage of water in arid climates has resulted in revision of wetland regulations.  Wetlands can now be developed for wastewater treatment and natural wetlands can be restored or converted to wastewater treatment systems.  The effect of these accumulation pollutants on wetland ecology and wildlife health needs to be recognized.

  4. Exposure to hazardous volatile pollutants back diffusing from automobile exhaust systems.

    PubMed

    Rahman, Md Mahmudur; Kim, Ki-Hyun

    2012-11-30

    As back diffusion gases from automobiles are significant sources of in-vehicular pollution, we investigated eight automobiles, five for back diffusion (driving) measurements and three for reference conditions (non-driving). To characterize the back diffusion emission conditions, seven volatile organic compounds (VOC) and four carbonyl compounds (CCs) were measured along with dilution-to-threshold (D/T) ratio. The data obtained from back diffusion measurements were examined after having been divided into three subcategories: (i) driving and non-driving, (ii) with and without automobile upgrading (sealing the inner line), and (iii) differences in CO emission levels. Among the VOCs, the concentrations of toluene (T) was found to be the highest (range: 13.6-155 ppb), while benzene (0.19-1.47 ppb) was hardly distinguishable from its ambient levels. Other VOCs (xylene, trimethylbenzene, and styrene) were generally below <1 ppb. Unlike VOCs, the concentrations (ppb) of CCs were seen at fairly enhanced levels: 30.1-95 (formaldehyde), 34.6-87.2 (acetaldehyde), 4.56-34.7 (propionaldehyde), and 3.45-68.8 (butyraldehyde). The results of our study suggest that the back diffusion phenomenon, if occurring, can deteriorate in-vehicle air, especially with the most imminent health hazards from a compound such as formaldehyde in view of its exceedance pattern over common guidelines. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A Comparison of Erosion and Water Pollution Control Strategies for an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Prato, Tony; Shi, Hongqi

    1990-02-01

    The effectiveness and efficiency of two erosion control strategies and one water pollution control (riparian) strategy are compared for Idaho's Tom Beall watershed. Erosion control strategies maximize annualized net returns per hectare on each field and restrict field erosion rates to no more than 11.2 or 16.8 tons per hectare. The riparian strategy uses good vegetative cover on all fields adjacent to the creek and in noncropland areas and the resource management system that maximizes annualized net returns per hectare on remaining fields. The Agricultural Nonpoint Source Pollution model is used to simulate the levels and concentrations of sediment, nitrogen, phosphorus, and chemical oxygen demand at the outlet of the watershed. Erosion control strategies generate less total erosion and water pollution but are less efficient than the riparian strategy. The riparian strategy is less equitable for farmers than the erosion control strategies.

  6. Study of continuous-wave domain fluorescence diffuse optical tomography for quality control on agricultural produce

    NASA Astrophysics Data System (ADS)

    Nadhira, Vebi; Kurniadi, Deddy; Juliastuti, E.; Sutiswan, Adeline

    2014-03-01

    The importance of monitoring the quality of vegetables and fruits is prosperity by giving a competitive advantage for producer and providing a more healthy food for consumer. Diffuse Optical Tomography (DOT) is offering the possibility to detect the internal defects of the agricultural produce quality. Fluorescence diffuse optical tomography (FDOT) is the development of DOT, offering the possibilities to improve spatial resolution and to contrast image. The purpose of this research is to compare FDOT and DOT in forward analysis with continuous wave approach. The scattering and absorbing parameters of potatoes are used to represent the real condition. The object was illuminated by the NIR source from some positions on the boundary of object. A set of NIR detector are placed on the peripheral position of the object to measure the intensity of propagated or emitted light. In the simulation, we varied a condition of object then we analyzed the sensitivity of forward problem. The result of this study shows that FDOT has a better sensitivity than DOT and a better potential to monitor internal defects of agricultural produce because of the contrast value between optical and fluorescence properties of agricultural produce normal tissue and defects.

  7. Quantifying the Influence of Agricultural Fires in Northwest India on Urban Air Pollution in Delhi, India.

    NASA Astrophysics Data System (ADS)

    Cusworth, D.; Mickley, L. J.; Payer Sulprizio, M.; Marlier, M. E.; DeFries, R. S.; Liu, T.; Guttikunda, S. K.

    2017-12-01

    In recent decades, farmers in northwest India have switched to mechanized combine harvesting to boost efficiency. This harvesting technique leaves abundant crop residue on the fields, which farmers burn to ready their fields for subsequent planting. A key question is to what extent the intense smoke emitted by these fires contributes to the already severe pollution in Delhi and across the heavily populated Indus-Ganges Plain, downwind of the fires. Using a combination of observed and modeled variables, including surface measurements of PM2.5, we quantify the magnitude of the influence of agricultural fire emissions on surface air pollution in Delhi. We first derive the signal of regional PM2.5 enhancements from the Delhi network of surface air monitors during each winter burning season (Oct. 17 - Nov. 30) for 2012-2016. We next use the Stochastic Time-Inverted Lagrangian Transport model (STILT) to generate particle back-trajectories from Delhi, which allows us to map the sensitivity of Delhi pollution to agricultural fires in each grid cell upwind. By combining these sensitivity maps with emissions from a suite of fire inventories, we can reproduce 15-36% of the weekly variability in observed PM2.5. Our method attributes 7-84% of maximum observed PM2.5 enhancement in Delhi to fires upwind, depending on the year and emission inventory. The large range of these attribution estimates points to the uncertainties in fire emission parameterizations, especially in regions where thick smoke may mask the hotspots of fire radiative power. Although our model can generally reproduce the largest PM2.5 enhancements in Delhi air quality for 1-3 consecutive days each fire season, it fails to capture many smaller daily enhancements, which we attribute to the challenge of detecting small fires in the satellite retrieval. By quantifying the magnitude of the influence of agricultural fire emissions on Delhi air pollution, our work helps clarify the pollution exposure and potential

  8. Microbial Community-Level Physiological Profiles (CLPP) and herbicide mineralization potential in groundwater affected by agricultural land use

    NASA Astrophysics Data System (ADS)

    Janniche, Gry Sander; Spliid, Henrik; Albrechtsen, Hans-Jørgen

    2012-10-01

    Diffuse groundwater pollution from agricultural land use may impact the microbial groundwater community, which was investigated as Community-Level Physiological Profiles (CLPP) using EcoPlate™. Water was sampled from seven piezometers and a spring in a small agricultural catchment with diffuse herbicide and nitrate pollution. Based on the Shannon-Wiener and Simpson's diversity indices the diversity in the microbial communities was high. The response from the EcoPlates™ showed which substrates support groundwater bacteria, and all 31 carbon sources were utilized by organisms from at least one water sample. However, only nine carbon sources were utilized by all water samples: D-Mannitol, N-acetyl-D-glucosamine, putrescine, D-galacturonic acid, itaconic acid, 4-hydroxy benzoic acid, tween 40, tween 80, and L-asparagine. In all water samples the microorganisms preferred D-mannitol, D-galacturonic acid, tween 40, and 4-hydroxy benzoic acid as substrates, whereas none preferred 2-hydroxy benzoic acid, α-D-lactose, D,L-α-glycerol phosphate, α-ketobutyric acid, L-threonine and glycyl-L-glutamic acid. Principal Component Analysis of the CLPP's clustered the most agriculturally affected groundwater samples, indicating that the agricultural land use affects the groundwater microbial communities. Furthermore, the ability to mineralize atrazine and isoproturon, which have been used in the catchment, was also associated with this cluster.

  9. Diffusion and Adoption of Innovations in Fertilizer-Related Agricultural Production Technology in Developing Countries.

    ERIC Educational Resources Information Center

    Byrnes, Kerry J.

    This monograph reviews a wide range of research literature on the diffusion and adoption of innovations in agricultural production technology in the developing countries, with particular emphasis on the practice of using commercially purchased, inorganic fertilizer as a source of plant nutrients. It is intended that the report's documentation of…

  10. Water resources conservation and nitrogen pollution reduction under global food trade and agricultural intensification.

    PubMed

    Liu, Wenfeng; Yang, Hong; Liu, Yu; Kummu, Matti; Hoekstra, Arjen Y; Liu, Junguo; Schulin, Rainer

    2018-08-15

    Global food trade entails virtual flows of agricultural resources and pollution across countries. Here we performed a global-scale assessment of impacts of international food trade on blue water use, total water use, and nitrogen (N) inputs and on N losses in maize, rice, and wheat production. We simulated baseline conditions for the year 2000 and explored the impacts of an agricultural intensification scenario, in which low-input countries increase N and irrigation inputs to a greater extent than high-input countries. We combined a crop model with the Global Trade Analysis Project model. Results show that food exports generally occurred from regions with lower water and N use intensities, defined here as water and N uses in relation to crop yields, to regions with higher resources use intensities. Globally, food trade thus conserved a large amount of water resources and N applications, and also substantially reduced N losses. The trade-related conservation in blue water use reached 85km 3 y -1 , accounting for more than half of total blue water use for producing the three crops. Food exported from the USA contributed the largest proportion of global water and N conservation as well as N loss reduction, but also led to substantial export-associated N losses in the country itself. Under the intensification scenario, the converging water and N use intensities across countries result in a more balanced world; crop trade will generally decrease, and global water resources conservation and N pollution reduction associated with the trade will reduce accordingly. The study provides useful information to understand the implications of agricultural intensification for international crop trade, crop water use and N pollution patterns in the world. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Study on the quantitative relationship between Agricultural water and fertilization process and non-point source pollution based on field experiments

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, K.; Wu, Z.; Guan, X.

    2017-12-01

    In recent years, with the prominent of water environment problem and the relative increase of point source pollution governance, especially the agricultural non-point source pollution problem caused by the extensive use of fertilizers and pesticides has become increasingly aroused people's concern and attention. In order to reveal the quantitative relationship between agriculture water and fertilizer and non-point source pollution, on the basis of elm field experiment and combined with agricultural drainage irrigation model, the agricultural irrigation water and the relationship between fertilizer and fertilization scheme and non-point source pollution were analyzed and calculated by field emission intensity index. The results show that the variation of displacement varies greatly under different irrigation conditions. When the irrigation water increased from 22cm to 42cm, the irrigation water increased by 20 cm while the field displacement increased by 11.92 cm, about 66.22% of the added value of irrigation water. Then the irrigation water increased from 42 to 68, irrigation water increased 26 cm, and the field displacement increased by 22.48 cm, accounting for 86.46% of irrigation water. So there is an "inflection point" between the irrigation water amount and field displacement amount. The load intensity increases with the increase of irrigation water and shows a significant power correlation. Under the different irrigation condition, the increase amplitude of load intensity with the increase of irrigation water is different. When the irrigation water is smaller, the load intensity increase relatively less, and when the irrigation water increased to about 42 cm, the load intensity will increase considerably. In addition, there was a positive correlation between the fertilization and load intensity. The load intensity had obvious difference in different fertilization modes even with same fertilization level, in which the fertilizer field unit load intensity

  12. Air pollution and risk of hospitalization for epilepsy: the role of farm use of nitrogen fertilizers and emissions of the agricultural air pollutant, nitrous oxide.

    PubMed

    Fluegge, Keith; Fluegge, Kyle

    2017-09-01

    The link between various air pollutants and hospitalization for epilepsy has come under scrutiny. We have proposed that exposure to air pollution and specifically the pervasive agricultural air pollutant and greenhouse gas, nitrous oxide (N2O), may provoke susceptibility to neurodevelopmental disorders. Evidence supports a role of N2O exposure in reducing epileptiform seizure activity, while withdrawal from the drug has been shown to induce seizure-like activity. Therefore, we show here that the statewide use of anthropogenic nitrogen fertilizers (the most recognized causal contributor to environmental N2O burden) is significantly negatively associated with hospitalization for epilepsy in all three pre-specified hospitalization categories, even after multiple pollutant comparison correction (p<.007), while the other identified pollutants were not consistently statistically significantly associated with hospitalization for epilepsy. We discuss potential neurological mechanisms underpinning this association between air pollutants associated with farm use of anthropogenic nitrogen fertilizers and hospitalization for epilepsy.

  13. Agriculture and Water Quality. Issues in Agricultural Policy. Agriculture Information Bulletin Number 548.

    ERIC Educational Resources Information Center

    Crowder, Bradley M.; And Others

    Agriculture generates byproducts that may contribute to the contamination of the United States' water supply. Any effective regulations to ban or restrict agricultural chemical or land use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface…

  14. Modelling the bioaccumulation of persistent organic pollutants in agricultural food chains for regulatory exposure assessment.

    PubMed

    Takaki, Koki; Wade, Andrew J; Collins, Chris D

    2017-02-01

    New models for estimating bioaccumulation of persistent organic pollutants in the agricultural food chain were developed using recent improvements to plant uptake and cattle transfer models. One model named AgriSim was based on K OW regressions of bioaccumulation in plants and cattle, while the other was a steady-state mechanistic model, AgriCom. The two developed models and European Union System for the Evaluation of Substances (EUSES), as a benchmark, were applied to four reported food chain (soil/air-grass-cow-milk) scenarios to evaluate the performance of each model simulation against the observed data. The four scenarios considered were as follows: (1) polluted soil and air, (2) polluted soil, (3) highly polluted soil surface and polluted subsurface and (4) polluted soil and air at different mountain elevations. AgriCom reproduced observed milk bioaccumulation well for all four scenarios, as did AgriSim for scenarios 1 and 2, but EUSES only did this for scenario 1. The main causes of the deviation for EUSES and AgriSim were the lack of the soil-air-plant pathway and the ambient air-plant pathway, respectively. Based on the results, it is recommended that soil-air-plant and ambient air-plant pathway should be calculated separately and the K OW regression of transfer factor to milk used in EUSES be avoided. AgriCom satisfied the recommendations that led to the low residual errors between the simulated and the observed bioaccumulation in agricultural food chain for the four scenarios considered. It is therefore recommended that this model should be incorporated into regulatory exposure assessment tools. The model uncertainty of the three models should be noted since the simulated concentration in milk from 5th to 95th percentile of the uncertainty analysis often varied over two orders of magnitude. Using a measured value of soil organic carbon content was effective to reduce this uncertainty by one order of magnitude.

  15. Diffusion of organic pollutants within a biofilm in porous media

    NASA Astrophysics Data System (ADS)

    Fan, Chihhao; Kao, Chen-Fei; Liu, You-Hsi

    2017-04-01

    The occurrence of aquatic pollution is an inevitable environmental impact resulting from human civilization and societal advancement. Either from the natural or anthropogenic sources, the aqueous contaminants enter the natural environment and aggravate its quality. To assure the aquatic environment quality, the attached-growth biological degradation is often applied to removing organic contaminants by introducing contaminated water into a porous media which is covered by microorganism. Additionally, many natural aquatic systems also form such similar mechanism to increase their self-purification capability. To better understand this transport phenomenon and degradation mechanism in the biofilm for future application, the mathematic characterization of organic contaminant diffusion within the biofilm requires further exploration. The present study aimed to formulate a mathematic representation to quantify the diffusion of the organic contaminant in the biofilm. The BOD was selected as the target contaminant. A series of experiments were conducted to quantify the BOD diffusion in the biofilm under the conditions of influent BOD variation from 50 to 300 mg/L, COD:N:P ratios of 100:5:1 and 100:15:3, with or without auxiliary aeration. For diffusion coefficient calculation, the boundary condition of zero diffusion at the interface between microbial phase and contact media was assumed. With the principle of conservation of mass, the removed contaminants equal those that diffuse into the biofilm, and eq 1 results, and the diffusion coefficient (i.e., eq 2) can be solved through calculus with equations from table of integral. ∂2Sf- Df ∂z2 = Rf (1) --(QSin--QSout)2Y--- Df = 2μmaxxf(Sb + Ks ln-Ks-) Sb+Ks (2) Using the obtained experimental data, the diffusion coefficient was calculated to be 2.02*10-6 m2/d with influent COD of 50 mg/L at COD:N:P ratio of 100:5:1 with aeration, and this coefficient increased to 6.02*10-6 m2/d as the influent concentration increased to

  16. Spatiotemporal patterns and source attribution of nitrogen pollution in a typical headwater agricultural watershed in Southeastern China.

    PubMed

    Chen, Wenjun; He, Bin; Nover, Daniel; Duan, Weili; Luo, Chuan; Zhao, Kaiyan; Chen, Wen

    2018-01-01

    Excessive nitrogen (N) discharge from agriculture causes widespread problems in aquatic ecosystems. Knowledge of spatiotemporal patterns and source attribution of N pollution is critical for nutrient management programs but is poorly studied in headwaters with various small water bodies and mini-point pollution sources. Taking a typical small watershed in the low mountains of Southeastern China as an example, N pollution and source attribution were studied for a multipond system around a village using the Hydrological Simulation Program-Fortran (HSPF) model. The results exhibited distinctive spatio-seasonal variations with an overall seriousness rank for the three indicators: total nitrogen (TN) > nitrate/nitrite nitrogen (NO x - -N) > ammonia nitrogen (NH 3 -N), according to the Chinese Surface Water Quality Standard. TN pollution was severe for the entire watershed, while NO x - -N pollution was significant for ponds and ditches far from the village, and the NH 3 -N concentrations were acceptable except for the ponds near the village in summer. Although food and cash crop production accounted for the largest source of N loads, we discovered that mini-point pollution sources, including animal feeding operations, rural residential sewage, and waste, together contributed as high as 47% of the TN and NH 3 -N loads in ponds and ditches. So, apart from eco-fertilizer programs and concentrated animal feeding operations, the importance of environmental awareness building for resource management is highlighted for small farmers in headwater agricultural watersheds. As a first attempt to incorporate multipond systems into the process-based modeling of nonpoint source (NPS) pollution, this work can inform other hydro-environmental studies on scattered and small water bodies. The results are also useful to water quality improvement for entire river basins.

  17. Is it worth protecting groundwater from diffuse pollution with agri-environmental schemes? A hydro-economic modeling approach.

    PubMed

    Hérivaux, Cécile; Orban, Philippe; Brouyère, Serge

    2013-10-15

    In Europe, 30% of groundwater bodies are considered to be at risk of not achieving the Water Framework Directive (WFD) 'good status' objective by 2015, and 45% are in doubt of doing so. Diffuse agricultural pollution is one of the main pressures affecting groundwater bodies. To tackle this problem, the WFD requires Member States to design and implement cost-effective programs of measures to achieve the 'good status' objective by 2027 at the latest. Hitherto, action plans have mainly consisted of promoting the adoption of Agri-Environmental Schemes (AES). This raises a number of questions concerning the effectiveness of such schemes for improving groundwater status, and the economic implications of their implementation. We propose a hydro-economic model that combines a hydrogeological model to simulate groundwater quality evolution with agronomic and economic components to assess the expected costs, effectiveness, and benefits of AES implementation. This hydro-economic model can be used to identify cost-effective AES combinations at groundwater-body scale and to show the benefits to be expected from the resulting improvement in groundwater quality. The model is applied here to a rural area encompassing the Hesbaye aquifer, a large chalk aquifer which supplies about 230,000 inhabitants in the city of Liege (Belgium) and is severely contaminated by agricultural nitrates. We show that the time frame within which improvements in the Hesbaye groundwater quality can be expected may be much longer than that required by the WFD. Current WFD programs based on AES may be inappropriate for achieving the 'good status' objective in the most productive agricultural areas, in particular because these schemes are insufficiently attractive. Achieving 'good status' by 2027 would demand a substantial change in the design of AES, involving costs that may not be offset by benefits in the case of chalk aquifers with long renewal times. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Simulation of targeted pollutant-mitigation-strategies to reduce nitrate and sediment hotspots in agricultural watershed.

    PubMed

    Teshager, Awoke Dagnew; Gassman, Philip W; Secchi, Silvia; Schoof, Justin T

    2017-12-31

    About 50% of U.S. water pollution problems are caused by non-point source (NPS) pollution, primarily sediment and nutrients from agricultural areas, despite the widespread implementation of agricultural Best Management Practices (BMPs). However, the effectiveness of implementation strategies and type of BMPs at watershed scale are still not well understood. In this study, the Soil and Water Assessment Tool (SWAT) ecohydrological model was used to assess the effectiveness of pollutant mitigation strategies in the Raccoon River watershed (RRW) in west-central Iowa, USA. We analyzed fourteen management scenarios based on systematic combinations of five strategies: fertilizer/manure management, changing row-crop land to perennial grass, vegetative filter strips, cover crops and shallower tile drainage systems, specifically aimed at reducing nitrate and total suspended sediment yields from hotspot areas in the RRW. Moreover, we assessed implications of climate change on management practices, and the impacts of management practices on water availability, row crop yield, and total agricultural production. Our results indicate that sufficient reduction of nitrate load may require either implementation of multiple management practices (38.5% with current setup) or conversion of extensive areas into perennial grass (up to 49.7%) to meet and maintain the drinking water standard. However, climate change may undermine the effectiveness of management practices, especially late in the 21st century, cutting the reduction by up to 65% for nitrate and more for sediment loads. Further, though our approach is targeted, it resulted in a slight decrease (~5%) in watershed average crop yield and hence an overall reduction in total crop production, mainly due to the conversion of row-crop lands to perennial grass. Such yield reductions could be quite spatially heterogeneously distributed (0 to 40%). Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A pollutant removal prediction tool for stormwater derived diffuse pollution.

    PubMed

    Revitt, D Michael; Scholes, Lian; Ellis, J Bryan

    2008-01-01

    This report describes the development of a methodology to theoretically assess the effectiveness of structural BMPs with regard to their treatment of selected stormwater pollutants (metals, polyaromatic hydrocarbons and herbicides). The result is a prioritisation, in terms of pollutant removal efficiency, of 15 different BMPs which can inform stormwater managers and other stakeholders of the best available options for the treatment of urban runoff pollutants of particular environmental concern. Regardless of the selected pollutant, infiltration basins and sub-surface flow constructed wetlands are predicted to perform most efficiently with lagoons, porous asphalt and sedimentation tanks being the least effective systems for the removal of pollutants. The limitations of the approach in terms of the variabilities in BMP designs and applications are considered. (c) IWA Publishing 2008.

  20. Spatial variation in soil properties and diffuse losses between and within grassland fields with similar short-term management.

    PubMed

    Peukert, S; Griffith, B A; Murray, P J; Macleod, C J A; Brazier, R E

    2016-07-01

    One of the major challenges for agriculture is to understand the effects of agricultural practices on soil properties and diffuse pollution, to support practical farm-scale land management. Three conventionally managed grassland fields with similar short-term management, but different ploughing histories, were studied on a long-term research platform: the North Wyke Farm Platform. The aims were to (i) quantify the between-field and within-field spatial variation in soil properties by geostatistical analysis, (ii) understand the effects of soil condition (in terms of nitrogen, phosphorus and carbon contents) on the quality of discharge water and (iii) establish robust baseline data before the implementation of various grassland management scenarios. Although the fields sampled had experienced the same land use and similar management for at least 6 years, there were differences in their mean soil properties. They showed different patterns of soil spatial variation and different rates of diffuse nutrient losses to water. The oldest permanent pasture field had the largest soil macronutrient concentrations and the greatest diffuse nutrient losses. We show that management histories affect soil properties and diffuse losses. Potential gains in herbage yield or benefits in water quality might be achieved by characterizing every field or by area-specific management within fields (a form of precision agriculture for grasslands). Permanent pasture per se cannot be considered a mitigation measure for diffuse pollution. The between- and within-field soil spatial variation emphasizes the importance of baseline characterization and will enable the reliable identification of any effects of future management change on the Farm Platform. Quantification of soil and water quality in grassland fields with contrasting management histories.Considerable spatial variation in soil properties and diffuse losses between and within fields.Contrasting management histories within and between

  1. Concept of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas.

    PubMed

    Fujiwara, T

    2012-01-01

    Unlike in urban areas where intensive water reclamation systems are available, development of decentralized technologies and systems is required for water use to be sustainable in agricultural areas. To overcome various water quality issues in those areas, a research project entitled 'Development of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas under the consideration of climate change' was launched in 2009. This paper introduces the concept of this research and provides detailed information on each of its research areas: (1) development of a diffuse agricultural pollution control technology using catch crops; (2) development of a decentralized differentiable treatment system for livestock and human excreta; and (3) development of a cascading material-cycle system for water pollution control and value-added production. The author also emphasizes that the innovative water management system for agricultural areas should incorporate a strategy for the voluntary collection of bio-resources.

  2. Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed

    USGS Publications Warehouse

    Schilling, K.E.; Helmers, M.

    2008-01-01

    The similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes. ?? 2007 Elsevier B.V. All

  3. Combining Land Use Information and Small Stream Sampling with PCR-Based Methods for Better Characterization of Diffuse Sources of Human Fecal Pollution

    EPA Science Inventory

    Diffuse sources of human fecal pollution allow for the direct discharge of waste into receiving waters with minimal or no treatment. Traditional culture-based methods are commonly used to characterize fecal pollution in ambient waters, however these methods do not discern between...

  4. Optimal pollution trading without pollution reductions

    EPA Science Inventory

    Many kinds of water pollution occur in pulses, e.g., agricultural and urban runoff. Ecosystems, such as wetlands, can serve to regulate these pulses and smooth pollution distributions over time. This smoothing reduces total environmental damages when “instantaneous” damages are m...

  5. [Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture].

    PubMed

    Yan, Changrong; He, Wenqing; Xue, Yinghao; Liu, Enke; Liu, Qin

    2016-06-25

    Plastic film has become an important agriculture production material in recent years. Over the past three decades, the amount and application area of plastic film have increased steadily, and in 2014, which are 1.4 million tons and more than 180 million hm² respectively. It plays a key role for ensuring the supply of agricultural goods in China. Meanwhile, plastic film residual pollution becomes more and more serious, and in some regions, the amount of plastic film residues has reached over 250 kg/hm². In part of the Northwest region, soil structure of farmland has been destroyed by plastic film residues and then crop growth and farming operations were suppressed. It is recognized as a good choice to replace plastic film with biodegradable plastic film, an effective measure to solve the plastic film residue pollution. Now, it is in a critical stage of study and assessment of biodegradable plastic film in China and fortunately some biodegradable plastic films show effects in the production of potatoes, peanuts and tobacco. Overall, a series of challenges has still been faced by the biodegradable plastic film, mainly including improving the quality of biodegradable plastic products, such as tensile strength, flexibility, improving the controllability of rupture and degradation, enhancing the ability of increasing soil temperature and preserving soil moisture, and to satisfy the demand of crops production with mulching. In addition, it is essential to reduce the cost of the biodegradable film and promote the application of biodegradable film on large-scale. With the development of biodegradable plastic technology and agricultural production environment, the application of the biodegradable film will have a good future.

  6. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shu-Guang

    2012-01-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (~78%) and nutrients (~30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  7. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin.

    PubMed

    Wu, Yiping; Liu, Shuguang

    2012-09-01

    Nonpoint source (NPS) pollution is tightly linked to land use activities that determine the sources and magnitudes of pollutant loadings to stream water. The pollutant loads may also be alleviated within reservoirs because of the physical interception resulting from changed hydrological regimes and other biochemical processes. It is important but challenging to assess the NPS pollution processes with human effects due to the measurement limitations. The objective of this study is to evaluate the effects of human activities such as land uses and reservoir operation on the hydrological and NPS pollution processes in a highly agricultural area-the Iowa River Basin-using the Soil and Water Assessment Tool (SWAT). The evaluation of model performance at multiple sites reveals that SWAT can consistently simulate the daily streamflow, and monthly/annual sediment and nutrient loads (nitrate nitrogen and mineral phosphorus) in the basin. We also used the calibrated model to estimate the trap efficiencies of sediment (∼78%) and nutrients (∼30%) in the Coralville Reservoir within the basin. These non-negligible effects emphasize the significance of incorporating the sediment and nutrient removal mechanisms into watershed system studies. The spatial quantification of the critical NPS pollution loads can help identify hot-spot areas that are likely locations for the best management practices.

  8. Modelling the impacts of agricultural management practices on river water quality in Eastern England.

    PubMed

    Taylor, Sam D; He, Yi; Hiscock, Kevin M

    2016-09-15

    Agricultural diffuse water pollution remains a notable global pressure on water quality, posing risks to aquatic ecosystems, human health and water resources and as a result legislation has been introduced in many parts of the world to protect water bodies. Due to their efficiency and cost-effectiveness, water quality models have been increasingly applied to catchments as Decision Support Tools (DSTs) to identify mitigation options that can be introduced to reduce agricultural diffuse water pollution and improve water quality. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the River Wensum catchment in eastern England with the aim of quantifying the long-term impacts of potential changes to agricultural management practices on river water quality. Calibration and validation were successfully performed at a daily time-step against observations of discharge, nitrate and total phosphorus obtained from high-frequency water quality monitoring within the Blackwater sub-catchment, covering an area of 19.6 km(2). A variety of mitigation options were identified and modelled, both singly and in combination, and their long-term effects on nitrate and total phosphorus losses were quantified together with the 95% uncertainty range of model predictions. Results showed that introducing a red clover cover crop to the crop rotation scheme applied within the catchment reduced nitrate losses by 19.6%. Buffer strips of 2 m and 6 m width represented the most effective options to reduce total phosphorus losses, achieving reductions of 12.2% and 16.9%, respectively. This is one of the first studies to quantify the impacts of agricultural mitigation options on long-term water quality for nitrate and total phosphorus at a daily resolution, in addition to providing an estimate of the uncertainties of those impacts. The results highlighted the need to consider multiple pollutants, the degree of uncertainty associated with model predictions and the risk of

  9. River eutrophication: irrigated vs. non-irrigated agriculture through different spatial scales.

    PubMed

    Monteagudo, Laura; Moreno, José Luis; Picazo, Félix

    2012-05-15

    The main objective of this study was to determine how spatial scale may affect the results when relating land use to nutrient enrichment of rivers and, secondly, to investigate which agricultural practices are more responsible for river eutrophication in the study area. Agriculture was split into three subclasses (irrigated, non-irrigated and low-impact agriculture) which were correlated to stream nutrient concentration on four spatial scales: large scale (drainage area of total subcatchment and 100 m wide subcatchment corridors) and local scale (5 and 1 km radius buffers). Nitrate, ammonium and orthophosphate concentrations and land use composition (agriculture, urban and forest) were measured at 130 river reaches in south-central Spain during the 2001-2009 period. Results suggested that different spatial scales may lead to different conclusions. Spatial autocorrelation and the inadequate representation of some land uses produced unreal results on large scales. Conversely, local scales did not show data autocorrelation and agriculture subclasses were well represented. The local scale of 1 km buffer was the most appropriate to detect river eutrophication in central Spanish rivers, with irrigated cropland as the main cause of river pollution by nitrate. As regards river management, a threshold of 50% irrigated cropland within a 1 km radius buffer has been obtained using breakpoint regression analysis. This means that no more than 50% of irrigation croplands should be allowed near river banks in order to avoid river eutrophication. Finally, a methodological approach is proposed to choose the appropriate spatial scale when studying river eutrophication caused by diffuse pollution like agriculture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Assessing groundwater pollution hazard changes under different socio-economic and environmental scenarios in an agricultural watershed.

    PubMed

    Lima, M Lourdes; Romanelli, Asunción; Massone, Héctor E

    2015-10-15

    This paper proposes a modeling approach for assessing changes in groundwater pollution hazard under two different socio-economic and environmental scenarios: The first one considers an exponential growth of agriculture land-use (Relegated Sustainability), while the other deals with regional economic growth, taking into account, the restrictions put on natural resources use (Sustainability Reforms). The recent (2011) and forecasted (2030) groundwater pollution hazard is evaluated based on hydrogeological parameters and, the impact of land-use changes in the groundwater system, coupling together a land-use change model (Dyna-CLUE) with a groundwater flow model (MODFLOW), as inputs to a decision system support (EMDS). The Dulce Stream Watershed (Pampa Plain, Argentina) was chosen to test the usefulness and utility of this proposed method. It includes a high level of agricultural activities, significant local extraction of groundwater resources for drinking water and irrigation and extensive available data regarding aquifer features. The Relegated Sustainability Scenario showed a negative change in the aquifer system, increasing (+20%; high-very high classes) the contribution to groundwater pollution hazard throughout the watershed. On the other hand, the Sustainability Reforms Scenario displayed more balanced land-use changes with a trend towards sustainability, therefore proposing a more acceptable change in the aquifer system for 2030 with a possible 2% increase (high-very high classes) in groundwater pollution hazard. Results in the recent scenario (2011) showed that 54% of Dulce Stream Watershed still shows a moderate to a very low contribution to groundwater pollution hazard (mainly in the lower area). Therefore, from the point of view of natural resource management, this is a positive aspect, offering possibilities for intervention in order to prevent deterioration and protect this aquifer system. However, since it is quite possible that this aquifer status (i

  11. The contaminant legacy from historic coastal landfills and their potential as sources of diffuse pollution.

    PubMed

    O'Shea, Francis T; Cundy, Andrew B; Spencer, Kate L

    2018-03-01

    Prior to modern environmental regulation landfills in low-lying coastal environments were frequently constructed without leachate control, relying on natural attenuation within inter-tidal sediments to dilute and disperse contaminants reducing environmental impact. With sea level rise and coastal erosion these sites may now pose a pollution risk, yet have received little investigation. This work examines the extent of metal contamination in saltmarsh sediments surrounding a historic landfill in the UK. Patterns of sediment metal data suggest typical anthropogenic pollution chronologies for saltmarsh sediments in industrialised nations. However, many metals were also enriched at depth in close proximity to the landfill boundary and are indicative of a historical leachate plume. Though this total metal load is low, e.g., c. 1200 and 1650kg Pb and Zn respectively, with >1000 historic landfills on flood risk or eroding coastlines in the UK this could represent a significant, yet under-investigated, source of diffuse pollution. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Agricultural Wastes.

    ERIC Educational Resources Information Center

    Jewell, W. J.; Switzenbaum, M. S.

    1978-01-01

    Presents a literature review of agricultural wastes, covering publications of 1976-77. Some of the areas covered are: (1) water characteristics and impacts; (2) waste treatment; (3) reuse of agricultural wastes; and (4) nonpoint pollution sources. A list of 150 references is also presented. (HM)

  13. Impact of diffuse nitrate pollution sources on groundwater quality--some examples from Czechoslovakia.

    PubMed Central

    Benes, V; Pĕkný, V; Skorepa, J; Vrba, J

    1989-01-01

    In several regions of Czechoslovakia with intensive agricultural production, the correlation between the amount of nitrogen fertilizer applied and the nitrate content in groundwater has been recognized. Nitrate pollution of groundwater is considered to be the most serious source of nonpoint pollution in Czechoslovakia. A program of research into the effects of farming activities on groundwater quality in Czechoslovakia is under way on experimental fields (20 to 30 hectares) and, simultaneously, in regions in which shallow, vulnerable aquifers occur. The importance of the soil organic matter's stability for maintaining the groundwater quality is emphasized. Research based on nitrogen and organic carbon balance has shown that the restoration of a soil-groundwater system is a complicated process that usually requires changes in the extent and intensity of agricultural activities and consistent attention to the effects produced by natural conditions. Regional investigation of the impact of farming on shallow aquifers in the fluvial deposits of the Elbe River in Bohemia has proved the hydrochemical instability and vertical hydrochemical heterogeneity of these aquifers. The WASTEN deterministic model was used for modeling the transport and transformation of various types of inorganic fertilizers. The input data is based on laboratory and field measurements. Special topics are the verification of model calculations and the time and spatial variability of input data with respect to the unsaturated zone. The research results are being used for making regional and national agro-groundwater managerial schemes more precise, as well as for decision-making. PMID:2559844

  14. The impact of energy, agriculture, macroeconomic and human-induced indicators on environmental pollution: evidence from Ghana.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2017-03-01

    In this study, the impact of energy, agriculture, macroeconomic and human-induced indicators on environmental pollution from 1971 to 2011 is investigated using the statistically inspired modification of partial least squares (SIMPLS) regression model. There was evidence of a linear relationship between energy, agriculture, macroeconomic and human-induced indicators and carbon dioxide emissions. Evidence from the SIMPLS regression shows that a 1% increase in crop production index will reduce carbon dioxide emissions by 0.71%. Economic growth increased by 1% will reduce carbon dioxide emissions by 0.46%, which means that an increase in Ghana's economic growth may lead to a reduction in environmental pollution. The increase in electricity production from hydroelectric sources by 1% will reduce carbon dioxide emissions by 0.30%; thus, increasing renewable energy sources in Ghana's energy portfolio will help mitigate carbon dioxide emissions. Increasing enteric emissions by 1% will increase carbon dioxide emissions by 4.22%, and a 1% increase in the nitrogen content of manure management will increase carbon dioxide emissions by 6.69%. The SIMPLS regression forecasting exhibited a 5% MAPE from the prediction of carbon dioxide emissions.

  15. Optimal Pollution Trading without Pollution Reductions : A Note

    EPA Science Inventory

    Many kinds of water pollution occur in pulses, e.g., agricultural and urban runoff. Ecosystems, such as wetlands, can serve to regulate these pulses and smooth pollution distributions over time. This smoothing reduces total environmental damages when “instantaneous” damages are m...

  16. Assessing Potential Air Pollutant Emissions from Agricultural Feedstock Production using MOVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Warner, Ethan; Zhang, Yi Min

    Biomass feedstock production is expected to grow as demand for biofuels and bioenergy increases. The change in air pollutant emissions that may result from large-scale biomass supply has implications for local air quality and human health. We developed spatially explicit emissions inventories for corn grain and six cellulosic feedstocks through the extension of the National Renewable Energy Laboratory's Feedstock Production Emissions to Air Model (FPEAM). These inventories include emissions of seven pollutants (nitrogen oxides, ammonia, volatile organic compounds, particulate matter, sulfur oxides, and carbon monoxide) generated from biomass establishment, maintenance, harvest, transportation, and biofuel preprocessing activities. By integrating the EPA'smore » MOtor Vehicle Emissions Simulator (MOVES) into FPEAM, we created a scalable framework to execute county-level runs of the MOVES-Onroad model for representative counties (i.e., those counties with the largest amount of cellulosic feedstock production in each state) on a national scale. We used these results to estimate emissions from the on-road transportation of biomass and combined them with county-level runs of the MOVES-Nonroad model to estimate emissions from agricultural equipment. We also incorporated documented emission factors to estimate emissions from chemical application and the operation of drying equipment for feedstock processing, and used methods developed by the EPA and the California Air Resources Board to estimate fugitive dust emissions. The model developed here could be applied to custom equipment budgets and is extensible to accommodate additional feedstocks and pollutants. Future work will also extend this model to analyze spatial boundaries beyond the county-scale (e.g., regional or sub-county levels).« less

  17. Comparative study on nutrient removal of agricultural non-point source pollution for three filter media filling schemes in eco-soil reactors.

    PubMed

    Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang

    2016-08-01

    Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution.

  18. Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaoundé (Cameroon): influence of urban agriculture and pollution.

    PubMed

    Antonio-Nkondjio, Christophe; Fossog, Billy Tene; Ndo, Cyrille; Djantio, Benjamin Menze; Togouet, Serge Zebaze; Awono-Ambene, Parfait; Costantini, Carlo; Wondji, Charles S; Ranson, Hilary

    2011-06-08

    Urban malaria is becoming a major health priority across Africa. A study was undertaken to assess the importance of urban pollution and agriculture practice on the distribution and susceptibility to insecticide of malaria vectors in the two main cities in Cameroon. Anopheline larval breeding sites were surveyed and water samples analysed monthly from October 2009 to December 2010. Parameters analysed included turbidity, pH, temperature, conductivity, sulfates, phosphates, nitrates, nitrites, ammonia, aluminium, alkalinity, iron, potassium, manganese, magnesium, magnesium hardness and total hardness. Characteristics of water bodies in urban areas were compared to rural areas and between urban sites. The level of susceptibility of Anopheles gambiae to 4% DDT, 0.75% permethrin, 0.05% deltamethrin, 0.1% bendiocarb and 5% malathion were compared between mosquitoes collected from polluted, non polluted and cultivated areas. A total of 1,546 breeding sites, 690 in Yaoundé and 856 in Douala, were sampled in the course of the study. Almost all measured parameters had a concentration of 2- to 100-fold higher in urban compare to rural breeding sites. No resistance to malathion was detected, but bendiocarb resistance was present in Yaounde. Very low mortality rates were observed following DDT or permethrin exposure, associated with high kdr frequencies. Mosquitoes collected in cultivated areas, exhibited the highest resistant levels. There was little difference in insecticide resistance or kdr allele frequency in mosquitoes collected from polluted versus non-polluted sites. The data confirm high selection pressure on mosquitoes originating from urban areas and suggest urban agriculture rather than pollution as the major factor driving resistance to insecticide.

  19. Modelling Regional Hotspots of Water Pollution Induced by Salinization

    NASA Astrophysics Data System (ADS)

    Malsy, M.; Floerke, M.

    2014-12-01

    Insufficient water quality is one of the main global topics causing risk to human health, biodiversity, and food security. At this, salinization of water and land resources is widely spread especially in arid to semi-arid climates, where salinization, often induced by irrigation agriculture, is a fundamental aspect of land degradation. High salinity is crucial to water use for drinking, irrigation, and industrial purposes, and therefore poses a risk to human health and ecosystem status. However, salinization is also an economic problem, in particular in those regions where agriculture makes a significant contribution to the economy and/or where agriculture is mainly based on irrigation. Agricultural production is exposed to high salinity of irrigation water resulting in lower yields. Hence, not only the quantity of irrigation water is of importance for growing cops but also its quality, which may further reduce the available resources. Thereby a major concern for food production and security persists, as irrigated agriculture accounts for over 30% of the total agricultural production. In this study, the large scale water quality model WorldQual was applied to simulate recent total dissolved solids (TDS) loadings and in-stream concentrations from point and diffuse sources to get an insight on potential environmental impacts as well as risks to food security. Regional focus in this study is on developing countries, as these are most threatened by water pollution. Furthermore, insufficient water quality for irrigation and therefore restrictions in irrigation water use were examined, indicating limitations to crop production. For this purpose, model simulations were conducted for the year 2010 to show the recent status of surface water quality and to identify hotspots and main causes of pollution. Our results show that salinity hotspots mainly occur in peak irrigation regions as irrigated agriculture is by far the dominant sector contributing to water abstractions as

  20. Informing policy to protect coastal coral reefs: insight from a global review of reducing agricultural pollution to coastal ecosystems.

    PubMed

    Kroon, Frederieke J; Schaffelke, Britta; Bartley, Rebecca

    2014-08-15

    The continuing degradation of coral reefs has serious consequences for the provision of ecosystem goods and services to local and regional communities. While climate change is considered the most serious risk to coral reefs, agricultural pollution threatens approximately 25% of the total global reef area with further increases in sediment and nutrient fluxes projected over the next 50 years. Here, we aim to inform coral reef management using insights learned from management examples that were successful in reducing agricultural pollution to coastal ecosystems. We identify multiple examples reporting reduced fluxes of sediment and nutrients at end-of-river, and associated declines in nutrient concentrations and algal biomass in receiving coastal waters. Based on the insights obtained, we recommend that future protection of coral reef ecosystems demands policy focused on desired ecosystem outcomes, targeted regulatory approaches, up-scaling of watershed management, and long-term maintenance of scientifically robust monitoring programs linked with adaptive management. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  1. Pollution indicators in groundwater of two agricultural catchments in Lower Silesia (Poland)

    NASA Astrophysics Data System (ADS)

    Kasperczyk, Lidia; Modelska, Magdalena; Staśko, Stanisław

    2016-12-01

    The article discusses the content and source of mineral nitrogen compounds in groundwater, based on the data collected in two river catchments in two series (spring and autumn 2014). The study area comprises two catchments located in Lower Silesia, Poland - Cicha Woda and Sąsiecznica. Both catchments are characterised agricultural character of development. In the both researched areas, the points of State Environmental Monitoring (SEM) are located but only the Cicha Woda area is classified as nitrate vulnerable zone (NVZ). To analyse and compare the contamination of Quaternary and Neogene aquifers, the concentration of nitrates, nitrites, ammonium and potassium ions was measured primarily. Results showed the exceedance of nitrogen mineral forms of shallow groundwater Quaternary aquifer in both basins. The concentration of nitrates range from 0.08 to 142.12 mgNO3 -/dm3 (Cicha Woda) and from 2.6 to 137.65 mg NO3 -/dm3 (Sąsiecznica). The major source of pollution is probably the intensive agriculture activity. It causes a degradation of the shallow groundwater because of nitrate, nitrite, potassium, phosphates and ammonium contents. There was no observed contamination of anthropogenic origin in the deeper Neogene aquifer of Cicha Woda catchment.

  2. Assessment of Cr, Ni and Pb Pollution in Rural Agricultural Soils of Tonalite-Trondjhemite Series in Central India.

    PubMed

    Shukla, Kriti; Kumar, Bijendra; Agrawal, Rahul; Priyanka, Kumari; Venkatesh, Madavi; Anshumali

    2017-06-01

    Chromium (Cr), nickel (Ni) and lead (Pb) contamination was investigated in wheat cultivated rain-fed and irrigated rural agricultural soils (n = 31) of Tonalite-Trondjhemite Series in Central India. The soil sampling was carried out by using stratified random sampling method. The mean concentrations of Cr, Ni and Pb were 54.8, 38.1 and 68.9 mg/kg, respectively. The average values of enrichment factor (EF), geoaccumulation index (I geo ) and contamination factor (CF) followed the order as: Pb > Ni > Cr. Distribution patterns of soil parent material and weathering processes govern mineral enrichments, irrespective of rainfed or irrigated agricultural practices. Principal component analysis (PCA) showed strong loading of Cr and Ni (PC1) and Pb and clay (PC3). The strong loading on Cr and Ni indicates soils are originating from basic and volcanic rocks in the study area. The strong loading of Pb and clay indicates Pb is strongly adsorbed on clay minerals and Fe-oxides. The cancer risk (CR) index showed negligible carcinogenic risk to the residing population. However, hazard index (HI) values for children exceed the safe limit (HI > 1) for Cr and Pb. Spatial distribution of pollution load index suggest highest pollution in the northeastern part of the district. The study revealed that geogenically enriched soils of the area are suitable for agricultural activities under present conditions.

  3. Finite Difference Formulation for Prediction of Water Pollution

    NASA Astrophysics Data System (ADS)

    Johari, Hanani; Rusli, Nursalasawati; Yahya, Zainab

    2018-03-01

    Water is an important component of the earth. Human being and living organisms are demand for the quality of water. Human activity is one of the causes of the water pollution. The pollution happened give bad effect to the physical and characteristic of water contents. It is not practical to monitor all aspects of water flow and transport distribution. So, in order to help people to access to the polluted area, a prediction of water pollution concentration must be modelled. This study proposed a one-dimensional advection diffusion equation for predicting the water pollution concentration transport. The numerical modelling will be produced in order to predict the transportation of water pollution concentration. In order to approximate the advection diffusion equation, the implicit Crank Nicolson is used. For the purpose of the simulation, the boundary condition and initial condition, the spatial steps and time steps as well as the approximations of the advection diffusion equation have been encoded. The results of one dimensional advection diffusion equation have successfully been used to predict the transportation of water pollution concentration by manipulating the velocity and diffusion parameters.

  4. Pollution par les nitrates des eaux souterraines du bassin d'Essaouira (Maroc)

    NASA Astrophysics Data System (ADS)

    Laftouhi, Nour-Eddine; Vanclooster, Marnik; Jalal, Mohammed; Witam, Omar; Aboufirassi, Mohamed; Bahir, Mohamed; Persoons, Étienne

    2003-03-01

    The Essaouira Basin (Morocco) contains a multi-layered aquifer situated in fractured and karstic materials from the Middle and Upper Cretaceous (the Cenomanian, Turonian and Senonian). Water percolates through the limestone and dolomite formations of the Turonian stage either through the marls and calcareous marls of the Cenomanian or through the calcareous marly materials of the Senonian. The aquifer system may be interconnected since the marl layer separating the Turonian, Cenomanian and Senonian aquifers is thin or intensively fractured. In that case, the water is transported through a network of fractures and stratification joints. This paper describes the extent of the nitrate pollution in the area and its origin. Most of the wells and drillholes located in the Kourimat perimeter are contaminated by nitrates with some concentrations over 400 mg l-1. Nitrate contamination is also observed in the surface water of the Qsob River, which constitutes the natural outlet of the multi-layered complex aquifer system. In this area, agriculture is more developed than in the rest of the Essaouira Basin. Diffuse pollution of the karstic groundwater body by agricultural fertiliser residues may therefore partially explain the observed nitrate pollution. However, point pollution around the wells, springs and drillholes from human wastewater, livestock faeces and the mineralisation of organic debris close to the Muslim cemeteries cannot be excluded.

  5. Organic pollutant levels in an agricultural watershed: the importance of analyzing multiple matrices for assessing stream water pollution.

    PubMed

    Gonzalez, Mariana; Miglioranza, Karina S B; Grondona, Sebastían I; Silva Barni, Maria Florencia; Martinez, Daniel E; Peña, Aránzazu

    2013-04-01

    This study is aimed at analyzing the occurrence and transport of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the Quequén Grande river basin, as representative of a catchment under diffuse pollution sources. Pollutant levels in soils, river bottom sediments (RBS), streamwater (Sw), suspended particle materials (SPMs), macrophytes and muscle of silverside were determined by GC-ECD. Soil K(d) values for the current-used insecticides, endosulfans and cypermethrin, were established. Total levels (ng g(-1) dry weight) in soil ranged between 0.07–0.9 for OCPs, 0.03–0.37 for PCBs and 0.01–0.05 for PBDEs. Endosulfan insecticide (α- + b- + sulfate metabolite) represented up to 72.5% of OCPs. The low soil retention for α-endosulfan (K(d): 77) and endosulfan sulfate (K(d): 100) allows their transport to Sw, SPM and RBS. Levels of endosulfan in Sw in some cases exceeded the value postulated by international guidelines for aquatic biota protection (3 ng L(-1)). PCB and PBDE pollution was related to harbour, dumping sites and pile tire burning. Tri and hexa PCB congeners predominated in all matrices and exceeded the quality guideline value of 0.04 ng L(-1) in Sw. Considering levels in silverside muscle, none of the oral reference doses were exceeded, however, PCBs accounted for 18.6% of the total daily allowed ingest for a 70 kg individual. Although the levels of PCBs and OCPs in soil and RBS were low and did not go beyond quality guidelines, these compounds could still represent a risk to aquatic biota and humanbeings, and thus actions towards preventing this situation should be undertaken.

  6. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions.

    PubMed

    Nsenga Kumwimba, Mathieu; Meng, Fangang; Iseyemi, Oluwayinka; Moore, Matthew T; Zhu, Bo; Tao, Wang; Liang, Tang Jia; Ilunga, Lunda

    2018-10-15

    Domestic wastewater and agricultural runoff are increasingly viewed as major threats to both aquatic and terrestrial ecosystems due to the introduction of non-point source inorganic (e.g., nitrogen, phosphorus and metals) and organic (e.g., pesticides and pharmaceutical residues) pollutants. With rapid economic growth and social change in rural regions, it is important to examine the treatment systems in rural and remote areas for high efficiency, low running costs, and minimal maintenance in order to minimize its influence on water bodies and biodiversity. Recently, the use of vegetated drainage ditches (VDDs) has been employed in treatment of domestic sewage and agricultural runoff, but information on the performance of VDDs for treating these pollutants with various new management practices is still not sufficiently summarized. This paper aims to outline and review current knowledge related to the use of VDDs in mitigating these pollutants from domestic sewage and agricultural runoff. Literature analysis has suggested that further research should be carried out to improve ditch characteristics and management strategies inside ditches in order to ensure their effectiveness. Firstly, the reported major ditch characteristics with the most effect on pollutant removal processes (e.g., plant species, weirs, biofilms, and substrates selection) were summarized. The second focus concerns the function of ditch characteristics in VDDs for pollutant removal and identification of possible removal mechanisms involved. Thirdly, we examined factors to consider for establishing appropriate management strategies within ditches and how these could influence the whole ditch design process. The current review promotes areas where future research is needed and highlights clear and sufficient evidence regarding performance and application of this overlooked ditch system to reduce pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils.

    PubMed

    Adamo, Paola; Iavazzo, Pietro; Albanese, Stefano; Agrelli, Diana; De Vivo, Benedetto; Lima, Annamaria

    2014-12-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential

    USGS Publications Warehouse

    Diebel, M.W.; Maxted, J.T.; Robertson, Dale M.; Han, S.; Vander Zanden, M. J.

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.

  9. Quantifying the influence of agricultural fires in northwest India on urban air pollution in Delhi, India

    NASA Astrophysics Data System (ADS)

    Cusworth, Daniel H.; Mickley, Loretta J.; Sulprizio, Melissa P.; Liu, Tianjia; Marlier, Miriam E.; DeFries, Ruth S.; Guttikunda, Sarath K.; Gupta, Pawan

    2018-04-01

    Since at least the 1980s, many farmers in northwest India have switched to mechanized combine harvesting to boost efficiency. This harvesting technique leaves abundant crop residue on the fields, which farmers typically burn to prepare their fields for subsequent planting. A key question is to what extent the large quantity of smoke emitted by these fires contributes to the already severe pollution in Delhi and across other parts of the heavily populated Indo-Gangetic Plain located downwind of the fires. Using a combination of observed and modeled variables, including surface measurements of PM2.5, we quantify the magnitude of the influence of agricultural fire emissions on surface air pollution in Delhi. With surface measurements, we first derive the signal of regional PM2.5 enhancements (i.e. the pollution above an anthropogenic baseline) during each post-monsoon burning season for 2012–2016. We next use the Stochastic Time-Inverted Lagrangian Transport model (STILT) to simulate surface PM2.5 using five fire emission inventories. We reproduce up to 25% of the weekly variability in total observed PM2.5 using STILT. Depending on year and emission inventory, our method attributes 7.0%–78% of the maximum observed PM2.5 enhancements in Delhi to fires. The large range in these attribution estimates points to the uncertainties in fire emission parameterizations, especially in regions where thick smoke may interfere with hotspots of fire radiative power. Although our model can generally reproduce the largest PM2.5 enhancements in Delhi air quality for 1–3 consecutive days each fire season, it fails to capture many smaller daily enhancements, which we attribute to the challenge of detecting small fires in the satellite retrieval. By quantifying the influence of upwind agricultural fire emissions on Delhi air pollution, our work underscores the potential health benefits of changes in farming practices to reduce fires.

  10. An export coefficient based inexact fuzzy bi-level multi-objective programming model for the management of agricultural nonpoint source pollution under uncertainty

    NASA Astrophysics Data System (ADS)

    Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Yue, Wencong; Tan, Qian

    2018-02-01

    In this research, an export coefficient based inexact fuzzy bi-level multi-objective programming (EC-IFBLMOP) model was developed through integrating export coefficient model (ECM), interval parameter programming (IPP) and fuzzy parameter programming (FPP) within a bi-level multi-objective programming framework. The proposed EC-IFBLMOP model can effectively deal with the multiple uncertainties expressed as discrete intervals and fuzzy membership functions. Also, the complexities in agricultural systems, such as the cooperation and gaming relationship between the decision makers at different levels, can be fully considered in the model. The developed model was then applied to identify the optimal land use patterns and BMP implementing levels for agricultural nonpoint source (NPS) pollution management in a subcatchment in the upper stream watershed of the Miyun Reservoir in north China. The results of the model showed that the desired optimal land use patterns and implementing levels of best management of practices (BMPs) would be obtained. It is the gaming result between the upper- and lower-level decision makers, when the allowable discharge amounts of NPS pollutants were limited. Moreover, results corresponding to different decision scenarios could provide a set of decision alternatives for the upper- and lower-level decision makers to identify the most appropriate management strategy. The model has a good applicability and can be effectively utilized for agricultural NPS pollution management.

  11. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh.

    PubMed

    Bhuiyan, Mohammad A H; Parvez, Lutfar; Islam, M A; Dampare, Samuel B; Suzuki, Shigeyuki

    2010-01-15

    Total concentrations of heavy metals in the soils of mine drainage and surrounding agricultural fields in the northern part of Bangladesh were determined to evaluate the level of contamination. The average concentrations of Ti, Mn, Zn, Pb, As, Fe, Rb, Sr, Nb and Zr exceeded the world normal averages and, in some cases, Mn, Zn, As and Pb exceeded the toxic limit of the respective metals. Soil pollution assessment was carried out using enrichment factor (EF), geoaccumulation index (I(geo)) and pollution load index (PLI). The soils show significant enrichment with Ti, Mn, Zn, Pb, As, Fe, Sr and Nb, indicating inputs from mining activities. The I(geo) values have revealed that Mn (1.24+/-0.38), Zn (1.49+/-0.58) and Pb (1.63+/-0.38) are significantly accumulated in the study area. The PLIs derived from contamination factors indicate that the distal part of the coal mine-affected area is the most polluted (PLI of 4.02). Multivariate statistical analyses, principal component and cluster analyses, suggest that Mn, Zn, Pb and Ti are derived from anthropogenic sources, particularly coal mining activities, and the extreme proximal and distal parts are heavily contaminated with maximum heavy metals.

  12. Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaoundé (Cameroon): influence of urban agriculture and pollution

    PubMed Central

    2011-01-01

    Background Urban malaria is becoming a major health priority across Africa. A study was undertaken to assess the importance of urban pollution and agriculture practice on the distribution and susceptibility to insecticide of malaria vectors in the two main cities in Cameroon. Methods Anopheline larval breeding sites were surveyed and water samples analysed monthly from October 2009 to December 2010. Parameters analysed included turbidity, pH, temperature, conductivity, sulfates, phosphates, nitrates, nitrites, ammonia, aluminium, alkalinity, iron, potassium, manganese, magnesium, magnesium hardness and total hardness. Characteristics of water bodies in urban areas were compared to rural areas and between urban sites. The level of susceptibility of Anopheles gambiae to 4% DDT, 0.75% permethrin, 0.05% deltamethrin, 0.1% bendiocarb and 5% malathion were compared between mosquitoes collected from polluted, non polluted and cultivated areas. Results A total of 1,546 breeding sites, 690 in Yaoundé and 856 in Douala, were sampled in the course of the study. Almost all measured parameters had a concentration of 2- to 100-fold higher in urban compare to rural breeding sites. No resistance to malathion was detected, but bendiocarb resistance was present in Yaounde. Very low mortality rates were observed following DDT or permethrin exposure, associated with high kdr frequencies. Mosquitoes collected in cultivated areas, exhibited the highest resistant levels. There was little difference in insecticide resistance or kdr allele frequency in mosquitoes collected from polluted versus non-polluted sites. Conclusion The data confirm high selection pressure on mosquitoes originating from urban areas and suggest urban agriculture rather than pollution as the major factor driving resistance to insecticide. PMID:21651761

  13. Potential pollutant sources in a Choptank River subwatershed: Influence of agricultural and residential land use and aqueous and atmospheric sources

    USDA-ARS?s Scientific Manuscript database

    Agriculture and animal feeding operations have been implicated as sources of water pollution along the Choptank River, an estuary and tributary of the Chesapeake Bay. This study examined a subwatershed within the Choptank River watershed for effects of land use on water quality. Water and sediment...

  14. Eurasian beaver activity increases water storage, attenuates flow and mitigates diffuse pollution from intensively-managed grasslands.

    PubMed

    Puttock, Alan; Graham, Hugh A; Cunliffe, Andrew M; Elliott, Mark; Brazier, Richard E

    2017-01-15

    Beavers are the archetypal keystone species, which can profoundly alter ecosystem structure and function through their ecosystem engineering activity, most notably the building of dams. This can have a major impact upon water resource management, flow regimes and water quality. Previous research has predominantly focused on the activities of North American beaver (Castor canadensis) located in very different environments, to the intensive lowland agricultural landscapes of the United Kingdom and elsewhere in Europe. Two Eurasian beavers (Castor fiber) were introduced to a wooded site, situated on a first order tributary, draining from intensively managed grassland. The site was monitored to understand impacts upon water storage, flow regimes and water quality. Results indicated that beaver activity, primarily via the creation of 13 dams, has increased water storage within the site (holding ca. 1000m 3 in beaver ponds) and beavers were likely to have had a significant flow attenuation impact, as determined from peak discharges (mean 30±19% reduction), total discharges (mean 34±9% reduction) and peak rainfall to peak discharge lag times (mean 29±21% increase) during storm events. Event monitoring of water entering and leaving the site showed lower concentrations of suspended sediment, nitrogen and phosphate leaving the site (e.g. for suspended sediment; average entering site: 112±72mgl -1 , average leaving site: 39±37mgl -1 ). Combined with attenuated flows, this resulted in lower diffuse pollutant loads in water downstream. Conversely, dissolved organic carbon concentrations and loads downstream were higher. These observed changes are argued to be directly attributable to beaver activity at the site which has created a diverse wetland environment, reducing downstream hydrological connectivity. Results have important implications for beaver reintroduction programs which may provide nature based solutions to the catchment-scale water resource management issues

  15. Purification of polluted water with spent mushroom (Agaricus bisporus) substrate: from agricultural waste to biosorbent of phenanthrene, Cd and Pb.

    PubMed

    García-Delgado, C; Alonso-Izquierdo, M; González-Izquierdo, M; Yunta, F; Eymar, E

    2017-07-01

    The present research was aimed to (i) report the recycling of spent A. bisporus substrate (SAS) to remove heavy metals (Cd and Pb) and phenanthrene (Phe) from polluted water and (ii) assess the possibility to use the treated water for irrigation. Batch experiments were carried out to assess, firstly, the effect of interaction time between pollutants with SAS and, secondly, the pH of the polluted water. Then a biofilter was designed by using pressurized glass columns. Chemical parameters such as pH, electrical conductivity and content of Pb, Cd, Phe, nutrients (NPK) and Cl - were determined. Equilibrium for contaminants was quickly reached (1-2 h). The pH of the polluted water was the key factor for pollutants' adsorption. The polluted water's pH was increased after biofilter interaction. Phe was not detected in any fraction. Pb and Cd sorption rates were higher than 99%. The pollutant concentrations were within the permitted range to be used for agriculture purposes. Purified water showed significant concentrations of NPK, indicating its potential use as fertilizer. The SAS shows potential to be used as Phe, Pb and Cd biosorbent and the resulting treated water can be used for irrigation according to pollutant contents and agronomical evaluation.

  16. Microbial pollution in wildlife: Linking agricultural manuring and bacterial antibiotic resistance in red-billed choughs.

    PubMed

    Blanco, Guillermo; Lemus, Jesús A; Grande, Javier

    2009-05-01

    The spread of pathogens in the environment due to human activities (pathogen pollution) may be involved in the emergence of many diseases in humans, livestock and wildlife. When manure from medicated livestock and urban effluents is spread onto agricultural land, both residues of antibiotics and bacteria carrying antibiotic resistance may be introduced into the environment. The transmission of bacterial resistance from livestock and humans to wildlife remains poorly understood even while wild animals may act as reservoirs of resistance that may be amplified and spread in the environment. We determined bacterial resistance to antibiotics in wildlife using the red-billed chough Pyrrhocorax pyrrhocorax as a potential bioindicator of soil health, and evaluated the role of agricultural manuring with waste of different origins in the acquisition and characteristics of such resistance. Agricultural manure was found to harbor high levels of bacterial resistance to multiple antibiotics. Choughs from areas where manure landspreading is a common agricultural practice harbor a high bacterial resistance to multiple antibiotics, resembling the resistance profile found in the waste (pig slurry and sewage sludge) used in each area. The transfer of bacterial resistance to wildlife should be considered as an important risk for environmental health when agricultural manuring involves fecal material containing multiresistant enteric bacteria including pathogens from livestock operations and urban areas. The assessment of bacterial resistance in wild animals may be valuable for the monitoring of environmental health and for the management of emergent infectious diseases influenced by the impact of different human activities in the environment.

  17. The Other Water Pollution

    ERIC Educational Resources Information Center

    Barton, Kathy

    1978-01-01

    Nonpoint source pollution, water pollution not released at one specific identifiable point, now accounts for 50 percent of the nation's water pollution problem. Runoff is the primary culprit and includes the following sources: agriculture, mining, hydrologic modifications, and urban runoff. Economics, legislation, practices, and management of this…

  18. Agricultural and urban pollution

    NASA Technical Reports Server (NTRS)

    Brehmer, M. L.

    1972-01-01

    The degradation produced by the introduction of agricultural and urban wastes into estuarine systems, with emphasis on the Chesapeake Bay area, is discussed. The subjects presented are: (1) effects of sediment loading and (2) organic and nutrient loading problems. The impact of high turbidity on the biological life of the bay is analyzed. The sources of nutrients which produce over-enrichment of the waters and the subsequent production of phytoplankton are examined.

  19. Intensive rice agriculture deteriorates the quality of shallow groundwater in a typical agricultural catchment in subtropical central China.

    PubMed

    Wang, Yi; Li, Yuyuan; Li, Yong; Liu, Feng; Liu, Xinliang; Gong, Dianlin; Ma, Qiumei; Li, Wei; Wu, Jinshui

    2015-09-01

    High nitrogen (N) concentrations in rural domestic water supplies have been attributed to excessive agricultural N leaching into shallow groundwater systems; therefore, it is important to determine the impact of agriculture (e.g., rice production) on groundwater quality. To understand the impact of agricultural land use on the N concentrations in the shallow groundwater in subtropical central China, a large observation program was established to observe ammonium-N (NH4-N), nitrate-N (NO3-N), and total N (TN) concentrations in 161 groundwater observation wells from April 2010 to November 2012. The results indicated that the median values of NH4-N, NO3-N, and TN concentrations in the groundwater were 0.15, 0.39, and 1.38 mg N L(-1), respectively. A total of 36.3 % of the water samples were categorized as NH4-N pollution, and only a small portion of the samples were categorized as NO3-N pollution, based on the Chinese Environmental Quality Standards for Groundwater of GB/T 14848-93 (General Administration of Quality Supervision of China, 1993). These results indicated of moderate groundwater NH4-N pollution, which was mainly attributed to intensive rice agriculture with great N fertilizer application rates in the catchment. In addition, tea and vegetable fields showed higher groundwater NO3-N and TN concentrations than other agricultural land use types. The factorial correspondence analysis (FCA) suggested that the flooded agricultural land use types (e.g., single-rice and double-rice) had potential to impose NH4-N pollution, particularly in the soil exhausting season during from July to October. And, the great N fertilizer application rates could lead to a worse NO3-N and TN pollution in shallow groundwater. Hence, to protect groundwater quality and minimize NH4-N pollution, managing optimal fertilizer application and applying appropriate agricultural land use types should be implemented in the region.

  20. Environmental impacts of modern agricultural technology diffusion in Bangladesh: an analysis of farmers' perceptions and their determinants.

    PubMed

    Rahman, Sanzidur

    2003-06-01

    Farmers' perception of the environmental impacts of modern agricultural technology diffusion and factors determining such awareness were examined using survey data from 21 villages in three agro-ecological regions of Bangladesh. Results reveal that farmers are well aware of the adverse environmental impacts of modern agricultural technology, although their awareness remains confined within visible impacts such as soil fertility, fish catches, and health effects. Their perception of intangible impacts such as, toxicity in water and soils is weak. Level and duration of modern agricultural technology adoption directly influence awareness of its adverse effects. Education and extension contacts also play an important role in raising awareness. Awareness is higher among farmers in developed regions, fertile locations and those with access to off-farm income sources. Promotion of education and strengthening extension services will boost farmers' environmental awareness. Infrastructure development and measures to replenish depleting soil fertility will also play a positive role in raising awareness.

  1. Assessing water pollution level and gray water footprint of anthropogenic nitrogen in agricultural system

    NASA Astrophysics Data System (ADS)

    Huang, Guorui; Chen, Han; Yu, Chaoqing

    2017-04-01

    Water pollution has become a global problem which is one of the most critical issues of today's water treatment. At a spatial resolution of 10km, we use the DeNitrification-DeComposition (DNDC) model to simulate the biogeochemical processes for major cropping systems from 1955 to 2014, estimate the anthropogenic nitrogen loads to fresh, and calculate the resultant grey water footprints and N-related water pollution level in China. The accumulated annual Nitrogen loads to fresh from agricultural system is 0.38Tg in 1955 and 4.42Tg in 2014, while the grey water footprints vary from 1.53 billion m3 to 17.67 billion m3, respectively. N loads in north of China contributes much more on the N leaching because of the high fertilizer but in south of China, it is mainly focused on the N runoff because of the heavy rain. There are more than 25% of grids with WPL>1 (exceed the water capacity of assimilation), which is mainly located on the North China Plain.

  2. Agricultural Science Protects Our Environment.

    ERIC Educational Resources Information Center

    1967

    Included are a 49 frame filmstrip and a script for narrating a presentation. The presentation is aimed at the secondary school level with an emphasis on how agricultural scientists investigate problems in farmland erosion, stream pollution, road building erosion problems, air pollution, farm pollution, pesticides, and insect control by biological…

  3. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  4. Transport of particle-associated elements in two agriculture-dominated boreal river systems.

    PubMed

    Marttila, Hannu; Saarinen, Tuomas; Celebi, Ahmet; Kløve, Bjørn

    2013-09-01

    Transport of particulate pollutants in fluvial systems can contribute greatly to total loads. Understanding transport mechanics under different hydrological conditions is key in successful load estimation. This study analysed trace elements and physico-chemical parameters in time-integrated suspended sediment samples, together with dissolved and total concentrations of pollutants, along two agriculture- and peatland-dominated boreal river systems. The samples were taken in a spatially and temporally comprehensive sampling programme during the ice-free seasons of 2010 and 2011. The hydrochemistry and transport of particle-bound elements in the rivers were strongly linked to intense land use and acid sulphate soils in the catchment area, with arable, pasture and peat areas in particular being main diffuse sources. There were significant seasonal and temporal variations in dissolved and particulate fluxes, but spatial variations were small. Continuous measurements of EC, turbidity and discharge proved to be an accurate indicator of dissolved and particulate fluxes. Overall, the results show that transport of particle-bound elements makes a major contribution to total transport fluxes in agriculture-dominated boreal rivers. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Transition of fertilizer application and agricultural pollution loads: a case study in the Nhue-Day River basin.

    PubMed

    Giang, P H; Harada, H; Fujii, S; Lien, N P H; Hai, H T; Anh, P N; Tanaka, S

    2015-01-01

    Rapid socio-economic development in suburban areas of developing countries has induced changes in agricultural waste and nutrient management, resulting in water pollution. The study aimed at estimating agricultural nutrient cycles and their contribution to the water environment. A material flow model of nitrogen (N) and phosphorus (P) was developed focusing on agricultural activities from 1980 to 2010 in Trai hamlet, an agricultural watershed in Nhue-Day River basin, Vietnam. The model focused on the change in household management of human excreta and livestock excreta, and chemical fertilizer consumption. The results showed that the proportion of nutrients from compost/manure applied to paddy fields decreased from 85 to 41% for both N and P between 1980 and 2010. The nutrient inputs derived from chemical fertilizer decreased 6% between 1980 and 2000 for both N and P. Then, these nutrients increased 1.4 times for N and 1.2 times for P from 2000 to 2010. As of 2010, the total inputs to paddy fields have amounted to 435 kg-N/ha/year and 90 kg-P/ha/year. Of these nutrient inputs, 40% of N and 65% of P were derived from chemical fertilizer. Thirty per cent (30%) of total N input was discharged to the water bodies through agricultural runoff and 47% of total P input accumulated in soil.

  6. [Effects of agricultural activities and transgenic crops on agricultural biodiversity].

    PubMed

    Zhang, Xi-Tao; Luo, Hong-Bing; Li, Jun-Sheng; Huang, Hai; Liu, Yong-Bo

    2014-09-01

    Agricultural biodiversity is a key part of the ecosystem biodiversity, but it receives little concern. The monoculture, environmental pollution and habitat fragmentation caused by agricultural activities have threatened agricultural biodiversity over the past 50 years. To optimize agricultural management measures for crop production and environmental protection, we reviewed the effects of agricultural activities, including cultivation patterns, plastic mulching, chemical additions and the cultivation of transgenic crops, on agricultural biodiversity. The results showed that chemical pesticides and fertilizers had the most serious influence and the effects of transgenic crops varied with other factors like the specific transgene inserted in crops. The environmental risk of transgenic crops should be assessed widely through case-by-case methods, particularly its potential impacts on agricultural biodiversity. It is important to consider the protection of agricultural biodiversity before taking certain agricultural practices, which could improve agricultural production and simultaneously reduce the environmental impacts.

  7. Research on numerical simulation technology about regional important pollutant diffusion of haze

    NASA Astrophysics Data System (ADS)

    Du, Boying; Ma, Yunfeng; Li, Qiangqiang; Wang, Qi; Hu, Qiongqiong; Bian, Yushan

    2018-02-01

    In order to analyze the formation of haze in Shenyang and the factors that affect the diffusion of pollutants, the simulation experiment adopted in this paper is based on the numerical model of WRF/CALPUFF coupling. Simulation experiment was conducted to select PM10 of Shenyang City in the period from March 1 to 8, and the PM10 in the regional important haze was simulated. The survey was conducted with more than 120 enterprises section the point of the emission source of this experiment. The contrastive data were analyzed with 11 air quality monitoring points, and the simulation results were compared. Analyze the contribution rate of each typical enterprise to the air quality, verify the correctness of the simulation results, and then use the model to establish the prediction model.

  8. A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty

    NASA Astrophysics Data System (ADS)

    Llopis-Albert, Carlos; Palacios-Marqués, Daniel; Merigó, José M.

    2014-04-01

    In this paper a methodology for the stochastic management of groundwater quality problems is presented, which can be used to provide agricultural advisory services. A stochastic algorithm to solve the coupled flow and mass transport inverse problem is combined with a stochastic management approach to develop methods for integrating uncertainty; thus obtaining more reliable policies on groundwater nitrate pollution control from agriculture. The stochastic inverse model allows identifying non-Gaussian parameters and reducing uncertainty in heterogeneous aquifers by constraining stochastic simulations to data. The management model determines the spatial and temporal distribution of fertilizer application rates that maximizes net benefits in agriculture constrained by quality requirements in groundwater at various control sites. The quality constraints can be taken, for instance, by those given by water laws such as the EU Water Framework Directive (WFD). Furthermore, the methodology allows providing the trade-off between higher economic returns and reliability in meeting the environmental standards. Therefore, this new technology can help stakeholders in the decision-making process under an uncertainty environment. The methodology has been successfully applied to a 2D synthetic aquifer, where an uncertainty assessment has been carried out by means of Monte Carlo simulation techniques.

  9. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    NASA Astrophysics Data System (ADS)

    Petersen, M. F.; Eriksson, E.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    The water quality of surface waters is threatened by multiple anthropogenic pollutants and the large variety of pollutants challenges the monitoring and assessment of the water quality. The aim of this study was to characterize and quantify both point and diffuse sources of micropollutants impacting the water quality of a stream at catchment scale. Grindsted stream in western Jutland, Denmark was used as a study site. The stream passes both urban and agricultural areas and is impacted by severe groundwater contamination in Grindsted city. Along a 12 km reach of Grindsted stream, the potential pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 - 8.8 μg/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most frequently detected and some rarely detected pesticides in Danish water courses. The concentrations were generally consistent with other findings in Danish streams and in the range 0.01 - 0.09 μg/l; except for metribuzin-diketo that showed high concentrations up to 0.74 μg/l. The groundwater contamination at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl

  10. Water Pollution

    MedlinePlus

    ... or other foreign substances that are detrimental to human, plant, or animal health. These pollutants include fertilizers and pesticides from agricultural runoff; sewage and food processing waste; ...

  11. Simulating the evolution of non-point source pollutants in a shallow water environment.

    PubMed

    Yan, Min; Kahawita, Rene

    2007-03-01

    Non-point source pollution originating from surface applied chemicals in either liquid or solid form as part of agricultural activities, appears in the surface runoff caused by rainfall. The infiltration and transport of these pollutants has a significant impact on subsurface and riverine water quality. The present paper describes the development of a unified 2-D mathematical model incorporating individual models for infiltration, adsorption, solubility rate, advection and diffusion, which significantly improve the current practice on mathematical modeling of pollutant evolution in shallow water. The governing equations have been solved numerically using cubic spline integration. Experiments were conducted at the Hydrodynamics Laboratory of the Ecole Polytechnique de Montreal to validate the mathematical model. Good correspondence between the computed results and experimental data has been obtained. The model may be used to predict the ultimate fate of surface applied chemicals by evaluating the proportions that are dissolved, infiltrated into the subsurface or are washed off.

  12. Multiple tree-ring isotopes as environmental indicators of diffuse atmospheric pollution in a peri-urban area

    NASA Astrophysics Data System (ADS)

    Doucet, A.; Savard, M. M.; Bégin, C.; Ouarda, T. B.; Marion, J.

    2010-12-01

    The combined analyses of tree-ring δ13C, δ18O, δ15N, 206Pb/207Pb, 206Pb/204Pb and 206Pb/208Pb isotope ratios of three red spruce specimens from the Tantaré ecological reserve located 40 km northwest of Québec City (Canada) were studied with the aim of reconstructing environmental conditions and unravel past air-quality changes of the 1880-2007 period. To separate the tree-ring δ18O and δ13C patterns induced by natural conditions from those generated by anthropogenic perturbations, a linear regression was applied between the most explicative meteorological parameters and the isotopic series for the period of low pollution (1880 to 1909). The model equations were then applied to the most recent part of the series (1910-2007) to verify if climatic conditions have remained the main driver of the tree-ring isotopic variations. The good fit between the modeled and measured δ18O series for the entire studied period suggests that the assimilation of oxygen by red spruce trees is not significantly affected by pollution stress near Québec City. However, the deviation between the measured and modeled δ13C values for the 1944-2007 period indicates that diffuse pollution affected carbon assimilation by the investigated trees. To independently validate if atmospheric pollution could have generated the deviation between the measured and the estimated δ13C values, a linear regression was applied between the portion of the residual δ13C values and atmospheric pollution (Canadian fossil fuel proxy from 1958 to 2000). The nice fit between the modeled δ13C values from the combination of the two regression analyses based on climate and emission proxy strongly supports the hypothesis that there is a natural and an anthropogenic portion in the δ13C variations of the studied specimens. The short-term variations of the red spruce δ15N series are correlated with the instrumentally measured amounts of provincial N emissions for the 1990 to 2006 period (longest measurements

  13. Modelling Common Agricultural Policy-Water Framework Directive interactions and cost-effectiveness of measures to reduce nitrogen pollution.

    PubMed

    Mouratiadou, Ioanna; Russell, Graham; Topp, Cairistiona; Louhichi, Kamel; Moran, Dominic

    2010-01-01

    Selecting cost-effective measures to regulate agricultural water pollution to conform to the Water Framework Directive presents multiple challenges. A bio-economic modelling approach is presented that has been used to explore the water quality and economic effects of the 2003 Common Agricultural Policy Reform and to assess the cost-effectiveness of input quotas and emission standards against nitrate leaching, in a representative case study catchment in Scotland. The approach combines a biophysical model (NDICEA) with a mathematical programming model (FSSIM-MP). The results indicate only small changes due to the Reform, with the main changes in farmers' decision making and the associated economic and water quality indicators depending on crop price changes, and suggest the use of target fertilisation in relation to crop and soil requirements, as opposed to measures targeting farm total or average nitrogen use.

  14. Simulation of agricultural non-point source pollution in Xichuan by using SWAT model

    NASA Astrophysics Data System (ADS)

    Xing, Linan; Zuo, Jiane; Liu, Fenglin; Zhang, Xiaohui; Cao, Qiguang

    2018-02-01

    This paper evaluated the applicability of using SWAT to access agricultural non-point source pollution in Xichuan area. In order to build the model, DEM, soil sort and land use map, climate monitoring data were collected as basic database. The SWAT model was calibrated and validated for the SWAT was carried out using streamflow, suspended solids, total phosphorus and total nitrogen records from 2009 to 2011. Errors, coefficient of determination and Nash-Sutcliffe coefficient were considered to evaluate the applicability. The coefficient of determination were 0.96, 0.66, 0.55 and 0.66 for streamflow, SS, TN, and TP, respectively. Nash-Sutcliffe coefficient were 0.93, 0.5, 0.52 and 0.63, respectively. The results all meet the requirements. It suggested that the SWAT model can simulate the study area.

  15. Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study, Spain

    NASA Astrophysics Data System (ADS)

    Peña-Haro, S.; Llopis-Albert, C.; Pulido-Velazquez, M.; Pulido-Velazquez, D.

    2010-10-01

    SummaryAlthough the legislation on groundwater quality targets pollutant concentration, the effects of measures on non-point source pollution control are often evaluated in terms of their emission reduction potential at the source, not on their capacity of reducing the pollutant concentration in groundwater. This paper applies a hydro-economic modelling framework to an aquifer, El Salobral-Los Llanos aquifer (Mancha Oriental, Spain), where nitrate concentrations higher than those allowed by the EU Water Framework Directive and Groundwater Directive are locally found due to the intense fertilizer use in irrigated crops. The approach allows defining the economically optimal allocation of spatially variable fertilizer standards in agricultural basins using a hydro-economic model that links the fertilizer application with groundwater nitrate concentration at different control sites while maximizing net economic benefits. The methodology incorporates results from agronomic simulations, groundwater flow and transport into a management framework that yields the fertilizer allocation that maximizes benefits in agriculture while meeting the environmental standards. The cost of applying fertilizer standards was estimated as the difference between the private net revenues from actual application and the scenarios generated considering the application of the standards. Furthermore, the cost of applying fertilizer standards was compared with the cost of taxing nitrogen fertilizers in order to reduce the fertilizer use to a level that the nitrate concentration in groundwater was below the limit. The results show the required reduction of fertilizer application in the different crop areas depending on its location with regards to the control sites, crop types and soil-plant conditions, groundwater flow and transport processes, time horizon for meeting the standards, and the cost of implementing such a policy (as forgone benefits). According to the results, a high fertilizer price

  16. The combined use of MODFLOW and precipitation-runoff modeling to simulate groundwater flow in a diffuse-pollution prone watershed.

    PubMed

    Elçi, A; Karadaş, D; Fistikoğlu, O

    2010-01-01

    A numerical modeling case study of groundwater flow in a diffuse pollution prone area is presented. The study area is located within the metropolitan borders of the city of Izmir, Turkey. This groundwater flow model was unconventional in the application since the groundwater recharge parameter in the model was estimated using a lumped, transient water-budget based precipitation-runoff model that was executed independent of the groundwater flow model. The recharge rate obtained from the calibrated precipitation-runoff model was used as input to the groundwater flow model, which was eventually calibrated to measured water table elevations. Overall, the flow model results were consistent with field observations and model statistics were satisfactory. Water budget results of the model revealed that groundwater recharge comprised about 20% of the total water input for the entire study area. Recharge was the second largest component in the budget after leakage from streams into the subsurface. It was concluded that the modeling results can be further used as input for contaminant transport modeling studies in order to evaluate the vulnerability of water resources of the study area to diffuse pollution.

  17. Major pollutants in soils of abandoned agricultural land contaminated by e-waste activities in Hong Kong.

    PubMed

    Lopez, Brenda Natalia; Man, Yu Bon; Zhao, Yin Ge; Zheng, Jin Shu; Leung, Anna Oi Wah; Yao, Jun; Wong, Ming Hung

    2011-07-01

    Polycyclic aromatic hydrocarbon (PAH), polychlorinated biphenyl (PCB), polybrominated diphenyl ether (PBDE) compounds and five heavy metals (cadmium, copper, chromium, lead, and zinc) were determined in soil samples collected from six sites of abandoned agricultural land affected by electronic-waste: e-waste dismantling workshop [EW (DW)], e-waste open burning site [EW (OBS)], e-waste storage [EW (S)], and agricultural (A) in the New Territories, Hong Kong. Persistent organic pollutants (POPs) and heavy metals were detected in all soil samples. EW (DW) contained the highest concentrations of PAHs, Cr, Cu, and Zn, whereas EW (OBS) had the highest concentrations of PCBs, PBDEs, Cd, and Pb. PAH at EW (DW) and EW (OBS) and PCB concentrations at EW (OBS) exceeded the target values of the New Dutch list, whereas Cd, Cu, Cr, Pb, and Zn levels exceeded the Chinese legislation for the protection of agricultural production and safeguarding of human health, by 3-11 times at EW (OBS) and 5-8 times at EW (DW). Lead at EW (OBS) and EW (DW) and Cr at EW (DW) greatly exceeded the Canadian Soil Quality Guidelines by 46 and 20 times and 27 times, respectively. Concentrations of POPs and heavy metals at EW (DW) and EW (OBS) were significantly higher than at EW (S) and A. It was concluded that e-waste activities led to increases of toxic chemicals at these abandoned agricultural land, which would hinder the redevelopment of the land.

  18. Relationship between Air Pollution and Weather Conditions under Complicated Geographical conditions

    NASA Astrophysics Data System (ADS)

    Cheng, Q.; Jiang, P.; Li, M.

    2017-12-01

    Air pollution is one of the most serious issues all over the world, especially in megacities with constrained geographical conditions for air pollution diffusion. However, the dynamic mechanism of air pollution diffusion under complicated geographical conditions is still be confused. Researches to explore relationship between air pollution and weather conditions from the perspective of local atmospheric circulations can contribute more to solve such problem. We selected three megacities (Beijing, Shanghai and Guangzhou) under different geographical condition (mountain-plain transition region, coastal alluvial plain and coastal hilly terrain) to explore the relationship between air pollution and weather conditions. RDA (Redundancy analysis) model was used to analyze how the local atmospheric circulation acts on the air pollutant diffusion. The results show that there was a positive correlation between the concentration of air pollutants and air pressure, while temperature, precipitation and wind speed have negative correlations with the concentration of air pollutants. Furthermore, geographical conditions, such as topographic relief, have significant effects on the direction, path and intensity of local atmospheric circulation. As a consequence, air pollutants diffusion modes in different cities under various geographical conditions are diverse from each other.

  19. Impact of changes in labor resources and transfers of land use rights on agricultural non-point source pollution in Jiangsu Province, China.

    PubMed

    Lu, Hua; Xie, Hualin

    2018-02-01

    This study systematically explores the likely mechanisms driving the effect of the transfer of agricultural land use rights (ALURs) on agricultural non-point source pollution (ANSP) in the context of changing agricultural labor resources. It quantitatively estimates the direction and degree of this influence from a microeconomic perspective using data from rural households. The results reveal that economies of scale caused by ALURs transfers contribute to reducing both the ANSP and marginal costs of inputs. Changes in agricultural labor resources lead to reductions in agricultural labor supply and negatively impact on ANSP. Encouraging farmers to participate in ALURs transfers, therefore, helps to reduce ANSP. The government and related departments should implement policies that support farmers who decide to rent an entire village's land or the adjacent land to achieve economies of scale. Accelerating the development of small farm machinery that is suitable for smaller farm plots and the elderly can serve to reduce the use of chemical fertilizer and promote green production and sustainable agricultural development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Agricultural runoff pollution control by a grassed swales coupled with wetland detention ponds system: a case study in Taihu Basin, China.

    PubMed

    Zhao, Jinhui; Zhao, Yaqian; Zhao, Xiaoli; Jiang, Cheng

    2016-05-01

    The performance of a field grassed swales (GSs) coupled with wetland detention ponds (WDPs) system was monitored under four typical rainfall events to assess its effectiveness on agricultural runoff pollution control in Taihu Basin, China. The results indicated that suspended solids (SS) derived from the flush process has significant influence on pollution loads in agricultural runoff. Determination of first flush effect (FFE) indicated that total suspended solids (TSS) and total phosphorus (TP) exhibited moderate FFE, while chemical oxygen demand (COD) and total nitrogen (TN) showed weak FFE. Average removal efficiencies of 83.5 ± 4.5, 65.3 ± 6.8, 91.6 ± 3.8, and 81.3 ± 5.8 % for TSS, COD, TN, and TP were achieved, respectively. The GSs played an important role in removing TSS and TP and acted as a pre-treatment process to prevent clogging of the subsequent WDPs. Particle size distributions (PSDs) analysis indicated that coarse particles larger than 75 μm accounted for 80 % by weight of the total particles in the runoff. GSs can effectively reduce coarse particles (≥75 μm) in runoff, while its removal efficiency for fine particles (<75 μm) was low, even minus results being recorded, especially for particles smaller than 25 μm. The length of GSs is a key factor in its performance. The WDPs can remove particles of all sizes by sedimentation. In addition, WDPs can improve water quality due to their buffering and dilution capacity during rainfall as well as their water purification ability during dry periods. Overall, the ecological system of GSs coupled with WDPs is an effective system for agricultural runoff pollution control.

  1. NON-POINT SOURCE POLLUTION

    EPA Science Inventory

    Non-point source pollution is a diffuse source that is difficult to measure and is highly variable due to different rain patterns and other climatic conditions. In many areas, however, non-point source pollution is the greatest source of water quality degradation. Presently, stat...

  2. Nonpoint Source: Agriculture

    EPA Pesticide Factsheets

    Agricultural runoff as a nonpoint source category of pollution. Resouces to learn more a bout conservation practices to reduce water quality impacts from storm water run off and ground water infiltration

  3. Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?

    PubMed

    Liu, Mei; Lu, Jun

    2014-09-01

    Water quality forecasting in agricultural drainage river basins is difficult because of the complicated nonpoint source (NPS) pollution transport processes and river self-purification processes involved in highly nonlinear problems. Artificial neural network (ANN) and support vector model (SVM) were developed to predict total nitrogen (TN) and total phosphorus (TP) concentrations for any location of the river polluted by agricultural NPS pollution in eastern China. River flow, water temperature, flow travel time, rainfall, dissolved oxygen, and upstream TN or TP concentrations were selected as initial inputs of the two models. Monthly, bimonthly, and trimonthly datasets were selected to train the two models, respectively, and the same monthly dataset which had not been used for training was chosen to test the models in order to compare their generalization performance. Trial and error analysis and genetic algorisms (GA) were employed to optimize the parameters of ANN and SVM models, respectively. The results indicated that the proposed SVM models performed better generalization ability due to avoiding the occurrence of overtraining and optimizing fewer parameters based on structural risk minimization (SRM) principle. Furthermore, both TN and TP SVM models trained by trimonthly datasets achieved greater forecasting accuracy than corresponding ANN models. Thus, SVM models will be a powerful alternative method because it is an efficient and economic tool to accurately predict water quality with low risk. The sensitivity analyses of two models indicated that decreasing upstream input concentrations during the dry season and NPS emission along the reach during average or flood season should be an effective way to improve Changle River water quality. If the necessary water quality and hydrology data and even trimonthly data are available, the SVM methodology developed here can easily be applied to other NPS-polluted rivers.

  4. Modern Agriculture in Advanced Placement Human Geography.

    ERIC Educational Resources Information Center

    Lanegran, David A.

    2000-01-01

    Discusses the four sections of the Advanced Placement (AP) human geography course focusing on agriculture: (1) development and diffusion of agriculture; (2) major agricultural production regions; (3) rural land use and change; and (4) impacts of modern agricultural change. Includes references and a resource list. (CMK)

  5. AGRICULTURAL BEST MANAGEMENT PRACTICE EFFECTIVENESS DATABASE

    EPA Science Inventory

    Resource Purpose:The Agricultural Best Management Practice Effectiveness Database contains the results of research projects which have collected water quality data for the purpose of determining the effectiveness of agricultural management practices in reducing pollutants ...

  6. Using molecular-scale tracers to investigate transport of agricultural pollutants in soil and water

    NASA Astrophysics Data System (ADS)

    Lloyd, C.; Michaelides, K.; Chadwick, D.; Dungait, J.; Evershed, R. P.

    2012-12-01

    We explore the use of molecular-scale tracers to investigate the transport of potential pollutants due to the application of slurry to soil. The molecular-scale approach allows us to separate the pollutants which are moved to water bodies through sediment-bound and dissolved transport pathways. Slurry is applied to agricultural land to as a soil-improver across a wide-range of topographic and climatic regimes, hence a set of experiments were designed to assess the effect of changing slope gradient and rainfall intensity on the transport of pollutants. The experiments were carried out using University of Bristol's TRACE (Test Rig for Advancing Connectivity Experiments) facility. The facility includes a dual axis soil slope (6 x 2.5 x 0.3 m3) and 6-nozzle rainfall simulator, which enables the manipulation of the slope to simulate different slope gradient and rainfall scenarios. Cattle slurry was applied to the top 1 metre strip of the experimental soil slope followed by four rainfall simulations, where the gradient (5° & 10°) and the rainfall intensity (60 & 120 mm hr-1) were co-varied. Leachate was sampled from different flow pathways (surface, subsurface and percolated) via multiple outlets on the slope throughout the experiments and soil cores were taken from the slope after each experiment. Novel tracers were used to trace the pollutants in both dissolved and sediment-bound forms. Fluorescence spectroscopy was used to trace dissolved slurry-derived material via water flow pathways, as the slurry was found to have a distinct signature compared with the soil. The fluorescence signatures of the leachates were compared with those of many organic compounds in order to characterise the origin of the signal. This allowed the assessment of the longevity of the signal in the environment to establish if it could be used as a robust long-term tracer of slurry material in water or if would be subject to transform processes through time. 5-βstanols, organic compounds

  7. Diffuse nitrogen loss simulation and impact assessment of stereoscopic agriculture pattern by integrated water system model and consideration of multiple existence forms

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Gao, Yang; Yu, Qiang

    2017-09-01

    Agricultural nitrogen loss becomes an increasingly important source of water quality deterioration and eutrophication, even threatens water safety for humanity. Nitrogen dynamic mechanism is still too complicated to be well captured at watershed scale due to its multiple existence forms and instability, disturbance of agricultural management practices. Stereoscopic agriculture is a novel agricultural planting pattern to efficiently use local natural resources (e.g., water, land, sunshine, heat and fertilizer). It is widely promoted as a high yield system and can obtain considerable economic benefits, particularly in China. However, its environmental quality implication is not clear. In our study, Qianyanzhou station is famous for its stereoscopic agriculture pattern of Southern China, and an experimental watershed was selected as our study area. Regional characteristics of runoff and nitrogen losses were simulated by an integrated water system model (HEQM) with multi-objective calibration, and multiple agriculture practices were assessed to find the effective approach for the reduction of diffuse nitrogen losses. Results showed that daily variations of runoff and nitrogen forms were well reproduced throughout watershed, i.e., satisfactory performances for ammonium and nitrate nitrogen (NH4-N and NO3-N) loads, good performances for runoff and organic nitrogen (ON) load, and very good performance for total nitrogen (TN) load. The average loss coefficient was 62.74 kg/ha for NH4-N, 0.98 kg/ha for NO3-N, 0.0004 kg/ha for ON and 63.80 kg/ha for TN. The dominating form of nitrogen losses was NH4-N due to the applied fertilizers, and the most dramatic zones aggregated in the middle and downstream regions covered by paddy and orange orchard. In order to control diffuse nitrogen losses, the most effective practices for Qianyanzhou stereoscopic agriculture pattern were to reduce farmland planting scale in the valley by afforestation, particularly for orchard in the

  8. Potential contamination of shipboard air samples by diffusive emissions of PCBs and other organic pollutants: implications and solutions.

    PubMed

    Lohmann, Rainer; Jaward, Foday M; Durham, Louise; Barber, Jonathan L; Ockenden, Wendy; Jones, Kevin C; Bruhn, Regina; Lakaschus, Soenke; Dachs, Jordi; Booij, Kees

    2004-07-15

    Air samples were taken onboard the RRS Bransfield on an Atlantic cruise from the United Kingdom to Halley, Antarctica, from October to December 1998, with the aim of establishing PCB oceanic background air concentrations and assessing their latitudinal distribution. Great care was taken to minimize pre- and post-collection contamination of the samples, which was validated through stringent QA/QC procedures. However, there is evidence that onboard contamination of the air samples occurred,following insidious, diffusive emissions on the ship. Other data (for PCBs and other persistent organic pollutants (POPs)) and examples of shipboard contamination are presented. The implications of these findings for past and future studies of global POPs distribution are discussed. Recommendations are made to help critically appraise and minimize the problems of insidious/diffusive shipboard contamination.

  9. Estimation of diffuse and point source microbial pollution in the ribble catchment discharging to bathing waters in the north west of England.

    PubMed

    Wither, A; Greaves, J; Dunhill, I; Wyer, M; Stapleton, C; Kay, D; Humphrey, N; Watkins, J; Francis, C; McDonald, A; Crowther, J

    2005-01-01

    Achieving compliance with the mandatory standards of the 1976 Bathing Water Directive (76/160/EEC) is required at all U.K. identified bathing waters. In recent years, the Fylde coast has been an area of significant investments in 'point source' control, which have not proven, in isolation, to satisfactorily achieve compliance with the mandatory, let alone the guide, levels of water quality in the Directive. The potential impact of riverine sources of pollution was first confirmed after a study in 1997. The completion of sewerage system enhancements offered the potential for the study of faecal indicator delivery from upstream sources comprising both point sources and diffuse agricultural sources. A research project to define these elements commenced in 2001. Initially, a desk study reported here, estimated the principal infrastructure contributions within the Ribble catchment. A second phase of this investigation has involved acquisition of empirical water quality and hydrological data from the catchment during the 2002 bathing season. These data have been used further to calibrate the 'budgets' and 'delivery' modelling and these data are still being analysed. This paper reports the initial desk study approach to faecal indicator budget estimation using available data from the sewerage infrastructure and catchment sources of faecal indicators.

  10. Pollutant Dilution and Diffusion in Urban Street Canyon Neighboring Streets

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Fu, Zh. M.

    2011-09-01

    In the present study we investigated the airflow patterns and air quality of a series of typical street canyon combinations, developed a mass balance model to determine the local pollutant dilution rate, and discuss the impact of upstream canyon on the air quality of downstream canyon. The results indicated that the geometrical size of upstream and downstream buildings have significant impacts on the ambient airflow patterns. The pollution distribution within the canyons varies with different building combinations and flow patterns. Within the upstream canyon, pollution always accumulates to the low building side for non-symmetrical canyon, and for symmetrical canyon high level of pollution occurs at the leeward side. The height of the middle and downstream buildings can evidently change the pollutant dispersion direction during the transport process. Within the polluted canyon, the pollutant dilution rate (PDR) also varies with different street canyon combinations. The highest PDR is observed when the upstream buildings are both low buildings no matter the height of downstream building. However, the two cases are likely to contribution pollution to the downstream canyon. The H-L-H combination is mostly against local pollution remove, while the L-H-L case is considered the best optimistic building combination with both the ability of diluting local pollution and not remarkably decreasing air quality of downstream canyon. The current work is expected instructive for city designers to optimize traffic patterns under typical existing geometry or in the development of urban geometry modification for air quality control.

  11. Multi-pollutant interactions in hyporheic zones

    NASA Astrophysics Data System (ADS)

    Krause, S.; Weatherill, J.; Bonet, B.; Blaen, P.; Khamis, K.; Cassidy, N. J.; Hannah, D. M.; Rivett, M. O.; Lynch, I.; Ullah, S.

    2017-12-01

    Hyporheic zones represent hotspots of biogeochemical reactivity, with the potential to attenuate pollutants and ameliorate their impact on ecosystem functioning. Sources and types of pollutants in streambed environments are manifold, with legacy industry contaminants, agricultural pollution and emerging pollutants such as pharmaceuticals or engineered nanoparticles entering hyporheic zones along different flow paths where they mix and potentially react with each other. Current conceptualizations of drivers and controls of biogeochemical turnover in hyporheic zones highlight primarily the role of transport and reaction times but do not account for potential interactions between different pollutants. This study presents two case studies of multi-pollutant interactions to illustrate the need to consider interferences between different pollutants, their transport and reaction pathways for adequate impact assessment. We discuss in the first instance how the natural attenuation of a Trichloroethylene (TCE) groundwater plume in an agricultural catchment is limited by high riparian and hyporheic nitrate concentrations. As nitrate outcompeted TCE in its reaction with organic carbon as electron donor, TCE attenuation was in this case limited to hyporheic denitrification hotspots. Hence any pollution control measures to reduce the impact of this TCE plume require a reduction of agricultural nitrate loads, highlighting the connectedness of legacy (TCE) and more recent (nitrate) pollution problems. In the second case, we investigate how the labile organic carbon content of streambed sediments as main control of hyporheic respiration is overridden by exposure to different silver nanoparticle concentrations, representing emerging pollutants in many of our rivers. Also in this case, the impacts of different stressors (nanoparticle exposure) and drivers (availability of organic matter, water temperature) are interacting in their impacts on hyporheic zone functioning. We argue that

  12. POLUTE. Forest Air Pollutant Uptake Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, C.E. Jr.; Sinclair, T.R.

    1992-02-13

    POLUTE is a computer model designed to estimate the uptake of air pollutants by forests. The model utilizes submodels to describe atmospheric diffusion immediately above and within the canopy, and into the sink areas within or on the trees. The program implementing the model is general and can be used, with only minor changes, for any gaseous pollutant. The model provides an estimate describing the response of the vegetarian-atmosphere system to the environment as related to three types of processes: atmospheric diffusion, diffusion near and inside the absorbing plant, and the physical and chemical processes at the sink on ormore » within the plant.« less

  13. POLLUTION PREVENTION TECHNOLOGY DIFFUSION INITIATIVE (TDI)

    EPA Science Inventory

    Although pollution prevention (P2) technologies save money and help prevent the release of toxic and hazardous wastes into the environment, many companies are reluctant to install new equipment or change the current processes. Some of the reluctance is initiated by lack of time a...

  14. Agricultural conservation practices can help mitigate the impact of climate change.

    PubMed

    Wagena, Moges B; Easton, Zachary M

    2018-09-01

    Agricultural conservation practices (CPs) are commonly implemented to reduce diffuse nutrient pollution. Climate change can complicate the development, implementation, and efficiency of agricultural CPs by altering hydrology, nutrient cycling, and erosion. This research quantifies the impact of climate change on hydrology, nutrient cycling, erosion, and the effectiveness of agricultural CP in the Susquehanna River Basin in the Chesapeake Bay Watershed, USA. We develop, calibrate, and test the Soil and Water Assessment Tool-Variable Source Area (SWAT-VSA) model and select four CPs; buffer strips, strip-cropping, no-till, and tile drainage, to test their effectiveness in reducing climate change impacts on water quality. We force the model with six downscaled global climate models (GCMs) for a historic period (1990-2014) and two future scenario periods (2041-2065 and 2075-2099) and quantify the impact of climate change on hydrology, nitrate-N (NO 3 -N), total N (TN), dissolved phosphorus (DP), total phosphorus (TP), and sediment export with and without CPs. We also test prioritizing CP installation on the 30% of agricultural lands that generate the most runoff (e.g., critical source areas-CSAs). Compared against the historical baseline and with no CPs, the ensemble model predictions indicate that climate change results in annual increases in flow (4.5±7.3%), surface runoff (3.5±6.1%), sediment export (28.5±18.2%) and TN export (9.5±5.1%), but decreases in NO 3 -N (12±12.8%), DP (14±11.5), and TP (2.5±7.4%) export. When agricultural CPs are simulated most do not appreciably change the water balance, however, tile drainage and strip-cropping decrease surface runoff, sediment export, and DP/TP, while buffer strips reduce N export. Installing CPs on CSAs results in nearly the same level of performance for most practices and most pollutants. These results suggest that climate change will influence the performance of agricultural CPs and that targeting agricultural

  15. [Overview of organic agriculture development.

    PubMed

    Liu, Xiao Mei; Yu, Hong Jun; Li, Qiang; Jiang, Wei Jie

    2016-04-22

    This paper introduced the concepts of organic agriculture as defined by different international organizations, origin and theoretical development of organic agriculture, as well as its developing trajectory in China (i.e. a late start followed by rapid growth compared to developed countries). The differences between domestic and international organic agriculture were illustrated by scale, crop types, production standards, inputs and planting techniques. Constraints limiting improvements to organic agriculture in aspects of standards, technology, marketing, certification, environmental pollution, enterprise reputation, and national policies were discussed. Future directions and strategies for developing healthy organic agriculture in China were provided.

  16. Development paths of China's agricultural Pharmaceutical industry under Eco-agriculture background.

    PubMed

    Li, Jinkai; Gong, Liutang; Ji, Xi; Zhang, Jin; Miao, Pei

    2014-07-01

    Using pesticides has double effects. On one hand, it contributes to pests control and regulates the growth of crops; On the other hand, it does harm to the environment. To develop ecological agriculture should not only emphasize the output level of agriculture to pursuit of economic efficiency, but also need to keep the ecological environment protected and focus on the social benefits during the development of the industry. As a large agricultural country in the world, China is vigorously promoting the development of ecological agriculture, which is bound to put forward to developing the pesticide industry and green ecological development requirements to promote the transformation and upgrading of agricultural pharmaceutical industry. This paper discusses the mechanism of pesticide pollution on the ecological environment and analyzes China's agricultural problems in the pharmaceutical industry. Then study on the development of Chinese green pesticides and try to find the proper paths of agricultural pharmaceutical to achieve industrial upgrading.

  17. Effects of co-cropping Bidens pilosa (L.) and Tagetes minuta (L.) on bioaccumulation of Pb in Lactuca sativa (L.) growing in polluted agricultural soils.

    PubMed

    Cid, Carolina Vergara; Rodriguez, Judith Hebelen; Salazar, María Julieta; Blanco, Andrés; Pignata, María Luisa

    2016-09-01

    Polluted agricultural soils are a serious problem for food safety, with phytoremediation being the most favorable alternative from the environmental perspective. However, this methodology is generally time-consuming and requires the cessation of agriculture. Therefore, the purpose of this study was to evaluate two potential phytoextractor plants (the native species Bidens pilosa and Tagetes minuta) co-cropped with lettuce growing on agricultural lead-polluted soils. The concentrations of Pb, as well as of other metals, were investigated in the phytoextractors, crop species, and in soils, with the potential risk to the health of consumers being estimated. The soil parameters pH, EC, organic matter percentage and bioavailable lead showed a direct relationship with the accumulation of Pb in roots. In addition, the concentration of Pb in roots of native species was closely related to Fe (B. pilosa, r = 0.81; T. minuta r = 0.75), Cu (T. minuta, r = 0.93), Mn (B. pilosa, r = 0.89) and Zn (B. pilosa, r = 0.91; T. minuta, r = 0.91). Our results indicate that the interaction between rhizospheres increased the phytoextraction of lead, which was accompanied by an increase in the biomass of the phytoextractor species. However, the consumption of lettuce still revealed a toxicological risk from Pb in all treatments.

  18. Diffuse nutrient losses and the impact factors determining their regional differences in four catchments from North to South China

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Zhou, Yujian; Shao, Quanxi; Liu, Hongbin; Lei, Qiuliang; Zhai, Xiaoyan; Wang, Xuelei

    2016-12-01

    Diffuse nutrient loss mechanism is complicated and shows remarkably regional differences due to spatial heterogeneities of underlying surface conditions, climate and agricultural practices. Moreover, current available observations are still hard to support the identification of impact factors due to different time or space steps. In this study, an integrated water system model (HEQM) was adopted to obtain the simulated loads of diffuse components (carriers: runoff and sediment; nutrient: total nitrogen (TN) and total phosphorous (TP)) with synchronous scales. Multivariable statistical analysis approaches (Analysis of Similarity and redundancy analysis) were used to assess the regional differences, and to identify impact factors as well as their contributions. Four catchments were selected as our study areas, i.e., Xiahui and Zhangjiafen Catchments of Miyun Basin in North China, Yuliang and Tunxi Catchments of Xin'anjiang Basin in South China. Results showed that the model performances of monthly processes were very good for runoff and good for sediment, TN and TP. The annual average coefficients of all the diffuse components in Xin'anjiang Basin were much greater than those in Miyun Basin, and showed significantly regional differences. All the selected impact factors interpreted 72.87-82.16% of the regional differences of carriers, and 62.72-71.62% of those of nutrient coefficients, respectively. For individual impact factor categories, the critical category was geography, followed by land-use/cover, carriers, climate, as well as soil and agricultural practices in Miyun Basin, or agricultural practices and soil in Xin'anjiang Basin. For individual factors, the critical factors were locations for the carrier regional differences, and carriers or chemical fertilizer for the nutrient regional differences. This study is expected to promote further applications of integrated water system model and multivariable statistical analysis in the diffuse nutrient studies, and

  19. Scale appropriate modelling to represent dominant pollution processes in agricultural catchments, to underpin management and policy decisions

    NASA Astrophysics Data System (ADS)

    Adams, Russell; Quinn, Paul

    2014-05-01

    We present the development of scale appropriate modelling techniques to represent dominant pollution processes in agricultural catchments to underpin catchment management and its implications on policy. A quasi-physically based, spatially lumped macro-model (CRAFT), has been developed to assess mitigation options for nitrogen and phosphorus. CRAFT has been developed to use daily time series data of rainfall, stream flow and nutrient concentration data, and can be applied to catchments varying in size from a few hectares to 100s of square kilometres. If stream flow routing is added to the model then potentially larger catchments and sub-daily time steps could be represented. There are two key issues addressed here. Firstly, the model can be used to assess the usefulness of monitoring data collected at a high temporal resolution at considerable expense compared to routine grab sampling. An earlier study in the Frome catchment in southern England collected sub-daily water quality data for more than 12 months at the catchment outlet, comprising: total oxidised nitrogen (TON); soluble reactive phosphorus (SRP) and total phosphorus (TP) concentrations. The three data sets have quite different temporal signals relating to flow pathways with different residence times and the importance of runoff events in generating acute pollution. The flexible model structure was therefore developed to include different sources of runoff including overland flow from impervious areas in the catchment, where pollution hotspots will be located (e.g. farmyards). The model has been used to assess the value of collecting high resolution monitoring data, in this case by resampling the Frome sub-daily data to a daily timestep, and comparing these model simulations against those calibrated using all the samples. The usefulness of the high resolution data can be assessed on whether a daily model would undepredict (for example) high nutrient concentrations that can be identified in the sub

  20. Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils.

    PubMed

    Sharaff, Murali; Kamat, Shalmali; Archana, G

    2017-04-01

    Agricultural sites irrigated for long term with water polluted by industrial effluents containing heavy metals might adversely affect the soil microbial communities and crop yield. Hence it is important to study rhizobacterial communities and their metal tolerance in such affected agricultural fields to restore soil fertility and ecosystem. Present work deals with the study of rhizobacterial communities from plants grown in copper (Cu) contaminated agricultural fields along the industrial zone of Gujarat, India and are compared with communities from a Cu mine site. Microbial communities from rhizosphere soil samples varied in the magnitude of their Cu tolerance index indicating differences in long term pollution effects. Culture dependent denaturing gradient gel electrophoresis (CD-DGGE) of bacterial communities revealed the diverse composition at the sampling sites and a reduced total diversity due to Cu toxicity. Analysis of 16S rRNA gene diversity of Cu tolerant rhizobacteria revealed the predominance of Enterobacter spp. and Pseudomonas spp. under Cu stress conditions. Cu tolerant bacterial isolates that were able to promote growth of mung bean plants in vitro under Cu stress were obtained from these samples. Cu tolerant rhizobacterium P36 identified as Enterobacter sp. exhibited multiple plant growth promoting traits and significantly alleviated Cu toxicity to mung bean plants by reducing the accumulation of Cu in plant roots and promoted the plant growth in CuSO 4 amended soils. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution

    NASA Astrophysics Data System (ADS)

    Wu, Yucheng; Zeng, Jun; Zhu, Qinghe; Zhang, Zhenfa; Lin, Xiangui

    2017-01-01

    Acidification and pollution are two major threats to agricultural ecosystems; however, microbial community responses to co-existed soil acidification and pollution remain less explored. In this study, arable soils of broad pH (4.26-8.43) and polycyclic aromatic hydrocarbon (PAH) gradients (0.18-20.68 mg kg-1) were collected from vegetable farmlands. Bacterial community characteristics including abundance, diversity and composition were revealed by quantitative PCR and high-throughput sequencing. The bacterial 16S rRNA gene copies significantly correlated with soil carbon and nitrogen contents, suggesting the control of nutrients accessibility on bacterial abundance. The bacterial diversity was strongly related to soil pH, with higher diversity in neutral samples and lower in acidic samples. Soil pH was also identified by an ordination analysis as important factor shaping bacterial community composition. The relative abundances of some dominant phyla varied along the pH gradient, and the enrichment of a few phylotypes suggested their adaptation to low pH condition. In contrast, at the current pollution level, PAH showed marginal effects on soil bacterial community. Overall, these findings suggest pH was the primary determinant of bacterial community in these arable soils, indicative of a more substantial influence of acidification than PAH pollution on bacteria driven ecological processes.

  2. Combine the soil water assessment tool (SWAT) with sediment geochemistry to evaluate diffuse heavy metal loadings at watershed scale.

    PubMed

    Jiao, Wei; Ouyang, Wei; Hao, Fanghua; Huang, Haobo; Shan, Yushu; Geng, Xiaojun

    2014-09-15

    Assessing the diffuse pollutant loadings at watershed scale has become increasingly important when formulating effective watershed water management strategies, but the process was seldom achieved for heavy metals. In this study, the overall temporal-spatial variability of particulate Pb, Cu, Cr and Ni losses within an agricultural watershed was quantitatively evaluated by combining SWAT with sediment geochemistry. Results showed that the watershed particulate heavy metal loadings displayed strong variability in the simulation period 1981-2010, with an obvious increasing trend in recent years. The simulated annual average loadings were 20.21 g/ha, 21.75 g/ha, 47.35 g/ha and 21.27 g/ha for Pb, Cu, Cr and Ni, respectively. By comparison, these annual average values generally matched the estimated particulate heavy metal loadings at field scale. With spatial interpolation of field loadings, it was found that the diffuse heavy metal pollution mainly came from the sub-basins dominated with cultivated lands, accounting for over 70% of total watershed loadings. The watershed distribution of particulate heavy metal losses was very similar to that of soil loss but contrary to that of heavy metal concentrations in soil, highlighting the important role of sediment yield in controlling the diffuse heavy metal loadings. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Recent trends in water quality in an agricultural catchment in Eastern Scotland: elucidating the roles of hydrology and land use.

    PubMed

    Dunn, S M; Sample, J; Potts, J; Abel, C; Cook, Y; Taylor, C; Vinten, A J A

    2014-07-01

    Across the EU, programmes of measures have been introduced as part of river basin management planning as a means of tackling problems of diffuse pollution from agriculture. Evidence is required to demonstrate the effectiveness of these measures and with this overarching objective, monitoring of an agricultural catchment in Eastern Scotland was initiated in 2007. As a precursor to evaluating the effect of new management measures it is essential to understand how other factors, including hydrology and land use changes, could have influenced water quality. This study undertook an analysis of the trends in concentrations and loads of nitrate, soluble reactive phosphorus (SRP), suspended solids (SS) and turbidity measured at six points in the catchment over a six year period. The results identified both differing trends between determinands and differing trends occurring over varying spatial scales. The only direct relationships between land use and water quality that could be identified based on annual data was a positive link between arable cropping and nitrate concentrations. At the sub-catchment scale some temporal changes in land use and management explained short-term trends in nitrate but not in SRP. Lags in the system were identified due to soil adsorption, in-stream/loch processing and groundwater transport making the identification of cause and effect problematic. The results have implications for the demonstration of effectiveness of measures over the shorter term and the timescales of recovery from diffuse pollution. Longer term monitoring at small scales will be important in this regard.

  4. Cross-country disparity in agricultural productivity: quantifying the role of modern seed adoption.

    PubMed

    O'Gorman, Melanie; Pandey, Manish

    2010-01-01

    Inequality of agricultural labour productivity across the developing world has increased substantially over the past 40 years. This article asks: to what extent did the diffusion of Green Revolution seed varieties contribute to increasing agricultural labour productivity disparity across the developing countries? We find that 22 per cent of cross-country variation in agricultural labour productivity can be attributed to the diffusion of high-yielding seed varieties across countries, and that the impact of such diffusion differed significantly across regions. We discuss the implications of these findings for policy directed at increasing agricultural labour productivity in the developing world.

  5. Secondary Agricultural Education Teachers as Agents of Change in Oklahoma and the Adoption of Precision Agriculture

    ERIC Educational Resources Information Center

    Nickeson, Beth

    2013-01-01

    Research indicates that precision agricultural education (PAE) in Oklahoma affects environmental quality, water conservation, and crop yields. The purpose of this mixed methods study was to explore the nature and perceived effectiveness of PAE in Oklahoma secondary agricultural education classes. The study was framed by the diffusion of…

  6. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content.

    PubMed

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-12-15

    This study aimed to assess how the current global warming perspective, with increasing air temperature (20°C vs. 25°C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus. Enchytraeids were exposed for 21d to a dilution series of the agricultural soil with Lufa 2.2 control soil under four climate situations: 20°C+50% WHC (standard conditions), 20°C+30% WHC, 25°C+50% WHC, and 25°C+30% WHC. Survival, reproduction and bioaccumulation of As, Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn were obtained as endpoints. Reproduction was more sensitive to both climate factors and metal(loid) pollution. High soil salinity (electrical conductivity~3dSm -1 ) and clay texture, even without the presence of high metal(loid) concentrations, affected enchytraeid performance especially at drier conditions (≥80% reduction in reproduction). The toxicity of the agricultural soil increased at drier conditions (10% reduction in EC10 and EC50 values for the effect on enchytraeid reproduction). Changes in enchytraeid performance were accompanied by changes in As, Fe, Mn, Pb and Zn bioaccumulation, with lower body concentrations at drier conditions probably due to greater competition with soluble salts in the case of Fe, Mn, Pb and Zn. This study shows that apart from high metal(loid) concentrations other soil properties (e.g. salinity and texture) may be partially responsible for the toxicity of metal(loid)-polluted soils to soil invertebrates, especially under changing climate conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution

    PubMed Central

    Wu, Yucheng; Zeng, Jun; Zhu, Qinghe; Zhang, Zhenfa; Lin, Xiangui

    2017-01-01

    Acidification and pollution are two major threats to agricultural ecosystems; however, microbial community responses to co-existed soil acidification and pollution remain less explored. In this study, arable soils of broad pH (4.26–8.43) and polycyclic aromatic hydrocarbon (PAH) gradients (0.18–20.68 mg kg−1) were collected from vegetable farmlands. Bacterial community characteristics including abundance, diversity and composition were revealed by quantitative PCR and high-throughput sequencing. The bacterial 16S rRNA gene copies significantly correlated with soil carbon and nitrogen contents, suggesting the control of nutrients accessibility on bacterial abundance. The bacterial diversity was strongly related to soil pH, with higher diversity in neutral samples and lower in acidic samples. Soil pH was also identified by an ordination analysis as important factor shaping bacterial community composition. The relative abundances of some dominant phyla varied along the pH gradient, and the enrichment of a few phylotypes suggested their adaptation to low pH condition. In contrast, at the current pollution level, PAH showed marginal effects on soil bacterial community. Overall, these findings suggest pH was the primary determinant of bacterial community in these arable soils, indicative of a more substantial influence of acidification than PAH pollution on bacteria driven ecological processes. PMID:28051171

  8. [The pathogens responsible for waterborne infections: the biological risk for agricultural laborer].

    PubMed

    Dragone, M; Gioffrè, A; Marramao, A

    2007-01-01

    The presence of microbiological agents in waters intended for human consumption, irrigation and recreational activity, is a significant risk for the human health. Recent epidemiological data demonstrate an increase of the diseases caused by waterborne pathogens, especially of the gastroenteritis infections, in the industrialized countries. Numerous studies have evidenced the contamination of deep and surface waters; bacteria within contaminated water represent a highly diversified group, that are usually encountered in wastewater and sewage. In particular the pollution of the groundwater is much dangerous, from the viewpoint of drinking water safety. In fact, the groundwaters whenever polluted, have an insufficient self-purification. The aim of this paper was to estimate the presence of waterborne pathogens in groundwater intended for the irrigation. Well water samples were collected at eighteen different agricultural areas located in Calabria and analyzed for the presence of waterborne pathogens. The results shows a diffuse pollution of the wells in all of the monitorated zones. Then out of eighteen examined samples were positive for total coliforms and Enterococcus spp. and the value of total microbial contamination were higher than 100 UFC/ml; eight of these ten wells were contaminated from Salmonella spp. and Shigella spp. (minimal value 2x10(1) UFC/l; maximum value 2x10(3) UFC/l).

  9. Implementing the water framework directive: contract design and the cost of measures to reduce nitrogen pollution from agriculture.

    PubMed

    Bartolini, Fabio; Gallerani, Vittorio; Raggi, Meri; Viaggi, Davide

    2007-10-01

    The performance of different policy design strategies is a key issue in evaluating programmes for water quality improvement under the Water Framework Directive (60/2000). This issue is emphasised by information asymmetries between regulator and agents. Using an economic model under asymmetric information, the aim of this paper is to compare the cost-effectiveness of selected methods of designing payments to farmers in order to reduce nitrogen pollution in agriculture. A principal-agent model is used, based on profit functions generated through farm-level linear programming. This allows a comparison of flat rate payments and a menu of contracts developed through mechanism design. The model is tested in an area of Emilia Romagna (Italy) in two policy contexts: Agenda 2000 and the 2003 Common Agricultural Policy (CAP) reform. The results show that different policy design options lead to differences in policy costs as great as 200-400%, with clear advantages for the menu of contracts. However, different policy scenarios may strongly affect such differences. Hence, the paper calls for greater attention to the interplay between CAP scenarios and water quality measures.

  10. Implementing the Water Framework Directive: Contract Design and the Cost of Measures to Reduce Nitrogen Pollution from Agriculture

    NASA Astrophysics Data System (ADS)

    Bartolini, Fabio; Gallerani, Vittorio; Raggi, Meri; Viaggi, Davide

    2007-10-01

    The performance of different policy design strategies is a key issue in evaluating programmes for water quality improvement under the Water Framework Directive (60/2000). This issue is emphasised by information asymmetries between regulator and agents. Using an economic model under asymmetric information, the aim of this paper is to compare the cost-effectiveness of selected methods of designing payments to farmers in order to reduce nitrogen pollution in agriculture. A principal-agent model is used, based on profit functions generated through farm-level linear programming. This allows a comparison of flat rate payments and a menu of contracts developed through mechanism design. The model is tested in an area of Emilia Romagna (Italy) in two policy contexts: Agenda 2000 and the 2003 Common Agricultural Policy (CAP) reform. The results show that different policy design options lead to differences in policy costs as great as 200-400%, with clear advantages for the menu of contracts. However, different policy scenarios may strongly affect such differences. Hence, the paper calls for greater attention to the interplay between CAP scenarios and water quality measures.

  11. Agricultural non-point source pollution of glyphosate and AMPA at a catchment scale

    NASA Astrophysics Data System (ADS)

    Okada, Elena; Perez, Debora; De Geronimo, Eduardo; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    Information on the actual input of pesticides into the environment is crucial for proper risk assessment and the design of risk reduction measures. The Crespo basin is found within the Balcarce County, located south-east of the Buenos Aires Province. The whole basin has an area of approximately 490 km2 and the river has a length of 65 km. This study focuses on the upper basin of the Crespo stream, covering an area of 226 km2 in which 94.7% of the land is under agricultural production representing a highly productive area, characteristic of the Austral Pampas region. In this study we evaluated the levels of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) in soils; and the non-point source pollution of surface waters, stream sediments and groundwater, over a period of one year. Stream water samples were taken monthly using propylene bottles, from the center of the bridge. If present, sediment samples from the first 5 cm were collected using cylinder samplers. Groundwater samples were taken from windmills or electric pumps from different farms every two months. At the same time, composite soil samples (at 5 cm depth) were taken from an agricultural plot of each farm. Samples were analyzed for detection and quantification of glyphosate and AMPA using ultra-performance liquid chromatography coupled to a mass spectrometer (UPLC-MS/MS). The limit of detection (LD) in the soil samples was 0.5 μg Kg-1 and the limit of quantification (LQ) was 3 μg Kg-1, both for glyphosate and AMPA. In water samples the LD was 0.1 μg L-1 and the LQ was 0.5 μg L-1. The results showed that the herbicide dispersed into all the studied environmental compartments. Glyphosate and AMPA residues were detected in 34 and 54% of the stream water samples, respectively. Sediment samples had a higher detection frequency (>96%) than water samples, and there was no relationship between the presence in surface water with the detection in sediment samples. The presence in sediment samples

  12. Use of continuous and grab sample data for calculating total maximum daily load (TMDL) in agricultural watersheds.

    PubMed

    Gulati, Shelly; Stubblefield, Ashley A; Hanlon, Jeremy S; Spier, Chelsea L; Stringfellow, William T

    2014-03-01

    Measuring the discharge of diffuse pollution from agricultural watersheds presents unique challenges. Flows in agricultural watersheds, particularly in Mediterranean climates, can be predominately irrigation runoff and exhibit large diurnal fluctuation in both volume and concentration. Flow and pollutant concentrations in these smaller watersheds dominated by human activity do not conform to a normal distribution and it is not clear if parametric methods are appropriate or accurate for load calculations. The objective of this study was to compare the accuracy of five load estimation methods to calculate pollutant loads from agricultural watersheds. Calculation of loads using results from discrete (grab) samples was compared with the true-load computed using in situ continuous monitoring measurements. A new method is introduced that uses a non-parametric measure of central tendency (the median) to calculate loads (median-load). The median-load method was compared to more commonly used parametric estimation methods which rely on using the mean as a measure of central tendency (mean-load and daily-load), a method that utilizes the total flow volume (volume-load), and a method that uses measure of flow at the time of sampling (instantaneous-load). Using measurements from ten watersheds in the San Joaquin Valley of California, the average percent error compared to the true-load for total dissolved solids (TDS) was 7.3% for the median-load, 6.9% for the mean-load, 6.9% for the volume-load, 16.9% for the instantaneous-load, and 18.7% for the daily-load methods of calculation. The results of this study show that parametric methods are surprisingly accurate, even for data that have starkly non-normal distributions and are highly skewed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The impact of mining activities on agriculture

    NASA Astrophysics Data System (ADS)

    Saghatelyan, A.; Sahakyan, L.

    2009-04-01

    The present study was designed to assess environmental status of the territory of the city of Kapan and neighboring agricultural farms with an emphasis on the impact of the tailing repository and operation of the Kapan copper plant on soil, water and plant pollution. The region has long been known for its abundant copper and polymetallic deposits with vein- and stockwork-type mineralization. Moreover, historically Kapan was the miners' city and a powerful copper mining and dressing plant has been operating there since 1846. The performed geochemical survey and a sanitary-hygienic assessment of pollution of the Kapan's soils have indicated high contents of Cu, Pb, Ni, Mo and As vs. the background and Maximum Acceptable Concentrations (MAC). The assessment of pollution levels of surface water, including natural and industrial streams, has indicated that unlike natural stream waters, mining waters from the adit and industrial stream waters were high in a number of toxic (Cd, As, Hg) and ore (Cu, Zn) elements. Activation of most chemical elements and particularly of heavy metals in water environment rapidly brings to pollution of environmental components (soils, plants, etc.), and as a result heavy metals enter the human organism via trophic chains. So, in the frame of the research eco-toxicological studies were performed on accumulation of heavy metals (Cu, Ni, Cr, Zn, Sn, Mo), including high toxic elements (As, Hg, Pb, Cd) in agricultural soils and in the basic assortment of agricultural crops. The research covered agricultural lands within the bounds of the city and private plots in neighboring villages. Wholly, 24 vegetable, melon field, cereal (corn), oil-bearing (sunflower) species adding spicy herbs and fruits were studied. It should be stressed that agricultural crops growing on the study sites are used provide food products not only by the population of this particular city and neighboring villages, but of other cities, too. It means that the average number of

  14. Impact of wildfires on regional air pollution

    EPA Science Inventory

    We examine the impact of wildfires and agricultural/prescribed burning on regional air pollution and Air Quality Index (AQI) between 2006 and 2013. We define daily regional air pollution using monitoring sites for ozone (n=1595), PM2.5 collected by Federal Reference Method (n=10...

  15. Modeling diffuse sources of surface water contamination with plant protection products

    NASA Astrophysics Data System (ADS)

    Wendland, Sandra; Bock, Michael; Böhner, Jürgen; Lembrich, David

    2015-04-01

    Entries of chemical pollutants in surface waters are a serious environmental problem. Among water pollutants plant protection products (ppp) from farming practice are of major concern not only for water suppliers and environmental agencies, but also for farmers and industrial manufacturers. Lost chemicals no longer fulfill their original purpose on the field, but lead to severe damage of the environment and surface waters. Besides point-source inputs of chemical pollutants, the diffuse-source inputs from agricultural procedures play an important and not yet sufficiently studied role concerning water quality. The two most important factors for diffuse inputs are erosion and runoff. The latter usually occurs before erosion begins, and is thus often not visible in hindsight. Only if it has come to erosion, it is obvious to expect runoff in foresight at this area, too. In addition to numerous erosion models, there are also few applications to model runoff processes available. However, these conventional models utilize approximations of catchment parameters based on long-term average values or theoretically calculated concentration peaks which can only provide indications to relative amounts. Our study aims to develop and validate a simplified spatially-explicit dynamic model with high spatiotemporal resolution that enables to measure current and forecast runoff potential not only at catchment scale but field-differentiated. This method allows very precise estimations of runoff risks and supports risk reduction measures to be targeted before fields are treated. By focusing on water pathways occurring on arable land, targeted risk reduction measures like buffer strips at certain points and adapted ppp use can be taken early and pollution of rivers and other surface waters through transported pesticides, fertilizers and their products could be nearly avoided or largely minimized. Using a SAGA-based physical-parametric modeling approach, major factors influencing runoff

  16. How sustainable agriculture can address the environmental and human health harms of industrial agriculture.

    PubMed

    Horrigan, Leo; Lawrence, Robert S; Walker, Polly

    2002-05-01

    The industrial agriculture system consumes fossil fuel, water, and topsoil at unsustainable rates. It contributes to numerous forms of environmental degradation, including air and water pollution, soil depletion, diminishing biodiversity, and fish die-offs. Meat production contributes disproportionately to these problems, in part because feeding grain to livestock to produce meat--instead of feeding it directly to humans--involves a large energy loss, making animal agriculture more resource intensive than other forms of food production. The proliferation of factory-style animal agriculture creates environmental and public health concerns, including pollution from the high concentration of animal wastes and the extensive use of antibiotics, which may compromise their effectiveness in medical use. At the consumption end, animal fat is implicated in many of the chronic degenerative diseases that afflict industrial and newly industrializing societies, particularly cardiovascular disease and some cancers. In terms of human health, both affluent and poor countries could benefit from policies that more equitably distribute high-protein foods. The pesticides used heavily in industrial agriculture are associated with elevated cancer risks for workers and consumers and are coming under greater scrutiny for their links to endocrine disruption and reproductive dysfunction. In this article we outline the environmental and human health problems associated with current food production practices and discuss how these systems could be made more sustainable.

  17. How sustainable agriculture can address the environmental and human health harms of industrial agriculture.

    PubMed Central

    Horrigan, Leo; Lawrence, Robert S; Walker, Polly

    2002-01-01

    The industrial agriculture system consumes fossil fuel, water, and topsoil at unsustainable rates. It contributes to numerous forms of environmental degradation, including air and water pollution, soil depletion, diminishing biodiversity, and fish die-offs. Meat production contributes disproportionately to these problems, in part because feeding grain to livestock to produce meat--instead of feeding it directly to humans--involves a large energy loss, making animal agriculture more resource intensive than other forms of food production. The proliferation of factory-style animal agriculture creates environmental and public health concerns, including pollution from the high concentration of animal wastes and the extensive use of antibiotics, which may compromise their effectiveness in medical use. At the consumption end, animal fat is implicated in many of the chronic degenerative diseases that afflict industrial and newly industrializing societies, particularly cardiovascular disease and some cancers. In terms of human health, both affluent and poor countries could benefit from policies that more equitably distribute high-protein foods. The pesticides used heavily in industrial agriculture are associated with elevated cancer risks for workers and consumers and are coming under greater scrutiny for their links to endocrine disruption and reproductive dysfunction. In this article we outline the environmental and human health problems associated with current food production practices and discuss how these systems could be made more sustainable. PMID:12003747

  18. Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed.

    PubMed

    Ji, Xiaoliang; Xie, Runting; Hao, Yun; Lu, Jun

    2017-10-01

    Quantitative identification of nitrate (NO 3 - -N) sources is critical to the control of nonpoint source nitrogen pollution in an agricultural watershed. Combined with water quality monitoring, we adopted the environmental isotope (δD-H 2 O, δ 18 O-H 2 O, δ 15 N-NO 3 - , and δ 18 O-NO 3 - ) analysis and the Markov Chain Monte Carlo (MCMC) mixing model to determine the proportions of riverine NO 3 - -N inputs from four potential NO 3 - -N sources, namely, atmospheric deposition (AD), chemical nitrogen fertilizer (NF), soil nitrogen (SN), and manure and sewage (M&S), in the ChangLe River watershed of eastern China. Results showed that NO 3 - -N was the main form of nitrogen in this watershed, accounting for approximately 74% of the total nitrogen concentration. A strong hydraulic interaction existed between the surface and groundwater for NO 3 - -N pollution. The variations of the isotopic composition in NO 3 - -N suggested that microbial nitrification was the dominant nitrogen transformation process in surface water, whereas significant denitrification was observed in groundwater. MCMC mixing model outputs revealed that M&S was the predominant contributor to riverine NO 3 - -N pollution (contributing 41.8% on average), followed by SN (34.0%), NF (21.9%), and AD (2.3%) sources. Finally, we constructed an uncertainty index, UI 90 , to quantitatively characterize the uncertainties inherent in NO 3 - -N source apportionment and discussed the reasons behind the uncertainties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Neuroinflammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults.

    PubMed

    Calderón-Garcidueñas, Lilian; Kavanaugh, Michael; Block, Michelle; D'Angiulli, Amedeo; Delgado-Chávez, Ricardo; Torres-Jardón, Ricardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Osnaya, Norma; Villarreal-Calderon, Rodolfo; Guo, Ruixin; Hua, Zhaowei; Zhu, Hongtu; Perry, George; Diaz, Philippe

    2012-01-01

    Air pollution exposures have been linked to neuroinflammation and neuropathology. Autopsy samples of the frontal cortex from control (n = 8) and pollution-exposed (n = 35) children and young adults were analyzed by RT-PCR (n = 43) and microarray analysis (n = 12) for gene expression changes in oxidative stress, DNA damage signaling, NFκB signaling, inflammation, and neurodegeneration pathways. The effect of apolipoprotein E (APOE) genotype on the presence of protein aggregates associated with Alzheimer's disease (AD) pathology was also explored. Exposed urbanites displayed differential (>2-fold) regulation of 134 genes. Forty percent exhibited tau hyperphosphorylation with pre-tangle material and 51% had amyloid-β (Aβ) diffuse plaques compared with 0% in controls. APOE4 carriers had greater hyperphosphorylated tau and diffuse Aβ plaques versus E3 carriers (Q = 7.82, p = 0.005). Upregulated gene network clusters included IL1, NFκB, TNF, IFN, and TLRs. A 15-fold frontal down-regulation of the prion-related protein (PrP(C)) was seen in highly exposed subjects. The down-regulation of the PrP(C) is critical given its important roles for neuroprotection, neurodegeneration, and mood disorder states. Elevation of indices of neuroinflammation and oxidative stress, down-regulation of the PrP(C) and AD-associated pathology are present in young megacity residents. The inducible regulation of gene expression suggests they are evolving different mechanisms in an attempt to cope with the constant state of inflammation and oxidative stress related to their environmental exposures. Together, these data support a role for air pollution in CNS damage and its impact upon the developing brain and the potential etiology of AD and mood disorders.

  20. Trace elements of concern affecting urban agriculture in industrialized areas: A multivariate approach.

    PubMed

    Boente, C; Matanzas, N; García-González, N; Rodríguez-Valdés, E; Gallego, J R

    2017-09-01

    The urban and peri-urban soils used for agriculture could be contaminated by atmospheric deposition or industrial releases, thus raising concerns about the potential risk to public health. Here we propose a method to evaluate potential soil pollution based on multivariate statistics, geostatistics (kriging), a novel soil pollution index, and bioavailability assessments. This approach was tested in two districts of a highly populated and industrialized city (Gijón, Spain). The soils showed anomalous content of several trace elements, such as As and Pb (up to 80 and 585 mg kg -1 respectively). In addition, factor analyses associated these elements with anthropogenic activity, whereas other elements were attributed to natural sources. Subsequent clustering also facilitated the differentiation between the northern area studied (only limited Pb pollution found) and the southern area (pattern of coal combustion, including simultaneous anomalies of trace elements and benzo(a)pyrene). A normalized soil pollution index (SPI) was calculated by kriging, using only the elements falling above threshold levels; therefore point-source polluted zones in the northern area and diffuse contamination in the south were identified. In addition, in the six mapping units with the highest SPIs of the fifty studied, we observed low bioavailability for most of the elements that surpassed the threshold levels. However, some anomalies of Pb contents and the pollution fingerprint in the central area of the southern grid call for further site-specific studies. On the whole, the combination of a multivariate (geo) statistic approach and a bioavailability assessment allowed us to efficiently identify sources of contamination and potential risks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Diffusion from a line source

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1973-01-01

    The problem with predicting pollutant diffusion from a line source of arbitrary geometry is treated. The concentration at the line source may be arbitrarily varied with time. Special attention is given to the meteorological inputs which act as boundary conditions for the problem, and a mixing layer of arbitrary depth is assumed. Numerical application of the derived theory indicates the combinations of meteorological parameters that may be expected to result in high pollution concentrations.

  2. A review of methods for predicting air pollution dispersion

    NASA Technical Reports Server (NTRS)

    Mathis, J. J., Jr.; Grose, W. L.

    1973-01-01

    Air pollution modeling, and problem areas in air pollution dispersion modeling were surveyed. Emission source inventory, meteorological data, and turbulent diffusion are discussed in terms of developing a dispersion model. Existing mathematical models of urban air pollution, and highway and airport models are discussed along with their limitations. Recommendations for improving modeling capabilities are included.

  3. Occurrences and toxicological risk assessment of eight heavy metals in agricultural soils from Kenya, Eastern Africa.

    PubMed

    Mungai, Teresiah Muciku; Owino, Anita Awino; Makokha, Victorine Anyango; Gao, Yan; Yan, Xue; Wang, Jun

    2016-09-01

    The concentration distribution and toxicological assessment of eight heavy metals including lead (Pb), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), mercury (Hg), arsenic (As), and zinc (Zn) in agricultural soils from Kenya, Eastern Africa, were investigated in this study. The results showed mean concentrations of eight heavy metals of Zn, Pb, Cr, Cu, As, Ni, Hg, and Cd in agricultural soils as 247.39, 26.87, 59.69, 88.59, 8.93, 12.56, 8.06, and 0.42 mg kg(-1), respectively. These mean values of eight heavy metals were close to the toxicity threshold limit of USEPA standard values of agricultural soils, indicating potential toxicological risk to the food chain. Pollution index values revealed that eight heavy metals severely decreased in the order Hg > Cd > As > Cu > Pb > Zn > Ni > Cr and the mean value of the overall pollution index of Hg and Cd was 20.31, indicating severe agriculture ecological risk. Potential pollution sources of eight heavy metals in agricultural soils were mainly from anthropogenic activities and natural dissolution. The intensification of human agricultural activities, the growing industrialization, and the rapid urbanization largely influenced the concentration levels of heavy metals in Kenya, Eastern Africa. Moreover, the lack of agricultural normalization management and poor enforcement of environmental laws and regulations further intensified the widespread pollution of agricultural soils in Kenya.

  4. Characteristics of heavy metal pollution on roadside soil along highway

    NASA Astrophysics Data System (ADS)

    Zheng, Chaocheng

    2017-10-01

    Highway traffic is the main source of heavy metal pollution. Due to limited cropland, it is very common to plant crops along the highways. So, in view of agricultural products safety, heavy metal pollution by highway traffic to soils along highway is widely concerned. Therefore, to study distribution traits, accumulative laws and influence factors of heavy metals in agricultural soils could provide scientific evidence and theoretical basis for environmental protection along express way.

  5. Assessment of metals pollution on agricultural soil surrounding a lead-zinc mining area in the Karst region of Guangxi, China.

    PubMed

    Zhang, Chaolan; Li, Zhongyi; Yang, Weiwei; Pan, Liping; Gu, Minghua; Lee, DoKyoung

    2013-06-01

    Soil samples were collected on farmland in a lead-zinc mining area in the Karst region of Guangxi, China. The contamination of the soil by eight metals (Cd, Hg, As, Cu, Pb, Cr, Zn, Ni) was determined. Among all these metals, Cd is the most serious pollutant in this area. Zn, Hg as well asPb can also be measured at high levels, which may affect the crop production. All other metals contributed marginally to the overall soil contamination. Besides the evaluation of single metals, the Nemerow synthetic index indicated that the soil is not suitable for agricultural use.

  6. Study of atmospheric diffusion using LANDSAT

    NASA Technical Reports Server (NTRS)

    Torsani, J. A.; Viswanadham, Y.

    1982-01-01

    The parameters of diffusion patterns of atmospheric pollutants under different conditions were investigated for use in the Gaussian model for calculation of pollution concentration. Value for the divergence pattern of concentration distribution along the Y axis were determined using LANDSAT images. Multispectral scanner images of a point source plume having known characteristics, wind and temperature data, and cloud cover and solar elevation data provided by LANDSAT, were analyzed using the 1-100 system for image analysis. These measured values are compared with pollution transport as predicted by the Pasquill-Gifford, Juelich, and Hoegstroem atmospheric models.

  7. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    PubMed

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy.

  8. Modelling nutrient fluxes from diffuse and point emissions to river loads: the Estonian part of the transboundary Lake Peipsi/Chudskoe drainage basin (Russia/Estonia/Latvia).

    PubMed

    Mourad, D; van der Perk, M

    2004-01-01

    First results are presented of a large-scale GIS-based nutrient transport modelling for the 1985-1999 period in the Estonian part of the transboundary drainage basin of Lake Peipsi (Estonian)/Chudskoe (Russian), one of the largest lakes in Europe, shared by Russia and Estonia. Although the lake is relatively undisturbed by human pollution, it is vulnerable for eutrophication by increased river loads, as shown in the past, when the north-eastern part of the former Soviet Union suffered from intensive agriculture. The collapse of the Soviet Union caused a dramatic decline in fertilizer application rates and widespread abandonment of agricultural land. Although concentration measurements and modelling results indicate a general decrease in nutrient loads, modelling is complicated by the transfer of nutrients from diffuse emissions, which is strongly governed by retention and assumed periodic release from storages within the river basin, like the root zone, tile drains, ditches, channels, bed sediments, floodplains and lakes. Modelling diffuse emission contribution to river loads can be improved by better knowledge about the spatial and temporal distribution of this retention and release within the drainage basin.

  9. Sources identification of antibiotic pollution combining land use information and multivariate statistics.

    PubMed

    Li, Jia; Zhang, Haibo; Chen, Yongshan; Luo, Yongming; Zhang, Hua

    2016-07-01

    To quantify the extent of antibiotic contamination and to identity the dominant pollutant sources in the Tiaoxi River Watershed, surface water samples were collected at eight locations and analyzed for four tetracyclines and three sulfonamides using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The observed maximum concentrations of tetracycline (623 ng L(-1)), oxytetracycline (19,810 ng L(-1)), and sulfamethoxazole (112 ng L(-1)) exceeded their corresponding Predicted No Effect Concentration (PNEC) values. In particular, high concentrations of antibiotics were observed in wet summer with heavy rainfall. The maximum concentrations of antibiotics appeared in the vicinity of intensive aquaculture areas. High-resolution land use data were used for identifying diffuse source of antibiotic pollution in the watershed. Significant correlations between tetracycline and developed (r = 0.93), tetracycline and barren (r = 0.87), oxytetracycline and barren (r = 0.82), and sulfadiazine and agricultural facilities (r = 0.71) were observed. In addition, the density of aquaculture significantly correlated with doxycycline (r = 0.74) and oxytetracycline (r = 0.76), while the density of livestock significantly correlated with sulfadiazine (r = 0.71). Principle Component Analysis (PCA) indicated that doxycycline, tetracycline, oxytetracycline, and sulfamethoxazole were from aquaculture and domestic sources, whereas sulfadiazine and sulfamethazine were from livestock wastewater. Flood or drainage from aquaculture ponds was identified as a major source of antibiotics in the Tiaoxi watershed. A hot-spot map was created based on results of land use analysis and multi-variable statistics, which provided an effective management tool of sources identification in watersheds with multiple diffuse sources of antibiotic pollution.

  10. Analyzing Air Pollutant Emissions from the Biofuel Supply Chain | Energy

    Science.gov Websites

    biomass-to-biofuels life cycle - fast-growing trees, agricultural waste, storage silos, and a biorefinery published in Chapter 9-"Implications of Air Pollutant Emissions from Producing Agricultural and

  11. Null-space Monte Carlo particle tracking to assess groundwater PCE (Tetrachloroethene) diffuse pollution in north-eastern Milan functional urban area.

    PubMed

    Alberti, Luca; Colombo, Loris; Formentin, Giovanni

    2018-04-15

    The Lombardy Region in Italy is one of the most urbanized and industrialized areas in Europe. The presence of countless sources of groundwater pollution is therefore a matter of environmental concern. The sources of groundwater contamination can be classified into two different categories: 1) Point Sources (PS), which correspond to areas releasing plumes of high concentrations (i.e. hot-spots) and 2) Multiple-Point Sources (MPS) consisting in a series of unidentifiable small sources clustered within large areas, generating an anthropogenic diffuse contamination. The latter category frequently predominates in European Functional Urban Areas (FUA) and cannot be managed through standard remediation techniques, mainly because detecting the many different source areas releasing small contaminant mass in groundwater is unfeasible. A specific legislative action has been recently enacted at Regional level (DGR IX/3510-2012), in order to identify areas prone to anthropogenic diffuse pollution and their level of contamination. With a view to defining a management plan, it is necessary to find where MPS are most likely positioned. This paper describes a methodology devised to identify the areas with the highest likelihood to host potential MPS. A groundwater flow model was implemented for a pilot area located in the Milan FUA and through the PEST code, a Null-Space Monte Carlo method was applied in order to generate a suite of several hundred hydraulic conductivity field realizations, each maintaining the model in a calibrated state and each consistent with the modelers' expert-knowledge. Thereafter, the MODPATH code was applied to generate back-traced advective flowpaths for each of the models built using the conductivity field realizations. Maps were then created displaying the number of backtracked particles that crossed each model cell in each stochastic calibrated model. The result is considered to be representative of the FUAs areas with the highest likelihood to host

  12. Biological scientist in an air pollution control program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, H.A.

    The biological scientist in an air pollution control agency is becoming of greater service as the larger districts are being formed which embrace agricultural areas. While it is not an altogether new role in history, it has often been neglected. His presence on the staff provides the air pollution control agency staff with a liaison to agriculture and public health, as well as an information source immediately at hand. His training in the life science fields not only allows him to help understand the biological problems, but also allows him to communicate these to the engineer. In the Bay Areamore » Air Pollution Control District, this position is filled by a biostatistician. Here the statistical duties are often not too sharply differentiated from the biological ones. However, these range from attempting to diagnose air pollution damage on orchids to the development of a mechanized punch-card information retrieval system. From this one can soon correctly surmise that monotony is not a problem.« less

  13. Pollution load index for heavy metals in Mian-Ab plain soil, Khuzestan, Iran.

    PubMed

    Jorfi, Sahand; Maleki, Rohangiz; Jaafarzadeh, Neemat; Ahmadi, Mehdi

    2017-12-01

    Soil pollution by heavy metals is a major concern in agricultural area. Potential impact of heavy metals in agricultural soil on human health by accumulating in food chain demonstrated elsewhere. In this regard Mian-Ab plain as a major agricultural site of Khuzestan province considered for Arsenic, cadmium and lead concentration as the main potential toxic pollutants in soil. 50 topsoil samples were collected and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Also Contamination level of selected heavy metals in Mian-Ab Plain, was assessed by single factor contaminant index (PI) and pollution load index (PLI). Results show mean concentration of arsenic, cadmium and lead were 2.52, 0.30 and 7.21 mg kg -1 . Base on PLI results 12 point (24%) of the studied area show moderately polluted and 38 point (76%) show unpolluted area.

  14. Clean Air Act Standards and Guidelines for Agriculture, Food and Forestry

    EPA Pesticide Factsheets

    This page contains the stationary sources of air pollution for the agriculture, food, and forestry industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  15. Agricultural non-point source pollution management in a reservoir watershed based on ecological network analysis of soil nitrogen cycling.

    PubMed

    Xu, Wen; Cai, Yanpeng; Rong, Qiangqiang; Yang, Zhifeng; Li, Chunhui; Wang, Xuan

    2018-03-01

    The Miyun Reservoir plays a pivotal role in providing drinking water for the city of Beijing. In this research, ecological network analysis and scenario analysis were integrated to explore soil nitrogen cycling of chestnut and Chinese pine forests in the upper basin of the Miyun Reservoir, as well as to seek favorable fertilization modes to reduce agricultural non-point source pollution. Ecological network analysis results showed that (1) the turnover time was 0.04 to 0.37 year in the NH 4 + compartment and were 15.78 to 138.36 years in the organic N compartment; (2) the Finn cycling index and the ratio of indirect to direct flow were 0.73 and 11.92 for the chestnut forest model, respectively. Those of the Chinese pine forest model were 0.88 and 29.23, respectively; and (3) in the chestnut forest model, NO 3 - accounted for 96% of the total soil nitrogen loss, followed by plant N (2%), NH 4 + (1%), and organic N (1%). In the Chinese pine forest, NH 4 + accounted for 56% of the total soil nitrogen loss, followed by organic N (34%) and NO 3 - (10%). Fertilization mode was identified as the main factor affecting soil N export. To minimize NH 4 + and NO 3 - outputs while maintaining the current plant yield (i.e., 7.85e0 kg N/year), a fertilization mode of 162.50 kg N/year offered by manure should be adopted. Whereas, to achieve a maximum plant yield (i.e., 3.35e1 kg N/year) while reducing NH 4 + and NO 3 - outputs, a fertilization mode of 325.00 kg N/year offered by manure should be utilized. This research is of wide suitability to support agricultural non-point source pollution management at the watershed scale.

  16. New insights into agricultural pesticide pollution through a complete and continuous pesticide screening during one growing season in five small Swiss streams

    NASA Astrophysics Data System (ADS)

    Mangold, Simon; Doppler, Tobias; Spycher, Simon; Langer, Miriam; Junghans, Marion; Kunz, Manuel; Stamm, Christian; Singer, Heinz

    2017-04-01

    Agricultural pesticides are regularly found in many surface waters draining agricultural areas. Due to large fluctuations in concentration over time and the potentially high number of pesticides, it is difficult to obtain a complete overview of the real pollution level. This collaborative project between research, federal and cantonal authorities in Switzerland aimed for a comprehensive assessment of pesticide pollution in five small agricultural streams to tackle this knowledge gap. The five streams are located in catchments (1.5 to 9 km2) with intensive agriculture covering a wide range of crops including vegetables, vineyards and orchards. Twelve-hour composite samples were collected continuously from March until the end of August 2015 with automatic sampling devices, yielding 360 samples per site. Using precipitation and water level data, we differentiated between discharge events and low-flow periods. Samples from discharge events where measured individually whereas samples taken during dry weather were pooled for the analysis. This procedure resulted in a complete concentration profile over the entire monitoring period covered by 34 - 60 samples per site. The analysis, using liquid chromatography coupled to high resolution mass spectrometry involved a target screening of about 220 pesticides. The measured concentrations were compared to chronic and acute environmental quality standards (EQS values) resulting in risk quotients RQs, which are the ratios between measured concentrations and the respective EQS values. Despite the small size of the catchments, we observed a large pesticide diversity in all of them with 68 to 103 detected compounds per study area. At all sites, chronic EQS values were exceeded. However, the exposure levels varied substantially among catchments. Maximum chronic RQs per site ranged between 1.1 and 48.8 and the duration of EQS exceedance varied between 2 weeks and 5.5 months. Additionally, the data reveal (very) high concentration

  17. Effect of a seasonal diffuse pollution migration on natural organic matter behavior in a stratified dam reservoir.

    PubMed

    Yu, Soon Ju; Lee, Jae Yil; Ha, Sung Ryong

    2010-01-01

    This article aims to describe the influence of diffuse pollution on the temporal and spatial characteristics of natural organic matter (NOM) in a stratified dam reservoir, the Daecheong Dam, on the basis of intensive observation results and the dynamic water quality simulation using CE-QUAL-W2. Turbidity is regarded as a comprehensive representation of allochothonous organic matter from diffuse sources in storm season because the turbidity concentration showed reasonable significance in a statistical correlation with the UV absorbance at 254 nm and total phosphorus. CE-QUAL-W2 simulation results showed good consistency with the observed data in terms of dissolved organic matter (DOM) including refractory dissolved organic carbon (RDOC) and labile DOC and also well explained the internal movement of constituents and stratification phenomenon in the reservoir. Instead turbidity and NOM were related well in the upper region of the reservoir according to flow distance, gradually as changing to dissolved form of organic matter, RDOM affected organic matter concentration of reservoir water quality compared to turbidity. To control the increase of soluble organic matters in the dam reservoir, appropriate dam water discharge gate operation provided effective measurement. Because of the gate operation let avoid the accumulation of organic matter within a dam reservoir by shorten of turbid regime retention time.

  18. Evaluation of Land Use, Land Management and Soil Conservation Strategies to Reduce Non-Point Source Pollution Loads in the Three Gorges Region, China

    NASA Astrophysics Data System (ADS)

    Strehmel, Alexander; Schmalz, Britta; Fohrer, Nicola

    2016-11-01

    The construction of the Three Gorges Dam in China and the subsequent impoundment of the Yangtze River have induced a major land use change in the Three Gorges Reservoir Region, which fosters increased inputs of sediment and nutrients from diffuse sources into the water bodies. Several government programs have been implemented to mitigate high sediment and nutrient loads to the reservoir. However, institutional weaknesses and a focus on economic development have so far widely counteracted the effectiveness of these programs. In this study, the eco-hydrological model soil and water assessment tool is used to assess the effects of changes in fertilizer amounts and the conditions of bench terraces in the Xiangxi catchment in the Three Gorges Reservoir Region on diffuse matter releases. With this, the study aims at identifying efficient management measures, which should have priority. The results show that a reduction of fertilizer amounts cannot reduce phosphorus loads considerably without inhibiting crop productivity. The condition of terraces in the catchment has a strong impact on soil erosion and phosphorus releases from agricultural areas. Hence, if economically feasible, programmes focusing on the construction and maintenance of terraces in the region should be implemented. Additionally, intercropping on corn fields as well as more efficient fertilization schemes for agricultural land were identified as potential instruments to reduce diffuse matter loads further. While the study was carried out in the Three Gorges Region, its findings may also beneficial for the reduction of water pollution in other mountainous areas with strong agricultural use.

  19. Evaluation of Land Use, Land Management and Soil Conservation Strategies to Reduce Non-Point Source Pollution Loads in the Three Gorges Region, China.

    PubMed

    Strehmel, Alexander; Schmalz, Britta; Fohrer, Nicola

    2016-11-01

    The construction of the Three Gorges Dam in China and the subsequent impoundment of the Yangtze River have induced a major land use change in the Three Gorges Reservoir Region, which fosters increased inputs of sediment and nutrients from diffuse sources into the water bodies. Several government programs have been implemented to mitigate high sediment and nutrient loads to the reservoir. However, institutional weaknesses and a focus on economic development have so far widely counteracted the effectiveness of these programs. In this study, the eco-hydrological model soil and water assessment tool is used to assess the effects of changes in fertilizer amounts and the conditions of bench terraces in the Xiangxi catchment in the Three Gorges Reservoir Region on diffuse matter releases. With this, the study aims at identifying efficient management measures, which should have priority. The results show that a reduction of fertilizer amounts cannot reduce phosphorus loads considerably without inhibiting crop productivity. The condition of terraces in the catchment has a strong impact on soil erosion and phosphorus releases from agricultural areas. Hence, if economically feasible, programmes focusing on the construction and maintenance of terraces in the region should be implemented. Additionally, intercropping on corn fields as well as more efficient fertilization schemes for agricultural land were identified as potential instruments to reduce diffuse matter loads further. While the study was carried out in the Three Gorges Region, its findings may also beneficial for the reduction of water pollution in other mountainous areas with strong agricultural use.

  20. Trace elements assessment in agricultural and desert soils of Aswan area, south Egypt: Geochemical characteristics and environmental impacts

    NASA Astrophysics Data System (ADS)

    Darwish, Mohamed Abdallah Gad; Pöllmann, Hebert

    2015-12-01

    Determination of chemical elements, Al, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, P, Pb, Sc, Sr, Ti, Y, and Zn have been performed in agricultural and desert soils and alfalfa (Medicago sativa) at Aswan area. Consequently, the pollution indices, univariate and multivariate statistical methods have been applied, in order to assess the geochemical characteristics of these elements and their impact on soil environmental quality and plant, and to reach for their potential input sources. The investigation revealed that the mean and range values of all element concentrations in agricultural soil are higher than those in desert soil. Furthermore, the agricultural soil displayed various degrees of enrichment and pollution of Cd, Zn, Mo, Co, P, Ti, Pb. The geochemical pattern of integrated pollution indices gave a clear image of extreme and strong pollution in the agricultural soil stations, their poor quality with high risk to human health and considered as a tocsin for an alert. In contrast, the desert soil is the good environmental quality and safe for plant, animal and human health. Alfalfa is tolerant plant and considered as a biomarker for P and Mo in polluted agricultural soil. Four geochemical associations of analyzing elements in agricultural soil and three ones in desert soil have been generated, and their enhancements were essentially caused by various anthropogenic activities and geogenic sources. The investigation also revealed that the broad extended desert soil is fruitful and promising as cultivable lands for agricultural processes in the futures.

  1. Nitrate concentrations under irrigated agriculture

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    In recent years, considerable interest has been expressed in the nitrate content of water supplies. The most notable toxic effect of nitrate is infant methemoglobinemia. The risk of this disease increases significantly at nitrate-nitrogen levels exceeding 10 mg/l. For this reason, this concentration has been established as a limit for drinking water in many countries. In natural waters, nitrate is a minor ionic constituent and seldom accounts for more than a few percent of the total anions. However, nitrate in a significant concentration may occur in the vicinity of some point sources such as septic tanks, manure pits, and waste-disposal sites. Non-point sources contributing to groundwater pollution are numerous and a majority of them are related to agricultural activities. The largest single anthropogenic input of nitrate into the groundwater is fertilizer. Even though it has not been proven that nitrogen fertilizers are responsible for much of nitrate pollution, they are generally recognized as the main threat to groundwater quality, especially when inefficiently applied to irrigated fields on sandy soils. The biggest challenge facing today's agriculture is to maintain the balance between the enhancement of crop productivity and the risk of groundwater pollution. ?? 1982 Springer-Verlag New York Inc.

  2. The farmers' perceptions of ANPS pollution and its influencing factors in Poyang Lake Region, China.

    PubMed

    Chen, Meiqiu; Chen, Mengjiao; Lu, Yanfei; Wang, Liguo; Huang, Yujiao

    2016-01-01

    Individual farmers represent the main management entities of agricultural production under the family-contract responsibility system in China, and thus play crucial roles in the prevention and control of agricultural nonpoint source (ANPS) pollution. The analysis of the farmers' perceptions of ANPS pollution as well as the factors affecting their perceptions can provide valuable information for relevant policy-making to preserve high quality water in Poyang Lake and regional quality of arable land. Through a survey titled 'Farmers' perceptions of ANPS pollution and farming behaviors in the Poyang Lake Region', the data related to the perceptions of farmers on ANPS pollution were collected. The factors that affect their awareness of ANPS pollution were identified with the method of boosted regression trees (BRT). The results indicated that the farmers had awareness of the risk of ANPS pollution to some extent, but they lacked adequate scientific knowledge. Generally, they had no consciousness about how to prevent and control ANPS pollution and did not understand techniques needed for proper scientifically sound application of fertilizers and pesticides. The main factors that influenced their perceptions of ANPS pollution are (from high to low): the ratio of total income which comes from farming, per capita farmland, age, education level, and household income. Some measures targeted to improve the prevention and control of ANPS pollution were proposed: developing modern agricultural techniques and promoting large-scale farming, increasing public campaigns related to ANPS pollution prevention and control with the goal of raising the level of awareness of farmers, and reforming the methods used to promote science and technology in agriculture and encourage the proper use of chemical fertilizers and pesticides.

  3. POLUTE; forest air pollutant uptake model. [IBM360,370; CSMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, C.E.

    POLUTE is a computer model designed to estimate the uptake of air pollutants by forests. The model utilizes submodels to describe atmospheric diffusion immediately above and within the canopy, and into the sink areas within or on the trees. The program implementing the model is general and can be used, with only minor changes, for any gaseous pollutant. The model provides an estimate describing the response of the vegetarian-atmosphere system to the environment as related to three types of processes: atmospheric diffusion, diffusion near and inside the absorbing plant, and the physical and chemical processes at the sink on ormore » within the plant.IBM360,370; CSMP; OS/370.« less

  4. Intermittent micro-aeration control of methane emissions from an integrated vertical-flow constructed wetland during agricultural domestic wastewater treatment.

    PubMed

    Liu, Xiaoling; Zhang, Ke; Fan, Liangqian; Luo, Hongbing; Jiang, Mingshu; Anderson, Bruce C; Li, Mei; Huang, Bo; Yu, Lijuan; He, Guozhu; Wang, Jingting; Pu, Aiping

    2018-06-16

    It is very important to control methane emissions to mitigate global warming. An intermittent micro-aeration control system was used to control methane emissions from an integrated vertical-flow constructed wetland (IVCW) to treat agricultural domestic wastewater pollution in this study. The optimized intermittent micro-aeration conditions were a 20-min aeration time and 340-min non-aeration time, 3.9 m 3  h -1 aeration intensity, evenly distributed micro-aeration diffusers at the tank bottom, and an aeration period of every 6 h. Methane flux emission by intermittent micro-aeration was decreased by 60.7% under the optimized conditions. The average oxygen transfer efficiency was 26.73%. The control of CH 4 emission from IVCWs was most strongly influenced by the intermittent micro-aeration diffuser distribution, followed by aeration intensity, aeration time, and water depth. Scaling up of IVCWs is feasible in rural areas by using intermittent micro-aeration control as a mitigation measure for methane gas emissions for climate change.

  5. EFFECTS OF WIND SHEAR ON POLLUTION DISPERSION. (R827929)

    EPA Science Inventory

    Using an accurate numerical method for simulating the advection and diffusion of pollution puffs, it is demonstrated that point releases of pollution grow into a shape reflecting the vertical wind shear profile experienced by the puff within a time scale less than 4 h. Fo...

  6. Agricultural diffuse pollution in a chalk aquifer (Trois Fontaines, France): Influence of pesticide properties and hydrodynamic constraints

    NASA Astrophysics Data System (ADS)

    Baran, N.; Lepiller, M.; Mouvet, C.

    2008-08-01

    SummaryThe characterization of the transfer of pesticides to and in groundwater is essential for effective water resource management. Intensive monitoring, from October 1989 to May 2006, of a weakly karstified chalk aquifer system in a 50 km 2 agricultural catchment, enabled the characterization of the temporal variability of pesticide concentrations in the groundwater of the main outlet. Atrazine and its metabolite deethylatrazine were quantified 394 and 393 times in 476 samples with concentrations ranging from the quantification limit (0.025 μg L -1) to 5.3 and 1.86 μg L -1, respectively. This common presence, compared to the rare detections of isoproturon (in 108 of 476 samples), the pesticide most widely used in the catchment during at least the past decade, highlighted the significant effect of pesticide properties in the time series of concentrations observed in the groundwater. The use of geochemical tracers (nitrate, chloride) analysed in the groundwater and the hydrodynamic monitoring of the system (discharge, water levels) enabled identification of various infiltration mechanisms governing the functioning of the system. The hydrodynamic study showing that the relative contribution of the infiltration mechanisms varies with time, made it possible to explain major variations observed in the pesticide-concentration time series recorded at the spring.

  7. Nutrient pollution of coastal rivers, bays, and seas

    USGS Publications Warehouse

    Howarth, Robert; Anderson, Donald; Cloern, James; Elfring, Chris; Hopkinson, Charles; Lapointe, Brian; Malone, Tom; Marcus, Nancy; McGlathery, Karen; Sharpley , Andrew; Walker, Dan

    2000-01-01

    Over the past 40 years, antipollution laws have greatly reduced discharges of toxic substances into our coastal waters. This effort, however, has focused largely on point-source pollution of industrial and municipal effluent. No comparable effort has been made to restrict the input of nitrogen (N) from municipal effluent, nor to control the flows of N and phosphorus (P) that enter waterways from dispersed or nonpoint sources such as agricultural and urban runoff or as airborne pollutants. As a result, inputs of nonpoint pollutants, particularly N, have increased dramatically. Nonpoint pollution from N and P now represents the largest pollution problem facing the vital coastal waters of the United States.

  8. Effects on environment and agriculture of geothermal wastewater and boron pollution in great Menderes basin.

    PubMed

    Koç, Cengiz

    2007-02-01

    Boron toxicity is an important disorder that can be limit plant growth on soils of arid and semi arid environments through the world. High concentrations of Boron may occur naturally in the soil or in groundwater, or be added to the soil from mining, fertilizers, or irrigation water. Off all the potential resources, irrigation water is the most important contributor to high levels of soil boron, boron is often found in high concentrations in association with saline soil and saline well water. Although of considerable agronomic importance, our understanding of Boron toxicity is rather fragment and limited. In this study, Boron content of Great Menderes River and Basin was researched. Great Menderes Basin is one of the consequence basins having agricultural potential, aspect of water and soil resources in Turkey. Great Menderes River, water resource of the basin was to be polluted by geothermal wastewater and thermal springs including Boron element. Great Menderes Basin has abundant geothermal water resources which contain high amounts of Boron and these ground water are brought to surface and used for various purposes such as power generation, heating or thermal spring and than discharged to Great Menderes River. In order to prevent Boron pollution and hence unproductively in soils, it is necessary not to discharged water with Boron to irrigation water. According to results, it was obtained that Boron content of River was as high in particular Upper Basin where there was a ground thermal water reservoir. Boron has been accumulated more than plant requirement in this area irrigated by this water. Boron content of River was relatively low in rainy months and irrigation season while it was high in dry season. Boron concentration in the River was to decrease from upstream to downstream. If it is no taken measure presently, about 130,000 ha irrigation areas which was constructed irrigation scheme in the Great Menderes basin will expose the Boron pollution and salinity

  9. Odor compounds in waste gas emissions from agricultural operations and food industries.

    PubMed

    Rappert, S; Müller, R

    2005-01-01

    In the last decades, large-scale agricultural operations and food industries have increased. These operations generate numerous types of odors. The reduction of land areas available for isolation of agricultural and food processing industrial operations from the public area and the increase in sensitivity and demand of the general public for a clean and pleasant environment have forced all of these industries to control odor emissions and toxic air pollutants. To develop environmentally sound, sustainable agricultural and food industrial operations, it is necessary to integrate research that focuses on modern analytical techniques and latest sensory technology of measurement and evaluation of odor and pollution, together with a fundamental knowledge of factors that are the basic units contributing to the production of odor and pollutants. Without a clear understanding of what odor is, how to measure it, and where it originates, it will be difficult to control the odor. The present paper reviews the available information regarding odor emissions from agricultural operations and food industries by giving an overview about odor problems, odor detection and quantification, and identifying the sources and the mechanisms that contribute to the odor emissions. Finally, ways of reducing or controlling the odor problem are discussed.

  10. Novel Fabrication of Biodegradable Superabsorbent Microspheres with Diffusion Barrier through Thermo-Chemical Modification and Their Potential Agriculture Applications for Water Holding and Sustained Release of Fertilizer.

    PubMed

    Feng, Diejing; Bai, Bo; Wang, Honglun; Suo, Yourui

    2017-07-26

    Synergistic utilization of water and fertilizer has vital contribution to the modern production of agriculture. This work reports on a simple and facile strategy to prepare biodegradable yeast/sodium alginate/poly(vinyl alcohol) superabsorbent microspheres with a diffusion barrier merit by thermo-chemical modification route. The integrated performances, including water absorbency, water retention, water evaporation ratio, leaching loss control, sustained-release behaviors, and degradation in soil, were systematically investigated. The results revealed that the modified microspheres were a triumphant water and fertilizer manager to effectively hold water and control the unexpected leakage of fertilizer for sustained release. Therefore, this work provides a promising approach to ameliorate the utilization efficiency of water and fertilizer in potential agriculture applications.

  11. Evaluation of the leucine incorporation technique for detection of pollution-induced community tolerance to copper in a long-term agricultural field trial with urban waste fertilizers.

    PubMed

    Lekfeldt, Jonas Duus Stevens; Magid, Jakob; Holm, Peter E; Nybroe, Ole; Brandt, Kristian Koefoed

    2014-11-01

    Copper (Cu) is known to accumulate in agricultural soils receiving urban waste products as fertilizers. We here report the use of the leucine incorporation technique to determine pollution-induced community tolerance (Leu-PICT) to Cu in a long-term agricultural field trial. A significantly increased bacterial community tolerance to Cu was observed for soils amended with organic waste fertilizers and was positively correlated with total soil Cu. However, metal speciation and whole-cell bacterial biosensor analysis demonstrated that the observed PICT responses could be explained entirely by Cu speciation and bioavailability artifacts during Leu-PICT detection. Hence, the agricultural application of urban wastes (sewage sludge or composted municipal waste) simulating more than 100 years of use did not result in sufficient accumulation of Cu to select for Cu resistance. Our findings also have implications for previously published PICT field studies and demonstrate that stringent PICT detection criteria are needed for field identification of specific toxicants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Obstacles and Opportunities for Diffusion of Integrated Pest Management Strategies Reported by Bolivian Small-Scale Farmers and Agronomists

    PubMed Central

    Jørs, Erik; Aramayo, Antonio; Huici, Omar; Konradsen, Flemming; Gulis, Gabriel

    2017-01-01

    Integrated pest management (IPM) with an increased used of ecological farming methods and less and safer use of pesticides offers solutions to reduce risks of developing pest resistance, human poisoning, and environmental pollution. Despite being promoted by Food and Agriculture Organization and others, it has not spread readily in low-income countries. This article presents the opinions of Bolivian farmers and agronomists on perceived obstacles and opportunities for a diffusion of IPM. Focus group discussions revealed an increased workload without certainty of higher yields or better prices for products grown with IPM compared with traditional agriculture being hindrances for a spread of IPM. Moreover, IPM requires some new practices not that easy to learn by farmers. In favor of IPM was an increasing awareness of the importance of a healthy and sustainable food production, easiness to try out without expensive investments needed, and a higher quality of the products. A healthy and sustainable agricultural production should be promoted by support to farmers through IPM training, a certification, and better prices. Finding allies to such a promotion is not easy, though, according to both farmers and agronomists. PMID:28469449

  13. Assessment of the relationship between rural non-point source pollution and economic development in the Three Gorges Reservoir Area.

    PubMed

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2016-04-01

    This study investigates the relationship between rural non-point source (NPS) pollution and economic development in the Three Gorges Reservoir Area (TGRA) by using the Environmental Kuznets Curve (EKC) hypothesis for the first time. Five types of pollution indicators, namely, fertilizer input density (FD), pesticide input density (PD), agricultural film input density (AD), grain residues impact (GI), and livestock manure impact (MI), were selected as rural NPS pollutant variables. Rural net income per capita was used as the indicator of economic development. Pollution load was generated by agricultural inputs (consumption of fertilizer, pesticide, and agricultural film) and economic growth with invert U-shaped features. The predicted turning points for FD, PD, and AD were at rural net income per capita levels of 6167.64, 6205.02, and 4955.29 CNY, respectively, which were all surpassed. However, the features between agricultural waste outputs (grain residues and livestock manure) and economic growth were inconsistent with the EKC hypothesis, which reflected the current trends of agricultural economic structure in the TGRA. Given that several other factors aside from economic development level could influence the pollutant generation in rural NPS, a further examination with long-run data support should be performed to understand the relationship between rural NPS pollution and income level.

  14. Polybrominated diphenyl ethers in residential and agricultural soils from an electronic waste polluted region in South China: distribution, compositional profile, and sources.

    PubMed

    Zhang, Shaohui; Xu, Xijin; Wu, Yousheng; Ge, Jingjing; Li, Weiqiu; Huo, Xia

    2014-05-01

    A detailed investigation was conducted to understand the concentration, distribution, profile and possible source of polybrominated diphenyl ethers (PBDEs) in residential and agricultural soils from Guiyu, Shantou, China, one of the largest electronic waste (e-waste) recycling and dismantling areas in the world. Ten PBDEs were analyzed in 46 surface soil samples in terms of individual and total concentrations, together with soil organic matter concentrations. Much higher concentrations of the total PBDEs were predicted in the residential areas (more than 2000 ng g(-1)), exhibiting a clear urban source, while in the agricultural areas, concentrations were lower than 1500 ng g(-1). PBDE-209 was the most dominant congener among the study sites, indicating the prevalence of commercial deca-PBDE. However signature congeners from commercial octa-PBDE were also found. The total PBDE concentrations were significantly correlated with each individual PBDE. Principal component analysis indicated that PBDEs were mainly distributed in three groups according to the number of bromine atoms on the phenyl rings, and potential source. This study showed that the informal e-waste recycling has already introduced PBDEs into surrounding areas as pollutant which thus warrants an urgent investigation into the transport of PBDEs in the soil-plant system of agricultural areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. [Regional differences and development tendency of livestock manure pollution in China].

    PubMed

    Qiu, Huan-Guang; Liao, Shao-Pan; Jing, Yue; Luan, Jiang

    2013-07-01

    The rapid development of livestock production in China has brought livestock manure pollution as a serious environment problem, even threatens China's agriculture sustainable development. On the basis of public statistical data and field research data, this paper analyzed the magnitude of livestock manure excretion and pollution of China and different provinces in 2010, and predicted development tendencies of livestock manure excretion and pollution in 2020 through the Decision Support System for China's Agricultural Sustainable Development (CHINAGRO). The result shows that total livestock manure excretion of China in 2010 is 1 900 million tons, and livestock manure pollution is 227 million tons, while per hectare arable land of livestock manure pollution is 1.86 tons. Provinces in the southeast China, such as Guangdong and Fujian, are areas with high pressure of livestock manure pollution. Model simulation shows that China's total amount of livestock manure pollution will increase to 298 million tons in 2020 without government intervention. The pressure of livestock manure pollution will become higher in most regions of China, especially in east and south regions. The situation in central and western region is better than that in east regions although the pollution pressure will also increase in those areas. Policy intervention such as taxes and subsidies should be adopted to reduce the discharge of livestock manure pollution, and encourage livestock production transfer from eastern areas to the central and western regions.

  16. Using Microbial Source Tracking to Enhance Environmental Stewardship of Agriculture

    NASA Astrophysics Data System (ADS)

    Martin, Sherry; Rose, Joan; Flood, Matthew; Aw, Tiong; Hyndman, David

    2016-04-01

    Large scale agriculture relies on the application of chemical fertilizers and animal manure. It is well known that nutrients in excess of a plant's uptake and soil retention capacity can travel to nearby waterways via surface run-off and groundwater pathways, indirectly fertilizing these aquatic ecosystems. It has not yet been possible to distinguish water quality impacts of fertilizer from those derived from human and animal waste sources. However, new microbial source tracking (MST) tools allow specific identification of fecal pollution. Our objective was to examine pollution risks at the regional scale using MST, mapping and classification and regression tree analysis. We present results Bovine M2 genetic marker data from three flow regimes (baseflow, snow melt, and post-planting rain). Key landscape characteristics were related to the presence of the bovine markers and appear to be related to fate and transport. Impacts at this regional watershed scale will be discussed. Our research aims to identify the impacts of agricultural management practices on water quality by linking nutrient concentrations with fecal pollution sources. We hope that our research will provide guidance that will help improve water quality through agricultural best management practices to reduce pathogen contamination.

  17. Elevated incidence of hypospadias in two sicilian towns where exposure to industrial and agricultural pollutants is high.

    PubMed

    Bianca, Sebastiano; Li Volti, Giovanni; Caruso-Nicoletti, Manuela; Ettore, Giuseppe; Barone, Patrizia; Lupo, Lorenzo; Li Volti, Salvatore

    2003-01-01

    We found significant elevated incidence of hypospadias in two towns in Southeastern Sicily selected on the basis of the presence of intense industrial (Augusta) and agricultural (Vittoria) activities. Cases and controls were chosen in records collected from a surveillance system on abnormal live births in the same area and in a large city (Catania) located in an area at low risk of exposure to environmental pollutants. From 1991 to 1998, 16 cases of isolated hypospadias were recorded among male live births in Augusta (12.1 per 1000 male live births) and 24 cases in Vittoria (7.4 per 1000 male live births) with an incidence significantly higher than that expected (3.2 per 1000 in Southeastern Sicily). Relative risks in Augusta and Vittoria were 3.8 (95% confidence interval: 2.16-6.14) and 2.3 (95% confidence interval: 1.48-3.43; P=0.00003 and 0.04, respectively). In Augusta, the incidence of hypospadias was higher than in Vittoria. Significant log odds ratios were found for occupational exposure in fathers both in Augusta and Vittoria (P=0.0478 and 0.026, respectively). However, daily contact with pollutants in Augusta may not be sufficient by itself to determine hypospadias and other factors might be involved. Similar factors may act also in Vittoria. Thus, contact with large amounts of pesticides is, by itself, a risk factor for hypospadias, though genetic and other environmental factors might be involved.

  18. Chapter 25: Pollution and Fishing Threats to Marbled Murrelets

    Treesearch

    D. Michael Fry

    1995-01-01

    The principal pollutant threats to Marbled Murrelets are chlorinated organic effluent discharges from chlorine bleach pulp mills located in California, Washington, and British Columbia. The distribution of murrelets away from riverine input of agricultural chemicals reduces the threat from these pollutants. Plastic ingestion does not appear to pose a serious threat to...

  19. Observations on Agricultural Policy, Policy Reform and Public Policy Education.

    ERIC Educational Resources Information Center

    Lee, John E., Jr.

    The intervention of the United States government in agriculture in the 20th century is an explainable response to basic characteristics of agriculture: unpredictability, immobile resources, technological changes and disproportionate supply and demand factors. The concentration of large benefits among relatively few producers and diffusion of costs…

  20. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 2. Appendices. [Appendices only

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liverman, James L.

    Volume 2 is comprised of appendices: Portsmouth Gaseous Diffusion Plant Existing Facilities; Ecology; Civic Involvement; Social Analysis; Population Projections; Toxicity of Air Pollutants to Biota at Portsmouth Gaseous Diffusion Plant; and Assessment of Noise Effects of an Add-On to the Portsmouth Gaseous Diffusion Plant. (LK)

  1. Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed?

    NASA Astrophysics Data System (ADS)

    Pineux, N.; Lisein, J.; Swerts, G.; Bielders, C. L.; Lejeune, P.; Colinet, G.; Degré, A.

    2017-03-01

    Erosion and deposition modelling should rely on field data. Currently these data are seldom available at large spatial scales and/or at high spatial resolution. In addition, conventional erosion monitoring approaches are labour intensive and costly. This calls for the development of new approaches for field erosion data acquisition. As a result of rapid technological developments and low cost, unmanned aerial vehicles (UAV) have recently become an attractive means of generating high resolution digital elevation models (DEMs). The use of UAV to observe and quantify gully erosion is now widely established. However, in some agro-pedological contexts, soil erosion results from multiple processes, including sheet and rill erosion, tillage erosion and erosion due to harvest of root crops. These diffuse erosion processes often represent a particular challenge because of the limited elevation changes they induce. In this study, we propose to assess the reliability and development perspectives of UAV to locate and quantify erosion and deposition in a context of an agricultural watershed with silt loam soils and a smooth relief. Erosion and deposition rates derived from high resolution DEM time series are compared to field measurements. The UAV technique demonstrates a high level of flexibility and can be used, for instance, after a major erosive event. It delivers a very high resolution DEM (pixel size: 6 cm) which allows us to compute high resolution runoff pathways. This could enable us to precisely locate runoff management practices such as fascines. Furthermore, the DEMs can be used diachronically to extract elevation differences before and after a strongly erosive rainfall and be validated by field measurements. While the analysis for this study was carried out over 2 years, we observed a tendency along the slope from erosion to deposition. Erosion and deposition patterns detected at the watershed scale are also promising. Nevertheless, further development in the

  2. A Qualitative Study of Prospective Elementary Teachers' Grasp of Agricultural and Science Educational Benchmarks for Agricultural Technology.

    ERIC Educational Resources Information Center

    Trexler, Cary J.; Meischen, Deanna

    2002-01-01

    Interviews with eight preservice elementary teachers regarding benchmarks related to agricultural technology for food and fiber showed that those from rural areas had more complex understanding of the trade-offs in technology use; urban residents were more concerned with ethical dilemmas. Pesticide pollution was most understood, genetic…

  3. Harvest season, high polluted season in East China

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Song, Yu; Li, Mengmeng; Li, Jianfeng; Zhu, Tong

    2012-12-01

    East China, a major agricultural zone with a dense population, suffers from severe air pollution during June, the agricultural harvest season, every year. Crop burning emits tremendous amounts of combustion products into the atmosphere, not only rapidly degrading the local air quality but also affecting the tropospheric chemistry, threatening public health and affecting climate change. Recently, in mid-June 2012, crop fires left a thick pall of haze over East China. We evaluated the PM10, PM2.5 (particulates less than 10 and 2.5 μm in aerodynamic diameter) and BC (black carbon) emissions by analyzing detailed census data and moderate resolution imaging spectroradiometer (MODIS) remote sensing images and then simulated the consequent pollution using meteorological and dispersion models. The results show that the crop fires sweeping from the south to the north are responsible for the intensive air pollution during harvest season. It is necessary for scientists and governments to pay more attention to this issue.

  4. Personal and Situational Variables which Inhibit or Stimulate the Adoption of Agricultural Occupations Curricula as an Innovation in Vocational Agriculture by Institute Participants. Final Report.

    ERIC Educational Resources Information Center

    Williams, David L.; Hull, William L.

    To identify variables accounting for variation in diffusion of cooperative agricultural occupations curriculums, data were collected by interviews with 32 teachers who were participants in one of the agricultural occupations institute workshops conducted at Oklahoma State University during the summers of 1965 or 1966 who were still teaching…

  5. Market Aspects of Diffusion: A Spatial Perspective on the Diffusion of Innovations in Thailand.

    ERIC Educational Resources Information Center

    Pontius, Steven K.

    How market factors affected the diffusion of four agricultural inputs (fertilizer, herbicide, insecticide, and fungicide) among farmers on the Central Plain of Thailand is examined. Market factors investigated were the distribution policies of the propagators and the travel behavior of the potential adopters. Data were gathered through personal…

  6. Development of a resource protection and waste strategy for water use by the agricultural sector.

    PubMed

    Ligthelm, M E; Ranwedzi, R; Morokane, M; Senne, M

    2007-01-01

    The South African Department of Water Affairs and Forestry (DWAF) has started developing a strategy to regulate activities and water uses by the agricultural sector that could impact on the water resource quality. The aim would not be to over-regulate the sector, but to protect the water resource where necessary. Most of these activities constitute diffuse sources of potential pollution. The strategic process will start with investigative discussions with major stakeholders and determining the strategic context and current situation. The latter will consist of a detailed literature and stakeholder survey, and an evaluation of existing agricultural activities. The next steps of determining a vision and the setting of strategic objectives will be done with active participation by the major players. An action plan will be developed to achieve the set objectives. Important components of the strategy will be to: classify activities according to their risk to the water resource, taking into account the sensitivity of the water resource; set regulatory measures in accordance with the risk posed by the activity (measures could include the promulgation of regulations, general authorisations and/or issuing of licenses); harmonise and link the process with existing relevant processes and guidelines within DWAF and other government departments; review existing guidelines; sign agreements with relevant government departments and the agricultural sector; and provide training, built capacity and raise awareness during and after the process.

  7. Mapping the scientific research on non-point source pollution: a bibliometric analysis.

    PubMed

    Yang, Beibei; Huang, Kai; Sun, Dezhi; Zhang, Yue

    2017-02-01

    A bibliometric analysis was conducted to examine the progress and future research trends of non-point source (NPS) pollution during the years 1991-2015 based on the Science Citation Index Expanded (SCI-Expanded) of Web of Science (WoS). The publications referencing NPS pollution were analyzed including the following aspects: document type, publication language, publication output and characteristics, subject category, source journal, distribution of country and institution, author keywords, etc. The results indicate that the study of NPS pollution demonstrated a sharply increasing trend since 1991. Article and English were the most commonly used document type and language. Environmental sciences and ecology, water resources, and engineering were the top three subject categories. Water science and technology ranked first in distribution of journal, followed by Science of the total environment and Environmental Monitoring and Assessment. The USA took a leading position in both quantity and quality, playing an important role in the research field of NPS pollution, followed by the UK and China. The most productive institution was the Chinese Academy of Sciences (Chinese Acad Sci), followed by Beijing Normal University and US Department of Agriculture's Agricultural Research Service (USDA ARS). The analysis of author keywords indicates that the major hotspots of NPS pollution from 1991 to 2015 contained "water," "model," "agriculture," "nitrogen," "phosphorus," etc. The results provide a comprehensive understanding of NPS pollution research and help readers to establish the future research directions.

  8. The effects of agriculture on the volcanic aquifers of the canary islands

    NASA Astrophysics Data System (ADS)

    Custodio, E.; Guerra, J. A.; Jiménez, J.; Medina, J. A.; Soler, C.

    1983-12-01

    Agriculture is a basic economic activity in the Canary Islands, a Spanish region in the Atlantic Ocean, facing the Sahara. The main crops are bananas, tomatoes, and other special ones suitable for exportation. Fertilizers are applied in high quantities on the scarce land available. The relatively good vertical permeability of the soils favors the deep infiltration of irrigation return flows. Water is obtained by an extraordinary net of shaft wells and water galleries, supplemented when possible by surface reservoirs in the deep gullies. Water is distributed by an extensive network of pipes and canals, allowing the transportation of water to virtually any point from any water source. Water quality is widely variable, from almost rain water to brackish, with a high frequency of sodium bicarbonate types. Return flows, especially when water is applied with good irrigation techniques and the original quality is poor, are saline and contain chemicals leached from the fertilizers. On Tenerife Island, most of the return flows go to coastal aquifers, while most of the water comes from high-altitude water galleries. Agricultural pollution is not generally appraised, but it exists. It can be masked by the frequent, high natural nitrate content in groundwater. On Gran Canaria Island, since water comes mainly from deep shaft wells near the irrigated areas, the nitrate pollution is much more clear. On La Palma Island, besides the nitrate pollution, a potassium pollution of agricultural origin has been mentioned. Other situations on the remaining islands are also discussed. It can be concluded that agriculture is a big concern for the water quality in many areas and impairs its suitability for other uses. Because of the great depth of the water table, the nitrate pollution may not become obvious for many years, especially for the deep-water galleries.

  9. Succesfull options to combat nitrogen pollution in Europe

    NASA Astrophysics Data System (ADS)

    Erisman, J. W.; Galloway, J. N.; Dammers, E.

    2015-12-01

    Nitrogen pollution has several social and economic consequences. Through different policies, such as the Nitrate Directive and the Habitats Directive in many places of Europe initiating new economic activities that enhance nitrogen pollution such as agriculture, energy and traffic have become impossible. Furthermore, the societal costs of nitrogen pollution are currently 72-320 billion euros per year. Several countries in Europe have implemented successful measures to reduce pollution at three stages: by limiting nitrogen production, by increasing the use efficiency and by end of pipe approaches. The effects and the (dis)advantages of the different type of measures will be discussed in this presentation.

  10. Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain)

    USDA-ARS?s Scientific Manuscript database

    AnnAGNPS (Annualized Agricultural Non-Point Source Pollution Model) is a system of computer models developed to predict non-point source pollutant loadings within agricultural watersheds. It contains a daily time step distributed parameter continuous simulation surface runoff model designed to assis...

  11. Organic contamination and remediation in the agricultural soils of China: A critical review.

    PubMed

    Sun, Jianteng; Pan, Lili; Tsang, Daniel C W; Zhan, Yu; Zhu, Lizhong; Li, Xiangdong

    2018-02-15

    Soil pollution is a global problem in both developed and developing countries. Countries with rapidly developing economies such as China are faced with significant soil pollution problems due to accelerated industrialization and urbanization over the last decades. This paper provides an overview of published scientific data on soil pollution across China with particular focus on organic contamination in agricultural soils. Based on the related peer-reviewed papers published since 2000 (n=203), we evaluated the priority organic contaminants across China, revealed their spatial and temporal distributions at the national scale, identified their possible sources and fates in soil, assessed their potential environmental risks, and presented the challenges in current remediation technologies regarding the combined organic pollution of agricultural soils. The primary pollutants in Northeast China were polycyclic aromatic hydrocarbons (PAHs) due to intensive fossil fuel combustion. The concentrations of organochlorine pesticides (OCPs) and phthalic acid esters (PAEs) were higher in North and Central China owing to concentrated agricultural activities. The levels of polychlorinated biphenyls (PCBs) were higher in East and South China primarily because of past industrial operations and improper electronic waste processing. The co-existence of organic contaminants was severe in the Yangtze River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei Region, which are the most populated and industrialized regions in China. Integrated biological-chemical remediation technologies, such as surfactant-enhanced bioremediation, have potential uses in the remediation of soil contaminated by multiple contaminants. This critical review highlighted several future research directions including combined pollution, interfacial interactions, food safety, bioavailability, ecological effects, and integrated remediation methods for combined organic pollution in soil. Copyright © 2017 Elsevier B

  12. Parametric and kinetic study of adsorptive removal of dyes from aqueous solutions using an agriculture waste

    NASA Astrophysics Data System (ADS)

    Bencheikh, imane; el hajjaji, souad; abourouh, imane; Kitane, Said; Dahchour, Abdelmalek; El M'Rabet, Mohammadine

    2017-04-01

    Wastewater treatment is the subject of several studies through decades. Interest is continuously oriented to provide cheaper and efficient methods of treatment. Several methods of treatment exit including coagulation flocculation, filtration, precipitation, ozonation, ion exchange, reverse osmosis, advanced oxidation process. The use of these methods proved limited because of their high investment and operational cost. Adsorption can be an efficient low-cost process to remove pollutants from wastewater. This method of treatment calls for an solid adsorbent which constitutes the purification tool. Agricultural wastes have been widely exploited in this case .As we know the agricultural wastes are an important source of water pollution once discharged into the aquatic environment (river, sea ...). The valorization of such wastes and their use allows the prevention of this problem with an economic and environment benefits. In this context our study aimed testing the wastewater treatment capacity by adsorption onto holocellulose resulting from the valorization of an agriculture waste. In this study, methylene blue (MB) and methyl orange (MO) are selected as models pollutants for evaluating the holocellulose adsorbent capacity. The kinetics of adsorption is performed using UV-visible spectroscopy. In order to study the effect of the main parameters for the adsorption process and their mutual interaction, a full factorial design (type nk) has been used.23 full factorial design analysis was performed to screen the parameters affecting dye removal efficiency. Using the experimental results, a linear mathematical model representing the influence of the different parameters and their interactions was obtained. The parametric study showed that efficiency of the adsorption system (Dyes/ Holocellulose) is mainly linked to pH variation. The best yields were observed for MB at pH=10 and for MO at pH=2.The kinetic data was analyzed using different models , namely , the pseudo

  13. Agricultural trade and the global phosphorus cycle

    NASA Astrophysics Data System (ADS)

    Schipanski, M.; Bennett, E.; Riskin, S.; Porder, S.

    2012-12-01

    Trends of increasing agricultural trade, increased concentration of livestock production systems, and increased human consumption of livestock products influence the distribution of nutrients across the global landscape. Phosphorus (P) represents a unique management challenge as we are rapidly depleting mineable reserves of this essential and non-renewable resource. At the same time, its overuse can lead to pollution of aquatic ecosystems. We analyzed the relative contributions of food crop, feed crop, and livestock product trade to P flows through agricultural soils for twelve countries from 1961 to 2007. We then used case studies of P fertilizer use in the world's three major soybean export regions: Iowa (USA), Mato Grosso (Brazil), and Buenos Aires (Argentina) to examine the influence of historical P management and soil types on agriculture's environmental consequences. Due to the intensification of agricultural production, average soil surface P balances more than tripled from 6 to 21 kg P per ha between 1961 and 2007 for the twelve study countries. Consequently, countries that are primarily agricultural exporters carried increased risks for water pollution or, for Argentina, reduced soil fertility due to soil P mining to support exports. In 2007, nations imported food and feed from regions with higher apparent P fertilizer use efficiencies than if those crops were produced domestically. However, this was largely because imports were sourced from regions depleting soil P resources to support export crop production. In addition, the pattern of regional specialization and intensification of production systems also reduced the potential to recycle P resources, with greater implications for livestock production than crop production. In a globalizing world, it will be increasingly important to integrate biophysical constraints of our natural resources and environmental impacts of agricultural systems into trade policy and agreements and to develop mechanisms that

  14. Wind-Tunnel Modeling of Flow Diffusion over an Urban Complex.

    DTIC Science & Technology

    URBAN AREAS, *ATMOSPHERIC MOTION, *AIR POLLUTION, ATMOSPHERIC MOTION, WIND TUNNEL MODELS, HEAT, DIFFUSION , TURBULENT BOUNDARY LAYER, WIND, SKIN FRICTION, MATHEMATICAL MODELS, URBAN PLANNING, INDIANA.

  15. Challenges of agricultural monitoring: integration of the Open Farm Management Information System into GEOSS and Digital Earth

    NASA Astrophysics Data System (ADS)

    Řezník, T.; Kepka, M.; Charvát, K.; Charvát, K., Jr.; Horáková, S.; Lukas, V.

    2016-04-01

    From a global perspective, agriculture is the single largest user of freshwater resources, each country using an average of 70% of all its surface water supplies. An essential proportion of agricultural water is recycled back to surface water and/or groundwater. Agriculture and water pollution is therefore the subject of (inter)national legislation, such as the Clean Water Act in the United States of America, the European Water Framework Directive, and the Law of the People's Republic of China on the Prevention and Control of Water Pollution. Regular monitoring by means of sensor networks is needed in order to provide evidence of water pollution in agriculture. This paper describes the benefits of, and open issues stemming from, regular sensor monitoring provided by an Open Farm Management Information System. Emphasis is placed on descriptions of the processes and functionalities available to users, the underlying open data model, and definitions of open and lightweight application programming interfaces for the efficient management of collected (spatial) data. The presented Open Farm Management Information System has already been successfully registered under Phase 8 of the Global Earth Observation System of Systems (GEOSS) Architecture Implementation Pilot in order to support the wide variety of demands that are primarily aimed at agriculture pollution monitoring. The final part of the paper deals with the integration of the Open Farm Management Information System into the Digital Earth framework.

  16. Agricultural nutrient loadings to the freshwater environment: the role of climate change and socioeconomic change

    NASA Astrophysics Data System (ADS)

    Xie, Hua; Ringler, Claudia

    2017-10-01

    Human activities, in particular agricultural production, interfere with natural cycles of nutrient elements, nitrogen (N) and phosphorus (P), leading to growing concerns about water quality degradation related to excessive nutrient loadings. Increases in agricultural production in response to population growth and wealth generation further increase risks associated with nutrient pollution. This paper presents results from projections of nutrient exports from global agricultural crop and pasture systems to the water environment generated using a process-based modeling approach. Brazil, China, India and the United States account for more than half of estimated global N and P loadings in the base year. Each country boasts large agriculture centers where high calculated loading values are found. Rapid growth in global agricultural nutrient loadings is projected. Growth of agricultural pollution loading is fastest in the group of low-income developing countries and loading growth rates also vary substantially with climate change scenario. Counter measures need to be taken to address the environmental risks associated with the projected rapid increase of agricultural nutrient loadings.

  17. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review.

    PubMed

    Vymazal, Jan; Březinová, Tereza

    2015-02-01

    Pesticides are used in modern agriculture to increase crop yields, but they may pose a serious threat to aquatic ecosystems. Pesticides may enter water bodies through diffuse and point sources, but diffuse sources are probably the most important. Among diffuse pollution, surface runoff and erosion, leaching and drainage represent the major pathways. The most commonly used mitigation techniques to prevent pesticide input into water bodies include edge-of-field and riparian buffer strips, vegetated ditches and constructed wetlands. The first attempts to use wetland macrophytes for pesticide removal were carried out as early as the 1970s, but only in the last decade have constructed wetlands for pesticide mitigation become widespread. The paper summarizes 47 studies in which removal of 87 pesticides was monitored. The survey revealed that constructed wetlands with free water surface are the most commonly used type. Also, it has been identified that removal of pesticides is highly variable. The results of the survey revealed that the highest pesticide removal was achieved for pesticides of the organochlorine, strobilurin/strobin, organosphosphate and pyrethroid groups while the lowest removals were observed for pesticides of the triazinone, aryloxyalkanoic acid and urea groups. The removal of pesticides generally increases with increasing value of KOC but the relationship is not strong. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Integrated Watershed Pollution Control at Wujingang Canal, China

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Yang, X.; Luo, X.

    2012-04-01

    With a drainage area of 400 square kilometers, Wujingang Canal is located at the economically developed Yangtz Delta of eastern China. As a major tributary, the canal contributes a significant amount of pollutant load to the Lake Tai. Over the past many years, water quality of the canal and its tributaries could not meet the lowest Category V of Chinese surface water quality standard, indicating that its water is not suitable for the purposes of irrigation or scenic views. Major pollution sources in the watershed include industries, residential households, agriculture, fishery, and animal feedlot operations. A comprehensive plan with a budget of 2 billion RMB for the Wujingang watershed pollution control was developed in 2008 and has been implemented progressively ever since. Major components of the plan include: (1) advanced treatment of wastewater from industries and municipal sewage plants for further removal of nitrogen and phosphorous; (2) industrial wastewater reuse; (3) contiguous treatment of sewage from rural residential households with cost-effective technologies such as tower ecofilter system; (4) recycling of rural wastes to generate high-value added products using technologies such as multi-phase anaerobic co-digestion; and (5) making full use of the local landscape and configuring physical, chemical, and biological pollutant treatment structures to build the "clean river network" for treatment of mildly polluted agricultural discharge and surface runoff. Through the implementation of the above measures, water quality of the Wujingang Canal and its tributaries is expected to improve to meet Category IV of Chinese surface water quality standard by 2012, and Category III standard by 2020. Keywords watershed pollution control, non-point source pollution, rural sewage, rural waste, Lake Tai

  19. Significant Atmospheric Aerosol Pollution Caused by World Food Cultivation

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-01-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  20. Significant atmospheric aerosol pollution caused by world food cultivation

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-05-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  1. Significant atmospheric aerosol pollution caused by world food cultivation

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2017-04-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to it s sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  2. Control Techniques for Particulate Air Pollutants.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a comprehensive review of the approaches commonly recommended for controlling the sources of particulate air pollution. Not all possible combinations of control techniques that might bring about more stringent control of each individual source are reviewed. The many agricultural, commercial, domestic, industrial, and municipal…

  3. Volcanic air pollution hazards in Hawaii

    USGS Publications Warehouse

    Elias, Tamar; Sutton, A. Jeff

    2017-04-20

    Noxious sulfur dioxide gas and other air pollutants emitted from Kīlauea Volcano on the Island of Hawai‘i react with oxygen, atmospheric moisture, and sunlight to produce volcanic smog (vog) and acid rain. Vog can negatively affect human health and agriculture, and acid rain can contaminate household water supplies by leaching metals from building and plumbing materials in rooftop rainwater-catchment systems. U.S. Geological Survey scientists, along with health professionals and local government officials are working together to better understand volcanic air pollution and to enhance public awareness of this hazard.

  4. Mitigation of nonpoint source pollution in rural areas: From control to synergies of multi ecosystem services.

    PubMed

    Wu, Yonghong; Liu, Junzhuo; Shen, Renfang; Fu, Bojie

    2017-12-31

    Nonpoint source (NPS) pollution produced by human activities in rural areas has induced excessive nutrient input into surface waters and the decline of water quality. The essence of NPS pollution is the transport of nutrients between soil and water. Traditional NPS pollution control strategies, however, are mainly based on the solid and liquid phases, with little focus on the bio-phase between water and soil. The pollutants produced from NPS can be regarded as a resource if recycled or reused in an appropriate way in the agricultural ecosystem. This mini review proposes novel strategies for NPS pollution control based on three phases (liquid, solid and bio-phase) and highlights the regulating services of an agricultural ecosystem by optimizing land use/cover types. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Modeling Nitrogen Fate and Transport at the Sediment-Water Interface

    EPA Science Inventory

    Diffusive mass transfer at media interfaces exerts control on the fate and transport of pollutants originating from agricultural and urban landscapes and affects the con-ditions of water bodies. Diffusion is essentially a physical process affecting the distribution and fate of va...

  6. Metal contamination of agricultural soils in the copper mining areas of Singhbhum shear zone in India

    NASA Astrophysics Data System (ADS)

    Giri, Soma; Singh, Abhay Kumar; Mahato, Mukesh Kumar

    2017-06-01

    The study was intended to investigate the heavy metal contamination in the agricultural soils of the copper mining areas in Singhbhum shear zone, India. The total concentrations of the metals were determined by inductively coupled plasma-mass spectrometer (ICPMS). Pollution levels were assessed by calculating enrichment factor (EF), geo-accumulation index (I_geo), contamination factors (CF), pollution load index ( PLI), Nemerow index and ecological risk index (RI). The metal concentrations in the soil samples exceeded the average shale values for almost all the metals. Principal component analysis resulted in extraction of three factors explaining 82.6% of the data variability and indicated anthropogenic contribution of Cu, Ni, Co, Cr, Mn and Pb. The EF and I_geo values indicated very high contamination with respect to Cu followed by As and Zn in the agricultural soils. The values of PLI, RI and Nemerow index, which considered the overall effect of all the studied metals on the soils, revealed that 50% of the locations were highly polluted with respect to metals. The pollution levels varied with the proximity to the copper mining and processing units. Consequently, the results advocate the necessity of periodic monitoring of the agricultural soils of the area and development of proper management strategies to reduce the metal pollution.

  7. Vadose Zone Monitoring as a Key to Groundwater Protection from Pollution Hazard

    NASA Astrophysics Data System (ADS)

    Dahan, Ofer

    2016-04-01

    Minimization subsurface pollution is much dependent on the capability to provide real-time information on the chemical and hydrological properties of the percolating water. Today, most monitoring programs are based on observation wells that enable data acquisitions from the saturated part of the subsurface. Unfortunately, identification of pollutants in well water is clear evidence that the contaminants already crossed the entire vadose-zone and accumulated in the aquifer water to detectable concentration. Therefore, effective monitoring programs that aim at protecting groundwater from pollution hazard should include vadose zone monitoring technologies that are capable to provide real-time information on the chemical composition of the percolating water. Obviously, identification of pollution process in the vadose zone may provide an early warning on potential risk to groundwater quality, long before contaminates reach the water-table and accumulate in the aquifers. Since productive agriculture must inherently include down leaching of excess lower quality water, understanding the mechanisms controlling transport and degradation of pollutants in the unsaturated is crucial for water resources management. A vadose-zone monitoring system (VMS), which was specially developed to enable continuous measurements of the hydrological and chemical properties of percolating water, was used to assess the impact of various agricultural setups on groundwater quality, including: (a) intensive organic and conventional greenhouses, (b) citrus orchard and open field crops , and (c) dairy farms. In these applications frequent sampling of vadose zone water for chemical and isotopic analysis along with continuous measurement of water content was used to assess the link between agricultural setups and groundwater pollution potential. Transient data on variation in water content along with solute breakthrough at multiple depths were used to calibrate flow and transport models. These models

  8. Survey of phthalate pollution in arable soils in China.

    PubMed

    Hu, Xiao-yu; Wen, Bei; Shan, Xiao-quan

    2003-08-01

    The problem of pollution by phthalates is of global concern due to their widespread occurrence, toxicity and endocrine disruption properties. The contamination by phthalates such as dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) in 23 arable soils throughout China was investigated to evaluate the present pollution situation. The survey results demonstrated that phthalates were ubiquitous pollutants in soils in China. The total concentrations of phthalates differed from one location to another, and ranged from 0.89 to 10.03 mg kg(-1) with a median concentration of 3.43 mg kg(-1). Among the phthalates, DEHP was dominant and detected in all 23 soils. DEP and DBP were also in abundance, and DMP was rarely detected. Similar contamination patterns were observed in all 23 soils. A distinct feature of phthalate pollution in China was that the average concentration in northern China was higher than that in southern China. In addition, a close relationship was observed between the concentration of phthalates in soils and the consumption of agricultural film. The correlation showed that the application of agriculture film might be a significant pollution source of phthalates in arable soils of China. The potential risk of phthalates in soils was assessed on the basis of current guide values and limits.

  9. The accumulation of heavy metals in agricultural land and the associated potential ecological risks in Shenzhen, China.

    PubMed

    Wu, Jiansheng; Song, Jing; Li, Weifeng; Zheng, Maokun

    2016-01-01

    Accumulation of heavy metals in agricultural land and their ecological risks are key issues in soil security studies. This study investigated the concentrations of six heavy metals--copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and chromium (Cr) in Shenzhen's agricultural lands and examined the potential hazards and possible sources of these metals. Eighty-two samples from agricultural topsoil were collected. Potential ecological risk index was used to calculate the potential risk of heavy metals. Principal component analysis (PCA) was applied to explore pollution sources of the metals. Finally, Kriging was used to predict the spatial distribution of the metals' potential ecological risks. The concentrations of the heavy metals were higher than their background values. Most of them presented little potential ecological risk, except for the heavy metal cadmium (Cd). Four districts (Longgang, Longhua, Pingshan, and Dapeng) exhibited some degree of potential risk, which tended to have more industries and road networks. Three major sources of heavy metals included geochemical processes, industrial pollutants, and traffic pollution. The heavy metal Cd was the main contributor to the pollution in agricultural land during the study period. It also poses the potential hazard for the future. High potential risk is closely related to industrial pollution and transportation. Since the 1980s, the sources of heavy metals have evolved from parent rock weathering, erosion, degradation of organics, and mineralization to human disturbances resulting in chemical changes in the soil.

  10. Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils.

    PubMed

    Xu, Yongfeng; Dai, Shixiang; Meng, Ke; Wang, Yuting; Ren, Wenjie; Zhao, Ling; Christie, Peter; Teng, Ying

    2018-07-15

    The residual levels and risk assessment of several potentially toxic elements (PTEs), phthalate esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) in rural soils near different types of pollution sources in Tianjin, China, were studied. The soils were found to be polluted to different extents with PTEs, PAEs and PAHs from different pollution sources. The soil concentrations of chromium (Cr), nickel (Ni), di-n-butyl phthalate (DnBP), acenaphthylene (Any) and acenaphthene (Ane) were higher than their corresponding regulatory reference limits. The health risk assessment model used to calculate human exposure indicates that both non-carcinogenic and carcinogenic risks from selected pollutants were generally acceptable or close to acceptable. Different types of pollution sources and soil physicochemical properties substantially affected the soil residual concentrations of and risks from these pollutants. PTEs in soils collected from agricultural lands around industrial and residential areas and organic pollutants (PAEs and PAHs) in soils collected from agricultural areas around livestock breeding were higher than those from other types of pollution sources and merit long-term monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Assessment of Pressure Sources and Water Body Resilience: An Integrated Approach for Action Planning in a Polluted River Basin.

    PubMed

    Mirauda, Domenica; Ostoich, Marco

    2018-02-23

    The present study develops an integrated methodology combining the results of the water-quality classification, according to the Water Framework Directive 2000/60/EC-WFD, with those of a mathematical integrity model. It is able to analyse the potential anthropogenic impacts on the receiving water body and to help municipal decision-makers when selecting short/medium/long-term strategic mitigation actions to be performed in a territory. Among the most important causes of water-quality degradation in a river, the focus is placed on pollutants from urban wastewater. In particular, the proposed approach evaluates the efficiency and the accurate localisation of treatment plants in a basin, as well as the capacity of its river to bear the residual pollution loads after the treatment phase. The methodology is applied to a sample catchment area, located in northern Italy, where water quality is strongly affected by high population density and by the presence of agricultural and industrial activities. Nearly 10 years of water-quality data collected through official monitoring are considered for the implementation of the system. The sample basin shows different real and potential pollution conditions, according to the resilience of the river and surroundings, together with the point and diffuse pressure sources acting on the receiving body.

  12. Sorption-induced effects of humic substances on mass transfer of organic pollutants through aqueous diffusion boundary layers: the example of water/air exchange.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-02-21

    This study examines the effect of dissolved humic substances (DHS) on the rate of water-gas exchange of organic compounds under conditions where diffusion through the aqueous boundary layer is rate-determining. A synthetic surfactant was applied for comparison. Mass-transfer coefficients were determined from the rate of depletion of the model compounds by means of an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution. In addition, experiments with continuous passive dosing of analytes into the water phase were conducted to simulate a system where thermodynamic activity of the chemical in the aqueous phase is identical in the presence and absence of DHS. The experimental results show that DHS and surfactants can affect water-gas exchange rates by the superposition of two mechanisms: (1) hydrodynamic effects due to surface film formation ("surface smoothing"), and (2) sorption-induced effects. Whether sorption accelerates or retards mass transfer depends on its effect on the thermodynamic activity of the pollutant in the aqueous phase. Mass transfer will be retarded if the activity (or freely dissolved concentration) of the pollutant is decreased due to sorption. If it remains unchanged (e.g., due to fast equilibration with a sediment acting as a large source phase), then DHS and surfactant micelles can act as an additional shuttle for the pollutants, enhancing the flux through the boundary layer.

  13. Damages of surface ozone: evidence from agricultural sector in China

    NASA Astrophysics Data System (ADS)

    Yi, Fujin; McCarl, Bruce A.; Zhou, Xun; Jiang, Fei

    2018-03-01

    This study measures the damages that surface ozone pollution causes within the Chinese agricultural sector under 2014 conditions. It also analyzes the agricultural benefits of ozone reductions. The analysis is done using a partial equilibrium model of China’s agricultural sector. Results indicate that there are substantial, spatially differentiated damages that are greatest in ozone-sensitive crop growing areas with higher ozone concentrations. The estimated damage to China’s agricultural sector range is between CNY 1.6 trillion and 2.2 trillion, which for comparison is about one fifth of 2014 agricultural revenue. When considering concentration reduction we find a 30% ozone reduction yields CNY 678 billion in sectoral benefits. These benefits largely fall to consumers with producers losing as the production gains lead to lower prices.

  14. Testing Method of Degrading Heavy Oil Pollution by Microorganisms

    NASA Astrophysics Data System (ADS)

    Wu, Qi; Zhao, Lin; Ma, Aijin

    2018-01-01

    With the development of human society, we are more and more relying on the petrochemical energy. The use of petrochemical energy not only brings us great convenience, but is also accompanied by a series of environmental pollution problems, especially oil pollution. Since it is impractical to restore all pollution problems, the proper use of some remedial measures, under the guidance of functional orientation, may be sufficient to minimize the risk of persistent and diffusing pollutants. In recent years, bioremediation technology has been gradually developed into a promising stage and has played a crucial role in the degradation of heavy oil pollution. Specially, microbes in the degradation of heavy oil have made a great contribution. This paper mainly summarizes the different kinds of microorganisms for degrading heavy oil and the detection method for degradation efficiency of heavy oil pollution.

  15. Cost-Effective Mitigation of Diffuse Pollution: Setting Criteria for River Basin Management at Multiple Locations

    NASA Astrophysics Data System (ADS)

    Hutchins, Mike; Fezzi, Carlo; Bateman, Ian; Posen, Paulette; Deflandre-Vlandas, Amelie

    2009-08-01

    A case study of the Yorkshire Derwent (UK) catchment is used to illustrate an integrated approach for assessing the viability of policy options for reducing diffuse nitrate losses to waterbodies. For a range of options, modeling methods for simulating river nitrate levels are combined with techniques for estimating the economic costs to agriculture of modifying those levels. By incorporating spatially explicit data and information on catchment residence times (which may span many decades particularly in areas of groundwater discharge) a method is developed for efficient spatial targeting of measures, for example, to the most at-risk freshwater environments. Combining hydrological and economic findings, the analysis reveals that, in terms of cost-effectiveness, the ranking of options is highly sensitive to both (i) whether or not specific stretches of river within a catchment are regarded as a priority for protection, and (ii) the criterion of nitrate concentration deemed most appropriate as an indicator of the health of the environment. Therefore, given the focus under European legislation upon ecological status of freshwaters, these conclusions highlight the need to improve understanding of mechanistic linkages between the chemical and biological dynamics of aquatic systems.

  16. Human Y-chromosome short tandem repeats: a tale of acculturation and migrations as mechanisms for the diffusion of agriculture in the Balkan Peninsula.

    PubMed

    Mirabal, Sheyla; Varljen, Tatjana; Gayden, Tenzin; Regueiro, Maria; Vujovic, Slavica; Popovic, Danica; Djuric, Marija; Stojkovic, Oliver; Herrera, Rene J

    2010-07-01

    Southeastern Europe and, particularly, the Balkan Peninsula are especially useful when studying the mechanisms responsible for generating the current distribution of Paleolithic and Neolithic genetic signals observed throughout Europe. In this study, 404 individuals from Montenegro and 179 individuals from Serbia were typed for 17 Y-STR loci and compared across 9 Y-STR loci to geographically targeted previously published collections to ascertain the phylogenetic relationships of populations within the Balkan Peninsula and beyond. We aim to provide information on whether groups in the region represent an amalgamation of Paleolithic and Neolithic genetic substrata, or whether acculturation has played a critical role in the spread of agriculture. We have found genetic markers of Middle Eastern, south Asian and European descent in the area, however, admixture analyses indicate that over 80% of the Balkan gene pool is of European descent. Altogether, our data support the view that the diffusion of agriculture into the Balkan region was mostly a cultural phenomenon although some genetic infiltration from Africa, the Levant, the Caucasus, and the Near East has occurred. (c) 2010 Wiley-Liss, Inc.

  17. Facilitating the afforestation of Mediterranean polluted soils by nurse shrubs.

    PubMed

    Domínguez, María T; Pérez-Ramos, Ignacio M; Murillo, José M; Marañón, Teodoro

    2015-09-15

    The revegetation of polluted sites and abandoned agricultural soils is critical to reduce soil losses and to control the spread of soil pollution in the Mediterranean region, which is currently exposed to the greatest soil erosion risk in Europe. However, events of massive plant mortality usually occur during the first years after planting, mainly due to the adverse conditions of high irradiance and drought stress. Here, we evaluated the usefulness of considering the positive plant-plant interactions (facilitation effect) in the afforestation of polluted agricultural sites, using pre-existing shrubs as nurse plants. We used nurse shrubs as planting microsites for acorns of Quercus ilex (Holm oak) along a gradient of soil pollution in southwestern Spain, and monitored seedling growth, survival, and chemical composition during three consecutive years. Seedling survival greatly increased (from 20% to more than 50%) when acorns were sown under shrub, in comparison to the open, unprotected matrix. Facilitation of seedling growth by shrubs increased along the gradient of soil pollution, in agreement with the stress gradient hypothesis that predicts higher intensity of the facilitation effects with increasing abiotic stress. Although the accumulation of trace elements in seedling leaves was higher underneath shrub, the shading conditions provided by the shrub canopy allowed seedlings to cope with the toxicity provoked by the concurrence of low pH and high trace element concentrations in the most polluted sites. Our results show that the use of shrubs as nurse plants is a promising tool for the cost-effective afforestation of polluted lands under Mediterranean conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China

    NASA Astrophysics Data System (ADS)

    Ding, A. J.; Fu, C. B.; Yang, X. Q.; Sun, J. N.; Petäjä, T.; Kerminen, V.-M.; Wang, T.; Xie, Y.; Herrmann, E.; Zheng, L. F.; Nie, W.; Liu, Q.; Wei, X. L.; Kulmala, M.

    2013-10-01

    The influence of air pollutants, especially aerosols, on regional and global climate has been widely investigated, but only a very limited number of studies report their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect of how a mixed atmospheric pollution changes the weather with a substantial modification in the air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease in the solar radiation intensity by more than 70%, a decrease in the sensible heat by more than 85%, a temperature drop by almost 10 K, and a change in rainfall during both daytime and nighttime. Our results show clear air pollution-weather interactions, and quantify how air pollution affects weather via air pollution-boundary layer dynamics and aerosol-radiation-cloud feedbacks. This study highlights cross-disciplinary needs to investigate the environmental, weather and climate impacts of the mixed biomass burning and fossil fuel combustion sources in East China.

  19. A VSA-based strategy for placing conservation buffers in agricultural watersheds.

    PubMed

    Qiu, Zeyuan

    2003-09-01

    Conservation buffers have the potential to reduce agricultural nonpoint source pollution and improve terrestrial wildlife habitat, landscape biodiversity, flood control, recreation, and aesthetics. Conservation buffers, streamside areas and riparian wetlands are being used or have been proposed to control agricultural nonpoint source pollution. This paper proposes an innovative strategy for placing conservation buffers based on the able source area (VSA) hydrology. VSAs are small, variable but predictable portion of a watershed that regularly contributes to runoff generation. The VSA-based strategy involves the following three steps: first, identifying VSAs in landscapes based on natural characteristics such as hydrology, land use/cover, topography and soils; second, targeting areas within VSAs for conservation buffers; third, refining the size and location of conservation buffers based on other factors such as weather, environmental objectives, available funding and other best management practices. Building conservation buffers in VSAs allows agricultural runoff to more uniformly enter buffers and stay there longer, which increases the buffer's capacity to remove sediments and nutrients. A field-scale example is presented to demonstrate the effectiveness and cost-effectiveness of the within-VSA conservation buffer scenario relative to a typical edge-of-field buffer scenario. The results enhance the understanding of hydrological processes and interactions between agricultural lands and conservation buffers in agricultural landscapes, and provide practical guidance for land resource managers and conservationists who use conservation buffers to improve water quality and amenity values of agricultural landscape.

  20. Two dimensions of nitrate pollution management in an agricultural catchment

    NASA Astrophysics Data System (ADS)

    Wachniew, Przemysław; Martinez, Grit; Bar-Michalczyk, Dominika; Kania, Jarosław; Malina, Grzegorz; Michalczyk, Tomasz; Różański, Kazimierz; Witczak, Stanisław; Zięba, Damian; Żurek, Anna J.; Berrini, Anne

    2017-04-01

    The Kocinka River catchment underlain by the karstic-fissured upper Jurrasic Częstochowa aquifer in Southern Poland is the site of an interdisciplinary research aimed at finding solutions to pollution of water resources with nutrients. These efforts are conducted in the framework of the BONUS Soils2Sea project that deals with the development of differentiated environmental management measures based on utilization of the natural ability of soils, groundwater and surface water to remove surplus nutrients. Implementation of these or any other measures for the improvement of water quality depends primarily on the perceptions and attitudes of the major actors, which in turn are a product of the socio-economic, cultural-historical and political development spanning many generations. The problem of the deteriorating water quality is therefore twofold. Understanding the complex natural system consisting of the coupled groundwater and surface water component with a wide spectrum of time lags of pollution transport is only the beginning of the solution. The mitigation policies and measures based on this scientific knowledge have to recognize the equally complex nature of social factors and interactions. Implementation of the European and national policies and legislations has to take into account the regional perspective. Identification of the key stakeholders is in this regard a first step followed by an inquiry into their values, perceptions and motivations through interviews, workshops, etc. Understanding of the socio-cultural, historical, economic and political factors that shape stakeholder actions is a prerequisite for the development of the successful management and mitigation schemes. The process of gaining insights into the environmental and social aspects of nutrient pollution in the Kocinka catchment is partly presented by the documentary film "Soils2Sea: Reducing nutrient loadings into the Baltic Sea" (https://www.youtube.com/watch?v=LUouES4SeJk).

  1. Comparison of policies for controlling groundwater nitrate pollution from agriculture in the Eastern Mancha aquifer (Spain).

    NASA Astrophysics Data System (ADS)

    Peña-Haro, S.; Llopis-Albert, C.; Pulido-Velazquez, M.; Stalder, A.; Garcia-Prats, A.; Henriquez-Dole, L.

    2012-04-01

    Groundwater nitrate pollution from agriculture has given rise to different legal frameworks. The European Water Framework Directive (WFD) is the most recent one. This work aims to help in the definition of the most cost-efficient policy to control non-point groundwater to attain the objectives established in the WFD. In this study we performed a cost-effectiveness analysis of different policies for controlling groundwater nitrate pollution from agriculture. The policies considered were taxes on nitrogen fertilizers, water price, taxes on emissions and fertilizer standards. We used a hydro-economic model, where we maximized the farmer's benefits. The benefits were calculated as sum of crop revenue minus variable and fixed cost per hectare minus the damage costs from nitrogen leaching. In the cost-effectiveness analysis we considered the costs as the reduction on benefits due to the application of a policy and the effectiveness the reduction on nitrate leaching. The methodology was applied to Eastern Mancha aquifer in Spain. The aquifer is part of the Júcar River Basin, which was declared as EU Pilot Basin in 2002 for the implementation of the WFD. Over the past 30 years the area has undertaken a significant socioeconomic development, mainly due to the intensive groundwater use for irrigated crops, which has provoked a steady decline of groundwater levels and a reduction of groundwater discharged into the Júcar River, as well as nitrate concentrations higher than those allowed by the WFD at certain locations (above 100 mg/l.). Crop revenue was calculated using production functions and the amount of nitrate leached was estimated by calibrated leaching functions. These functions were obtained by using an agronomic model (a GIS version of EPIC, GEPIC), and they depend on the water and the fertilizer use. The Eastern Mancha System was divided into zones of homogeneous crop production and nitrate leaching properties. Given the different soil types and climatic

  2. Air pollution and watershed research in the central Sierra Nevada of California: nitrogen and ozone

    Treesearch

    Carolyn Hunsaker; Andrzej Bytnerowicz; Jessica Auman; Ricardo Cisneros

    2007-01-01

    Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3) and nitrogenous (N) air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and...

  3. Adapting Agriculture Platforms for Nutrition: A Case Study of a Participatory, Video-Based Agricultural Extension Platform in India.

    PubMed

    Kadiyala, Suneetha; Morgan, Emily H; Cyriac, Shruthi; Margolies, Amy; Roopnaraine, Terry

    2016-01-01

    Successful integration of nutrition interventions into large-scale development programmes from nutrition-relevant sectors, such as agriculture, can address critical underlying determinants of undernutrition and enhance the coverage and effectiveness of on-going nutrition-specific activities. However, evidence on how this can be done is limited. This study examines the feasibility of delivering maternal, infant, and young child nutrition behaviour change communication through an innovative agricultural extension programme serving nutritionally vulnerable groups in rural India. The existing agriculture programme involves participatory production of low-cost videos promoting best practices and broad dissemination through village-level women's self-help groups. For the nutrition intervention, 10 videos promoting specific maternal, infant, and young child nutrition practices were produced and disseminated in 30 villages. A range of methods was used to collect data, including in-depth interviews with project staff, frontline health workers, and self-help group members and their families; structured observations of mediated video dissemination sessions; nutrition knowledge tests with project staff and self-help group members; and a social network questionnaire to assess diffusion of promoted nutrition messages. We found the nutrition intervention to be well-received by rural communities and viewed as complementary to existing frontline health services. However, compared to agriculture, nutrition content required more time, creativity, and technical support to develop and deliver. Experimentation with promoted nutrition behaviours was high, but sharing of information from the videos with non-viewers was limited. Key lessons learned include the benefits of and need for collaboration with existing health services; continued technical support for implementing partners; engagement with local cultural norms and beliefs; empowerment of women's group members to champion nutrition

  4. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution.

    PubMed

    Bodirsky, Benjamin Leon; Popp, Alexander; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Rolinski, Susanne; Weindl, Isabelle; Schmitz, Christoph; Müller, Christoph; Bonsch, Markus; Humpenöder, Florian; Biewald, Anne; Stevanovic, Miodrag

    2014-05-13

    Reactive nitrogen (Nr) is an indispensable nutrient for agricultural production and human alimentation. Simultaneously, agriculture is the largest contributor to Nr pollution, causing severe damages to human health and ecosystem services. The trade-off between food availability and Nr pollution can be attenuated by several key mitigation options, including Nr efficiency improvements in crop and animal production systems, food waste reduction in households and lower consumption of Nr-intensive animal products. However, their quantitative mitigation potential remains unclear, especially under the added pressure of population growth and changes in food consumption. Here we show by model simulations, that under baseline conditions, Nr pollution in 2050 can be expected to rise to 102-156% of the 2010 value. Only under ambitious mitigation, does pollution possibly decrease to 36-76% of the 2010 value. Air, water and atmospheric Nr pollution go far beyond critical environmental thresholds without mitigation actions. Even under ambitious mitigation, the risk remains that thresholds are exceeded.

  5. Exploring Agricultural Drainage's Influence on Wetland and ...

    EPA Pesticide Factsheets

    Artificial agricultural drainage (i.e. surface ditches or subsurface tile) is an important agricultural management tool. Artificial drainage allows for timely fieldwork and adequate root aeration, resulting in greater crop yields for farmers. This practice is widespread throughout many regions of the United States and the network of artificial drainage is especially extensive in flat, poorly-drained regions like the glaciated Midwest. While beneficial for crop yields, agricultural drains often empty into streams within the natural drainage system. The increased network connectivity may lead to greater contributing area for watersheds, altered hydrology and increased conveyance of pollutants into natural water bodies. While studies and models at broader scales have implicated artificial drainage as an important driver of hydrological shifts and eutrophication, the actual spatial extent of artificial drainage is poorly known. Consequently, metrics of wetland and watershed connectivity within agricultural regions often fail to explicitly include artificial drainage. We use recent agricultural census data, soil drainage data, and land cover data to create estimates of potential agricultural drainage across the United States. We estimate that agricultural drainage in the US is greater than 31 million hectares and is concentrated in the upper Midwest Corn Belt, covering greater than 50% of available land for 114 counties. Estimated drainage values for numerous countie

  6. A pollution fate and transport model application in a semi-arid region: Is some number better than no number?

    PubMed

    Özcan, Zeynep; Başkan, Oğuz; Düzgün, H Şebnem; Kentel, Elçin; Alp, Emre

    2017-10-01

    Fate and transport models are powerful tools that aid authorities in making unbiased decisions for developing sustainable management strategies. Application of pollution fate and transport models in semi-arid regions has been challenging because of unique hydrological characteristics and limited data availability. Significant temporal and spatial variability in rainfall events, complex interactions between soil, vegetation and topography, and limited water quality and hydrological data due to insufficient monitoring network make it a difficult task to develop reliable models in semi-arid regions. The performances of these models govern the final use of the outcomes such as policy implementation, screening, economical analysis, etc. In this study, a deterministic distributed fate and transport model, SWAT, is applied in Lake Mogan Watershed, a semi-arid region dominated by dry agricultural practices, to estimate nutrient loads and to develop the water budget of the watershed. To minimize the discrepancy due to limited availability of historical water quality data extensive efforts were placed in collecting site-specific data for model inputs such as soil properties, agricultural practice information and land use. Moreover, calibration parameter ranges suggested in the literature are utilized during calibration in order to obtain more realistic representation of Lake Mogan Watershed in the model. Model performance is evaluated using comparisons of the measured data with 95%CI for the simulated data and comparison of unit pollution load estimations with those provided in the literature for similar catchments, in addition to commonly used evaluation criteria such as Nash-Sutcliffe simulation efficiency, coefficient of determination and percent bias. These evaluations demonstrated that even though the model prediction power is not high according to the commonly used model performance criteria, the calibrated model may provide useful information in the comparison of the

  7. Micro-scale pollution mechanism of dust diffusion in a blasting driving face based on CFD-DEM coupled model.

    PubMed

    Yu, Haiming; Cheng, Weimin; Xie, Yao; Peng, Huitian

    2018-05-23

    In order to investigate the diffuse pollution mechanisms of high-concentration dusts in the blasting driving face, the airflow-dust coupled model was constructed based on CFD-DEM coupled model; the diffusion rules of the dusts with different diameters at microscopic scale were analyzed in combination with the field measured results. The simulation results demonstrate that single-exhaust ventilation exhibited more favorable dust suppression performance than single-forced ventilation. Under single-exhaust ventilation condition, the motion trajectories of the dusts with the diameter smaller than 20 μm were close to the airflow streamline and these dusts were mainly distributed near the footway walls; by contrast, under single-forced ventilation condition, the motion trajectories of the dust particles with a diameter range of 20~40 μm were close to the airflow streamlines, and a large number of dusts with the diameter smaller than 20 μm accumulated in the regions 5 m and 17~25 m away from the head-on section. Moreover, under the single-exhaust ventilation, the relationship between dust diameter D and negative-pressured-induced dust emission ratio P can be expressed as P = - 25.03ln(D) + 110.39, and the dust emission ratio was up to 74.36% for 7-μm dusts, and the path-dependent settling behaviors of the dusts mainly occurred around the head-on section; under single-forced ventilation condition, the z value of the dusts with the diameter over 20 μm decreased and the dusts with a diameter smaller than 7 μm are particularly harmful to human health, but their settling ratios were below 22.36%. Graphical abstract The airflow-dust CFD-DEM coupling model was established. The numerical simulation results were verified. The migration laws of airflow field were obtained in a blasting driving face. The diffusion laws of dusts were obtained after blasting.

  8. Calculating the diffusive flux of persistent organic pollutants between sediments and the water column on the Palos Verdes shelf superfund site using polymeric passive samplers.

    PubMed

    Fernandez, Loretta A; Lao, Wenjian; Maruya, Keith A; Burgess, Robert M

    2014-04-01

    Passive samplers were deployed to the seafloor at a marine Superfund site on the Palos Verdes Shelf, California, USA, and used to determine water concentrations of persistent organic pollutants (POPs) in the surface sediments and near-bottom water. A model of Fickian diffusion across a thin water boundary layer at the sediment-water interface was used to calculate flux of contaminants due to molecular diffusion. Concentrations at four stations were used to calculate the flux of DDE, DDD, DDMU, and selected PCB congeners from sediments to the water column. Three passive sampling materials were compared: PE strips, POM strips, and SPME fibers. Performance reference compounds (PRCs) were used with PE and POM to correct for incomplete equilibration, and the resulting POP concentrations, determined by each material, agreed within 1 order of magnitude. SPME fibers, without PRC corrections, produced values that were generally much lower (1 to 2 orders of magnitude) than those measured using PE and POM, indicating that SPME may not have been fully equilibrated with waters being sampled. In addition, diffusive fluxes measured using PE strips at stations outside of a pilot remedial sand cap area were similar to those measured at a station inside the capped area: 240 to 260 ng cm(-2) y(-1) for p,p'-DDE. The largest diffusive fluxes of POPs were calculated at station 8C, the site where the highest sediment concentrations have been measured in the past, 1100 ng cm(-2) y(-1) for p,p'-DDE.

  9. Nitrogen and phosphorus losses from agricultural systems in China: a meta-analysis.

    PubMed

    Cao, Di; Cao, Wenzhi; Fang, Jing; Cai, Longyan

    2014-08-30

    Studies worldwide have indicated that agricultural pollution is the main source of nitrogen and phosphorus (N and P) in surface waters. A systematic understanding of N and P sources and sinks in agricultural systems is important for selecting the appropriate remedial strategies to control nutrient losses and water pollution. Based on nationwide data and a long-term monitoring program in Southeast China, the nationwide spatial and temporal patterns of N and P losses and the relationships between such losses and N and P inputs and rainfall were analyzed. The results showed that the annual nutrient losses from agricultural systems in China strongly varied, and the N/P values ranged from 0.01 to 51.0, with a majority at approximately 0-20, and an arithmetic mean of 9.73; these values mostly overlap the suitable range of N/P (6-15) for red bloom algae. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Methods for reducing pollutant emissions from jet aircraft

    NASA Technical Reports Server (NTRS)

    Butze, H. F.

    1971-01-01

    Pollutant emissions from jet aircraft and combustion research aimed at reducing these emissions are defined. The problem of smoke formation and results achieved in smoke reduction from commercial combustors are discussed. Expermental results of parametric tests performed on both conventional and experimental combustors over a range of combustor-inlet conditions are presented. Combustor design techniques for reducing pollutant emissions are discussed. Improved fuel atomization resulting from the use of air-assist fuel nozzles has brought about significant reductions in hydrocarbon and carbon monoxide emissions at idle. Diffuser tests have shown that the combustor-inlet airflow profile can be controlled through the use of diffuser-wall bleed and that it may thus be possible to reduce emissions by controlling combustor airflow distribution. Emissions of nitric oxide from a shortlength annular swirl-can combustor were significantly lower than those from a conventional combustor operating at similar conditions.

  11. Intense atmospheric pollution modifies weather: a~case of mixed biomass burning with fossil fuel combustion pollution in the eastern China

    NASA Astrophysics Data System (ADS)

    Ding, A. J.; Fu, C. B.; Yang, X. Q.; Sun, J. N.; Petäjä, T.; Kerminen, V.-M.; Wang, T.; Xie, Y. N.; Herrmann, E.; Zheng, L. F.; Nie, W.; Wei, X. L.; Kulmala, M.

    2013-06-01

    The influence of air pollutants, particularly aerosols, on regional and global climate is widely investigated, but only a very limited number of studies reports their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect how a mixed atmospheric pollution changes the weather with a substantial modification in air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70%, of sensible heat flux over 85%, a temperature drop by almost 10 K, and a change of rainfall during daytime and nighttime. Our results show clear air pollution - weather interactions, and quantify how air pollution affects weather with the influence of air pollution-boundary layer dynamics and aerosol-radiation-cloudy feedbacks. This study highlights a cross-disciplinary needs to study the environmental, weather and climate impact of the mixed biomass burning and fossil fuel combustion sources in the East China.

  12. Measuring the Quality of Communication Linkages between Farmers and the Agricultural Agencies Responsible for the Diffusion of Innovations in the South West Province of Cameroon. A Summary Report of Research. Department Information Bulletin.

    ERIC Educational Resources Information Center

    Peters, Bridget Ayuk

    The quality of communication linkages between farmers and the agricultural agencies responsible for diffusion of innovations in the South West Province of Cameroon was examined in a study of all 25 researchers and 150 extension agents in the province and 385 farmers who were randomly selected from the province's 3,000 farmers. Data were collected…

  13. A national assessment of the effect of intensive agro-land use practices on nonpoint source pollution using emission scenarios and geo-spatial data.

    PubMed

    Zhuo, Dong; Liu, Liming; Yu, Huirong; Yuan, Chengcheng

    2018-01-01

    China's intensive agriculture has led to a broad range of adverse impacts upon ecosystems and thereby caused environmental quality degradation. One of the fundamental problems that face land managers when dealing with agricultural nonpoint source (NPS) pollution is to quantitatively assess the NPS pollution loads from different sources at a national scale. In this study, export scenarios and geo-spatial data were used to calculate the agricultural NPS pollution loads of nutrient, pesticide, plastic film residue, and crop straw burning in China. The results provided the comprehensive and baseline knowledge of agricultural NPS pollution from China's arable farming system in 2014. First, the nitrogen (N) and phosphorus (P) emission loads to water environment were estimated to be 1.44 Tg N and 0.06 Tg P, respectively. East and south China showed the highest load intensities of nutrient release to aquatic system. Second, the amount of pesticide loss to water of seven pesticides that are widely used in China was estimated to be 30.04 tons (active ingredient (ai)). Acetochlor was the major source of pesticide loss to water, contributing 77.65% to the total loss. The environmental impacts of pesticide usage in east and south China were higher than other parts. Third, 19.75% of the plastic film application resided in arable soils. It contributed a lot to soil phthalate ester (PAE) contamination. Fourth, 14.11% of straw produce were burnt in situ, most occurring in May to July (post-winter wheat harvest) in North China Plain and October to November (post-rice harvest days) in southeast China. All the above agricultural NPS pollution loadings were unevenly distributed across China. The spatial correlations between pollution loads at land unit scale were also estimated. Rising labor cost in rural China might be a possible explanation for the general positive correlations of the NPS pollution loads. It also indicated a co-occurred higher NPS pollution loads and a higher

  14. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain.

    PubMed

    Liu, Xiuwei; Sun, Hongyong; Feike, Til; Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP.

  15. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain

    PubMed Central

    Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP. PMID:27612146

  16. A decade of evaluating the ecological effects of grass filter strips on channelized agricultural headwater streams

    USDA-ARS?s Scientific Manuscript database

    Grass filter strips are a widely used conservation practice in the Midwestern United States for reducing nutrient, pesticide, and sediment inputs into agricultural streams. Previous studies have documented the effectiveness of grass filter strips in reducing the input of agricultural pollutants, bu...

  17. Nitrification and Autotrophic Nitrifying Bacteria in a Hydrocarbon-Polluted Soil

    PubMed Central

    Deni, Jamal; Penninckx, Michel J.

    1999-01-01

    In vitro ammonia-oxidizing bacteria are capable of oxidizing hydrocarbons incompletely. This transformation is accompanied by competitive inhibition of ammonia monooxygenase, the first key enzyme in nitrification. The effect of hydrocarbon pollution on soil nitrification was examined in situ. In a microcosm study, adding diesel fuel hydrocarbon to an uncontaminated soil (agricultural unfertilized soil) treated with ammonium sulfate dramatically reduced the amount of KCl-extractable nitrate but stimulated ammonium consumption. In a soil with long history of pollution that was treated with ammonium sulfate, 90% of the ammonium was transformed into nitrate after 3 weeks of incubation. Nitrate production was twofold higher in the contaminated soil than in the agricultural soil to which hydrocarbon was not added. To assess if ammonia-oxidizing bacteria acquired resistance to inhibition by hydrocarbon, the contaminated soil was reexposed to diesel fuel. Ammonium consumption was not affected, but nitrate production was 30% lower than nitrate production in the absence of hydrocarbon. The apparent reduction in nitrification resulted from immobilization of ammonium by hydrocarbon-stimulated microbial activity. These results indicated that the hydrocarbon inhibited nitrification in the noncontaminated soil (agricultural soil) and that ammonia-oxidizing bacteria in the polluted soil acquired resistance to inhibition by the hydrocarbon, possibly by increasing the affinity of nitrifying bacteria for ammonium in the soil. PMID:10473409

  18. The Impact of Post Harvest Agricultural Crop Residue Fires on Volatile Organic Compounds and Formation of Secondary Air Pollutants in the N.W. Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Chandra, P.; Kumar, V.; Sarkar, C.

    2015-12-01

    The N.W. Indo-Gangetic Plain (IGP) is an agriculturally and demographically important region of the world. Every year during the post harvest months of April-May and October-November, large scale open burning of wheat straw and paddy straw occurs in the region impairing the regional air quality and resulting in air pollution episodes. Here, using online in-situ measurements from the IISER Mohali Atmospheric Chemistry Facility (Sinha et al., Atmos Chem Phys, 2014), which is located at a regionally representative suburban site in the agricultural state of Punjab, India, we investigated the effects of this activity on gas phase chemistry. The online data pertaining to the pre harvest and post harvest paddy residue fires in 2012, 2013 and 2014 were analyzed to understand the effect of this anthropogenic activity on atmospheric chemistry and regional air quality with respect to health relevant VOCs such as benzenoids and isocyanic acid and trace gases such as ozone and carbon monoxide. These compounds showed marked increases (factor of 2-3 times higher) in their concentrations which correlated with the biomass combustion tracers such as acetonitrile. Emissions from the paddy residue fires did not result in significant enhancement of ambient ozone in 2012 but instead sustained hourly daytime ozone concentrations at ~ 50 ppb during the late post monsoon season, despite decreases in solar radiation and temperature. Results of such massive perturbations to ambient chemical composition, reactivity and formation of secondary pollutants and its implications for human health will be presented in this paper.

  19. Modeling short-term concentration fluctuations of semi-volatile pollutants in the soil-plant-atmosphere system.

    PubMed

    Bao, Zhongwen; Haberer, Christina M; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter

    2016-11-01

    Temperature changes can drive cycling of semi-volatile pollutants between different environmental compartments (e.g. atmosphere, soil, plants). To evaluate the impact of daily temperature changes on atmospheric concentration fluctuations we employed a physically based model coupling soil, plants and the atmosphere, which accounts for heat transport, effective gas diffusion, sorption and biodegradation in the soil as well as eddy diffusion and photochemical oxidation in the atmospheric boundary layer of varying heights. The model results suggest that temperature-driven re-volatilization and uptake in soils cannot fully explain significant diurnal concentration fluctuations of atmospheric pollutants as for example observed for polychlorinated biphenyls (PCBs). This holds even for relatively low water contents (high gas diffusivity) and high sorption capacity of the topsoil (high organic carbon content and high pollutant concentration in the topsoil). Observed concentration fluctuations, however, can be easily matched if a rapidly-exchanging environmental compartment, such as a plant layer, is introduced. At elevated temperatures, plants release organic pollutants, which are rapidly distributed in the atmosphere by eddy diffusion. For photosensitive compounds, e.g. some polycyclic aromatic hydrocarbons (PAHs), decreasing atmospheric concentrations would be expected during daytime for the bare soil scenario. This decline is buffered by a plant layer, which acts as a ground-level reservoir. The modeling results emphasize the importance of a rapidly-exchanging compartment above ground to explain short-term atmospheric concentration fluctuations. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Public perception of rural environmental quality: Moving towards a multi-pollutant approach

    NASA Astrophysics Data System (ADS)

    Cantuaria, Manuella Lech; Brandt, Jørgen; Løfstrøm, Per; Blanes-Vidal, Victoria

    2017-12-01

    Most environmental epidemiology studies have examined pollutants individually. Multi-pollutant approaches have been recognized recently, but to the extent of our knowledge, no study to date has specifically investigated exposures to multiple air pollutants in rural environments. In this paper we characterized and quantified residential exposures to air pollutant mixtures in rural populations, provided a better understanding of the relationships between air pollutant mixtures and annoyance responses to environmental stressors, particularly odor, and quantified their predictive abilities. We used validated and highly spatially resolved atmospheric modeling of 14 air pollutants for four rural areas of Denmark, and the annoyance responses considered were annoyance due to odor, noise, dust, smoke and vibrations. We found significant associations between odor annoyance and principal components predominantly described by nitrate (NO3-), ammonium (NH4+), particulate matter (PM10 and PM2.5) and NH3, which are usually related to agricultural emission sources. Among these components, NH3 showed the lowest error when comparing observed population data and predicted probabilities. The combination of these compounds in a predictive model resulted in the most accurate model, being able to correctly predict 66% of odor annoyance responses. Furthermore, noise annoyance was found to be significantly associated with traffic-related air pollutants. In general terms, our results suggest that emissions from the agricultural and livestock production sectors are the main contributors to environmental annoyance, but also identify traffic and biomass burning as potential sources of annoyance.

  1. Applications of WEPS and SWEEP to non-agricultural lands

    USDA-ARS?s Scientific Manuscript database

    Soil erosion by wind is a serious problem on agricultural lands throughout the United States and the world. Dust from wind erosion obscures visibility and pollutes the air. It fills road ditches where it can impact water quality, causes automobile accidents, fouls machinery, and imperils animal an...

  2. Application of the WFD cost proportionality principle to diffuse pollution mitigation: a case study for Scottish Lochs.

    PubMed

    Vinten, A J A; Martin-Ortega, J; Glenk, K; Booth, P; Balana, B B; MacLeod, M; Lago, M; Moran, D; Jones, M

    2012-04-30

    The Water Framework Directive (WFD) aims to deliver good ecological status (GES) for Europe's waters. It prescribes the use of economic principles, such as derogation from GES on grounds of disproportionate costs of mitigation. This paper proposes an application of the proportionality principle to mitigation of phosphorus (P) pollution of 544 Scottish lochs at national and local water body scales. P loading estimates were derived from a national diffuse pollution screening tool. For 293 of these lochs (31% of the loch area), GES already occurred. Mitigation cost-effectiveness was assessed using combined mitigation cost curves for managed grassland, rough grazing, arable land, sewage and septic tank sources. These provided sufficient mitigation (92% of national P load) for GES to be achieved on another 31% of loch area at annualised cost of £2.09 m/y. Mitigation of the residual P loading preventing other lochs achieving GES was considered by using a "mop-up" cost of £200/kg P (assumed cost effectiveness of removal of P directly from lochs), leading to a total cost of £189 m/y. Lochs were ranked by mitigation costs per loch area to give a national scale marginal mitigation cost curve. A published choice experiment valuation of WFD targets for Scottish lochs was used to estimate marginal benefits at national scale and combined with the marginal cost curve. This gave proportionate costs of £5.7 m/y leading to GES in 72% of loch area. Using national mean marginal benefits with a scheme to estimate changes in individual loch value with P loading gave proportionate costs of £25.6 m/y leading to GES in 77% of loch area (491 lochs). Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Metal Accretion onto White Dwarfs. I. The Approximate Approach Based on Estimates of Diffusion Timescales

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Brassard, P.; Dufour, P.; Tremblay, P.-E.

    2015-06-01

    The accretion-diffusion picture is the model par excellence for describing the presence of planetary debris polluting the atmospheres of relatively cool white dwarfs. Some important insights into the process may be derived using an approximate approach which combines static stellar models with estimates of diffusion timescales at the base of the outer convection zone or, in its absence, at the photosphere. Until recently, and to our knowledge, values of diffusion timescales in white dwarfs have all been obtained on the basis of the same physics as that developed initially by Paquette et al., including their diffusion coefficients and thermal diffusion coefficients. In view of the recent exciting discoveries of a plethora of metals (including some never seen before) polluting the atmospheres of an increasing number of cool white dwarfs, we felt that a new look at the estimates of settling timescales would be worthwhile. We thus provide improved estimates of diffusion timescales for all 27 elements from Li to Cu in the periodic table in a wide range of the surface gravity-effective temperature domain and for both DA and non-DA stars.

  4. Crop yield changes induced by emissions of individual climate-altering pollutants

    NASA Astrophysics Data System (ADS)

    Shindell, Drew T.

    2016-08-01

    Climate change damages agriculture, causing deteriorating food security and increased malnutrition. Many studies have examined the role of distinct physical processes, but impacts have not been previously attributed to individual pollutants. Using a simple model incorporating process-level results from detailed models, here I show that although carbon dioxide (CO2) is the largest driver of climate change, other drivers appear to dominate agricultural yield changes. I calculate that anthropogenic emissions to date have decreased global agricultural yields by 9.5 ± 3.0%, with roughly 93% stemming from non-CO2 emissions, including methane (-5.2 ± 1.7%) and halocarbons (-1.4 ± 0.4%). The differing impacts stem from atmospheric composition responses: CO2 fertilizes crops, offsetting much of the loss induced by warming; halocarbons do not fertilize; methane leads to minimal fertilization but increases surface ozone which augments warming-induced losses. By the end of the century, strong CO2 mitigation improves agricultural yields by ˜3 ± 5%. In contrast, strong methane and hydrofluorocarbon mitigation improve yields by ˜16 ± 5% and ˜5 ± 4%, respectively. These are the first quantitative analyses to include climate, CO2 and ozone simultaneously, and hence, additional studies would be valuable. Nonetheless, as policy makers have leverage over pollutant emissions rather than isolated processes, the perspective presented here may be more useful for decision making than that in the prior work upon which this study builds. The results suggest that policies should target a broad portfolio of pollutant emissions in order to optimize mitigation of societal damages.

  5. [Impacts of landscape patterns on heavy metal contamination of agricultural top soils in the Pearl River Delta, South China].

    PubMed

    Li, Cheng; Li, Fang-bai; Wu, Zhi-feng; Cheng, Jiong

    2015-04-01

    Landscape patterns are known to influence many ecological processes, but the relationship between landscape patterns and soil pollution processes is not well understood. Based on 300 top soil samples, land use and cover map for the Pearl River Delta (PRD) of 2005, this study explored the characteristics and spatial pattern of heavy metal contamination of agricultural top soils and examined the impacts of landscape patterns on the heavy metal contamination in the buffers of soil samples. Research methods included geostatistical analysis, landscape pattern analysis, single-factor pollution indices, and Pearson correlation analysis. We found that: 1) out of the 235 agricultural soil samples, 3.8%, 0.4%, 17.0% and 9.4% samples exceeded the Grade II national standard for As, Pb, Cd and Ni concentrations respectively. High pollution levels were found in three cities, Guangzhou, Foshan and Zhongshan; 2) soils in the farmland were more polluted than those in the forest and orchard land, and there were no differences among different agricultural land use types in contamination level of each heavy metal (except Cd); and 3) the proportion, mean patch area as well as the degree of landscape fragmentation, landscape-level structural complexity and aggregation/connectivity of water at the buffer zone were significantly positively correlated with the contamination level of each of the four heavy metals in agricultural top soils. Part of the landscape pattern of urban land in the buffer zone also positively correlated with Pb and Cd levels (P < 0.05). On the contrary, the proportion, mean patch area and aggregation degree of forest land negatively correlated with soil Pb and Ni levels (P < 0.05); and 4) the closer to the industry land were the soil samples, the more polluted the soils were for Pb, Cd and Ni. Only landscape diversity was found to be positively correlated with soil Cd contamination. The study results provide new information and scientific basis for heavy metal

  6. Impacts of soil and water pollution on food safety and health risks in China.

    PubMed

    Lu, Yonglong; Song, Shuai; Wang, Ruoshi; Liu, Zhaoyang; Meng, Jing; Sweetman, Andrew J; Jenkins, Alan; Ferrier, Robert C; Li, Hong; Luo, Wei; Wang, Tieyu

    2015-04-01

    Environmental pollution and food safety are two of the most important issues of our time. Soil and water pollution, in particular, have historically impacted on food safety which represents an important threat to human health. Nowhere has that situation been more complex and challenging than in China, where a combination of pollution and an increasing food safety risk have affected a large part of the population. Water scarcity, pesticide over-application, and chemical pollutants are considered to be the most important factors impacting on food safety in China. Inadequate quantity and quality of surface water resources in China have led to the long-term use of waste-water irrigation to fulfill the water requirements for agricultural production. In some regions this has caused serious agricultural land and food pollution, especially for heavy metals. It is important, therefore, that issues threatening food safety such as combined pesticide residues and heavy metal pollution are addressed to reduce risks to human health. The increasing negative effects on food safety from water and soil pollution have put more people at risk of carcinogenic diseases, potentially contributing to 'cancer villages' which appear to correlate strongly with the main food producing areas. Currently in China, food safety policies are not integrated with soil and water pollution management policies. Here, a comprehensive map of both soil and water pollution threats to food safety in China is presented and integrated policies addressing soil and water pollution for achieving food safety are suggested to provide a holistic approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Towards protecting the Great Barrier Reef from land-based pollution.

    PubMed

    Kroon, Frederieke J; Thorburn, Peter; Schaffelke, Britta; Whitten, Stuart

    2016-06-01

    The Great Barrier Reef (GBR) is an iconic coral reef system extending over 2000 km along the north-east coast of Australia. Global recognition of its Outstanding Universal Value resulted in the listing of the 348 000 km(2) GBR World Heritage Area (WHA) by UNESCO in 1981. Despite various levels of national and international protection, the condition of GBR ecosystems has deteriorated over the past decades, with land-based pollution from the adjacent catchments being a major and ongoing cause for this decline. To reduce land-based pollution, the Australian and Queensland Governments have implemented a range of policy initiatives since 2003. Here, we evaluate the effectiveness of existing initiatives to reduce discharge of land-based pollutants into the waters of the GBR. We conclude that recent efforts in the GBR catchments to reduce land-based pollution are unlikely to be sufficient to protect the GBR ecosystems from declining water quality within the aspired time frames. To support management decisions for desired ecological outcomes for the GBR WHA, we identify potential improvements to current policies and incentives, as well as potential changes to current agricultural land use, based on overseas experiences and Australia's unique potential. The experience in the GBR may provide useful guidance for the management of other marine ecosystems, as reducing land-based pollution by better managing agricultural sources is a challenge for coastal communities around the world. © 2016 John Wiley & Sons Ltd.

  8. Assessing Agricultural Intensification Strategies with a Sustainable Agriculture Matrix

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Davidson, E. A.

    2017-12-01

    To meet the growing global demand for food and bioenergy, agricultural production must nearly double by 2050, placing additional pressures on the environment and the society. Thus, how to efficiently use limited land, water, and nutrient resources to produce more food with low pollution (MoFoLoPo) is clearly one of the major challenges of this century. The increasingly interconnected global market provides a great opportunity for reallocating crop production to the countries and regions that use natural resources more efficiently. For example, it is estimated that optimizing the allocation of crop production around the world can mitigate 41% of nitrogen lost to the environment. However, higher efficiency in nutrients use does not necessarily lead to higher efficiency in land use or water use. In addition, the increasing share of international trade in food supply may introduce additional systemic risk and affect the resilience of global food system. Using the data/indicator from a Sustainable Agriculture Matrix and an international trade matrix, we developed a simple model to assess the trade-offs of international trade considering resource use efficiencies (including water, land, nitrogen, and phosphorus), economic costs and benefits, and the resilience of food system.

  9. The Effects of Organic Pollutants in Soil on Human Health

    NASA Astrophysics Data System (ADS)

    Burgess, Lynn

    2013-04-01

    The soil has always been depository of the organic chemicals produced naturally or anthropogenically. Soil contamination is a serious human and environmental problem. A large body of evidence has shown the risks of adverse health effects with the exposure to contaminated soil due to the large quantities of organic chemicals used in agriculture and urban areas that have a legacy of environmental pollution linked to industrial activities, coal burning, motor vehicle emissions, waste incineration and waste dumping. In agricultural areas, because of the effort to provide adequate quantities of agricultural products, farmers have been using an increasing amount of organic chemicals, but the resulting pollution has enormous potential for environmental damage. The types of organic pollutants commonly found in soils are polychlorinated biphenyls, polybrominated biphenyls, polychlorinated dibenzofurans, polycyclic aromatic hydrocarbons, organophosphorus and carbamate insecticides, herbicides and organic fuels, especially gasoline and diesel. Another source of soil pollution is the complex mixture of organic chemicals, metals and microorganisms in the effluent from septic systems, animal wastes and other sources of biowaste. The soils of the world are a vast mixture of chemicals and although conditions are such that an individual is rarely exposed to a single compound, the great majority of people are exposed to a vast chemical mixture of organics, their metabolites, and other compounds at low concentrations Human exposure to organic pollutants in the soil is an area of toxicology that is very difficult to study due to the low concentration of the pollutants. The toxicological studies of single organic pollutants found in soils are limited and research on the metabolites and of chemical mixtures is very limited. The majority of toxicological studies are conducted at relatively high doses and for short periods of exposure. This makes the application of this data to exposure

  10. Influence of agricultural activities, forest fires and agro-industries on air quality in Thailand.

    PubMed

    Phairuang, Worradorn; Hata, Mitsuhiko; Furuuchi, Masami

    2017-02-01

    Annual and monthly-based emission inventories in northern, central and north-eastern provinces in Thailand, where agriculture and related agro-industries are very intensive, were estimated to evaluate the contribution of agricultural activity, including crop residue burning, forest fires and related agro-industries on air quality monitored in corresponding provinces. The monthly-based emission inventories of air pollutants, or, particulate matter (PM), NOx and SO 2 , for various agricultural crops were estimated based on information on the level of production of typical crops: rice, corn, sugarcane, cassava, soybeans and potatoes using emission factors and other parameters related to country-specific values taking into account crop type and the local residue burning period. The estimated monthly emission inventory was compared with air monitoring data obtained at monitoring stations operated by the Pollution Control Department, Thailand (PCD) for validating the estimated emission inventory. The agro-industry that has the greatest impact on the regions being evaluated, is the sugar processing industry, which uses sugarcane as a raw material and its residue as fuel for the boiler. The backward trajectory analysis of the air mass arriving at the PCD station was calculated to confirm this influence. For the provinces being evaluated which are located in the upper northern, lower northern and northeast in Thailand, agricultural activities and forest fires were shown to be closely correlated to the ambient PM concentration while their contribution to the production of gaseous pollutants is much less. Copyright © 2016. Published by Elsevier B.V.

  11. Emission factors of atmospheric and climatic pollutants from crop residues burning.

    PubMed

    Santiago-De La Rosa, Naxieli; González-Cardoso, Griselda; Figueroa-Lara, José de Jesús; Gutiérrez-Arzaluz, Mirella; Octaviano-Villasana, Claudia; Ramírez-Hernández, Irma Fabiola; Mugica-Álvarez, Violeta

    2018-04-13

    Biomass burning is a common agricultural practice, because it allows elimination of postharvesting residues; nevertheless, it involves an inefficient combustion process that generates atmospheric pollutants emission, which has implications on health and climate change. This work focuses on the estimation of emission factors (EFs) of PM 2.5 , PM 10 , organic carbon (OC), elemental carbon (EC), carbon monoxide (CO), carbon dioxide (CO 2 ), and methane (CH 4 ) of residues from burning alfalfa, barley, beans, cotton, maize, rice, sorghum, and wheat in Mexico. Chemical characteristics of the residues were determined to establish their relationship with EFs, as well as with the modified combustion efficiency (MCE). Essays were carried out in an open combustion chamber with isokinetic sampling, following modified EPA 201-A method. EFs did not present statistical differences among different varieties of the same crop, but were statistically different among different crops, showing that generic values of EFs for all the agricultural residues can introduce significant uncertainties when used for climatic and atmospheric pollutant inventories. EFs of PM 2.5 ranged from 1.19 to 11.30 g kg -1 , and of PM 10 from 1.77 to 21.56 g kg -1 . EFs of EC correlated with lignin content, whereas EFs of OC correlated inversely with carbon content. EFs of EC and OC in PM 2.5 ranged from 0.15 to 0.41 g kg -1 and from 0.33 to 5.29 g kg -1 , respectively, and in PM 10 , from 0.17 to 0.43 g kg -1 and from 0.54 to 11.06 g kg -1 . CO 2 represented the largest gaseous emissions volume with 1053.35-1850.82 g kg -1 , whereas the lowest was CH 4 with 1.61-5.59 g kg -1 . CO ranged from 28.85 to 155.71 g kg -1 , correlating inversely with carbon content and MCE. EFs were used to calculate emissions from eight agricultural residues burning in the country during 2016, to know the potential mitigation of climatic and atmospheric pollutants, provided this practice was banned. The emission factors

  12. EFFECTIVENESS OF RESTORED WETLANDS FOR THE TREATMENT OF AGRICULTURAL RUNOFF

    EPA Science Inventory

    The integration of the tax ditches into a drainage management system provides obvious benefits, but can also present a source of significant nonpoint source pollution from agricultural runoff. Many of Delaware's tax ditches have been listed on Delaware's Clean
    Water Act 303(d)...

  13. [A landscape ecological approach for urban non-point source pollution control].

    PubMed

    Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing

    2005-05-01

    Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.

  14. Contribution to the study of pollution of soil and water in Oued El Maleh area (Mohammedia, Morocco)

    NASA Astrophysics Data System (ADS)

    El hajjaji, Souad; Dahchour, Abdelmalek; Belhsaien, Kamal; Zouahri, Abdelmjid; Moussadek, Rachid; Douaik, Ahmed

    2016-04-01

    In Morocco, diffuse ground and surface water pollution in irrigated areas has caused an increase in the risk of water and soil quality deterioration. This has generated a health and environmental risks. The present study was carried out in the Oued El Maleh region located 65 Km to the south of Rabat on the Moroccan Atlantic coast. It covers a surface area of 310 km2 where agriculture constitutes the main activity of the population. This region is considered as a very important agricultural area, known nationally for its high potential for market gardening. This intensification has been accompanied by an excessive use of agrochemical inputs and poor control of irrigation and drainage. Consequently, salinization phenomena and deterioration of soil structure as well as water are about to create an alarming situation. In order to assess the state of pollution of waters and soil in the region, our study focuses on the determination of physicochemical parameters for the quality of water and soil. The obtained results from sampled wells and surface water show relatively higher values of nitrate and conductivity exceeding Moroccan national standards and revealing net degradation of water quality; therefore the water can be considered not suitable for human consumption and can induce a degradation of soil. The results of the studied soil show that the pH of these soils is weakly to moderately basic; they are usually non-saline with organic matter content moderately filled. Moreover, very high concentrations of nutrients (potassium, phosphorus and nitrogen) were recorded, highlighting poor management fertilizing vegetable crops in the region of Oued El Maleh.

  15. Adapting Agriculture Platforms for Nutrition: A Case Study of a Participatory, Video-Based Agricultural Extension Platform in India

    PubMed Central

    Kadiyala, Suneetha; Morgan, Emily H.; Cyriac, Shruthi; Margolies, Amy; Roopnaraine, Terry

    2016-01-01

    Successful integration of nutrition interventions into large-scale development programmes from nutrition-relevant sectors, such as agriculture, can address critical underlying determinants of undernutrition and enhance the coverage and effectiveness of on-going nutrition-specific activities. However, evidence on how this can be done is limited. This study examines the feasibility of delivering maternal, infant, and young child nutrition behaviour change communication through an innovative agricultural extension programme serving nutritionally vulnerable groups in rural India. The existing agriculture programme involves participatory production of low-cost videos promoting best practices and broad dissemination through village-level women’s self-help groups. For the nutrition intervention, 10 videos promoting specific maternal, infant, and young child nutrition practices were produced and disseminated in 30 villages. A range of methods was used to collect data, including in-depth interviews with project staff, frontline health workers, and self-help group members and their families; structured observations of mediated video dissemination sessions; nutrition knowledge tests with project staff and self-help group members; and a social network questionnaire to assess diffusion of promoted nutrition messages. We found the nutrition intervention to be well-received by rural communities and viewed as complementary to existing frontline health services. However, compared to agriculture, nutrition content required more time, creativity, and technical support to develop and deliver. Experimentation with promoted nutrition behaviours was high, but sharing of information from the videos with non-viewers was limited. Key lessons learned include the benefits of and need for collaboration with existing health services; continued technical support for implementing partners; engagement with local cultural norms and beliefs; empowerment of women’s group members to champion

  16. Impact of agricultural emission reductions on fine-particulate matter and public health

    NASA Astrophysics Data System (ADS)

    Pozzer, Andrea; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; de Meij, Alexander; Lelieveld, Jos

    2017-10-01

    A global chemistry-climate model has been used to study the impacts of pollutants released by agriculture on fine-particulate matter (PM2.5), with a focus on Europe, North America, East and South Asia. Simulations reveal that a relatively strong reduction in PM2.5 levels can be achieved by decreasing agricultural emissions, notably of ammonia (NH3) released from fertilizer use and animal husbandry. The absolute impact on PM2.5 reduction is strongest in East Asia, even for small emission decreases. Conversely, over Europe and North America, aerosol formation is not immediately limited by the availability of ammonia. Nevertheless, reduction of NH3 can also substantially decrease PM2.5 concentrations over the latter regions, especially when emissions are abated systematically. Our results document how reduction of agricultural emissions decreases aerosol pH due to the depletion of aerosol ammonium, which affects particle liquid phase and heterogeneous chemistry. Further, it is shown that a 50 % reduction of agricultural emissions could prevent the mortality attributable to air pollution by ˜ 250 000 people yr-1 worldwide, amounting to reductions of 30, 19, 8 and 3 % over North America, Europe, East and South Asia, respectively. A theoretical 100 % reduction could even reduce the number of deaths globally by about 800 000 per year.

  17. PESTICIDE LEACHING ANALYTICAL MODEL AND GIS-BASED APPLICATION IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    Groundwater contamination by pesticides and other organic pollutants has been detected across agricultural areas and is on the increase. Because groundwater monitoring is too costly to define the geographic extent of contamination at such large scales, indirect methods are needed...

  18. ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China

    NASA Astrophysics Data System (ADS)

    Liu, E. K.; He, W. Q.; Yan, C. R.

    2014-09-01

    Plastic film mulching has played an important role in Chinese agriculture due to its soil warming and moisture conservation effects. With the help of plastic film mulch technology, grain and cash crop yields have increased by 20-35% and 20-60%, respectively. The area of plastic film coverage in China reached approximately 20 million hectares, and the amount of plastic film used reached 1.25 million tons in 2011. While producing huge benefits, plastic film mulch technology has also brought on a series of pollution hazards. Large amounts of residual plastic film have detrimental effects on soil structure, water and nutrient transport and crop growth, thereby disrupting the agricultural environment and reducing crop production. To control pollution, the Chinese government urgently needs to elevate plastic film standards. Meanwhile, research and development of biodegradable mulch film and multi-functional mulch recovery machinery will help promote effective control and management of residual mulch pollution.

  19. Substrate degradation and nutrient enrichment structuring macroinvertebrate assemblages in agriculturally dominated Lake Chaohu Basins, China.

    PubMed

    Zhang, You; Cheng, Long; Tolonen, Katri E; Yin, Hongbin; Gao, Junfeng; Zhang, Zhiming; Li, Kuanyi; Cai, Yongjiu

    2018-06-15

    Rapid agricultural development has induced severe environmental problems to freshwater ecosystems. In this study, we aimed to examine the structure and environmental determinants of macroinvertebrate assemblages in an agriculture dominated Lake Chaohu Basin, China. A cluster analysis of the macroinvertebrate communities identified four groups of sites that were characterized by significantly different macroinvertebrate species. These four groups of sites had concentric spatial distribution patterns that followed the variation in the environmental conditions from the less anthropogenically disturbed headwaters towards the more anthropogenically disturbed lower reaches of the rivers and the Lake Chaohu. Moreover, taxa richness decreased from the headwaters towards the Lake Chaohu. The increasing practice of agriculture has reduced the abundances and richness of pollution sensitive species while opposite effects on pollution tolerant species. The study identified substrate heterogeneity and nutrient concentrations as the key environmental factors regulating the changes in the macroinvertebrate communities. We propose that particular attentions should be paid to reduce the nutrient enrichment and habitat degradation in the Lake Chaohu Basin and similar agriculture dominated basins. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Entomopathogenic nematode food webs in an ancient, mining pollution gradient in Spain.

    PubMed

    Campos-Herrera, Raquel; Rodríguez Martín, José Antonio; Escuer, Miguel; García-González, María Teresa; Duncan, Larry W; Gutiérrez, Carmen

    2016-12-01

    Mining activities pollute the environment with by-products that cause unpredictable impacts in surrounding areas. Cartagena-La Unión mine (Southeastern-Spain) was active for >2500years. Despite its closure in 1991, high concentrations of metals and waste residues remain in this area. A previous study using nematodes suggested that high lead content diminished soil biodiversity. However, the effects of mine pollution on specific ecosystem services remain unknown. Entomopathogenic nematodes (EPN) play a major role in the biocontrol of insect pests. Because EPNs are widespread throughout the world, we speculated that EPNs would be present in the mined areas, but at increased incidence with distance from the pollution focus. We predicted that the natural enemies of nematodes would follow a similar spatial pattern. We used qPCR techniques to measure abundance of five EPN species, five nematophagous fungi species, two bacterial ectoparasites of EPNs and one group of free-living nematodes that compete for the insect-cadaver. The study comprised 193 soil samples taken from mining sites, natural areas and agricultural fields. The highest concentrations of iron and zinc were detected in the mined area as was previously described for lead, cadmium and nickel. Molecular tools detected very low numbers of EPNs in samples found to be negative by insect-baiting, demonstrating the importance of the approach. EPNs were detected at low numbers in 13% of the localities, without relationship to heavy-metal concentrations. Only Acrobeloides-group nematodes were inversely related to the pollution gradient. Factors associated with agricultural areas explained 98.35% of the biotic variability, including EPN association with agricultural areas. Our study suggests that EPNs have adapted to polluted habitats that might support arthropod hosts. By contrast, the relationship between abundance of Acrobeloides-group and heavy-metal levels, revealed these taxa as especially well suited bio

  1. Organophosphate pesticide in agricultural soils from the Yangtze River Delta of China: concentration, distribution, and risk assessment.

    PubMed

    Pan, Lili; Sun, Jianteng; Li, Zhiheng; Zhan, Yu; Xu, Shen; Zhu, Lizhong

    2018-01-01

    Organophosphorus pesticides (OPPs) are used worldwide and pose great risks to human health. However, information on their presence in agricultural soils at regional scale and the associated risks is limited. In this study, an extensive investigation on agricultural soils was conducted throughout the Yangtze River Delta (YRD) of China to reveal the status of OPP pollution. The total concentrations of the nine OPPs ranged from <3.0 to 521 ng g -1 dry weight, with a mean of 64.7 ng g -1 dry weight and a detection rate of 93 %. Dimethoate was found to be the primary compound, followed by methyl parathion and parathion. The highest concentrations of OPPs were found in Jiangsu province due to the intensive agricultural activities. The pollution of OPPs is also highly associated with the land use types. The lower concentrations of OPPs found in vegetable fields could be attributed to their easy photodegradation and hydrolysis in aerobic soils. There was no significant difference in microbial communities among the sample sites, indicating that OPPs in agricultural soils of the YRD region cause negligible effects on microbiota. The risks of OPPs in the soils to human health were further evaluated. The hazard indexes in all the soil samples were below 1, suggesting absence of non-cancer risks. This study provides valuable information for a better understanding of the pollution status of OPPs in agricultural soils and a scientific basis for soil quality assessments.

  2. Multivariate-Statistical Assessment of Heavy Metals for Agricultural Soils in Northern China

    PubMed Central

    Yang, Pingguo; Yang, Miao; Mao, Renzhao; Shao, Hongbo

    2014-01-01

    The study evaluated eight heavy metals content and soil pollution from agricultural soils in northern China. Multivariate and geostatistical analysis approaches were used to determine the anthropogenic and natural contribution of soil heavy metal concentrations. Single pollution index and integrated pollution index could be used to evaluate soil heavy metal risk. The results show that the first factor explains 27.3% of the eight soil heavy metals with strong positive loadings on Cu, Zn, and Cd, which indicates that Cu, Zn, and Cd are associated with and controlled by anthropic activities. The average value of heavy metal is lower than the second grade standard values of soil environmental quality standards in China. Single pollution index is lower than 1, and the Nemerow integrated pollution index is 0.305, which means that study area has not been polluted. The semivariograms of soil heavy metal single pollution index fitted spherical and exponential models. The variable ratio of single pollution index showed moderately spatial dependence. Heavy metal contents showed relative safety in the study area. PMID:24892058

  3. The use of GIS and multi-criteria evaluation (MCE) to identify agricultural land management practices which cause surface water pollution in drinking water supply catchments.

    PubMed

    Grayson, Richard; Kay, Paul; Foulger, Miles

    2008-01-01

    Diffuse pollution poses a threat to water quality and results in the need for treatment for potable water supplies which can prove costly. Within the Yorkshire region, UK, nitrates, pesticides and water colour present particular treatment problems. Catchment management techniques offer an alternative to 'end of pipe' solutions and allow resources to be targeted to the most polluting areas. This project has attempted to identify such areas using GIS based modelling approaches in catchments where water quality data were available. As no model exists to predict water colour a model was created using an MCE method which is capable of predicting colour concentrations at the catchment scale. CatchIS was used to predict pesticide and nitrate N concentrations and was found to be generally capable of reliably predicting nitrate N loads at the catchment scale. The pesticides results did not match the historic data possibly due to problems with the historic pesticide data and temporal and spatially variability in pesticide usage. The use of these models can be extended to predict water quality problems in catchments where water quality data are unavailable and highlight areas of concern. IWA Publishing 2008.

  4. A simulation of water pollution model parameter estimation

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  5. Global Anthropogenic Phosphorus Loads to Freshwater and Associated Grey Water Footprints and Water Pollution Levels: A High-Resolution Global Study

    NASA Astrophysics Data System (ADS)

    Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2018-01-01

    We estimate the global anthropogenic phosphorus (P) loads to freshwater and the associated grey water footprints (GWFs) for the period 2002-2010, at a spatial resolution of 5 × 5 arc min, and compare the GWF per river basin to runoff to assess the P-related water pollution level (WPL). The global anthropogenic P load to freshwater systems from both diffuse and point sources is estimated at 1.5 Tg/yr. More than half of this total load was in Asia, followed by Europe (19%) and Latin America and the Caribbean (13%). The domestic sector contributed 54% to the total, agriculture 38%, and industry 8%. In agriculture, cereals production had the largest contribution to the P load (31%), followed by fruits, vegetables, and oil crops, each contributing 15%. The global total GWF related to anthropogenic P loads is estimated to be 147 × 1012 m3/yr, with China contributing 30%, India 8%, USA 7%, and Spain and Brazil 6% each. The basins with WPL > 1 (where GWF exceeds the basin's assimilation capacity) together cover about 38% of the global land area, 37% of the global river discharge, and provide residence to about 90% of the global population.

  6. Identification of phosphorus emission hotspots in agricultural catchments

    PubMed Central

    Kovacs, Adam; Honti, Mark; Zessner, Matthias; Eder, Alexander; Clement, Adrienne; Blöschl, Günter

    2012-01-01

    An enhanced transport-based management approach is presented, which is able to support cost-effective water quality management with respect to diffuse phosphorus pollution. Suspended solids and particulate phosphorus emissions and their transport were modeled in two hilly agricultural watersheds (Wulka River in Austria and Zala River in Hungary) with an improved version of the catchment-scale PhosFate model. Source and transmission areas were ranked by an optimization method in order to provide a priority list of the areas of economically efficient (optimal) management alternatives. The model was calibrated and validated at different gauges and for various years. The spatial distribution of the emissions shows that approximately one third of the catchment area is responsible for the majority of the emissions. However, only a few percent of the source areas can transport fluxes to the catchment outlet. These effective source areas, together with the main transmission areas are potential candidates for improved management practices. In accordance with the critical area concept, it was shown that intervention with better management practices on a properly selected small proportion of the total area (1–3%) is sufficient to reach a remarkable improvement in water quality. If soil nutrient management is also considered in addition to water quality, intervention on 4–12% of the catchment areas can fulfill both aspects. PMID:22771465

  7. Agriculture and forestry: Identification, vigor, and disease

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.

    1972-01-01

    The agricultural and forestry areas which comprise the watershed of the Chesapeake Bay are described. Major problems of watershed creation and management with emphasis on the erosion problem are discussed. Remote sensing as it relates to the identification of plant species and vigor, pollution, disease, and insect infestation are examined. The application of infrared photography, multispectral sensing, and sequential survey is recommended to identify ecological changes and improve resources management.

  8. Comprehensive model-based prediction of micropollutants from diffuse sources in the Swiss river network

    NASA Astrophysics Data System (ADS)

    Strahm, Ivo; Munz, Nicole; Braun, Christian; Gälli, René; Leu, Christian; Stamm, Christian

    2014-05-01

    Water quality in the Swiss river network is affected by many micropollutants from a variety of diffuse sources. This study compares, for the first time, in a comprehensive manner the diffuse sources and the substance groups that contribute the most to water contamination in Swiss streams and highlights the major regions for water pollution. For this a simple but comprehensive model was developed to estimate emission from diffuse sources for the entire Swiss river network of 65 000 km. Based on emission factors the model calculates catchment specific losses to streams for more than 15 diffuse sources (such as crop lands, grassland, vineyards, fruit orchards, roads, railways, facades, roofs, green space in urban areas, landfills, etc.) and more than 130 different substances from 5 different substance groups (pesticides, biocides, heavy metals, human drugs, animal drugs). For more than 180 000 stream sections estimates of mean annual pollutant loads and mean annual concentration levels were modeled. This data was validated with a set of monitoring data and evaluated based on annual average environmental quality standards (AA-EQS). Model validation showed that the estimated mean annual concentration levels are within the range of measured data. Therefore simulations were considered as adequately robust for identifying the major sources of diffuse pollution. The analysis depicted that in Switzerland widespread pollution of streams can be expected. Along more than 18 000 km of the river network one or more simulated substances has a concentration exceeding the AA-EQS. In single stream sections it could be more than 50 different substances. Moreover, the simulations showed that in two-thirds of small streams (Strahler order 1 and 2) at least one AA-EQS is always exceeded. The highest number of substances exceeding the AA-EQS are in areas with large fractions of arable cropping, vineyards and fruit orchards. Urban areas are also of concern even without considering

  9. Reclamation of Cr-contaminated or Cu-contaminated agricultural soils using sunflower and chelants.

    PubMed

    Cicatelli, Angela; Guarino, Francesco; Castiglione, Stefano

    2017-04-01

    Chromium (Cr) and copper (Cu) are pollutants with a strong environmental impact. "Green biotechnology" as phytoremediation represents a sustainability opportunity for soil reclamation. In this study, we evaluated the possibility to reclaim agricultural soils located in the Solofrana valley, contaminated by Cr or Cu. Chromium contamination derives by repeated flooding events of Solofrana rivers containing Cr because of leather tanning plants, while Cu soil pollution was due to the use of Cu-rich pesticides in agriculture. Both metals showed a very low bioavailability. In order to perform an assisted phytoremediation of polluted fields, we carried out a preliminary ex situ experimentation testing for the first time sunflowers (cv. Pretor) and chelants (ethylenediaminetetraacetic acid (EDTA) and/or ethylene diamine disuccinate (EDDS)), useful when metal bioavailability is low. No symptoms of toxicity were observed in sunflowers grown on both soils, while biomass was improved when EDDS was added. Cr and Cu bioavailability was only slightly enhanced by chelants at the end of the treatments. Both Cr and Cu were mainly accumulated in the roots; moreover, Cu was also translocated to the aboveground organs in the presence of EDTA. The ex situ experimentation demonstrated that assisted phytoremediation is a very slow process not useful in the case of persistent pollution.

  10. A multi-tracer approach to assess fingerprints of nitrate in an aquifer under agriculturally used land

    NASA Astrophysics Data System (ADS)

    Pasten-Zapata, Ernesto; Ledesma-Ruiz, Rogelio; Ramirez, Aldo; Harter, Thomas; Mahlknecht, Jürgen

    2014-05-01

    To effectively manage groundwater quality it is essential to understand sources of contamination and underground processes. The objective of the study was to identify sources and fate of nitrate pollution occurring in an aquifer underneath a sub-humid to humid region in NE Mexico which provides 10% of national citrus production. Nitrate isotopes and halide ratios were applied to understand nitrate sources and transformations in relation to land use/land cover. It was found that the study area is subject to diverse nitrate sources including organic waste and wastewater, synthetic fertilizers and soil processes. Animal manure and sewage from septic tanks were the causes of groundwater nitrate pollution within orchards and vegetable agriculture. Dairy activities within a radius of 1,000m from a sampling point increased nitrate pollution. Leachates from septic tanks incited nitrate pollution in residential areas. Soil nitrogen and animal waste were the sources of nitrate in groundwater under shrubland and grassland. Partial denitrification processes were evidenced. The denitrification process helped to attenuate nitrate concentration in the agricultural lands and grassland particularly during summer months.

  11. Prediction of diffuse organic micropollutant loads in streams under changing climatic, socio-economic and technical boundary conditions with an integrated transport model

    NASA Astrophysics Data System (ADS)

    Honti, Mark; Schuwirth, Nele; Rieckermann, Jörg; Ghielmetti, Nico; Stamm, Christian

    2014-05-01

    Catchments are complex systems where water quantity, quality and the ecological services provided are determined by interacting physical, chemical, biological, economical and social factors. The realization of these interactions led to the prevailing catchment management paradigm: Integrated Water Resources Management (IWRM). IWRM requires considering all these aspects during the design of sustainable resource utilization. Due to the complexity of this task, mathematical modeling plays a key role in IWRM, namely in the evaluation of the impacts of hypothetical scenarios and management measures. Toxicity is a key determinant of the ecological state and as such a focal point in IWRM, but we still have significant knowledge gaps about the diffuse loads of organic micropollutants (OMP) that leak from both urban and agricultural areas. Most European catchments possess mixed land use, containing rural (natural and agricultural) landscapes and settlements in varying proportions. Thus, a catchment model supporting IWRM must be able to cope with both classes. However, the majority of existing catchment models is dedicated to either rural or urban areas, while the minority capable of simulating both contain overly simplified descriptions for either land use category. We applied a conceptual model that describes all major land use classes for assessing the impacts of climate change, socio-economic development and management alternatives on diffuse OMP loads. We simulated the loads of 12 compounds (agricultural and urban pesticides and urban biocides) with daily resolution at 11 locations in the stream network of a small catchment (46 km2) in Switzerland. The model considers all important diffuse transport pathways separately, but each with a simple empirical process rate. Consequently, some site-specific observations were required to calibrate rate parameters. We assessed uncertainty during both calibration and prediction phases. Predictions indicated that future OMP loads

  12. Ozone and haze pollution effects on the contemporary land carbon cycle

    NASA Astrophysics Data System (ADS)

    Unger, N.

    2016-12-01

    Atmospheric pollutants have both beneficial and detrimental effects on carbon uptake by land ecosystems. Surface ozone damages leaf photosynthesis by oxidizing plant cells, while aerosols promote carbon uptake by increasing diffuse radiation and exert additional influences through concomitant perturbations to meteorology and hydrology. Here, I present new results from three assessment studies that employ Earth system modeling and multiple measurement datasets. First, we quantify the separate and combined effects of anthropogenic ozone and aerosol pollution on the global land carbon uptake. Second, we evaluate benefits to land ecosystem health from selective emission reductions in specific pollution sources and sectors. Finally, I show that the long-term climatic effects of mid-latitude air pollution boosts plant productivity in the Amazon by 10% on the annual average today.

  13. Absorption of mercuric cation by tannins in agricultural residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waiss, A.C. Jr.; Wiley, M.E.; Kuhnle, J.A.

    1973-01-01

    Two common environmental pollutants are agricultural residues (skins, pits, husks, tannin bark, grape pomace) and waste streams of water containing only traces of heavy metals (such as mercury at 10 or more ppb) from mining or manufacturing operations. Agricultural residues contain tannins, polyphenolic substances, pectin, and other polymers-all with chemically reactive groups that can chelate, reduce, oxidize, demonstrate ion exchange properties, and aid in removing traces of heavy metals from dilute waste water streams at low cost. Finely ground and water-washed agricultural residues were slurried in water and packed into columns for absorption tests with heavy metals. Solutions of knownmore » concentrations of heavy metals were passed through the packed columns which were then eluted with water or with alkaline or acidic solutions. The fractions and the column absorbents were then analyzed by standard atomic absorption methods. The nature of the physical and chemical forces that are effective in metal absorption from agricultural residues is not clear.« less

  14. Emissions from Combustion of Open Area Sources: Prescribed Forest and Agricultural Burns

    EPA Science Inventory

    Emissions from wildfires and prescribed forest and agricultural burns generate a variety of emissions that can cause adverse health effects for humans, contribute to climate change, and decrease visibility. Only limited pollutant data are available for these sources, particularly...

  15. [Characteristics of Phthalic Acid Esters in Agricultural Soils and Products in Areas of Zhongshan City, South China].

    PubMed

    Li, Bin; Wu, Shan; Liang, Jin-ming; Liang, Wen-li; Chen, Gui-xian; Li, Yong-jun; Yang, Guo-yi

    2015-06-01

    In order to investigate and assess the pollution level of phthalic acid esters (PAEs) in farm soils and products from typical agricultural fields in areas of Zhongshan City, Guangdong Province, South China, 65 topsoil and 37 agricultural product samples were collected and contents of 6 PAEs compounds that classified by the U. S. Environmental Protection Agency (EPA) as priority pollutants were determined by the GC-FID. The results indicated that total contents of the PAEs (∑ PAEs) in soils ranged from 0. 14 to 1. 14 mg x kg(-1), and the mean value was 0.43 mg x kg(-1), with the detected ratio of 100%. Various concentrations of PAEs differed in three land-use types were ordered by vegetable soil > orchard soil > paddy soil. Comparing with six U.S. EPA priority pollutants of PAEs, the contents of Di-n-butyl phthalate (DBP) and Dimethyl phthalate ( DMP) in soils exceeded the control limits of PAEs in the American soil by 93.85% and 27.69% respectively, but the rest four PAEs compounds were lower than the control limits. Generally, the pollution level of soils contaminated by PAEs in agricultural fields of Zhongshan City was relatively low. The contents of 3 PAEs in agricultural products ranged from 0.15 to 3.15 mg x kg(-1) with the average of 1.12 mg x kg(-1), which was lower than the suggested standards in USA and Europe and with low health risk. Meanwhile, ∑ PAEs concentrations in vegetables were higher than those both in rice and fruits. DBP and DEHP were the main components of PAEs both in agricultural soils and products, with higher percentage contents and detected ratio. ∑ PAEs and DBP contents in various agricultural products-soils had a significantly positive correlation, with Pearson coefficients (r) in vegetables-vegetable soils were 0.81 (P = 0.000), 0.75 (P = 0.000), and corresponding r among rice-paddy soil and fruits-fruit soils were 0.74 (P = 0.036), 0.65 (P = 0.041) and 0.66 (P = 0.029), 0.78 (P = 0.045), respectively. Although there existed a

  16. Observations of atmospheric pollutants at Lhasa during 2014-2015: Pollution status and the influence of meteorological factors.

    PubMed

    Duo, Bu; Cui, Lulu; Wang, Zhenzhen; Li, Rui; Zhang, Liwu; Fu, Hongbo; Chen, Jianmin; Zhang, Huifang; Qiong, A

    2018-01-01

    Atmospheric pollutants including SO 2 , NO 2 , CO, O 3 and inhalable particulate matter (PM 2.5 and PM 10 ) were monitored continuously from March 2014 to February 2015 to investigate characteristics of air pollution at Lhasa, Tibetan Plateau. Species exhibited similar seasonal variations except O 3 , with the peaks in winter but low valleys in summer. The maximum O 3 concentration was observed in spring, followed by summer, autumn, and winter. The positive correlation between O 3 and PM 10 in spring indicated similar sources of them, and was assumed to be turbulent transport. Temperature was the dominant meteorological factor for most species in spring. High temperature accelerates O 3 photochemistry, and favors air disturbance which is conductive to dust resuspension in spring. Relative humidity (RH) and atmospheric pressure were the main meteorological factors in summer. RH showed negative correlations with species, while atmospheric pressure posed opposite situation. Wind speed (WS) was the dominant meteorological factor in autumn, the negative correlations between WS and species indicated diffusion by wind. Most species showed non-significant correlations with meteorological factors in winter, indicating the dependence of pollution on source emission rather than restriction by meteorology. Pollution weather character indicated that emissions were from biomass burning and dust suspension, and meteorological factors also played an important role. Air stream injection from the stratosphere was observed during O 3 pollution period. Air parcels from Southwest Asia were observed during air pollution period in winter. An enhancement in air pollutants such as O 3 would be expected in the future, more attention should be given to countermeasures for prevention of air pollution in the future. Copyright © 2017. Published by Elsevier B.V.

  17. From "connecting the dots" to "threading the needle:" The challenges ahead in managing agricultural landscapes for environmental quality

    USDA-ARS?s Scientific Manuscript database

    Non point source pollution from agriculture is one of the most challenging problems facing society. In this book chapter, we briefly review the development of “landscape thinking” in agriculture and how this has been incorporated into the USDA Conservation Effects Assessment Program (CEAP). We pre...

  18. Impact of Soil Heavy Metal Pollution on Food Safety in China.

    PubMed

    Zhang, Xiuying; Zhong, Taiyang; Liu, Lei; Ouyang, Xiaoying

    2015-01-01

    Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China.

  19. Impact of Soil Heavy Metal Pollution on Food Safety in China

    PubMed Central

    Zhang, Xiuying; Zhong, Taiyang; Liu, Lei; Ouyang, Xiaoying

    2015-01-01

    Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China. PMID:26252956

  20. Periphyton responses to nutrient and atrazine mixtures introduced through agricultural runoff.

    PubMed

    Murdock, Justin N; Shields, F Douglas; Lizotte, Richard E

    2013-03-01

    Agricultural runoff often contains pollutants with antagonistic impacts. The individual influence of nutrients and atrazine on periphyton has been extensively studied, but their impact when introduced together and with multiple agricultural pollutants is less clear. We simulated a field-scale runoff pulse into a riverine wetland that mimicked pollutant composition typical of field runoff of the Mississippi River Alluvial Plain. Periphyton biomass and functional responses were measured for 2 weeks along a 500 m section. Additionally, laboratory chamber assays were used to identify potential periphyton changes due to nutrients, atrazine, and their interactions. Generally, nutrients stimulated, and atrazine reduced chlorophyll a (Chl a) in chambers. In the wetland, nutrient and atrazine relationships with periphyton were weaker, and when found, were often opposite of trends in chambers. Total nitrogen (TN) was inversely related to Chl a, and total phosphorus was inversely related to respiration (R) rates. Atrazine (10-20 μg L(-1) in the wetland) had a positive relationship with ash-free dry mass (AFDM), and weakened the relationship between TN and AFDM. Wetland periphyton biomass was better correlated to total suspended solids than nutrients or atrazine. Periphyton function was resilient as periphyton gross primary production (GPP)/R ratios were not strongly impacted by runoff. However, whole-system GPP and R decreased over the 2-week period, suggesting that although periphyton metabolism recovered quickly, whole-system metabolism took longer to recover. The individual and combined impacts of nutrients and atrazine in complex pollutant mixtures can vary substantially from their influence when introduced separately, and non-linear impacts can occur with distance downstream of the pollutant introduction point.

  1. Assessment of the environmental significance of nutrients and heavy metal pollution in the river network of Serbia.

    PubMed

    Dević, Gordana; Sakan, Sanja; Đorđević, Dragana

    2016-01-01

    In this paper, the data for ten water quality variables collected during 2009 at 75 monitoring sites along the river network of Serbia are considered. The results are alarming because 48% of the studied sites were contaminated by Ni, Mn, Pb, As, and nutrients, which are key factors impairing the water quality of the rivers in Serbia. Special attention should be paid to Zn and Cu, listed in the priority toxic pollutants of US EPA for aquatic life protection. The employed Q-model cluster analysis grouped the data into three major pollution zones (low, moderate, and high). Most sites classified as "low pollution zones" (LP) were in the main rivers, whereas those classified as "moderate and high pollution zones" (MP and HP, respectively) were in the large and small tributaries/hydro-system. Principal component analysis/factor analysis (PCA/FA) showed that the dissolved metals and nutrients in the Serbian rivers varied depending on the river, the heterogeneity of the anthropogenic activities in the basins (influenced primarily by industrial wastewater, agricultural activities, and urban runoff pollution), and natural environmental variability, such as geological characteristics. In LP dominated non-point source pollution, such as agricultural and urban runoff, whereas mixed source pollution dominated in the MP and HP zones. These results provide information to be used for developing better pollution control strategies for the river network of Serbia.

  2. Mobility, bioavailability and speciation of potentially toxic metals in a sludges-polluted agricultural soil under remediation with poplar trees and native grasses

    NASA Astrophysics Data System (ADS)

    Adamo, Paola; Agrelli, Diana; Giandonato Caporale, Antonio; Fiorentino, Nunzio; Duri, Luigi; Fagnano, Massimo

    2017-04-01

    For the assessment of health and environmental risks deriving from the pollution of agricultural soils, it is critical the identification and the chemical characterization of the contaminants and of the polluted soil, because these characteristics influence the mobility and bioavailability of the contaminants and therefore their transfer from soil to other environmental compartments and to the food chain. In addition, these information are crucial to assess the effectiveness of remediation and management actions. Our study site is an agricultural area of 6 ha, currently under sequestration, located in the province of Naples (Campania Region), interested by past illegal dumping of industrial wastes, mainly tannery sludges. In the area, after an intense phase of soil characterization by geophysical and geochemical surveys, it is realizing an environmental remediation project with poplar trees and native grass species, also with the aim of analyzing the possible absorption and accumulation of contaminants in the vegetables. The soil sampling was carried out by taking punctual samples of soil according to a grid of 20 x 20 m, at three depths (0-20; 30-60; 70-90 cm). Furthermore, materials attributable to the buried sludges were sampled from pedological profiles opened in the field. All the samples were analyzed for the content of potentially toxic metals and of heavy hydrocarbons (C>12). On selected samples were determined the main chemical and physical characteristics, mobile and bioavailable fractions of the major metal contaminants and their distribution in the soil geochemical fractions, with water (solid/liquid partition coefficient), 1 M NH4NO3 and 0.05 M EDTA pH 7 extractions, and EU-BCR sequential fractionation. The data showed a significant, widespread and disorderly contamination by chromium, zinc and heavy hydrocarbons (up to values of: 4500 mg/kg for Cr, 1850 mg/kg for Zn 1250 mg/kg for hydrocarbons C>12). In certain sub-areas it has also been observed a

  3. Detection of Pollution Caused by Solid Wastes

    NASA Technical Reports Server (NTRS)

    Golueke, Clarence G.

    1971-01-01

    To develop a means of detecting pollution, it s necessary to know something about the source and nature of the pollution. The type of pollution rising from solid wastes differs considerably from hat from liquid wastes or that from gaseous wastes ni its effect on the immediate environment. It may be "defined" by a series of negatives. When solid wastes are discarded on land, the resulting pollution is not land pollution in the sense of air and water pollution. For one thing, the solid wastes do not become a "part" of the land in that the wastes are neither intimately mixed nor homogenized into the land as are liquid and gaseous wastes into their respective media. The waste particles retain not only their chemical identity but also their visible (i.e., physical) characteristics. When buried, for example, the soil is under, above, and around the solids, because the wastes are there as discrete units. Secondly, solid wastes neither diffuse nor are they carried from the place at which they were deposited. In other words they remain stationary, providing of course the disposal site is land and not moving water. In a given area, solid wastes be not distributed uniformly over that area. Even the solid wastes falling into the specification of letter meets these specifications. In contrast liquid and gaseous wastes become intimately mixed, homogenized, and even dissolved in their media. Because solid wastes remain stationary, pollution constituted by their presence is highly localized and heavily concentrated, even to the extent that the pollution could be termed "micro" when compared to the macro-pollution arising from liquid and gasequs wastes.

  4. Spatial organization of agricultural landscape, farming activities and hydrological risk assessment

    NASA Astrophysics Data System (ADS)

    Viaud, V.; Merot, P.

    2003-04-01

    Agriculture intensification is considered as a major cause of water pollution since it has gone both with an increasing use of fertilisers and significant changes in land-use patterns. Among the prescriptions for pollution control, the management of buffer zones at the landscape scale is supported by the environmental policies, but often without consideration of the systems of human activities they are aimed at. Agricultural landscapes, with fields potentially source of pollution and buffer zones, are spatially organized and managed by farming activities. In a perspective of sustainable management, an integrating approach of environmental issues and farming activities is thus required. This approach was applied to bocage landscapes (landscapes with cultivated fields surrounded by hedgerow systems) in Brittany (Western France). Bocage landscapes are frequently encountered, especially in Europe, and many studies put forward their hydrological and hydrochemical buffer functions. Those results provide informations on the link between spatial organization of hedgerow systems and their environmental effectiveness. They enable to design models of functional bocage landscapes. The objective of this work was to pick out, among those theoretical models, the models compatible with the farming activities. The results will be presented and the additional constraints for the farming systems created by a functional landscape, from a hydrological and hydrochemical perspective, will be discussed.

  5. Evolving policies to regulate pollution from animal feeding operations.

    PubMed

    Centner, T J

    2001-11-01

    Due to concentrations of animals at large facilities, animal feeding operations (AFOs) have emerged as a major potential source of water pollution. The federal government regulates concentrated animal feeding operations under its point-source pollution permitting regulations. A major determinant of whether an operation must apply for a permit is the number of animals at an individual lot or facility. This paper examines federal mandatory controls and voluntary guidelines that seek to reduce contaminant pollution from AFOs. Land treatment practices are delineated due to their importance in reducing the injurious by-products of agricultural production. An evaluation of proposed revisions to federal regulations on confined animal feeding operations suggests they diverge from their goal of controlling water pollution. Federal regulations focus on the size of operation and amount of manure governed by the permitting process to the exclusion of other criteria related to the impairment of water quality. Given the uncertainties about the amount of pollution from AFOs, lack of enforcement of existing regulations, localization of problems, and possible alternatives for addressing the pollution, more demanding federal regulations may not form an appropriate response.

  6. Air pollution and detrimental effects on children's brain. The need for a multidisciplinary approach to the issue complexity and challenges.

    PubMed

    Calderón-Garcidueñas, Lilian; Torres-Jardón, Ricardo; Kulesza, Randy J; Park, Su-Bin; D'Angiulli, Amedeo

    2014-01-01

    Millions of children in polluted cities are showing brain detrimental effects. Urban children exhibit brain structural and volumetric abnormalities, systemic inflammation, olfactory, auditory, vestibular and cognitive deficits v low-pollution controls. Neuroinflammation and blood-brain-barrier (BBB) breakdown target the olfactory bulb, prefrontal cortex and brainstem, but are diffusely present throughout the brain. Urban adolescent Apolipoprotein E4 carriers significantly accelerate Alzheimer pathology. Neurocognitive effects of air pollution are substantial, apparent across all populations, and potentially clinically relevant as early evidence of evolving neurodegenerative changes. The diffuse nature of the neuroinflammation and neurodegeneration forces to employ a weight of evidence approach incorporating current clinical, cognitive, neurophysiological, radiological and epidemiological research. Pediatric air pollution research requires extensive multidisciplinary collaborations to accomplish a critical goal: to protect exposed children through multidimensional interventions having both broad impact and reach. Protecting children and teens from neural effects of air pollution should be of pressing importance for public health.

  7. A framework for managing runoff and pollution in the rural landscape using a Catchment Systems Engineering approach.

    PubMed

    Wilkinson, M E; Quinn, P F; Barber, N J; Jonczyk, J

    2014-01-15

    Intense farming plays a key role in increasing local scale runoff and erosion rates, resulting in water quality issues and flooding problems. There is potential for agricultural management to become a major part of improved strategies for controlling runoff. Here, a Catchment Systems Engineering (CSE) approach has been explored to solve the above problem. CSE is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed in turn reducing soil nutrient losses. The Belford catchment (5.7 km(2)) is a catchment scale study for which a CSE approach has been used to tackle a number of environmental issues. A variety of Runoff Attenuation Features (RAFs) have been implemented throughout the catchment to address diffuse pollution and flooding issues. The RAFs include bunds disconnecting flow pathways, diversion structures in ditches to spill and store high flows, large wood debris structure within the channel, and riparian zone management. Here a framework for applying a CSE approach to the catchment is shown in a step by step guide to implementing mitigation measures in the Belford Burn catchment. The framework is based around engagement with catchment stakeholders and uses evidence arising from field science. Using the framework, the flooding issue has been addressed at the catchment scale by altering the runoff regime. Initial findings suggest that RAFs have functioned as designed to reduce/attenuate runoff locally. However, evidence suggested that some RAFs needed modification and new RAFs be created to address diffuse pollution issues during storm events. Initial findings from these modified RAFs are showing improvements in sediment trapping capacities and reductions in phosphorus, nitrate and suspended

  8. Assessing the transfer of risk due to transportation of agricultural products.

    PubMed

    Li, Pei-Chiun; Shih, Hsiu-Ching; Ma, Hwong-Wen

    2015-02-01

    Health risk assessment (HRA) is the process used to estimate adverse health effects on humans. The importance and sensitivity of food chains to HRA have been observed, but the impact of the transportation of food has generally been ignored. This study developed an exposure assessment to demonstrate the significance of the transportation of agricultural products in HRA. The associated case study estimated the health risks derived from various sources of arsenic emissions in Taiwan. Two assessment scenarios, self-sufficiency and transportation of agricultural products, were compared to calculate risk transfer ratios that show the impact of agriculture transportation. The risk transfer ratios found by the study range from 0.22 to 42.10, indicating that the quantity of transportation of agricultural products is the critical factor. High air deposition and high agricultural production are the two main contributors to the effect of the transportation of agricultural products on HRA. Risk reduction measures could be applied to high-pollution areas as well as to areas with high agricultural productivity to reduce ingestion risks to residents. Certain areas that are sensitive to the transportation of agricultural products may incur more risks if emissions increase in agriculturally productive counties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. New microwave spectrometer/imager has possible applications for pollution monitoring

    NASA Technical Reports Server (NTRS)

    Tooley, R. D.

    1970-01-01

    Microwave imager forms thermal-emissivity image of solid portion of planet Venus and provides data on the planet's atmosphere, surface, terminator, and temperature changes. These thermally produced multifrequency microwaves for image production of temperature profiles can be applied to water pollution monitoring, agriculture, and forestry survey.

  10. Study on the impact of air quality in agricultural and health sectors

    NASA Astrophysics Data System (ADS)

    Chairani, S.

    2018-03-01

    This study focused on the impact of air quality in agricultural and health sectors. The impact of CO2 on the agricultural crops was conducted by using literature review and the impact of air quality was conducted using secondary data to calculate the Air Quality Index (AQI), derived from some monitoring stations available in Indonesia. Numerous studies showed that the elevated CO2 decreased the agricultural productivity. Maize yields decreased by 15 % in areas which used irrigation system and 8 % in areas which used rainfed. Maize yields had already experienced severe losses without increasing CO2 concentrations. It decreased by 21 % for irrigated maize and 26 % by rainfed maize. In addition, it turned out that other elevated pollutants, such as SO2, NO2, SPM, O3, CH4, PM2.5, PM10 and TSP also occurred in the atmosphere. These pollutants’ effects might harm human being in term of health concern. The USEPA had developed a tool, called the Air Quality Index (AQI) calculator to calculate the pollutants’ concentrations in a daily basis. This tool’s function to inform how clean or polluted the air that we breathed was with the health effects based on the concentrations of each pollutant. The AQI also provided the information on sensitive groups, health effects and cautionary statements. Based on the air daily data which derived from Board of Meteorology, Climatology and Geophysics (BMKG) of Indonesia, the AQI in Indonesia varied from good, moderate to unhealthy categories; with level of health concern was respiratory diseases, such as asthma.

  11. Aquatic selenium pollution is a global environmental safety issue

    Treesearch

    A. Dennis Lemly

    2004-01-01

    Selenium pollution is a worldwide phenomenon and is associated with a broad spectrum of human activities, ranging from the most basic agricultural practices to the most high-tech industrial processes. Consequently, selenium contamination of aquatic habitats can take place in urban, suburban, and rural settings alike--from mountains to plains, from deserts to...

  12. Environmental characteristics, agricultural land use, and vulnerability to degradation in Malopolska Province (Poland).

    PubMed

    Nowak, Agnieszka; Schneider, Christian

    2017-07-15

    Environmental degradation encompasses multiple processes that are rarely combined in analyses. This study refers to three types of environmental degradation resulting from agricultural activity: soil erosion, nutrient loss, and groundwater pollution. The research was conducted in seven distinct study areas in the Malopolska Province, Poland, each characterized by different environmental properties. Calculations were made on the basis of common models, i.e., USLE (soil erosion), InVEST (nutrient loss), and DRASTIC (groundwater pollution). Two scenarios were calculated to identify the areas contributing to potential and actual degradation. For the potential degradation scenario all study areas were treated as arable land. To identify the areas actually contributing to all three types of degradation, the de facto land use pattern was used for a second scenario. The results show that the areas most endangered by agricultural activity are located in the mountainous region, whereas most of the degraded zones were located in valley bottoms and areas with intensive agriculture. The different hazards rarely overlap spatially in the given study areas - meaning that different areas require different management approaches. The distribution of arable land was negatively correlated with soil erosion hazard, whereas no linkage was found between nutrient loss or groundwater pollution hazards and the proportion of arable land. This indicates that the soil erosion hazard is the most influential factor in the distribution of arable land, whereas nutrient loss and groundwater pollution is widely ignored during land use decision-making. Slope largely and most frequently influences all hazard types, whereas land use also played an important role in the case of soil and nutrient losses. In this study we presented a consistent methodology to capture complex degradation processes and provide robust indicators which can be included in existing impact assessment approaches like Life Cycle

  13. AICE Survey of USSR Air Pollution Literature, Volume 13: Technical Papers from the Leningrad International Symposium on the Meteorological Aspects of Atmospheric Pollution, Part 2.

    ERIC Educational Resources Information Center

    Nuttonson, M. Y., Ed.

    Twelve papers were translated from Russian: Automation of Information Processing Involved in Experimental Studies of Atmospheric Diffusion, Micrometeorological Characteristics of Atmospheric Pollution Conditions, Study of theInfluence of Irregularities of the Earth's Surface on the Air Flow Characteristics in a Wind Tunnel, Use of Parameters of…

  14. Reducing surface water pollution through the assessment of the cost-effectiveness of BMPs at different spatial scales.

    PubMed

    Panagopoulos, Y; Makropoulos, C; Mimikou, M

    2011-10-01

    Two kinds of agricultural Best Management Practices (BMPs) were examined with respect to cost-effectiveness (CE) in reducing sediment, nitrates-nitrogen (NO(3)-N) and total phosphorus (TP) losses to surface waters of the Arachtos catchment in Western Greece. The establishment of filter strips at the edge of fields and a non-structural measure, namely fertilization reduction in alfalfa, combined with contour farming and zero-tillage in corn and reduction of animal numbers in pastureland, were evaluated. The Soil and Water Assessment Tool (SWAT) model was used as the non-point-source (NPS) estimator, while a simple economic component was developed estimating BMP implementation cost as the mean annual expenses needed to undertake and operate the practice for a 5-year period. After each BMP implementation, the ratio of their CE in reducing pollution was calculated for each Hydrologic Response Unit (HRU) separately, for each agricultural land use type entirely and for the whole catchment. The results at the HRU scale are presented comprehensively on a map, demonstrating the spatial differentiation of CE ratios across the catchment that enhances the identification of locations where each BMP is most advisable for implementation. Based on the analysis, a catchment management solution of affordable total cost would include the expensive measure of filter strips in corn and only in a small number of pastureland fields, in combination with the profitable measure of reducing fertilization to alfalfa fields. When examined for its impact on river loads at the outlet, the latter measure led to a 20 tn or 8% annual decrease of TP from the baseline with savings of 15€/kg of pollutant reduction. Filter strips in corn fields reduced annual sediments by 66 Ktn or 5%, NO(3)-N by 71 tn or 9.5% and TP by 27 tn or 10%, with an additional cost of 3.1 €/tn, 3.3 €/kg and 8.1 €/kg of each pollutant respectively. The study concludes that considerable reductions of several

  15. River water quality and pollution sources in the Pearl River Delta, China.

    PubMed

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2005-07-01

    Some physicochemical parameters were determined for thirty field water samples collected from different water channels in the Pearl River Delta Economic Zone river system. The analytical results were compared with the environmental quality standards for surface water. Using the SPSS software, statistical analyses were performed to determine the main pollutants of the river water. The main purpose of the present research is to investigate the river water quality and to determine the main pollutants and pollution sources. Furthermore, the research provides some approaches for protecting and improving river water quality. The results indicate that the predominant pollutants are ammonium, phosphorus, and organic compounds. The wastewater discharged from households in urban and rural areas, industrial facilities, and non-point sources from agricultural areas are the main sources of pollution in river water in the Pearl River Delta Economic Zone.

  16. REPRESENTATION OF ATMOSPHERIC MOTION IN MODELS OF REGIONAL-SCALE AIR POLLUTION

    EPA Science Inventory

    A method is developed for generating ensembles of wind fields for use in regional scale (1000 km) models of transport and diffusion. The underlying objective is a methodology for representing atmospheric motion in applied air pollution models that permits explicit treatment of th...

  17. Antioxidant response of three Tillandsia species transplanted to urban, agricultural, and industrial areas.

    PubMed

    Bermudez, Gonzalo M A; Pignata, María Luisa

    2011-10-01

    To evaluate the physiological response of Tillandsia capillaris Ruiz & Pav. f. capillaris, T. recurvata L., and T. tricholepis Baker to different air pollution sources, epiphyte samples were collected from a noncontaminated area in the province of Córdoba (Argentina) and transplanted to a control site as well as three areas categorized according to the presence of agricultural, urban, and industrial (metallurgical and metal-mechanical) emission sources. A foliar damage index (FDI) was calculated with the physiological parameters chlorophyll a, chlorophyll b, malondialdehyde (MDA), hydroperoxyconjugated dienes, sulfur (S) content, and dry weight-to-fresh weight ratio. In addition, electrical conductivity (E-cond), relative water content (RWC), dehydration kinetics (Kin-H(2)O), total phenols (T-phen), soluble proteins (S-prot), and activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase were determined. The parameters E-cond, FDI, SOD, RWC, and Kin-H(2)O can serve as suitable indicators of agricultural air pollution for T. tricholepis and T. capillaris, and CAT, Kin-H(2)O, and SOD can do the same for T. recurvata. In addition, MDA, T-phen, and S-prot proved to be appropriate indicators of urban pollution for T. recurvata. Moreover, FDI, E-cond, and SOD for T. recurvata and MDA for T. tricholepis, respectively, could be used to detect deleterious effects of industrial air pollution. © Springer Science+Business Media, LLC 2011

  18. Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China.

    PubMed

    Sun, Jianteng; Pan, Lili; Zhan, Yu; Lu, Hainan; Tsang, Daniel C W; Liu, Wenxin; Wang, Xilong; Li, Xiangdong; Zhu, Lizhong

    2016-02-15

    To reveal the pollution status associated with rapid urbanization and economic growth, extensive areas of agricultural soils (approximately 45,800 km(2)) in the Yangtze River Delta of China were investigated with respect to selected endocrine disruptor compounds (EDCs), including phthalate esters (PAEs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs). The residues of sum of 15 PAEs, sum of 15 OCPs and sum of 13 PBDEs were in the range of 167-9370 ng/g, 1.0-3520 ng/g, and <1.0-382 ng/g, respectively. The OCPs residuals originated from both historical usage and recent input. Agricultural plastic film was considered to be an important source of PAEs. Discharge from furniture industry was potential major source of PBDEs in this region. The selected pollutants showed quite different spatial distributions within the studied region. It is worth noting that much higher concentrations of the EDCs were found on the borders between Shanghai and the two neighboring provinces, where agriculture and industry developed rapidly in recent years. Contaminants from both agricultural and industrial activities made this area a pollution hotspot, which should arouse more stringent regulation to safeguard the environment and food security. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The Influence of Perceptions of Practice Characteristics: An Examination of Agricultural Best Management Practice Adoption in Two Indiana Watersheds

    ERIC Educational Resources Information Center

    Reimer, Adam P.; Weinkauf, Denise Klotthor; Prokopy, Linda Stalker

    2012-01-01

    Agricultural best management practices (BMPs), or conservation practices, can help reduce nonpoint source pollution from agricultural lands, as well as provide valuable wildlife habitat. There is a large literature exploring factors that lead to a producer's voluntary adoption of BMPs, but there have been inconsistent findings. Generally, this…

  20. Organic Pollutant Penetration through Fruit Polyester Skin: A Modified Three-compartment Diffusion Model

    NASA Astrophysics Data System (ADS)

    Li, Yungui; Li, Qingqing; Chen, Baoliang

    2016-03-01

    The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants.

  1. Organic Pollutant Penetration through Fruit Polyester Skin: A Modified Three-compartment Diffusion Model.

    PubMed

    Li, Yungui; Li, Qingqing; Chen, Baoliang

    2016-03-24

    The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants.

  2. Organic Pollutant Penetration through Fruit Polyester Skin: A Modified Three-compartment Diffusion Model

    PubMed Central

    Li, Yungui; Li, Qingqing; Chen, Baoliang

    2016-01-01

    The surface of plants is covered by a continuous but heterogeneous cuticular membrane (CM). Serving as the first protective barrier, the uptake and transport behavior of organic pollutants at this interface continue to engage the research efforts of environmental chemist. To date, the contributions of cuticular components as a defense against the organic pollutants penetration remain unresolved. In this study, the unsteady-state penetration characteristics of phenanthrene (PHE) through isolated fruit CM was investigated. PHE penetration was differentiated by three cuticular compartments: epicuticular waxes (EW), cuticle proper (CP) and cuticular layer (CL). The driving force for PHE penetration was ascribed to the sharp concentration gradient built up endogenously by cuticular compartments with different lipophilic affinities. A modified penetration model was established and verified in terms of its general suitability for the hydrophobic chemicals and CMs of various plant species (apple, tomato and potato). The new three-compartment model demonstrates much higher accuracy in characterizing the uptake and transport behavior of semivolatile chemicals with fewer limitations in terms of environmental conditions and complexity (e.g., coexisting contaminants and temperature). This model could contribute to a more comprehensive understanding on the role of polymeric lipids in the organic pollutant sorption and transport into plants. PMID:27009902

  3. Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition.

    PubMed

    Vlad, Marcel Ovidiu; Ross, John

    2002-12-01

    We introduce a general method for the systematic derivation of nonlinear reaction-diffusion equations with distributed delays. We study the interactions among different types of moving individuals (atoms, molecules, quasiparticles, biological organisms, etc). The motion of each species is described by the continuous time random walk theory, analyzed in the literature for transport problems, whereas the interactions among the species are described by a set of transformation rates, which are nonlinear functions of the local concentrations of the different types of individuals. We use the time interval between two jumps (the transition time) as an additional state variable and obtain a set of evolution equations, which are local in time. In order to make a connection with the transport models used in the literature, we make transformations which eliminate the transition time and derive a set of nonlocal equations which are nonlinear generalizations of the so-called generalized master equations. The method leads under different specified conditions to various types of nonlocal transport equations including a nonlinear generalization of fractional diffusion equations, hyperbolic reaction-diffusion equations, and delay-differential reaction-diffusion equations. Thus in the analysis of a given problem we can fit to the data the type of reaction-diffusion equation and the corresponding physical and kinetic parameters. The method is illustrated, as a test case, by the study of the neolithic transition. We introduce a set of assumptions which makes it possible to describe the transition from hunting and gathering to agriculture economics by a differential delay reaction-diffusion equation for the population density. We derive a delay evolution equation for the rate of advance of agriculture, which illustrates an application of our analysis.

  4. Statistical interpretation of pollution data from satellites. [for levels distribution over metropolitan area

    NASA Technical Reports Server (NTRS)

    Smith, G. L.; Green, R. N.; Young, G. R.

    1974-01-01

    The NIMBUS-G environmental monitoring satellite has an instrument (a gas correlation spectrometer) onboard for measuring the mass of a given pollutant within a gas volume. The present paper treats the problem: How can this type measurement be used to estimate the distribution of pollutant levels in a metropolitan area. Estimation methods are used to develop this distribution. The pollution concentration caused by a point source is modeled as a Gaussian plume. The uncertainty in the measurements is used to determine the accuracy of estimating the source strength, the wind velocity, diffusion coefficients and source location.

  5. Indoor air pollution from solid biomass fuels combustion in rural agricultural area of Tibet, China.

    PubMed

    Gao, X; Yu, Q; Gu, Q; Chen, Y; Ding, K; Zhu, J; Chen, L

    2009-06-01

    In this study, we are trying to investigate the indoor air pollution and to estimate the residents' pollution exposure reduction of energy altering in rural Tibet. Daily PM(2.5) monitoring was conducted in indoor microenvironments like kitchen, living-room, bedroom, and yard in rural Tibet from December 2006 to March 2007. For kitchen air pollution, impact of two fuel types, methane and solid biomass fuels (SBFs), were compared. Questionnaire survey on the domestic energy pattern and residents' daily activity pattern was performed in Zha-nang County. Daily average PM(2.5) concentrations in kitchen, living-room, bedroom, and yard were 134.91 microg/m(3) (mean, n = 45, 95%CI 84.02, 185.80), 103.61 microg/m(3) (mean, n = 21, 95%CI 85.77, 121.45), 76.13 microg/m(3) (mean, n = 18, 95%CI 57.22, 95.04), and 78.33 microg/m(3) (mean, n = 34, 95%CI 60.00, 96.65) respectively. Using SBFs in kitchen resulted in higher indoor pollution than using methane. PM(2.5) concentrations in kitchen with dung cake, fuel wood and methane use were 117.41 microg/m(3) (mean, n = 18, 95%CI 71.03, 163.79), 271.11 microg/m(3) (mean, n = 12, 95%CI 104.74, 437.48), and 46.96 microg/m(3) (mean, n = 15, 95%CI 28.10, 65.82) respectively. Family income has significant influence on cooking energy choice, while the lack of commercial energy supply affects the energy choice for heating more. The effects of two countermeasures to improve indoor air quality were estimated in this research. One is to replace SBFs by clean energy like methane, the other is to separate the cooking place from other rooms and by applying these countermeasures, residents' exposure to particulate matters would reduce by 25-50% (methane) or 20-30% (separation) compared to the present situation. Indoor air pollution caused by solid biomass fuels is one of the most important burdens of disease in the developing countries, which attracts the attention of environment and public health researchers, as well as policy makers. This paper

  6. Air pollution and detrimental effects on children’s brain. The need for a multidisciplinary approach to the issue complexity and challenges

    PubMed Central

    Calderón-Garcidueñas, Lilian; Torres-Jardón, Ricardo; Kulesza, Randy J.; Park, Su-Bin; D’Angiulli, Amedeo

    2014-01-01

    Millions of children in polluted cities are showing brain detrimental effects. Urban children exhibit brain structural and volumetric abnormalities, systemic inflammation, olfactory, auditory, vestibular and cognitive deficits v low-pollution controls. Neuroinflammation and blood-brain-barrier (BBB) breakdown target the olfactory bulb, prefrontal cortex and brainstem, but are diffusely present throughout the brain. Urban adolescent Apolipoprotein E4 carriers significantly accelerate Alzheimer pathology. Neurocognitive effects of air pollution are substantial, apparent across all populations, and potentially clinically relevant as early evidence of evolving neurodegenerative changes. The diffuse nature of the neuroinflammation and neurodegeneration forces to employ a weight of evidence approach incorporating current clinical, cognitive, neurophysiological, radiological and epidemiological research. Pediatric air pollution research requires extensive multidisciplinary collaborations to accomplish a critical goal: to protect exposed children through multidimensional interventions having both broad impact and reach. Protecting children and teens from neural effects of air pollution should be of pressing importance for public health. PMID:25161617

  7. Global baseline data on phosphorus pollution of large lakes

    NASA Astrophysics Data System (ADS)

    Fink, Gabriel; Flörke, Martina; Alcamo, Joseph

    2016-04-01

    Lakes are exposed to harmful eutrophication which is the most concerning water quality issue on global scale. Eutrophication is caused by phosphorous pollution in most lakes. Hence, global consistent base line data on phosphorus loadings are needed to assess future sustainable development. We used the modeling framework WaterGAP3 to calculate present total phosphorus loadings to the world's largest lakes. Estimates of modeled total phosphorus (TP) loadings as well as the contributions of different sectors were successfully validated against measured data. Based on these findings, annual total phosphorus loadings to lakes were calculated for diffuse and point sources according to the different sectors domestic, manufacturing, urban surface runoff, agriculture and background for the time period 1990 to 2010. Our results show high phosphorus loadings into lakes in southern latitudes. On global average, industrial fertilizer is the main anthropogenic source while background loadings are low in comparison. Nevertheless, both features indicate a high potential to reduce the exposure to eutrophication in lakes which are faced with high phosphor inputs. The global average of TP loadings was 7% higher in the time period 2005-2010 than in the period 1990-1995. The global average in 2005-2010 results from an increase in TP loadings of 79% in South America, which was dampened by a decrease in Europe, North America, and Asia. Chinese lakes were exposed to massive increasing phosphorus loadings, too. Both increasing and decreasing trends are caused primarily by changing industrial fertilizer application rates. In conclusion, this study provides a consistent and model based synopsis of global trends and sources of phosphorus loadings to large lakes. The estimates of phosphorus pollution of lakes present a basis for assessing and managing the global eutrophication problem.

  8. The influencing factors of CO2 emission intensity of Chinese agriculture from 1997 to 2014.

    PubMed

    Long, Xingle; Luo, Yusen; Wu, Chao; Zhang, Jijian

    2018-05-01

    In China, agriculture produces the greatest chemical oxygen demand (COD) emissions in wastewater and the most methane (CH 4 ) emissions. It is imperative that agricultural pollution in China be reduced. This study investigated the influencing factors of the CO 2 emission intensity of Chinese agriculture from 1997 to 2014. We analyzed the influencing factors of the CO 2 emission intensity through the first-stage least-square regression. We also analyzed determinants of innovation through the second-stage least-square regression. We found that innovation negatively affected the CO 2 emission intensity in the model of the nation. FDI positively affected innovation in China. It is important to enhance indigenous innovation for green agriculture through labor training and collaboration between agriculture and academia.

  9. United Kingdom unveils ambitious air pollution plan

    NASA Astrophysics Data System (ADS)

    Warren, Matthew

    2018-06-01

    The U.K. government's new strategy to combat air pollution has drawn praise for its ambitious goals—and reservations about whether they will be achieved. Environmental scientists have applauded the aims of the Clean Air Strategy, which include substantially reducing the number of people breathing air containing high levels of fine particulates and curbing ammonia emissions from agriculture. But for now, the document, published as a draft for public consultation on 22 May, remains light on the specific policies that will help the country attain these goals. And although the government has said that with the new strategy it will go further than the European Union in tackling air pollution post-Brexit, scientists say major improvements to air quality will require a coordinated effort across Europe.

  10. Determination of pollutant diffusion coefficients in naturally formed biofilms using a single tube extractive membrane bioreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.F.; Splendiani, A.; Freitas dos Santos, L.M.

    A novel technique has been used to determine the effective diffusion coefficients for 1,1,2-trichloroethane (TCE), a nonreacting tracer, in biofilms growing on the external surface of a silicone rubber membrane tube during degradation of 1,2-dichloroethane (DCE) by Xanthobacter autotrophicus GJ10 and monochlorobenzene (MCB) by Pseudomonas JS150. Experiments were carried out in a single tube extractive membrane bioreactor (STEMB), whose configuration makes it possible to measure the transmembrane flux of substrates. A video imaging technique (VIT) was employed for in situ biofilm thickness measurement and recording. Diffusion coefficients of TCE in the biofilms and TCE mass transfer coefficients in the liquidmore » films adjacent to the biofilms were determined simultaneously using a resistances-in-series diffusion model. It was found that the flux and overall mass transfer coefficient of TCE decrease with increasing biofilm thickness, showing the importance of biofilm diffusion on the mass transfer process. Similar fluxes were observed for the nonreacting tracer (TCE) and the reactive substrates (MCB or DCE), suggesting that membrane-attached biofilm systems can be rate controlled primarily by substrate diffusion. The TCE diffusion coefficient in the JS150 biofilm appeared to be dependent on biofilm thickness, decreasing markedly for biofilm thicknesses of >1 mm. The values of the TCE diffusion coefficients in the JS150 biofilms <1-mm thick are approximately twice those in water and fall to around 30% of the water value for biofilms >1-mm thick.« less

  11. Understanding and influencing behaviour change by farmers to improve water quality.

    PubMed

    Blackstock, K L; Ingram, J; Burton, R; Brown, K M; Slee, B

    2010-11-01

    Diffuse pollution from agriculture remains a significant challenge to many countries seeking to improve and protect their water environments. This paper reviews literature relating to the provision of information and advice as a mechanism to encourage farmers to mitigate diffuse pollution. The paper presents findings from a literature review on influencing farmer behaviour and synthesizes three main areas of literature: psychological and institutional theories of behaviour; shifts in the approach to delivery of advice (from knowledge transfer to knowledge exchange); and the increased interest in heterogeneous farming cultures. These three areas interconnect in helping to understand how best to influence farmer behaviour in order to mitigate diffuse pollution. They are, however, literatures that are rarely cited in the water management arena. The paper highlights the contribution of the 'cultural turn' taken by rural social scientists in helping to understand collective and individual voluntary behaviour. The paper explores how these literatures can contribute to the existing understanding of water management in the agricultural context, particularly: when farmers question the scientific evidence; when there are increased calls for collaborative planning and management; and when there is increased value placed on information as a business commodity. The paper also highlights where there are still gaps in knowledge that need to be filled by future research - possibly in partnership with farmers themselves. Whilst information and advice has long been seen as an important part of diffuse pollution control, increasing climate variability that will require farmers to practice adaptive management is likely to make these mechanisms even more important. Copyright © 2009 Elsevier B.V. All rights reserved.

  12. Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in the Chesapeake Bay Watershed

    USDA-ARS?s Scientific Manuscript database

    Diffuse nutrient pollution from agricultural landscapes is a priority water quality concern and the cause of mitigation activities worldwide. Climate change and climate variability impact hydrology, nutrient cycling, and ultimately water quality, which can complicate mitigation measures. Climate cha...

  13. How Programme Teams Progress Agricultural Innovation in the Australian Dairy Industry

    ERIC Educational Resources Information Center

    Nettle, Ruth; Brightling, Pauline; Hope, Anne

    2013-01-01

    Purpose: This article outlines the emergence of programme teams in the Australian dairy farm sector as a response to counter weaknesses in the institutional environment for agricultural innovation which favours technology adoption/diffusion approaches. Design/methodology/approach: The strengths, weaknesses and risks of different approaches to…

  14. Issues in ecology: Nutrient pollution of coastal rivers, bays, and seas

    USGS Publications Warehouse

    Howarth, Robert W.; Anderson, D. B.; Cloern, James E.; Elfring, Chris; Hopkinson, Charles S.; Lapointe, Brian; Maloney, Thomas J.; Marcus, Nancy; McGlathery, Karen; Sharpley, A.N.; Walker, D.

    2000-01-01

    Over the past 40 years, antipollution laws have greatly reduced discharges of toxic substances into our coastal waters. This effort, however, has focused largely on point-source pollution of industrial and municipal effluent. No comparable effort has been made to restrict the input of nitrogen (N) from municipal effluent, nor to control the flows of N and phosphorus (P) that enter waterways from dispersed or nonpoint sources such as agricultural and urban runoff or as airborne pollutants. As a result, inputs of nonpoint pollutants, particularly N, have increased dramatically. Nonpoint pollution from N and P now represents the largest pollution problem facing the vital coastal waters of the United States. Nutrient pollution is the common thread that links an array of problems along the nation’s coastline, including eutrophication, harmful algal blooms, ”dead zones,” fish kills, some shellfish poisonings, loss of seagrass and kelp beds, some coral reef destruction, and even some marine mammal and seabird deaths. More than 60 percent of our coastal rivers and bays in every coastal state of the continental United States are moderately to severely degraded by nutrient pollution. This degradation is particularly severe in the mid Atlantic states, in the southeast, and in the Gulf of Mexico. A recent report from the National Research Council entitled “Clean Coastal Waters: Understanding and Reduc- ing the Effects of Nutrient Pollution” concludes that: Nutrient over-enrichment of coastal ecosystems generally triggers ecological changes that decrease the biologi- cal diversity of bays and estuaries. While moderate N enrichment of some coastal waters may increase fish production, over-enrichment generally degrades the marine food web that supports commercially valuable fish. The marked increase in nutrient pollution of coastal waters has been accompanied by an increase in harmful algal blooms, and in at least some cases, pollution has triggered these blooms. High

  15. Denitrifying bioreactor clogging potential during wastewater treatment

    USDA-ARS?s Scientific Manuscript database

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewat...

  16. A novel enhanced diffusion sampler for collecting gaseous pollutants without air agitation.

    PubMed

    Pan, Xuelian; Zhuo, Shaojie; Zhong, Qirui; Chen, Yuanchen; Du, Wei; Cheng, Hefa; Wang, Xilong; Zeng, Eddy Y; Xing, Baoshan; Tao, Shu

    2018-03-06

    A novel enhanced diffusion sampler for collecting gaseous phase polycyclic aromatic hydrocarbons (PAHs) without air agitation is proposed. The diffusion of target compounds into a sampling chamber is facilitated by continuously purging through a closed-loop flow to create a large concentration difference between the ambient air and the air in the sampling chamber. A glass-fiber filter-based prototype was developed. It was demonstrated that the device could collect gaseous PAHs at a much higher rate (1.6 ± 1.4 L/min) than regular passive samplers, while the ambient air is not agitated. The prototype was also tested in both the laboratory and field for characterizing the concentration gradients over a short distance from the soil surface. The sampler has potential to be applied in other similar situations to characterize the concentration profiles of other chemicals.

  17. Estimation of PCB content in agricultural soils associated with long-term fertilization with organic waste.

    PubMed

    Antolín-Rodríguez, Juan M; Sánchez-Báscones, Mercedes; Martín-Ramos, Pablo; Bravo-Sánchez, Carmen T; Martín-Gil, Jesús

    2016-06-01

    Polychlorinated biphenyl (PCB) pollution related to the use of organic waste as fertilizers in agricultural soils is a cause of major concern. In the study presented herein, PCB concentration was studied through a field trial conducted in two agricultural soils in the province of Palencia (Spain) over a 4-year period, assessing the impact of irrigation and of different types of organic waste materials. The amounts of organic waste added to the soil were calculated according to the nitrogen needs of the crop, and the concentration of PCBs was determined before and after the application of the organic waste. The resulting persistence of the total PCB content in the agricultural soils, compared with the PCB concentration in the original soils, ranged from 27% to 90%, with the lowest value corresponding to irrigated soils treated with municipal solid waste compost (MSWC) and the highest value to non-irrigated soils treated with composted sewage sludge (CSS). An estimate of the PCB content in agricultural soils after the application of organic waste materials until year 2050 was obtained, resulting in a value below 5 ng·g(-1), considered a background value for soils in sites far away from potential pollution sources.

  18. Modeling Nitrogen Fate and Transport at the Sediment-Water ...

    EPA Pesticide Factsheets

    Diffusive mass transfer at media interfaces exerts control on the fate and transport of pollutants originating from agricultural and urban landscapes and affects the con-ditions of water bodies. Diffusion is essentially a physical process affecting the distribution and fate of various environmental pollutants such as nutrients, pesticides, metals, PCBs, PAHs, etc. Environmental problems caused by excessive use of agricultural chemicals (e.g., pesticides and fertilizers) and improper discharge of industrial waste and fuel leaks are all influenced by the diffusive nature of pollutants in the environment. Eutrophication is one such environmental problem where the sediment-water interface exerts a significant physical and geochemical control on the eutrophic condition of the stressed water body. Exposure of streams and lakes to contaminated sediment is another common environmental problem whereby transport of the contaminant (PCBs, PAHs, and other organic contaminants) across the sediment water can increase the risk for exposure to the chemicals and pose a significant health hazard to aquatic life and human beings. This chapter presents analytical and numerical models describing fate and transport phenomena at the sediment-water interface in freshwater ecosystems, with the primary focus on nitrogen cycling and the applicability of the models to real-world environmental problems and challenges faced in their applications. The first model deals with nitrogen cycling

  19. The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model

    NASA Astrophysics Data System (ADS)

    Soulhac, Lionel; Salizzoni, Pietro; Cierco, F.-X.; Perkins, Richard

    2011-12-01

    In order to control and manage urban air quality, public authorities require an integrated approach that incorporates direct measurements and modelling of mean pollutant concentrations. These have to be performed by means of operational modelling tools, that simulate the transport of pollutants within and above the urban canopy over a large number of streets. The operational models must be able to assess rapidly a large variety of situations and with limited computing resources. SIRANE is an operational urban dispersion model based on a simplified description of the urban geometry that adopts parametric relations for the pollutant transfer phenomena within and out of the urban canopy. The streets in a city district are modelled as a network of connected street segments. The flow within each street is driven by the component of the external wind parallel to the street, and the pollutant is assumed to be uniformly mixed within the street. The model contains three main mechanisms for transport in and out of a street: advection along the street axis, diffusion across the interface between the street and the overlying air flow and exchanges with other streets at street intersections. The dispersion of pollutants advected or diffused out of the streets is taken into account using a Gaussian plume model, with the standard deviations σ y and σ z parameterised by the similarity theory. The input data for the final model are the urban geometry, the meteorological parameters, the background concentration of pollutants advected into the model domain by the wind and the emissions within each street in the network.

  20. Global Anthropogenic Phosphorus Loads to Fresh Water, Grey Water Footprint and Water Pollution Levels: A High-Resolution Global Study

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y. Y.

    2014-12-01

    We estimated anthropogenic phosphorus (P) loads to freshwater, globally at a spatial resolution level of 5 by 5 arc minute. The global anthropogenic P load to freshwater systems from both diffuse and point sources in the period 2002-2010 was 1.5 million tonnes per year. China contributed about 30% to this global anthropogenic P load. India was the second largest contributor (8%), followed by the USA (7%), Spain and Brazil each contributing 6% to the total. The domestic sector contributed the largest share (54%) to this total followed by agriculture (38%) and industry (8%). Among the crops, production of cereals had the largest contribution to the P loads (32%), followed by fruits, vegetables, and oil crops, each contributing about 15% to the total. We also calculated the resultant grey water footprints, and relate the grey water footprints per river basin to runoff to calculate the P-related water pollution level (WPL) per catchment.

  1. LUMINATE: Linking agricultural land use, local water quality and Gulf of Mexico hypoxia

    USDA-ARS?s Scientific Manuscript database

    In this paper, we discuss the importance of developing integrated assessment models to support the design and implementation of policies to address water quality problems associated with agricultural pollution. We describe a new modelling system, LUMINATE, which links land use decisions made at the...

  2. Effects of multi-walled carbon nanotubes on mineralization and mobility of nonylphenol and sodium dodecyl sulfate in agricultural soils

    NASA Astrophysics Data System (ADS)

    Lillotte, Julia; Marschner, Bernd; Stumpe, Britta

    2014-05-01

    Nanotechnology is one of the major scientific research fields in this decade. One of the most wide-spread nanomaterials are carbon based nanoparticles (CNPs) which are increasingly be used in industry. Several studies shows that CNPs are interacting with other chemical compounds and organic pollutants in the environment. It is assumed that the interactions between CNPs and organic pollutants are affected by solution and aggregate behavior. Based on the knowledge of the behavior of CNPs and organic pollutants in aquatic systems the interactions of CNPs and organic pollutants in agricultural soils have to be studied. As organic pollutants two environmental substances, nonylphenol (NP) and sodium dodecyl sulfate (SDS) were selected as model substances. They occur frequently in aqueous systems and also show different solubility behavior. As CNP representatives, two different multi-walled carbon nanotubes (MWNT) were selected. They differed either in length or outer diameter. Conclusions therefrom are to be closed the influence of length and diameter of the sorption capacity of different organic pollutants. In addition, two agricultural soils (sandy and silty soil) and one forest soil (sandy soil) were chosen. Mineralization and sorption experiments were conducted to provide information about the degradation of organic pollutants in presence of multi-walled carbon nanotubes in soils. To analyze the CNPs mineralization potential, peroxidase activity was measured. Further extraction experiments were conducted to detect the extractable part of organic pollutants. The results show that the surface area of the MWNT has a significant impact on the sorption behav-ior of NP and SDS in soils. The sorption of NP and SDS is much higher than without MWNT. However, the properties of the organic pollutants (different water solubility and hydrophobicity) are equally important and should be noted. The degradation of both pollutants is influenced by MWNT. Due to the strong sorption of

  3. Evaluation of fecal indicator and pathogenic bacteria originating from swine manure applied to agricultural lands using culture-based and quantitative real-time PCR methods.

    EPA Science Inventory

    Fecal bacteria, including those originating from concentrated animal feeding operations, are a leading contributor to water quality impairments in agricultural areas. Rapid and reliable methods are needed that can accurately characterize fecal pollution in agricultural settings....

  4. Evaluation of Fecal Indicator and Pathogenic Bacteria Originating from Swine Manure Applied to Agricultural Lands Using Culture-Based and Quantitative Real-Time PCR Methods

    EPA Science Inventory

    Fecal bacteria, including those originating from concentrated animal feeding operations, are a leading contributor to water quality impairments in agricultural areas. Rapid and reliable methods are needed that can accurately characterize fecal pollution in agricultural settings....

  5. Removal of metal ions from contaminated water using agricultural residues

    Treesearch

    Roger M. Rowell

    2006-01-01

    As the world population grows, there is a growing awareness that our environment is getting more polluted. Clean water is becoming a critical issue for many parts of the world for human, animal and agricultural use. Filtration systems to clean our air and water are a growing industry. There are many approaches to removing contaminates from our water supply ranging from...

  6. PHARMACEUTICALS AS UBIQUITOUS POLLUTANTS ...

    EPA Pesticide Factsheets

    Those chemical pollutants that are regulated under various international, federal, and state programs represent but a small fraction of the universe of chemicals that occur in the environment as a result of both natural processes and human influence. Although this galaxy of targeted chemicals might be minuscule compared with the universe of both known and yet-to-be identified chemicals, an implicit assumption is that these selective lists of chemicals are responsible for the most significant share of risk with respect to environmental or economic impairment or to human health. Pharmaceuticals and personal care products (PPCPs) comprise a particularly large and diverse array of unregulated pollutants that occur in the environment from the combined activities and actions of multitudes of individuals as well as from veterinary and agricultural use. Although the concentration of any individual PPCP rarely ever exceeds the sub-ppm level (if present in drinking water, concentrations of individual PPCPs are generally less than the ppt-ppb level), evidence is accumulating that these trace-Ievel pollutants are ubiquitous, they can have a continuous presence regardless of environmental half-lives ( e.g., where sanitary wastewaters enter the environment), and the numbers of distinct and varied chemical entities could be extremely large (given that thousands are in commercial use). The research focused on in the subtasks is the development and application of state-of the-ar

  7. Requiring Pollutant Discharge Permits for Pesticide Applications that Deposit Residues in Surface Waters

    PubMed Central

    Centner, Terence; Eberhart, Nicholas

    2014-01-01

    Agricultural producers and public health authorities apply pesticides to control pests that damage crops and carry diseases. Due to the toxic nature of most pesticides, they are regulated by governments. Regulatory provisions require pesticides to be registered and restrictions operate to safeguard human health and the environment. Yet pesticides used near surface waters pose dangers to non-target species and drinking water supplies leading some governments to regulate discharges of pesticides under pollution discharge permits. The dual registration and discharge permitting provisions are burdensome. In the United States, agricultural interest groups are advancing new legislation that would exempt pesticide residues from water permitting requirements. An analysis of the dangers posed by pesticide residues in drinking water leads to a conclusion that both pesticide registration and pollutant discharge permitting provisions are needed to protect human health and aquatic species. PMID:24814945

  8. The role of photosynthesis in improving maize tolerance to ozone pollution

    USDA-ARS?s Scientific Manuscript database

    Ground-level ozone pollution has more than doubled since pre-industrial times, and is currently estimated to cause up to 10% reductions in U.S. maize yields annually. Maize productivity is reduced by exposure to ozone as it diffuses through stomatal pores and reacts to form damaging reactive oxygen ...

  9. Effect of different rates of spent mushroom substrate on the dissipation and bioavailability of cymoxanil and tebuconazole in an agricultural soil.

    PubMed

    Álvarez-Martín, Alba; Sánchez-Martín, María Jesús; Pose-Juan, Eva; Rodríguez-Cruz, María Sonia

    2016-04-15

    Physicochemical methods to immobilize pesticides in vulnerable soils are currently being developed to prevent water contamination. Some of these methods include the use of different organic residues to modify soils because they could limit the transport of pesticides and/or facilitate their dissipation. Spent mushroom substrate (SMS) may be used for these purposes. Accordingly a study was conducted under laboratory conditions to know the dissipation and bioavailability of the fungicides cymoxanil and tebuconazole over time in a vineyard soil amended with two rates of spent mushroom substrate (SMS) (5% and 50% (w/w)), selected to prevent the diffuse or point pollution of soil. The dissipation of cymoxanil was more rapid than that of tebuconazole in the different soils studied. The dissipation rate was higher in the amended soil than in the unamended one for both compounds, while no significant differences were observed between the amended soils in either case. An apparent dissipation occurred in the amended soil due to the formation of non-extractable residues. Bound residues increased with incubation time for tebuconazole, although a proportion of this fungicide was bioavailable after 303days. The major proportion of cymoxanil was tightly bound to the amended soil from the start, although an increasing fraction of bound fungicide was bioavailable for mineralization. Soil dehydrogenase activity was significantly affected by SMS application and incubation time; however, it was not significantly modified by fungicide application. The significance of this research suggests that SMS applied at a low or high rate to agricultural soil can be used to prevent both the diffuse or point pollution of soil through the formation of non-extractable residues, although more research is needed to discover the time that fungicides remain adsorbed into the soil decreasing either bioavailability (tebuconazole) or mineralization (cymoxanil) in SMS-amended soils. Copyright © 2016

  10. Assessment of groundwater and soil quality for agricultural purposes in Kopruoren basin, Kutahya, Turkey

    NASA Astrophysics Data System (ADS)

    Arslan, Sebnem

    2017-07-01

    This research evaluated the irrigation water and agricultural soil quality in the Kopruoren Basin by using hierarchical cluster analysis. Physico-chemical properties and major ion chemistry of 19 groundwater samples were used to determine the irrigation water quality indices. The results revealed out that the groundwaters are in general suitable for irrigation and have low sodium hazard, although they are very hard in nature due to the dominant presence of Ca+2, Mg+2 and HCO3- ions. Water samples contain arsenic in concentrations below the recommended guidelines for irrigation (59.7 ± 14.7 μg/l), however, arsenic concentrations in 89% of the 9 soil samples exceed the maximum allowable concentrations set for agricultural soils (81 ± 24.3 mg/kg). Nickel element, albeit not present in high concentrations in water samples, is enriched in all of the agricultural soil samples (390 ± 118.2 mg/kg). Hierarchical cluster analysis studies conducted to identify the sources of chemical constituents in water and soil samples elicited that the chemistry of the soils in the study area are highly impacted by the soil parent material and both geogenic and anthropogenic pollution sources are responsible for the metal contents of the soil samples. On the other hand, water chemistry in the area is affected by water-rock interactions, anthropogenic and agricultural pollution.

  11. Modeling of isotope fractionation at the catchment scale: How promising is compound specific isotope analysis (CSIA) as a tool for analyzing diffuse pollution by agrochemicals?

    NASA Astrophysics Data System (ADS)

    Lutz, S. R.; van Meerveld, H. J.; Waterloo, M. J.; Broers, H. P.; van Breukelen, B. M.

    2012-04-01

    diffuse agrochemical pollutants in a relatively simple hydrological system. The simulated shifts in isotopic signals are within a range that could be detected with current isotope analytics. Concentrations in the stream vary significantly only for a short period during and after intense rainfall events. In contrast, CSIA values reveal longer response times such that isotopic shifts are likely to be detected in samples with a coarser temporal resolution. Rainfall events which result in fast lateral subsurface transport from the pollution source to the stream can be separated from those that lead to pollution migration through deeper subsurface zones with much longer travel times. Two-dimensional CSIA highlights an increasing importance of the oxic reaction in the topsoil during the wetter period of the year. In order to examine to which extent CSIA is applicable for more complex hydrological systems, it is projected to simulate isotope fractionation in a 3-dimensional catchment featuring additional processes such as migration from several pollution sources or in-stream degradation.

  12. Study on the Measurement and Calculation of Environmental Pollution Bearing Index of China’s Pig Scale

    NASA Astrophysics Data System (ADS)

    Leng, Bi-Bin; Gong, Jian; Zhang, Wen-bo; Ji, Xue-Qiang

    2017-11-01

    According to the environmental pollution caused by large-scale pig breeding, the SPSS statistical software and factor analysis method were used to calculate the environmental pollution bearing index of China’s breeding scale from 2006 to 2015. The results showed that with the increase of scale the density of live pig farming and the amount of fertilizer application in agricultural production increased. However, due to the improvement of national environmental awareness, industrial waste water discharge is greatly reduced. China's hog farming environmental pollution load index is rising.

  13. Anthropogenic versus natural processes and pollution in Padana Valley in last years involving new communication/policy strategies and ethical issues in research evaluation

    NASA Astrophysics Data System (ADS)

    Quattrocchi, Fedora; Vaccaro, Carmela; Boschi, Enzo

    2014-05-01

    Smart grids-Smat cities "fashion" requires management plans of highly urbanized areas located over the Padanian floodplain, which are prone to diffuse pollution of both lands and urban sectors, mostly after the disasters caused by tremendous alluvial rains in January 2014, when shallow aquifers and agricultural matters could have increase pollution over wide territory. Moreover the urban expansion has affected areas previously used for industrial activity and in some cases such for landfills. When the loss of memory of previous activity prevails after urbanization, with health issues, ethical questions are inevitable, accompanied by social conflicts and economic impacts. The alluvial plains of active tectonic areas - as the Padania Valley - in additions to widespread "anthropogenic pollution" is suffering from widespread "natural pollution" of deep fluid sources - mainly methane - corresponding to areas prone to uprising gaseous brines, along faults. Some of them were partially activated during the 2012 Emilia seismic sequence. This noteworthy seismic sequence engaged discussion about the possible role of gas storages and hydrocarbons production or the simple/exploring drilling activity to trigger typical tectonic seismicity. The paper deepen this troubled communication strategy, their gaps and peculiar geopolicy case histories, to avoid the same strategy, in the future. On the other hand, gas burst or brine-gas-contamination in shallow aquifers, soils and indoor, should be studied by simple and cheap methods, by deepening stratigraphic gaps for the tectonics effects on sedimentation: natural processes should be recalled prior to recall anthropogenic causes, if any. Policy should be more responsible in state clearly the role of research in study infrastructures/processes, also when engaged by private companies, for sites selected by ministries mostly to star research: relevant gaps involves serious confusion in the public as regards responsibility and an exact

  14. The impact of land use on microbial surface water pollution.

    PubMed

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Characterization of sources and loadings of fecal pollutants using microbial source tracking assays in urban and rural areas of the Grand River Watershed, Southwestern Ontario.

    PubMed

    Lee, Dae-Young; Lee, Hung; Trevors, Jack T; Weir, Susan C; Thomas, Janis L; Habash, Marc

    2014-04-15

    Sources of fecal water pollution were assessed in the Grand River and two of its tributaries (Ontario, Canada) using total and host-specific (human and bovine) Bacteroidales genetic markers in conjunction with reference information, such as land use and weather. In-stream levels of the markers and culturable Escherichia coli were also monitored during multiple rain events to gain information on fecal loadings to catchment from diffuse sources. Elevated human-specific marker levels were accurately identified in river water impacted by a municipal wastewater treatment plant (WWTP) effluent and at a downstream site in the Grand River. In contrast, the bovine-specific marker showed high levels of cattle fecal pollution in two tributaries, both of which are characterized as intensely farmed areas. The bovine-specific Bacteroidales marker increased with rainfall in the agricultural tributaries, indicating enhanced loading of cattle-derived fecal pollutants to river from non-point sources following rain events. However, rain-triggered fecal loading was not substantiated in urban settings, indicating continuous inputs of human-originated fecal pollutants from point sources, such as WWTP effluent. This study demonstrated that the Bacteroidales source tracking assays, in combination with land use information and hydrological data, may provide additional insight into the spatial and temporal distribution of source-specific fecal contamination in streams impacted by varying land uses. Using the approach described in this study may help to characterize impacted water sources and to design targeted land use management plans in other watersheds in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Meteorological Drivers of Extreme Air Pollution Events

    NASA Astrophysics Data System (ADS)

    Horton, D. E.; Schnell, J.; Callahan, C. W.; Suo, Y.

    2017-12-01

    The accumulation of pollutants in the near-surface atmosphere has been shown to have deleterious consequences for public health, agricultural productivity, and economic vitality. Natural and anthropogenic emissions of ozone and particulate matter can accumulate to hazardous concentrations when atmospheric conditions are favorable, and can reach extreme levels when such conditions persist. Favorable atmospheric conditions for pollutant accumulation include optimal temperatures for photochemical reaction rates, circulation patterns conducive to pollutant advection, and a lack of ventilation, dispersion, and scavenging in the local environment. Given our changing climate system and the dual ingredients of poor air quality - pollutants and the atmospheric conditions favorable to their accumulation - it is important to characterize recent changes in favorable meteorological conditions, and quantify their potential contribution to recent extreme air pollution events. To facilitate our characterization, this study employs the recently updated Schnell et al (2015) 1°×1° gridded observed surface ozone and particulate matter datasets for the period of 1998 to 2015, in conjunction with reanalysis and climate model simulation data. We identify extreme air pollution episodes in the observational record and assess the meteorological factors of primary support at local and synoptic scales. We then assess (i) the contribution of observed meteorological trends (if extant) to the magnitude of the event, (ii) the return interval of the meteorological event in the observational record, simulated historical climate, and simulated pre-industrial climate, as well as (iii) the probability of the observed meteorological trend in historical and pre-industrial climates.

  17. Conceptualizations of water security in the agricultural sector: Perceptions, practices, and paradigms

    NASA Astrophysics Data System (ADS)

    Malekian, Atefe; Hayati, Dariush; Aarts, Noelle

    2017-01-01

    Conceptions of agricultural water security are conditioned by larger understandings of being and reality. It is still unclear what such understandings mean for perspectives on water security in general and on causes and solutions related to perceived water security risks and problems in agricultural sector in particular. Based on a systematic literature review, three conceptualizations of water security, related to different paradigms, are presented. Also the consequences of such conceptualizations for determining research objectives, research activities, and research outcomes on agricultural water security are discussed. The results showed that agricultural water security from a positivist paradigm referred to tangible and measurable water-related hazards and threats, such as floods and droughts, pollution, and so forth. A constructivist approach to agricultural water security, constituted by a process of interaction and negotiation, pointed at perceptions of water security of farmers and other stakeholders involved in agricultural sector. A critical approach to agricultural water security focused on the processes of securing vulnerable farmers and others from wider political, social, and natural impediments to sufficient water supplies. The conclusions of the study suggest that paradigms, underlying approaches should be expressed, clarified, and related to one another in order to find optimal and complementary ways to study water security issues in agricultural sector.

  18. Prediction of agriculture derived groundwater nitrate distribution in North China Plain with GIS-based BPNN

    NASA Astrophysics Data System (ADS)

    Wang, M. X.; Liu, G. D.; Wu, W. L.; Bao, Y. H.; Liu, W. N.

    2006-07-01

    In recent years, nitrate contamination of groundwater has become a growing concern for people in rural areas in North China Plain (NCP) where groundwater is used as drinking water. The objective of this study was to simulate agriculture derived groundwater nitrate pollution patterns with artificial neural network (ANN), which has been proved to be an effective tool for prediction in many branches of hydrology when data are not sufficient to understand the physical process of the systems but relative accurate predictions is needed. In our study, a back propagation neural network (BPNN) was developed to simulate spatial distribution of NO3-N concentrations in groundwater with land use information and site-specific hydrogeological properties in Huantai County, a typical agriculture dominated region of NCP. Geographic information system (GIS) tools were used in preparing and processing input-output vectors data for the BPNN. The circular buffer zones centered on the sampling wells were designated so as to consider the nitrate contamination of groundwater due to neighboring field. The result showed that the GIS-based BPNN simulated groundwater NO3-N concentration efficiently and captured the general trend of groundwater nitrate pollution patterns. The optimal result was obtained with a learning rate of 0.02, a 4-7-1 architecture and a buffer zone radius of 400 m. Nitrogen budget combined with GIS-based BPNN can serve as a cost-effective tool for prediction and management of groundwater nitrate pollution in an agriculture dominated regions in North China Plain.

  19. Land cover, land use changes and air pollution in Asia: a synthesis

    NASA Astrophysics Data System (ADS)

    Vadrevu, Krishna; Ohara, Toshimasa; Justice, Chris

    2017-12-01

    A better understanding of land cover/land use changes (LCLUC) and their interactions with the atmospheric environment is essential for the sustainable management of natural resources, environmental protection, air quality, agricultural planning and food security. The 15 papers published in this focus issue showcase a variety of studies relating to drivers and impacts of LCLUC and air pollution in different South/Southeast Asian (S/SEA) countries. This synthesis article, in addition to giving context to the articles in this focus issue, also reviews the broad linkages between population, LCLUC and air pollution. Additionally, we identify knowledge gaps and research priorities that are essential in addressing air pollution issues in the region. We conclude that for effective pollution mitigation in S/SEA countries, quantifying drivers, sources and impacts of pollution need a thorough data analysis through ground-based instrumentation, models and integrated research approaches. We also stress the need for the development of sustainable technologies and strengthening the scientific and resource management communities through capacity building and training activities to address air pollution issues in S/SEA countries.

  20. Water pollution and the public trust doctrine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.W.

    The prior appropriation system has served well in the Western US for 125 years, providing a legal regime that permits and encourages enormous economic growth of agriculture, industry and municipalities. This system, however, both in its inception and current application, fails to address or protect public interests in fisheries, recreation, environmental quality, and clean water. As a result, serious nonpoint water pollution problems are occurring throughout the West. Such pollution can be regulated either by the courts or the legislatures under the public trust doctrine, which antedates the prior appropriation system, and which protects fisheries and water quality. No onemore » - including irrigators, industries or cities with appropriative rights - has a vested, constitutionally protected property right to degrade the quality of public waters. Some states are adopting police power regulations to control nonpoint pollution. Others are approaching the problem through the prior appropriation system itself, taking the position that beneficial use means use that does not harm the public through pollution. The public trust doctrine is not a panacea that will instantly solve all the conflicts that now surround the prior appropriation system. It should be considered, however, as a basis for setting standards as best practicable technology or best management practice.« less

  1. Analysis agriculture's impact in a system of lakes on a karst environment with tropical climate.

    NASA Astrophysics Data System (ADS)

    Olea Olea, Selene; Escolero Fuentes, Oscar

    2015-04-01

    This paper has as main object to analyze the impact of agriculture in the water quality of the "Lagos de Montebello" area; which is located in the Southeast of Mexico. This area is prominent by its tropical climate and a karstic environment. The issue arises in a lake system affected by pollution in the later years, which has turned its former clear water into a highly sedimented muddy water in the topographically lower terrains while no polluted on the higher ones; therefore it is intended to determine if the rise in agricultural activity in the lower terrains has induced this phenomenon. The impact of agriculture has been historically studied in temperate climates with karstic environments; nevertheless it has not been very well studied in tropical climates; which are the reason of this proposal to perform a study to analyze the impact of the intensive agriculture running in the area. To develop this project we studied the area regarding to the types of crops that has being established in the zone, being mostly tomato, corn, and bean; and the fertilizers and pesticides applied to them. A groundwater monitoring plan was designed with a variety of phases such as: piezometers building, measurement of groundwater levels, measurement of field parameters, with a two months intervals (Ph, temperature, electric conductivity, total dissolved solids), and water samplings for laboratory analysis (major ions, nutrients, total organic carbon, pesticides) at twice a year, once during rainy season and then on drought. The rates of pollution agents infiltration depends on the type of soil retention and volume of water. The materials found in the soil by the piezometers are clay, silt, sand and variations between them. We determined that the geochemical qualities of the groundwater vary from calcic bicarbonate to calcic sulfated. The results reached with this monitoring provides a preliminary diagnosis on the possible causes and other implications that intensive agriculture in a

  2. Tracking nonpoint source nitrogen pollution in human-impacted watersheds

    USGS Publications Warehouse

    Kaushal, Sujay S.; Groffman, Peter M; Band, Lawrence; Elliott, Emily M.; Shields, Catherine A.; Kendall, Carol

    2011-01-01

    Nonpoint source nitrogen (N) pollution is a leading contributor to U.S. water quality impairments. We combined watershed N mass balances and stable isotopes to investigate fate and transport of nonpoint N in forest, agricultural, and urbanized watersheds at the Baltimore Long-Term Ecological Research site. Annual N retention was 55%, 68%, and 82% for agricultural, suburban, and forest watersheds, respectively. Analysis of δ15N-NO3–, and δ18O-NO3– indicated wastewater was an important nitrate source in urbanized streams during baseflow. Negative correlations between δ15N-NO3– and δ18O-NO3– in urban watersheds indicated mixing between atmospheric deposition and wastewater, and N source contributions changed with storm magnitude (atmospheric sources contributed ∼50% at peak storm N loads). Positive correlations between δ15N-NO3– and δ18O-NO3– in watersheds suggested denitrification was removing septic system and agriculturally derived N, but N from belowground leaking sewers was less susceptible to denitrification. N transformations were also observed in a storm drain (no natural drainage network) potentially due to organic carbon inputs. Overall, nonpoint sources such as atmospheric deposition, wastewater, and fertilizer showed different susceptibility to watershed N export. There were large changes in nitrate sources as a function of runoff, and anticipating source changes in response to climate and storms will be critical for managing nonpoint N pollution.

  3. Diffusion of biostimulators into plant tissues

    NASA Astrophysics Data System (ADS)

    Kolomazník, Karel; Pecha, Jiří; Friebrová, Veronika; Janáčová, Dagmar; Vašek, Vladimír

    2012-09-01

    Biostimulators are substances able to enhance the immune system of cultivated crops and support plant metabolism. Their utilization helps to reduce the amount of chemicals used in agriculture. To perform the desired effect, a biostimulator must be able to penetrate into the plant tissue. The time of penetration however, is limited, since the biostimulator must remain in a liquid state. This is of great importance—especially in field conditions, where the treated plants are exposed to different weather condition and other extrinsic factors. A mathematical model based on diffusion mechanisms has been elaborated to describe the biostimulator transport process from penetration of the leaves into the plant's inner tissues. By means of the effective diffusion coefficient of the prepared specific protein hydrolyzate, this model can be used to estimate the time necessary for the uptake of the minimal active amount of the biostimulator.

  4. Diffuse radiation increases global ecosystem-level water-use efficiency

    NASA Astrophysics Data System (ADS)

    Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.

    2012-12-01

    Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.

  5. Evaluating analytic and risk assessment tools to estimate sediment and nutrients losses from agricultural lands in the southern region of the USA

    USDA-ARS?s Scientific Manuscript database

    Non-point source pollution from agricultural fields is a critical problem associated with water quality impairment in the USA and a low-oxygen environment in the Gulf of Mexico. The use, development and enhancement of qualitative and quantitative models or tools for assessing agricultural runoff qua...

  6. Antimony bioavailability: knowledge and research perspectives for sustainable agricultures.

    PubMed

    Pierart, Antoine; Shahid, Muhammad; Séjalon-Delmas, Nathalie; Dumat, Camille

    2015-05-30

    The increasing interest in urban agriculture highlights the crucial question of crop quality. The main objectives for environmental sustainability are a decrease in chemical inputs, a reduction in the level of pollutants, and an improvement in the soil's biological activity. Among inorganic pollutants emitted by vehicle traffic and some industrial processes in urban areas, antimony (Sb) is observed on a global scale. While this metalloid is known to be potentially toxic, it can transfer from the soil or the atmosphere to plants, and accumulate in their edible parts. Urban agriculture is developing worldwide, and could therefore increasingly expose populations to Sb. The objective of this review was in consequences to gather and interpret actual knowledge of Sb uptake and bioaccumulation by crops, to reveal investigative fields on which to focus. While there is still no legal maximal value for Sb in plants and soils, light has to be shed on its accumulation and the factors affecting it. A relative absence of data exists about the role of soil flora and fauna in the transfer, speciation and compartmentation of Sb in vegetables. Moreover, little information exists on Sb ecotoxicity for terrestrial ecosystems. A human risk assessment has finally been reviewed, with particular focus on Sb bioaccessibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A California Statewide App to Simulate Fate of Nitrate in Irrigated Agricultural System

    NASA Astrophysics Data System (ADS)

    Diamantopoulos, E.; Walkinshaw, M.; Harter, T.; O'Geen, A. T.

    2017-12-01

    Groundwater resources are very important for California's economic development and environmental sustainability. Nitrate is by far the most widespread anthropogenic groundwater pollutant in California's mostly alluvial groundwater basins. Major sources are synthetic fertilizer and dairy manure, but also septic systems and urban wastewater effluent. Here, we evaluate agricultural soils in California according to their risk for nitrate leaching. We conducted over 1 million numerical simulations taking into account the effect of climate, crop type, irrigation and fertilization management scenarios across all 4,568 agricultural soil profiles occurring in California. The assessment was done solving 1-D Richards equation and the advection-dispersion equation numerically. This study is focused on the complex water and nitrate dynamics occurring at the shallow vadose zone (rootzone). The results of this study allow the construction of state-wide maps which can be used for the identification of high-risk regions and the design of agricultural nutrient management policy. We investigate how pollution risk can be minimized by adopting simple irrigation and fertilization methods. Furthermore, we show that these methods are more effective for the most permeable soil profiles along with high demanding crops in terms of fertilization amount and irrigation water. We also present how seasonal (winter) climate conditions contribute on nitrate leaching.

  8. Modeling large-scale adoption of intercropping as a sustainable agricultural practice for food security and air pollution mitigation around the globe

    NASA Astrophysics Data System (ADS)

    Fung, K. M.; Tai, A. P. K.; Yong, T.; Liu, X.

    2017-12-01

    The fast-growing world population will impose a severe pressure on our current global food production system. Meanwhile, boosting crop yield by increasing fertilizer use comes with a cascade of environmental problems including air pollution. In China, agricultural activities contribute to 95% of total ammonia emissions. Such emissions are attributable to 20% of the fine particulate matter (PM2.5) formed in the downwind regions, which imposes severe health risks to the citizens. Field studies of soybean intercropping have demonstrated its potential to enhance crop yield, lower fertilizer use, and thus reduce ammonia emissions by taking advantage of legume nitrogen fixation and enabling mutualistic crop-crop interactions between legumes and non-legume crops. In our work, we revise the process-based biogeochemical model, DeNitrification-DeComposition (DNDC) to capture the belowground interactions of intercropped crops and show that with intercropping, only 58% of fertilizer is required to yield the same maize production of its monoculture counterpart, corresponding to a reduction in ammonia emission by 43% over China. Using the GEOS-Chem global 3-D chemical transport model, we estimate that such ammonia reduction can lessen downwind inorganic PM2.5 by up to 2.1% (equivalent to 1.3 μg m-3), which saves the Chinese air pollution-related health costs by up to US$1.5 billion each year. With the more enhanced crop growth and land management algorithms in the Community Land Model (CLM), we also implement into CLM the new parametrization of the belowground interactions to simulate large-scale adoption of intercropping around the globe and study their beneficial effects on food production, fertilizer usage and ammonia reduction. This study can serve as a scientific basis for policy makers and intergovernmental organizations to consider promoting large-scale intercropping to maintain a sustainable global food supply to secure both future crop production and air quality.

  9. Phenylurea herbicide sorption to biochars and agricultural soil

    PubMed Central

    WANG, DAOYUAN; MUKOME, FUNGAI N. D.; YAN, DENGHUA; WANG, HAO; SCOW, KATE M.; PARIKH, SANJAI J.

    2016-01-01

    Biochar is increasingly been used as a soil amendment to improve water holding capacity, reduce nutrient leaching, increase soil pH and also as a means to reduce contamination through sorption of heavy metals or organic pollutants. The sorption behavior of three phenylurea herbicides (monuron, diuron, linuron) on five biochars (Enhanced Biochar, Hog Waste, Turkey Litter, Walnut Shell and Wood Feedstock) and an agricultural soil (Yolo silt loam) was investigated using a batch equilibration method. Sorption isotherms of herbicides to biochars were well described by the Freundlich model (R2 = 0.93 -- 0.97). The adsorption KF values ranged from 6.94 to 1306.95 mg kg−1 and indicated the sorption of herbicides in the biochars and Yolo soil was in the sequence of linuron > diuron > monuron and walnut shell biochar > wood feedstock biochar > turkey litter biochar > enhanced biochar > hog waste biochar > Yolo soil. These data show that sorption of herbicides to biochar can have both positive (reduced off-site transport) and negative (reduced herbicide efficacy) implications and specific biochar properties, such as H/C ratio and surface area, should be considered together with soil type, agriculture chemical and climate condition in biochar application to agricultural soil to optimize the system for both agricultural and environmental benefits. PMID:26065514

  10. Energy Dispersive X-Ray Fluorescent Analysis of Soil in the Vicinity of Industrial Areas and Heavy Metal Pollution Assessment

    NASA Astrophysics Data System (ADS)

    Singh, V.; Joshi, G. C.; Bisht, D.

    2017-05-01

    The soil of two agricultural sites near an industrial area was investigated for heavy metal pollution using energy dispersive X-ray fluorescence (EDXRF). The concentration values for 17 elements were determined in the soil samples including eight heavy metal elements, i.e., Fe, Ni, As, Pb, Mn, Cr, Cu, and Zn. The soil near a pulp and paper mill was found to be highly polluted by the heavy metals. The concentration data obtained by EDXRF were further examined by calculating the pollution index and Nemerow integrated pollution index.

  11. An application of Landsat and computer technology to potential water pollution from soil erosion

    NASA Technical Reports Server (NTRS)

    Campbell, W. J.

    1981-01-01

    Agricultural activity has been recognized as the primary source of nonpoint source water pollution. Water quality planners have needed information that is timely, accurate, easily reproducible, and relatively inexpensive to utilize to implement 'Best Management Practices' for water quality. In this paper, a case study shows how the combination of satellite data, which can give accurate land-cover/land-use information, and a computerized geographic information system, can assess nonpoint pollution at a regional scale and be cost effective.

  12. Trends and seasonality of river nutrients in agricultural catchments: 18years of weekly citizen science in France.

    PubMed

    Abbott, Benjamin W; Moatar, Florentina; Gauthier, Olivier; Fovet, Ophélie; Antoine, Virginie; Ragueneau, Olivier

    2018-05-15

    Agriculture and urbanization have disturbed three-quarters of global ice-free land surface, delivering huge amounts of nitrogen and phosphorus to freshwater ecosystems. These excess nutrients degrade habitat and threaten human food and water security at a global scale. Because most catchments are either currently subjected to, or recovering from anthropogenic nutrient loading, understanding the short- and long-term responses of river nutrients to changes in land use is essential for effective management. We analyzed a never-published, 18-year time series of anthropogenic (NO 3 - and PO 4 3- ) and naturally derived (dissolved silica) riverine nutrients in 13 catchments recovering from agricultural pollution in western France. In a citizen science initiative, high-school students sampled catchments weekly, which ranged from 26 to 1489km 2 . Nutrient concentrations decreased substantially over the period of record (19 to 50% for NO 3 - and 14 to 80% for PO 4 3- ), attributable to regional, national, and international investment and regulation, which started immediately prior to monitoring. For the majority of catchments, water quality during the summer low-flow period improved faster than during winter high-flow conditions, and annual minimum concentrations improved relatively faster than annual maximum concentrations. These patterns suggest that water-quality improvements were primarily due to elimination of discrete nutrient sources with seasonally-constant discharge (e.g. human and livestock wastewater), agreeing with available land-use and municipal records. Surprisingly, long-term nutrient decreases were not accompanied by changes in nutrient seasonality in most catchments, attributable to persistent, diffuse nutrient stocks. Despite decreases, nutrient concentrations in almost all catchments remained well above eutrophication thresholds, and because additional improvements will depend on decreasing diffuse nutrient sources, future gains may be much slower than

  13. [Phthalic acid esters (PAEs) pollution in farmland soils: a review].

    PubMed

    Wang, Kai-Rong; Cui, Ming-Ming; Shi, Yan-Xi

    2013-09-01

    The environmental pollution and food safety problems caused by phthalic acid esters (PAEs) have been attracted 'extensive attention around the world. As a large PAEs producer and consumer, China is facing severe PAEs environmental pollution problems. This paper reviewed the present pollution status of six PAEs classified by the U.S. Environmental Protection Agency as the priority pollutants in China farmland soils, analyzed the sources of these six PAEs in this country, and discussed the absorption and accumulation characteristics of the PAEs in different crops as well as the bio-toxic effects of PAEs pollutants. The PAEs concentrations in China farmland soils are significantly higher those in the farmland soils of the United States and European countries. The main sources of PAEs in China farmland soils are atmospheric deposition, agricultural films, sewage sludge application, and wastewater irrigation. There exist significant differences in the characteristics of PAEs absorption, accumulation, and distribution among different crops. PAEs not only have negative effects on soil quality, crop growth, and crop physiological and biochemical properties, but also possess bio-accumulative characteristics. The weaknesses in current researches were pointed out, and the suggestions for the further researches were given, e. g., to expand the scope of PAEs pollution survey, to explore the toxic mechanisms of PAEs on crops, and to develop the techniques for in situ remediation of PAEs-polluted soils.

  14. Research on sudden environmental pollution public service platform construction based on WebGIS

    NASA Astrophysics Data System (ADS)

    Bi, T. P.; Gao, D. Y.; Zhong, X. Y.

    2016-08-01

    In order to actualize the social sharing and service of the emergency-response information for sudden pollution accidents, the public can share the risk source information service, dangerous goods control technology service and so on, The SQL Server and ArcSDE software are used to establish a spatial database to restore all kinds of information including risk sources, hazardous chemicals and handling methods in case of accidents. Combined with Chinese atmospheric environmental assessment standards, the SCREEN3 atmospheric dispersion model and one-dimensional liquid diffusion model are established to realize the query of related information and the display of the diffusion effect under B/S structure. Based on the WebGIS technology, C#.Net language is used to develop the sudden environmental pollution public service platform. As a result, the public service platform can make risk assessments and provide the best emergency processing services.

  15. Soot Formation in Hydrocarbon/Air Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Faeth, G. M.

    1994-01-01

    Soot processes within hydrocarbon/air diffusion flames are important because they affect the durability and performance of propulsion systems, the hazards of unwanted fires, the pollutant and particulate emissions from combustion processes, and the potential for developing computational combustion. Motivated by these observations, this investigation involved an experimental study of the structure and soot properties of round laminar jet diffusion flames, seeking an improved understanding of soot formation (growth and nucleation) within diffusion flames. The present study extends earlier work in this laboratory concerning laminar smoke points (l) and soot formation in acetylene/air laminar jet diffusion flames (2), emphasizing soot formation in hydrocarbon/air laminar jet diffusion flames for fuels other than acetylene. In the flame system, acetylene is the dominant gas species in the soot formation region and both nucleation and growth were successfully attributed to first-order reactions of acetylene, with nucleation exhibiting an activation energy of 32 kcal/gmol while growth involved negligible activation energy and a collision efficiency of O.53%. In addition, soot growth in the acetylene diffusion flames was comparable to new soot in premixed flame (which also has been attributed to first-order acetylene reactions). In view of this status, a major issue is the nature of soot formation processes in diffusion flame involving hydrocarbon fuels other than acetylene. In particular, information is needed about th dominant gas species in the soot formation region and the impact of gas species other than acetylene on soot nucleation and growth.

  16. Impacts of agricultural irrigation on nearby freshwater ecosystems: the seasonal influence of triazine herbicides in benthic algal communities.

    PubMed

    Lorente, Carmen; Causapé, Jesús; Glud, Ronnie N; Hancke, Kasper; Merchán, Daniel; Muñiz, Selene; Val, Jonatan; Navarro, Enrique

    2015-01-15

    A small hydrological basin (Lerma, NE Spain), transformed from its natural state (steppe) to rain-fed agriculture and recently to irrigation agriculture, has been monitored across four seasons of an agricultural year. The goal of this study was to assess how and whether agricultural activities impacted the nearby freshwater ecosystems via runoff. Specifically, we assessed the toxicity of three triazine herbicides, terbuthylazine, atrazine and simazine on the photosynthetic efficiency and structure of algal benthic biofilms (i.e., phototropic periphyton) in the small creek draining the basin. It was expected that the seasonal runoff of the herbicides in the creek affected the sensitivity of the periphyton in accord with the rationale of the Pollution Induced Community Tolerance (PICT): the exposure of the community to pollutants result in the replacement of sensitive species by more tolerant ones. In this way, PICT can serve to establish causal linkages between pollutants and the observed biological impacts. The periphyton presented significantly different sensitivities against terbuthylazine through the year in accord with the seasonal application of this herbicide in the crops nowadays. The sensitivity of already banned herbicides, atrazine and simazine does not display a clear seasonality. The different sensitivities to herbicides were in agreement with the expected exposures scenarios, according to the agricultural calendar, but not with the concentrations measured in water, which altogether indicates that the use of PICT approach may serve for long-term monitoring purposes. That will provide not only causal links between the occurrence of chemicals and their impacts on natural communities, but also information about the occurrence of chemicals that may escape from traditional sampling methods (water analysis). In addition, the EC50 and EC10 of periphyton for terbuthylazine or simazine are the first to be published and can be used for impact assessments

  17. Redistributive land and tenancy reform in Bangladesh agriculture.

    PubMed

    Taslim, M A

    1993-04-01

    Land is scarce and population dense in Bangladesh. Accordingly, there is great need to maximize agricultural production with intensive cultivation and the diffusion of modern technology. The realization of this goal, however, is impeded by the prevailing inequitable and inefficient structure of agricultural land tenure in which a few rural households hold the bulk of cultivatable land. Cropsharing and the system of land tenancy perpetuates low productivity and stagnation throughout the country. Development professionals, ruling politicians, and general populations in many countries under similar circumstances often suggest that share tenancy be abolished and tenants given ownership of tenanted plots, with large farms broken into smaller ones with an ultimate ceiling on farm size. The political and undertaken by new governments coming to power after violent social upheavals. Careful review reveals that such reform has hardly ever led to the establishment of prosperous and independent peasantries. Small family farms have instead become more dependent on the state and on off-farm employment. The rural elite is destroyed and a small peasant proprietorship dependent on the state is established which is ultimately controlled by the urban elite of the country; control over rural populations is reinforced. The dubious historical motivation for and results of land reform suggest that Bangladesh abandon its consideration in favor of promoting vocational training and education; providing research and extension services to agriculture for more rapid diffusion of high-yield innovations; mobilizing domestic resources to build up the infrastructure; fostering the development of private initiatives; and informing and advising about sustainable development practices to encourage their adoption so that an ecological balance may be maintained.

  18. Riparian buffer strips as a multifunctional management tool in agricultural landscapes: introduction.

    PubMed

    Stutter, Marc I; Chardon, Wim J; Kronvang, Brian

    2012-01-01

    Catchment riparian areas are considered key zones to target mitigation measures aimed at interrupting the movement of diffuse substances from agricultural land to surface waters. Hence, unfertilized buffer strips have become a widely studied and implemented "edge of field" mitigation measure assumed to provide an effective physical barrier against nitrogen (N), phosphorus (P), and sediment transfer. To ease the legislative process, these buffers are often narrow mandatory strips along streams and rivers, across different riparian soil water conditions, between bordering land uses of differing pollution burdens, and without prescribed buffer management. It would be easy to criticize such regulation for not providing the opportunity for riparian ecosystems to maximize their provision for a wider range of ecosystem goods and services. The scientific basis for judging the best course of action in designing and placing buffers to enhance their multifunctionality has slowly increased over the last five years. This collection of papers aims to add to this body of knowledge by giving examples of studies related to riparian buffer management and assessment throughout Europe. This introductory paper summarizes discussion sessions and 13 selected papers from a workshop held in Ballater, UK, highlighting research on riparian buffers brought together under the EU COST Action 869 knowledge exchange program. The themes addressed are (i) evidence of catchment- to national-scale effectiveness, (ii) ecological functioning linking terrestrial and aquatic habitats, (iii) modeling tools for assessment of effectiveness and costs, and (iv) process understanding enabling management and manipulation to enhance pollutant retention in buffers. The combined understanding led us to consider four principle key questions to challenge buffer strip research and policy. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Chlorpyrifos pollution: its effect on brain acetylcholinesterase activity in rat and treatment of polluted soil by indigenous Pseudomonas sp.

    PubMed

    Sharma, Shelly; Singh, Partap Bir; Chadha, Pooja; Saini, Harvinder Singh

    2017-01-01

    The study was aimed to evaluate the levels of chlorpyrifos (CPF) pollution in agricultural soil of Punjab, India, its detrimental effects on acetylcholinesterase (AChE) activity in rat brain and bioremediation of soils polluted with CPF using indigenous and adapted bacterial lab isolate. The analysis revealed that soil samples of Bathinda and Amritsar regions are highly contaminated with chlorpyrifos showing 19 to 175 mg/kg concentrations of CPF. The non-targeted animals may get poisoned with CPF by its indirect dermal absorption, inhalation of toxic fumes and regular consumption of soiled food grains. The study indicated that even the lowermost concentrations of CPF, 19 and 76 mg/kg of soil found in the Amritsar and Bathinda regions respectively can significantly inhibit the AChE activity in rat brain within 24 h of its treatment. This represents the antagonistic effect of CPF on AChE which is a prime neurotransmitter present in all living beings including humans. In light of this, an attempt was made to remediate the polluted soil, a major reservoir of CPF, using Pseudomonas sp. (ChlD), an indigenous bacterial isolate. The culture efficiently degraded 10 to 100 mg/kg chlorpyrifos supplemented in the soil and utilized it as sole source of carbon and energy for its growth. Thus, this study provides a detailed insight regarding the level of CPF pollution in Punjab, its detrimental effects on mammals and bio-based solution to remediate the sites polluted with CPF.

  20. The development and preliminary application of an invariant coupled diffusion and chemistry model

    NASA Technical Reports Server (NTRS)

    Hilst, G. R.; Donaldson, C. DUP.; Teske, M.; Contiliano, R.; Freiberg, J.

    1973-01-01

    In many real-world pollution chemical reaction problems, the rate of reaction problems, the rate of reaction may be greatly affected by unmixedness. An approximate closure scheme for a chemical kinetic submodel which conforms to the principles of invariant modeling and which accounts for the effects of inhomogeneous mixing over a wide range of conditions has been developed. This submodel has been coupled successfully with invariant turbulence and diffusion models, permitting calculation of two-dimensional diffusion of two reacting (isothermally) chemical species. The initial calculations indicate the ozone reactions in the wake of stratospheric aircraft will be substantially affected by the rate of diffusion of ozone into the wake, and in the early wake, by unmixedness.

  1. Impact of treated urban wastewater for reuse in agriculture on crop response and soil ecotoxicity.

    PubMed

    Belhaj, Dalel; Jerbi, Bouthaina; Medhioub, Mounir; Zhou, John; Kallel, Monem; Ayadi, Habib

    2016-08-01

    The scarcity of freshwater resources is a serious problem in arid regions, such as Tunisia, and marginal quality water is gradually being used in agriculture. This study aims to study the impact of treated urban wastewater for reuse in agriculture on the health of soil and food crops. The key findings are that the effluents of Sfax wastewater treatment plant (WWTP) did not meet the relevant guidelines, therefore emitting a range of organic (e.g., up to 90 mg L(-1) COD and 30 mg L(-1) BOD5) and inorganic pollutants (e.g., up to 0.5 mg L(-1) Cu and 0.1 mg L(-1) Cd) in the receiving aquatic environments. Greenhouse experiments examining the effects of wastewater reuse on food plants such as tomato, lettuce, and radish showed that the treated effluent adversely affected plant growth, photosynthesis, and antioxidant enzyme contents. However, the pollution burden and biological effects on plants were substantially reduced by using a 50 % dilution of treated sewage effluent, suggesting the potential of reusing treated effluent in agriculture so long as appropriate monitoring and control is in place.

  2. Grey water on three agricultural catchments in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Blazkova, Sarka D.; Kulasova, Alena

    2014-05-01

    The COST project EU EURO-AGRIWAT focuses apart from other problems on the assessment of water footprint (WF). WF is defined as the quantity of water used to produce some goods or a service. In particular, the WF of an agricultural product is the volume of water used during the crop growing period. It has three components: the green water which is rain or soil moisture transpired by a crop, the blue water which is the amount of irrigation water transpired and the grey water which is the volume of water required to dilute pollutants and to restore the quality standards of the water body. We have been observing three different agricultural catchments. The first of them is Smrzovka Brook, located in the protected nature area in the south part of the Jizerske Mountains. An ecological farming has been carried out there. The second agricultural catchment area is the Kralovsky Creek, which lies in the foothills of the Krkonose Mountains and is a part of an agricultural cooperative. The last agricultural catchment is the Klejnarka stream, located on the outskirts of the fertile Elbe lowlands near Caslav. Catchments Kralovsky Brook and Klejnarka carry out usual agricultural activities. On all three catchments, however, recreational cottages or houses not connected to the sewerage system and/or with inefficient septic tanks occur. The contribution shows our approach to trying to quantify the real grey water from agriculture, i.e. the grey water caused by nutrients not utilised by the crops.

  3. Levels and distributions of organic pollutants in subtidal sediments from the Loire estuary: Are there any relationships with TTR-binding activity?

    NASA Astrophysics Data System (ADS)

    Couderc, M.; Gandolfi, F.; Zalouk-Vergnoux, A.; Beyeler, N.; Malleret, L.; Ambidina, I.; Kamari, A.; Blanchet-Letrouvé, I.; Mouneyrac, C.; Hamers, T.; Poirier, L.

    2016-12-01

    The Loire estuary runs through important urban sites with shipping, industrial and agricultural activities, being the receptacle of diffusive pollutants comprising, a mixture of contaminants such as persistent organic pollutants (POPs). This work was set out to evaluate the occurrence of thyroid endocrine disruptors in sediments of this estuary. Sediments were collected in September 2012 and April 2013, in subtidal zones along the estuary. Targeted chemical analyses of five classes of pollutants, i.e. polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), and bisphenol A (BPA) were performed in sediment extracts. Extracts were further tested for their thyroid hormone (TH) disrupting potency to compete with TH for binding to its transporter protein transthyretin (TTR). The Haute-Indre site was characterized by a significant PAH contamination whereas Saint-Nazaire, Bellevue and Rezé would be particularly contaminated by PCBs. These observations could be linked to the different type of anthropogenic activities taking place close to these sites. Donges, Mindin and Paimboeuf were the sampling sites displaying the lowest contamination in PAHs, APs, PCBs and PBDEs. No inter-site difference could be observed for TTR-binding activity, which should be attributed to different compounds than the chemically analyzed compounds, as confirmed by PCA analyses. Furthermore, the TTR-binding potencies of the extracts were relatively low compared to data from literature. More investigations on the quantification of PCB and PBDE hydroxylated metabolites and other known endocrine disruptors such as pesticides or perfluorinated compounds could be considered, as well as bioassays highlighting other endocrine disrupting effects.

  4. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition.

    PubMed

    Coskun, Devrim; Britto, Dev T; Shi, Weiming; Kronzucker, Herbert J

    2017-06-06

    The nitrogen (N)-use efficiency of agricultural plants is notoriously poor. Globally, about 50% of the N fertilizer applied to cropping systems is not absorbed by plants, but lost to the environment as ammonia (NH 3 ), nitrate (NO 3 - ), and nitrous oxide (N 2 O, a greenhouse gas with 300 times the heat-trapping capacity of carbon dioxide), raising agricultural production costs and contributing to pollution and climate change. These losses are driven by volatilization of NH 3 and by a matrix of nitrification and denitrification reactions catalysed by soil microorganisms (chiefly bacteria and archaea). Here, we discuss mitigation of the harmful and wasteful process of agricultural N loss via biological nitrification inhibitors (BNIs) exuded by plant roots. We examine key recent discoveries in the emerging field of BNI research, focusing on BNI compounds and their specificity and transport, and discuss prospects for their role in improving agriculture while reducing its environmental impact.

  5. Particulate matter characteristics during agricultural waste burning in Taichung City, Taiwan.

    PubMed

    Cheng, Man-Ting; Horng, Chuen-Liang; Su, Yi-Ru; Lin, Li-Kai; Lin, Yu-Chi; Chou, Charles C-K

    2009-06-15

    Agricultural waste burning is performed after harvest periods in June and November in Taiwan. Typically, farmers use open burning to dispose of excess rice straw. PM(2.5) and PM(2.5-10) measurements were conducted at National Chung Hsing University in Taichung City using a dichotomous sampler. The sampling times were during straw burning periods after rice harvest during 2002-2005. Ionic species including SO(4)(2-), NO(3)(-), NH(4)(+), K(+), Ca(2+), Cl(-) and Na(+) and carbonaceous species (EC and OC) in PM(2.5) and PM(2.5-10) were analyzed. The results showed that the average PM(2.5) and PM(2.5-10) concentrations were 123.6 and 31.5 microg m(-3) during agricultural waste burning periods and 32.6 and 21.4 microg m(-3) during non-waste burning periods, respectively. The fine aerosol ionic species including Cl(-), K(+) and NO(3)(-) increased 11.0, 6.7 and 5.5 times during agricultural burning periods compared with periods when agricultural waste burning is not performed. K(+) was found mainly in the fine mode during agricultural burning. High nitrogen oxidation ratio was found during agricultural waste burning periods which might be caused by the conversion of Nitrogen dioxide (NO(2)) to NO(3)(-). It is concluded that agricultural waste burning with low dispersion often causes high PM(2.5) and gases pollutant events.

  6. Impact of Agricultural Emission Reductions on Fine Particulate Matter and Public Health

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Tsimpidi, A.; Karydis, V.; De Meij, A.; Lelieveld, J.

    2017-12-01

    A global chemistry-climate model has been used to study the impacts of pollutants released by agriculture on fine particulate matter (PM2.5), with a focus on Europe, North America, South and East Asia. Hypothetical reduction of agricultural emission of 50%, 66% and 100% have been simulated and compared with the reference simulation. The simulations results reveal that a relatively strong reduction in PM2.5 levels can be achieved by decreasing agricultural emissions, and this effect can almost be exclusively explain by the reduction of ammonia (NH3) emissions, released from fertilizer use and animal husbandry. The absolute impact on PM2.5 reduction is strongest in East Asia, even for small emission decreases, although the relative reduction is very low (below 13% for a full removal of agricultural emissions) . Conversely, over Europe and North America, aerosol formation is not directly limited by the availability of ammonia. Nevertheless, reduction of NH3 can also substantially decrease PM2.5concentrations over the latter regions, especially when emissions are abated systematically and an ammonia limited regions of aerosol growth is reached. Further, our results document how reduction of agricultural emissions decreases aerosol pH due to the depletion of aerosol ammonium, which affects particle liquid phase and heterogeneous chemistry. It is calculated that ammonia emission controls could reduce the particle pH up to 1.5 pH-units in East Asia during winter, and more than 1.7 pH-units in South Asia, theoretically assuming complete agricultural emission removal, which could have repercussions for the reactive uptake of gases from the gas phase and the outgassing of relative weak acids. It is finally shown that a 50% reduction of agricultural emissions could prevent the mortality attributable to air pollution by 250 thousands people per year worldwide, amounting to reductions of 30%, 19% , 8% and 3% over North America, Europe and South Asia and East Asia, respectively

  7. Visualisation of uncertainty for the trade-off triangle used in sustainable agriculture

    NASA Astrophysics Data System (ADS)

    Harris, Paul; Takahashi, Taro; Lee, Michael

    2017-04-01

    Agriculture at the global-scale is at a critical juncture where competing requirements for maximal production and minimal pollution have led to the concept of sustainable intensification. All farming systems (arable, grasslands, etc.) are part of this debate, where each have particular associated environmental risks such as water and air pollution, greenhouse gas emissions and soil degradation, as well as issues affecting production efficiency, product quality and consumer acceptability, reflected in the development of agricultural sustainability policies. These challenges necessitate multidisciplinary solutions that can only be properly researched, implemented and tested in real-world production systems which are suited to their geographical and climatic production practice. In this respect, various high-profile agricultural data collection experiments have been set up, such as the North Wyke Farm Platform (http://www.rothamsted.ac.uk/farmplatform) to research agricultural productivity and ecosystem responses to different management practices. In this farm-scale grasslands experiment, data on hydrology, emissions, nutrient cycling, biodiversity, productivity and livestock welfare/health are collected, that in turn, are converted to trade-off metrics with respect to: (i) economic profits, (ii) societal benefits and (iii) environmental concerns, under the umbrella of sustainable intensification. Similar agriculture research platforms have similar objectives, where data collections are ultimately synthesised into trade-off metrics. Trade-offs metrics can then be usefully visualized via the usual sustainable triangle, with a new triangle for each key time period (e.g. baseline versus post-baseline). This enables a visual assessment of change in sustainability harmony or discord, according to the remit of the given research experiment. In this paper, we discuss different approaches to calculation of the sustainability trade-off metrics that are required from the farm

  8. A model for estimating air-pollutant uptake by forests: calculation of absorption of sulfur dioxide from dispersed sources

    Treesearch

    C. E., Jr. Murphy; T. R. Sinclair; K. R. Knoerr

    1977-01-01

    The computer model presented in this paper is designed to estimate the uptake of air pollutants by forests. The model utilizes submodels to describe atmospheric diffusion immediately above and within the canopy, and into the sink areas within or on the trees. The program implementing the model is general and can be used with only minor changes for any gaseous pollutant...

  9. The effectiveness of agricultural stewardship for improving water quality at the catchment scale: Experiences from an NVZ and ECSFDI watershed

    NASA Astrophysics Data System (ADS)

    Kay, Paul; Grayson, Richard; Phillips, Martin; Stanley, Karen; Dodsworth, Alan; Hanson, Ann; Walker, Andrew; Foulger, Miles; McDonnell, Iain; Taylor, Simon

    2012-02-01

    SummaryAgriculture is estimated to be responsible for 70% of nitrate and 30-50% of phosphorus pollution, contributing to ecological and water treatment problems. Despite the fact that significant gaps remain in our understanding, it is known that agricultural stewardship can be highly effective in controlling water pollution at the plot and field scales. Knowledge at the catchment scale is, to a large extent, entirely lacking though and this is of paramount concern given that the catchment is the management unit used by regulatory authorities. The few studies that have examined the impact of agricultural stewardship at the catchment scale have found that Nitrate Vulnerable Zones (NVZs) in the UK have resulted in little improvement in water quality which concurs with the current catchment study. In addition to NVZs, there was little evidence to suggest that the England Catchment Sensitive Farming Delivery Initiative had impacted water quality and suggestions have been made for improvements, such as ensuring that stewardship measures are used in key pollution source areas and their implementation and impacts are monitored more closely. This will be essential if agricultural catchment management schemes are going to provide the benefits expected of them. Nevertheless, more intensive monitoring than that carried out by regulators showed a significant trend in decreasing winter nitrate peaks in some streams which is hypothesised to be due to recent reduced inorganic fertiliser application as a result of increasing prices. It was concluded that, collectively, these findings indicate that agricultural stewardship measures have the potential to improve water quality at the catchment scale but that voluntary schemes with insufficient financial reward or regulatory pressure are unlikely to be successful.

  10. Controlling flooding and water pollution with upland and streamside vegetation systems

    Treesearch

    Michael Dosskey

    2003-01-01

    Substantial research and development effort in the U.S. is being spent on developing strategies that address flooding and water pollution problems in agricultural areas. Concerns have been raised about the costs of flood damage, degradation of productive farm land, and declining water quality that are now recognized as unintended consequences of intensive, high-yield...

  11. Characteristics of nitrogen loading and its influencing factors in several typical agricultural watersheds of subtropical China.

    PubMed

    Li, Yuyuan; Jiao, Junxia; Wang, Yi; Yang, Wen; Meng, Cen; Li, Baozhen; Li, Yong; Wu, Jinshui

    2015-02-01

    Increasingly, the characteristics of nitrogen (N) loading have been recognized to be critical for the maintenance and restoration of water quality in agricultural watersheds, in response to the spread of water eutrophication. This paper estimates N loading and investigates its influencing factors in ten small watersheds variously dominated by forest and agricultural land use types in the subtropics of China, over an observation period of 23-29 months. The results indicate that the average concentrations of total nitrogen (TN), NH4 (+)-N, and NO3 (-)-N were 0.83, 0.07, and 0.46 mg N L(-1) in the forest watersheds and 1.49-5.16, 0.21-3.23, and 0.99-1.30 mg N L(-1) in the agricultural watersheds, respectively. Such concentrations exceed the national criteria for nutrient pollution in surface waters considerably, suggesting severe stream pollution in the studied agricultural watersheds. The average annual TN loadings (ANL) were estimated to be 1,640.8 kg N km(-2) year(-1) in the agricultural watersheds, 63.3-86.1 % of which was composed of dissolved inorganic N (DIN; comprising NO3 (-)-N and NH4 (+)-N). The watershed with intensive livestock production (i.e., the maximum livestock density of 2.66 animal units (AU) ha(-1)) exhibited the highest ANL (2,928.7 kg N km(-2) year(-1)) related to N loss with effluent discharge. The results of correlation and principle component analysis suggest that livestock production was the dominant influencing factor for the TN and NH4 (+)-N loadings and that the percentages of cropland in watersheds can significantly increase the NO3 (-)-N loading in agricultural watersheds. Therefore, to restore and maintain water quality, animal production regulations and more careful planning of land use are necessary in the agricultural watersheds of subtropical China.

  12. Ozone and haze pollution weakens net primary productivity in China

    NASA Astrophysics Data System (ADS)

    Yue, Xu; Unger, Nadine; Harper, Kandice; Xia, Xiangao; Liao, Hong; Zhu, Tong; Xiao, Jingfeng; Feng, Zhaozhong; Li, Jing

    2017-05-01

    Atmospheric pollutants have both beneficial and detrimental effects on carbon uptake by land ecosystems. Surface ozone (O3) damages leaf photosynthesis by oxidizing plant cells, while aerosols promote carbon uptake by increasing diffuse radiation and exert additional influences through concomitant perturbations to meteorology and hydrology. China is currently the world's largest emitter of both carbon dioxide and short-lived air pollutants. The land ecosystems of China are estimated to provide a carbon sink, but it remains unclear whether air pollution acts to inhibit or promote carbon uptake. Here, we employ Earth system modeling and multiple measurement datasets to assess the separate and combined effects of anthropogenic O3 and aerosol pollution on net primary productivity (NPP) in China. In the present day, O3 reduces annual NPP by 0.6 Pg C (14 %) with a range from 0.4 Pg C (low O3 sensitivity) to 0.8 Pg C (high O3 sensitivity). In contrast, aerosol direct effects increase NPP by 0.2 Pg C (5 %) through the combination of diffuse radiation fertilization, reduced canopy temperatures, and reduced evaporation leading to higher soil moisture. Consequently, the net effects of O3 and aerosols decrease NPP by 0.4 Pg C (9 %) with a range from 0.2 Pg C (low O3 sensitivity) to 0.6 Pg C (high O3 sensitivity). However, precipitation inhibition from combined aerosol direct and indirect effects reduces annual NPP by 0.2 Pg C (4 %), leading to a net air pollution suppression of 0.8 Pg C (16 %) with a range from 0.6 Pg C (low O3 sensitivity) to 1.0 Pg C (high O3 sensitivity). Our results reveal strong dampening effects of air pollution on the land carbon uptake in China today. Following the current legislation emission scenario, this suppression will be further increased by the year 2030, mainly due to a continuing increase in surface O3. However, the maximum technically feasible reduction scenario could drastically relieve the current level of NPP damage by 70 % in 2030

  13. Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multivariate statistical techniques

    NASA Astrophysics Data System (ADS)

    Su, Shiliang; Zhi, Junjun; Lou, Liping; Huang, Fang; Chen, Xia; Wu, Jiaping

    Characterizing the spatio-temporal patterns and apportioning the pollution sources of water bodies are important for the management and protection of water resources. The main objective of this study is to describe the dynamics of water quality and provide references for improving river pollution control practices. Comprehensive application of neural-based modeling and different multivariate methods was used to evaluate the spatio-temporal patterns and source apportionment of pollution in Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites for the period of 2001-2004. A self-organizing map classified the 41 monitoring sites into three groups (Group A, B and C), representing different pollution characteristics. Four significant parameters (dissolved oxygen, biochemical oxygen demand, total phosphorus and total lead) were identified by discriminant analysis for distinguishing variations of different years, with about 80% correct assignment for temporal variation. Rotated principal component analysis (PCA) identified four potential pollution sources for Group A (domestic sewage and agricultural pollution, industrial wastewater pollution, mineral weathering, vehicle exhaust and sand mining), five for Group B (heavy metal pollution, agricultural runoff, vehicle exhaust and sand mining, mineral weathering, chemical plants discharge) and another five for Group C (vehicle exhaust and sand mining, chemical plants discharge, soil weathering, biochemical pollution, mineral weathering). The identified potential pollution sources explained 75.6% of the total variances for Group A, 75.0% for Group B and 80.0% for Group C, respectively. Receptor-based source apportionment was applied to further estimate source contributions for each pollution variable in the three groups, which facilitated and supported the PCA results. These results could assist managers to develop optimal strategies and determine priorities for river

  14. Optimal pollution mitigation in Monterey Bay based on coastal radar data and nonlinear dynamics.

    PubMed

    Coulliette, Chad; Lekien, Francois; Paduan, Jeffrey D; Haller, George; Marsden, Jerrold E

    2007-09-15

    High-frequency (HF) radar technology produces detailed velocity maps near the surface of estuaries and bays. The use of velocity data in environmental prediction, nonetheless, remains unexplored. In this paper, we uncover a striking flow structure in coastal radar observations of Monterey Bay, along the California coastline. This complex structure governs the spread of organic contaminants, such as agricultural runoff which is a typical source of pollution in the bay. We show that a HF radar-based pollution release scheme using this flow structure reduces the impact of pollution on the coastal environment in the bay. We predict the motion of the Lagrangian flow structures from finite-time Lyapunov exponents of the coastal HF velocity data. From this prediction, we obtain optimal release times, at which pollution leaves the bay most efficiently.

  15. Managing Artificially Drained Low-Gradient Agricultural Headwaters for Enhanced Ecosystem Functions

    PubMed Central

    Pierce, Samuel C.; Kröger, Robert; Pezeshki, Reza

    2012-01-01

    Large tracts of lowlands have been drained to expand extensive agriculture into areas that were historically categorized as wasteland. This expansion in agriculture necessarily coincided with changes in ecosystem structure, biodiversity, and nutrient cycling. These changes have impacted not only the landscapes in which they occurred, but also larger water bodies receiving runoff from drained land. New approaches must append current efforts toward land conservation and restoration, as the continuing impacts to receiving waters is an issue of major environmental concern. One of these approaches is agricultural drainage management. This article reviews how this approach differs from traditional conservation efforts, the specific practices of drainage management and the current state of knowledge on the ecology of drainage ditches. A bottom-up approach is utilized, examining the effects of stochastic hydrology and anthropogenic disturbance on primary production and diversity of primary producers, with special regard given to how management can affect establishment of macrophytes and how macrophytes in agricultural landscapes alter their environment in ways that can serve to mitigate non-point source pollution and promote biodiversity in receiving waters. PMID:24832519

  16. Peri-Urbanism in Globalizing India: A Study of Pollution, Health and Community Awareness.

    PubMed

    Waldman, Linda; Bisht, Ramila; Saharia, Rajashree; Kapoor, Abhinav; Rizvi, Bushra; Hamid, Yasir; Arora, Meghana; Chopra, Ima; Sawansi, Kumud T; Priya, Ritu; Marshall, Fiona

    2017-08-30

    This paper examines the intersection between environmental pollution and people's acknowledgements of, and responses to, health issues in Karhera, a former agricultural village situated between the rapidly expanding cities of New Delhi (India's capital) and Ghaziabad (an industrial district in Uttar Pradesh). A relational place-based view is integrated with an interpretive approach, highlighting the significance of place, people's emic experiences, and the creation of meaning through social interactions. Research included surveying 1788 households, in-depth interviews, participatory mapping exercises, and a review of media articles on environment, pollution, and health. Karhera experiences both domestic pollution, through the use of domestic waste water, or gandapani , for vegetable irrigation, and industrial pollution through factories' emissions into both the air and water. The paper shows that there is no uniform articulation of any environment/health threats associated with gandapani . Some people take preventative actions to avoid exposure while others do not acknowledge health implications. By contrast, industrial pollution is widely noted and frequently commented upon, but little collective action addresses this. The paper explores how the characteristics of Karhera, its heterogeneous population, diverse forms of environmental pollution, and broader governance processes, limit the potential for citizen action against pollution.

  17. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions.

    PubMed

    Nkya, Theresia Estomih; Poupardin, Rodolphe; Laporte, Frederic; Akhouayri, Idir; Mosha, Franklin; Magesa, Stephen; Kisinza, William; David, Jean-Philippe

    2014-10-16

    Resistance of mosquitoes to insecticides is mainly attributed to their adaptation to vector control interventions. Although pesticides used in agriculture have been frequently mentioned as an additional force driving the selection of resistance, only a few studies were dedicated to validate this hypothesis and characterise the underlying mechanisms. While insecticide resistance is rising dramatically in Africa, deciphering how agriculture affects resistance is crucial for improving resistance management strategies. In this context, the multigenerational effect of agricultural pollutants on the selection of insecticide resistance was examined in Anopheles gambiae. An urban Tanzanian An. gambiae population displaying a low resistance level was used as a parental strain for a selection experiment across 20 generations. At each generation larvae were selected with a mixture containing pesticides and herbicides classically used in agriculture in Africa. The resistance levels of adults to deltamethrin, DDT and bendiocarb were compared between the selected and non-selected strains across the selection process together with the frequency of kdr mutations. A microarray approach was used for pinpointing transcription level variations selected by the agricultural pesticide mixture at the adult stage. A gradual increase of adult resistance to all insecticides was observed across the selection process. The frequency of the L1014S kdr mutation rose from 1.6% to 12.5% after 20 generations of selection. Microarray analysis identified 90 transcripts over-transcribed in the selected strain as compared to the parental and the non-selected strains. Genes encoding cuticle proteins, detoxification enzymes, proteins linked to neurotransmitter activity and transcription regulators were mainly affected. RT-qPCR transcription profiling of candidate genes across multiple generations supported their link with insecticide resistance. This study confirms the potency of agriculture in selecting

  18. Agricultural Products | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag News Contact Us Search  Log inRegister Home Home Agricultural Products NEWT: National Extension Web , tables, graphs), Agricultural Products html National Animal Nutrition Program (NANP) Feed Composition

  19. Self-Propelled Micromotors for Cleaning Polluted Water

    PubMed Central

    2013-01-01

    We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction–diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water. PMID:24180623

  20. Abatement costs of soil conservation in China's Loess Plateau: balancing income with conservation in an agricultural system.

    PubMed

    Hou, Lingling; Hoag, Dana L K; Keske, Catherine M H

    2015-02-01

    This study proposes the use of marginal abatement cost curves to calculate environmental damages of agricultural systems in China's Loess Plateau. Total system costs and revenues, management characteristics and pollution attributes are imputed into a directional output distance function, which is then used to determine shadow prices and abatement cost curves for soil and nitrogen loss. Marginal abatement costs curves are an effective way to compare economic and conservation tradeoffs when field-specific data are scarce. The results show that sustainable agricultural practices can balance soil conservation and agricultural production; land need not be retired, as is current policy. Published by Elsevier Ltd.

  1. Impact of nitrogen reduction measures on the nitrogen loads of the river Ems and Rhine (Germany)

    NASA Astrophysics Data System (ADS)

    Wendland, F.; Bogena, H.; Goemann, H.; Hake, J. F.; Kreins, P.; Kunkel, R.

    The REGFLUD-project, commissioned by Germany’s Federal Research Ministry (BMBF), addresses the problem of reducing diffuse pollution from agricultural production. The objective of the project is the development and application of multi-criteria scientific methods, which are able to predict diffuse pollution in river basins subject to economic feasibility and social acceptability. The selected river basins (the entire Ems basin and sub-catchments of the Rhine) cover a variety of landscape units with different hydrological, hydrogeological and socio-economic characteristics. This paper focuses on the analysis of the effects of certain policy measures to reduce diffuse pollution by nitrogen. For this purpose, a model system consisting of an agricultural sector model, a water balance model and a residence time/denitrification model was combined and applied. First results indicate a wide range of annual nitrogen surpluses for the rural areas between less than 10 N ha -1 a -1 up 200 kg N ha -1 a -1, or more depending on the type and intensity of farming. Compared to the level of nitrogen surpluses the level of nitrogen inputs into the surface waters is relatively moderate because of degradation processes during transport in soil and groundwater. Policy impact analyses for a nitrogen tax and a limitation of the livestock density stress the importance of regionally adjusted measures.

  2. Pollution Sources and Mortality Rates across Rural-Urban Areas in the United States

    ERIC Educational Resources Information Center

    Hendryx, Michael; Fedorko, Evan; Halverson, Joel

    2010-01-01

    Purpose: To conduct an assessment of rural environmental pollution sources and associated population mortality rates. Methods: The design is a secondary analysis of county-level data from the Environmental Protection Agency (EPA), Department of Agriculture, National Land Cover Dataset, Energy Information Administration, Centers for Disease Control…

  3. Agriculturally induced environmental changes in the Burren Karst, Western Ireland

    NASA Astrophysics Data System (ADS)

    Drew, D.

    1996-10-01

    The Burren plateau of County Clare is a classic example of a plateau karst characterised by patchy, thin soils, a lack of defined surface drainage, and in the instance of the Burren, a rich floristic, archaeological and landscape heritage. Since accession to the European Union and, in particular, as a result of Common Agricultural Policy initiatives, attempts have been made to raise farm incomes and to modernise agriculture in areas such as the Burren. Due to the encouragement of land reclamation and silage production has largely replaced hay farming for winter fodder. These changes pose a threat to groundwater quality by enhancing the leaching of artificial fertilizers or of organic pollutants. The Burren is highly vulnerable to water pollution from silage effluent because of its thin or absent soils and its highly karstified aquifers. A full survey of silage clamps was made in the summers of 1991 and 1992. For each site data were collected to derive the following: mass of silage, effluent produced, hazard rating of site to groundwater, likely discharge of effluent to groundwater and groundwater dilution index. About 60% of clamps were considered to be high risk and 23% medium risk. About 92% of all sites probably allow some effluent to infiltrate groundwater.

  4. Impact of estuarine pollution on birds

    USGS Publications Warehouse

    Blus, L.J.; Wiemeyer, Stanley N.; Kerwin, J.A.; Stendell, R.C.; Ohlendorf, H.M.; Stickel, L.F.

    1977-01-01

    Pollution of estuaries affects bird populations indirectly through changes in habitat and food supply. The multi-factor pollution of Chesapeake Bay has resulted in diminution of submerged aquatic plants and consequent change in food habits of the canvasback duck. Although dredge-spoil operations can improve wildlife habitat, they often result in its demise. Pollution of estuaries also affects birds directly, through chemical toxication, which may result in outright mortality or in reproductive impairment. Lead from industrial sources and roadways enters the estuaries and is accumulated in tissues of birds. Lead pellets deposited in estuaries as a result of hunting are consumed by ducks with sufficient frequency .to result m large annual die-offs from lead poisoning. Fish in certain areas, usually near industrial sources, may contain levels of mercury high enough to be hazardous to birds that consume them. Other heavy metals are present in estuarine birds, but their significance is poorly known. Oil exerts lethal or sublethal effects on birds by oiling their feathers, oiling eggs and young by contaminated parents, and by ingestion of oil-contaminated food. Organochlorine chemicals, of both agricultural and industrial origin, travel through the food chains and reach harmful levels in susceptible species of birds in certain estuarine ecosystems. Both outright mortality and reproductive impairment have occurred.

  5. Biodegradability of HCH in agricultural soils from Guadeloupe (French West Indies): identification of the lin genes involved in the HCH degradation pathway.

    PubMed

    Laquitaine, L; Durimel, A; de Alencastro, L F; Jean-Marius, C; Gros, O; Gaspard, S

    2016-01-01

    Banana has been a main agricultural product in the French West Indies (Guadeloupe and Martinique) since the 1960s. This crop requires the intensive use of pesticides to prevent attacks by insect pests. Chlorinated pesticides, such as hexachlorocyclohexane (HCH), chlordecone and dieldrin, were used until the beginning of the 1990s, resulting in a generalized diffuse contamination of the soil and water in the areas of banana production, hence the need to develop solutions for cleanup of the polluted sites. The aims of this work were (i) to assess lindane degradation in soil slurry microcosms treated with lindane at 10 mg/L and (ii) to detect the catabolic genes involved in the HCH degradation pathway. The soil slurry microcosm system showed a 40% lindane degradation efficiency at the end of a 30-day experiment. Lower lindane removal was also detected in the abiotic controls, probably caused by pesticide adsorption to soil particles. Indeed, the lindane concentration decreased from 6000 to 1330 ng/mL and from 800 to 340 ng/mL for the biotic and abiotic soils, respectively. Nevertheless, some of the genes involved in the HCH degradation pathway were amplified by polymerase chain reaction (PCR) from crude deoxyribonucleic acid (DNA) extracted from the Guadeloupe agricultural soil, suggesting that HCH degradation is probably mediated by bacteria closely related to the family Sphingomonadaceae.

  6. Risk forewarning model for rice grain Cd pollution based on Bayes theory.

    PubMed

    Wu, Bo; Guo, Shuhai; Zhang, Lingyan; Li, Fengmei

    2018-03-15

    Cadmium (Cd) pollution of rice grain caused by Cd-contaminated soils is a common problem in southwest and central south China. In this study, utilizing the advantages of the Bayes classification statistical method, we established a risk forewarning model for rice grain Cd pollution, and put forward two parameters (the prior probability factor and data variability factor). The sensitivity analysis of the model parameters illustrated that sample size and standard deviation influenced the accuracy and applicable range of the model. The accuracy of the model was improved by the self-renewal of the model through adding the posterior data into the priori data. Furthermore, this method can be used to predict the risk probability of rice grain Cd pollution under similar soil environment, tillage and rice varietal conditions. The Bayes approach thus represents a feasible method for risk forewarning of heavy metals pollution of agricultural products caused by contaminated soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Comparison of the air pollution biomonitoring ability of three Tillandsia species and the lichen Ramalina celastri in Argentina.

    PubMed

    Bermudez, Gonzalo M A; Rodriguez, Judith H; Pignata, María L

    2009-01-01

    Bioaccumulation ability and response to air pollution sources were evaluated for Tillandsia capillaris Ruíz and Pav. f. capillaris, T. recurvata L., T. tricholepis Baker and the lichen Ramalina celastri (Spreng.) Krog. and Swinsc. Epiphyte samples collected from a non contaminated area in the province of Córdoba were transplanted to a control site and three areas categorised according to agricultural, urban and industrial (metallurgical and metal-mechanical) emission sources. Bioindicators were exposed for 3-, 6- and 9-month periods. A foliar damage index was established for Tillandsia and a pollution index for the lichen, and S, Fe, Mn and Zn concentrations were determined. An order of efficiency for the species and conditions studied is proposed taking into account heavy metal accumulation: T. recurvata >T. tricholepis >R. celastri >T. capillaris. All species studied showed Mn to be related to agricultural activity and Fe to industries and soil particles, and Zn was related to urban and industrial sources. As far as physiological response is concerned, T. tricholepis and T. capillaris were more sensitive to agricultural activities, whereas T. recurvata was sensitive to urban and industrial sources, and only partially to agricultural sources. No relationship was found for R. celastri.

  8. Agriculture: Agriculture and Air Quality

    EPA Pesticide Factsheets

    Information on air emissions from agricultural practices, types of agricultural burning, air programs that may apply to agriculture, reporting requirements, and links to state and other federal air-quality information.

  9. Agricultural Policy Environmental eXtender simulation of three adjacent row-crop watersheds in the claypan region

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Policy Environmental Extender (APEX) model can simulate crop yields, and pollutant loadings in whole farms or small watersheds with variety of management practices. The study objectives were to identify sensitive parameters and parameterize, calibrate and validate the APEX model fo...

  10. NASA Earth Resources Survey Symposium. Volume 1-A: Agriculture, environment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A number of papers dealing with the practical application of imagery obtained from remote sensors on LANDSAT satellites, the Skylab Earth resources experiment package, and aircraft to problems in agriculture and the environment were presented. Some of the more important topics that were covered included: range management and resources, environmental monitoring and management, crop growth and inventory, land management, multispectral band scanners, forest management, mapping, marshlands, strip mining, water quality and pollution, ecology.

  11. Evidence of traffic-related pollutant control in soil-based sustainable urban drainage systems (SUDS).

    PubMed

    Napier, F; Jefferies, C; Heal, K V; Fogg, P; Arcy, B J D; Clarke, R

    2009-01-01

    SUDS are being increasingly employed to control highway runoff and have the potential to protect groundwater and surface water quality by minimising the risks of both point and diffuse sources of pollution. While these systems are effective at retaining polluted solids by filtration and sedimentation processes, less is known of the detail of pollutant behaviour within SUDS structures. This paper reports on investigations carried out as part of a co-ordinated programme of controlled studies and field measurements at soft-engineered SUDS undertaken in the UK, observing the accumulation and behaviour of traffic-related heavy metals, oil and PAHs. The field data presented were collected from two extended detention basins serving the M74 motorway in the south-west of Scotland. Additional data were supplied from an experimental lysimeter soil core leaching study. Results show that basin design influences pollutant accumulation and behaviour in the basins. Management and/or control strategies are discussed for reducing the impact of traffic-related pollutants on the aqueous environment.

  12. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review.

    PubMed

    Chae, Yooeun; An, Youn-Joo

    2018-05-09

    Plastic pollution in the environment is currently receiving worldwide attention. Improper dumping of disused or abandoned plastic wastes leads to contamination of the environment. In particular, the disposal of municipal wastewater effluent, sewage sludge landfill, and plastic mulch from agricultural activities is a serious issue and of major concern regarding soil pollution. Compared to plastic pollution in the marine and freshwater ecosystems, that in the soil ecosystem has been relatively neglected. In this study, we discussed plastic pollution in the soil environment and investigated research on the effects of plastic wastes, especially microplastics, on the soil ecosystem. We found that earthworms have been predominantly used as the test species in investigating the effects of soil plastic pollution on organisms. Therefore, further research investigating the effects of plastic on other species models (invertebrates, plants, microorganisms, and insects) are required to understand the effects of plastic pollution on the overall soil ecosystem. In addition, we suggest other perspectives for future studies on plastic pollution and soil ecotoxicity of plastics wastes, providing a direction for such research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. A National Scale Sustainable Agriculture Matrix of Indicators to Inform Policy

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Zhang, X.

    2017-12-01

    The ratification of Sustainable Development Goals (SDGs) by all member countries of the United Nations demonstrates the determination of the international community in moving towards a sustainable future. To enable and encourage accountability, independent and transparent measurements of national sustainability efforts are essential. Among all sectors, agriculture is fundamental to all three pillars of sustainability, namely environment, society, and economy. However, the definition of a sustainable agriculture and the feasibility of measuring it remain elusive, in part because it encompasses both biophysical and socio-economic components that are still poorly integrated. Therefore, we have been developing a Sustainable Agriculture Matrix (SAM) on a national scale in order to measure country-level performance in agriculture. First proposed by Swaminathan for agricultural research and policy in 1990s, SAM is a collection of indicators measuring sustainable agriculture from environmental, social, and economic dimensions. The environmental dimension evaluates various impacts of agricultural production on the environment, such as water consumption and nutrient pollution. The economic dimension quantifies the costs and benefits for major stakeholders involved in agricultural production, including government, industry, farmers, and consumers. The social dimension considers three major aspects: 1) social welfare (e.g., hunger and poverty rate, nutritional quality, demography of rural community); 2) equity over sectors, space, and gender (e.g., access to resources/services and opportunities, distribution of income, land ownership and tenure rights); 3) systemic risk (e.g., fragility of the global agricultural production and trade system, resilience of a farm or a country to market and natural shocks). Translating the illustrative concepts into measureable indicators will not only provide an independent and transparent measurement of national performance in the

  14. Development of an Integrated Wastewater Treatment System/water reuse/agriculture model

    NASA Astrophysics Data System (ADS)

    Fox, C. H.; Schuler, A.

    2017-12-01

    Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The

  15. COMPARATIVE DIVERSITY OF FECAL BACTERIA IN AGRICULTURALLY SIGNIFICANT ANIMALS TO IDENTIFY ALTERNATIVE TARGETS FOR MICROBIAL SOURCE TRACKING

    EPA Science Inventory

    Animals of agricultural significance contribute a large percentage of fecal pollution to waterways via runoff contamination. The premise of microbial source tracking is to utilize fecal bacteria to identify target populations which are directly correlated to specific animal feces...

  16. Environmental challenges threatening the growth of urban agriculture in the United States.

    PubMed

    Wortman, Sam E; Lovell, Sarah Taylor

    2013-09-01

    Urban agriculture, though often difficult to define, is an emerging sector of local food economies in the United States. Although urban and agricultural landscapes are often integrated in countries around the world, the establishment of mid- to large-scale food production in the U.S. urban ecosystem is a relatively new development. Many of the urban agricultural projects in the United States have emerged from social movements and nonprofit organizations focused on urban renewal, education, job training, community development, and sustainability initiatives. Although these social initiatives have traction, critical knowledge gaps exist regarding the science of food production in urban ecosystems. Developing a science-based approach to urban agriculture is essential to the economic and environmental sustainability of the movement. This paper reviews abiotic environmental factors influencing urban cropping systems, including soil contamination and remediation; atmospheric pollutants and altered climatic conditions; and water management, sources, and safety. This review paper seeks to characterize the limited state of the science on urban agricultural systems and identify future research questions most relevant to urban farmers, land-use planners, and environmental consultants. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Mercury pollution issues in mining districts (Armenia)

    NASA Astrophysics Data System (ADS)

    Saghatelyan, Armen; Sahakyan, Lilit; Belyaeva, Olga; Torosyan, Nver

    2015-04-01

    The issue of mercury (Hg) due to its chemical and geochemical peculiarities and a negative impact it produces on human health has a long history. Existence of international projects devoted to Hg research (AMAP Technical Background Report, 2013) and elaboration on a new convention to combat Hg pollution (http://www.mercuryconvention.org/Home/tabid/3360/Default.aspx) prove that Hg has already become a global concern. Presently, data on Armenia's area pollution with Hg available in international literature sources and reports are scarce and cover pollution sources only. According to published data (AMAP Technical Background Report, 2013), in 2009 summary emission of Hg on the entire territory of the Republic of Armenia made 222,723 kg, considerable shares of which fell on primary copper production (88,057 kg), cement production (57,094 kg), production of gold from large mines (46,728 kg), waste and other losses due to breakage and disposal in landfill (29,995 kg); besides, some quantities originated from amalgams, combustion of different-type fuel and garbage, and so on. One should mind, that these are calculated statistical data, which reflect neither a complete list of Hg pollution sources nor a realistic picture of levels of Hg pollution of different environmental compartments and risks. Local monitoring data on Hg pollution are not sufficient either. This abstract is aimed at revealing of Hg pollution problems in some of Armenia's mining regions through generalization of data on complex investigations implemented at the Center for Ecological-Noosphere Studies NAS RA between 2005 and 2011, and is focused on Hg pollution of different environmental compartments: water - atmosphere - soil - farm produce - atmospheric precipitation - human bio-substrates. The obtained data indicate that as a result of ore mining and processing Hg enters onto the surface, travels through air and water migration streams and finally brings to pollution of all environmental compartments

  18. Spatial Optimization of Cropping Pattern in an Agricultural Watershed for Food and Biofuel Production with Minimum Downstream Pollution

    NASA Astrophysics Data System (ADS)

    Pv, F.; Sudheer, K.; Chaubey, I.; RAJ, C.; Her, Y.

    2013-05-01

    Biofuel is considered to be a viable alternative to meet the increasing fuel demand, and therefore many countries are promoting agricultural activities that help increase production of raw material for biofuel production. Mostly, the biofuel is produced from grain based crops such as Corn, and it apparently create a shortage in food grains. Consequently, there have been regulations to limit the ethanol production from grains, and to use cellulosic crops as raw material for biofuel production. However, cultivation of such cellulosic crops may have different effects on water quality in the watershed. Corn stover, one of the potential cellulosic materials, when removed from the agricultural field for biofuel production, causes a decrease in the organic nutrients in the field. This results in increased use of pesticides and fertilizers which in turn affect the downstream water quality due to leaching of the chemicals. On the contrary, planting less fertilizer-intensive cellulosic crops, like Switch Grass and Miscanthus, is expected to reduce the pollutant loadings from the watershed. Therefore, an ecologically viable land use scenario would be a mixed cropping of grain crops and cellulosic crops, that meet the demand for food and biofuel without compromising on the downstream water quality. Such cropping pattern can be arrived through a simulation-optimization framework. Mathematical models can be employed to evaluate various management scenarios related to crop production and to assess its impact on water quality. Soil and Water Assessment Tool (SWAT) model is one of the most widely used models in this context. SWAT can simulate the water and nutrient cycles, and also quantify the long-term impacts of land management practices, in a watershed. This model can therefore help take decisions regarding the type of cropping and management practices to be adopted in the watershed such that the water quality in the rivers is maintained at acceptable level. In this study, it

  19. Monitoring of nitrates in drinking water from agricultural and residential areas of Podravina and Prigorje (Croatia).

    PubMed

    Nemčić-Jurec, Jasna; Konjačić, Miljenko; Jazbec, Anamarija

    2013-11-01

    Nitrates are the most common chemical pollutant of groundwater in agricultural and suburban areas. Croatia must comply with the Nitrate Directive (91/676/EEC) whose aim is to reduce water pollution by nitrates originating from agriculture and to prevent further pollution. Podravina and Prigorje are the areas with a relatively high degree of agricultural activity. Therefore, the aim of this study was, by monitoring nitrates, to determine the distribution of nitrates in two different areas, Podravina and Prigorje (Croatia), to determine sources of contamination as well as annual and seasonal trends. The nitrate concentrations were measured in 30 wells (N = 382 samples) in Prigorje and in 19 wells (N = 174 samples) in Podravina from 2002 to 2007. In Podravina, the nitrate content was 24.9 mg/l and 6% of the samples were above the maximum available value (MAV), and in Prigorje the content was 53.9 mg/l and 38% of the samples above MAV. The wells were classified as correct, occasionally incorrect and incorrect. In the group of occasionally incorrect and incorrect wells, the point sources were within 10 m of the well. There is no statistically significant difference over the years or seasons within the year, but the interaction between locations and years was significant. Nitrate concentrations' trend was not significant during the monitoring. These results are a prerequisite for the adjustment of Croatian standards to those of the EU and will contribute to the implementation of the Nitrate Directive and the Directives on Environmental Protection in Croatia and the EU.

  20. The OCAPI collaborative platform: study of two particle pollution episodes in 2016 in Paris

    NASA Astrophysics Data System (ADS)

    Foret, Gilles; Michoud, Vincent; Formenti, Paola; Gratien, Aline; Beekmann, Matthias; Peinado, Florian; Favez, Olivier; Haeffelin, Martial; Dupont, Jean-Charles; Bodichon, Renaud; Gros, Valérie; Ghersi, Véronique; Meleux, Frédérik; Xuéref-Rémy, Irène

    2017-04-01

    Air pollution and its impacts are subject to an expanded interest since the middle of the 20th century, especially in urban areas which gathered an important part of emission sources. These polluted urban air masses are composed by a complex mixture of gases and aerosols coming from various emission sources (vehicular traffic, industries, residential heating, agricultural activities, natural sources) or chemical processes. To efficiently reduce this pollution and its impacts on population, it is important to understand its drivers, its sources and its impact on human health. To get some insights in Paris air pollution, a collaborative measurement platform called OCAPI ("Observation de la Composition Atmosphérique Parisienne de l'IPSL") has been built and implies several Parisian research laboratories of IPSL institute (CEREA, LSCE, LMD, LISA, LATMOS, LERMA and METIS) as well as public agencies and institutes in charge of Paris air pollution monitoring (AIRPARIF, INERIS). OCAPI platform aims at gathering skills and instruments of these laboratories to measure the composition and dynamics of Paris atmosphere. In this framework, multi-site measurements were performed during two intense particle pollution episodes which occurred in March 2016 and between November and December 2016. These two episodes were characterized by different meteorological conditions and different type of emission sources. Indeed, March episode was related to intense agricultural activities and high ammonium nitrate contribution to aerosol composition; while end of year episode was related to low wind speed, cold conditions and thin boundary layer which favoured the stagnation of locally emitted pollutants. This latter episode was characterized by large contribution of organics in aerosol composition. In this presentation, a study of these two episodes will be presented. We will first present the context and the OCAPI platform. Then, first results of dynamics and aerosol composition

  1. Temporal variation of persistent organic pollutant (POP) residue concentrations in sediments from the bay of Chetumal, Mexico.

    PubMed

    Noreña-Barroso, E; Gold-Bouchot, G; Ceja-Moreno, V

    2007-08-01

    Bay of Chetumal is a transboundary priority area for the Mesoamerican Barrier Reef Systems project, which has been studied because it is the receiving body of pollutants from a large agricultural area and the city of Chetumal. Levels of persistent organic pollutants in sediments from the Bay were assessed a few years after a mass mortality event of Mayan catfish (Ariopsis assimilis) occurred in 1996. Recent sediments were collected in the rainy season (1999) and dry season (2000); results show concentrations in general lower than those reported after the fish kill, and a change of chemical profiles in chemical pollution.

  2. Observational study on the concentration distributions of SO{sub 2} and NO{sub 2} in Dhaka, Bangladesh under severe air pollution condition in winter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, A.K.; Kitada, T.

    1996-12-31

    Dhaka is the capital and the biggest city of Bangladesh, and is expanding very rapidly. Emissions from heavy traffic and many small industries and commercial complexes, newly developed in and around the city, are polluting the air of Dhaka city. The air pollution is severe especially in winter due to adverse meteorological conditions such as low wind speed and dry, stably-stratified air, which restricts the mixing height to low levels and prevent dispersion of pollutants. But so far no study of air pollution of Dhaka city has been done. We have first measured SO{sub 2} and NO{sub 2} concentrations inmore » Dhaka city in a large scale and derived their spatial distributions over Dhaka. Molecular diffusion tubes, which do not require power sources and are produced at low cost, have been used to measure the concentration distributions of SO{sub 2} and NO{sub 2} at 64 sites in Dhaka city and its suburbs during the period of December-January of 1995-96. The diffusion tube samplers were calibrated using 6 automated air pollution monitoring stations in Aichi-prefecture, Japan. The calibration curve and the distribution of the concentration data acquired by automatic measurement instrument at each location showed that the error range of measurements with the molecular diffusion tube samplers was 2-27%. The samples were analyzed using ion-chromatography and spectrophotometer to determine the concentrations of SO{sub 2} and NO{sub 2} respectively. The contamination of unexposed tubes under field conditions was determined and the value of the blank test was subtracted from the measurements of the diffusion tube samplers. The effects of wind turbulence and temperature were reduced using polyflon filters.« less

  3. Indoor air pollution from unprocessed solid fuels in developing countries.

    PubMed

    Kaplan, Charlotte

    2010-01-01

    Approximately half of the world's population relies on biomass (primarily wood and agricultural residues) or coal fuels (collectively termed solid fuels) for heating, lighting, and cooking. The incomplete combustion of such materials releases byproducts with well-known adverse health effects, hence increasing the risk of many diseases and death. Among these conditions are acute respiratory infections, chronic obstructive pulmonary disease, heart disease, stroke, lung cancer, cataracts and blindness, tuberculosis, asthma, and adverse pregnancy outcomes. The International Agency for Research on Cancer has classified the indoor combustion of coal emissions as Group 1, a known carcinogen to humans. Indoor air pollution exposure is greatest in individuals who live in rural developing countries. Interventions have been limited and show only mixed results. To reduce the morbidity and mortality from indoor air pollution, countermeasures have to be developed that are practical, efficient, sustainable, and economical with involvement from the government, the commercial sector, and individuals. This review focuses on the contribution of solid fuels to indoor air pollution.

  4. Diffusivity measurements of volatile organics in levitated viscous aerosol particles

    NASA Astrophysics Data System (ADS)

    Bastelberger, Sandra; Krieger, Ulrich K.; Luo, Beiping; Peter, Thomas

    2017-07-01

    Field measurements indicating that atmospheric secondary organic aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas-particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities < 10-14 cm2 s-1 at temperatures < 15 °C. The temperature dependence is strong, suggesting a diffusion activation energy of about 300 kJ mol-1. We conclude that atmospheric volatile organic compounds can be subject to severe diffusion limitations in viscous organic aerosol particles. This may enable an important long-range transport mechanism for organic material, including pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs).

  5. Point source pollution and variability of nitrate concentrations in water from shallow aquifers

    NASA Astrophysics Data System (ADS)

    Nemčić-Jurec, Jasna; Jazbec, Anamarija

    2017-06-01

    Agriculture is one of the several major sources of nitrate pollution, and therefore the EU Nitrate Directive, designed to decrease pollution, has been implemented. Point sources like septic systems and broken sewage systems also contribute to water pollution. Pollution of groundwater by nitrate from 19 shallow wells was studied in a typical agricultural region, middle Podravina, in northwest Croatia. The concentration of nitrate ranged from <0.1 to 367 mg/l in water from wells, and 29.8 % of 253 total samples were above maximum acceptable value of 50 mg/l (MAV). Among regions R1-R6, there was no statistically significant difference in nitrate concentrations ( F = 1.98; p = 0.15) during the years 2002-2007. Average concentrations of nitrate in all 19 wells for all the analyzed years were between recommended limit value of 25 mg/l (RLV) and MAV except in 2002 (concentration was under RLV). The results of the repeated measures ANOVA showed statistically significant differences between the wells at the point source distance (proximity) of <10 m, compared to the wells at the point source distance of >20 m ( F = 10.6; p < 0.001). Average annual concentrations of nitrate during the years studied are not statistically different, but interaction between proximity and years is statistically significant ( F = 2.07; p = 0.04). Results of k-means clustering confirmed division into four clusters according to the pollution. Principal component analysis showed that there is only one significant factor, proximity, which explains 91.6 % of the total variability of nitrate. Differences in water quality were found as a result of different environmental factors. These results will contribute to the implementation of the Nitrate Directive in Croatia and the EU.

  6. Impacts of aerosol pollutant mitigation on lowland rice yields in China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyi; Li, Tao; Yue, Xu; Yang, Xiaoguang

    2017-10-01

    Aerosol pollution in China is significantly altering radiative transfer processes and is thereby potentially affecting rice photosynthesis and yields. However, the response of rice photosynthesis to aerosol-induced radiative perturbations is still not well understood. Here, we employ a process-based modelling approach to simulate changes in incoming radiation (RAD) and the diffuse radiation fraction (DF) with aerosol mitigation in China and their associated impacts on rice yields. Aerosol reduction has the positive effect of increasing RAD and the negative effect of decreasing DF on rice photosynthesis and yields. In rice production areas where the average RAD during the growing season is lower than 250 W m-2, aerosol reduction is beneficial for higher rice yields, whereas in areas with RAD>250 W m-2, aerosol mitigation causes yield declines due to the associated reduction in the DF, which decreases the light use efficiency. As a net effect, rice yields were estimated to significantly increase by 0.8%-2.6% with aerosol concentrations reductions from 20 to 100%, which is lower than the estimates obtained in earlier studies that only considered the effects of RAD. This finding suggests that both RAD and DF are important processes influencing rice yields and should be incorporated into future assessments of agricultural responses to variations in aerosol-induced radiation under climate change.

  7. Monitoring of metal pollution in waterways across Bangladesh and ecological and public health implications of pollution.

    PubMed

    Kibria, Golam; Hossain, Md Maruf; Mallick, Debbrota; Lau, T C; Wu, Rudolf

    2016-12-01

    Using innovative artificial mussels technology for the first time, this study detected eight heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, U, Zn) on a regular basis in waterways across Bangladesh (Chittagong, Dhaka and Khulna). Three heavy metals, viz. Co, Cr and Hg were always below the instrumental detection levels in all the sites during the study period. Through this study, seven metal pollution "hot spots" have been identified, of which, five "hot spots" (Cu, Fe, Mn, Ni, Pb) were located in the Buriganga River, close to the capital Dhaka. Based on this study, the Buriganga River can be classified as the most polluted waterway in Bangladesh compared to waterways monitored in Khulna and Chittagong. Direct effluents discharged from tanneries, textiles are, most likely, reasons for elevated concentrations of heavy metals in the Buriganga River. In other areas (Khulna), agriculture and fish farming effluents may have caused higher Cu, U and Zn in the Bhairab and Rupsa Rivers, whereas untreated industrial discharge and ship breaking activities can be linked to elevated Cd in the coastal sites (Chittagong). Metal pollution may cause significant impacts on water quality (irrigation, drinking), aquatic biodiversity (lethal and sub-lethal effects), food contamination/food security (bioaccumulation of metals in crops and seafood), human health (diseases) and livelihoods of people associated with wetlands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Critical Evaluation of Air-Liquid Interface Cell Exposure Systems for in Vitro Assessment of Atmospheric Pollutants

    EPA Science Inventory

    We compared various in vitro exposure systems for their ability to expose cells to particles and gases. The systems tested use different mechanisms to deliver multi-pollutants to the cells: diffusion, sedimentation, thermophoresis (THP) and electrostatic precipitation (ESP). Vari...

  9. Hydrological Controls on Nutrient Concentrations and Fluxes in Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Petry, J.; Soulsby, C.

    2002-12-01

    This investigation into diffuse agricultural pollution and the hydrological controls that exert a strong influence on both nutrient concentrations and fluxes, was conducted in an intensively farmed lowland catchment in north-east Scotland. The study focuses on spatial and seasonal variations in nutrient concentrations and fluxes at the catchment scale, over a 15-month period. The water quality of the 14.5 km2 Newmills Burn catchment has relatively high nutrient levels with mean concentrations of NO3-N and NH3-N at 6.09 mg/l and 0.28 mg/l respectively. Average PO4-P concentrations are 0.06 mg/l. Over short timescales nutrient concentrations and fluxes are greatest during storm events when PO4-P and NH3-N are mobilised by overland flow in riparian areas, where soils have been compacted by livestock or machinery. Delivery of deeper soil water in subsurface storm flow, facilitated by agricultural under-drainage, produces a marked increase in NO3-N (6.9 mg/l) concentrations on the hydrograph recession limb. A more detailed insight into the catchment response to storm events, and in particular the response of the hydrological pathways which provide the main sources of runoff during storm events, was gained by sampling stream water at 2-hourly intervals during 5 events. End Member Mixing Analysis (EMMA) was carried out using event specific end-member chemistries to differentiate three catchment-scale hydrological pathways (overland flow, subsurface storm flow, groundwater flow) on the basis of observed Si and NO3-N concentrations in sampled source waters. Results show that overland flow generally dominates the storm peak and provides the main flow path by which P is transferred to stream channels during storm events, whilst subsurface storm flows usually dominate the storm hydrograph volumetrically and route NO3-rich soil water to the stream. The study shows that altering hydrological pathways in a catchment can have implications for nutrient management. Whilst buffer

  10. Diffusion, sorption, and retardation processes of anions in bentonite and organo-bentonites for multibarrier systems

    NASA Astrophysics Data System (ADS)

    Schampera, Birgit; Dultz, Stefan

    2013-04-01

    The low permeability, high cation exchange capacity (CEC) and plasticity of bentonites favor their use in multibarrier systems of waste deposits [1]. Bentonites have a high CEC but their ability to sorb anions is very low. There is, however, need for retardation of anions and organic pollutants in many applications. Bentonites, modified with certain organic cations, have the capacity to sorb anions and non-polar organic compounds in addition to cations. Investigations on organically modified clays address a wide variety of applications including immobilization of pollutants in contaminated soils, waste water treatment and in situ placement for the protection of ground water [2]. Many experiments on anion and cation sorption of organo-clays were conducted in the batch mode which does not reflect solid-liquid ratios and material densities in barrier systems. Diffusion experiments on compacted clays allow the evaluation of transport processes and sorption of pollutants at conditions relevant for repositories. For organo-clays only few diffusion studies are published e.g. [3] measured the diffusion of tritium and [4] the diffusion of H2O in bentonite and organo-bentonites. The organic cation hexadecylpyridinium (HDPy) was added to Wyoming bentonite (MX-80) in amounts corresponding to 2-400 % of the CEC. The uptake of organic cations was determined by the C-content, XRD and IR-spectroscopy. Wettability was analyzed by the contact angle. Physical, chemical and mineralogical properties of clays were characterized. Diffusion experiments were carried out in situ in a cell attached to the ATR-unit of a FTIR-spectrometer. For H2O-diffusion the compacted organo-clays are saturated first with D2O, afterwards H2O is supplied to the surface at the top of the clay platelet. Anion-diffusion was conducted with NO3--solution instead of H2O only having characteristic IR band positions at 1350 cm-1. Three different concentrations (0.25M, 0.5M and 1M) were used. Additional batch

  11. Knowledge Gaps and Rural Development in Tajikistan: Agricultural Advisory Services as a Panacea?

    ERIC Educational Resources Information Center

    Shtaltovna, Anastasiya

    2016-01-01

    Purpose: The purpose of this paper is to analyse knowledge systems and channels of innovation diffusion in Tajikistan. In particular, I look at the formation of agricultural advisory services (AASs) and how these provide a vital source of knowledge and innovation for farmers during the transition process. Methodology: Empirically, this paper draws…

  12. A contemporary decennial global sample of changing agricultural field sizes

    NASA Astrophysics Data System (ADS)

    White, E.; Roy, D. P.

    2011-12-01

    In the last several hundred years agriculture has caused significant human induced Land Cover Land Use Change (LCLUC) with dramatic cropland expansion and a marked increase in agricultural productivity. The size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLUC. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, diffusion of disease pathogens and pests, and loss or degradation in buffers to nutrient, herbicide and pesticide flows. In this study, globally distributed locations with significant contemporary field size change were selected guided by a global map of agricultural yield and literature review and were selected to be representative of different driving forces of field size change (associated with technological innovation, socio-economic conditions, government policy, historic patterns of land cover land use, and environmental setting). Seasonal Landsat data acquired on a decadal basis (for 1980, 1990, 2000 and 2010) were used to extract field boundaries and the temporal changes in field size quantified and their causes discussed.

  13. Effect of heavy haze and aerosol pollution on rice and wheat productions in China

    NASA Astrophysics Data System (ADS)

    Tie, Xuexi; Huang, Ru-Jin; Dai, Wenting; Cao, Junji; Long, Xin; Su, Xiaoli; Zhao, Shuyu; Wang, Qiyuan; Li, Guohui

    2016-07-01

    In China, regional haze pollution is a serious environmental problem. The impact on ecosystem, however, is not clearly understood. This study investigates the effect of regional haze pollution on the yields of rice and wheat in China. The spatial and temporal distributions of aerosol optical depth (AOD) show high particulate pollution in the North China Plain region, Yangtze River Delta region, the central eastern China, and the Si Chuan Basin, coexisted largely with crop growth in time and space. The solar irradiance reaching these regions is estimated to reduce by up to 28-49%, calculated using the AOD distributions and tropospheric ultraviolet-visible (TUV) model. Reduction of solar irradiance in these regions can depress optimal yields of about 45% of rice and 75% of wheat growth in China, leading to 2% reduction in total rice production and 8% reduction in total wheat production in China. However, there are large uncertainties of the estimate related to the diffuse solar radiation. For high diffuse radiation case, the estimate reductions of rice and wheat decrease to 1% and 4.5%, respectively. A further detailed study is needed to clearly understand this effect to meet the growing food demand in the nation in the coming decades.

  14. Environmental Pollution: Noise Pollution - Sonic Boom

    DTIC Science & Technology

    1977-06-01

    UNCLASSIFIED AD-A041 400 DDC/BIB-77/06 ENVIRONMENTAL POLLUTION NOISE POLLUTION SONIC BOOM A DDC BIBLIOGRAPHY DDC-TAS Cameron Station Alexandria, Va...rn7Sttio 658S-A041 400 4 TITLE xand r.VuhtlVlia) 2 TA i b- 1iblog ra ph y ENVIRONMENTAL POLLUTION : --. Apr-l IM59-Jul, 7NOISE POLLUTION -SONIC BOOM. 1,976...BIBLIOGRAPHY SEARCH CONTROL NO. /2OM09 AD- 769 970 20/1 1/3 DEFENSE UOCUMENTATION CENTER ALEXANDRIA VA ENVIRONMENTAL POLLUTION : NOISE POLLUTION

  15. Peri-Urbanism in Globalizing India: A Study of Pollution, Health and Community Awareness

    PubMed Central

    Waldman, Linda; Bisht, Ramila; Saharia, Rajashree; Kapoor, Abhinav; Rizvi, Bushra; Hamid, Yasir; Arora, Meghana; Chopra, Ima; Priya, Ritu; Marshall, Fiona

    2017-01-01

    This paper examines the intersection between environmental pollution and people’s acknowledgements of, and responses to, health issues in Karhera, a former agricultural village situated between the rapidly expanding cities of New Delhi (India’s capital) and Ghaziabad (an industrial district in Uttar Pradesh). A relational place-based view is integrated with an interpretive approach, highlighting the significance of place, people’s emic experiences, and the creation of meaning through social interactions. Research included surveying 1788 households, in-depth interviews, participatory mapping exercises, and a review of media articles on environment, pollution, and health. Karhera experiences both domestic pollution, through the use of domestic waste water, or gandapani, for vegetable irrigation, and industrial pollution through factories’ emissions into both the air and water. The paper shows that there is no uniform articulation of any environment/health threats associated with gandapani. Some people take preventative actions to avoid exposure while others do not acknowledge health implications. By contrast, industrial pollution is widely noted and frequently commented upon, but little collective action addresses this. The paper explores how the characteristics of Karhera, its heterogeneous population, diverse forms of environmental pollution, and broader governance processes, limit the potential for citizen action against pollution. PMID:28867770

  16. The sources, impact and management of car park runoff pollution: a review.

    PubMed

    Revitt, D Michael; Lundy, Lian; Coulon, Frédéric; Fairley, Martin

    2014-12-15

    Traffic emissions contribute significantly to the build-up of diffuse pollution loads on urban surfaces with their subsequent mobilisation and direct discharge posing problems for receiving water quality. This review focuses on the impact and mitigation of solids, metals, nutrients and organic pollutants in the runoff deriving from car parks. Variabilities in the discharged pollutant levels and in the potentials for pollutant mitigation complicate an impact assessment of car park runoff. The different available stormwater best management practices and proprietary devices are reported to be capable of reductions of between 20% and almost 100% for both suspended solids and a range of metals. This review contributes to prioritising the treatment options which can achieve the appropriate pollutant reductions whilst conforming to the site requirements of a typical car park. By applying different treatment scenarios to the runoff from a hypothetical car park, it is shown that optimal performance, in terms of ecological benefits for the receiving water, can be achieved using a treatment train incorporating permeable paving and bioretention systems. The review identifies existing research gaps and emphasises the pertinent management practices as well as design issues which are relevant to the mitigation of car park pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. TEMPO Early Adopters in Air-Quality Forecasting, Planning and Assessment, Pollution Emissions, Health, Agriculture, and Environmental Impacts: Applications and Decision Support

    NASA Astrophysics Data System (ADS)

    Newchurch, M.; Zavodsky, B.; Chance, K.; Haynes, J.; Lefer, B. L.; Naeger, A.

    2016-12-01

    The AQ research community has a long legacy of using space-based observations (e.g., Solar Backscatter Ultraviolet Instrument [SBUV], Global Ozone Monitoring Experiment [GOME], Ozone Monitoring Instrument [OMI], and the Ozone Mapping & Profiler Suite [OMPS]) to study atmospheric chemistry. These measurements have been used to observe day-to-day and year-to-year changes in atmospheric constituents. However, they have not been able to capture the diurnal variability of pollution with enough temporal or spatial fidelity and a low enough latency for regular use by operational decision makers. As a result, the operational AQ community has traditionally relied on ground-based (e.g., collection stations, LIDAR) and airborne observing systems to study tropospheric chemistry. In order to maximize its utility for applications and decision support, there is a need to educate the community about the game-changing potential for the geostationary TEMPO mission well ahead of its expected launch date early in the third decade of this millinium. This NASA mission will engage user communities and enable science across the NASA Applied Science Focus Areas of Health and Air Quality, Disasters, Water Resources, and Ecological Forecasting, In addition, topics discussed will provide opportunities for collaborations extending TEMPO applications to future program areas in Agriculture, Weather and Climate (including Numerical Weather Prediction), Energy, and Oceans.

  18. Glyphosate and AMPA, "pseudo-persistent" pollutants under real-world agricultural management practices in the Mesopotamic Pampas agroecosystem, Argentina.

    PubMed

    Primost, Jezabel E; Marino, Damián J G; Aparicio, Virginia C; Costa, José Luis; Carriquiriborde, Pedro

    2017-10-01

    In the Pampas, public concern has strongly risen because of the intensive use of glyphosate for weed control and fallow associated with biotech crops. The present study was aimed to evaluate the occurrence and concentration of the herbicide and its main metabolite (AMPA) in soil and other environmental compartments of the mentioned agroecosystem, including groundwater, in relation to real-world agricultural management practices in the region. Occurrence was almost ubiquitous in solid matrices (83-100%) with maximum concentrations among the higher reported in the world (soil: 8105 and 38939; sediment: 3294 and 7219; suspended particulate matter (SPM): 584 and 475 μg/kg of glyphosate and AMPA). Lower detection frequency was observed in surface water (27-55%) with maximum concentrations in whole water of 1.80 and 1.90 μg/L of glyphosate and AMPA, indicating that SPM analysis would be more sensitive for detection in the aquatic ecosystem. No detectable concentrations of glyphosate or AMPA were observed in groundwater. Glyphosate soil concentrations were better correlated with the total cumulative dose and total number of applications than the last spraying event dose, and an increment of 1 mg glyphosate/kg soil every 5 spraying events was estimated. Findings allow to infer that, under current practices, application rates are higher than dissipation rates. Hence, glyphosate and AMPA should be considered "pseudo-persistent" pollutants and a revisions of management procedures, monitoring programs, and ecological risk for soil and sediments should be also recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fractional Diffusion Equations and Anomalous Diffusion

    NASA Astrophysics Data System (ADS)

    Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin

    2018-01-01

    Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.

  20. Paradise lost: an introduction to the geography of water pollution in Puerto Rico.

    PubMed

    Hunter, J M; Arbona, S I

    1995-05-01

    Rapid industrialization has transformed the agricultural economy of Puerto Rico, creating employment opportunities and raising standards of living. Success, however, is marred by widespread pollution that outstrips the infrastructural capacity necessary for the preservation of environmental quality and of human health. The result today is a landfill crisis, a heritage of toxic dumps, and an advancing tide of pollution. Rivers and reservoirs are nearly ubiquitously affected and groundwaters, long thought to be naturally protected, show evidence of increasing contamination. Limestone aquifers are at particular risk. Public awareness and inter-sectoral political leadership are urgently needed to reverse the trend towards environmental deterioration.