Sample records for agricultural great plains

  1. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870-2000.

    PubMed

    Parton, William J; Gutmann, Myron P; Merchant, Emily R; Hartman, Melannie D; Adler, Paul R; McNeal, Frederick M; Lutz, Susan M

    2015-08-25

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices.

  2. Measuring and mitigating agricultural greenhouse gas production in the U.S. Great Plains 1870-2000

    USDA-ARS?s Scientific Manuscript database

    In the last 150 years the Great Plains region of the United States has become a major center of agricultural production for the global market. The initial agricultural settlement of this area and subsequent changes in production content and farming techniques have resulted in significant greenhouse ...

  3. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000

    PubMed Central

    Parton, William J.; Gutmann, Myron P.; Merchant, Emily R.; Hartman, Melannie D.; Adler, Paul R.; McNeal, Frederick M.; Lutz, Susan M.

    2015-01-01

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  4. Regional dynamics of grassland change in the western Great Plains

    USGS Publications Warehouse

    Drummond, M.A.

    2007-01-01

    This paper examines the contemporary land-cover changes in two western Great Plains ecoregions between 1973 and 2000. Agriculture and other land uses can have a substantial effect on grassland cover that varies regionally depending on the primary driving forces of change. In order to better understand change, the rates, types, and causes of land conversion were examined for 1973, 1980, 1986, 1992, and 2000 using Landsat satellite data and a statistical sampling strategy. The overall estimated rate of land-cover change between 1973 and 2000 was 7.4% in the Northwestern Great Plains and 11.5% in the Western High Plains. Trends in both ecoregions have similarities, although the dynamics of change differ temporally depending on driving forces. Between 1973 and 1986, grassland cover declined when economic opportunity drove an expansion of agriculture. Between 1986 and 2000, grassland expanded as public policy and a combination of socioeconomic factors drove a conversion from agriculture to grassland. ?? 2007 Copyright by the Center for Great Plains Studies, University of Nebraska-Lincoln.

  5. Energy Profiles of an Agricultural Frontier: The American Great Plains, 1860-2000.

    PubMed

    Cunfer, Geoff; Watson, Andrew; MacFadyen, Joshua

    2018-04-01

    Agro-ecosystem energy profiles reveal energy flows into, within, and out of U.S. Great Plains farm communities across 140 years. This study evaluates external energy inputs such as human labor, machinery, fuel, and fertilizers. It tracks the energy content of land produce, including crops, grazed pasture, and firewood, and also accounts unharvested energy that remains available for wildlife. It estimates energy redirected through livestock feed into draft power, meat, and milk, and estimates the energy content of final produce available for local consumption or market sale. The article presents energy profiles for three case studies in Kansas in 1880, 1930, 1954, and 1997. Two energy transformations occurred during that time. The first, agricultural colonization , saw farm communities remake the landscape, turning native grassland into a mosaic of cropland and pasture, a process that reduced overall landscape energy productivity. A second energy transition occurred in the mid-twentieth century, characterized by fossil fuel energy imports. That outside energy raised harvested and unharvested energy flows, reused biomass energy, and also final produce. This socio-ecological transition increased landscape energy productivity by 33 to 45 percent above pre-settlement conditions in grain-growing regions. These energy developments were not uniform across the plains. Variations in rainfall and soil quality constrained or favored energy productivity in different places. The case studies reveal the spatial variation of energy profiles in Great Plains agro-ecosystems, while the longitudinal approach tracks temporal change.

  6. The taming of the prairie: A century of agricultural research at the Northern Great Plains Research Laboratory

    USDA-ARS?s Scientific Manuscript database

    Nearly a century after Congress authorized the Northern Great Plains Research Laboratory, it had approximately 35 employees and an annual budget of 3.4 million dollars. The long history of research accomplishments from the Laboratory have been well accepted by the agricultural community and have ide...

  7. Long-term Agroecosystem Research in the Northern Great Plains.

    NASA Astrophysics Data System (ADS)

    Schmer, M.; Sanderson, M.; Liebig, M. A.; Wienhold, B.; Awada, T.; Papiernik, S.; Osborne, S.; Kemp, W.; Okalebo, J. A.; Riedall, W.

    2015-12-01

    The Northern Great Plains is the bread basket of the United States, accounting for a substantial portion of U.S. agricultural production. This region faces critical challenges regarding balancing food needs, resource conservation (e.g Ogallala aquifer), environmental concerns, and rural economy development. Developing transformative, multifunctional systems will require equally imaginative and efficient tools to help farmers manage complex agroecosystems in a rapidly changing climate. The Northern Plains long-term agroecosystem research (LTAR) site at Mandan, ND and the Platte River High Plains LTAR (ARS/University of Nebraska-Lincoln) at Lincoln, NE in collaboration with USDA-ARS research units in Brookings, SD and Fargo, ND are collaborating to address the grand challenge of providing and sustaining multiple service provisions from Northern Great Plains agroecosystems. We propose to attain these goals through sustainable intensification based on the adoption of conservation agriculture principles including reduced soil disturbance, livestock integration, and greater complexity and diversity in the cropping system. Here, we summarize new concepts these locations have pioneered in dynamic cropping systems, resource use efficiency, and agricultural management technologies. As part of the LTAR network, we will conduct long-term cross-site research to design and assess new agricultural practices and systems aimed at improving our understanding of decision making processes and outcomes across an array of agricultural systems.

  8. Great plains regional climate assessment technical report

    USDA-ARS?s Scientific Manuscript database

    The Great Plains region (GP) plays important role in providing food and energy to the economy of the United States. Multiple climatic and non-climatic stressors put multiple sectors, livelihoods and communities at risk, including agriculture, water, ecosystems and rural and tribal communities. The G...

  9. Warming in the Northern Great Plains: Impact and Response in the Agricultural Community

    NASA Astrophysics Data System (ADS)

    Seielstad, G.; Welling, L.

    2001-12-01

    Because agricultural production in the northern Great Plains contributes significantly to both domestic and international markets the impacts of climate change, as well as the response strategies undertaken by the region's residents, will be felt throughout the nation and the world. The national assessment of Climate Change Impacts on the United States has pointed out that the northern Great Plains could be favored under global warming scenarios in that future climates could increase crop yields [Reilly, Tubiello, McCarl, and Melillo, 2000]. Yield, though, is only one measure of the consequences that rapid warming might have on this region. Challenges to a changing environment must be met by people. Producers here, as well as in other agricultural regions, already function under multiple stresses that are completely separate from climate variability and change. These include falling prices, globalization, complex trade relations, changes in government policy, environmental constraints, and changing consumer preferences. It is against the backdrop of these stresses that pending climate changes must be considered. Interactions with stakeholders through the NGP Assessment workshops, held in 1997 and 1999, identified key concerns and outlined potential mitigation and optimization strategies for the consequences of climate change in this region. We will present examples of the successful implementation of some of these strategies: actions that farmers and ranchers are employing to 1) increase their awareness of environmental factors, 2) enhance their ability to respond quickly to environmental change, 3) improve their economic returns, and 4) decrease environmental degradation. We will also highlight other "no regrets" actions and policies under consideration that may offer individual producers greater flexibility in their management decisions and provide a healthier environment for society at large.

  10. Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSutter, T.M.; Cihacek, L.J.

    2009-07-15

    Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant,more » and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.« less

  11. Great plains, Chapter 11

    Treesearch

    C.M. Clark

    2011-01-01

    The North American Great Plains are the largest contiguous ecoregion in North America, covering 3.5 million square km2, or 16 percent of the continental area (CEC 1997). In the United States, the Great Plains ecoregion encompasses a roughly triangular region (Figure 2.2), bordered on the west by the Rocky Mountains and the southwestern deserts in...

  12. Genetic variation in Great Plains Juniperus

    Treesearch

    David F. Van Haverbeke; Rudy M. King

    1990-01-01

    Fifth-year analyses of Great Plains Juniperus seed sources indicate eastern redcedar should be collected in east-central Nebraska for use throughout the Great Plains; Rocky Mountain juniper seed should be collected from northwest Nebraska, or central Montana, for planting southward through the Great Plains into west-central Kansas west of the 100th meridian.

  13. Toxic fables: the advertising and marketing of agricultural chemicals in the great plains, 1945-1985.

    PubMed

    Vail, David D

    2012-12-01

    This paper examines how pesticides and their technologies were sold to farmers and pilots throughout the midtwentieth century. It principally considers how marketing rhetoric and advertisement strategies used by chemical companies and aerial spraying firms influenced the practices and perspectives of farm producers in the Great Plains. In order to convince landowners and agricultural leaders to buy their pesticides, chemical companies generated advertisements that championed local crop health, mixture accuracy, livestock safety and a chemical-farming 'way of life' that kept fields healthy and productive. Combining notions of safety, accuracy and professionalism with pest eradication messages reinforced the standards that landowners, pilots and agriculturalists would hold regarding toxicity and risk when spraying their fields. As the politics of health changed in the aftermath of Rachel Carson's Silent Spring, these companies and aerial spraying outfits responded by keeping to a vision of agricultural health that required poisons for protection through technological accuracy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The future of irrigation on the U.S. Great Plains

    USDA-ARS?s Scientific Manuscript database

    In the Great Plains, soil and water conservation is being achieved in both dryland and irrigated agricultural systems, and increasingly in combinations of these systems. Limiting tillage has increased the retention of crop residues on the surface and has reduced the evaporative loss of water, making...

  15. A conceptual model to facilitate amphibian conservation in the northern Great Plains

    USGS Publications Warehouse

    Mushnet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    As pressures on agricultural landscapes to meet worldwide resource needs increase, amphibian populations face numerous threats including habitat destruction, chemical contaminants, disease outbreaks, wetland sedimentation, and synergistic effects of these perturbations. To facilitate conservation planning, we developed a conceptual model depicting elements critical for amphibian conservation in the northern Great Plains. First, we linked upland, wetland, and landscape features to specific ecological attributes. Ecological attributes included adult survival; reproduction and survival to metamorphosis; and successful dispersal and recolonization. Second, we linked ecosystem drivers, ecosystem stressors, and ecological effects of the region to each ecological attribute. Lastly, we summarized information on these ecological attributes and the drivers, stressors, and effects that work in concert to influence the maintenance of viable and genetically diverse amphibian populations in the northern Great Plains. While our focus was on the northern Great Plains, our conceptual model can be tailored to other geographic regions and taxa.

  16. Quantifying agricultural drought in tallgrass prairie region in the U.S. Southern Great Plains through analysis of a water-related vegetation index from MODIS images

    USDA-ARS?s Scientific Manuscript database

    Severe droughts in the Southern Great Plains (SGP: Kansas, Oklahoma, and Texas) in recent years have reduced the productivity of tallgrass prairie and resulted in substantial economic losses to the beef cattle industry in this region. Understanding spatial and temporal patterns of agricultural droug...

  17. A Socioeconomic Profile of the Northern Great Plains Coal Region.

    ERIC Educational Resources Information Center

    Myers, Paul R.; And Others

    When historic (1940-70) and recent (1970-74) trends in population, income, and employment for the Northern Great Plains coal region are compared with that for the entire U.S. and all U.S. nonmetro counties, data reveal a minimal population increase from 1940 to 1970, a period of declining agricultural employment and high outmigration rates. In…

  18. Great Plains Drought in Simulations of Twentieth Century

    NASA Astrophysics Data System (ADS)

    McCrary, R. R.; Randall, D. A.

    2008-12-01

    The Great Plains region of the United States was influenced by a number of multi-year droughts during the twentieth century. Most notable were the "Dust Bowl" drought of the 1930s and the 1950s Great Plains drought. In this study we evaluate the ability of three of the Coupled Global Climate Models (CGCMs) used in the Fourth Assessment Report (AR4) of the IPCC to simulate Great Plains drought with the same frequency and intensity as was observed during the twentieth century. The models chosen for this study are: GFDL CM 2.0, NCAR CCSM3, and UKMO HadCM3. We find that the models accurately capture the climatology of the hydrologic cycle of the Great Plains, but that they tend to overestimate the variability in Great Plains precipitation. We also find that in each model simulation at least one long-term drought occurs over the Great Plains region during their representations 20th Century Climate. The multi-year droughts produced by the models exhibit similar magnitudes and spatial scales as was observed during the twentieth century. This study also investigates the relative roles that external forcing from the tropical Pacific and local feedbacks between the land surface and the atmosphere have in the initiation and perpetuation of Great Plains drought in each model. We find that cool, La Nina-like conditions in the tropical pacific are often associated with long-term drought conditions over the Great Plains in GFDL CM 2.0 and UKMO HadCM3, but there appears to be no systematic relationship between tropical Pacific SST variability and Great Plains drought in CCSM3. It is possible the strong coupling between the land surface and the atmosphere in the NCAR model causes precipitation anomalies to lock into phase over the Great Plains thereby perpetuating drought conditions. Results from this study are intended to help assess whether or not these climate models are credible for use in the assessment of future drought over the Great Plains region of the United States.

  19. Circular buffer strips in center pivot irrigation for multiple benefits in the Southern Great Plains

    USDA-ARS?s Scientific Manuscript database

    The Ogallala Aquifer has converted the Southern Great Plains from a dust bowl to a highly productive agricultural region in the US. However, over exploitation of the aquifer is threatening sustainability of irrigated agriculture in the region. Partial pivots, where high water using conventional crop...

  20. Land change variability and human-environment dynamics in the United States Great Plains

    USGS Publications Warehouse

    Drummond, M.A.; Auch, Roger F.; Karstensen, K.A.; Sayler, K. L.; Taylor, Janis L.; Loveland, Thomas R.

    2012-01-01

    Land use and land cover changes have complex linkages to climate variability and change, biophysical resources, and socioeconomic driving forces. To assess these land change dynamics and their causes in the Great Plains, we compare and contrast contemporary changes across 16 ecoregions using Landsat satellite data and statistical analysis. Large-area change analysis of agricultural regions is often hampered by change detection error and the tendency for land conversions to occur at the local-scale. To facilitate a regional-scale analysis, a statistical sampling design of randomly selected 10 km × 10 km blocks is used to efficiently identify the types and rates of land conversions for four time intervals between 1973 and 2000, stratified by relatively homogenous ecoregions. Nearly 8% of the overall Great Plains region underwent land-use and land-cover change during the study period, with a substantial amount of ecoregion variability that ranged from less than 2% to greater than 13%. Agricultural land cover declined by more than 2% overall, with variability contingent on the differential characteristics of regional human–environment systems. A large part of the Great Plains is in relatively stable land cover. However, other land systems with significant biophysical and climate limitations for agriculture have high rates of land change when pushed by economic, policy, technology, or climate forcing factors. The results indicate the regionally based potential for land cover to persist or fluctuate as land uses are adapted to spatially and temporally variable forcing factors.

  1. The geologic story of the Great Plains

    USGS Publications Warehouse

    Trimble, Donald E.

    1980-01-01

    For more than half a century after Lewis and Clark crossed the country in 1805-6, the Great Plains was the testing ground of frontier America here America grew to maturity (fig. 1). In 1805-7, explorer Zebulon Pike crossed the southcentral Great Plains, following the Arkansas River from near Great Bend, Kans., to the Rocky Mountains. In later years, Santa Fe traders, lured by the wealth of New Mexican trade, followed Pike's path as far as Bents Fort, Colo., where they turned southwestward away from the river route. Those pioneers who later crossed the plains on the Oregon Trail reached the Platte River near the place that would become Kearney, Nebr., by a nearly direct route from Independence, Mo., and followed the Platte across the central part of the Great Plains.

  2. WRF model sensitivity to land surface model and cumulus parameterization under short-term climate extremes over the southern Great Plains of the United States

    Treesearch

    Lisi Pei; Nathan Moore; Shiyuan Zhong; Lifeng Luo; David W. Hyndman; Warren E. Heilman; Zhiqiu Gao

    2014-01-01

    Extreme weather and climate events, especially short-term excessive drought and wet periods over agricultural areas, have received increased attention. The Southern Great Plains (SGP) is one of the largest agricultural regions in North America and features the underlying Ogallala-High Plains Aquifer system worth great economic value in large part due to production...

  3. A Sustainable Biomass Industry for the North American Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, Norman J.; Smith, Steven J.

    2009-12-01

    The North American Great Plains (hereafter NAGP) region is economically distressed and prone to severe ecological disruptions such as soil erosion. Its water resources are over-used and subject to pollution from agricultural fertilizers and chemicals, issues common to agricultural lands globally. On the other hand, the region is well suited to the production of herbaceous biomass that can be combusted directly for power or converted to liquid transportation fuels. This paper reviews the geography, history and current condition of the NAGP and offers suggestions about how the agriculture, economy and environment of this and similar regions around the world canmore » be made more sustainable and able to contribute to a reduction in CO2 emissions and consequent global warming.« less

  4. Groundwater declines are linked to changes in Great Plains stream fish assemblages

    USGS Publications Warehouse

    Prekins, Joshuah S.; Gido, Keith B.; Falke, Jeffrey A.; Fausch, Kurt D.; Crockett, Harry; Johnson, Eric R.; Sanderson, John

    2017-01-01

    Groundwater pumping for agriculture is a major driver causing declines of global freshwater ecosystems, yet the ecological consequences for stream fish assemblages are rarely quantified. We combined retrospective (1950–2010) and prospective (2011–2060) modeling approaches within a multiscale framework to predict change in Great Plains stream fish assemblages associated with groundwater pumping from the United States High Plains Aquifer. We modeled the relationship between the length of stream receiving water from the High Plains Aquifer and the occurrence of fishes characteristic of small and large streams in the western Great Plains at a regional scale and for six subwatersheds nested within the region. Water development at the regional scale was associated with construction of 154 barriers that fragment stream habitats, increased depth to groundwater and loss of 558 km of stream, and transformation of fish assemblage structure from dominance by large-stream to small-stream fishes. Scaling down to subwatersheds revealed consistent transformations in fish assemblage structure among western subwatersheds with increasing depths to groundwater. Although transformations occurred in the absence of barriers, barriers along mainstem rivers isolate depauperate western fish assemblages from relatively intact eastern fish assemblages. Projections to 2060 indicate loss of an additional 286 km of stream across the region, as well as continued replacement of large-stream fishes by small-stream fishes where groundwater pumping has increased depth to groundwater. Our work illustrates the shrinking of streams and homogenization of Great Plains stream fish assemblages related to groundwater pumping, and we predict similar transformations worldwide where local and regional aquifer depletions occur.

  5. Groundwater declines are linked to changes in Great Plains stream fish assemblages.

    PubMed

    Perkin, Joshuah S; Gido, Keith B; Falke, Jeffrey A; Fausch, Kurt D; Crockett, Harry; Johnson, Eric R; Sanderson, John

    2017-07-11

    Groundwater pumping for agriculture is a major driver causing declines of global freshwater ecosystems, yet the ecological consequences for stream fish assemblages are rarely quantified. We combined retrospective (1950-2010) and prospective (2011-2060) modeling approaches within a multiscale framework to predict change in Great Plains stream fish assemblages associated with groundwater pumping from the United States High Plains Aquifer. We modeled the relationship between the length of stream receiving water from the High Plains Aquifer and the occurrence of fishes characteristic of small and large streams in the western Great Plains at a regional scale and for six subwatersheds nested within the region. Water development at the regional scale was associated with construction of 154 barriers that fragment stream habitats, increased depth to groundwater and loss of 558 km of stream, and transformation of fish assemblage structure from dominance by large-stream to small-stream fishes. Scaling down to subwatersheds revealed consistent transformations in fish assemblage structure among western subwatersheds with increasing depths to groundwater. Although transformations occurred in the absence of barriers, barriers along mainstem rivers isolate depauperate western fish assemblages from relatively intact eastern fish assemblages. Projections to 2060 indicate loss of an additional 286 km of stream across the region, as well as continued replacement of large-stream fishes by small-stream fishes where groundwater pumping has increased depth to groundwater. Our work illustrates the shrinking of streams and homogenization of Great Plains stream fish assemblages related to groundwater pumping, and we predict similar transformations worldwide where local and regional aquifer depletions occur.

  6. Groundwater declines are linked to changes in Great Plains stream fish assemblages

    PubMed Central

    Perkin, Joshuah S.; Gido, Keith B.; Falke, Jeffrey A.; Fausch, Kurt D.; Crockett, Harry; Johnson, Eric R.; Sanderson, John

    2017-01-01

    Groundwater pumping for agriculture is a major driver causing declines of global freshwater ecosystems, yet the ecological consequences for stream fish assemblages are rarely quantified. We combined retrospective (1950–2010) and prospective (2011–2060) modeling approaches within a multiscale framework to predict change in Great Plains stream fish assemblages associated with groundwater pumping from the United States High Plains Aquifer. We modeled the relationship between the length of stream receiving water from the High Plains Aquifer and the occurrence of fishes characteristic of small and large streams in the western Great Plains at a regional scale and for six subwatersheds nested within the region. Water development at the regional scale was associated with construction of 154 barriers that fragment stream habitats, increased depth to groundwater and loss of 558 km of stream, and transformation of fish assemblage structure from dominance by large-stream to small-stream fishes. Scaling down to subwatersheds revealed consistent transformations in fish assemblage structure among western subwatersheds with increasing depths to groundwater. Although transformations occurred in the absence of barriers, barriers along mainstem rivers isolate depauperate western fish assemblages from relatively intact eastern fish assemblages. Projections to 2060 indicate loss of an additional 286 km of stream across the region, as well as continued replacement of large-stream fishes by small-stream fishes where groundwater pumping has increased depth to groundwater. Our work illustrates the shrinking of streams and homogenization of Great Plains stream fish assemblages related to groundwater pumping, and we predict similar transformations worldwide where local and regional aquifer depletions occur. PMID:28652354

  7. Agricultural Producer Perceptions of Climate Change and Climate Education Needs for the Central Great Plains

    ERIC Educational Resources Information Center

    Hibbs, Amber Campbell; Kahl, Daniel; PytlikZillig, Lisa; Champion, Ben; Abdel-Monem, Tarik; Steffensmeier, Timothy; Rice, Charles W.; Hubbard, Kenneth

    2014-01-01

    The Central Great Plains Climate Education Partnership conducted focus groups throughout Kansas to gain a better understanding of farmer perceptions and attitudes towards climate change education. Results indicate concern about climatic changes, even if producers are unsure that "human caused climate change" is occurring. Participants…

  8. Causes and Predictability of the 2012 Great Plains Drought

    NASA Technical Reports Server (NTRS)

    Hoerling, M.; Eischeid, J.; Kumar, A.; Leung, R.; Mariotti, A.; Mo, K.; Schubert, S.; Seager, R.

    2013-01-01

    Central Great Plains precipitation deficits during May-August 2012 were the most severe since at least 1895, eclipsing the Dust Bowl summers of 1934 and 1936. Drought developed suddenly in May, following near-normal precipitation during winter and early spring. Its proximate causes were a reduction in atmospheric moisture transport into the Great Plains from the Gulf of Mexico. Processes that generally provide air mass lift and condensation were mostly absent, including a lack of frontal cyclones in late spring followed by suppressed deep convection in summer owing to large-scale subsidence and atmospheric stabilization. Seasonal forecasts did not predict the summer 2012 central Great Plains drought development, which therefore arrived without early warning. Climate simulations and empirical analysis suggest that ocean surface temperatures together with changes in greenhouse gases did not induce a substantial reduction in summertime precipitation over the central Great Plains during 2012. Yet, diagnosis of the retrospective climate simulations also reveals a regime shift toward warmer and drier summertime Great Plains conditions during the recent decade, most probably due to natural decadal variability. As a consequence, the probability for severe summer Great Plains drought may have increased in the last decade compared to the 1980s and 1990s, and the so-called tail-risk for severe drought may have been heightened in summer 2012. Such an extreme drought event was nonetheless still found to be a rare occurrence within the spread of 2012 climate model simulations. Implications of this study's findings for U.S. seasonal drought forecasting are discussed.

  9. Child Labor in the Early Sugar Beet Industry in the Great Plains, 1890-1920

    ERIC Educational Resources Information Center

    Lyons-Barrett, Mary

    2005-01-01

    Children working in agriculture have always been a part of the rural culture and work ethos of the United States, especially on the Great Plains. Many teenagers still detassel corn or walk the beans in the summer months to earn spending money or money for college. But what about the children who work as migrant laborers in commercialized…

  10. Kansas environmental and resource study: A Great Plains model, tasks 1-6

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L. (Principal Investigator); Ulaby, F. T.; Shanmugam, K. S.; Williams, D. L.; Mccauley, J. R.; Mcnaughton, J. L.

    1972-01-01

    There are no author identified significant results in this report. Environmental and resources investigations in Kansas utilizing ERTS-1 imagery are summarized for the following areas: (1) use of feature extraction techniqued for texture context information in ERTS imagery; (2) interpretation and automatic image enhancement; (3) water use, production, and disease detection and predictions for wheat; (4) ERTS-1 agricultural statistics; (5) monitoring fresh water resources; and (6) ground pattern analysis in the Great Plains.

  11. Factors Affecting Public Preferences for Grassland Landscape Heterogeneity in the Great Plains

    NASA Astrophysics Data System (ADS)

    Joshi, Omkar; Becerra, Terrie A.; Engle, David M.; Fuhlendorf, Samuel D.; Elmore, R. Dwayne

    2017-11-01

    Agricultural intensification has fragmented rangelands in the Great Plains, which has contributed to uniform and homogeneous landscapes and decreased biodiversity. Alternative land management practices involving fire-grazing interactions can help maintain biodiversity without affecting livestock productivity. A survey was designed to understand the factors that influence preferences among the general population towards grassland landscape heterogeneity. Given the ordinal nature of survey responses, requisite data were analyzed using a generalized ordinal logit model. Results suggested that respondents who valued open space and those who recognized a need for a varying mix of uniform grasses and grasslands preferred landscape heterogeneity. Female respondents were about two times as likely to prefer heterogeneous landscapes compared to male respondents. In contrast, population groups that preferred wildlife habitat did not desire heterogeneous landscapes. Results suggest the need for extension and outreach activities to educate certain segments of the general population regarding benefits of alternative management practices that support landscape heterogeneity in the Great Plains.

  12. Agriculture on the Chaco Plain, Paraguay, South America

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This view of extensive agriculture on the Chaco Plain, Paraguay, (22.5S, 60.5W) depicts the fertility of the soils between the Andes Mountains and the Paraguay - Parana Rivers in the northwestern Paraguay. The Gran Chaco Plain is flat landscape built up by sediments. Frontier settlements like Marsical Estigarribia, seen in the image, are dominated by agriculture along the stream courses that abound in the area.

  13. Estimated historical distribution of grassland communities of the Southern Great Plains

    USGS Publications Warehouse

    Reese, Gordon C.; Manier, Daniel J.; Carr, Natasha B.; Callan, Ramana; Leinwand, Ian I.F.; Assal, Timothy J.; Burris, Lucy; Ignizio, Drew A.

    2016-12-07

    The purpose of this project was to map the estimated distribution of grassland communities of the Southern Great Plains prior to Euro-American settlement. The Southern Great Plains Rapid Ecoregional Assessment (REA), under the direction of the Bureau of Land Management and the Great Plains Landscape Conservation Cooperative, includes four ecoregions: the High Plains, Central Great Plains, Southwestern Tablelands, and the Nebraska Sand Hills. The REA advisors and stakeholders determined that the mapping accuracy of available national land-cover maps was insufficient in many areas to adequately address management questions for the REA. Based on the recommendation of the REA stakeholders, we estimated the potential historical distribution of 10 grassland communities within the Southern Great Plains project area using data on soils, climate, and vegetation from the Natural Resources Conservation Service (NRCS) including the Soil Survey Geographic Database (SSURGO) and Ecological Site Information System (ESIS). The dominant grassland communities of the Southern Great Plains addressed as conservation elements for the REA area are shortgrass, mixed-grass, and sand prairies. We also mapped tall-grass, mid-grass, northwest mixed-grass, and cool season bunchgrass prairies, saline and foothill grasslands, and semi-desert grassland and steppe. Grassland communities were primarily defined using the annual productivity of dominant species in the ESIS data. The historical grassland community classification was linked to the SSURGO data using vegetation types associated with the predominant component of mapped soil units as defined in the ESIS data. We augmented NRCS data with Landscape Fire and Resource Management Planning Tools (LANDFIRE) Biophysical Settings classifications 1) where NRCS data were unavailable and 2) where fifth-level watersheds intersected the boundary of the High Plains ecoregion in Wyoming. Spatial data representing the estimated historical distribution of

  14. Land Use and Family Formation in the Settlement of the U.S. Great Plains

    PubMed Central

    Gutmann, Myron P.; Pullum-Piñón, Sara M.; Witkowski, Kristine; Deane, Glenn D.; Merchant, Emily

    2014-01-01

    In agricultural settings, environment shapes patterns of settlement and land use. Using the Great Plains of the United States during the period of its initial Euro-American settlement (1880–1940) as an analytical lens, this article explores whether the same environmental factors that determine settlement timing and land use—those that indicate suitability for crop-based agriculture—also shape initial family formation, resulting in fewer and smaller families in areas that are more conducive to livestock raising than to cropping. The connection between family size and agricultural land availability is now well known, but the role of the environment has not previously been explicitly tested. Descriptive analysis offers initial support for a distinctive pattern of family formation in the western Great Plains, where precipitation is too low to support intensive cropping. However, multivariate analysis using county-level data at 10-year intervals offers only partial support to the hypothesis that environmental characteristics produce these differences. Rather, this analysis has found that the region was also subject to the same long-term social and demographic changes sweeping the rest of the country during this period. PMID:24634550

  15. New Chronologies of Dune Activation Extracted from the Central Great Plains

    NASA Astrophysics Data System (ADS)

    Johnson, W. C.; Halfen, A. F.

    2011-12-01

    Recent investigations of dunefield activation histories in the Great Plains of North America have documented many long-duration, spatially-extensive, Holocene droughts. These "megadroughts" have been documented mostly in the larger dunefields of the Great Plains, e.g., the Nebraska Sand Hills, making it difficult for researchers to characterize these events region-wide. Several studies being conducted by the authors aim to extract a better spatial and temporal representation of megadroughts across the region by investigating smaller, less known dunefields of the Central Great Plains. Thus far, these studies have yielded new activation histories from three dunefields, the Kansas River, Hutchinson, and Arkansas Valley dunefields, which together span the precipitation gradient from eastern Kansas to eastern Colorado. While each of these dunefields have a unique history, collectively their activation chronologies yield new and important information on Holocene megadrought activity in the Great Plains, which may have been more spatially diverse and complex than previously thought. The Kansas River dunefield mantles a remnant high terrace of the lower Kansas River valley in the east-Central Great Plains and is one of the most easterly dunefields in the Great Plains. Optically stimulated luminescence (OSL) ages indicate dune activation last occurred ~36-31 ka, i.e., during MIS 3 between Heinrich Events 4 and 3 and was coincidental with loess deposition (Gillman Canyon Formation). The Kansas River dunefield also shows some evidence of minor activation during the middle Holocene, however this activity was likely limited to erosion of the dune surface and not full activation. About 200 km southwest of the Kansas River dunefield is the Hutchinson dunefield (HD), located immediately northeast of the Big Bend of the Arkansas River. OSL ages document dunefield-wide activity in the HD between ~1200 and 120 years ago, with peaks of activity centered after the Medieval Climatic

  16. Dynamic cropping systems: Holistic approach for dryland agricultural systems in the northern Great Plains of North America

    USDA-ARS?s Scientific Manuscript database

    Cropping systems over the past century have developed greater crop specialization, more effectively conserve our soil and water resources, and are more resilient. The purpose of this chapter is to discuss the evolution of cropping systems in the Northern Great Plains and provide an approach to crop...

  17. Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources

    USGS Publications Warehouse

    Zhang, Li; Wylie, Bruce K.; Ji, Lei; Gilmanov, Tagir G.; Tieszen, Larry L.; Howar, Daniel M.

    2011-01-01

    Previous studies suggested that the grasslands may be carbon sinks or near equilibrium, and they often shift between carbon sources in drought years and carbon sinks in other years. It is important to understand the responses of net ecosystem production (NEP) to various climatic conditions across the U.S. Great Plains grasslands. Based on 15 grassland flux towers, we developed a piecewise regression model and mapped the grassland NEP at 250 m spatial resolution over the Great Plains from 2000 to 2008. The results showed that the Great Plains was a net sink with an averaged annual NEP of 24 ± 14 g C m−2 yr−1, ranging from a low value of 0.3 g C m−2 yr−1 in 2002 to a high value of 47.7 g C m−2 yr−1 in 2005. The regional averaged NEP for the entire Great Plains grasslands was estimated to be 336 Tg C yr−1 from 2000 to 2008. In the 9 year period including 4 dry years, the annual NEP was very variable in both space and time. It appeared that the carbon gains for the Great Plains were more sensitive to droughts in the west than the east. The droughts in 2000, 2002, 2006, and 2008 resulted in increased carbon losses over drought-affected areas, and the Great Plains grasslands turned into a relatively low sink with NEP values of 15.8, 0.3, 20.1, and 10.2 g C m−2 yr−1 for the 4 years, respectively.

  18. Precipitation Dynamical Downscaling Over the Great Plains

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Ming; Xue, Ming; McPherson, Renee A.; Martin, Elinor; Rosendahl, Derek H.; Qiao, Lei

    2018-02-01

    Detailed, regional climate projections, particularly for precipitation, are critical for many applications. Accurate precipitation downscaling in the United States Great Plains remains a great challenge for most Regional Climate Models, particularly for warm months. Most previous dynamic downscaling simulations significantly underestimate warm-season precipitation in the region. This study aims to achieve a better precipitation downscaling in the Great Plains with the Weather Research and Forecast (WRF) model. To this end, WRF simulations with different physics schemes and nudging strategies are first conducted for a representative warm season. Results show that different cumulus schemes lead to more pronounced difference in simulated precipitation than other tested physics schemes. Simply choosing different physics schemes is not enough to alleviate the dry bias over the southern Great Plains, which is related to an anticyclonic circulation anomaly over the central and western parts of continental U.S. in the simulations. Spectral nudging emerges as an effective solution for alleviating the precipitation bias. Spectral nudging ensures that large and synoptic-scale circulations are faithfully reproduced while still allowing WRF to develop small-scale dynamics, thus effectively suppressing the large-scale circulation anomaly in the downscaling. As a result, a better precipitation downscaling is achieved. With the carefully validated configurations, WRF downscaling is conducted for 1980-2015. The downscaling captures well the spatial distribution of monthly climatology precipitation and the monthly/yearly variability, showing improvement over at least two previously published precipitation downscaling studies. With the improved precipitation downscaling, a better hydrological simulation over the trans-state Oologah watershed is also achieved.

  19. Spatially explicit land-use and land-cover scenarios for the Great Plains of the United States

    USGS Publications Warehouse

    Sohl, Terry L.; Sleeter, Benjamin M.; Sayler, Kristi L.; Bouchard, Michelle A.; Reker, Ryan R.; Bennett, Stacie L.; Sleeter, Rachel R.; Kanengieter, Ronald L.; Zhu, Zhi-Liang

    2012-01-01

    The Great Plains of the United States has undergone extensive land-use and land-cover change in the past 150 years, with much of the once vast native grasslands and wetlands converted to agricultural crops, and much of the unbroken prairie now heavily grazed. Future land-use change in the region could have dramatic impacts on ecological resources and processes. A scenario-based modeling framework is needed to support the analysis of potential land-use change in an uncertain future, and to mitigate potentially negative future impacts on ecosystem processes. We developed a scenario-based modeling framework to analyze potential future land-use change in the Great Plains. A unique scenario construction process, using an integrated modeling framework, historical data, workshops, and expert knowledge, was used to develop quantitative demand for future land-use change for four IPCC scenarios at the ecoregion level. The FORE-SCE model ingested the scenario information and produced spatially explicit land-use maps for the region at relatively fine spatial and thematic resolutions. Spatial modeling of the four scenarios provided spatial patterns of land-use change consistent with underlying assumptions and processes associated with each scenario. Economically oriented scenarios were characterized by significant loss of natural land covers and expansion of agricultural and urban land uses. Environmentally oriented scenarios experienced modest declines in natural land covers to slight increases. Model results were assessed for quantity and allocation disagreement between each scenario pair. In conjunction with the U.S. Geological Survey's Biological Carbon Sequestration project, the scenario-based modeling framework used for the Great Plains is now being applied to the entire United States.

  20. Climate change impacts on hillslope runoff on the northern Great Plains, 1962-2013

    NASA Astrophysics Data System (ADS)

    Coles, A. E.; McConkey, B. G.; McDonnell, J. J.

    2017-07-01

    On the Great Plains of North America, water resources are being threatened by climatic shifts. However, a lack of hillslope-scale climate-runoff observations is limiting our ability to understand these impacts. Here, we present a 52-year (1962-2013) dataset (precipitation, temperature, snow cover, soil water content, and runoff) from three 5 ha hillslopes on the seasonally-frozen northern Great Plains. In this region, snowmelt-runoff drives c. 80% of annual runoff and is potentially vulnerable to warming temperatures and changes in precipitation amount and phase. We assessed trends in these climatological and hydrological variables using time series analysis. We found that spring snowmelt-runoff has decreased (on average by 59%) in response to a reduction in winter snowfall (by 18%), but that rainfall-runoff has shown no significant response to a 51% increase in rainfall or shifts to more multi-day rain events. In summer, unfrozen, deep, high-infiltrability soils act as a 'shock absorber' to rainfall, buffering the long-term runoff response to rainfall. Meanwhile, during winter and spring freshet, frozen ground limits soil infiltrability and results in runoff responses that more closely mirror the snowfall and snowmelt trends. These findings are counter to climate-runoff relationships observed at the catchment scale on the northern Great Plains where land drainage alterations dominate. At the hillslope scale, decreasing snowfall, snowmelt-runoff, and spring soil water content is causing agricultural productivity to be increasingly dependent on growing season precipitation, and will likely accentuate the impact of droughts.

  1. Vulnerability of grazing and confined livestock in the Northern Great Plains to projected mid- and late-twenty-first century climate

    USDA-ARS?s Scientific Manuscript database

    The Northern Great Plains (NGP) region of the United States – which comprises Montana, Wyoming, Colorado, North Dakota, South Dakota and Nebraska – is a largely rural area that provides important agricultural and ecological services, including biological diversity. The region contains 25% of the Nat...

  2. Vulnerability of grazing and confined livestock in the Northern Great Plains to projected mid- and late- 21st century climate

    USDA-ARS?s Scientific Manuscript database

    The Northern Great Plains (NGP) region – Montana, Wyoming, Colorado, North Dakota, South Dakota and Nebraska – is a largely rural area that provides important agricultural and ecological services, including biological diversity. The NGP is projected to experience rising atmospheric CO2, warming and ...

  3. Southern Great Plains Safety Orientation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schatz, John

    2014-05-01

    Welcome to the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ARM) Southern Great Plains (SGP) site. This U.S. Department of Energy (DOE) site is managed by Argonne National Laboratory (ANL). It is very important that all visitors comply with all DOE and ANL safety requirements, as well as those of the Occupational Safety and Health Administration (OSHA), the National Fire Protection Association, and the U.S. Environmental Protection Agency, and with other requirements as applicable.

  4. Great Plains Project: at worst a $1. 7 billion squeeze

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maize, K.

    1983-04-11

    On January 29, 1982, seeking a loan guarantee for its coal-to-gas synfuels project, Great Plains Gasification Associates told the Department of Energy that they expected to reap $1.2 billion in net income to the partnership during the first 10 years of the venture. On March 31, 1983, Great Plains treasurer Rodney Boulanger had a different projection: a horrific loss of $773 million in the first decade. The Great Plains project, with construction 50% complete, is being built near Beulah, ND. The project has a design capacity of 137.5 million cubic feet a day of SNG. Great Plains' analysis assumes thatmore » the plant will operate at 70% of design capacity in 1985, 77% in 1986, 84% in 1987 and 91% thereafter. The company projects the total project cost at $2.1 billion, consisting of plant costs of $1.9 billion and coal mine costs of $156 million. In originally projecting a cumulative net income of better than $1 billion, the partners anticipated running losses in only three of the first 10 years, and cash distributions from the project of $893 million during the first decade. Under the new projections, even in the best case, the first four years would show losses and there would be no distribution to the partners. In the worst case, the project would run in the red every year for the first 10 years.« less

  5. Saline lakes of the glaciated Northern Great Plains

    USGS Publications Warehouse

    Mushet, David M.

    2011-01-01

    Unless you have flown over the region or seen aerial photographs, it is hard to grasp the scale of the millions of lakes and wetlands that dot the prairie landscape of the glaciated Northern Great Plains (Figure 1). This region of abundant aquatic habitats within a grassland matrix provides for the needs of a wide diversity of wildlife species and has appropriately been deemed the "duck factory of North America." While the sheer number of lakes and wetlands within this area of the Northern Great Plains can be truly awe-inspiring, their diversity in terms of the chemical composition of their water adds an equally important component supporting biotic diversity and productivity. Water within these lakes and wetlands can range from extremely fresh with salinities approaching that of rainwater to hypersaline with salinity ten times greater than that of seawater. Additionally, while variation in salinity among these water bodies can be great, the ionic composition of lakes and wetlands with similar salinities can vary markedly, influencing the overall spatial and temporal diversity of the region's biota.

  6. Skip-row Planting Patterns Stabilize Corn Grain Yields in the Central Great Plains

    USDA-ARS?s Scientific Manuscript database

    The highly variable climate of the Central Great Plains makes dryland corn (Zea mays) production a risky enterprise. Twenty-three field trials were conducted across the Central Great Plains from 2004 through 2006 to quantify the effect of various skip-row planting patterns and plant populations on g...

  7. Juniper seed sources in the Great Plains

    Treesearch

    Richard A. Cunningham; Rudy M. King

    2000-01-01

    At age 10, 100% of eastern redcedar ( L.) and Rocky Mountain juniper ( Sarg.) trees from several seed sources throughout the Great Plains had survived. Seed sources from southeastern Texas had the poorest survival. Eastern redcedar trees from Kansas seed sources grew tallest, and trees from Montana and southeastern Texas seed sources were the shortest. Rocky Mountain...

  8. The Use of Remote Sensing for Monitoring, Prediction, and Management of Hydrologic, Agricultural, and Ecological Processes in the Northern Great Plains

    NASA Technical Reports Server (NTRS)

    Farwell, Sherry O.; DeTroye, Diane (Technical Monitor)

    2002-01-01

    The NASA-EPSCoR program in South Dakota is focused on the enhancement of NASA-related research in earth system science and corresponding infrastructure development to support this theme. Hence, the program has adopted a strategy that keys on research projects that: a) establish quantitative links between geospatial information technologies and fundamental climatic and ecosystem processes in the Northern Great Plains (NGP) and b) develop and use coupled modeling tools, which can be initialized by data from combined satellite and surface measurements, to provide reliable predictions and management guidance for hydrologic, agricultural, and ecological systems of the NGP. Building a partnership network that includes both internal and external team members is recognized as an essential element of the SD NASA-EPSCoR program. Hence, promoting and tracking such linkages along with their relevant programmatic consequences are used as one metric to assess the program's progress and success. This annual report first summarizes general activities and accomplishments, and then provides progress narratives for the two separate, yet related research projects that are essential components of the SD NASA-EPSCoR program.

  9. Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production.

    PubMed

    Kukal, Meetpal S; Irmak, Suat

    2018-02-22

    Climate variability and trends affect global crop yields and are characterized as highly dependent on location, crop type, and irrigation. U.S. Great Plains, due to its significance in national food production, evident climate variability, and extensive irrigation is an ideal region of investigation for climate impacts on food production. This paper evaluates climate impacts on maize, sorghum, and soybean yields and effect of irrigation for individual counties in this region by employing extensive crop yield and climate datasets from 1968-2013. Variability in crop yields was a quarter of the regional average yields, with a quarter of this variability explained by climate variability, and temperature and precipitation explained these in singularity or combination at different locations. Observed temperature trend was beneficial for maize yields, but detrimental for sorghum and soybean yields, whereas observed precipitation trend was beneficial for all three crops. Irrigated yields demonstrated increased robustness and an effective mitigation strategy against climate impacts than their non-irrigated counterparts by a considerable fraction. The information, data, and maps provided can serve as an assessment guide for planners, managers, and policy- and decision makers to prioritize agricultural resilience efforts and resource allocation or re-allocation in the regions that exhibit risk from climate variability.

  10. The Buffalo Commons: Great Plains Residents' Responses to a Radical Vision

    ERIC Educational Resources Information Center

    Rees, Amanda

    2005-01-01

    The American Great Plains has gained and shed various regional meanings since Euro-American exploration began. From a desert to a garden to a dust bowl to a breadbasket, this region's identity has shifted radically and dramatically over the last 200 years. In the mid-1980s unusual things were happening on the Plains that suggested yet another…

  11. Ecoregional differences in late-20th-century land-use and land-cover change in the U.S. northern great plains

    USGS Publications Warehouse

    Auch, Roger F.; Sayler, K. L.; Napton, D.E.; Taylor, Janis L.; Brooks, M.S.

    2011-01-01

    Land-cover and land-use change usually results from a combination of anthropogenic drivers and biophysical conditions found across multiple scales, ranging from parcel to regional levels. A group of four Level 111 ecoregions located in the U.S. northern Great Plains is used to demonstrate the similarities and differences in land change during nearly a 30-year period (1973-2000) using results from the U.S. Geological Survey's Land Cover Trends project. There were changes to major suites of land-cover; the transitions between agriculture and grassland/shrubland and the transitions among wetland, water, agriculture, and grassland/ shrubland were affected by different factors. Anthropogenic drivers affected the land-use tension (or land-use competition) between agriculture and grassland/shrubland land-covers, whereas changes between wetland and water land-covers, and their relationship to agriculture and grassland/shrubland land-covers, were mostly affected by regional weather cycles. More land-use tension between agriculture and grassland/shrubland landcovers occurred in ecoregions with greater amounts of economically marginal cropland. Land-cover change associated with weather variability occurred in ecoregions that had large concentrations of wetlands and water impoundments, such as the Missouri River reservoirs. The Northwestern Glaciated Plains ecoregion had the highest overall estimated percentage of change because it had both land-use tension between agriculture and grassland/shrubland land-covers and wetland-water changes. 

  12. Regional summer cooling from agricultural management practices that conserve soil carbon in the northern North American Great Plains

    NASA Astrophysics Data System (ADS)

    Stoy, Paul; Bromley, Gabriel; Gerken, Tobias; Tang, Angela; Morgan, Mallory; Wood, David; Ahmed, Selena; Bauer, Brad; Brookshire, Jack; Haggerty, Julia; Jarchow, Meghann; Miller, Perry; Peyton, Brent; Rashford, Ben; Spangler, Lee; Swanson, David; Taylor, Suzi; Poulter, Ben

    2017-04-01

    Conserving soil carbon resources while transitioning to a C negative economy is imperative for meeting global climate targets, and can also have critical but under-investigated regional effects. Parts of the North American northern Great Plains have experienced a remarkable 6 W m-2 decrease in summertime radiative forcing since the 1970s. Extreme temperature events now occur less frequently, maximum temperatures have decreased by some 2 ˚ C, and precipitation has increased by 10 mm per decade in some areas. This regional trend toward a cooler and wetter summer climate has coincided with changes in agricultural management. Namely, the practice of keeping fields fallow during summer (hereafter 'summerfallow') has declined by some 23 Mha from the 1970s until the present in the Canadian Prairie Provinces and across the U.S., an area of similar size to the United Kingdom. In addition to potential climate impacts, replacing summerfallow with no-till cropping systems results in lesser soil carbon losses - or even gains - and usually confers economic benefits. In other words, replacing summerfallow with no-till cropping may have resulted in a 'win-win-win' scenario for regional climate, soil carbon conservation, and farm-scale economics. The interaction between carbon, climate, and the economy in this region - and the precise domain that has experienced cooling - are still unknown, which limits our ability to forecast coupled carbon, climate, and human dynamics. Here, we use eddy covariance measurements to demonstrate that summerfallow results in carbon losses during the growing season of the same magnitude as carbon uptake by winter and spring wheat, on the order of 100 - 200 g C m-2 per growing season. We use eddy covariance energy flux measurements to model atmospheric boundary layer and lifted condensation level heights to demonstrate that observed regional changes in near-surface humidity (of up to 7%) are necessary to simulate observed increases in convective

  13. Alfalfa production with subsurface drip irrigation in the Central Great Plains

    USDA-ARS?s Scientific Manuscript database

    Irrigated alfalfa production is gaining interest because of the growing number of dairies in the semi-arid U.S. Central Great Plains and its longstanding superior profitability compared to other alternative crops grown in the region. Irrigation requirements for alfalfa are great because of alfalfa's...

  14. OMI NO2 in the Central US Great Plains: How Well Do We Interpret NO2 Trends?

    NASA Astrophysics Data System (ADS)

    Kollonige, D. E.; Duncan, B. N.; Thompson, A. M.; Lamsal, L. N.

    2017-12-01

    Several areas over the Central US show statistically significant increases in OMI NO2 levels of 10-30% in the last 10 years versus the generally decreasing trends over most of CONUS. Are these changes in OMI NO2 a result of human activity, meteorology, or a combination of both? To answer this, we examine regions in the Central US Great Plains that have multiple plausible sources for the observed trends, considering impacts of land surface changes, agriculture growth, oil and gas operations, and drought conditions. We find that changes to the land surface appear to contribute to some of the observed anomalies due to tree removal in the Black Hills National Forest, South Dakota, and additional livestock farming in the Sandhills of Nebraska. However, increasing OMI NO2 also corresponds to several areas with growing agriculture business (ex. South Dakota and Nebraska) and oil and gas activity (ex. Williston Basin in North Dakota and Permian Basin in TX). To understand the relationship between the observed NO2 variability and the regional meteorological conditions over the last decade, we analyze the time series and correlations between OMI NO2, NH3 (an agriculture tracer), surface temperature, normalized difference vegetation index (NDVI) from Landsat, and the Palmer Drought Severity Index (PDSI). In 2012, drought conditions affect NO2, NH3 and NDVI observations across the Central US. Areas where dryland farming and livestock grazing are predominant (Central SD, ND, KS, and NE) are less sensitive to drought and changes in temperature. This suggests positive OMI NO2 trends are caused by increased production in wheats and livestock in the Northern Great Plains. These study regions in the Central US, impacted by local emissions and meteorology, are valuable for evaluating future trend analyses including the continuation of OMI-type NO2 retrievals from the TROPOMI and TEMPO satellite instruments.

  15. Effects of fire in the Northern Great Plains

    USGS Publications Warehouse

    Higgins, Kenneth F.; Kruse, Arnold D.; Piehl, James L.

    1989-01-01

    This publication is a review of selected literature about prescribed burning in the Northern Great Plains (NGP) for management of wildlife. It also will be useful to other resource managers and researchers and to persons interested in the NGP. It is more 'descriptive' than 'interpretative.'The publication is a joint effort of the South Dakota State Cooperative Fish and Wildlife Research Unit (SDCFWRU), South Dakota State University, Brookings; the Northern Prairie Wildlife Research Center (NPWRC), Jamestown, N.D.; and the U.S. Fish and Wildlife Service (USFWS), Fergus Falls, Minn. Manuscript typing and library services were shared between SDCFWRU and NPWRC.This publication (EC 761) is the second of three SDSU Extension circulars on grassland fires. EC 760 is Prescribed burning guidelines in the Northern Great Plains; EC 762 is Annotated bibliography of fire literature relative to northern grasslands in South-Central Canada and North-Central United States and contains many more citations than presented in this publication. All three circulars may be obtained from either the Wildlife and Fisheries Sciences Department; SDSU Box 2206; ph (605) 688-6121; or from the Ag Communications Bulletin Room; SDSU Box 2231; ph (605) 688-5628; both in Brookings, S.D. 57007.

  16. Influence of crop type specification and spatial resolution on empirical modeling of field-scale Maize and Soybean carbon fluxes in the US Great Plains

    NASA Astrophysics Data System (ADS)

    McCombs, A. G.; Hiscox, A.; Wang, C.; Desai, A. R.

    2016-12-01

    A challenge in satellite land surface remote-sensing models of ecosystem carbon dynamics in agricultural systems is the lack of differentiation by crop type and management. This generalization can lead to large discrepancies between model predictions and eddy covariance flux tower observations of net ecosystem exchange of CO2 (NEE). Literature confirms that NEE varies remarkably among different crop types making the generalization of agriculture in remote sensing based models inaccurate. Here, we address this inaccuracy by identifying and mapping net ecosystem exchange (NEE) in agricultural fields by comparing bulk modeling and modeling by crop type, and using this information to develop empirical models for future use. We focus on mapping NEE in maize and soybean fields in the US Great Plains at higher spatial resolution using the fusion of MODIS and LandSAT surface reflectance. MODIS observed reflectance was downscaled using the ESTARFM downscaling methodology to match spatial scales to those found in LandSAT and that are more appropriate for carbon dynamics in agriculture fields. A multiple regression model was developed from surface reflectance of the downscaled MODIS and LandSAT remote sensing values calibrated against five FLUXNET/AMERIFLUX flux towers located on soybean and/or maize agricultural fields in the US Great Plains with multi-year NEE observations. Our new methodology improves upon bulk approximates to map and model carbon dynamics in maize and soybean fields, which have significantly different photosynthetic capacities.

  17. The Impact of Land-Atmosphere Coupling on the 2017 Northern Great Plains Drought

    NASA Astrophysics Data System (ADS)

    Roundy, J. K.; Santanello, J. A., Jr.

    2017-12-01

    In a changing climate, the potential for increased frequency and duration of drought implies devastating impacts on many aspects of society. The negative impacts of drought can be reduced through informing sustainable water management made possible by real-time monitoring and prediction. The refinement of forecast models is best realized through large-scale observation based datasets, yet there are few of these datasets currently available. The Coupling Drought Index (CDI) is a metric based on the persistence of Land-Atmosphere (L-A) coupling into distinct regimes derived from observations of the land and atmospheric state. The coupling regime persistence has been shown to relate to drought intensification and recovery and is the basis for the Coupling Statistical Model (CSM), which uses a Markov Chain framework to make statistical predictions. The CDI and CSM have been used to understand the predictability of L-A interactions in NCEP's Climate Forecasts System version 2 (CFSv2) and indicated that the forecasts exhibit strong biases in the L-A coupling that produced biases in the precipitation and limited the predictability of drought. The CDI can also be derived exclusively from satellite data which provides an observational large-scale metric of L-A coupling and drought evolution. This provides a unique observational tool for understanding the persistence and intensification of drought through land-atmosphere interactions. During the Spring and Summer of 2017, a drought developed over the Norther great plains that caused substantial agricultural losses in parts of Montana and North and South Dakota. In this work, we use satellite derived CDI to explore the impact of Land-Atmosphere Interactions on the persistence and intensification of the 2017 Northern Great Plains drought. To do this we analyze and quantify the change in CDI at various spatial and temporal scales and correlate these changes with other drought indicators including the U.S. Drought Monitor (http

  18. DEVELOPMENT AND EVALUATION OF A FISH ASSEMBLAGE INDEX OF BIOTIC INTEGRITY FOR NORTHWESTERN GREAT PLAINS STREAMS

    EPA Science Inventory

    Quantitative indicators of biological integrity are needed for streams in the Great Plains of North America, but it was not known if the Index of Biotic Integrity (IBI) approach would be effective in this semi-arid region. Great Plains streams have a depauperate and tolerant i...

  19. Recent Trends in Soil Science and Agronomy Research in the Northern Great Plains of North America

    USDA-ARS?s Scientific Manuscript database

    The book “Recent Trends in Soil Science and Agronomy Research in the Northern Great Plains of North America” summarizes published research in soil science and agronomy from various field experiments conducted in the soil-climatic/agro-ecological regions of the Northern Great Plains of North America....

  20. Wooded draws in rangelands of the northern Great Plains

    Treesearch

    Ardell J. Bjugstad; Michele M. Girard

    1985-01-01

    Wooded draws and natural prairie woodlands occupy about 1.1 percent of the northern Great Plains. While the extent of wooded draws is extremely limited, their importance and value is much greater. These unique communities are important for wildlife and livestock habitats, soil stabilization, watershed maintenance, firewood, esthetics, and species diversity (Fig. 1). An...

  1. The Great Plains Rural Principal: Characteristics and Leadership Style.

    ERIC Educational Resources Information Center

    Chance, Edward W.

    This study of rural schools in the states of North Dakota, South Dakota, Nebraska, and Kansas focused on self-reported characteristics of secondary school principals as well as their leadership style. A total of 592 surveys were mailed to the identified population, of whom 462 returned completed forms. It was found that the Great Plains rural…

  2. Influence of latitude on the US great plains East-West precipitation gradient

    USDA-ARS?s Scientific Manuscript database

    Precipitation varies greatly from east to west across the US Great Plains as a result of a combination of the rain shadow of the Rocky Mountains and the moisture flow from the Gulf of Mexico. Because of this precipitation gradient, application of research results obtained in one location to other lo...

  3. Biological Conditions and Economic Development: Nineteenth-Century Stature on the U.S. Great Plains.

    PubMed

    Carson, Scott Alan

    2015-06-01

    Average stature is now a well-accepted measure of material and economic well-being in development studies when traditional measures are sparse or unreliable, but little work has been done on the biological conditions for individuals on the nineteenth-century U.S. Great Plains. Records of 14,427 inmates from the Nebraska state prison are used to examine the relationship between stature and economic conditions. Statures of both black and white prisoners in Nebraska increased through time, indicating that biological conditions improved as Nebraska's output market and agricultural sectors developed. The effect of rural environments on stature is illustrated by the fact that farm laborers were taller than common laborers. Urbanization and industrialization had significant impacts on stature, and proximity to trade routes and waterways was inversely related to stature.

  4. Water quality in the surficial aquifer near agricultural areas in the Delaware Coastal Plain, 2014

    USGS Publications Warehouse

    Fleming, Brandon J.; Mensch, Laura L.; Denver, Judith M.; Cruz, Roberto M.; Nardi, Mark R.

    2017-07-27

    The U.S. Geological Survey, in cooperation with the Delaware Department of Agriculture, developed a network of wells to monitor groundwater quality in the surficial aquifer of the Delaware Coastal Plain. Well-drained soils, a flat landscape, and accessible water in the Delaware Coastal Plain make for a productive agricultural setting. As such, agriculture is one of the largest industries in the State of Delaware. This setting enables the transport of chemicals from agriculture and other land uses to shallow groundwater. Efforts to mitigate nutrient transport to groundwater by the implementation of agricultural best management practices (BMPs) have been ongoing for several decades. To measure the effectiveness of BMPs on a regional scale, a network of 48 wells was designed to measure shallow groundwater quality (particularly nitrate) over time near agricultural land in the Delaware Coastal Plain. Water characteristics, major ions, nutrients, and dissolved gases were measured in groundwater samples collected from network wells during fall 2014. Wells were organized into three groups based on their geochemical similarity and these groups were used to describe nitrate and chloride concentrations and factors that affect the variability among the groups. The results from this study are intended to establish waterquality conditions in 2014 to enable comparison of future conditions and evaluate the effectiveness of agricultural BMPs on a regional scale.

  5. Seasonal weather-related decision making for cattle production in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    High inter-annual variability of seasonal weather patterns can greatly affect forage and therefore livestock production in the Northern Great Plains. This variability can make it difficult for ranchers to set yearly stocking rates, particularly in advance of the grazing season. To better understand ...

  6. Aquatic and wetland vascular plants of the northern Great Plains

    Treesearch

    Gary E. Larson

    1993-01-01

    A taxonomic treatment of aquatic and wetland vascular plants has been developed as a tool for identifying over 500 plant species inhabiting wetlands of the northern Great Plains region. The treatment provides dichotomous keys and botanical descriptions to facilitate identification of all included taxa. Illustrations are also provided for selected species. Geographical...

  7. Assessment of future crop yield and agricultural sustainable water use in north china plain using multiple crop models

    NASA Astrophysics Data System (ADS)

    Huang, G.

    2016-12-01

    Currently, studying crop-water response mechanism has become an important part in the development of new irrigation technology and optimal water allocation in water-scarce regions, which is of great significance to crop growth guidance, sustainable utilization of agricultural water, as well as the sustainable development of regional agriculture. Using multiple crop models(AquaCrop,SWAP,DNDC), this paper presents the results of simulating crop growth and agricultural water consumption of the winter-wheat and maize cropping system in north china plain. These areas are short of water resources, but generates about 23% of grain production for China. By analyzing the crop yields and the water consumption of the traditional flooding irrigation, the paper demonstrates quantitative evaluation of the potential amount of water use that can be reduced by using high-efficient irrigation approaches, such as drip irrigation. To maintain food supply and conserve water resources, the research concludes sustainable irrigation methods for the three provinces for sustainable utilization of agricultural water.

  8. Simulating the impact of human land use change on forest composition in the Great Plains agroecosystems with the Seedscape model

    USGS Publications Warehouse

    Easterling, W.E.; Brandle, J.R.; Hays, C.J.; Guo, Q.; Guertin, D.S.

    2001-01-01

    The expansion and contraction of marginal cropland in the Great Plains often involves small forested strips of land that provide important ecological benefits. The effect of human disturbance on these forests is not well known. Because of their unique structure such forests are not well-represented by forest gap models. In this paper, the development, testing and application of a new model known as Seedscape are described. Seedscape is a modification of the JABOWA-II model, and it uses a spatially-explicit landscape to resolve small-scale features of highly fragmented forests in the eastern Great Plains. It was tested and evaluated with observations from two sites, one in Nebraska and a second in eastern Iowa. Seedscape realistically simulates succession at the Nebraska site, but is less successful at the Iowa site. Seedscape was also applied to the Nebraska site to simulate the effect that varying forest corridor widths, in response to the presumed expansion/contraction of adjacent agricultural land, has on succession properties. Results suggest that small differences in widths have negligible effects on forest composition, but large differences in widths may cause statistically-significant changes in the relative importance of some species. We assert that long-term ecological change in human dominated landscapes is not well understood, in part, because of inadequate modeling techniques. Seedscape provides a much-needed tool for assessing the ecological implications of land use change in forests of predominately agricultural landscapes.

  9. SELECTING LEAST-DISTURBED SURVEY SITES FOR GREAT PLAINS STREAMS AND RIVERS

    EPA Science Inventory

    True reference condition probably does not exist for streams in highly utilized regions such as the Great Plains. Selecting least-disturbed sites for large regions is confounded by the association between human uses and natural gradients, and by multiple kinds of disturbance. U...

  10. Native and agricultural forests at risk to a changing climate in the Northern Plains

    USDA-ARS?s Scientific Manuscript database

    Native and agricultural forests in the Northern Plains provide ecosystem services that benefit human society—diversified agricultural systems, forest-based products, and rural vitality. The impacts of recent trends in temperature and disturbances are impairing the delivery of these services. Climate...

  11. Does climatic variability influence agricultural land prices under differing uses? The Texas High Plains case

    USDA-ARS?s Scientific Manuscript database

    The Texas High Plains faces projections of increasing temperature and declining precipitation in the future on account of its semi-arid climate. This research evaluated the impact of climatic variability on agricultural land prices under different land uses in the Texas High Plains, employing the Ri...

  12. Southern Great Plains Rapid Ecoregional assessment—Volume I. Ecological communities

    USGS Publications Warehouse

    Reese, Gordon C.; Burris, Lucy; Carr, Natasha B.; Leinwand, Ian I.F.; Melcher, Cynthia P.

    2017-10-19

    The Southern Great Plains Rapid Ecoregional Assessment was conducted in partnership with the Bureau of Land Management (BLM) and the Great Plains Landscape Conservation Cooperative. The overall goal of the Rapid Ecoregional Assessments (REAs) is to compile and synthesize regional datasets to facilitate evaluation of the cumulative effects of change agents on priority ecological communities and species. In particular, the REAs identify and map the distribution of communities and wildlife habitats at broad spatial extents and provide assessments of ecological conditions. The REAs also identify where and to what degree ecological resources are currently at risk from change agents, such as development, fire, invasive species, and climate change. The REAs can help managers identify and prioritize potential areas for conservation or restoration, assess cumulative effects as required by the National Environmental Policy Act, and inform landscape-level planning and management decisions for multiple uses of public lands.Management questions form the basis for the REA framework and were developed in conjunction with the BLM and other stakeholders. Conservation elements are communities and species that are of regional management concern. Core management questions relate to the key ecological attributes and change agents associated with each conservation element. Integrated management questions synthesize the results of the primary core management questions into overall landscape-level ranks for each conservation element.The ecological communities evaluated as conservation elements are shortgrass, mixed-grass, and sand prairies; all grasslands; riparian and nonplaya wetlands; playa wetlands and saline lakes; and prairie streams and rivers. Species and species assemblages evaluated are the freshwater mussel assemblage, Arkansas River shiner (Notropis girardi), ferruginous hawk (Buteo regalis), lesser prairie chicken (Tympanuchus pallidicinctus), snowy plover (Charadrius

  13. Pigeon pea potential for summer grazing in the Southern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Stocker cattle production in the southern Great Plains (SGP) faces forage quality gaps during July through September. A study was conducted in 2008 through 2010 to determine if pigeon pea [Cajanus cajan (L.) Millsp.] could fill this deficit period. Six, 0.41 ha experimental paddocks were randomly ...

  14. 78 FR 17653 - Upper Great Plains Wind Energy Draft Programmatic Environmental Impact Statement (DOE/EIS-0408)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... infrastructure development, including siting wind turbines, access roads, underground collector lines, overhead... Wildlife Service Upper Great Plains Wind Energy Draft Programmatic Environmental Impact Statement (DOE/EIS... Plains Wind Energy Draft Programmatic Environmental Impact Statement (Draft [[Page 17654

  15. Dynamics of cultural transmission in Native Americans of the high Great Plains.

    PubMed

    Lycett, Stephen J

    2014-01-01

    Culture is a phenomenon shared by all humans. Attempts to understand how dynamic factors affect the origin and distribution of cultural elements are, therefore, of interest to all humanity. As case studies go, understanding the distribution of cultural elements in Native American communities during the historical period of the Great Plains would seem a most challenging one. Famously, there is a mixture of powerful internal and external factors, creating-for a relatively brief period in time-a seemingly distinctive set of shared elements from a linguistically diverse set of peoples. This is known across the world as the "Great Plains culture." Here, quantitative analyses show how different processes operated on two sets of cultural traits among nine High Plains groups. Moccasin decorations exhibit a pattern consistent with geographically-mediated between-group interaction. However, group variations in the religious ceremony of the Sun Dance also reveal evidence of purifying cultural selection associated with historical biases, dividing down ancient linguistic lines. The latter shows that while the conglomeration of "Plains culture" may have been a product of merging new ideas with old, combined with cultural interchange between groups, the details of what was accepted, rejected or elaborated in each case reflected preexisting ideological biases. Although culture may sometimes be a "melting pot," the analyses show that even in highly fluid situations, cultural mosaics may be indirectly shaped by historical factors that are not always obvious.

  16. Stratigraphy of the Younger Dryas Chronozone and paleoenvironmental implications: Central and Southern Great Plains

    USGS Publications Warehouse

    Holliday, V.T.; Meltzer, D.J.; Mandel, R.

    2011-01-01

    The Great Plains of the United States was the setting for some of the earliest research in North America into patterns and changes in the character of late Pleistocene environments and their effects on contemporary human populations. Many localities in the region have well-stratified records of terminal Pleistocene and early Holocene human (Paleoindian) activity and past environments. These have proven important in debates over the character of the Younger Dryas Chronozone (YDC; 11,000-10,000 14C BP; 12,900-11,700 cal BP) in the continental interior. This paper reviews the lithostratigraphic record of the YDC on the Central and Southern Great Plains and summarizes paleobiological records (largely isotopic). The goal is to determine if there is any uniformity in the timing, character, direction and/or magnitude of changes in depositional environments or broader geomorphic systems before, during or after the YDC in order to address the question of the character of environments through this time. The stratigraphic records of the late Pleistocene to early Holocene transition, and in particular, the stratigraphic records of the YDC vary through time and space. The data clearly show that a host of geomorphic processes produced the terminal Pleistocene and early Holocene stratigraphic records of the Great Plains. Moreover, the YDC is not necessarily manifest as a distinct lithostratigraphic or biostratigraphic entity in these different types of deposits and soils. The various geomorphic systems of the Great Plains did not behave synchronously in response to any common climate driver. These stratigraphic records reflect local environmental conditions and probably a complex response to the reorganization of mid-latitude climates in the terminal Pleistocene and early Holocene. ?? 2011 Elsevier Ltd and INQUA.

  17. Understanding Great Plains Urbanization through the Lens of South Dakota Townscapes

    ERIC Educational Resources Information Center

    Conzen, Michael P.

    2010-01-01

    Most towns were crucial to the initial colonization and economic development of the Great Plains. Many were, directly or indirectly, creatures of railroad corporate planning, owing their location as well as their physical layout to the townsite companies controlled by railroad officials. This article examines how these facts shaped the fundamental…

  18. Genetic variation in ponderosa pine: A 15-year test of provenances in the Great Plains

    Treesearch

    David F. Van Haverbeke

    1986-01-01

    Survival was highest and height growth greatest in ponderosa pine provenances from northcentral Nebraska, southwest South Dakota, and the High Plains region. Genotype x environment interaction was minimal in central and northern Great Plains plantations. Age/age correlations indicate provenances expressing superior height growth can be identified after 5 or 10 years....

  19. Small mammals in successional prairie woodlands of the northern Great Plains

    Treesearch

    Mark A. Rumble; John E. Gobeille

    2001-01-01

    Prairie woodlands comprise about 1 percent of the landscape in the northern Great Plains. However, prairie woodlands provide habitat for far more than 1 percent of the wildlife species that occur in the prairie region. With increasing pressures on natural resources, managers need methods for managing wildlife habitat and biodiversity that are based on ecological...

  20. A Baroclinic Nocturnal Low-Level Jet over the Great Plains

    NASA Astrophysics Data System (ADS)

    Shapiro, A.; Gebauer, J.; Fedorovich, E.

    2016-12-01

    The nocturnal low-level jet (LLJ) is a warm-season atmospheric boundary layer phenomenon common to the Great Plains of the United States and other places worldwide. Low-level jets develop around sunset in fair weather conditions conducive to strong radiative cooling and reach peak intensity in the pre-dawn hours. Key precursors to their formation are the establishment of a strongly turbulent dry convective boundary layer during the afternoon and a rapid cessation of the turbulence during the early evening transition. The two main physical mechanisms underpinning the generation of nocturnal low-level jets over the Great Plains are associated with diurnal variations in turbulent mixing (Blackadar mechanism) and in heating/cooling of the gently sloping terrain (Holton mechanism). These two mechanisms were recently combined within a single unified theory (Shapiro et al. 2016) in which analytical solutions of the Boussinesq equations of motion and thermal energy were obtained. In the present study we apply the unified theory to the case where the free-atmosphere geostrophic wind is zero, and there is strong daytime heating of the slope. When appropriately tuned, the analytical model predicts the low elevation (jet nose within 250 m of the ground) and strong wind maximum (> 15 m/s) characteristic of the strongly baroclinic jet observed over northern Kansas on 10 June 2015 during Intensive Observing Period 7 of the Plains Elevated Convection at Night (PECAN) field experiment. Although there is generally good agreement between the tuned model and observations (including soundings and aircraft data), our main interest is in investigating the profound roles of the free-atmosphere stratification, daytime heating, and daytime/nighttime mixing on jet strength and structure.

  1. Land Change Trends in the Great Plains: Linkages to Climate Variability and Socioeconomic Drivers

    NASA Astrophysics Data System (ADS)

    Drummond, M. A.

    2009-12-01

    Land use and land cover change have complex linkages to climate variability and change, socioeconomic driving forces, and land management challenges. To assess these land change dynamics and their driving forces in the Great Plains, we compare and contrast contemporary land conversion across seventeen ecoregions using Landsat remote sensing data and statistical analysis. Large area change analysis in agricultural regions is often hampered by the potential for substantial change detection error and the tendency for land conversions to occur in relatively small patches at the local level. To facilitate a regional scale analysis, a statistical sampling design of randomly selected 10-km by 10-km blocks is used in order to efficiently identify the types and rates of land conversions for four time periods between 1972 and 2000, stratified by relatively homogenous ecoregions. Results show a range of rates and processes of land change that vary by ecoregion contingent on the prevailing interactions between socioeconomic and environmental factors such as climate variability, water availability, and land quality. Ecoregions have differential climate and biophysical advantages for agricultural production and other land use change. Human actions further strengthen or dampen the characteristics of change through farm policy, technological advances, economic opportunities, population and demographic shifts, and surface and groundwater irrigation.

  2. Potential nitrogen critical loads for northern Great Plains grassland vegetation

    USGS Publications Warehouse

    Symstad, Amy J.; Smith, Anine T.; Newton, Wesley E.; Knapp, Alan K.

    2015-01-01

    The National Park Service is concerned that increasing atmospheric nitrogen deposition caused by fossil fuel combustion and agricultural activities could adversely affect the northern Great Plains (NGP) ecosystems in its trust. The critical load concept facilitates communication between scientists and policy makers or land managers by translating the complex effects of air pollution on ecosystems into concrete numbers that can be used to inform air quality targets. A critical load is the exposure level below which significant harmful effects on sensitive elements of the environment do not occur. A recent review of the literature suggested that the nitrogen critical load for Great Plains vegetation is 10-25 kg N/ha/yr. For comparison, current atmospheric nitrogen deposition in NGP National Park Service (NPS) units ranges from ~4 kg N/ha/yr in the west to ~13 kg N/ha/yr in the east. The suggested critical load, however, was derived from studies far outside of the NGP, and from experiments investigating nitrogen loads substantially higher than current atmospheric deposition in the region.Therefore, to better determine the nitrogen critical load for sensitive elements in NGP parks, we conducted a four-year field experiment in three northern Great Plains vegetation types at Badlands and Wind Cave National Parks. The vegetation types were chosen because of their importance in NGP parks, their expected sensitivity to nitrogen addition, and to span a range of natural fertility. In the experiment, we added nitrogen at rates ranging from below current atmospheric deposition (2.5 kg N/ha/yr) to far above those levels but commensurate with earlier experiments (100 kg N/ha/yr). We measured the response of a variety of vegetation and soil characteristics shown to be sensitive to nitrogen addition in other studies, including plant biomass production, plant tissue nitrogen concentration, plant species richness and composition, non-native species abundance, and soil inorganic

  3. Partners in flight bird conservation plan for the Upper Great Lakes Plain (Physiographic Area 16)

    USGS Publications Warehouse

    Knutson, M.G.; Butcher, G.; Fitzgerald, J.; Shieldcastle, J.

    2001-01-01

    1 November 2001. Conservation of bird habitats is a major focus of effort by Partners in Flight, an international coalition of agencies, citizens, and other groups dedicated to 'keeping common birds common'. USGS worked on a planning team to publish a bird conservation plan for the Upper Great Lakes Plain ecoregion (PIF 16), which includes large portions of southern Wisconsin, southern Michigan and parts of Minnesota, Iowa, Illinois, Indiana, and Ohio. The conservation plan outlines specific habitat restoration and bird population objectives for the ecoregion over the next decade. The plan provides a context for on-the-ground conservation implementation by the US Fish and Wildlife Service, the USDA Natural Resources Conservation Service, the US Forest Service, states, and conservation groups. Citation: Knutson, M. G., G. Butcher, J. Fitzgerald, and J. Shieldcastle. 2001. Partners in Flight Bird Conservation Plan for The Upper Great Lakes Plain (Physiographic Area 16). USGS Upper Midwest Environmental Sciences Center in cooperation with Partners in Flight, La Crosse, Wisconsin. Download from website: http://www.blm.gov/wildlife/pifplans.htm. The Upper Great Lakes Plain covers the southern half of Michigan, northwest Ohio, northern Indiana, northern Illinois, southern Wisconsin, and small portions of southwest Minnesota and northwest Iowa. Glacial moraines and dissected plateaus are characteristic of the topography. Broadleaf forests, oak savannahs, and a variety of prairie communities are the natural vegetation types. A oDriftless Areao was not glaciated during the late Pleistocene and emerged as a unique area of great biological diversity. Priority bird species for the area include the Henslow's Sparrow, Sedge Wren, Bobolink, Golden-winged Warbler, Cerulean Warbler, Black-billed Cuckoo, and Red-headed Woodpecker. There are many large urban centers in this area whose growth and sprawl will continue to consume land. The vast majority of the presettlement forest and

  4. A landscape inventory framework: scenic analyses of the Northern Great Plains

    Treesearch

    Litton R. Burton Jr.; Robert J. Tetlow

    1978-01-01

    A set of four visual inventories are proposed. They are designed to document scenic resources for varied scales of application, from regional and general to local and specific. The Northern Great Plains is used as a case study. Scenic analysis and identification of criteria extend earlier work. The inventory is based on (1) study of previously developed landscape...

  5. Ecology of fire in shortgrass prairie of the southern Great Plains

    Treesearch

    Paulette L. Ford; Guy R. McPherson

    1996-01-01

    The ecology of fire in shortgrass prairie of the southern Great Plains includes a complex interaction between the shortgrass prairie ecosystem and its inhabitants, all inextricably linked to land-use patterns. The history of the relationship between man and fire has been filled with ambivalence and mistrust, along with an appreciation of the power of fire as a...

  6. Quantifying climate change mitigation potential in Great Plains wetlands for three greenhouse gas emission scenarios

    USGS Publications Warehouse

    Byrd, Kristin B.; Ratliff, Jamie L.; Wein, Anne; Bliss, Norman B.; Sleeter, Benjamin M.; Sohl, Terry L.; Li, Zhengpeng

    2015-01-01

    We examined opportunities for avoided loss of wetland carbon stocks in the Great Plains of the United States in the context of future agricultural expansion through analysis of land-use land-cover (LULC) change scenarios, baseline carbon datasets and biogeochemical model outputs. A wetland map that classifies wetlands according to carbon pools was created to describe future patterns of carbon loss and potential carbon savings. Wetland avoided loss scenarios, superimposed upon LULC change scenarios, quantified carbon stocks preserved under criteria of carbon densities or land value plus cropland suitability. Up to 3420 km2 of wetlands may be lost in the region by 2050, mainly due to conversion of herbaceous wetlands in the Temperate Prairies where soil organic carbon (SOC) is highest. SOC loss would be approximately 0.20 ± 0.15 megagrams of carbon per hectare per year (MgC ha−1 yr−1), depending upon tillage practices on converted wetlands, and total ecosystem carbon loss in woody wetlands would be approximately 0.81 ± 0.41 MgC ha−1 yr−1, based on biogeochemical model results. Among wetlands vulnerable to conversion, wetlands in the Northern Glaciated Plains and Lake Agassiz Plains ecoregions exhibit very high mean SOC and on average, relatively low land values, potentially creating economically competitive opportunities for avoided carbon loss. This mitigation scenarios approach may be adapted by managers using their own preferred criteria to select sites that best meet their objectives. Results can help prioritize field-based assessments, where site-level investigations of carbon stocks, land value, and consideration of local priorities for climate change mitigation programs are needed.

  7. Defining a dryland grain sorghum production function for the Central Great Plains

    USDA-ARS?s Scientific Manuscript database

    Grain sorghum (Sorghum bicolor L. Moench) is a drought tolerant C4 species capable of making use of limited available water supplies and is suitable for dryland crop rotations in the central Great Plains. In order for farmers to assess the production risk encountered when utilizing sorghum in rotati...

  8. Grain yield and plant characteristics of corn hybrids in the Great Plains

    USDA-ARS?s Scientific Manuscript database

    Water supply for crop use is the primary factor controlling corn (Zea mays L.) grain yield in the west-central Great Plains. With water supply varying as production systems range from dryland through irrigated, selecting hybrids for optimum yield in the anticipated water environment is vital for suc...

  9. Cover crop biomass production and water use in the Central Great Plains

    USDA-ARS?s Scientific Manuscript database

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  10. Estimated areal extent of colonies of black-tailed prairie dogs in the northern Great Plains

    USGS Publications Warehouse

    Sidle, John G.; Johnson, Douglas H.; Euliss, Betty R.

    2001-01-01

    During 1997–1998, we undertook an aerial survey, with an aerial line-intercept technique, to estimate the extent of colonies of black-tailed prairie dogs (Cynomys ludovicianus) in the northern Great Plains states of Nebraska, North Dakota, South Dakota, and Wyoming. We stratified the survey based on knowledge of colony locations, computed 2 types of estimates for each stratum, and combined ratio estimates for high-density strata with average density estimates for low-density strata. Estimates of colony areas for black-tailed prairie dogs were derived from the average percentages of lines intercepting prairie dog colonies and ratio estimators. We selected the best estimator based on the correlation between length of transect line and length of intercepted colonies. Active colonies of black-tailed prairie dogs occupied 2,377.8 km2 ± 186.4 SE, whereas inactive colonies occupied 560.4 ± 89.2 km2. These data represent the 1st quantitative assessment of black-tailed prairie dog colonies in the northern Great Plains. The survey dispels popular notions that millions of hectares of colonies of black-tailed prairie dogs exist in the northern Great Plains and can form the basis for future survey efforts.

  11. A network model framework for prioritizing wetland conservation in the Great Plains

    USGS Publications Warehouse

    Albanese, Gene; Haukos, David A.

    2017-01-01

    ContextPlaya wetlands are the primary habitat for numerous wetland-dependent species in the Southern Great Plains of North America. Plant and wildlife populations that inhabit these wetlands are reciprocally linked through the dispersal of individuals, propagules and ultimately genes among local populations.ObjectiveTo develop and implement a framework using network models for conceptualizing, representing and analyzing potential biological flows among 48,981 spatially discrete playa wetlands in the Southern Great Plains.MethodsWe examined changes in connectivity patterns and assessed the relative importance of wetlands to maintaining these patterns by targeting wetlands for removal based on network centrality metrics weighted by estimates of habitat quality and probability of inundation.ResultsWe identified several distinct, broad-scale sub networks and phase transitions among playa wetlands in the Southern Plains. In particular, for organisms that can disperse >2 km a dense and expansive wetland sub network emerges in the Southern High Plains. This network was characterized by localized, densely connected wetland clusters at link distances (h) >2 km but <5 km and was most sensitive to changes in wetland availability (p) and configuration when h = 4 km, and p = 0.2–0.4. It transitioned to a single, large connected wetland system at broader spatial scales even when the proportion of inundated wetland was relatively low (p = 0.2).ConclusionsOur findings suggest that redundancy in the potential for broad and fine-scale movements insulates this system from damage and facilitates system-wide connectivity among populations with different dispersal capacities.

  12. Farmers, Ranchers, and the Railroad: The Evolution of Fence Law in the Great Plains, 1865-1900

    ERIC Educational Resources Information Center

    Kawashima, Yasuhide

    2010-01-01

    This article is divided into three parts. The first examines specific fencing policies in Kansas, Nebraska, and other Plains states, highlighting the transformation from the "fence-out" to "fence-in" (herd laws) policies. The second part discusses the coming of the railroads to the Great Plains and the farmers and the ranchers…

  13. The future of irrigation on the High Plains

    USDA-ARS?s Scientific Manuscript database

    The future of irrigation on the U.S. High Plains was examined through the lens of past changes in water supply and innovations in irrigation technology, management and agronomy. The innovations have greatly increased the efficiency of water application and use, and the agricultural productivity of t...

  14. Implementation of AN Agricultural Environmental Information System (aeis) for the Sanjiang Plain, Ne-China

    NASA Astrophysics Data System (ADS)

    Zhao, Q.; Brocks, S.; Lenz-Wiedemann, V.; Miao, Y.; Jiang, R.; Chen, X.; Zhang, F.; Bareth, G.

    2012-07-01

    The Sino-German Project between the China Agricultural University and the University of Cologne, Germany, focuses on regional agro-ecosystem modelling. One major focus of the cooperation activity is the establishment of joint rice field experiment research in Jiansanjiang, located in the Sanjiang Plain (Heilongjiang Province, north-eastern part of China), to investigate the different agricultural practices and their impact on yield and environment. An additional task is to set-up an Agricultural Environmental Information System (AEIS) for the Sanjiang Plain (SJP), which covers more than 100 000 km2. Research groups from Geography (e.g. GIS & Remote Sensing) and Plant Nutrition (e.g. Precision Agriculture) are involved in the project. The major aim of the AEIS for the SJP is to provide information about (i) agriculture in the region, (ii) the impact of agricultural practices on the environment, and (iii) simulation scenarios for sustainable strategies. Consequently, the AEIS for the SJP provides information for decision support and therefore could be regarded as a Spatial Decision Support System (SDSS), too. The investigation of agricultural and environmental issues has a spatial context, which requires the management, handling, and analysis of spatial data. The use of GIS enables the capture, storage, analysis and presentation of spatial data. Therefore, GIS is the major tool for the set-up of the AEIS for the SJP. This contribution presents the results of linking agricultural statistics with GIS to provide information about agriculture in the SJP and discusses the benefits of this method as well as the integration of methods to produce new data.

  15. Reconnaissance of water quality in the High Plains Aquifer beneath agricultural lands, south-central Kansas

    USGS Publications Warehouse

    Stullken, L.E.; Stamer, J.K.; Carr, J.E.

    1987-01-01

    The High Plains of western Kansas was one of 14 areas selected for preliminary groundwater quality reconnaissance by the U.S. Geological Survey 's Toxic Waste--Groundwater Contamination Program. The specific objective was to evaluate the effects of land used for agriculture (irrigated cropland and non-irrigated rangeland) on the water in the High Plains aquifer. Conceptual inferences, based on the information available, would lead one to expect groundwater beneath irrigated cropland to contain larger concentrations of sodium, sulfate, chloride, nitrite plus nitrate, and some water soluble pesticides than water beneath non-irrigated land (range-land) The central part of the Great Bend Prairie, an area of about 1,800 sq mi overlying the High Plains aquifer in south-central Kansas, was selected for the study of agricultural land use because it has sand soils, a shallow water table, relatively large annual precipitation, and includes large areas that are exclusively irrigated cropland or non-irrigated rangeland. As determined by a two-tailed Wilcoxon rank-sum test, concentrations of sodium and alkalinity were significantly larger at the 95% confidence level for water samples from beneath irrigated cropland than from beneath rangeland. No statistically significant difference in concentrations of sulfate, chloride, nitrite plus nitrate, and ammonia, was detected. Concentrations of 2,4-D found in water samples from beneath the rangeland were larger at the 99% confidence level as compared to concentrations of 2,4-D in samples from beneath irrigated cropland. Larger concentrations of sodium and alkalinity were found in water beneath irrigated cropland, and the largest concentration of the pesticide atrazine (triazines were found in three samples) was found in water from the only irrigation well sampled. The sodium and atrazine concentrations found in water from the irrigation well support the premise that water-level drawdown develops under irrigated fields. This diverts

  16. Late Pleistocene dune activity in the central Great Plains, USA

    USGS Publications Warehouse

    Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.

    2011-01-01

    Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of

  17. Land use in the Northern Great Plains region of the U.S. influences the survival and productivity of honey bee colonies

    USGS Publications Warehouse

    Smart, Matthew; Pettis, Jeff S.; Euliss, Ned H. Jr.; Spivak, Marla S.

    2016-01-01

    The Northern Great Plains region of the US annually hosts a large portion of commercially managed U.S. honey bee colonies each summer. Changing land use patterns over the last several decades have contributed to declines in the availability of bee forage across the region, and the future sustainability of the region to support honey bee colonies is unclear. We examined the influence of varying land use on the survivorship and productivity of honey bee colonies located in six apiaries within the Northern Great Plains state of North Dakota, an area of intensive agriculture and high density of beekeeping operations. Land use surrounding the apiaries was quantified over three years, 2010–2012, and survival and productivity of honey bee colonies were determined in response to the amount of bee forage land within a 3.2-km radius of each apiary. The area of uncultivated forage land (including pasture, USDA conservation program fields, fallow land, flowering woody plants, grassland, hay land, and roadside ditches) exerted a positive impact on annual apiary survival and honey production. Taxonomic diversity of bee-collected pollen and pesticide residues contained therein varied seasonally among apiaries, but overall were not correlated to large-scale land use patterns or survival and honey production. The predominant flowering plants utilized by honey bee colonies for pollen were volunteer species present in unmanaged (for honey bees), and often ephemeral, lands; thus placing honey bee colonies in a precarious situation for acquiring forage and nutrients over the entire growing season. We discuss the implications for land management, conservation, and beekeeper site selection in the Northern Great Plains to adequately support honey bee colonies and insure long term security for pollinator-dependent crops across the entire country.

  18. Megadroughts and late Holocene dune activation at the eastern margin of the Great Plains, north-central Kansas, USA

    NASA Astrophysics Data System (ADS)

    Hanson, P. R.; Arbogast, A. F.; Johnson, W. C.; Joeckel, R. M.; Young, A. R.

    2010-01-01

    Optical and radiocarbon dating indicates that alluvium underlying dunes near Abilene was deposited at or before ˜45 ka, and that the overlying dunes were active at ˜1.1-0.5 ka. Geochemical data indicate that the Abilene dune sand is immature and was derived from the underlying Pleistocene alluvium, and not from Holocene age Smoky Hill River deposits. These findings suggest that dune activation was a response to increased aridity and local reduction in vegetation cover as opposed to changes in sediment availability from nearby rivers. The time interval of dune activation at Abilene overlaps Medieval Warm Period megadroughts, similar to the larger and more westerly dune fields on the Great Plains, including the Nebraska Sand Hills and the Great Bend Sand Prairie. The activation of smaller dune fields such as the Abilene dunes near the more humid eastern margin of the Great Plains shows the geographic extent and severity of paleodrought events. Unlike the Duncan dunes, another plains-marginal dune field, however, the Abilene dunes show no evidence for multiple drought events during the Holocene. This difference in dune activity, if it is not a result of sampling or preservation bias, indicates variations in the extent and severity of older drought events at the eastern margin of the Great Plains.

  19. Recent biodiversity patterns in the Great Plains: Implications for restoration and management

    Treesearch

    Carolyn Hull Sieg; Curtis H. Flather; Stephen McCanny

    1999-01-01

    Ecosystem, species and genetic dimensions of biodiversity have eroded since widespread settlement of the Great Plains. Conversion of native vegetation in the region followed the precipitation gradient, with the greatest conversion in the eastern tallgrass prairie and eastern mixed-grass types. Areas now dominated by intensive land uses are "hot spots" for...

  20. TOWARDS A VERIFIABLE AMMONIA EMISSIONS INVENTORY FOR CATTLE FEEDLOTS IN THE GREAT PLAINS

    EPA Science Inventory

    Collectively, beef cattle feedlots in the Great Plains may be the nation’s single largest source of atmospheric ammonia. Unfortunately, the large uncertainty around these emissions not only affects the U.S. ammonia inventory, but also undermines attempts to understand and miti...

  1. Planning for population viability on Northern Great Plains national grasslands

    USGS Publications Warehouse

    Samson, F.B.; Knopf, F.L.; McCarthy, C.W.; Noon, B.R.; Ostlie, W.R.; Rinehart, S.M.; Larson, S.; Plumb, G.E.; Schenbeck, G.L.; Svingen, D.N.; Byer, T.W.

    2003-01-01

    Broad-scale information in concert with conservation of individual species must be used to develop conservation priorities and a more integrated ecosystem protection strategy. In 1999 the United States Forest Service initiated an approach for the 1.2× 106 ha of national grasslands in the Northern Great Plains to fulfill the requirement to maintain viable populations of all native and desirable introduced vertebrate and plant species. The challenge was threefold: 1) develop basic building blocks in the conservation planning approach, 2) apply the approach to national grasslands, and 3) overcome differences that may exist in agency-specific legal and policy requirements. Key assessment components in the approach included a bioregional assessment, coarse-filter analysis, and fine-filter analysis aimed at species considered at-risk. A science team of agency, conservation organization, and university personnel was established to develop the guidelines and standards and other formal procedures for implementation of conservation strategies. Conservation strategies included coarse-filter recommendations to restore the tallgrass, mixed, and shortgrass prairies to conditions that approximate historical ecological processes and landscape patterns, and fine-filter recommendations to address viability needs of individual and multiple species of native animals and plants. Results include a cost-effective approach to conservation planning and recommendations for addressing population viability and biodiversity concerns on national grasslands in the Northern Great Plains.

  2. Agricultural conservation practices and wetland ecosystem services in the wetland-rich Piedmont–Coastal Plain region

    Treesearch

    Diane De Steven; Richard Lowrance

    2011-01-01

    In the eastern U.S. Coastal Plain and Piedmont region, diverse inland wetlands (riverine, depressional, wet flats) have been impacted by or converted to agriculture. Farm Bill conservation practices that restore or enhance wetlands can return their ecological functions and services to the agricultural landscape. We review the extent of regional knowledge regarding the...

  3. Low-dose glyphosate does not control annual bromes in the northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Annual bromes (downy brome and Japanese brome) have been shown to decrease perennial grass forage production and alter ecosystem functions in northern Great Plains rangelands. Large-scale chemical control might be a method for increasing rangeland forage production if low application rates confer co...

  4. Land Surface Phenologies of the Northern Great Plains: Possible Futures Arising From Land and Climate Change

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Wimberly, M. C.; Senay, G.; Wang, A.; Chang, J.; Wright, C. R.; Hansen, M. C.

    2008-12-01

    Land cover change across the Northern Great Plains of North America over the past three decades has been driven by changes in agricultural management (conservation tillage; irrigation), government incentives (Conservation Reserve Program; subsidies to grain-based ethanol), crop varieties (cold-hardy soybean), and market dynamics (increasing world demand). Climate change across the Northern Great Plains over the past three decades has been evident in trends toward earlier warmth in the spring and a longer frost-free season. Together these land and climate changes induce shifts in local and regional land surface phenologies (LSPs). Any significant shift in LSP may correspond to a significant shift in evapotranspiration, with consequences for regional hydrometeorology. We explored possible future scenarios involving land use and climate change in six steps. First, we defined the nominal draw areas of current and future biorefineries in North Dakota, South Dakota, Nebraska, Minnesota, and Iowa and masked those land cover types within the draw areas that were unlikely to change to agricultural use (open water, settlements, forests, etc.). Second, we estimated the proportion of corn and soybean remaining within the masked draw areas using MODIS-derived crop maps. Third, in each draw area, we modified LSPs to simulate crop changes for a control and two treatment scenarios. In the control, we used LSP profiles identified from MODIS Collection 5 NBAR data. In one treatment, we increased the proportion of tallgrass LSPs in the draw areas to represent widespread cultivation of a perennial cellulosic crop, like switchgrass. In a second treatment, we increased the proportion of corn LSPs in the draw areas to represent increased corn cultivation. Fourth, we characterized the seasonal progression of the thermal regime associated with the LSP profiles using MODIS Land Surface Temperature (LST) products. Fifth, we modeled the LSP profile as a quadratic function of accumulated

  5. Loess record of the Pleistocene-Holocene transition on the northern and central Great Plains, USA

    USGS Publications Warehouse

    Mason, J.A.; Miao, X.; Hanson, P.R.; Johnson, W.C.; Jacobs, P.M.; Goble, R.J.

    2008-01-01

    Various lines of evidence support conflicting interpretations of the timing, abruptness, and nature of climate change in the Great Plains during the Pleistocene-Holocene transition. Loess deposits and paleosols on both the central and northern Great Plains provide a valuable record that can help address these issues. A synthesis of new and previously reported optical and radiocarbon ages indicates that the Brady Soil, which marks the boundary between late Pleistocene Peoria Loess and Holocene Bignell Loess, began forming after a reduction in the rate of Peoria Loess accumulation that most likely occurred between 13.5 and 15 cal ka. Brady Soil formation spanned all or part of the B??lling-Aller??d episode (approximately 14.7-12.9 cal ka) and all of the Younger Dryas episode (12.9-11.5 cal ka) and extended at least 1000 years beyond the end of the Younger Dryas. The Brady Soil was buried by Bignell Loess sedimentation beginning around 10.5-9 cal ka, and continuing episodically through the Holocene. Evidence for a brief increase in loess influx during the Younger Dryas is noteworthy but very limited. Most late Quaternary loess accumulation in the central Great Plains was nonglacigenic and was under relatively direct climatic control. Thus, Brady Soil formation records climatic conditions that minimized eolian activity and allowed effective pedogenesis, probably through relatively high effective moisture. Optical dating of loess in North Dakota supports correlation of the Leonard Paleosol on the northern Great Plains with the Brady Soil. Thick loess in North Dakota was primarily derived from the Missouri River floodplain; thus, its stratigraphy may in part reflect glacial influence on the Missouri River. Nonetheless, the persistence of minimal loess accumulation and soil formation until 10 cal ka at our North Dakota study site is best explained by a prolonged interval of high effective moisture correlative with the conditions that favored Brady Soil formation. Burial

  6. Cowbird parasitism in grassland and cropland in the northern Great Plains: Chapter 27

    USGS Publications Warehouse

    Koford, Rolf R.; Bowen, B.S.; Lokemoen, John T.; Kruse, Arnold D.; Smith, James N.M.; Cook, T.L.; Rothstein, S. IU.; Robinson, S.K.; Sealy, S.G.

    2000-01-01

    The landscape of the Great Plains has been greatly altered by human activities in the past century, and several grassland passerines have experienced significant population declines in recent decades. We explore here whether brood parasitism by Brown-headed Cowbirds, which are abundant in the Great Plains, has contributed to these declines. We measured the frequency of cowbird parasitism of passerine species in seeded grassland, natural grassland, and cropland in studies conducted in North Dakota during 1981-1993. The proportions of parasitized nests were 25%, 34%, and 39% in seeded grassland, natural grassland, and cropland, respectively. We speculate that much of the variation in parasitism rate among these habitats is related to the local abundance of cowbirds, to nest visibility, and to the presence of suitable perches for female cowbirds. Local abundance of cowbirds may be high in areas with cattle pastures. Nests and nesting behavior are probably more visible to female cowbirds in cropland than in grassland. Female cowbirds may use shrubs as perches while searching for host nests, and shrubs are more common in natural grasslands than in the other habitats we examined. Experimental work on the determinants of cowbird abundance in grasslands is needed.

  7. PDO and ENSO Sea Surface Temperature Anomalies Control Grassland Plant Production across the United States Great Plains

    NASA Astrophysics Data System (ADS)

    Parton, W. J.; Del Grosso, S. J.; Smith, W. K.; Chen, M.

    2017-12-01

    The El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) are multi-annual to multi-decadal climate patterns defined by ocean temperature anomalies that can strongly modulate climate variability. Here we evaluated the impacts of PDO and ENSO sea surface temperature (SST) anomalies on observed grassland above ground plant production (ANPP; 1940 to 2015), spring (April to July) cumulative actual evapotranspiration (iAET; 1900 to 2015) , and satellite-derived growing season (April to October) cumulative normalized difference vegetation index (iNDVI 1982 to 2015) across the United States Great Plains. The results showed that grassland ANPP is well correlated to iAET (r2=0.69) and iNDVI (r2=0.50 to 0.70) for the Cheyenne Wyoming and Northeastern Colorado long-term ANPP sites. At the site scale, during the negative phase of the PDO, we find ANPP is much lower (25%) and that variability of iAET, iNDVI, and ANPP are much higher (2 to 3 times) compared to the warm phase PDO. Further, we find there is a high frequency of below normal iAET when PDO and ENSO SST's are both negative, while there is a high frequency of above normal iAET when PDO and ENSO values are positive. At the regional scale, iAET, iNDVI, and modeled ANPP data sets show that plant production and iAET values are high in the southern Great Plains and low in the northern Great Plains when spring PDO and ENSO are both in the positive phase, while the opposite pattern is observed when both PDO and ENSO are both in the negative phase. Variability of iAET, iNDVI, and modeled ANPP are much higher in the central Great Plains during the negative phase PDO. We demonstrate clearly that the PDO and ENSO SST anomalies have large impacts on mean and variability of grassland plant production across the Great Plains.

  8. A reconnaissance study of the effect of irrigated agriculture on water quality in the Ogallala Formation, Central High Plains Aquifer

    USGS Publications Warehouse

    McMahon, Peter B.

    2000-01-01

    In 1998, the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program began a regional study of water quality in the High Plains aquifer. The High Plains aquifer underlies an area of about 174,000 square miles in parts of eight States. Because of its large size, the High Plains aquifer has been divided into three regions: the Southern High Plains, Central High Plains, and Northern High Plains. Although an assessment of water quality in each of the three regions is planned, the initial focus will be the Central High Plains aquifer. Anyone who has flown over the Central High Plains in the summer and has seen the large green circles associated with center pivot sprinklers knows that irrigated agriculture is a widespread land use. Pesticides and fertilizers applied on those irrigated fields will not degrade ground-water quality if they remain in or above the root zone. However, if those chemicals move downward through the unsaturated zone to the water table, they may degrade the quality of the ground water. Water is the principal agent for transporting chemicals from land surface to the water table, and in the semiarid Central High Plains, irrigation often represents the most abundant source of water during the growing season. One objective of NAWQA's High Plains Regional Ground-Water study is to evaluate the effect of irrigated agriculture on the quality of recently recharged water in the Ogallala Formation of the Central High Plains aquifer. The Ogallala Formation is the principal geologic unit in the Central High Plains aquifer, and it consists of poorly sorted clay, silt, sand, and gravel that generally is unconsolidated (Gutentag and others, 1984). Approximately 23 percent of the cropland overlying the Ogallala Formation is irrigated (U.S. Department of Agriculture, 1999). The NAWQA Program generally defines recently recharged ground water to be water recharged in the last 50 years. The water table in the Ogallala Formation is separated from

  9. Wildlife associations in Rocky Mountain juniper in the northern Great Plains, South Dakota

    Treesearch

    Mark A. Rumble; John E. Gobeille

    1995-01-01

    Rocky Mountain juniper is an important habitat component in the northern Great Plains. These woodlands provide vertical and horizontal vegetative structure that enhances wildlife use. Ecological approaches to managing habitats require understanding relationships between wildlife species and succession in plant communities. We determined bird, small mammals and large...

  10. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    NASA Astrophysics Data System (ADS)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  11. Simulated responses of soil organic carbon stock to tillage management scenarios in the Northwest Great Plains

    USGS Publications Warehouse

    Tan, Z.; Liu, S.; Li, Z.; Loveland, Thomas R.

    2007-01-01

    Background: Tillage practices greatly affect carbon (C) stocks in agricultural soils. Quantification of the impacts of tillage on C stocks at a regional scale has been challenging because of the spatial heterogeneity of soil, climate, and management conditions. We evaluated the effects of tillage management on the dynamics of soil organic carbon (SOC) in croplands of the Northwest Great Plains ecoregion of the United States using the General Ensemble biogeochemical Modeling System (GEMS). Tillage management scenarios included actual tillage management (ATM), conventional tillage (CT), and no-till (NT). Results: Model simulations show that the average amount of C (kg C ha-1yr-1) released from croplands between 1972 and 2000 was 246 with ATM, 261 with CT, and 210 with NT. The reduction in the rate of C emissions with conversion of CT to NT at the ecoregion scale is much smaller than those reported at plot scale and simulated for other regions. Results indicate that the response of SOC to tillage practices depends significantly on baseline SOC levels: the conversion of CT to NT had less influence on SOC stocks in soils having lower baseline SOC levels but would lead to higher potentials to mitigate C release from soils having higher baseline SOC levels. Conclusion: For assessing the potential of agricultural soils to mitigate C emissions with conservation tillage practices, it is critical to consider both the crop rotations being used at a local scale and the composition of all cropping systems at a regional scale. ?? 2007 Tan et al; licensee BioMed Central Ltd.

  12. Summary of findings from the Great Plains Tree and Forest Invasives Initiative

    Treesearch

    Dacia M. Meneguzzo; Andrew J. Lister; Cody Sullivan

    2018-01-01

    The Great Plains Tree and Forest Invasives Initiative (GPI) was a cooperative effort of the U.S. Forest Service and state forestry agencies in Kansas, Nebraska, North Dakota, and South Dakota, with a primary goal of evaluating the tree resources throughout the four-state region as a preparedness measure for the arrival of invasive pests, such as the emerald ash borer...

  13. Whooping crane stopover site use intensity within the Great Plains

    USGS Publications Warehouse

    Pearse, Aaron T.; Brandt, David A.; Harrell, Wade C.; Metzger, Kristine L.; Baasch, David M.; Hefley, Trevor J.

    2015-09-23

    Whooping cranes (Grus americana) of the Aransas-Wood Buffalo population migrate twice each year through the Great Plains in North America. Recovery activities for this endangered species include providing adequate places to stop and rest during migration, which are generally referred to as stopover sites. To assist in recovery efforts, initial estimates of stopover site use intensity are presented, which provide opportunity to identify areas across the migration range used more intensively by whooping cranes. We used location data acquired from 58 unique individuals fitted with platform transmitting terminals that collected global position system locations. Radio-tagged birds provided 2,158 stopover sites over 10 migrations and 5 years (2010–14). Using a grid-based approach, we identified 1,095 20-square-kilometer grid cells that contained stopover sites. We categorized occupied grid cells based on density of stopover sites and the amount of time cranes spent in the area. This assessment resulted in four categories of stopover site use: unoccupied, low intensity, core intensity, and extended-use core intensity. Although provisional, this evaluation of stopover site use intensity offers the U.S. Fish and Wildlife Service and partners a tool to identify landscapes that may be of greater conservation significance to migrating whooping cranes. Initially, the tool will be used by the U.S. Fish and Wildlife Service and other interested parties in evaluating the Great Plains Wind Energy Habitat Conservation Plan.

  14. Black Enclaves of Violence: Race and Homicide in Great Plains Cities, 1890-1920

    ERIC Educational Resources Information Center

    McKanna, Clare V., Jr.

    2003-01-01

    The author examines interracial homicides in the early twentieth century in three Great Plains cities: Coffeyville, Kansas; Topeka, Kansas; and Omaha, Nebraska. Railroads attracted hundreds of young blacks searching for steady employment. Alcohol played an important role in violence levels as did the availability of cheap and handguns, and certain…

  15. Developing wind and/or solar powered crop irrigation systems for the Great Plains

    USDA-ARS?s Scientific Manuscript database

    Some small scale, off-grid irrigation systems (less than 2.5 ha) that are powered by wind or solar energy are cost effective, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. It was found that partitioning t...

  16. Effects of Grazing Pressure on Efficiency of Grazing on North American Great Plains Rangelands

    USDA-ARS?s Scientific Manuscript database

    Robust prediction models describing vegetation and animal responses to stocking rate in North American Great Plains rangelands are lacking as across site comparisons are limited by different qualitative designations of light, moderate and heavy stocking. Comparisons of stocking rates across sites ca...

  17. Coherent changes in relative C4 plant productivity and climate during the late Quaternary in the North American Great Plains

    USGS Publications Warehouse

    Nordt, L.; Von Fischer, J.; Tieszen, L.; Tubbs, J.

    2008-01-01

    Evolution of the mixed and shortgrass prairie of the North American Great Plains is poorly understood because of limited proxies available for environmental interpretations. Buried soils in the Great Plains provide a solution to the problem because they are widespread both spatially and temporally with their organic reservoirs serving as a link to the plants than once grew on them. Through stable carbon isotopic analysis of soil organic carbon (??13C), the percent carbon from C4 plants (%C4) can be ascertained. Because C4 plants are primarily warm season grasses responding positively to summer temperature, their representation has the added advantage of serving as a climate indicator. To better understand grassland and climate dynamics in the Great Plains during the last 12 ka (ka=1000 radiocarbon years) we developed an isotopic standardization technique by: determining the difference in buried soil ??13C and modern soil ??13C expected for that latitude (????13C), and transferring the ????13C to ??%C4 (% C4) using mass balance calculations. Our analysis reveals two isotopic stages in the mixed and shortgrass prairie of the Great Plains based on trends in ??%C4. In response to orbital forcing mechanisms, ??%C4 was persistently below modern in the Great Plains between 12 and 6.7 ka (isotopic stage II) evidently because of the cooling effect of the Laurentide ice sheet and proglacial lakes in northern latitudes, and glacial meltwater pulses cooling the Gulf of Mexico and North Atlantic Ocean. The ??%C4 after 6.7 ka (isotopic stage I) increased to modern levels as conditioned by the outflow of warm, moist air from the Gulf of Mexico and dry incursions from the west that produced periodic drought. At the millennial-scale, time series analysis demonstrates that ??%C4 oscillated with 0.6 and 1.8 ka periodicities, possibly governed by variations in solar irradiance. Our buried soil isotopic record correlates well with other environmental proxy from the Great Plains and

  18. Bringing the "social" into sociohydrology: Conservation policy support in the Central Great Plains of Kansas, USA

    NASA Astrophysics Data System (ADS)

    Sanderson, Matthew R.; Bergtold, Jason S.; Heier Stamm, Jessica L.; Caldas, Marcellus M.; Ramsey, Steven M.

    2017-08-01

    Identifying means of empirically modeling the human component of a coupled, human-water system becomes critically important to further advances in sociohydrology. We develop a social-psychological model of environmental decision making that addresses four key challenges of incorporating social science into integrated models. We use the model to explain preferences for three conservation policies designed to conserve and protect water resources and aquatic ecosystems in the Smoky Hill River Basin, a semiarid agricultural region in the Central U.S. Great Plains. Further, we compare the model's capacity to explain policy preferences among members of two groups in the River Basin: agricultural producers and members of nonfarming communities. We find that financial obligation is the strongest and most consistent explanation of support for conservation policies among members of both groups. We also find that policy support is grounded in cultural values—deeply held ideas about right and wrong. Environmental values are particularly important explanations of policy support. The constellations of values invoked to make decisions about policies, and the social-psychological pathways linking values to policy support, can vary across policies and types of agents (farmers and nonfarmers). We discuss the implications of the results for future research in sociohydrology.

  19. Building Indigenous Community Resilience in the Great Plains

    NASA Astrophysics Data System (ADS)

    Gough, B.

    2014-12-01

    Indigenous community resilience is rooted in the seasoned lifeways, developed over generations, incorporated into systems of knowledge, and realized in artifacts of infrastructure through keen observations of the truth and consequences of their interactions with the environment found in place over time. Their value lies, not in their nature as artifacts, but in the underlying patterns and processes of culture: how previous adaptations were derived and evolved, and how the principles and processes of detailed observation may inform future adaptations. This presentation examines how such holistic community approaches, reflected in design and practice, can be applied to contemporary issues of energy and housing in a rapidly changing climate. The Indigenous Peoples of the Great Plains seek to utilize the latest scientific climate modeling to support the development of large, utility scale distributed renewable energy projects and to re-invigorate an indigenous housing concept of straw bale construction, originating in this region. In the energy context, we explore the potential for the development of an intertribal wind energy dynamo on the Great Plains, utilizing elements of existing federal policies for Indian energy development and existing federal infrastructure initially created to serve hydropower resources, which may be significantly altered under current and prospective drought scenarios. For housing, we consider the opportunity to address the built environment in Indian Country, where Tribes have greater control as it consists largely of residences needed for their growing populations. Straw bale construction allows for greater use of local natural and renewable materials in a strategy for preparedness for the weather extremes and insurance perils already common to the region, provides solutions to chronic unemployment and increasing energy costs, while offering greater affordable comfort in both low and high temperature extremes. The development of large

  20. Evidence of Active Dune Sand on the Great Plains in the 19th Century from Accounts of Early Explorers

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Holliday, Vance T.

    1995-03-01

    Eolian sand is extensive over the Great Plains of North America, but is at present mostly stabilized by vegetation. Accounts published by early explorers, however, indicate that at least parts of dune fields in Nebraska, Colorado, Kansas, New Mexico, and Texas were active in the 19th century. Based on an index of dune mobility and a regional tree-ring record, the probable causes for these periods of greater eolian activity are droughts, accompanied by higher temperatures, which greatly lowered the precipitation-to-evapotranspiration ratio and diminished the cover of stabilizing vegetation. In addition, observations by several explorers, and previous historical studies, indicate that rivers upwind of Great Plains dune fields had shallow, braided, sandy channels, as well as intermittent flow in the 19th century. Wide, braided, sandy rivers that were frequently dry would have increased sand supplies to active dune fields. We conclude that dune fields in the Great Plains are extremely sensitive to climate change and that the potential for reactivation of stabilized dunes in the future is high, with or without greenhouse warming.

  1. IMPLICATIONS OF INVASION BY JUNIPERUS VIRGINIANA ON SMALL MAMMALS IN THE SOUTHERN GREAT PLAINS

    EPA Science Inventory

    Changes in landscape cover in the Great Plains are resulting from the range expansion and invasion of eastern red cedar (Juniperus virginiana). By altering the landscape and local vegetation, red cedar is changing the structure and function of habitat for small mammals. We exam...

  2. Large Area Crop Inventory Experiment (LACIE). Detecting and monitoring agricultural vegetative water stress over large areas using LANDSAT digital data. [Great Plains

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Wehmanen, O. A. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The Green Number Index technique which uses LANDSAT digital data from 5X6 nautical mile sampling frames was expanded to evaluate its usefulness in detecting and monitoring vegetative water stress over the Great Plains. At known growth stages for wheat, segments were classified as drought or non drought. Good agreement was found between the 18 day remotely sensed data and a weekly ground-based crop moisture index. Operational monitoring of the 1977 U.S.S.R. and Australian wheat crops indicated drought conditions. Drought isoline maps produced by the Green Number Index technique were in good agreement with conventional sources.

  3. Baseline and projected future carbon storage and greenhouse-gas fluxes in the Great Plains region of the United States

    USGS Publications Warehouse

    Bouchard, Michelle; Butman, David; Hawbaker, Todd; Li, Zhengpeng; Liu, Jinxun; Liu, Shu-Guang; McDonald, Cory; Reker, Ryan R.; Sayler, Kristi; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2011-01-01

    This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act (EISA) of 2007 and to improve understanding of carbon and greenhouse gas (GHG) fluxes in the Great Plains region in the central part of the United States. The assessment examined carbon storage, carbon fluxes, and other GHG fluxes (methane and nitrous oxide) in all major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and freshwater aquatic systems (rivers, streams, lakes, and impoundments) in two time periods: baseline (generally in the first half of the 2010s) and future (projections from baseline to 2050). The assessment was based on measured and observed data collected by the U.S. Geological Survey (USGS) and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.

  4. Particulate matter concentrations for mono-slope beef cattle facilities in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Confined cattle facilities are an increasingly common housing system in the Northern Great Plains region of the United States. Producers may maintain a deep-bedded manure pack (Pack), they may remove all bedding/manure material from the pens weekly (Scrape), or use a combination of management styles...

  5. Immigration to the Great Plains, 1865-1914: War, Politics, Technology, and Economic Development

    ERIC Educational Resources Information Center

    Garver, Bruce

    2011-01-01

    The advent and vast extent of immigration to the Great Plains states during the years 1865 to 1914 is perhaps best understood in light of the new international context that emerged during the 1860s in the aftermath of six large wars whose consequences included the enlargement of civil liberties, an acceleration of economic growth and technological…

  6. But What Is There to See? An Exploration of a Great Plains Aesthetic

    ERIC Educational Resources Information Center

    Tangney, ShaunAnne

    2004-01-01

    In the fall of 2001 I taught a beginning college composition course at Minot State University, a small state university located in the northwestern quadrant of North Dakota. It is typical of such courses to include a fair amount of reading, and one of the texts I assigned was Ian Frazier's "Great Plains". The book is a travelogue that…

  7. Simulating the dynamics of linear forests in great plains agroecosystems under changing climates

    Treesearch

    Qinfeng Guo; J. Brandle; Michele Schoeneberger; D. Buettner

    2004-01-01

    Most forest growth models are not suitable for the highly fragmented, linear (or linearly shaped) forests in the Great Plains agroecosystems (e.g., windbreaks, riparian forest buffers), where such forests are a minor but ecologically important component of the land mosaics. This study used SEEI)SCAPE, a recently modified gap model designed for cultivated land mosaics...

  8. Annual crop type classification of the U.S. Great Plains for 2000 to 2011

    USGS Publications Warehouse

    Howard, Daniel M.; Wylie, Bruce K.

    2014-01-01

    The purpose of this study was to increase the spatial and temporal availability of crop classification data. In this study, nearly 16.2 million crop observation points were used in the training of the US Great Plains classification tree crop type model (CTM). Each observation point was further defined by weekly Normalized Difference Vegetation Index, annual climate, and a number of other biogeophysical environmental characteristics. This study accounted for the most prevalent crop types in the region, including, corn, soybeans, winter wheat, spring wheat, cotton, sorghum, and alfalfa. Annual CTM crop maps of the US Great Plains were created for 2000 to 2011 at a spatial resolution of 250 meters. The CTM achieved an 87 percent classification success rate on 1.8 million observation points that were withheld from model training. Product validation was performed on greater than 15,000 county records with a coefficient of determination of R2 = 0.76.

  9. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. [Great Plains Corridor

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr. (Principal Investigator); Haas, R. H.; Deering, D. W.; Schell, J. A.

    1973-01-01

    The author has identified the following significant results. The Great Plains Corridor rangeland project utilizes natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. A method has been developed for quantitative measurement of vegetation conditions over broad regions using ERTS-1 MSS data. Radiance values recorded in ERTS-1 spectral bands 5 and 7, corrected for sun angle, are used to compute a band ratio parameter which is shown to be correlated with green biomass and vegetation moisture content. This report details the progress being made toward determining factors associated with the transformed vegetation index (TVI) and limitations on the method. During the first year of ERTS-1 operation (cycles 1-20), an average of 50% usable ERTS-1 data was obtained for the ten Great Plains Corridor test sites.

  10. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    USDA-ARS?s Scientific Manuscript database

    Some small scale irrigation systems (< 2 ha) powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  11. Greenhouse Gas Emissions of Beef Cattle Production in the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Kannan, N.; Niraula, R.; Saleh, A.; Osei, E.; Cole, A.; Todd, R.; Waldrip, H.; Aljoe, H.

    2017-12-01

    A five-year USDA-funded study titled "Resilience and vulnerability of beef cattle production in the Southern Great Plains under changing climate, land use, and markets" was initiated as a multi-institutional collaboration involving Texas Institute for Applied Environmental Research (TIAER)—Tarleton State University, United States Department of Agriculture (USDA)—Agricultural Research Service (ARS) in El Reno, Oklahoma, USDA—ARS in Bushland, Texas, Kansas State University, Oklahoma State University, University of Oklahoma, and the Noble Research Institute in Ardmore, Oklahoma. The project goal is to safeguard and promote regional beef production while mitigating its environmental footprint. Conducting a full Life Cycle Analysis (LCA) is one of the major objectives of the study, in addition to field experiments, extension, outreach, and education. Estimation of all the resource use and greenhouse gas emissions are parts of the LCA. A computer model titled Animal Production Life Cycle Analysis Tool (APLCAT) is developed and applied to conduct the LCA on beef cattle production in the study region. The model estimates water use, energy requirements, and emissions of enteric methane, manure methane, nitrous oxide, and carbon dioxide. Also included in the LCA analysis are land-atmospheric exchanges of methane, nitrous oxide, carbon dioxide and the global warming potential. Our study is focused on the cow-calf and stocker phases of beef cattle production. The animal production system in the study region is predominantly forage based with protein and energy supplements when needed. Spring calving typical to the study region. In the cow-calf phase animals typically graze native prairie although introduced pasture grazing is also prevalent. Stockers use winter pasture as the major feed. The results of greenhouse gas emissions summarized per kg of hot carcass weight or animal fed will be presented.

  12. Occurrence and risk assessment of phthalate esters (PAEs) in agricultural soils of the Sanjiang Plain, northeast China.

    PubMed

    Wang, He; Liang, Hong; Gao, Da-Wen

    2017-08-01

    This study looks at the pollution status of six priority control phthalate esters (PAEs) under different cultivation of agricultural soils in the Sanjiang Plain, northeast China. Results show the total concentration of PAEs ranged from 162.9 to 946.9 μg kg -1 with an average value of 369.5 μg kg -1 . PAE concentrations in three types of cultivated soils exhibited decreasing order paddy field (532.1 ± 198.1 μg kg -1 ) > vegetable field (308.2 ± 87.5 μg kg -1 ) > bean field (268.2 ± 48.3 μg kg -1 ). Di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) were the most abundant PAEs congeners. Compared with previous studies, agricultural soils in the Sanjiang Plain showed relatively low contamination levels. Anthropogenic activities such as cultivation practices and industrial emissions were associated with the distribution pattern of PAEs. Furthermore, human health risks of PAEs were estimated and the non-cancer risk shown negligible but carcinogenic risk of DEHP exceeded the threshold limits value. PAE contaminants originated from cultivation practices and intense anthropogenic activities result in placing the agricultural soils under a potential risk to human health and also to ecosystems in the Sanjiang Plain. Therefore, the contamination status of PAEs in agricultural soil and potential impacts on human health should attract considerable attention.

  13. A multidisciplinary analysis of groundwater declines and agricultural production in the High Plains Aquifer of Kansas

    NASA Astrophysics Data System (ADS)

    Steward, David R.; Bruss, Paul J.; Yang, Xiaoying; Staggenborg, Scott A.; Welch, Stephen M.; Apley, Michael D.

    2014-05-01

    The High Plains Aquifer provides groundwater for 30% of the irrigated agriculture in the USA. Within Kansas, groundwater supports the congressional district with highest market value of agriculture. And yet, over-pumping and associated groundwater declines threaten the long-term prospects. The groundwater portion of this study quantifies the availability of groundwater stores over the next 100 years. A water-use function is developed to quantify the historical and future impacts of irrigation on corn production. A relationship between corn consumption per head of cattle quantifies the herd size that can be supported by irrigated corn. Together, we project the impacts of changes in groundwater stores on corn and cattle production for the next century. Scenarios analyze the impacts of water savings today on current and future agriculture production. Reference: Steward, D. R., Bruss, P. J., Yang, X., Staggenborg, S. A., Welch, S. M. and M. D. Apley, Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110, Proceedings of the National Academy of Sciences of the United States of America, 110(37) E3477-E3486, September 10, 2013. http://dx.doi.org/10.1073/pnas.1220351110

  14. Soil erosion and organic matter variations for central Great Plains cropping systems under residue removal

    USDA-ARS?s Scientific Manuscript database

    The diversity of geo-climatic land bases and potential feedstocks within the United States Central Great Plains (CGP) requires sustainable production that provides optimal resource utilization while maintaining or enhancing localized soil and environmental quality as much as possible. This study exa...

  15. Dataset: Soil erosion and organic matter for central Great Plains cropping systems under residue removal

    USDA-ARS?s Scientific Manuscript database

    The diversity of geo-climatic land bases and potential feedstocks within the United States Central Great Plains (CGP) requires sustainable production that provides optimal resource utilization while maintaining or enhancing localized soil and environmental quality as much as possible. This study exa...

  16. Petroleum hydrogeology of the Great Hungarian Plain, Eastern Pannonian Basin, Hungary

    NASA Astrophysics Data System (ADS)

    Almasi, Istvan

    The results of a regional scale hydrogeological investigation conducted in the Great Hungarian Plain, Eastern Pannonian Basin, for the purposes of petroleum exploration are presented. Two regional aquitards and three regional aquifers were determined in the poorly-to-well consolidated clastic basin fill of the Neogene-Quaternary age and the indurated basement of the Pre-Neogene age. The fluid-potential field was mapped using measured values of stabilised water level and pore-pressure. Two regional fluid flow regimes were recognised: an upper gravity-driven flow regime, and a lower overpressured regime, where super-hydrostatic pore pressures of 1--35 MPa are encountered. The transition between the two flow regimes does not correlate with any particular hydrostratigraphic boundary or elevation range. Apparently, its position and nature are controlled by the morphology of the rigid basement, and locally by the permeability contrasts within the overlying hydrostratigraphic units. Local hydrostratigraphic breaches and conduit faults facilitate hydraulic communication across the regional aquitards. The basin is hydraulically continuous. The mapped groundwater flow directions do not match the predictions of compactional flow models. At two gas-fields, up to 10 MPa overpressures are probably caused by buoyancy forces. Transient overpressures can not be maintained over geologic time in the basin, due to the rock's low hydraulic resistance. Regional tectonic compressive stress, probably with a Recent increase in intensity, offers a new and plausible explanation for the distribution pattern of overpressures in the Great Hungarian Plain. Gravity-driven groundwater flow plays a determinant role in petroleum migration and entrapment. Compactional flow models can explain the present-day position of several known petroleum accumulations within the overpressured regime. However, most accumulations are also associated with particular fluid-potential anomaly-patterns of the actual

  17. Interpretation and compendium of historical fire accounts in the Northern Great Plains

    USGS Publications Warehouse

    Higgins, K.F.

    1986-01-01

    This interpretation and compendium of historical fire accounts in the northern Great Plains provides resource managers with background information to justify the study or use of fire in management and provides a reference of historic fire accounts for those without ready access to major library collections. Historical accounts of fire are critiqued to aid interpreting the compendium accounts. An interpretation is included by the author.Lightning-set fires were recorded in the literature far less frequently than were Indian-set fires. The kinds of fire most frequently reported were scattered, single events of short duration and small extent. Although fires occurred in wetlands, wetlands as well as sandy soil sites usually were good areas for escape from the effects of fire. Both Indians and wild animals were reportedly injured or killed during prairie fires. The frequency of historic fires was less evident in the literature than the descriptions of fire distribution in time and space. Indian-set fires were reported in every month except January. Fires occurred mainly in two periods, March through May with a peak in April, and July to early November with a peak in October. Grassland fuels burned readily within a few hours or days after rain and even during light snowfall.I agree with arguments that support the concept that Indians of the northern Great Plains generally did not subscribe to annual wholesale or promiscuous burning practices, but that they did purposely use fire as a tool to aid hunting and gathering of food and materials. Apparently, the northern plains Indians did not pattern their use of fire with the seasonal patterns of lightning fires. More likely they developed seasonal patterns of burning the prairies in harmony with bison (Bison bison) herd movements because the hunter-gatherer economy of these nomadic tribes was centrally focused and largely dependent on bison and bison ecology.

  18. Crop residue harvest impacts wind erodibility and simulated loss in the Central Great Plains

    USDA-ARS?s Scientific Manuscript database

    Crop residue removal can affect the susceptibility of soil loss on wind erosion-prone soils such as those of the central Great Plains, US. Six on-farm trials conducted from 2011 to 2013 in Kansas determined the effects of winter wheat (Triticum aestivum L.), corn (Zea mays L.), and grain sorghum (So...

  19. Quantifying uncertainties of seismic Bayesian inversion of Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Gao, C.; Lekic, V.

    2017-12-01

    Elastic waves excited by earthquakes are the fundamental observations of the seismological studies. Seismologists measure information such as travel time, amplitude, and polarization to infer the properties of earthquake source, seismic wave propagation, and subsurface structure. Across numerous applications, seismic imaging has been able to take advantage of complimentary seismic observables to constrain profiles and lateral variations of Earth's elastic properties. Moreover, seismic imaging plays a unique role in multidisciplinary studies of geoscience by providing direct constraints on the unreachable interior of the Earth. Accurate quantification of uncertainties of inferences made from seismic observations is of paramount importance for interpreting seismic images and testing geological hypotheses. However, such quantification remains challenging and subjective due to the non-linearity and non-uniqueness of geophysical inverse problem. In this project, we apply a reverse jump Markov chain Monte Carlo (rjMcMC) algorithm for a transdimensional Bayesian inversion of continental lithosphere structure. Such inversion allows us to quantify the uncertainties of inversion results by inverting for an ensemble solution. It also yields an adaptive parameterization that enables simultaneous inversion of different elastic properties without imposing strong prior information on the relationship between them. We present retrieved profiles of shear velocity (Vs) and radial anisotropy in Northern Great Plains using measurements from USArray stations. We use both seismic surface wave dispersion and receiver function data due to their complementary constraints of lithosphere structure. Furthermore, we analyze the uncertainties of both individual and joint inversion of those two data types to quantify the benefit of doing joint inversion. As an application, we infer the variation of Moho depths and crustal layering across the northern Great Plains.

  20. Evapotranspiration in winter wheat under different grazing and tillage practices in the southern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Precipitation in the Southern Great Plains (SGP) is highly variable both spatially and temporally with recurring periods of severe drought. Winter wheat (Triticum aestivum L.) – summer fallow system with conventional tillage is the principal dryland cropping system in this region for both grazing an...

  1. Using Land Surface Phenology to Detect Land Use Change in the Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Nguyen, L. H.; Henebry, G. M.

    2017-12-01

    The Northern Great Plains of the US have been undergoing many types of land cover / land use change over the past two decades, including expansion of irrigation, conversion of grassland to cropland, biofuels production, urbanization, and fossil fuel mining. Much of the literature on these changes has relied on post-classification change detection based on a limited number of observations per year. Here we demonstrate an approach to characterize land dynamics through land surface phenology (LSP) by synergistic use of image time series at two scales. Our study areas include regions of interest (ROIs) across the Northern Great Plains located within Landsat path overlap zones to boost the number of valid observations (free of clouds or snow) each year. We first compute accumulated growing degree-days (AGDD) from MODIS 8-day composites of land surface temperature (MOD11A2 and MYD11A2). Using Landsat Collection 1 surface reflectance-derived vegetation indices (NDVI, EVI), we then fit at each pixel a downward convex quadratic model linking the vegetation index to each year's progression of AGDD. This quadratic equation exhibits linearity in a mathematical sense; thus, the fitted models can be linearly mixed and unmixed using a set of LSP endmembers (defined by the fitted parameter coefficients of the quadratic model) that represent "pure" land cover types with distinct seasonal patterns found within the region, such as winter wheat, spring wheat, maize, soybean, sunflower, hay/pasture/grassland, developed/built-up, among others. Information about land cover corresponding to each endmember are provided by the NLCD (National Land Cover Dataset) and CDL (Cropland Data Layer). We use linear unmixing to estimate the likely proportion of each LSP endmember within particular areas stratified by latitude. By tracking the proportions over the 2001-2011 period, we can quantify various types of land transitions in the Northern Great Plains.

  2. Survey of Multiply Handicapped, Visually Impaired Children in the Rocky Mountain/Great Plains Region.

    ERIC Educational Resources Information Center

    Gates, Carmella Ficociello

    1985-01-01

    A survey of visually impaired children (from birth to age 12) in the Rocky Mountain/Great Plains region indicated that the majority were multiply handicapped, and that within this group, the greatest number were in the mild to moderate range. Data are presented on age ranges, current service delivery options, vocational and alternative-living…

  3. Road crossing designs and their impact on fish assemblages of Great Plains streams

    USGS Publications Warehouse

    Bouska, Wesley W.; Paukert, Craig P.

    2010-01-01

    A mark-recapture field study was conducted to determine fish passage at 5 concrete box culverts and 5 low-water crossings (concrete slabs vented by culverts) as well as 10 control sites (below a natural riffle) in Flint Hills streams of northeastern Kansas. Additionally, we tested the upstream passage of four fish species native to Great Plains streams (Topeka shiner Notropis topeka, green sunfish Lepomis cyanellus, red shiner Cyprinella lutrensis, and southern redbelly dace Phoxinus erythrogaster) through three simulated crossing designs (box culverts, round corrugated culverts, and natural rock riffles) at water velocities of 0.1 to 1.1 m/s in an experimental stream. The field study indicated that cyprinids were twice as likely to move upstream of box culverts than low-water crossings and 1.4 times as likely to move upstream of control reaches than any crossing type. The best models indicated that the proportion of cyprinids that moved upstream increased with decreased culvert slope and length, perching, and increased culvert width. Our controlled experiment indicated that fish can move through velocities up to 1.1 m/s in a 1.86-m simulated stream and that the proportion of fish that moved upstream did not differ among crossing designs for southern redbelly dace, green sunfish, or Topeka shiner; however, natural rock riffles had lower proportional movements (mean = 0.19) than the box (0.38) or corrugated culvert designs (0.43) for red shiners. Water velocity did not affect the proportional upstream movement of any species except that of Topeka shiners, which increased with water velocity. Crossing design alone may not determine fish passage, and water velocities up to 1.1 m/s may not affect the passage of many Great Plains fishes. Barriers to fish movement may be the result of other factors (e.g., perching, slope, and crossing length). The use of properly designed and installed crossings has promise in conserving Great Plains stream fishes.

  4. The influence of land cover on surface energy partitioning and evaporative fraction regimes in the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Bagley, Justin E.; Kueppers, Lara M.; Billesbach, Dave P.; Williams, Ian N.; Biraud, Sébastien C.; Torn, Margaret S.

    2017-06-01

    Land-atmosphere interactions are important to climate prediction, but the underlying effects of surface forcing of the atmosphere are not well understood. In the U.S. Southern Great Plains, grassland/pasture and winter wheat are the dominant land covers but have distinct growing periods that may differently influence land-atmosphere coupling during spring and summer. Variables that influence surface flux partitioning can change seasonally, depending on the state of local vegetation. Here we use surface observations from multiple sites in the U.S. Department of Energy Atmospheric Radiation Measurement Southern Great Plains Climate Research Facility and statistical modeling at a paired grassland/agricultural site within this facility to quantify land cover influence on surface energy balance and variables controlling evaporative fraction (latent heat flux normalized by the sum of sensible and latent heat fluxes). We demonstrate that the radiative balance and evaporative fraction are closely related to green leaf area at both winter wheat and grassland/pasture sites and that the early summer harvest of winter wheat abruptly shifts the relationship between evaporative fraction and surface state variables. Prior to harvest, evaporative fraction of winter wheat is strongly influenced by leaf area and soil-atmosphere temperature differences. After harvest, variations in soil moisture have a stronger effect on evaporative fraction. This is in contrast with grassland/pasture sites, where variation in green leaf area has a large influence on evaporative fraction throughout spring and summer, and changes in soil-atmosphere temperature difference and soil moisture are of relatively minor importance.

  5. Application of wheat yield model to United States and India. [Great Plains

    NASA Technical Reports Server (NTRS)

    Feyerherm, A. M. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The wheat yield model was applied to the major wheat-growing areas of the US and India. In the US Great Plains, estimates from the winter and spring wheat models agreed closely with USDA-SRS values in years with the lowest yields, but underestimated in years with the highest yields. Application to the Eastern Plains and Northwest indicated the importance of cultural factors, as well as meteorological ones in the model. It also demonstrated that the model could be used, in conjunction with USDA-SRRS estimates, to estimate yield losses due to factors not included in the model, particularly diseases and freezes. A fixed crop calendar for India was built from a limited amount of available plot data from that country. Application of the yield model gave measurable evidence that yield variation from state to state was due to different mixes of levels of meteorological and cultural factors.

  6. The role of C3 and C4 grasses to interannual variability in remotely sensed ecosystem performance over the US Great Plains

    USGS Publications Warehouse

    Ricotta, C.; Reed, B.C.; Tieszen, L.T.

    2003-01-01

    Time integrated normalized difference vegetation index (??NDVI) derived from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) multi-temporal imagery over a 10-year period (1989-1998) was used as a surrogate for primary production to investigate the impact of interannual climate variability on grassland performance for central and northern US Great Plains. First, the contribution of C3 and C4 species abundance to the major grassland ecosystems of the US Great Plains is described. Next, the relation between mean ??NDVI and the ??NDVI coefficient of variation (CV ??NDVI) used as a proxy for interranual climate variability is analysed. Results suggest that the differences in the long-term climate control over ecosystem performance approximately coincide with changes between C3- and C4-dominant grassland classes. Variation in remotely sensed net primary production over time is higher for the southern and western plains grasslands (primary C4 grasslands), whereas the C3-dominated classes in the northern and eastern portion of the US Great Plains, generally show lower CV ??NDVI values.

  7. Woody encroachment in northern Great Plains grasslands: Perceptions, actions, and needs

    USGS Publications Warehouse

    Symstad, Amy J.; Leis, Sherry A.

    2017-01-01

    The United States Northern Great Plains (NGP) has a high potential for landscape-scale conservation, but this grassland landscape is threatened by encroachment of woody species. We surveyed NGP land managers to identify patterns in, and illustrate a broad range of, individual managers' perceptions on (1) the threat of woody encroachment to grasslands they manage, and (2) what management practices they use that may influence woody encroachment in this region. In the 34 surveys returned, which came from predominantly public lands in the study area, 79% of responses reported moderate or substantial woody encroachment. Eastern redcedar (Juniperus virginiana) and Rocky Mountain juniper (Juniperus scopulorum) were the most problematic encroachers. Thirty-one survey respondents said that prescribed fire was used on the lands they manage, and 64% of these responses reported that controlling woody encroachment was a fire management objective. However, only 18% of survey respondents using prescribed fire were achieving their desired fire return interval. Most respondents reported using mechanical and/or chemical methods to control woody species. In contrast to evidence from the central and southern Great Plains, few survey respondents viewed grazing as affecting encroachment. Although the NGP public land managers we surveyed clearly recognize woody encroachment as a problem and are taking steps to address it, many feel that the rate of their management is not keeping pace with the rate of encroachment. Developing strategies for effective woody plant control in a variety of NGP management contexts requires filling ecological science gaps and overcoming societal barriers to using prescribed fire.

  8. Avian associations of the Northern Great Plains grasslands

    USGS Publications Warehouse

    Kantrud, H.A.; Kologiski, R.L.

    1983-01-01

    The grassland region of the northern Great Plains was divided into six broad subregions by application of an avian indicator species analysis to data obtained from 582 sample plots censused during the breeding season. Common, ubiquitous species and rare species had little classificatory value and were eliminated from the data set used to derive the avian associations. Initial statistical division of the plots likely reflected structure of the dominant plant species used for nesting; later divisions probably were related to foraging or nesting cover requirements based on vegetation height or density, habitat heterogeneity, or possibly to the existence of mutually similar distributions or shared areas of greater than average abundance for certain groups of species. Knowledge of the effects of grazing, mostly by cattle, on habitat use by the breeding bird species was used to interpret the results of the indicator species analysis. Moderate grazing resulted in greater species richness in nearly all subregions; effects of grazing on total bird density were more variable.

  9. Integrated Migratory Bird Planning in the Lower Great Lakes/St. Lawrence Plain Bird Conservation Region

    Treesearch

    Chuck Hayes; Andrew Milliken; Randy Dettmers; Kevin Loftus; Brigitte Collins; Isabelle Ringuet

    2005-01-01

    The Atlantic Coast and Eastern Habitat Joint Ventures hosted two international planning workshops to begin the process of integrating bird conservation strategies under the North American Bird Conservation Initiative in the Lower Great Lakes/St. Lawrence Plain Bird Conservation Region. The workshops identified priority species and habitats, delineated focus areas,...

  10. AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont

    DOE Data Explorer

    Torn, Margaret [Lawrence Berkeley National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ARb ARM Southern Great Plains burn site- Lamont. Site Description - The ARM SGP Burn site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots, the US-ARb plot was burned on 2005/03/08. The second plot, US-ARc, was left unburned as the control for experimental purposes. Aside from 2005, the region evaded burning activities for at least 15 years. Current disturbances consist of only light grazing activities.

  11. Influence of the Great Plains Low-Level Jet on Summertime Precipitation and Moisture Transport over the Central United States.

    NASA Astrophysics Data System (ADS)

    Higgins, R. W.; Yao, Y.; Yarosh, E. S.; Janowiak, J. E.; Mo, K. C.

    1997-03-01

    The influence of the Great Plains low-level jet (LLJ) on summertime precipitation and moisture transport over the central United States is examined in observations and in assimilated datasets recently produced by the NCEP/NCAR and the NASA/DAO. Intercomparisons between the assimilated datasets and comparisons with station observations of precipitation, winds, and specific humidity are used to evaluate the limitations of the assimilated products for studying the diurnal cycle of rainfall and the Great Plains LLJ. The winds from the reanalyses are used to diagnose the impact of the LLJ on observed nocturnal precipitation and moisture transport over a multisummer (JJA 1985-89) period. The impact of the LLJ on the overall moisture budget of the central United States is also examined.An inspection of the diurnal cycle of precipitation in gridded hourly station observations for 1963-93 reveals a well-defined nocturnal maximum over the Great Plains region during the spring and summer months consistent with earlier observational studies. During summer in excess of 25% more precipitation falls during the nighttime hours than during the daytime hours over a large portion of the Great Plains, with a commensurate decrease in the percentage amount of nocturnal precipitation along the Gulf Coast. Inspection of the nighttime precipitation by month shows that the maximum in precipitation along the Gulf Coast slowly shifts northward from the lower Mississippi Valley to the upper Midwest during the late spring and summer months and then back again during the fall.Both reanalyses produce a Great Plains LLJ with a structure, diurnal cycle, and frequency of occurrence that compares favorably to hourly wind profiler data. Composites of observed nighttime rainfall during LLJ events show a fundamentally different pattern in the distribution of precipitation compared to nonjet events. Overall, LLJ events are associated with enhanced precipitation over the north central United States and

  12. 'Duster' wheat: A durable, dual-purpose cultivar adapted to the southern great plains of the USA

    USDA-ARS?s Scientific Manuscript database

    Winter wheat (Triticum aestivum L.) cultivars which gain broad commercial acceptance in Oklahoma and surrounding states of the U.S. southern Great Plains must produce a definitive grain yield advantage, and they must demonstrate season-long dependability in dual purpose management systems, effective...

  13. Developing the 18th indicator for interpreting indicators of rangeland health on Northern Great Plains rangelands

    USDA-ARS?s Scientific Manuscript database

    National Resources Inventory (NRI) resource assessment report shows little to no departure on Rangeland Health for most Northern Great Plains Rangelands. This information is supported by Interpreting Indicators of Rangeland Health (IIRH) data collected at local to regional scales. There is however a...

  14. Vulnerability of crops and native grasses to summer drying in the U.S. Southern Great Plains

    DOE PAGES

    Raz-Yaseef, Naama; Billesbach, Dave P.; Fischer, Marc L.; ...

    2015-08-31

    The Southern Great Plains are characterized by a fine-scale mixture of different land-cover types, predominantly winter-wheat and grazed pasture, with relatively small areas of other crops, native prairie, and switchgrass. Recent droughts and predictions of increased drought in the Southern Great Plains, especially during the summer months, raise concern for these ecosystems. We measured ecosystem carbon and water fluxes with eddy-covariance systems over cultivated cropland for 10 years, and over lightly grazed prairie and new switchgrass fields for 2 years each. Growing-season precipitation showed the strongest control over net carbon uptake for all ecosystems, but with a variable effect: grassesmore » (prairie and switchgrass) needed at least 350 mm of precipitation during the growing season to become net carbon sinks, while crops needed only 100 mm. In summer, high temperatures enhanced evaporation and led to higher likelihood of dry soil conditions. Therefore, summer-growing native prairie species and switchgrass experienced more seasonal droughts than spring-growing crops. For wheat, the net reduction in carbon uptake resulted mostly from a decrease in gross primary production rather than an increase in respiration. Flux measurements suggested that management practices for crops were effective in suppressing evapotranspiration and decomposition (by harvesting and removing secondary growth), and in increasing carbon uptake (by fertilizing and conserving summer soil water). In light of future projections for wetter springs and drier and warmer summers in the Southern Great Plains, our study indicates an increased vulnerability in native ecosystems and summer crops over time.« less

  15. Application of pheromone traps for managing Hessian fly, (Diptera: Cecidomyiidae) in the Southern Great Plains

    USDA-ARS?s Scientific Manuscript database

    The Hessian fly, Mayetiola destructor Say, is an important pest of winter wheat in the Southern Great Plains of the U.S. As larvae feed behind the leaf sheath, infestations often go undetected until crop damage is evident and there are no remedial actions that can prevent economic loss once a field...

  16. Vulnerability of crops and native grasses to summer drying in the U.S. Southern Great Plains

    USDA-ARS?s Scientific Manuscript database

    The Southern Great Plains are characterized by a fine-scale mixture of different land cover types, predominantly winter-wheat and pasture lands, with relatively small areas of other crops, native prairie, and switchgrass. Recent droughts and predictions of increased drought (especially during the s...

  17. Structural Characteristics of Nocturnal Mesoscale Convective Systems in the U.S. Great Plains as Observed During the PECAN Field Campaign

    NASA Astrophysics Data System (ADS)

    Bodine, D. J.; Dougherty, E.; Rasmussen, K. L.; Torres, A. D.

    2015-12-01

    During the summer in the U.S. Great Plains, some of the heaviest precipitation falls from large thunderstorm complexes known as Mesoscale Convective Systems (MCSs). These frequently occurring MCSs are often nocturnal in nature, so the dynamics associated with these systems are more elusive than those in the daytime. The Plains Elevated Convection at Night (PECAN) field campaign was launched over a 7-week period as an endeavor to better understand nocturnal MCSs occurring in the Great Plains. PECAN featured a dense array of ground-based and airborne instruments to observe nocturnal MCS, including dual-polarization radars at multiple frequencies, mobile mesonets, and sounding units. Our role in PECAN involved deploying Ott Parsivel disdrometers to gain information on drop size distributions (DSDs) and fall speeds. Analysis of disdrometer data in conjunction with radar data presented using Contour Frequency by Altitude Diagrams (CFADs) and high-resolution radiosonde data allows for a structural comparison of PECAN MCS cases to previously identified MCS archetypes. Novel insights into the structural evolution of nocturnal MCSs in relation to their synoptic, mesoscale, and thermodynamic environments are presented, using data collected from dense and numerous observation platforms. Understanding the environmental conditions that result in different nocturnal MCS configurations is useful for gaining insight into precipitation distributions and potential severe weather and flooding hazards in the Great Plains.

  18. An Innovative Approach to Effective Climate Science Application through Stakeholder Participation in Great Plains Grasslands

    NASA Astrophysics Data System (ADS)

    Athearn, N.; Broska, J.

    2015-12-01

    For natural resource managers and other Great Plains stakeholders, climate uncertainties further confound decision-making on a highly altered landscape. Partner organizations comprising the Great Plains Landscape Conservation Cooperative (GPLCC) acknowledge climate change as a high-priority threat to grasslands and associated habitats, affecting water availability, species composition, and other factors. Despite its importance, incorporation of climate change impacts into planning is hindered by high uncertainty and lack of translation to a tangible outcome: effects on species and their habitats. In 2014, the GPLCC initiated a Landscape Conservation Design (LCD) process to ultimately improve the size and connectivity of grasslands - informing land managers of the landscape-scale impacts of local decisions about where to restore, enhance, protect, and develop lands. Defining this goal helped stakeholders envision a tangible product. High resolution land cover data recently completed for Texas and Oklahoma represent current grassland locations. By focusing climate change models to project changes in these land cover datasets, resulting land cover projections can be directly incorporated into LCD-based models to focus restoration where future climates will support grasslands. Broad organizational cooperation has been critical for this USGS-led project, which uses downscaled climate data and other support from the South Central Climate Science Center Consortium and builds on existing work including LCD efforts of the Playa Lakes Joint Venture and the Bureau of Land Management's Southern Great Plains Rapid Ecological Assessment. Ongoing stakeholder guidance through an advisory team ensures effective application of a product that will be both relevant to and understood by decision makers, for whom the primary role of research is to reduce uncertainties and clear the path for more efficient decision-making in the face of climatic uncertainty.

  19. Site, environmental and airflow characteristics for mono-slope beef cattle facilities in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    In conjunction with an emission monitoring study, long-term airflow and environmental data were collected from four regional producer-owned and -operated mono-slope beef cattle facilities in the Northern Great Plains. The barns were oriented east-west, with approximate dimensions of an 8-m south wal...

  20. The role of C3 and C4 grasses to interannual variability in remotely sensed ecosystem performance over the US Great Plains

    USGS Publications Warehouse

    Ricotta, C.; Reed, Bradley C.; Tieszen, Larry L.

    2003-01-01

    Time integrated normalized difference vegetation index (ΣNDVI) derived from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) multi-temporal imagery over a 10-year period (1989–1998) was used as a surrogate for primary production to investigate the impact of interannual climate variability on grassland performance for central and northern US Great Plains. First, the contribution of C3 and C4 species abundance to the major grassland ecosystems of the US Great Plains is described. Next, the relation between mean ΣNDVI and the ΣNDVI coefficient of variation (CV ΣNDVI) used as a proxy for interannual climate variability is analysed. Results suggest that the differences in the long-term climatic control over ecosystem performance approximately coincide with changes between C3- and C4-dominant grassland classes. Variation in remotely sensed net primary production over time is higher for the southern and western plains grasslands (primarily C4 grasslands), whereas the C3-dominated classes in the northern and eastern portion of the US Great Plains, generally show lower CV ΣNDVI values.

  1. Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA

    USGS Publications Warehouse

    Lauffenburger, Zachary H.; Gurdak, Jason J.; Hobza, Christopher M.; Woodward, Duane; Wolf, Cassandra

    2018-01-01

    Understanding the controls of agriculture and climate change on recharge rates is critically important to develop appropriate sustainable management plans for groundwater resources and coupled irrigated agricultural systems. In this study, several physical (total potential (ψT) time series) and chemical tracer and dating (3H, Cl−, Br−, CFCs, SF6, and 3H/3He) methods were used to quantify diffuse recharge rates beneath two rangeland sites and irrigation recharge rates beneath two irrigated corn sites along an east-west (wet-dry) transect of the northern High Plains aquifer, Platte River Basin, central Nebraska. The field-based recharge estimates and historical climate were used to calibrate site-specific Hydrus-1D models, and irrigation requirements were estimated using the Crops Simulation Model (CROPSIM). Future model simulations were driven by an ensemble of 16 global climate models and two global warming scenarios to project a 2050 climate relative to the historical baseline 1990 climate, and simulate changes in precipitation, irrigation, evapotranspiration, and diffuse and irrigation recharge rates. Although results indicate statistical differences between the historical variables at the eastern and western sites and rangeland and irrigated sites, the low warming scenario (+1.0 °C) simulations indicate no statistical differences between 2050 and 1990. However, the high warming scenarios (+2.4 °C) indicate a 25% and 15% increase in median annual evapotranspiration and irrigation demand, and decreases in future diffuse recharge by 53% and 98% and irrigation recharge by 47% and 29% at the eastern and western sites, respectively. These results indicate an important threshold between the low and high warming scenarios that if exceeded could trigger a significant bidirectional shift in 2050 hydroclimatology and recharge gradients. The bidirectional shift is that future northern High Plains temperatures will resemble present central High Plains

  2. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110

    USDA-ARS?s Scientific Manuscript database

    Groundwater provides a reliable tap to sustain agricultural production, yet persistent aquifer depletion threatens future sustainability. The High Plains Aquifer supplies 30% of the nation’s irrigated groundwater, and the Kansas portion supports the congressional district with the highest market val...

  3. Research achievements and adoption of no-till, dryland cropping in the semi-arid US Great Plains

    USDA-ARS?s Scientific Manuscript database

    The Great Plains region of the United States and Canada is an area of widespread dryland crop production, with wheat being the dominant crop. Precipitation in the region ranges from 300 to 500 mm annually, with the majority of precipitatioCPRLn falling during hot summer months. The prevailing croppi...

  4. Cover crop biomass production and water use in the central great plains under varying water availability

    USDA-ARS?s Scientific Manuscript database

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  5. Capabilities of four novel warm-season legumes in the southern Great Plains: biomass and forage quality

    USDA-ARS?s Scientific Manuscript database

    Grain legumes could provide high nitrogen (N), late summer forage for stocker cattle in the southern Great Plains (SGP). This study evaluated the forage yield and nutritive value of tropical annual legumes novel to the SGP. Included were cultivars of pigeon pea ([Cajanus cajan (L.) Millsp.], cv. ‘GA...

  6. Vulnerability of crops and croplands in the U.S. Northern Plains to predicted climate change

    USDA-ARS?s Scientific Manuscript database

    The states of Colorado, Montana, Nebraska, North Dakota, South Dakota, and Wyoming comprise the Northern Great Plains region of the United States. The soil and water resources contained in this region have historically supported a highly diverse and productive agriculture that provides a significant...

  7. Expanding soil health assessment methods for agricultural systems of the southern great plains

    USDA-ARS?s Scientific Manuscript database

    In agricultural systems, soil health (also referred as soil quality) is critical for sustainable production and ecosystem services. Soil health analyses dependent upon singular parameters fail to account for the host of interactions occurring within the soil ecosystem. Soil health is in flux with m...

  8. Mid-Wisconsinan environments on the eastern Great Plains

    USGS Publications Warehouse

    Baker, R.G.; Bettis, E. Arthur; Mandel, R.D.; Dorale, J.A.; Fredlund, G.G.

    2009-01-01

    Few sites on the eastern Great Plains contain paleobotanical records for the mid-Wisconsin. We report on four sites, two stream cutbanks and two quarry exposures, ranging in age from >50 to ???23.4 ka. The oldest site at >50 ka contains a suite of macrofossils from prairie and disturbed ground habitats, with no representation of trees, indicating an open prairie. By ???38 ka the assemblages include aquatic, wetland, mudflat, and prairie elements with rare specimens of Populus, Betula cf. papyrifera, Salix and at the most northerly site, Picea. This assemblage suggests a prairie/parkland with interspersed marshes, cooler temperatures and increased moisture. Populus and Salix continued to be represented from ???36 to ???29 ka, but the only other taxon was Carex. A hiatus may be present at some time during this interval. After ???29 ka, Picea became dominant on the uplands and it was joined by sedges in local wetlands. At sites near riverine loess sources, loess accumulation began to fill in the wetlands and organic deposition ceased some time after 29 ka. ?? 2009 Elsevier Ltd. All rights reserved.

  9. Perennial biomass grasses and the Mason-Dixon Line: Comparative productivity across latitudes in the southern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Understanding latitudinal adaptation of switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus x giganteus J. M. Greef & Deuter ex Hodk. & Renvoize) to the southern Great Plains is key to maximizing productivity by matching each grass variety to its ideal production environment. Objectives of...

  10. Capabilities of four novel warm-season legumes in the southern Great Plains: grain production and quality

    USDA-ARS?s Scientific Manuscript database

    Grain legumes could serve as a low cost nitrogen (N) and energy source for animal production in the southern Great Plains (SGP). This study evaluated the yield and nutritive value of grains of tropical annual legumes novel to the SGP. Included were cultivars of pigeon pea ([Cajanus cajan (L.) Millsp...

  11. Internet Usage by Native Americans with Disabilities Living on American Indian Reservations in the Great Plains

    ERIC Educational Resources Information Center

    De Mars, AnnMaria

    2010-01-01

    It has been assumed that, due to limited Internet access, electronic media is an ineffective means for information dissemination to Native Americans with disabilities. In this investigation, we surveyed a sample of 467 households of Native Americans with disabilities living on Great Plains reservations regarding access to electronic resources. Of…

  12. Grassland bird use of Conservation Reserve Program fields in the Great Plains

    USGS Publications Warehouse

    Johnson, Douglas H.; Haufler, Jonathan B.

    2005-01-01

    An enormous area in the Great Plains is currently enrolled in the Conservation Reserve Program (CRP): 19.5 million acres (nearly 8 million ha) in Montana, North Dakota, South Dakota, Wyoming, Nebraska, Colorado, Kansas, Oklahoma, and Texas. This change in land use from cropland to grassland since 1985 has markedly influenced grassland bird populations. Many, but certainly not all, grassland species do well in CRP fields. The responses by birds to the program differ not only by species but also by region, year, the vegetation composition in a field, and whether or not a field has been hayed or grazed. The large scale and extent of the program has allowed researchers to address important conservation questions, such as the effect of the size of habitat patch and the influence of landscape features on bird use. However, most studies on nongame bird use of CRP in or near the Great Plains have been short-lived; 83% lasted only 1-3 years. Further, attention to the topic seems to have waned in recent years; the number of active studies peaked in the early 1990s and dramatically declined after 1995. Because breeding-bird use of CRP fields varies dramatically in response both to vegetational succession and to climatic variation, long-term studies are important. What was learned about CRP in its early stages may no longer be applicable. Finally, although the CRP provisions of the Farm Bill have been beneficial to many grassland birds, it is critical that gains in grassland habitat produced by the program not be off set by losses of native prairie.

  13. A Climatology of Nocturnal-Convection Initiation Over the Central Great Plains

    NASA Astrophysics Data System (ADS)

    Reif, D. W.; Bluestein, H. B.

    2015-12-01

    A nocturnal maximum in rainfall and thunderstorm activity over the central Great Plains is widely documented, but the mechanisms for understanding the development of thunderstorms over the region at night are still not well understood. Elevated convection, defined by Colman (1990) as storms formed through ascent above frontal surfaces, is one explanation, but our study shows that many thunderstorms can initiate at night without the presence of an elevated frontal inversion or nearby surface boundary. We address the following questions: Of all the events documented, what percentage fall under this definition of elevated convection, and what percentage fall outside of that definition? How do characteristics differ among the events that fall under that definition and the events that fall outside that definition? This study documents convection initiation (CI) events occurring at night over the central Great Plains from 1996 through 2014 during the months of April through July. Storm characteristics such as storm type (defined as linear, areal, or single cell), storm motion, initiation time and location, and others were documented. Once all of the cases were documented, surface data were examined to locate any nearby surface boundaries. The event's location relative to these boundaries (if they existed) was documented. Three main modes of CI were identified: formation on a surface boundary, formation on the cold side of a surface boundary, and formation without the presence of a surface boundary. A climatology of these events will be presented. There are many differences among the different modes of CI at night. One result is that there appears to be two main peaks of CI time at night: one early at night and one later at night. The later peak is likely due to the events that form in the absence of a nearby surface boundary.

  14. Influence of riparian and watershed alterations on sandbars in a Great Plains river

    USGS Publications Warehouse

    Fischer, Jeffrey M.; Paukert, Craig P.; Daniels, M.L.

    2014-01-01

    Anthropogenic alterations have caused sandbar habitats in rivers and the biota dependent on them to decline. Restoring large river sandbars may be needed as these habitats are important components of river ecosystems and provide essential habitat to terrestrial and aquatic organisms. We quantified factors within the riparian zone of the Kansas River, USA, and within its tributaries that influenced sandbar size and density using aerial photographs and land use/land cover (LULC) data. We developed, a priori, 16 linear regression models focused on LULC at the local, adjacent upstream river bend, and the segment (18–44 km upstream) scales and used an information theoretic approach to determine what alterations best predicted the size and density of sandbars. Variation in sandbar density was best explained by the LULC within contributing tributaries at the segment scale, which indicated reduced sandbar density with increased forest cover within tributary watersheds. Similarly, LULC within contributing tributary watersheds at the segment scale best explained variation in sandbar size. These models indicated that sandbar size increased with agriculture and forest and decreased with urban cover within tributary watersheds. Our findings suggest that sediment supply and delivery from upstream tributary watersheds may be influential on sandbars within the Kansas River and that preserving natural grassland and reducing woody encroachment within tributary watersheds in Great Plains rivers may help improve sediment delivery to help restore natural river function.

  15. Evaluation of Electromagnetic Induction to Characterize and Map Sodium-Affected Soils in the Northern Great Plains of the United States

    NASA Astrophysics Data System (ADS)

    Brevik, E. C.; Heilig, J.; Kempenich, J.; Doolittle, J.; Ulmer, M.

    2012-04-01

    Sodium-affected soils (SAS) cover over 4 million hectares in the Northern Great Plains of the United States. Improving the classification, interpretation, and mapping of SAS is a major goal of the United States Department of Agriculture-Natural Resource Conservation Service (USDA-NRCS) as Northern Great Plains soil surveys are updated. Apparent electrical conductivity (ECa) as measured with ground conductivity meters has shown promise for mapping SAS, however, this use of this geophysical tool needs additional evaluation. This study used an EM-38 MK2-2 meter (Geonics Limited, Mississauga, Ontario), a Trimble AgGPS 114 L-band DGPS (Trimble, Sunnyvale, CA) and the RTmap38MK2 program (Geomar Software, Inc., Mississauga, Ontario) on an Allegro CX field computer (Juniper Systems, North Logan, UT) to collect, observe, and interpret ECa data in the field. The ECa map generated on-site was then used to guide collection of soil samples for soil characterization and to evaluate the influence of soil properties in SAS on ECa as measured with the EM-38MK2-2. Stochastic models contained in the ESAP software package were used to estimate the SAR and salinity levels from the measured ECa data in 30 cm depth intervals to a depth of 90 cm and for the bulk soil (0 to 90 cm). This technique showed promise, with meaningful spatial patterns apparent in the ECa data. However, many of the stochastic models used for salinity and SAR for individual depth intervals and for the bulk soil had low R-squared values. At both sites, significant variability in soil clay and water contents along with a small number of soil samples taken to calibrate the ECa values to soil properties likely contributed to these low R-squared values.

  16. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    USGS Publications Warehouse

    Larson, Diane L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  17. Spectral Remote Sensing of Dust Sources on the U.S. Great Plains from 1930s Panchromatic Aerial Phtography

    NASA Astrophysics Data System (ADS)

    Bolles, K.; Forman, S. L.

    2017-12-01

    Understanding the spatiotemporal dynamics of dust sources is essential to accurately quantify the various impacts of dust on the Earth system; however, a persistent deficiency in modeling dust emission is detailed knowledge of surface texture, geomorphology, and location of dust emissive surfaces, which strongly influence the effects of wind erosion. Particle emission is closely linked to both climatic and physical surface factors - interdependent variables that respond to climate nonlinearly and are mitigated by variability in land use or management practice. Recent efforts have focused on development of a preferential dust source (PDS) identification scheme to improve global dust-cycle models, which posits certain surfaces are more likely to emit dust than others, dependent upon associated sediment texture and geomorphological limitations which constrain sediment supply and availability. In this study, we outline an approach to identify and verify the physical properties and distribution of dust emissive surfaces in the U.S. Great Plains from historical aerial imagery in order to establish baseline records of dust sources, associated erodibility, and spatiotemporal variability, prior to the satellite era. We employ a multi-criteria, spatially-explicit model to identify counties that are "representative" of the broader landscape on the Great Plains during the 1930s. Parameters include: percentage of county cultivated and uncultivated per the 1935 Agricultural Census, average soil sand content, mean annual Palmer Drought Severity Index (PDSI), maximum annual temperature and percent difference to the 30-year normal maximum temperature, and annual precipitation and percent difference to the 30-year normal precipitation level. Within these areas we generate random points to select areas for photo reproduction. Selected frames are photogrammetrically scanned at 1200 dpi, radiometrically corrected, mosaicked and georectified to create an IKONOS-equivalent image. Gray

  18. Synchrony of Piping Plover breeding populations in the U.S. Northern Great Plains

    USGS Publications Warehouse

    Roche, Erin A.; Shaffer, Terry L.; Dovichin, Colin M.; Sherfy, Mark H.; Anteau, Michael J.; Wiltermuth, Mark T.

    2016-01-01

    Local populations that fluctuate synchronously are at a greater risk of extinction than those that do not. The closer the geographic proximity of populations, the more prone they are to synchronizing. Shorebird species select habitat broadly, and many breed across regions with diverse nesting habitat types. Under these conditions, nearby populations may experience conditions sufficiently different to prevent population synchrony, despite dispersal. In the U.S. Northern Great Plains, the Piping Plover (Charadrius melodus), federally listed as Threatened, is a migratory shorebird species that nests on the shorelines of rivers, reservoirs, and alkaline lakes. We assessed the degree to which local plover breeding population abundances were correlated (population synchrony), changed over time (population stability), and were influenced by environmental factors such as available habitat, precipitation, and within-season reservoir level rise. We found that the abundances of breeding populations nesting in riverine and reservoir habitats were the most synchronous, while populations nesting in alkaline lake habitats exhibited the greatest stability. Changes in local breeding population abundances were not explained by a single factor across habitat types. However, the abundances of local populations nesting in alkaline lake and river shoreline habitats were positively correlated with changes in nesting habitat availability. Our results suggest that dispersal among populations nesting in either river or reservoir and alkaline lake shoreline habitat may have an overall stabilizing effect on the persistence of the Great Plains Piping Plover metapopulation.

  19. Pesticides in Surface Drinking-Water Supplies of the Northern Great Plains

    PubMed Central

    Donald, David B.; Cessna, Allan J.; Sverko, Ed; Glozier, Nancy E.

    2007-01-01

    Background Human health anomalies have been associated with pesticide exposure for people living in rural landscapes in the northern Great Plains of North America. Objective The objective of this study was to investigate the occurrence of 45 pesticides in drinking water from reservoirs in this area that received water primarily from snowmelt and rainfall runoff from agricultural crop lands. Methods Water from 15 reservoirs was sampled frequently during the spring pesticide application period (early May to mid-August) and less frequently for the remainder of the year. Drinking water was sampled in early July. Sample extracts were analyzed for pesticide content using mass spectrometric detection. Results We detected two insecticides and 27 herbicides in reservoir water. Consistent detection of a subset of 7 herbicides suggested that atmospheric deposition, either directly or in rain, was the principal pathway from fields to the reservoirs. However, the highest concentrations and number of herbicides in drinking water were associated with runoff from a localized 133-mm rainfall over 15 days toward the end of spring herbicide application. Water treatment removed from 14 to 86% of individual herbicides. Drinking water contained 3–15 herbicides (average, 6.4). Conclusions We estimated the mean annual calculated concentration of herbicides in drinking water to be 75 ng/L (2,4-dichlorophenoxy)acetic acid, 31 ng/L (2-chloro-4-methylphenoxy)acetic acid, 24 ng/L clopyralid, 11 ng/L dichlorprop, 4 ng/L dicamba, 3 ng/L mecoprop, and 1 ng/L bro-moxynil. The maximum total concentration of herbicides in drinking water was 2,423 ng/L. For the seven herbicides with established drinking water guidelines, all concentrations of the individual chemicals were well below their respective guideline. However, guidelines have not been established for the majority of the herbicides found in drinking water or for mixtures of pesticides. PMID:17687445

  20. Prediction of agriculture derived groundwater nitrate distribution in North China Plain with GIS-based BPNN

    NASA Astrophysics Data System (ADS)

    Wang, M. X.; Liu, G. D.; Wu, W. L.; Bao, Y. H.; Liu, W. N.

    2006-07-01

    In recent years, nitrate contamination of groundwater has become a growing concern for people in rural areas in North China Plain (NCP) where groundwater is used as drinking water. The objective of this study was to simulate agriculture derived groundwater nitrate pollution patterns with artificial neural network (ANN), which has been proved to be an effective tool for prediction in many branches of hydrology when data are not sufficient to understand the physical process of the systems but relative accurate predictions is needed. In our study, a back propagation neural network (BPNN) was developed to simulate spatial distribution of NO3-N concentrations in groundwater with land use information and site-specific hydrogeological properties in Huantai County, a typical agriculture dominated region of NCP. Geographic information system (GIS) tools were used in preparing and processing input-output vectors data for the BPNN. The circular buffer zones centered on the sampling wells were designated so as to consider the nitrate contamination of groundwater due to neighboring field. The result showed that the GIS-based BPNN simulated groundwater NO3-N concentration efficiently and captured the general trend of groundwater nitrate pollution patterns. The optimal result was obtained with a learning rate of 0.02, a 4-7-1 architecture and a buffer zone radius of 400 m. Nitrogen budget combined with GIS-based BPNN can serve as a cost-effective tool for prediction and management of groundwater nitrate pollution in an agriculture dominated regions in North China Plain.

  1. Assessing urban forest effects and values of the Great Plains: Kansas, Nebraska, North Dakota, South Dakota

    Treesearch

    David J. Nowak; Robert E. III Hoehn; Daniel E. Crane; Allison R. Bodine

    2012-01-01

    This report details the evaluation of the urban tree resources of the north-central Great Plains region of the United States. Specifically this report provides a more comprehensive understanding of the species composition and structural and functional benefits of the urban forests in the states of Kansas (33.1 million urban trees), Nebraska (13.3 million urban trees),...

  2. Early weaning in Northern Great Plains beef cattle production systems: III. Steer weaning, finishing and carcass characteristics

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted to evaluate the effect of weaning of steer calves on BW gain, feedlot performance, and carcass characteristics in two herds located in the Northern Great Plains, USA. Steer calves from predominantly Angus × Hereford dams were stratified within dam age and calving date (Fort K...

  3. An Economic Analysis of USDA Erosion Control Programs: A New Perspective. Agricultural Economic Report No. 560.

    ERIC Educational Resources Information Center

    Strohbehn, Roger, Ed.

    A study analyzed the total (public and private) economic costs and benefits of three U.S. Department of Agriculture erosion control programs. These were the Conservation Technical Assistance Program, Great Plains Conservation Program, and Agricultural Conservation Program. Significant efforts at funding for current programs were directed to…

  4. Correlation of spacecraft passive microwave system data with soil moisture indices (API). [great plains corridor

    NASA Technical Reports Server (NTRS)

    Blanchard, B. J.; Mcfarland, M. J.; Theis, S.; Richter, J. G.

    1981-01-01

    Electrical scanning microwave radiometer brightness temperature, meteorological data, climatological data, and winter wheat crop information were used to estimate that soil moisture content in the Great Plains region. Results over the predominant winter wheat areas indicate that the best potential to infer soil moisture occurs during fall and spring. These periods encompass the growth stages when soil moisture is most important to winter wheat yield. Other significant results are reported.

  5. AmeriFlux US-ARc ARM Southern Great Plains control site- Lamont

    DOE Data Explorer

    Torn, Margaret [Lawrence Berkeley National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ARc ARM Southern Great Plains control site- Lamont. Site Description - The ARM SGP Control site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots with identical towers, measurements at the US-ARc unburned plot are used as the experimental control. The second plot, US-Arb, was burned on 2005/03/08. Measurement comparisons between the control and burn plot are used to address questions regarding the effects of burning activities on carbon fluxes. The region evaded burning activities for at least 15 years. Current disturbances consist of only light grazing activities.

  6. 7 CFR 650.25 - Flood-plain management.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Flood-plain management. 650.25 Section 650.25... Flood-plain management. Through proper planning, flood plains can be managed to reduce the threat to... encourages sound flood-plain management decisions by land users. (a) Policy—(1) General. NRCS provides...

  7. 7 CFR 650.25 - Flood-plain management.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Flood-plain management. 650.25 Section 650.25... Flood-plain management. Through proper planning, flood plains can be managed to reduce the threat to... encourages sound flood-plain management decisions by land users. (a) Policy—(1) General. NRCS provides...

  8. Investigating land-atmosphere coupling and convective triggering associated with the moistening of the northern North American Great Plains

    NASA Astrophysics Data System (ADS)

    Gerken, Tobias; Bromley, Gabriel; Stoy, Paul

    2017-04-01

    Parts of the North American northern Great Plains have undergone a 6 W m-2 decrease in summertime radiative forcing. At the same time agricultural practices have shifted from keeping fields fallow during the summer ("summer fallow") towards no-till cropping systems that increase summertime evapotranspiration and decrease soil carbon loss. MERRA (Modern-Era Retrospective analysis for Research and Applications) for the area near Fort Peck, Montana, (a FLUXNET site established in 2000) shows a decrease of summertime (June-August) sensible heat fluxes ranging from -3.6 to -8.5 W m-2 decade-1, which is associated with an increase of latent heat fluxes of similar magnitude (5.2-9.1 W m-2 decade-1). While net radiation changed little, increasing downward longwave radiation (2.2-4.6 W m-2 decade-1) due to greater cloud cover, was mostly compensated by reduced solar irradiance. The result was a strong decrease of summer Bowen ratios from 1.5-2 in 1980 to approximately 1-1.25 in 2015. At the same time, atmospheric soundings have shown significant increases in both convective available convective energy (CAPE) and convective inhibition (CIN) for the same time span. Overall, these findings are consistent with the effects on increased summertime evapotranspiration due to reduction in summer fallow that should lead to smaller Bowen ratios and a larger build-up of moist static energy as expressed in higher values of CAPE. In order to further investigate the impact of the surface energy balance and flux partitioning on convective development and local land-atmosphere coupling in the North American prairies, a 1-dimensional mixed-layer model is used to compare the evolution of mixed-layer heights to the lifted condensation level, a necessary but not sufficient condition for the occurrence of convective precipitation. Using summertime eddy covariance data from Fort Peck and atmospheric soundings from the nearby Glasgow airport, we establish that the mixed-layer model adequately

  9. Bridging the Divide: Challenges and Opportunities for Public Sector Agricultural Professionals Working with Amish and Mennonite Producers on Conservation.

    PubMed

    Brock, Caroline; Ulrich-Schad, Jessica D; Prokopy, Linda

    2018-05-01

    As Amish and Old Order and Conservative Mennonite (i.e., Plain) farmers increase their presence in the agricultural sector, it is crucial for public sector agricultural professionals to effectively work with them to mediate nonpoint source pollution and address issues like the hypoxic zone in the Gulf of Mexico. However, there is a dearth of research on how public sector agricultural professionals can better work with Plain producers on environmental management. There are also few training resources for those working with this key, yet hard to reach, population. Additionally, due to their religious doctrines, Plain communities strive to live apart from the "world" and may be discouraged from working with government entities and attending non-Plain people events. This study analyzes interview data from 23 Amish farmers in one region of Indiana and 18 public sector agricultural professionals from a variety of backgrounds and geographies in areas of the U.S. with heavy Plain populations. Public sector agricultural professionals identified some key agronomic challenges on Plain farms related to issues like poor pasture and manure management as well as socio-cultural challenges such as restrictions on electronic and phone communication. Educators should design outreach strategies that take into consideration that faith convictions and conservation concerns may vary greatly based on the specificities of the particular Plain church group. By better understanding this population and how to work with them, public sector agricultural professionals can more effectively work towards addressing environmental problems with this under-served group.

  10. Toxicity of a glufosinate- and several glyphosate-based herbicides to juvenile amphibians from the Southern High Plains, USA.

    PubMed

    Dinehart, Simon K; Smith, Loren M; McMurry, Scott T; Anderson, Todd A; Smith, Philip N; Haukos, David A

    2009-01-15

    Pesticide toxicity is often proposed as a contributing factor to the world-wide decline of amphibian populations. We assessed acute toxicity (48 h) of a glufosinate-based herbicide (Ignite 280 SL) and several glyphosate-based herbicide formulations (Roundup WeatherMAX, Roundup Weed and Grass Killer Super Concentrate, Roundup Weed and Grass Killer Ready-To-Use Plus on two species of amphibians housed on soil or moist paper towels. Survival of juvenile Great Plains toads (Bufo cognatus) and New Mexico spadefoots (Spea multiplicata) was reduced by exposure to Roundup Weed and Grass Killer Ready-To-Use Plus on both substrates. Great Plains toad survival was also reduced by exposure to Roundup Weed and Grass Killer Super Concentrate on paper towels. New Mexico spadefoot and Great Plains toad survival was not affected by exposure to the two agricultural herbicides (Roundup WeatherMAX and Ignite 280 SL) on either substrate, suggesting that these herbicides likely do not pose an immediate risk to these species under field conditions.

  11. Cooling Trends from Agricultural Management Practices that Conserve Soil Carbon Resources in the North American Northern Great Plains: Important First Steps in the Transition toward a BECCS Economy

    NASA Astrophysics Data System (ADS)

    Stoy, P. C.; Gerken, T.; Bromley, G. T.; Tang Che Ing, A.; Morgan, M.; Wood, D.; Ahmed, S.; Brad, B.; Brookshire, J.; Haggerty, J.; Jarchow, M.; McVay, K.; Miller, P.; Peyton, B.; Rashford, B.; Spangler, L.; Swanson, D.; Taylor, S.; Torrion, J.; Poulter, B.

    2016-12-01

    The transition toward the Bio-energy with Carbon Capture and Storage (BECCS) economy may have unintended climate drawbacks, but also benefits. Parts of the North American northern Great Plains have experienced a remarkable 6 W m-2 decrease in summertime radiative forcing since the 1970s. Extreme temperature events now occur less frequently, maximum temperatures have decreased by some 2 °C, and precipitation has increased by 10 mm per decade in some areas. This regional trend toward a cooler and wetter summer climate has coincided with changes in agricultural management. Namely, the practice of keeping fields fallow during summer (hereafter `summerfallow') has declined from 15 Mha in the 1970s to 2 Mha at the present in the Canadian Prairie Provinces, and from 16 Mha to 6 Mha in the US, with the largest declines in the Northern Plains. In addition to potential climate impacts, replacing summerfallow with no-till cropping systems results in lesser soil carbon losses - or even gains - and usually confers economic benefits. In other words, replacing summerfallow with no-till cropping may have resulted in a `win-win-win' scenario for climate, soil carbon, and farm-scale economics. The interaction between carbon, climate, and the economy in this region - and the precise domain that has experienced cooling - are still unknown, which limits our ability to forecast the dynamics of the coupled human-climate system during the transition toward a BECCS economy. Here, we use eddy covariance measurements to demonstrate that summerfallow results in carbon losses during the growing season of the same magnitude (ca. 100 g C m-2 per growing season) as carbon uptake by dryland crops. We use surface-atmosphere energy flux measurements to model atmospheric boundary layer and lifted condensation level heights to demonstrate that observed regional changes in near-surface humidity (of up to 7%) are necessary to simulate observed increases in convective precipitation. We analyze climate

  12. Greenhouse gas emissions and denitrification within depressional wetlands of the southeastern US coastal plain in an agricultural landscape

    USDA-ARS?s Scientific Manuscript database

    Carolina Bays are depressional wetlands on the Coastal Plain of the southeastern USA. These wetlands are often adjacent to agricultural land and may be the recipients of nutrient runoff. Because of their saturated conditions, nutrient cycling may be important for water quality. Three small bays in S...

  13. Allelic Variation in Developmental Genes and Effects on Winter Wheat Heading Date in the U.S. Great Plains

    PubMed Central

    Brown-Guedira, Gina; Haley, Scott D.; McMaster, Gregory S.; Reid, Scott D.; Smith, Jared; Byrne, Patrick F.

    2016-01-01

    Heading date in wheat (Triticum aestivum L.) and other small grain cereals is affected by the vernalization and photoperiod pathways. The reduced-height loci also have an effect on growth and development. Heading date, which occurs just prior to anthesis, was evaluated in a population of 299 hard winter wheat entries representative of the U.S. Great Plains region, grown in nine environments during 2011–2012 and 2012–2013. The germplasm was evaluated for candidate genes at vernalization (Vrn-A1, Vrn-B1, and Vrn-D1), photoperiod (Ppd-A1, Ppd-B1 and Ppd-D1), and reduced-height (Rht-B1 and Rht-D1) loci using polymerase chain reaction (PCR) and Kompetitive Allele Specific PCR (KASP) assays. Our objectives were to determine allelic variants known to affect flowering time, assess the effect of allelic variants on heading date, and investigate changes in the geographic and temporal distribution of alleles and haplotypes. Our analyses enhanced understanding of the roles developmental genes have on the timing of heading date in wheat under varying environmental conditions, which could be used by breeding programs to improve breeding strategies under current and future climate scenarios. The significant main effects and two-way interactions between the candidate genes explained an average of 44% of variability in heading date at each environment. Among the loci we evaluated, most of the variation in heading date was explained by Ppd-D1, Ppd-B1, and their interaction. The prevalence of the photoperiod sensitive alleles Ppd-A1b, Ppd-B1b, and Ppd-D1b has gradually decreased in U.S. Great Plains germplasm over the past century. There is also geographic variation for photoperiod sensitive and reduced-height alleles, with germplasm from breeding programs in the northern Great Plains having greater incidences of the photoperiod sensitive alleles and lower incidence of the semi-dwarf alleles than germplasm from breeding programs in the central or southern plains. PMID:27058239

  14. Climate change impacts on main agricultural activities in the Oltenia Plain (Romania)

    NASA Astrophysics Data System (ADS)

    Mitrica, B.; Mateescu, E.; Dragota, C.; Busuioc, A.; Grigorescu, I.; Popovici, A.

    2012-04-01

    Understanding the key drivers of agriculture in relation to climate change as well as their interrelationship with land management decisions and policies, one may be able to project future agricultural productions under certain economic, environmental, and social scenarios in order to minimize their negative impacts. The paper is aiming to stress upon the importance of modelling the potential impact of climate change on crop production, particularly under the current conditions when natural resources and food supplies are shortening in many parts of the world. Under the given circumstances, in assessing the impact of climate change on agriculture in the Oltenia Plain, the authors used a simulation model CERES (Crop-Environment Resource Synthesis), developed as a predictive and deterministic model, used for basic and applied research on the effects of climate (thermal regime, water stress) and management (fertilization practices, irrigation) on the growth and yield of different crops. In assessing the impact of climate change on maize and autumn wheat crops two applications of CERES model were used: CERES-Wheat and CERES-Maize overlapping two regional climatic scenarios for 2021-2050 and 2071-2100 periods. These models describe, based on daily data the basic biophysical processes which take place at the soil-plant-atmosphere interface as a response to the variability of different processes such as: photosynthesis, specific phonological phases, evapotranspiration, water dynamics in soil etc. Assessing the impact of climate change on agricultural productivity under the two regional climatic scenarios (2021-2050 and 2071-2100) will reveal their potential consequences on the main agricultural crops in the Oltenia Plain (autumn wheat and maize) depending on the interaction between local climatic conditions, the effect rising CO2 on photosynthesis and the genetical type of crops. Therefore, the autumn wheat benefits from the interaction between the rise of CO2 and air

  15. Movement, home range, and site fidelity of bluegills in a Great Plains Lake

    USGS Publications Warehouse

    Paukert, C.P.; Willis, D.W.; Bouchard, M.A.

    2004-01-01

    Little is known about the distribution, movement, and home ranges of bluegills Lepomis macrochirus in lentic environments. Therefore, the objectives of this study were to evaluate the seasonal and diel differences in movement rates, site fidelity, and home range of bluegills in a shallow, natural Great Plains lake. A total of 78 bluegills (200-273 mm total length) were implanted with radio transmitters in March and May 2000. Of these fish, 10 males and 10 females were randomly selected and located every 2 h during one 24-h period each month from April to September 2000. Bluegill movement peaked during midsummer: however, there was little difference in diel movements, suggesting relatively consistent movement throughout the 24-h period. Home range estimates (which included the 24-h tracking plus an additional six locations from the same fish located once per day for six consecutive days each month) ranged up to 172 ha, probably because only about half of the bluegills exhibited site fidelity during any month sampled. Bluegill movement did not appear to be strongly linked with water temperature, barometric pressure, or wind speed. These results suggest that bluegills move considerable distances and that many roam throughout this 332-ha shallow lake. However, diel patterns were not evident. Sampling bluegills in Great Plains lakes using passive gears (e.g., trap nets) may be most effective during the summer months, when fish are most active. Active sampling (e.g., electrofishing) may be more effective than the use of passive gears in spring and fall, when bluegills are less active.

  16. Brown-headed cowbird, Molothrus ater, parasitism and abundance in the northern Great Plains

    USGS Publications Warehouse

    Igl, L.D.; Johnson, D.H.

    2007-01-01

    The Brown-headed Cowbird (Molothrus ater) reaches its highest abundance in the northern Great Plains, but much of our understanding of cowbird ecology and host-parasite interactions comes from areas outside of this region. We examine cowbird brood parasitism and densities during two studies of breeding birds in the northern Great Plains during 1990-2006. We found 2649 active nests of 75 species, including 746 nonpasserine nests and 1902 passerine nests. Overall, <1% of non-passerine nests and 25% of passerine nests were parasitized by Brown-headed Cowbirds. Although the overall frequency of cowbird parasitism in passerine nests in these two studies is considered moderate, the frequency of multiple parasitism among parasitized nests was heavy (nearly 50%). The mean number of cowbird eggs per parasitized passerine nest was 1.9 ?? 1.2 (SD; range = 1-8 cowbird eggs). The parasitism rates were 9.5% for passerines that typically nest in habitats characterized by woody vegetation, 16.4% for grassland-nesting passerines, 4.7% for passerines known to consistently eject cowbird eggs, and 28.2% for passerines that usually accept cowbird eggs. The Red-winged Blackbird (Agelaius phoeniceus) was the most commonly parasitized species (43.1 % parasitism, 49.6% multiple parasitism, 71.2% of all cases of parasitism). Passerine nests found within areas of higher female cowbird abundance experienced higher frequencies of cowbird parasitism than those found in areas of lower female cowbird abundance. Densities of female cowbirds were positively related to densities and richness of other birds in the breeding bird community.

  17. Are Droughts in the United States Great Plains Predictable on Seasonal and Longer Time Scales?

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried D.; Suarez, M.; Pegion, P.; Kistler, M.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The United States Great Plains has experienced numerous episodes of unusually dry conditions lasting anywhere from months to several years, In this presentation, we will examine the predictability of such episodes and the physical mechanisms controlling the variability of the summer climate of the continental United States. The analysis is based on ensembles of multi-year simulations and seasonal hindcasts generated with the NASA Seasonal to-Interannual Prediction Project (NSIPP-1) General Circulation Model.

  18. Critical Review of Technical Questions Facing Low Impact Development and Green Infrastructure: A Perspective from the Great Plains.

    PubMed

    Vogel, Jason R; Moore, Trisha L; Coffman, Reid R; Rodie, Steven N; Hutchinson, Stacy L; McDonough, Kelsey R; McLemore, Alex J; McMaine, John T

    2015-09-01

    Since its inception, Low Impact Development (LID) has become part of urban stormwater management across the United States, marking progress in the gradual transition from centralized to distributed runoff management infrastructure. The ultimate goal of LID is full, cost-effective implementation to maximize watershed-scale ecosystem services and enhance resilience. To reach that goal in the Great Plains, the multi-disciplinary author team presents this critical review based on thirteen technical questions within the context of regional climate and socioeconomics across increasing complexities in scale and function. Although some progress has been made, much remains to be done including continued basic and applied research, development of local LID design specifications, local demonstrations, and identifying funding mechanisms for these solutions. Within the Great Plains and beyond, by addressing these technical questions within a local context, the goal of widespread acceptance of LID can be achieved, resulting in more effective and resilient stormwater management.

  19. A Unified Theory for the Great Plains Nocturnal Low-Level Jet

    NASA Astrophysics Data System (ADS)

    Shapiro, A.; Fedorovich, E.; Rahimi, S.

    2014-12-01

    The nocturnal low-level jet (LLJ) is a warm-season atmospheric boundary layer phenomenon common to the Great Plains of the United States and other places worldwide, typically in regions east of mountain ranges. Low-level jets develop around sunset in fair weather conditions conducive to strong radiational cooling, reach peak intensity in the pre-dawn hours, and then dissipate with the onset of daytime convective mixing. In this study we consider the LLJ as a diurnal oscillation of a stably stratified atmosphere overlying a planar slope on the rotating Earth. The oscillations arise from diurnal cycles in both the heating of the slope (mechanism proposed by Holton in 1967) and the turbulent mixing (mechanism proposed by Blackadar in 1957). The governing equations are the equations of motion, incompressibility condition, and thermal energy in the Boussinesq approximation, with turbulent heat and momentum exchange parameterized through spatially constant but diurnally varying turbulent diffusion coefficients (diffusivities). Analytical solutions are obtained for diffusivities with piecewise constant waveforms (step-changes at sunrise and sunset) and slope temperatures/buoyancies with piecewise linear waveforms (saw-tooth function with minimum at sunrise and maximum before sunset). The jet characteristics are governed by eleven parameters: slope angle, Coriolis parameter, environmental buoyancy frequency, geostrophic wind strength, daytime and nighttime diffusivities, maximum (daytime) and minimum (nighttime) slope buoyancies, duration of daylight, lag time between peak slope buoyancy and sunset, and a Newtonian cooling time scale. An exploration of the parameter space yields results that are broadly consistent with findings particular to the Holton and Blackadar theories, and agree with climatological observations, for example, that stronger jets tend to occur over slopes of 0.15-0.25 degrees characteristic of the Great Plains. The solutions also yield intriguing

  20. Meteorological contribution to the mitigation and adaptation of the 'extreme water events' of Hungarian Great Plain

    NASA Astrophysics Data System (ADS)

    Dunkel, Z.; Vincze, E.; Moring, A.

    2012-04-01

    The lack of water is a traditional problem of Hungarian agriculture. Two big rivers cross the territory of Hungary and times to times they produce huge floods. In the Carpathian basin a flood and a drought can occur in the same year. The general problem of Hungarian agriculture is the 'water' in two contexts, in lack of water and in surplus. Not only of the next year but of the next decades the basic question of the Hungarian planning is how the national economy can handle the increasing numbers of unexpected negative events of climate change because the growing numbers of sometimes catastrophic floods and droughts seems to be connected with global warming. Beside the 'normal floods' in the last few years the numbers of so called flash floods show increasing tendency too. The presentation summarises the 'extreme water events' of Hungarian Great Plain, and the forecast problems of Hungarian meteorology together with the National strategy in mitigation and adaptation in connection with climate change. From meteorological point of view the handling of flood and drought problem is totally different. In case of flood the stress is on the forecast, in case of drought mainly of the evaluation of the historical data mainly the short and long term evaluation of drought indices. Drought indices seem to be the simplest tools in drought analysis. The more or less well known and popular indices have been collected and compared not only with the well known simple but more complicated water balance and so called 'recursive' indices beside few ones use remotely sensed data, mainly satellite born information. The indices are classified into five groups, namely 'precipitation', 'water balance', 'soil moisture', 'recursive' and 'remote sensing' indices. For every group typical expressions are given and the possible use in the decision making and hazard risk evaluation and compensation of the farmers after the events. The meteorological elements of new Hungarian agricultural risk

  1. Quantifying seining detection probability for fishes of Great Plains sand‐bed rivers

    USGS Publications Warehouse

    Mollenhauer, Robert; Logue, Daniel R.; Brewer, Shannon K.

    2018-01-01

    Species detection error (i.e., imperfect and variable detection probability) is an essential consideration when investigators map distributions and interpret habitat associations. When fish detection error that is due to highly variable instream environments needs to be addressed, sand‐bed streams of the Great Plains represent a unique challenge. We quantified seining detection probability for diminutive Great Plains fishes across a range of sampling conditions in two sand‐bed rivers in Oklahoma. Imperfect detection resulted in underestimates of species occurrence using naïve estimates, particularly for less common fishes. Seining detection probability also varied among fishes and across sampling conditions. We observed a quadratic relationship between water depth and detection probability, in which the exact nature of the relationship was species‐specific and dependent on water clarity. Similarly, the direction of the relationship between water clarity and detection probability was species‐specific and dependent on differences in water depth. The relationship between water temperature and detection probability was also species dependent, where both the magnitude and direction of the relationship varied among fishes. We showed how ignoring detection error confounded an underlying relationship between species occurrence and water depth. Despite imperfect and heterogeneous detection, our results support that determining species absence can be accomplished with two to six spatially replicated seine hauls per 200‐m reach under average sampling conditions; however, required effort would be higher under certain conditions. Detection probability was low for the Arkansas River Shiner Notropis girardi, which is federally listed as threatened, and more than 10 seine hauls per 200‐m reach would be required to assess presence across sampling conditions. Our model allows scientists to estimate sampling effort to confidently assess species occurrence, which

  2. Backcasting the decline of a vulnerable Great Plains reproductive ecotype: identifying threats and conservation priorities.

    PubMed

    Worthington, Thomas A; Brewer, Shannon K; Grabowski, Timothy B; Mueller, Julia

    2014-01-01

    Conservation efforts for threatened or endangered species are challenging because the multi-scale factors that relate to their decline or inhibit their recovery are often unknown. To further exacerbate matters, the perceptions associated with the mechanisms of species decline are often viewed myopically rather than across the entire species range. We used over 80 years of fish presence data collected from the Great Plains and associated ecoregions of the United States, to investigate the relative influence of changing environmental factors on the historic and current truncated distributions of the Arkansas River shiner Notropis girardi. Arkansas River shiner represent a threatened reproductive ecotype considered especially well adapted to the harsh environmental extremes of the Great Plains. Historic (n = 163 records) and current (n = 47 records) species distribution models were constructed using a vector-based approach in MaxEnt by splitting the available data at a time when Arkansas River shiner dramatically declined. Discharge and stream order were significant predictors in both models; however, the shape of the relationship between the predictors and species presence varied between time periods. Drift distance (river fragment length available for ichthyoplankton downstream drift before meeting a barrier) was a more important predictor in the current model and indicated river segments 375-780 km had the highest probability of species presence. Performance for the historic and current models was high (area under the curve; AUC > 0.95); however, forecasting and backcasting to alternative time periods suggested less predictive power. Our results identify fragments that could be considered refuges for endemic plains fish species and we highlight significant environmental factors (e.g., discharge) that could be manipulated to aid recovery. Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  3. Backcasting the decline of a vulnerable Great Plains reproductive ecotype: identifying threats and conservation priorities

    USGS Publications Warehouse

    Worthington, Thomas A.; Brewer, Shannon K.; Grabowski, Timothy B.; Mueller, Julia

    2014-01-01

    Conservation efforts for threatened or endangered species are challenging because the multi-scale factors that relate to their decline or inhibit their recovery are often unknown. To further exacerbate matters, the perceptions associated with the mechanisms of species decline are often viewed myopically rather than across the entire species range. We used over 80 years of fish presence data collected from the Great Plains and associated ecoregions of the United States, to investigate the relative influence of changing environmental factors on the historic and current truncated distributions of the Arkansas River shiner Notropis girardi. Arkansas River shiner represent a threatened reproductive ecotype considered especially well adapted to the harsh environmental extremes of the Great Plains. Historic (n = 163 records) and current (n = 47 records) species distribution models were constructed using a vector-based approach in MaxEnt by splitting the available data at a time when Arkansas River shiner dramatically declined. Discharge and stream order were significant predictors in both models; however, the shape of the relationship between the predictors and species presence varied between time periods. Drift distance (river fragment length available for ichthyoplankton downstream drift before meeting a barrier) was a more important predictor in the current model and indicated river segments 375–780 km had the highest probability of species presence. Performance for the historic and current models was high (area under the curve; AUC > 0.95); however, forecasting and backcasting to alternative time periods suggested less predictive power. Our results identify fragments that could be considered refuges for endemic plains fish species and we highlight significant environmental factors (e.g., discharge) that could be manipulated to aid recovery.

  4. National Agricultural Library | United States Department of Agriculture

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag | USDA.gov | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement | Information

  5. Using natural range of variation to set decision thresholds: a case study for great plains grasslands

    USGS Publications Warehouse

    Symstad, Amy J.; Jonas, Jayne L.; Edited by Guntenspergen, Glenn R.

    2014-01-01

    Natural range of variation (NRV) may be used to establish decision thresholds or action assessment points when ecological thresholds are either unknown or do not exist for attributes of interest in a managed ecosystem. The process for estimating NRV involves identifying spatial and temporal scales that adequately capture the heterogeneity of the ecosystem; compiling data for the attributes of interest via study of historic records, analysis and interpretation of proxy records, modeling, space-for-time substitutions, or analysis of long-term monitoring data; and quantifying the NRV from those data. At least 19 National Park Service (NPS) units in North America’s Great Plains are monitoring plant species richness and evenness as indicators of vegetation integrity in native grasslands, but little information on natural, temporal variability of these indicators is available. In this case study, we use six long-term vegetation monitoring datasets to quantify the temporal variability of these attributes in reference conditions for a variety of Great Plains grassland types, and then illustrate the implications of using different NRVs based on these quantities for setting management decision thresholds. Temporal variability of richness (as measured by the coefficient of variation, CV) is fairly consistent across the wide variety of conditions occurring in Colorado shortgrass prairie to Minnesota tallgrass sand savanna (CV 0.20–0.45) and generally less than that of production at the same sites. Temporal variability of evenness spans a greater range of CV than richness, and it is greater than that of production in some sites but less in other sites. This natural temporal variability may mask undesirable changes in Great Plains grasslands vegetation. Consequently, we suggest that managers consider using a relatively narrow NRV (interquartile range of all richness or evenness values observed in reference conditions) for designating a surveillance threshold, at which

  6. The role of fire in managing for biological diversity on native rangelands of the Northern Great Plains

    Treesearch

    Carolyn Hull Sieg

    1997-01-01

    A strategy for using fire to manage for biological diversity on native rangelands in the Northern Great Plains incorporates an understanding of its past frequency, timing and intensity. Historically, lightning and humans were the major fire setters, and the role of fire varied both in space and time. A burning regime that includes fires at various intervals, seasons...

  7. Liquefaction record of the great 1934 earthquake predecessors from the north Bihar alluvial plains of India

    NASA Astrophysics Data System (ADS)

    Rajendran, C. P.; John, Biju; Rajendran, Kusala; Sanwal, Jaishri

    2016-07-01

    The great 1934 Himalayan earthquake of moment magnitude (Mw) 8.1 generated a large zone of ground failure and liquefaction in north Bihar, India, in addition to the earthquakes of 1833 (Mw ~7.7) and 1988 (Mw 6.7) that have also impacted this region. Here, we present the results of paleoliquefaction investigations from four sites in the plains of north Bihar and one in eastern Uttar Pradesh. The liquefaction features generated by successive earthquakes were dated at AD 829-971, 886-1090, 907-1181, 1130-1376, 1112-1572, 1492-1672, 1733-1839, and 1814-1854. One of the liquefaction events dated at AD 829-971, 886-1090, and 907-1181 may correlate with the great earthquake of AD ~1100, recognized in an earlier study from the sections across the frontal thrust in central eastern Nepal. Two late medieval liquefaction episodes of AD 1130-1376 and 1492-1672 were also exposed in our sites. The sedimentary sections also revealed sandblows that can be attributed to the 1833 earthquake, a lesser magnitude event compared to the 1934. Liquefactions triggered by the 1934 and 1988 earthquakes were evident within the topmost level in some sections. The available data lead us to conjecture that a series of temporally close spaced earthquakes of both strong and large types, not including the infrequent great earthquakes like the 1934, have affected the Bihar Plains during the last 1500 years with a combined recurrence interval of 124 ± 63 years.

  8. Potential impacts on Colorado Rocky Mountain weather due to land use changes on the adjacent Great Plains

    USGS Publications Warehouse

    Chase, T.N.; Pielke, R.A.; Kittel, T.G.F.; Baron, Jill S.; Stohlgren, T.J.

    1999-01-01

    Evidence from both meteorological stations and vegetational successional studies suggests that summer temperatures are decreasing in the mountain-plain system in northeast Colorado, particularly since the early 1980s. These trends are coincident with large changes in regional land cover. Trends in global, Northern Hemisphere and continental surface temperatures over the same period are insignificant. These observations suggest that changes in the climate of this mountain-plain system may be, in some part, a result of localized forcing mechanisms. In this study the effects of land use change on the northern Colorado plains, where large regions of grasslands have been transformed into both dry and irrigated agricultural lands, on regional weather is examined in an effort to understand this local deviation from larger-scale trends. We find with high-resolution numerical simulations of a 3-day summer period using a regional atmospheric-land surface model that replacing grasslands with irrigated and dry farmland can have impacts on regional weather and therefore climate which are not limited to regions of direct forcing. Higher elevations remote from regions of land use change are affected as well. Specifically, cases with altered landcover had cooler, moister boundary layers, and diminished low-level upslope winds over portions of the plains. At higher elevations, temperatures also were lower as was low-level convergence. Precipitation and cloud cover were substantially affected in mountain regions. We advance the hypothesis that observed land use changes may have already had a role in explaining part of the observed climate record in the northern Colorado mountain-plain system. Copyright 1999 by the American Geophysical Union.

  9. Effects of groundwater flow on the distribution of biogenic gas in parts of the northern Great Plains of Canada and United States

    USGS Publications Warehouse

    Anna, Lawrence O.

    2011-01-01

    Parts of the northern Great Plains in eastern Montana and western North Dakota and southeastern Alberta and southwestern Saskatchewan, Canada, were studied as part of an assessment of shallow biogenic gas in Upper Cretaceous rocks.Parts of the northern Great Plains in eastern Montana and western North Dakota and southeastern Alberta and southwestern Saskatchewan, Canada, were studied as part of an assessment of shallow biogenic gas in Upper Cretaceous rocks. Large quantities of shallow biogenic gas are produced from low-permeability, Upper Cretaceous reservoirs in southeastern Alberta and southwestern Saskatchewan, Canada. Rocks of similar types and age produce sparingly in the United States except on large structures, such as Bowdoin dome and Cedar Creek anticline. Significant production also occurs in the Tiger Ridge area, where uplift of the Bearpaw Mountains created stratigraphic traps. The resource in Canada is thought to be a continuous, biogenic-gas-type accumulation with economic production in a variety of subtle structures and stratigraphic settings. The United States northern Great Plains area has similar conditions but only broad structural closures or stratigraphic traps associated with local structure have produced economically to date. Numerical flow modeling was used to help determine that biogenic gas in low-permeability reservoirs is held in place by high hydraulic head that overrides buoyancy forces of the gas. Modeling also showed where hydraulic head is greater under Tertiary capped topographic remnants rather than near adjacent topographic lows. The high head can override the capillary pressure of the rock and force gas to migrate to low head in topographically low areas. Most current biogenic gas production is confined to areas between mapped lineaments in the northern Great Plains. The lineaments may reflect structural zones in the Upper Cretaceous that help compartmentalize reservoirs and confine gas accumulations.

  10. Late quaternary temperature record from buried soils of the North American Great Plains

    USGS Publications Warehouse

    Nordt, L.; Von Fischer, J.; Tieszen, L.

    2007-01-01

    We present the first comprehensive late Quaternary record of North American Great Plains temperature by assessing the behavior of the stable isotopic composition (δ13C) of buried soils. After examining the relationship between the δ13C of topsoil organic matter and July temperature from 61 native prairies within a latitudinal range of 46°–38°N, we applied the resulting regression equation to 64 published δ13C values from buried soils of the same region to construct a temperature curve for the past 12 k.y. Estimated temperatures from 12 to 10 ka (1 k.y. = 1000 14C yr B.P.) fluctuated with a periodicity of ∼1 k.y. with two cool excursions between −4.5 and −3.5 °C and two warmer excursions between −1 and 0 °C, relative to modern. Early Holocene temperatures from ca. 10–7.5 ka were −1.0 to −2.0 °C before rising to +1.0 °C in the middle Holocene between 6.0 and 4.5 ka. After a cool interlude from 4.2 to 2.6 ka, when temperatures dropped to slightly below modern, another warm interval ensued from 2.6 to 1 ka as temperatures increased to ∼+0.5 °C. A final decline in temperature to below modern occurred beginning ca. 0.5 ka. Cooler than present temperatures in the Great Plains indicate telecommunications with cool-water episodes in the Gulf of Mexico and North Atlantic potentially governed by a combination of glacial meltwater pulses and low solar irradiance.

  11. Transmission of biology and culture among post-contact Native Americans on the western Great Plains.

    PubMed

    Lycett, Stephen J; von Cramon-Taubadel, Noreen

    2016-08-12

    The transmission of genes and culture between human populations has major implications for understanding potential correlations between history, biological, and cultural variation. Understanding such dynamics in 19th century, post-contact Native Americans on the western Great Plains is especially challenging given passage of time, complexity of known dynamics, and difficulties of determining genetic patterns in historical populations for whom, even today, genetic data for their descendants are rare. Here, biometric data collected under the direction of Franz Boas from communities penecontemporaneous with the classic bison-hunting societies, were used as a proxy for genetic variation and analyzed together with cultural data. We show that both gene flow and "culture flow" among populations on the High Plains were mediated by geography, fitting a model of isolation-by-distance. Moreover, demographic and cultural exchange among these communities largely overrode the visible signal of the prior millennia of cultural and genetic histories of these populations.

  12. The 100th Meridian Climate Divide & Its Present and Future Impact on the Human Geography of the American Great Plains

    NASA Astrophysics Data System (ADS)

    Feldman, J. R.; Seager, R.; Ting, M.; Lis, N.

    2016-12-01

    The 100th meridian has been viewed historically as a symbolic boundary between the more arid western plains in the Midwestern United States, and the more humid eastern half of the country. The purpose of this project is to evaluate the true climatic characteristics of this divide, and to determine its implications for landscape and land use, with a focus on agriculture. An aridity index is first defined as precipitation divided by the potential evapotranspiration, P/PET, where PET is calculated with the Penman-Monteith equation using data from the North American Land Data Assimilation System Phase 2 (NLDAS-2) for the period 1979-2015. The NLDAS-2 is a compilation of observed climate data and output from three land surface models: NOAH, VIC, and MOSAIC. The three models agreed on a clear west-east gradient in aridity, with a boundary dryland boundary at approximately the 100th meridian. The aridity index was then compared to the soil moisture from each model, to determine how it impacts water storage, and the soil moisture was consistent both annually and seasonally. Using USDA data from the 2012 census, the longitudinal distribution of agricultural variables, such as farm size and percent corn of total cropland, were examined. Clear differences were observed in these variables across the aridity boundary, especially in the Northern Plains. We performed regressions between these variables and the aridity index, and found a close relationship between the aridity index and the percent of corn and wheat grown, as well as farm size. To project the potential future changes in agricultural practices due to changes in aridity, we used CMIP5 projections of the aridity index changes over the plains in the period 2040-2060. In tandem with the regression relation, we were able to predict that the percent corn of total cropland may decrease by as much as 20% at all longitudes, and it may not even be feasible to grow east of the 100th meridian. Farm size is expected to increase

  13. 'Billings' wheat combines early maturity, disease resistance, and desirable grain quality for the Southern Great Plains of the USA

    USDA-ARS?s Scientific Manuscript database

    Selection pressure for earliness, resistance to multiple pathogens, and quality attributes consistent with the hard red winter (HRW) wheat (Triticum aestivum L.) market class is tantamount to, or can obscure, selection for yield potential in lower elevations of the U.S. southern Great Plains. The de...

  14. Ammonia and hydrogen sulfide concentration and emission patterns for mono-slope beef cattle facilities in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Mono-slope buildings are one type of roofed and confined cattle feeding facility that is becoming increasingly popular in the Northern Great Plains. In response to questions and concerns about the barn environment and air quality regulations, the objectives of this study were to determine gas concen...

  15. Application of Time-series Model to Predict Groundwater Quality Parameters for Agriculture: (Plain Mehran Case Study)

    NASA Astrophysics Data System (ADS)

    Mehrdad Mirsanjari, Mir; Mohammadyari, Fatemeh

    2018-03-01

    Underground water is regarded as considerable water source which is mainly available in arid and semi arid with deficient surface water source. Forecasting of hydrological variables are suitable tools in water resources management. On the other hand, time series concepts is considered efficient means in forecasting process of water management. In this study the data including qualitative parameters (electrical conductivity and sodium adsorption ratio) of 17 underground water wells in Mehran Plain has been used to model the trend of parameters change over time. Using determined model, the qualitative parameters of groundwater is predicted for the next seven years. Data from 2003 to 2016 has been collected and were fitted by AR, MA, ARMA, ARIMA and SARIMA models. Afterward, the best model is determined using information criterion or Akaike (AIC) and correlation coefficient. After modeling parameters, the map of agricultural land use in 2016 and 2023 were generated and the changes between these years were studied. Based on the results, the average of predicted SAR (Sodium Adsorption Rate) in all wells in the year 2023 will increase compared to 2016. EC (Electrical Conductivity) average in the ninth and fifteenth holes and decreases in other wells will be increased. The results indicate that the quality of groundwater for Agriculture Plain Mehran will decline in seven years.

  16. From Mothers' Pensions to Aid to Dependent Children in the Great Plains: The Course from Charity to Entitlement

    ERIC Educational Resources Information Center

    Lee, R. Alton

    2012-01-01

    The most important third-party movement in American history emerged out of the social and economic chaos brewing in the Great Plains in the last two decades of the nineteenth century. The maelstrom, labeled Populism, contained a powerful, indeed a truly revolutionary message--that man was his brother's keeper. This concept proved to have…

  17. Population Change and Farm Dependence: Temporal and Spatial Variation in the U.S. Great Plains, 1900–2000

    PubMed Central

    CURTIS WHITE, KATHERINE J.

    2008-01-01

    I investigate the relationship between county population change and farm dependence in the Great Plains region during the twentieth century, using spatial data analysis techniques. This research is rooted in a long-standing sociological and demographic interest in population responses to economic transitions and informs the theoretical understanding of urbanization processes. Using census and environmental data, the analysis challenges earlier assertions of a simple transition in the relationship between farm dependence and population change that accompanied modern technological advancements, namely tractors (the mechanization thesis). Rather than observing the proposed positive-to-negative shift, study results show a negative association throughout the pre- and post-mechanization periods. Partial support is found if the thesis is revised to consider the relationship between population change and the change in farm dependence rather than the level of farm dependence. Findings show mixed support for an alternative argument that nonfarm industries moderate the influence of farm dependence (the industry complex thesis). In contrast to earlier applications of the thesis, industrial relations in the Great Plains context are characterized by specialization rather than cooperation. PMID:18613486

  18. National Agricultural Library | United States Department of Agriculture

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag User Instruction Series on the National Agricultural Library's YouTube channel. These video tutorials Home | USDA.gov | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement

  19. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology

    PubMed Central

    Last, William M; Ginn, Fawn M

    2005-01-01

    In much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there is no other area in the world that can match the concentration and diversity of saline lake environments exhibited in the prairie region of Canada and northern United States. The immense number of individual salt lakes and saline wetlands in this region of North America is staggering. Estimates vary from about one million to greater than 10 million, with densities in some areas being as high as 120 lakes/km2. Despite over a century of scientific investigation of these salt lakes, we have only in the last twenty years advanced far enough to appreciate the wide spectrum of lake types, water chemistries, and limnological processes that are operating in the modern settings. Hydrochemical data are available for about 800 of the lake brines in the region. Composition, textural, and geochemical information on the modern bottom sediments has been collected for just over 150 of these lakes. Characterization of the biological and ecological features of these lakes is based on even fewer investigations, and the stratigraphic records of only twenty basins have been examined. The lake waters show a considerable range in ionic composition and concentration. Early investigators, concentrating on the most saline brines, emphasized a strong predominance of Na+ and SO4-2 in the lakes. It is now realized, however, that not only is there a complete spectrum of salinities from less than 1 ppt TDS to nearly 400 ppt, but also virtually every water chemistry type is represented in lakes of the region. With such a vast array of compositions, it is difficult to generalize. Nonetheless, the paucity of Cl-rich lakes makes the northern Great Plains basins somewhat unusual compared with salt lakes in many other areas of the world (e.g., Australia, western United States). Compilations of the lake water chemistries show distinct

  20. Climate vulnerabilities in the southern plains

    USDA-ARS?s Scientific Manuscript database

    The value of agricultural production in the Southern Plains exceeded $59 bil (2012 Agricultural Census) with livestock accounting for 58% of total agricultural sales. Crop and livestock commodities exceeding $1 bil include wheat, corn, horticultural crops, cotton, hay and forages, sorghum, soybean, ...

  1. Climate change adaptation options for sustainable management of agriculture in the Eastern Lower Danube Plain, Romania

    NASA Astrophysics Data System (ADS)

    Popovici, Elena-Ana; Sima, Mihaela; Balteanu, Dan; Dragota, Carmen-Sofia; Grigorescu, Ines; Kucsicsa, Gheorghe

    2013-04-01

    The current study was carried out within the FP7 ECLISE project in the Eastern Lower Danube Plain (Bărăgan Plain), one of the major agricultural areas in Romania. In this region, climate change signals are becoming more evident being predominantly characterized by increasing temperatures, decreasing of precipitations and intensification of extreme events in terms of frequency, intensity and duration. Over the past decades, the effects of extreme climatic phenomena on crop production have been ever more severe (very low outputs in the droughty years, significant crop losses during flooding periods, hailstorms, etc.). Concurrently, these effects have been the result of a whole range of complex interactions with other environmental, social, economic and political factors over the post-communist period. Using questionnaires survey for small individual households and large agricultural farms, focus group interviews and direct field observation, this study analyses the farmers' perception in terms of climate change, the impact of climate change on agriculture and how the farmers react and adapt to these changes. The current study have revealed that all farmers believe drought as being by far the most important climatic factor with major impact on agricultural production, followed by acid rains, hail storms and ground frost, facts evidenced also by the climatic diagnosis of the region. The majority of respondents have taken adaptation agricultural measures in response to changes in climate conditions (drought resistant seeds, modern technology to keep the moisture in the soil, etc.), but they consider that a national strategy for mitigating the effects of climate change would be more effective in this respect. Also, in order to correlate the farmers' perception of climate change and climatic factors, the authors used and processed a wide range of meteorological data (daily, monthly and annual from the most representative meteorological stations in the study-area), as

  2. The nature conservancy's prairie wings project: a conservation strategy for the grassland birds of the Western Great plains

    Treesearch

    Bob McCready; David Mehlman; Danny Kwan; Becky Abel

    2005-01-01

    In the second half of the nineteenth century, driven by the cultural mandate of manifest destiny and economic expansion, the North American west was rapidly settled and permanently altered by hundreds of thousands of residents from the eastern United States, Canada, Central Mexico and Europe. The first region to fill up with new arrivals was the Great Plains, a &...

  3. Applied regional monitoring of the vernal advancement and retrogradation (Green wave effect) of natural vegetation in the Great Plains corridor

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr. (Principal Investigator); Deering, D. W.; Haas, R. H.; Welch, R. I.; Harlan, J. C.; Whitney, P. R.

    1977-01-01

    The author has identified the following significant results. LANDSAT 2 has shown that digital data products can be effectively employed on a regional basis to monitor changes in vegetation conditions. The TV16 was successfully applied to an extended test site and the Great Plains Corridor in tests of the ability to assess green forage biomass on rangelands as an index to vegetation condition. A strategy for using TV16 on a regional basis was developed and tested. These studies have shown that: (1) for rangelands with good vegetative cover, such as most of the Great Plains, and which are not heavily infested with brush or undesirable weed species, the LANDSAT digital data can provide a good estimate (within 250 kg/ha) of the quantity of green forage biomass, and (2) at least five levels of pasture and range feed conditions can be adequately mapped for extended regions.

  4. Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains

    USGS Publications Warehouse

    Wylie, B.K.; Fosnight, E.A.; Gilmanov, T.G.; Frank, A.B.; Morgan, J.A.; Haferkamp, Marshall R.; Meyers, T.P.

    2007-01-01

    Rangeland carbon fluxes are highly variable in both space and time. Given the expansive areas of rangelands, how rangelands respond to climatic variation, management, and soil potential is important to understanding carbon dynamics. Rangeland carbon fluxes associated with Net Ecosystem Exchange (NEE) were measured from multiple year data sets at five flux tower locations in the Northern Great Plains. These flux tower measurements were combined with 1-km2 spatial data sets of Photosynthetically Active Radiation (PAR), Normalized Difference Vegetation Index (NDVI), temperature, precipitation, seasonal NDVI metrics, and soil characteristics. Flux tower measurements were used to train and select variables for a rule-based piece-wise regression model. The accuracy and stability of the model were assessed through random cross-validation and cross-validation by site and year. Estimates of NEE were produced for each 10-day period during each growing season from 1998 to 2001. Growing season carbon flux estimates were combined with winter flux estimates to derive and map annual estimates of NEE. The rule-based piece-wise regression model is a dynamic, adaptive model that captures the relationships of the spatial data to NEE as conditions evolve throughout the growing season. The carbon dynamics in the Northern Great Plains proved to be in near equilibrium, serving as a small carbon sink in 1999 and as a small carbon source in 1998, 2000, and 2001. Patterns of carbon sinks and sources are very complex, with the carbon dynamics tilting toward sources in the drier west and toward sinks in the east and near the mountains in the extreme west. Significant local variability exists, which initial investigations suggest are likely related to local climate variability, soil properties, and management.

  5. Stratum variance estimation for sample allocation in crop surveys. [Great Plains Corridor

    NASA Technical Reports Server (NTRS)

    Perry, C. R., Jr.; Chhikara, R. S. (Principal Investigator)

    1980-01-01

    The problem of determining stratum variances needed in achieving an optimum sample allocation for crop surveys by remote sensing is investigated by considering an approach based on the concept of stratum variance as a function of the sampling unit size. A methodology using the existing and easily available information of historical crop statistics is developed for obtaining initial estimates of tratum variances. The procedure is applied to estimate stratum variances for wheat in the U.S. Great Plains and is evaluated based on the numerical results thus obtained. It is shown that the proposed technique is viable and performs satisfactorily, with the use of a conservative value for the field size and the crop statistics from the small political subdivision level, when the estimated stratum variances were compared to those obtained using the LANDSAT data.

  6. Abrupt Climate Change in the Southern Great Plains during the Last Glacial Interval

    NASA Astrophysics Data System (ADS)

    Housson, A. L.; Maupin, C. R.; Roark, B.; Shen, C. C.; Baykara, O.; White, K.; Kampen-Lewis, S. V.; McChesney, C. L.

    2016-12-01

    Understanding how the climate of the North American Great Plains may change in the future is of tremendous socioeconomic importance, yet the regional response to previous abrupt global climate events, such as the Dansgaard-Oeschger (DO) cycles of the last glacial interval, are poorly known. Here we present two absolutely dated (U/Th), partially replicated oxygen isotope (δ18O) records from calcite speleothems in central Texas (30° N, 98° W) that grew during marine isotope stage 3 (MIS 3) (31 to 49 ky BP). The study site experiences boreal spring and fall maxima in precipitation with rainfall moisture sourced almost exclusively from the Gulf of Mexico. The two samples exhibit reproducible δ18O means and variability during overlapping growth intervals. Weak correlations between paired oxygen and carbon isotopic values coupled with reproducible δ18O strongly suggest that dripwater δ18O and calcite formation temperatures are the primary drivers of speleothem δ18O variations through time. We interpret more depleted (enriched) δ18O values to reconstruct warmer and wetter (cooler and drier) conditions based on observations of modern rainfall stable isotope variations at the study site. We find that warmer and wetter conditions in the Southern Plains are contemporaneous with MIS 3 DO interstadials, while cooler and more arid conditions prevail during stadials and Heinrich Events 4 and 5. Our results show a response opposite that of hydrologic reconstructions from the American Southwest, where wetter conditions occur with stadial conditions. Future work includes exploration of paleoclimate model results to examine potential mechanisms responsible for this opposite phasing. Our speleothem data indicate that further intensification of rainy seasons in the Southern Plains should not be ruled out as a response to anthropogenic global warming.

  7. Ground-water quality beneath irrigated agriculture in the central High Plains aquifer, 1999-2000

    USGS Publications Warehouse

    Bruce, Breton W.; Becker, Mark F.; Pope, Larry M.; Gurdak, Jason J.

    2003-01-01

    In 1999 and 2000, 30 water-quality monitoring wells were installed in the central High Plains aquifer to evaluate the quality of recently recharged ground water in areas of irrigated agriculture and to identify the factors affecting ground-water quality. Wells were installed adjacent to irrigated agricultural fields with 10- or 20-foot screened intervals placed near the water table. Each well was sampled once for about 100 waterquality constituents associated with agricultural practices. Water samples from 70 percent of the wells (21 of 30 sites) contained nitrate concentrations larger than expected background concentrations (about 3 mg/L as N) and detectable pesticides. Atrazine or its metabolite, deethylatrazine, were detected with greater frequency than other pesticides and were present in all 21 samples where pesticides were detected. The 21 samples with detectable pesticides also contained tritium concentrations large enough to indicate that at least some part of the water sample had been recharged within about the last 50 years. These 21 ground-water samples are considered to show water-quality effects related to irrigated agriculture. The remaining 9 groundwater samples contained no pesticides, small tritium concentrations, and nitrate concentrations less than 3.45 milligrams per liter as nitrogen. These samples are considered unaffected by the irrigated agricultural land-use setting. Nitrogen isotope ratios indicate that commercial fertilizer was the dominant source of nitrate in 13 of the 21 samples affected by irrigated agriculture. Nitrogen isotope ratios for 4 of these 21 samples were indicative of an animal waste source. Dissolved-solids concentrations were larger in samples affected by irrigated agriculture, with large sulfate concentrations having strong correlation with large dissolved solids concentrations in these samples. A strong statistical correlation is shown between samples affected by irrigated agriculture and sites with large rates of

  8. Grassland and cropland net ecosystem production of the U.S. Great Plains: Regression tree model development and comparative analysis

    USGS Publications Warehouse

    Wylie, Bruce K.; Howard, Daniel; Dahal, Devendra; Gilmanov, Tagir; Ji, Lei; Zhang, Li; Smith, Kelcy

    2016-01-01

    This paper presents the methodology and results of two ecological-based net ecosystem production (NEP) regression tree models capable of up scaling measurements made at various flux tower sites throughout the U.S. Great Plains. Separate grassland and cropland NEP regression tree models were trained using various remote sensing data and other biogeophysical data, along with 15 flux towers contributing to the grassland model and 15 flux towers for the cropland model. The models yielded weekly mean daily grassland and cropland NEP maps of the U.S. Great Plains at 250 m resolution for 2000–2008. The grassland and cropland NEP maps were spatially summarized and statistically compared. The results of this study indicate that grassland and cropland ecosystems generally performed as weak net carbon (C) sinks, absorbing more C from the atmosphere than they released from 2000 to 2008. Grasslands demonstrated higher carbon sink potential (139 g C·m−2·year−1) than non-irrigated croplands. A closer look into the weekly time series reveals the C fluctuation through time and space for each land cover type.

  9. Mapping marginal croplands suitable for cellulosic feedstock crops in the Great Plains, United States

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.

    2016-01-01

    Growing cellulosic feedstock crops (e.g., switchgrass) for biofuel is more environmentally sustainable than corn-based ethanol. Specifically, this practice can reduce soil erosion and water quality impairment from pesticides and fertilizer, improve ecosystem services and sustainability (e.g., serve as carbon sinks), and minimize impacts on global food supplies. The main goal of this study was to identify high-risk marginal croplands that are potentially suitable for growing cellulosic feedstock crops (e.g., switchgrass) in the US Great Plains (GP). Satellite-derived growing season Normalized Difference Vegetation Index, a switchgrass biomass productivity map obtained from a previous study, US Geological Survey (USGS) irrigation and crop masks, and US Department of Agriculture (USDA) crop indemnity maps for the GP were used in this study. Our hypothesis was that croplands with relatively low crop yield but high productivity potential for switchgrass may be suitable for converting to switchgrass. Areas with relatively low crop indemnity (crop indemnity <$2 157 068) were excluded from the suitable areas based on low probability of crop failures. Results show that approximately 650 000 ha of marginal croplands in the GP are potentially suitable for switchgrass development. The total estimated switchgrass biomass productivity gain from these suitable areas is about 5.9 million metric tons. Switchgrass can be cultivated in either lowland or upland regions in the GP depending on the local soil and environmental conditions. This study improves our understanding of ecosystem services and the sustainability of cropland systems in the GP. Results from this study provide useful information to land managers for making informed decisions regarding switchgrass development in the GP.

  10. Relationships of elevation, channel slope, and stream width to occurrences of native fishes at the Great Plains-Rocky Mountains interface

    USGS Publications Warehouse

    Brunger, Lipsey T.S.; Hubert, W.A.; Rahel, F.J.

    2005-01-01

    Environmental gradients occur with upstream progression from plains to mountains and affect the occurrence of native warmwater fish species, but the relative importance of various environmental gradients are not defined. We assessed the relative influences of elevation, channel slope, and stream width on the occurrences of 15 native warmwater fish species among 152 reaches scattered across the North Platte River drainage of Wyoming at the interface of the Great Plains and Rocky Mountains. Most species were collected in reaches that were lower in elevation, had lower channel slopes, and were wider than the medians of the 152 sampled reaches. Several species occurred over a relatively narrow range of elevation, channel slope, or stream width among the sampled reaches, but the distributions of some species appeared to extend beyond the ranges of the sampled reaches. We identified competing logistic-regression models that accounted for the occurrence of individual species using the information-theoretic approach. Linear logistic-regression models accounted for patterns in the data better than curvilinear models for all species. The highest ranked models included channel slope for seven species, elevation for six species, stream width for one species, and both channel slope and stream width for one species. Our results suggest that different environmental gradients may affect upstream boundaries of different fish species at the interface of the Great Plains and Rocky Mountains in Wyoming.

  11. Assessing drought risk under climate change in the US Great Plains via evaporative demand from downscaled GCM projections

    NASA Astrophysics Data System (ADS)

    Dewes, C.; Rangwala, I.; Hobbins, M.; Barsugli, J. J.

    2016-12-01

    Drought conditions in the US Great Plains occur primarily in response to periods of low precipitation, but they can be exacerbated by enhanced evaporative demand (E0) during periods of elevated temperatures, radiation, advection, and/or decreased humidity. A number of studies project severe to unprecedented drought conditions for this region later in the 21st century. Yet, we have found that methodological choices in the estimation of E0 and the selection of global climate model (GCM) output account for large uncertainties in projections of drought risk. Furthermore, the coarse resolution of GCMs offers little usability for drought risk assessments applied to socio-ecological systems, and users of climate data for that purpose tend to prefer existing downscaled products. Here we derive a physically based estimation of E0 - the FAO56 Penman-Monteith reference evapotranspiration - using driving variables from the Multivariate Adaptive Constructed Analogs (MACA) dataset, which have a spatial resolution of approximately 4 km. We select downscaled outputs from five CMIP5 GCMs, whereby we aim to represent different scenarios for the future of the Great Plains region (e.g. warm/wet, hot/dry, etc.). While this downscaling methodology removes GCM bias relative to a gridded product for historical data (METDATA), we first examine the remaining bias relative to ground (point) estimates of E0. Next we assess whether the downscaled products preserve the variability of their parent GCMs, in both historical and future (RCP8.5) projections. We then use the E0 estimates to compute multi-scale time series of drought indices such as the Evaporative Demand Drought Index (EDDI) and the Standardized Precipitation-Evaporation Index (SPEI) over the Great Plains region. We also attribute variability and drought anomalies to each of the driving parameters, to tease out the influence of specific model biases and evaluate geographical nuances of E0 drivers. Aside from improved understanding of

  12. Wetland degradation: its driving forces and environmental impacts in the Sanjiang Plain, China.

    PubMed

    Song, Kaishan; Wang, Zongming; Du, Jia; Liu, Lei; Zeng, Lihong; Ren, Chunying

    2014-08-01

    This study investigated human-induced long-term wetland degradation that occurred in the Sanjiang Plain. Results from analyzing land-use/land-cover data sets derived from remotely sensed Landsat Multispectral Scanner/Thematic Mapper imagery for four time points showed that wetlands in the Sanjiang Plain have been severely transformed, and the area of wetlands decreased by 38 % from 1976 to 1986, by 16 % from 1986 to 1995, and by 31 % from 1995 to 2005. This study showed that transition to agricultural cultivation accounted for 91 % of wetland losses, whereas transition to grassland and forest accounted for 7 % of the wetlands losses. Institutional strategies and market policies probably exerted great impacts on agricultural practice that directly or indirectly influenced the decrease in wetlands. This study also indicated that an increased population likely led to wetland conversion to cropland by showing a high correlation between population and cropland (R (2) = 0.92, P < 0.001). Wetland loss occurred during later time intervals at a low rate. This study suggests that the existing wetland-protection measures in the Sanjiang Plain should be reinforced further because of possible environmental consequences of wetland loss, such as enhanced soil carbon emission, changed hydrological cycling, and regional temperature increase.

  13. Vulnerability of grazing and confined livestock in the Northern Great Plains to projected mid- and late-twenty-first century climate

    Treesearch

    Justin Derner; David Briske; Matt Reeves; Tami Brown-Brandl; Miranda Meehan; Dana Blumenthal; William Travis; David Augustine; Hailey Wilmer; Derek Scasta; John Hendrickson; Jerry Volesky; Laura Edwards; Dannele Peck

    2017-01-01

    The Northern Great Plains (NGP) region of the USA - which comprises Montana, Wyoming, Colorado, North Dakota, South Dakota, and Nebraska - is a largely rural area that provides numerous ecosystem services, including livestock products, cultural services, and conservation of biological diversity. The region contains 25% of the Nation's beef cattle and approximately...

  14. Reduction of soluble nitrogen and mobilization of plant nutrients in soils from U.S. northern Great Plains agroecosystems by phenolic compounds

    USDA-ARS?s Scientific Manuscript database

    Phenolic plant secondary metabolites actively participate in a broad range of important reactions that affect livestock, plants and soil. In soil, phenolic compounds can affect nutrient dynamics and mobility of metals but their role in northern Great Plains agroecosystems is largely unknown. We eval...

  15. Stratigraphic evidence of desertification in the west-central Great Plains within the past 1000 yr

    USGS Publications Warehouse

    Madole, R.F.

    1994-01-01

    Stratigraphic and geomorphic relations, archaeological data, and eight radiocarbon ages at five widely scattered localities in northeastern Colorado indicate that eolian sand was mobilized over broad areas within the past 1000 yr. The mobilization began after 1 ka, was episodic, and ended at some as yet undetermined time prior to the latter part of the 19th century. Given that climate-model simulations suggest only slight variation in average surface temperature and annual precipitation in this region during the past 1000 yr, this part of the Great Plains evidently is near the threshold of widespread eolian sand transport under the present climate. -Author

  16. Effects of soils and grazing on breeding birds of uncultivated upland grasslands of the Northern Great Plains

    USGS Publications Warehouse

    Kantrud, H.A.; Kologiski, R.L.

    1982-01-01

    The principal use of uncultivated upland grasslands in the northern Great Plains is for livestock production. However, on lands set aside for wildlife or for scientific or recreational use, grazing by livestock may be used as a management measure to enhance populations of game species or to create conditions that increase the diversity of plant or animal species. To determine the effects of grazing on the avifauna of various types of Great Plains grasslands, we conducted bird censuses and plant surveys during 1974-78 on 615 plots of lightly, moderately, or heavily grazed native rangeland.Numbers of horned lark (Eremophila alpestris), western meadowlark (Sturnella neglecta), lark bunting (Calamospiza melanocorys), and chestnut-collared longspur (Calcarius ornatus) accounted for 65-75% of the total bird population, regardless of grazing intensity. For the entire area sampled (600,000 km2), horned lark, western meadowlark, and chestnut-collared longspur were the dominant birds. Major differences in composition of the dominant species and species richness occurred among the major soils. Increased mean annual soil temperature seemingly had a greater negative influence on avian species richness than did decreased soil moisture or organic matter content. Differences in total bird density were not significant among soils and among grazing intensities within most soils. For the area as a whole, light or moderate grazing resulted in increased species richness. Of the 29 species studied, 2 responded significantly to grazing for the area as a whole and 6 others to grazing on the soil in which peak densities occurred. Response of several other species to grazing effects evidently varied among strata.A list of plants with mean cover values of more than 1% in any of the 18 combinations of soils and grazing intensities contained less than 25 species, attesting to the relative simplicity of the grassland vegetation in the northern Great Plains. Agropyron spp. and Bouteloua gracilis

  17. The Pearlette family ash beds in the Great Plains: Finding their identities and their roots in the Yellowstone country

    USGS Publications Warehouse

    Wilcox, R.E.; Naeser, C.W.

    1992-01-01

    For many years the numerous deposits of so-called 'Pearlette volcanic ash' in the Great Plains region of the United States were considered to be the remnants of the same volcanic event, and were used as a time-stratigraphic marker of probable Middle Pleistocene age. Although a few early workers had suggested that more than one air-fall event might be represented among the Pearlette occurrences, it was not until the latter half of the present century, after identification of volcanic ash beds by detailed chemical and mineralogical methods had been developed, that it could be established that the 'Pearlette family' of volcanic ashes included three ash beds of subtly differing characteristics. Development of isotopic methods of age determination has established that the ages of the three are significantly different (2.09, 1.29, and 0.60 Ma). The area of distribution of the Pearlette family ash beds was found to include not only the Great Plains, but also to extend across the Rocky Mountain and the Basin and Range provinces to the Pacific Ocean. The search for the sources of these three similar appearing ash beds, facilitated greatly by information gained from concurrent mapping projects underway in areas of major Late Cenozoic volcanic activity in western United States, ultimately led to the sites of the caldera-forming eruptions in the Yellowstone National Park region. ?? 1992.

  18. Mechanisms of diurnal precipitation over the US Great Plains: a cloud resolving model perspective

    NASA Astrophysics Data System (ADS)

    Lee, Myong-In; Choi, Ildae; Tao, Wei-Kuo; Schubert, Siegfried D.; Kang, In-Sik

    2010-02-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program’s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer

  19. Incorporating biodiversity into rangeland health: Plant species richness and diversity in great plains grasslands

    USGS Publications Warehouse

    Symstad, Amy J.; Jonas, Jayne L.

    2011-01-01

    Indicators of rangeland health generally do not include a measure of biodiversity. Increasing attention to maintaining biodiversity in rangelands suggests that this omission should be reconsidered, and plant species richness and diversity are two metrics that may be useful and appropriate. Ideally, their response to a variety of anthropogenic and natural drivers in the ecosystem of interest would be clearly understood, thereby providing a means to diagnose the cause of decline in an ecosystem. Conceptual ecological models based on ecological principles and hypotheses provide a framework for this understanding, but these models must be supported by empirical evidence if they are to be used for decision making. To that end, we synthesize results from published studies regarding the responses of plant species richness and diversity to drivers that are of management concern in Great Plains grasslands, one of North America's most imperiled ecosystems. In the published literature, moderate grazing generally has a positive effect on these metrics in tallgrass prairie and a neutral to negative effect in shortgrass prairie. The largest published effects on richness and diversity were caused by moderate grazing in tallgrass prairies and nitrogen fertilization in shortgrass prairies. Although weather is often cited as the reason for considerable annual fluctuations in richness and diversity, little information about the responses of these metrics to weather is available. Responses of the two metrics often diverged, reflecting differences in their sensitivity to different types of changes in the plant community. Although sufficient information has not yet been published for these metrics to meet all the criteria of a good indicator in Great Plains Grasslands, augmenting current methods of evaluating rangeland health with a measure of plant species richness would reduce these shortcomings and provide information critical to managing for biodiversity.

  20. Exploring agent-level calculations of risk and returns in relation to observed land-use changes in the US Great Plains, 1870–1940

    PubMed Central

    Sylvester, Kenneth M.; Brown, Daniel G.; Leonard, Susan H.; Merchant, Emily; Hutchins, Meghan

    2015-01-01

    Land-use change in the U.S. Great Plains since agricultural settlement in the second half of the nineteenth century has been well documented. While aggregate historical trends are easily tracked, the decision-making of individual farmers is difficult to reconstruct. We use an agent-based model to tell the history of the settlement of the West by simulating farm-level agricultural decision making based on historical data about prices, yields, farming costs, and environmental conditions. The empirical setting for the model is the period between 1875 and 1940 in two townships in Kansas, one in the shortgrass region and the other in the mixed grass region. Annual historical data on yields and prices determine profitability of various land uses and thereby inform decision-making, in conjunction with the farmer’s previous experience and randomly assigned levels of risk aversion. Results illustrating the level of agreement between model output and unique and detailed household-level records of historical land use and farm size suggest that economic behavior and natural endowments account for land change processes to some degree, but are incomplete. Discrepancies are examined to identify missing processes through model experiments, in which we adjust input and output prices, crop yields, agent memory, and risk aversion. These analyses demonstrate how agent-based modeling can be a useful laboratory for thinking about social and economic behavior in the past. PMID:25729323

  1. The USDA Southern Plains Climate Hub: Regional agricultural management in the context of weather and climate variability and change

    USDA-ARS?s Scientific Manuscript database

    In the Southern Great Plains of the United States, extremes of weather and climate are the norm. Farmers, ranchers, and foresters rely upon timely and authoritative data and information when making management decisions that are weather- and climate-dependent. In response to the needs of these agricu...

  2. Casting the Buffalo Commons: A Rhetorical Analysis of Print Media Coverage of the Buffalo Commons Proposal for the Great Plains

    ERIC Educational Resources Information Center

    Umberger, Mary L.

    2002-01-01

    In 1987, Frank and Deborah Popper, a planner/geographer team from Rutgers University, proposed the Buffalo Commons. If implemented, the Buffalo Commons would have preserved a large area of the Great Plains, including land in ten states, in a national park to be used by exiting Native American reservations, and for the reintroduction of buffalo.

  3. Design of the aerosol sampling manifold for the Southern Great Plains site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.

    1995-04-01

    To meet the needs of the ARM program, the Environmental Measurements Laboratory (EML) has the responsibility to establish a surface aerosol measurements program at the Southern Great Plains (SGP) site in Lamont, OK. At the present time, EML has scheduled installation of five instruments at SGP: a single wavelength nephelometer, an optical particle counter (OPC), a condensation particle counter (CPC), an optical absorption monitor (OAM), and an ozone monitor. ARM`s operating protocol requires that all the observational data be placed online and sent to the main computer facility in real time. EML currently maintains a computer file containing back trajectorymore » (BT) analyses for the SGP site. These trajectories are used to characterize air mass types as they pass over the site. EML is continuing to calculate and store the resulting trajectory analyses for future use by the ARM science team.« less

  4. 7 CFR 650.25 - Flood-plain management.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Flood-plain management. 650.25 Section 650.25 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... management will be provided by the NRCS technical service centers (§ 600.3 of this part). (2) NRCS state...

  5. Open to Horror: The Great Plains Situation in Contemporary Thrillers by E. E. Knight and by Douglas Preston and Lincoln Child

    ERIC Educational Resources Information Center

    Emrys, A. B.

    2009-01-01

    From the agoraphobic prairie where the father of Willa Cather's Antonia kills himself, to the claustrophobic North Dakota town of Argus devastated by storm in Louise Erdrich's "Fleur," to Lightning Flat, the grim home of Jack Twist in Annie Proulx's "Brokeback Mountain," much Great Plains literature is situational, placing…

  6. Land cover dynamics across the Great Plains and their influence on breeding birds: Potential artefact of data and analysis limitations

    Treesearch

    C. H. Flather; M. S. Knowles; L. S. Baggett

    2017-01-01

    The distribution and abundance of obligate grassland breeding birds in the US have declined across the Great Plains as native habitats have been converted to intensive human land use. A major finding of Scholtz et al. (2017: Table 3) was that the group-wise extinction rate among 13 common grassland nesting birds declined with increasing cropland. This conclusion runs...

  7. Drought effect on selection of conservation reserve program grasslands by white-tailed deer on the Northern Great Plains

    USGS Publications Warehouse

    Grovenburg, T.W.; Jacques, C.N.; Klaver, R.W.; Jenks, J.A.

    2011-01-01

    Limited information exists regarding summer resource selection of white-tailed deer (Odocoileus virginianus) in grassland regions of the Northern Great Plains. During summers 2005-2006, we analyzed habitat selection of adult female white-tailed deer in north-central South Dakota. We collected 1905 summer locations and used 21 and 30 home ranges during 2005 and 2006, respectively, to estimate habitat selection. Results indicated that selection occurred at the population (P < 0.001) and home range (P < 0.001) levels. Deer selected for Conservation Reserve Program grasslands and corn during both summers and shifted selection temporally within summer. Use of CRP grasslands occurred during early summer; 73.1 and 88.9% of locations in CRP were documented prior to 1 Jul. during 2005 and 2006, respectively. Conversely, selection for corn occurred during late summer; 86.0 and 68.4% of locations in corn were documented after 1 Jul. during 2005 and 2006, respectively. Additionally, deer selected for forested cover and rural development areas containing permanent water sources during extreme drought conditions during 2006. Deer likely selected for fields of CRP grasslands during early summer for cover and natural forages, such as clover (Trifolium sp.), prior to the period when agricultural crops become available. Drought conditions occurring in semiarid prairie grassland regions may reduce food and water availability and contribute to subsequent changes in deer habitat selection across the range of the species.

  8. A Climatology of Low-Level Jet Dynamics Over the Great Plains of the United States

    NASA Astrophysics Data System (ADS)

    Christian, Katarina

    The Great Plains Low-Level Jet (LLJ) has been studied since the early 1950s, but there remains great uncertainty within the scientific community as to how the LLJ develops. As such, it was the purpose of this study to produce a 3-year mean climatology comparing strong LLJ days to non-LLJ days to examine the most significant dynamical characteristics involved in LLJ development. Two case studies representing a strong LLJ day and non-LLJ day were also examined. The importance of weak upper level synoptic forcing and strong cumulative heating across the sloping terrain was found to be essential to the development of the LLJ. The Holton mechanism was observed for both strong LLJ days and non-LLJ days, and as such, was not found to contribute significantly to the development of the LLJ. The Blackadar mechanism was found to explain supergeostrophic wind speeds and a veering wind profile during the overnight hours.

  9. Global warming likely reduces crop yield and water availability of the dryland cropping systems in the U.S. central Great Plains

    USDA-ARS?s Scientific Manuscript database

    We investigated impacts of GCM-projected climate change on dryland crop rotations of wheat-fallow and wheat-corn-fallow in the Central Great Plains (Akron in Colorado, USA) using the CERES 4.0 crop modules in RZWQM2. The climate change scenarios for CO2, temperature, and precipitation were produced ...

  10. Hydrogeologic considerations for an interstate ground-water compact on the Madison aquifer, northern Great Plains

    USGS Publications Warehouse

    Konikow, Leonard F.

    1978-01-01

    The development of an interstate ground-water compact for the Madison aquifer in the Northern Great Plains may provide a framework to allocate equitably this large ground-water resource while avoiding possible future interstate legal conflicts. However, some technical problems will have to be resolved first. A compact designed to regulate or to allocate the available ground water will have to be written in very precise, legally acceptable definitions. The required definitions may infer a degree of measurement accuracy that cannot be technically or economically provided. Therefore, a trade off may be required between preserving natural conditions and allowing beneficial use of the ground-water resource.

  11. Macroinvertebrate biomonitoring in intermittent coastal plain streams impacted by animal agriculture.

    PubMed

    Davis, Stephanie; Golladay, Stephen W; Vellidis, George; Pringle, Catherine M

    2003-01-01

    Little attention has been given to the ecology of intermittent coastal plain streams in the southeastern United States, and it is not known whether available macroinvertebrate biomonitoring methods reliably detect degradation in these streams. This study compared differences in biomonitoring metrics between reference and agricultural streams, and between the flow period (January-April) and the intermittent flow period (May-December). Percentages of crustaceans, isopods, and Ephemeroptera-Plecoptera-Trichoptera (EPT) were significantly higher at the reference site than the two most impacted sites during the flow period, probably resulting from the abundance of leaf litter and lower temperatures. During this same period, the agriculturally impacted sites had a significantly higher percentage of dipterans--a group that thrives in the silty, nutrient-rich waters. Four metrics (percent Crustacea, Isopoda, Diptera, and EPT) had no overlap between values for the most impacted and the least impacted sites during the flow period, but no metrics were able to detect more discrete differences among sites. Sites were physically and biologically similar during the intermittent period when natural stresses (i.e., stagnant water, high temperatures, low dissolved oxygen) were high, with many metrics, such as percentages of dominant family, burrowers, chironomids, and dipterans becoming similar at all sites. Our findings indicate that development of a better understanding of invertebrate fauna in reference conditions and of the natural variation in intermittent streams is necessary to develop effective biomonitoring programs for these systems.

  12. Estimating switchgrass productivity in the Great Plains using satellite vegetation index and site environmental variables

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Howard, Daniel M.

    2015-01-01

    Switchgrass is being evaluated as a potential feedstock source for cellulosic biofuels and is being cultivated in several regions of the United States. The recent availability of switchgrass land cover maps derived from the National Agricultural Statistics Service cropland data layer for the conterminous United States provides an opportunity to assess the environmental conditions of switchgrass over large areas and across different geographic locations. The main goal of this study is to develop a data-driven multiple regression switchgrass productivity model and identify the optimal climate and environment conditions for the highly productive switchgrass in the Great Plains (GP). Environmental and climate variables used in the study include elevation, soil organic carbon, available water capacity, climate, and seasonal weather. Satellite-derived growing season averaged Normalized Difference Vegetation Index (GSN) was used as a proxy for switchgrass productivity. Multiple regression analyses indicate that there are strong correlations between site environmental variables and switchgrass productivity (r = 0.95). Sufficient precipitation and suitable temperature during the growing season (i.e., not too hot or too cold) are favorable for switchgrass growth. Elevation and soil characteristics (e.g., soil available water capacity) are also an important factor impacting switchgrass productivity. An anticipated switchgrass biomass productivity map for the entire GP based on site environmental and climate conditions and switchgrass productivity model was generated. Highly productive switchgrass areas are mainly located in the eastern part of the GP. Results from this study can help land managers and biofuel plant investors better understand the general environmental and climate conditions influencing switchgrass growth and make optimal land use decisions regarding switchgrass development in the GP.

  13. Climatology, Natural Cycles, and Modes of Interannual Variability of the Great Plains Low-Level Jet as Assimilated by the GEOS-1 Data Analysis System

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.; Schubert, S. D.; Atlas, Robert (Technical Monitor)

    2002-01-01

    Despite the fact that the low-level jet of the southern Great Plains (the GPLLJ) of the U.S. is primarily a nocturnal phenomenon that virtually vanishes during the daylight hours, it is one of the most persistent and stable features of the low-level continental flow during the warm-season months, May through August. We have first used significant-level data to validate the skill of the GEOS-1 Data Assimilation System (DAS) in realistically detecting this jet and inferring its structure and evolution. We have then carried out a 15-year reanalysis with the GEOS-1 DAS to determine and validate its climatology and mean diurnal cycle and to study its interannual variability. Interannual variability of the GPLLJ is much smaller than mean diurnal and random intraseasonal variability and comparable in magnitude, but not location, to mean seasonal variability. There are three maxima of interannual low-level meridional flow variability of the GPLLJ over the upper Great Plains, southeastern Texas, and the western Gulf of Mexico. Cross-sectional profiles of mean southerly wind through the Texas maximum remain relatively stable and recognizable from year to year with only its eastward flank showing significant variability. This variability, however, exhibits a distinct, biennial oscillation during the first six years of the reanalysis period and only then. Each of the three variability maxima corresponds to a spatially coherent, jet-like pattern of low-level flow interannual variability. There are three prominent modes of interannual. variability. These include the intermittent biennial oscillation (IBO), local to the Texas maximum. Its signal is evident in surface pressure, surface temperature, ground wetness and upper air flow, as well. A larger-scale continental convergence pattern (CCP) of covariance, exhibiting strong anti-correlation between the flow near the Texas and the upper Great Plains variability maxima, is revealed only when the IBO is removed from the interannual

  14. Wintering Sandhill Crane exposure to wind energy development in the central and southern Great Plains, USA

    USGS Publications Warehouse

    Pearse, Aaron T.; Brandt, David; Krapu, Gary

    2016-01-01

    Numerous wind energy projects have been constructed in the central and southern Great Plains, USA, the main wintering area for midcontinental Sandhill Cranes (Grus canadensis). In an initial assessment of the potential risks of wind towers to cranes, we estimated spatial overlap, investigated potential avoidance behavior, and determined the habitat associations of cranes. We used data from cranes marked with platform transmitting terminals (PTTs) with and without global positioning system (GPS) capabilities. We estimated the wintering distributions of PTT-marked cranes prior to the construction of wind towers, which we compared with current tower locations. Based on this analysis, we found 7% spatial overlap between the distributions of cranes and towers. When we looked at individually marked cranes, we found that 52% would have occurred within 10 km of a tower at some point during winter. Using data from cranes marked after tower construction, we found a potential indication of avoidance behavior, whereby GPS-marked cranes generally used areas slightly more distant from existing wind towers than would be expected by chance. Results from a habitat selection model suggested that distances between crane locations and towers may have been driven more by habitat selection than by avoidance, as most wind towers were constructed in locations not often selected by wintering cranes. Our findings of modest regional overlap and that few towers have been placed in preferred crane habitat suggest that the current distribution of wind towers may be of low risk to the continued persistence of wintering midcontinental Sandhill Cranes in the central and southern Great Plains.

  15. Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes.

    PubMed

    Osborne, Megan J; Perkin, Joshuah S; Gido, Keith B; Turner, Thomas F

    2014-12-01

    We used comparative landscape genetics to examine the relative roles of historical events, intrinsic traits and landscape factors in determining the distribution of genetic diversity of river fishes across the North American Great Plains. Spatial patterns of diversity were overlaid on a patch-based graphical model and then compared within and among three species that co-occurred across five Great Plains watersheds. Species differing in reproductive strategy (benthic vs. pelagic-spawning) were hypothesized to have different patterns of genetic diversity, but the overriding factor shaping contemporary patterns of diversity was the signature of past climates and geological history. Allelic diversity was significantly higher at southern latitudes for Cyprinella lutrensis and Hybognathus placitus, consistent with northward expansion from southern Pleistocene refugia. Within the historical context, all species exhibited lowered occupancy and abundance in heavily fragmented and drier upstream reaches, particularly H. placitus; a pelagic-spawning species, suggesting rates of extirpation have outpaced losses of genetic diversity in this species. Within most tributary basins, genetically diverse populations of each species persisted. Hence, reconnecting genetically diverse populations with those characterized by reduced diversity (regardless of their position within the riverine network) would provide populations with greater genetic and demographic resilience. We discuss cases where cross-basin transfer may be appropriate to enhance genetic diversity and mitigate negative effects of climate change. Overall, striking similarities in genetic patterns and in response to fragmentation and dewatering suggest a common strategy for genetic resource management in this unique riverine fish assemblage. © 2014 John Wiley & Sons Ltd.

  16. Shallow, low-permeability reservoirs of northern Great Plains - assessment of their natural gas resources.

    USGS Publications Warehouse

    Rice, D.D.; Shurr, G.W.

    1980-01-01

    Major resources of natural gas are entrapped in low-permeability, low-pressure reservoirs at depths less than 1200m in the N.Great Plains. This shallow gas is the product of the immature stage of hydrocarbon generation and is referred to as biogenic gas. Prospective low-permeability, gas-bearing reservoirs range in age from late Early to Late Cretaceous. The following facies were identified and mapped: nonmarine rocks, coastal sandstones, shelf sandstones, siltstones, shales, and chalks. The most promising low-permeability reservoirs are developed in the shelf sandstone, siltstone, and chalk facies. Reservoirs within these facies are particularly attractive because they are enveloped by thick sequences of shale which serve as both a source and a seal for the gas.-from Author

  17. Ecological risks and potential sources of heavy metals in agricultural soils from Huanghuai Plain, China.

    PubMed

    Zhou, Lingli; Yang, Bing; Xue, Nandong; Li, Fasheng; Seip, Hans Martin; Cong, Xin; Yan, Yunzhong; Liu, Bo; Han, Baolu; Li, Huiying

    2014-01-01

    A total of 224 agricultural soil samples from Huanghuai Plain in China were investigated for the concentrations of seven heavy metals (As, Cd, Cr, Hg, Ni, Pb, and Zn). The mean concentrations of the metals were 12, 0.17, 79, 0.04, 35, 25, and 74 mg/kg, respectively. These values are similar or slightly higher than background values in this region, except for Cd with a mean nearly twice the background value. The estimated ecological risks based on contamination factors and potential ecological risk indexes are also mostly low, but considerable for Cd and Hg. Multivariate analysis (including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis) clearly revealed three distinct metal groups, i.e., Cr/Ni/Zn, As/Cd/Pb, and Hg, whose concentrations were closely associated with the distribution and pollution characteristics of industries in and around the plain. The main anthropogenic sources for the three metal groups were identified as atmospheric deposition, sewage irrigation/fertilizers usage, and atmospheric deposition/irrigation water, respectively. The present results are well suited for planning, risk assessment, and decision making by environmental managers of this region.

  18. Causes of Long-Term Drought in the United States Great Plains

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried D.; Suarez, Max J.; Pegion, Philip J.; Koster, Randal

    2002-01-01

    The United States Great Plains (USGP) experienced a number of multi-year droughts during the last century, most notably the droughts of the 1930s and 1950s. This study examines the causes of such droughts using ensembles of long term (1930-1999) simulations carried out with the NASA Seasonal-to-Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) forced with observed sea surface temperatures (SSTs). The results show that the model produces long-term (multi-year) variations in the USGP precipitation that are similar to those observed. A correlative analysis suggests that the ensemble mean low frequency (time scales longer than about 6 years) rainfall variations in the USGP are linked to a pan-Pacific pattern of SST variability that is the leading empirical orthogonal function (EOF) in the low frequency SST data. The link between the SST and the Great Plains precipitation is confirmed in idealized AGCM simulations, in which the model is forced by the 2 polarities of the pan-Pacific SST pattern. The idealized simulations further show that it is primarily the tropical part of the SST anomalies that influence the USGP. As such, the USGP tend to have above normal precipitation when the tropical Pacific SSTs are above normal, while there is a tendency for drought when the tropical SSTs are cold. The upper tropospheric response to the pan-Pacific SST EOF shows a global-scale pattern with a strong wave response in the Pacific and a substantial zonally-symmetric component in which USGP pluvial (drought) conditions are associated with reduced (enhanced) heights throughout the extra-tropics. The potential predictability of rainfall in the USGP associated with SSTs is rather modest, with on average about 1/3 of the total low frequency rainfall variance forced by SST anomalies. Further idealized experiments with climatological SST, suggest that the remaining low frequency variance in the USGP precipitation is the result of interactions with soil

  19. Net Ecosystem Production (NEP) of the Great Plains, United States

    USGS Publications Warehouse

    Howard, Daniel; Gilmanov, Tagir; Gu, Yingxin; Wylie, Bruce; Zhang, Li

    2012-01-01

    Flux tower networks, such as AmeriFlux and FLUXNET, consist of a growing number of eddy covariance flux tower sites that provide a synoptic record of the exchange of carbon, water, and energy between the ecosystem and atmosphere at various temporal frequencies. These towers also detect and measure certain site characteristics, such as wind, temperature, precipitation, humidity, atmospheric pressure, soil features, and phenological progressions. Efforts are continuous to combine flux tower network data with remote sensing data to upscale the conditions observed at specific sites to a regional and, ultimately, worldwide scale. Data-driven regression tree models have the ability to incorporate flux tower records and remote sensing data to quantify exchanges of carbon with the atmosphere (Wylie and others, 2007; Xiao and others, 2010; Zhang and others, 2010; Zhang and others, 2011). Previous study results demonstrated the dramatic effect weather has on NEP and revealed specific ecoregions and times acting as carbon sinks or sources. As of 2012, more than 100 site-years of flux tower measurements, represented by more than 50 individual cropland or grassland sites throughout the Great Plains and surrounding area, have been acquired, quality controlled, and partitioned into gross photosynthesis (Pg) and ecosystem Re using detailed light-response, soil temperature, and vapor pressure deficit (VPD) based analysis.

  20. Extent of Kentucky bluegrass and its effect on native plant species diversity and ecosystem services in the Northern Great Plains of the USA

    USDA-ARS?s Scientific Manuscript database

    The geographic spread of Kentucky bluegrass in rangelands of the USA has increased significantly over the past decades. Preliminary analysis of National Resources Inventory data indicates that Kentucky bluegrass occupies a majority of ecological sites across the Northern Great Plains. Despite its fa...

  1. Mechanisms of Diurnal Precipitation over the United States Great Plains: A Cloud-Resolving Model Simulation

    NASA Technical Reports Server (NTRS)

    Lee, M.-I.; Choi, I.; Tao, W.-K.; Schubert, S. D.; Kang, I.-K.

    2010-01-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.

  2. User account | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement | Information Quality | Privacy

  3. Ground water in the Cul-de-Sac Plain, Haiti

    USGS Publications Warehouse

    Taylor, George C.; Lemoine, Rémy C.

    1949-01-01

    The Cul-de-Sac Plain is perhaps the most important agricultural area in Haiti because of its nearness and accessibility to Port-au-Prince, the nation's capital, metropolis, and principal seaport. Most of the agricultural produce consumed in Port-au-Prince as well as a considerable part of that exported from Haiti is grown in the plain.Because of variable and poorly distributed rainfall, high temperature, and high evaporation, semiarid climatic conditions prevail in the plain. Irrigation is, therefore, necessary for successful farming. There are no regulatory or storage facilities on the streams that enter the plain, but the mean and low-water stream flow and the discharge of springs are almost entirely appropriated for irrigation. Ground water has been utilized for irrigation to an increasing extent by the Haitian American Sugar Company, which has put down about 100 wells in the plain since 1919.Outside the existing irrigated areas of the plain are large tracts of potentially irrigable land that are uncultivated and agriculturally unproductive for lack of water. The object of the present study was to determine the possibilities of bringing these lands into cultivation by irrigation from wells. This study was part of a larger program of the Food Supply Division, Institute of Inter-American Affairs, to increase the production of food in Haiti.From September through November 1948 the senior author, a member of the U. S. Geological Survey, spent three months in the field in an investigation of the geology and ground-water resources of the Cul-de-Sac Plain. He was ably assisted by Mr. Rémy C. Lemoine, Haitian engineer-geologist, employed by the Food Supply Division. The field work included principally the geologic mapping of' the plain and the adjacent mountain borders, a ground-water inventory of existing wells and springs, and a general evaluation of significant geologic and hydrologic features.

  4. Simulation and analysis of soil-water conditions in the Great Plains and adjacent areas, central United States, 1951-80

    USGS Publications Warehouse

    Dugan, Jack T.; Zelt, Ronald B.

    2000-01-01

    Ground-water recharge and consumptive-irrigation requirements in the Great Plains and adjacent areas largely depend upon an environment extrinsic to the ground-water system. This extrinsic environment, which includes climate, soils, and vegetation, determines the water demands of evapotranspiration, the availability of soil water to meet these demands, and the quantity of soil water remaining for potential ground-water recharge after these demands are met. The geographic extent of the Great Plains contributes to large regional differences among all elements composing the extrinsic environment, particularly the climatic factors. A soil-water simulation program, SWASP, which synthesizes selected climatic, soil, and vegetation factors, was used to simulate the regional soil-water conditions during 1951-80. The output from SWASP consists of several soil-water characteristics, including surface runoff, infiltration, consumptive water requirements, actual evapotranspiration, potential recharge or deep percolation under various conditions, consumptive irrigation requirements, and net fluxes from the ground-water system under irrigated conditions. Simulation results indicate that regional patterns of potential recharge, consumptive irrigation requirements, and net fluxes from the ground-water system under irrigated conditions are largely determined by evapotranspiration and precipitation. The local effects of soils and vegetation on potential recharge cause potential recharge to vary by more than 50 percent in some areas having similar climatic conditions.

  5. Evaluating soil moisture and yield of winter wheat in the Great Plains using Landsat data

    NASA Technical Reports Server (NTRS)

    Heilman, J. L.; Kanemasu, E. T.; Bagley, J. O.; Rasmussen, V. P.

    1977-01-01

    Locating areas where soil moisture is limiting to crop growth is important for estimating winter-wheat yields on a regional basis. In the 1975-76 growing season, we evaluated soil-moisture conditions and winter-wheat yields for a five-state region of the Great Plains using Landsat estimates of leaf area index (LAI) and an evapotranspiration (ET) model described by Kanemasu et al (1977). Because LAI was used as an input, the ET model responded to changes in crop growth. Estimated soil-water depletions were high for the Nebraska Panhandle, southwestern Kansas, southeastern Colorado, and the Texas Panhandle. Estimated yields in five-state region ranged from 1.0 to 2.9 metric ton/ha.

  6. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr. (Principal Investigator); Haas, R. H.; Deering, D. W.; Schell, J. A.; Harlan, J. C.

    1974-01-01

    The author has identified the following significant results. The Great Plains Corridor rangeland project successfully utilized natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. An effective method was developed for quantitative measurement of vegetation conditions, including green biomass estimates, recorded in bands 5 and 6, corrected for sun angle, were used to compute a ratio parameter (TV16) which is shown to be highly correlated with green biomass and vegatation moisture content. Analyses results of ERTS-1 digital data and correlated ground data are summarized. Attention was given to analyzing weather influences and test site variables on vegetation condition measurements with ERTS-1 data.

  7. Extent of Kentucky bluegrass and its effect on native plant species diversity and ecosystem services in the Northern Great Plains of the USA

    USDA-ARS?s Scientific Manuscript database

    The geographic spread of Kentucky bluegrass in rangelands of the USA has increased significantly over the past 3 decades. Preliminary analysis indicates that Kentucky bluegrass occupies over half of all ecological sites across the Northern Great Plains. Kentucky bluegrass has served as nutritious fo...

  8. Penultimate Glacial-Interglacial Climate Variability in the Southern Great Plains of North America

    NASA Astrophysics Data System (ADS)

    Bartow-Gillies, E.; Maupin, C. R.; Roark, E. B.; Chou, Y. C.; White, K.; Kampen-Lewis, S. V.; Shen, C. C.

    2017-12-01

    Projections of changes in rainfall under future warming scenarios vary in their sign and intensity over the Southern Great Plains (SGP). A scarcity of local paleoclimate information before the Last Glacial Maximum (LGM) limits our understanding of regional climate responses to changes in mean state and forcing. Here, we present absolutely U/Th-dated oxygen and carbon isotope records from a calcite stalagmite near Georgetown, Texas (30°N, 98°W), spanning 98 to 209 kyr before present (kyr BP). SGP moisture is primarily sourced from the Gulf of Mexico, and precipitation exhibits clear seasonality, with a biannual rainy season divided into late boreal spring and fall. We interpret the oxygen isotopic composition of the stalagmite to reflect changes in rainwater δ18O composition, as well as cave temperature, through time. There are no clear kinetic isotope effects observed within the stalagmite. More negative (positive) δ18O values are a reflection of warmer and wetter (cooler and drier) conditions based on modern observations of rainwater δ18O at the study site. Variations in stalagmite δ13C may be driven by shifts in overlying vegetation type and changes in the rates of karst flow and prior calcite precipitation. The stalagmite records include Marine Isotope Stage (MIS) 5e, an interval where global temperatures may have been as much as 2°C warmer and sea level 4-6 m higher than present. Thus, our δ18O record provides context of unique importance for how SGP hydroclimate may respond to future warming. Prominent features in the δ18O record, including a warm and wet MIS 5e appear to be paced by precession, with the timing of δ18O minima (maxima) broadly consistent with that of maxima (minima) in monthly insolation at 30°N. The δ13C record exhibits a striking similarity to canonical, sawtooth records of glacial-interglacial variability, which suggests Great Plains vegetation communities may be sensitive to the status of Northern Hemisphere glaciation. Our SGP

  9. Bioenergy | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag , graphs), Agricultural Products html Data from: Comparative farm-gate life cycle assessment of oilseed registered trademark of Dries Buytaert. NAL Home | USDA.gov | Agricultural Research Service | Plain Language

  10. User account | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag registered trademark of Dries Buytaert. NAL Home | USDA.gov | Agricultural Research Service | Plain Language

  11. Temporal and spatial patterns of Holocene dune activity on the Great Plains of North America: megadroughts and climate links

    NASA Astrophysics Data System (ADS)

    Forman, Steven L.; Oglesby, Robert; Webb, Robert S.

    2001-05-01

    The Holocene record of eolian sand and loess deposition is reviewed for numerous presently stabilized dune fields on the Great Plains of North America. Dune field activity reflects decade-to-century-scale dominance of drought that exceeded historic conditions, with a growing season deficit of precipitation >25%. The largest dune fields, the Nebraska Sand Hills and ergs in eastern Colorado, Kansas and the Southern High Plains showed peak activity sometime between ca. 7 and 5 cal. ka. Loess deposition between ca. 10 and 4 cal. ka also signifies widespread aridity. Most dune fields exhibit evidence for one or more reactivation events sometime in the past 2 cal. ka; a number of localities register two events post 1 cal. ka, the latest potentially after 1400 AD. However, there is not a clear association of the latest dune remobilization events with up to 13 droughts in the past 2 cal. ka identified in dendroclimatic and lacustrine records. Periods of persistent drought are associated with a La Niña-dominated climate state, with cooling of sea surface temperatures in the tropical Pacific Ocean and later of the tropical Atlantic Ocean and the Gulf of Mexico that significantly weakens cyclogenesis over central North America. As drought proceeds, reduced soil moisture and vegetation cover would lessen evaporative cooling and increase surface temperatures. These surface changes strengthen the eastward expansion of a high-pressure ridge aloft and shift the jet stream northward, further enhancing continent-wide drought. Uncertainty persists if dune fields will reactivate in the future at a scale similar to the Holocene because of widespread irrigation, the lack of migratory bison herds, and the suppression of prairie fires, all of which enhance stabilization of dune fields in the Great Plains.

  12. 7 CFR 650.25 - Flood-plain management.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... human life, health, and property in ways that are environmentally sensitive. Most flood plains are... management will be provided by the NRCS technical service centers (§ 600.3 of this part). (2) NRCS state...

  13. Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the southern Great Plains

    NASA Astrophysics Data System (ADS)

    Luo, Lifeng; Robock, Alan; Mitchell, Kenneth E.; Houser, Paul R.; Wood, Eric F.; Schaake, John C.; Lohmann, Dag; Cosgrove, Brian; Wen, Fenghua; Sheffield, Justin; Duan, Qingyun; Higgins, R. Wayne; Pinker, Rachel T.; Tarpley, J. Dan

    2003-11-01

    Atmospheric forcing used by land surface models is a critical component of the North American Land Data Assimilation System (NLDAS) and its quality crucially affects the final product of NLDAS and our work on model improvement. A three-year (September 1996-September 1999) retrospective forcing data set was created from the Eta Data Assimilation System and observations and used to run the NLDAS land surface models for this period. We compared gridded NLDAS forcing with station observations obtained from networks including the Oklahoma Mesonet and Atmospheric Radiation Measurement/Cloud and Radiation Testbed at the southern Great Plains. Differences in all forcing variables except precipitation between the NLDAS forcing data set and station observations are small at all timescales. While precipitation data do not agree very well at an hourly timescale, they do agree better at longer timescales because of the way NLDAS precipitation forcing is generated. A small high bias in downward solar radiation and a low bias in downward longwave radiation exist in the retrospective forcing. To investigate the impact of these differences on land surface modeling we compared two sets of model simulations, one forced by the standard NLDAS product and one with station-observed meteorology. The differences in the resulting simulations of soil moisture and soil temperature for each model were small, much smaller than the differences between the models and between the models and observations. This indicates that NLDAS retrospective forcing provides an excellent state-of-the-art data set for land surface modeling, at least over the southern Great Plains region.

  14. Radiocarbon ages on late pleistocene loess stratigraphy of Nebraska and Kansas, Central Great Plains, U.S.A.

    NASA Astrophysics Data System (ADS)

    Martin, Charles W.

    In the central Great Plains of the United States, radiocarbon dating of loess and buried soils is clarifying the late Quaternary loess chronology for the period 25,000 to 10,000 BP. Along Harland Lake, Nebraska, a soil developed in the Gilman Canyon Formation and overlain by Peoria Loess has radiocarbon ages on soil humates of 30,700 to 21,500 BP. At one site, two Picea charcoal bands in the lower meter of Peoria Loess have radiocarbon ages of 21,250 and 19,730 BP. Therefore, in the vicinity of Harlan Lake, deposition of Peoria Loess apparently began around 21,000 BP. Peoria Loess deposition appears to have been interrupted by an episode of river entrenchment prior to 12,600 BP. Spring activity shortly thereafter suggests that incision was coeval to an increase in effective moisture. The termination of Peoria Loess deposition is marked by the Brady Soil, which in the Harlan Lake area has radiocarbon ages on soil humates of 11,800 to 10,200 BP. Comparison of the Harlan Lake chronology with chronologies completed elsewhere in the central Great Plains reveals general synchrony among periods of pedogenesis and Peoria Loess deposition. Little is known, however, about vegetation conditions in the region when loess was accumulating. Charcoal has been noted chiefly in the basal Peoria Loess, suggesting that some trees were present during initial Peoria Loess deposition. The extent of this tree cover is unknown, however. Charcoal is rare in the middle and upper Peoria Loess.

  15. Future changes in the climatology of the Great Plains low-level jet derived from fine resolution multi-model simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ying; Winkler, Julie; Zhong, Shiyuan

    The southerly Great Plains low-level jet (GPLLJ) is one of the most significant circulation features of the central U.S. linking large-scale atmospheric circulation with the regional climate. GPLLJs transport heat and moisture, contribute to thunderstorm and severe weather formation, provide a corridor for the springtime migration of birds and insects, enhance wind energy availability, and disperse air pollution. We also assess future changes in GPLLJ frequency using an eight member ensemble of dynamically-downscaled climate simulations for the mid-21st century. Nocturnal GPLLJ frequency is projected to increase in the southern plains in spring and in the central plains in summer, whereasmore » current climatological patterns persist into the future for daytime and cool season GPLLJs. The relationship between future GPLLJ frequency and the extent and strength of anticyclonic airflow over eastern North America varies with season. Most simulations project a westward shift of anticyclonic airflow in summer, but uncertainty is larger for spring with only half of the simulations suggesting a westward expansion. Furthemore, the choice of regional climate model and the driving lateral boundary conditions have a large influence on the projected future changes in GPLLJ frequency and highlight the importance of multi-model ensembles to estimate the uncertainty surrounding the future GPLLJ climatology.« less

  16. Future changes in the climatology of the Great Plains low-level jet derived from fine resolution multi-model simulations.

    PubMed

    Tang, Ying; Winkler, Julie; Zhong, Shiyuan; Bian, Xindi; Doubler, Dana; Yu, Lejiang; Walters, Claudia

    2017-07-10

    The southerly Great Plains low-level jet (GPLLJ) is one of the most significant circulation features of the central U.S. linking large-scale atmospheric circulation with the regional climate. GPLLJs transport heat and moisture, contribute to thunderstorm and severe weather formation, provide a corridor for the springtime migration of birds and insects, enhance wind energy availability, and disperse air pollution. We assess future changes in GPLLJ frequency using an eight member ensemble of dynamically-downscaled climate simulations for the mid-21st century. Nocturnal GPLLJ frequency is projected to increase in the southern plains in spring and in the central plains in summer, whereas current climatological patterns persist into the future for daytime and cool season GPLLJs. The relationship between future GPLLJ frequency and the extent and strength of anticyclonic airflow over eastern North America varies with season. Most simulations project a westward shift of anticyclonic airflow in summer, but uncertainty is larger for spring with only half of the simulations suggesting a westward expansion. The choice of regional climate model and the driving lateral boundary conditions have a large influence on the projected future changes in GPLLJ frequency and highlight the importance of multi-model ensembles to estimate the uncertainty surrounding the future GPLLJ climatology.

  17. Future changes in the climatology of the Great Plains low-level jet derived from fine resolution multi-model simulations

    DOE PAGES

    Tang, Ying; Winkler, Julie; Zhong, Shiyuan; ...

    2017-07-10

    The southerly Great Plains low-level jet (GPLLJ) is one of the most significant circulation features of the central U.S. linking large-scale atmospheric circulation with the regional climate. GPLLJs transport heat and moisture, contribute to thunderstorm and severe weather formation, provide a corridor for the springtime migration of birds and insects, enhance wind energy availability, and disperse air pollution. We also assess future changes in GPLLJ frequency using an eight member ensemble of dynamically-downscaled climate simulations for the mid-21st century. Nocturnal GPLLJ frequency is projected to increase in the southern plains in spring and in the central plains in summer, whereasmore » current climatological patterns persist into the future for daytime and cool season GPLLJs. The relationship between future GPLLJ frequency and the extent and strength of anticyclonic airflow over eastern North America varies with season. Most simulations project a westward shift of anticyclonic airflow in summer, but uncertainty is larger for spring with only half of the simulations suggesting a westward expansion. Furthemore, the choice of regional climate model and the driving lateral boundary conditions have a large influence on the projected future changes in GPLLJ frequency and highlight the importance of multi-model ensembles to estimate the uncertainty surrounding the future GPLLJ climatology.« less

  18. Animals & Livestock | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag (maps, tables, graphs), Agricultural Products html National Animal Nutrition Program (NANP) Feed | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement | Information Quality | Privacy

  19. Evaluation of Long-term Soil Moisture Proxies in the U.S. Great Plains

    NASA Astrophysics Data System (ADS)

    Yuan, S.; Quiring, S. M.

    2016-12-01

    Soil moisture plays an important role in land-atmosphere interactions through both surface energy and water balances. However, despite its importance, there are few long-term records of observed soil moisture for investigating long-term spatial and temporal variations of soil moisture. Hence, it is necessary to find suitable approximations of soil moisture observations. 5 drought indices will be compared with simulated and observed soil moisture over the U.S. Great Plains during two time periods (1980 - 2012 and 2003 - 2012). Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer Z Index (zindex) and Crop Moisture Index (CMI) will be calculated by PRISM data. The soil moisture simulations will be derived from NLDAS. In situ soil moisture will be obtained from North American Soil Moisture Database. The evaluation will focus on three main aspects: trends, variations and persistence. The results will support further research investigating long-term variations in soil moisture-climate interactions.

  20. River flood plains: Some observations on their formation

    USGS Publications Warehouse

    Wolman, M. Gordon; Leopold, Luna Bergere

    1957-01-01

    On many small rivers and most great rivers, the flood plain consists of channel and overbank deposits. The proportion of the latter is generally very small.Frequency studies indicate that the flood plains of many streams of different sizes flowing in diverse physiographic and climatic regions are subject to flooding about once a year.The uniform frequency of flooding of the flood-plain surface and the small amount of deposition observed in great floods (average 0.07 foot) support the conclusion that overbank deposition contributes only a minor part of the material constituting the flood plain. The relatively high velocities (1 to 4 fps) which can occur in overbank flows and the reduction in sediment concentration which often accompanies large floods may also help account for this. Although lateral migration of channels is important in controlling the elevation of the flood plain, rates of migration are extremely variable and alone cannot account for the uniform relation the flood-plain surface bears to the channel.Detailed studies of flood plains in Maryland and in North Carolina indicate that it is difficult to differentiate between channel and overbank deposits in a stratigraphic section alone.Because deposition on the flood plain does not continue indefinitely, the flood-plain surface can only be transformed into a terrace surface by some tectonic or climatic change which alters the regimen of the river and causes it to entrench itself below its established bed and associated flood plain. A terrace, then, is distinguished from a flood plain by the frequency with which each is overflowed.

  1. Preliminary Report of NRC Twin Otter Operations in the 1997 Southern Great Plains Experiment

    NASA Technical Reports Server (NTRS)

    MacPherson, J. Ian

    1997-01-01

    From June 18 to July 17, 1997, the NRC Twin Otter atmospheric research aircraft was operated from Oklahoma City, U.S.A., in the Southern Great Plains 1997 (SGP97) Hydrology Experiment. The primary role of the aircraft was to measure the vertical fluxes of sensible and latent heat, CO2, ozone and momentum in the atmospheric boundary layer, along with supporting meteorological and radiometric data. Approximately 400 flux runs and 100 soundings were flown in 27 project flights over rural areas near Oklahoma City. This preliminary report documents the flight program, lists the instrumentation aboard the aircraft, and presents a summary of run-averaged data from each flux run. These data are from the in-field analysis and must be considered preliminary. A re-analysis incorporating updated calibrations is planned for the fall of 1997 followed by a more comprehensive technical report.

  2. Causes of Long-Term Drought in the United States Great Plains

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried D.; Suarez, Max J.; Pegion, Philip J.; Koster, Randal D.; Bacmeister, Julio T.

    2003-01-01

    This study examines the causes of long term droughts in the United States Great Plains (USGP). The focus is on the relative roles of slowly varying SSTs and interactions with soil moisture. The results from ensembles of long term (1930-1999) simulations carried out with the NASA Seasonal-to- Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) show that the SSTs account for about 1/3 of the total low frequency rainfall variance in the USGP. Results from idealized experiments with climatological SST suggest that the remaining low frequency variance in the USGP precipitation is the result of interactions with soil moisture. In particular, simulations with soil moisture feedback show a five-fold increase in the variance in annual USGP precipitation compared with simulations in which the soil feedback is excluded. In addition to increasing variance, the interactions with the soil introduce year-to-year memory in the hydrological cycle that is consistent with a red noise process, in which the deep soil is forced by white noise and damped with a time scale of about 2 years. As such, the role of low frequency SST variability is to introduce a bias to the net forcing on the soil moisture that drives the random process preferentially to either wet or dry conditions.

  3. Genomics & Genetics | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag agricultural and environmental settings. Deadpool proximal sensing cart docx xlsx 3x jpeg 5x pdf Data from Buytaert. NAL Home | USDA.gov | Agricultural Research Service | Plain Language | FOIA | Accessibility

  4. Using SMAP data to improve drought early warning over the US Great Plains

    NASA Astrophysics Data System (ADS)

    Fu, R.; Fernando, N.; Tang, W.

    2015-12-01

    A drought prone region such as the Great Plains of the United States (US GP) requires credible and actionable drought early warning. Such information cannot simply be extracted from available climate forecasts because of their large uncertainties at regional scales, and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA North American Multi-Model Ensemble experiment (NMME) are much more reliable for winter and spring than for the summer season for the US GP. To mitigate the weaknesses of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies, as the scientific basis for a statistical drought early warning system. This system uses percentile soil moisture anomalies in spring as a key input to provide a probabilistic summer drought early warning. The latter outperforms the dynamic prediction over the US Southern Plains and has been used by the Texas state water agency to support state drought preparedness. A main source of uncertainty for this drought early warning system is the soil moisture input obtained from the NOAA Climate Forecasting System (CFS). We are testing use of the beta version of NASA Soil Moisture Active Passive (SMAP) soil moisture data, along with the Soil Moisture and Ocean Salinity (SMOS), and the long-term Essential Climate Variable Soil Moisture (ECV-SM) soil moisture data, to reduce this uncertainty. Preliminary results based on ECV-SM suggests satellite based soil moisture data could improve early warning of rainfall anomalies over the western US GP with less dense vegetation. The skill degrades over the eastern US GP where denser vegetation is found. We evaluate our SMAP-based drought early warning for 2015 summer against observations.

  5. Diversity, Seasonality, and Context of Mammalian Roadkills in the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Smith-Patten, Brenda D.; Patten, Michael A.

    2008-06-01

    Thousands of mammals are killed annually from vehicle collisions, making the issue an important one for conservation biologists and environmental managers. We recorded all readily identifiable kills on or immediately adjacent to roads in the southern Great Plains from March 2004-March 2007. We also recorded distance traveled, whether a road was paved or divided, the number of lanes, and prevailing habitat. Surveys were opportunistic and were conducted by car during conditions of good visibility. Over our 239 surveys and >16,500 km traveled, we recorded 1412 roadkills from 18 different mammal species (size ranged from Sciurus squirrels to the white-tailed deer, Odocolieus virginianus). The overall kill rate was 8.50 / 100 km. Four species were prone to collisions: the Virginia opossum ( Didelphis virginiana), nine-banded armadillo ( Dasypus novemcinctus), striped skunk ( Mephitis mephitis), and northern raccoon ( Procyon lotor). Together they accounted for approximately 85% (1198) of all roadkills. Mortality rate differed significantly between 2- and 4-lane roads (8.39 versus 7.79 / 100 km). Kill rates were significantly higher on paved versus unpaved roads (8.60 versus 3.65 / 100 km), but did not depend on whether a road was divided. Roadkills were higher in spring than in fall (1.5×), winter (1.4×), or summer (1.3×). The spring peak (in kills / 100 km) was driven chiefly by the armadillo (2.76 in spring/summer versus 0.73 in autumn/winter) and opossum (2.65 versus 1.47). By contrast, seasonality was dampened by a late winter/early spring peak in skunk mortalities, for which 41% occurred in the 6-week period of mid-February through March. The raccoon did not exhibit a strong seasonal pattern. Our data are consistent with dispersal patterns of these species. Our results underscore the high rate of highway mortality in the southern plains, as well as differences in seasonality and road type that contribute to mortality. Conservation and management efforts should

  6. Prairie dog poisoning in northern Great Plains: An analysis of programs and policies

    NASA Astrophysics Data System (ADS)

    Roemer, David M.; Forrest, Steven C.

    1996-05-01

    This paper describes the programs and policies regarding prairie dog control in the northern Great Plains states of Montana, South Dakota, and Wyoming. The poisoning programs of federal and state agencies are described, along with the statutes and legal mandates that shape agency management of prairie dogs. Current policies on National Grasslands and other federal lands typically limit prairie dogs to small percentages of available potential habitat, to the detriment of prairie dogs and associated species. State programs to assist landowners in prairie dog control differ greatly, employing cost-share incentives (Wyoming) and regulatory fines (South Dakota) to encourage the poisoning of prairie dogs. Prairie dog control is not actively funded or practiced by state or county agencies in Montana. We document federal and state involvement in more than 1 million acres of prairie dog poisoning in the study area during 1978 1992. In combination with undocumented poisoning by private landowners, plague, and shooting, prairie dogs may be experiencing net regional declines, contributing to the disintegration of the prairie dog ecosystem. We recommend that Animal Damage Control operations concerning prairie dogs be terminated, on the basis that they duplicate state programs and are at cross purposes with federal wildlife management programs that seek to perpetuate and/or recover wildlife species that depend on the prairie dog ecosystem. We further recommend that federal range improvement funds be offered as subsidies for the integration of prairie dogs in range management, as opposed to funding prairie dog eradication programs.

  7. Estimation of Regional Net CO2 Exchange over the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Biraud, S. C.; Riley, W. J.; Fischer, M. L.; Torn, M. S.; Cooley, H. S.

    2004-12-01

    Estimating spatially distributed ecosystem CO2 exchange is an important component of the North American Carbon Program. We describe here a methodology to estimate Net Ecosystem Exchange (NEE) over the Southern Great Plains, using: (1) data from the Department Of Energy's Atmospheric Radiation Measurement (ARM) sites in Oklahoma and Kansas; (2) meteorological forcing data from the Mesonet facilities; (3) soil and vegetation types from 1 km resolution USGS databases; (4) vegetation status (e.g., LAI) from 1 km satellite measurements of surface reflectance (MODIS); (5) a tested land-surface model; and (6) a coupled land-surface and meteorological model (MM5/ISOLSM). This framework allows us to simulate regional surface fluxes in addition to ABL and free troposphere concentrations of CO2 at a continental scale with fine-scale nested grids centered on the ARM central facility. We use the offline land-surface and coupled models to estimate regional NEE, and compare predictions to measurements from the 9 Extended Facility sites with eddy correlation measurements. Site level comparisons to portable ECOR measurements in several crop types are also presented. Our approach also allows us to extend bottom-up estimates to periods and areas where meteorological forcing data are unavailable.

  8. Fish assemblages and habitat relationships in a small northern Great Plains stream

    USGS Publications Warehouse

    Barfoot, C.A.; White, R.G.

    1999-01-01

    We examined fish populations and environmental characteristics of pool and riffle habitats of Little Beaver Creek, Montana, a small northern Great Plains stream. We collected 4,980 fishes representing 20 species in eight families. The most abundant and species-rich family was Cyprinidae. Nearly 88% (4,369) of all fishes were collected in pools. Pools also supported greater numbers ofspecies (x = 6.3, SO = 2.6, n = 58) than did riffles ( x = 2.2, SO = 1.9, n = 47). Most species showed distinct patterns of relative abundance along the stream gradient. Community changes were primarily reflected by the downstream addition of species; species replacement was of less importance. A multivariate analysis of fish relative abundance identified two relatively well-defined pool fish assemblages: a downstream assemblage comprised largely of native fluvial cyprinids, and a more diverse midstream-upstream assemblage comprised of fishes from several families. No well-defined assemblages were identified in riffle habitats. Environmental measures of stream size, substrate characteristics, water clarity, and banks ide conditions appeared to be associated with differences in fish assemblage structure. However, correlations between habitat conditions and fish assemblages were weak, possibly because a complex of factors act conculTently to shape assemblages.

  9. NDVI, C3 and C4 production, and distributions in Great Plains grassland land cover classes

    USGS Publications Warehouse

    Tieszen, L.L.; Reed, Bradley C.; Bliss, Norman B.; Wylie, Bruce K.; DeJong, Benjamin D.

    1997-01-01

    The distributions of C3 and C4 grasses were used to interpret the distribution, seasonal performance, and potential production of grasslands in the Great Plains of North America. Thirteen major grassland seasonal land cover classes were studied with data from three distinct sources. Normalized Difference Vegetation Index (NDVI) data derived from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) sensor were collected for each pixel over a 5-yr period (1989–1993), analyzed for quantitative attributes and seasonal relationships, and then aggregated by land cover class. Data from the State Soil Geographic (STATSGO) database were used to identify dominant plant species contributing to the potential production in each map unit. These species were identified as C3 or C4, and contributions to production were aggregated to provide estimates of the percentage of C3 and C4 production for each intersection of the STATSGO map units and the seasonal land cover classes. Carbon isotope values were obtained at specific sites from the soil organic matter of the upper horizon of soil cores and were related to STATSGO estimates of potential production.The grassland classes were distributed with broad northwest-to-southeast orientations. Some classes had large variations in C3 and C4 composition with high proportions of C4species in the south and low proportions in the north. This diversity of photosynthetic types within land cover classes that cross regions of different temperature and precipitation results in similar seasonal patterns and magnitudes of NDVI. The easternmost class, 65, containing tallgrass prairie components, bluestem, Indiangrass, and switchgrass, possessed the highest maximum NDVI and time-integrated NDVI values each year. Grassland classes varied over 5 yr from a high integrated NDVI mean of 4.9 in class 65 in the east to a low of 1.2 in class 76 (sand sage, blue grama, wheatgrass, and buffalograss) in the

  10. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110.

    PubMed

    Steward, David R; Bruss, Paul J; Yang, Xiaoying; Staggenborg, Scott A; Welch, Stephen M; Apley, Michael D

    2013-09-10

    Groundwater provides a reliable tap to sustain agricultural production, yet persistent aquifer depletion threatens future sustainability. The High Plains Aquifer supplies 30% of the nation's irrigated groundwater, and the Kansas portion supports the congressional district with the highest market value for agriculture in the nation. We project groundwater declines to assess when the study area might run out of water, and comprehensively forecast the impacts of reduced pumping on corn and cattle production. So far, 30% of the groundwater has been pumped and another 39% will be depleted over the next 50 y given existing trends. Recharge supplies 15% of current pumping and would take an average of 500-1,300 y to completely refill a depleted aquifer. Significant declines in the region's pumping rates will occur over the next 15-20 y given current trends, yet irrigated agricultural production might increase through 2040 because of projected increases in water use efficiencies in corn production. Water use reductions of 20% today would cut agricultural production to the levels of 15-20 y ago, the time of peak agricultural production would extend to the 2070s, and production beyond 2070 would significantly exceed that projected without reduced pumping. Scenarios evaluate incremental reductions of current pumping by 20-80%, the latter rate approaching natural recharge. Findings substantiate that saving more water today would result in increased net production due to projected future increases in crop water use efficiencies. Society has an opportunity now to make changes with tremendous implications for future sustainability and livability.

  11. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110

    PubMed Central

    Steward, David R.; Bruss, Paul J.; Yang, Xiaoying; Staggenborg, Scott A.; Welch, Stephen M.; Apley, Michael D.

    2013-01-01

    Groundwater provides a reliable tap to sustain agricultural production, yet persistent aquifer depletion threatens future sustainability. The High Plains Aquifer supplies 30% of the nation’s irrigated groundwater, and the Kansas portion supports the congressional district with the highest market value for agriculture in the nation. We project groundwater declines to assess when the study area might run out of water, and comprehensively forecast the impacts of reduced pumping on corn and cattle production. So far, 30% of the groundwater has been pumped and another 39% will be depleted over the next 50 y given existing trends. Recharge supplies 15% of current pumping and would take an average of 500–1,300 y to completely refill a depleted aquifer. Significant declines in the region’s pumping rates will occur over the next 15–20 y given current trends, yet irrigated agricultural production might increase through 2040 because of projected increases in water use efficiencies in corn production. Water use reductions of 20% today would cut agricultural production to the levels of 15–20 y ago, the time of peak agricultural production would extend to the 2070s, and production beyond 2070 would significantly exceed that projected without reduced pumping. Scenarios evaluate incremental reductions of current pumping by 20–80%, the latter rate approaching natural recharge. Findings substantiate that saving more water today would result in increased net production due to projected future increases in crop water use efficiencies. Society has an opportunity now to make changes with tremendous implications for future sustainability and livability. PMID:23980153

  12. Project plan-Surficial geologic mapping and hydrogeologic framework studies in the Greater Platte River Basins (Central Great Plains) in support of ecosystem and climate change research

    USGS Publications Warehouse

    Berry, Margaret E.; Lundstrom, Scott C.; Slate, Janet L.; Muhs, Daniel R.; Sawyer, David A.; VanSistine, D. Paco

    2011-01-01

    The Greater Platte River Basin area spans a central part of the Midcontinent and Great Plains from the Rocky Mountains on the west to the Missouri River on the east, and is defined to include drainage areas of the Platte, Niobrara, and Republican Rivers, the Rainwater Basin, and other adjoining areas overlying the northern High Plains aquifer. The Greater Platte River Basin contains abundant surficial deposits that were sensitive to, or are reflective of, the climate under which they formed: deposits from multiple glaciations in the mountain headwaters of the North and South Platte Rivers and from continental ice sheets in eastern Nebraska; fluvial terraces (ranging from Tertiary to Holocene in age) along the rivers and streams; vast areas of eolian sand in the Nebraska Sand Hills and other dune fields (recording multiple episodes of dune activity); thick sequences of windblown silt (loess); and sediment deposited in numerous lakes and wetlands. In addition, the Greater Platte River Basin overlies and contributes surface water to the High Plains aquifer, a nationally important groundwater system that underlies parts of eight states and sustains one of the major agricultural areas of the United States. The area also provides critical nesting habitat for birds such as plovers and terns, and roosting habitat for cranes and other migratory birds that travel through the Central Flyway of North America. This broad area, containing fragile ecosystems that could be further threatened by changes in climate and land use, has been identified by the USGS and the University of Nebraska-Lincoln as a region where intensive collaborative research could lead to a better understanding of climate change and what might be done to adapt to or mitigate its adverse effects to ecosystems and to humans. The need for robust data on the geologic framework of ecosystems in the Greater Platte River Basin has been acknowledged in proceedings from the 2008 Climate Change Workshop and in draft

  13. Grassland vegetation and bird communities in the southern Great Plains of North America

    USGS Publications Warehouse

    Chapman, R.N.; Engle, David M.; Masters, R.E.; Leslie, David M.

    2004-01-01

    Structure and composition of vegetation and abundance of breeding birds in grasslands seeded to Old World bluestem (Bothriochloa ischmaeum) were compared to native mixed prairie in the southern Great Plains of North America. Abundance of birds was determined using fixed-radius point counts. Detrended correspondence analysis was used to compare plant community composition and canonical correspondence analysis was used to examine the relationships between plant species composition and vegetation structure with the bird community. Plant species composition differed distinctly between seeded grassland and native mixed prairie, but the differences were not reflected in habitat structure, bird community composition, or abundance of bird species. Seeded grassland was inferior to native mixed prairie in terms of diversity of plant species, but that difference did not translate into meaningful differences in structure that drove habitat selection by breeding birds. Conservation programs that promote establishment of seeded grassland and do not allow for suitable disturbance regimes will selectively benefit a narrow suite of birds regardless of plant species composition. ?? 2004 Elsevier B.V. All rights reserved.

  14. Species distributions models in wildlife planning: agricultural policy and wildlife management in the great plains

    USGS Publications Warehouse

    Fontaine, Joseph J.; Jorgensen, Christopher; Stuber, Erica F.; Gruber, Lutz F.; Bishop, Andrew A.; Lusk, Jeffrey J.; Zach, Eric S.; Decker, Karie L.

    2017-01-01

    We know economic and social policy has implications for ecosystems at large, but the consequences for a given geographic area or specific wildlife population are more difficult to conceptualize and communicate. Species distribution models, which extrapolate species-habitat relationships across ecological scales, are capable of predicting population changes in distribution and abundance in response to management and policy, and thus, are an ideal means for facilitating proactive management within a larger policy framework. To illustrate the capabilities of species distribution modeling in scenario planning for wildlife populations, we projected an existing distribution model for ring-necked pheasants (Phasianus colchicus) onto a series of alternative future landscape scenarios for Nebraska, USA. Based on our scenarios, we qualitatively and quantitatively estimated the effects of agricultural policy decisions on pheasant populations across Nebraska, in specific management regions, and at wildlife management areas. 

  15. View east over the Rocky Mountains and Great Plains

    NASA Image and Video Library

    1974-02-01

    SL4-138-3875 (February 1974) --- A color oblique photograph looking east over the Rocky Mountains and Great Plains. This view covers a portion of the States of Colorado, Wyoming, and Nebraska. A Skylab 4 crewmen took this picture with a hand-held 70mm Hasselblad camera. This entire region, covered with a blanket of snow, depicts much of the structural and topographic features of the Rocky Mountain chain. Man's only apparent change to the snow pattern seen here is the (right center) metropolitan areas of Denver and Colorado Springs, Colorado, which can be observed along the eastern edge of the mountain front. Grand Junction, Colorado on the western slope of the Rocky Mountains is just off the photograph at left center bottom. The major inter-montane valleys of South Park (right center), Middle Park (center), and North Park (left center) are clearly visible and separate the Colorado Rockies Front Range from the high rugged mountains can be discovered such as Pikes Peak near right border (center), Mt. Cunnison region, circular feature accentuated by the Cunnison River (dark) in the right center (bottom) of the photograph. The snow covered peaks of Mts. Harvard, Princeton and Yale form the high region of the Collegiate Range which is the pronounced mountain area in the right center. Snow cover not only enhances mountain features but also the drainage patterns. East of Denver (right corner) the sinuous trace of the South Platte River (center) and its junction with the North Platte River near North Platte, Nebraska. Lake McConaughy in Nebraska is the body of water (black) near the river intersection. The trace of the Republic River in southern Nebraska is visible near the right corner of the photography. Geologic and hydro logic studies using this photograph will be conducted by Dr. Roger Morrison, U.S. Geological Survey. Photo credit: NASA

  16. Late-Quaternary recharge determined from chloride in shallow groundwater in the central Great Plains

    USGS Publications Warehouse

    Macfarlane, P.A.; Clark, J.F.; Davisson, M.L.; Hudson, G.B.; Whittemore, Donald O.

    2000-01-01

    An extensive suite of isotopic and geochemical tracers in groundwater has been used to provide hydrologic assessments of the hierarchy of flow systems in aquifers underlying the central Great Plains (southeastern Colorado and western Kansas) of the United States and to determine the late Pleistocene and Holocene paleotemperature and paleorecharge record. Hydrogeologic and geochemical tracer data permit classification of the samples into late Holocene, late Pleistocene-early Holocene, and much older Pleistocene groups. Paleorecharge rates calculated from the Cl concentration in the samples show that recharge rates were at least twice the late Holocene rate during late Pleistocene-early Holocene time, which is consistent with their relative depletion in 16O and D. Noble gas (Ne, Ar, Kr, Xe) temperature calculations confirm that these older samples represent a recharge environment approximately 5??C cooler than late Holocene values. These results are consistent with the global climate models that show a trend toward a warmer, more arid climate during the Holocene. (C) 2000 University of Washington.

  17. Swept Away: Chronic Hardship and Fresh Promise on the Rural Great Plains. A Socio-Economic Study of the Rural Great Plains.

    ERIC Educational Resources Information Center

    Bailey, Jon M.; Preston, Kim

    In the six-state region of Iowa, Kansas, Minnesota, Nebraska, North Dakota, and South Dakota, 182 counties have been identified as having an agriculturally based economy. Characteristics of these counties have been identified using data from the U.S. Census and the U.S. Bureau of Economic Analysis. Agriculturally based counties have lost…

  18. Assessing Spectral Shortwave Cloud Observations at the Southern Great Plains Facility

    NASA Technical Reports Server (NTRS)

    McBride, P. J.; Marshak, A.; Wiscombe, W. J.; Flynn, C. J.; Vogelmann, A. M.

    2012-01-01

    The Atmospheric Radiation Measurement (ARM) program (now Atmospheric System Research) was established, in part, to improve radiation models so that they could be used reliably to compute radiation fluxes through the atmosphere, given knowledge of the surface albedo, atmospheric gases, and the aerosol and cloud properties. Despite years of observations, discrepancies still exist between radiative transfer models and observations, particularly in the presence of clouds. Progress has been made at closing discrepancies in the spectral region beyond 3 micron, but the progress lags at shorter wavelengths. Ratios of observed visible and near infrared cloud albedo from aircraft and satellite have shown both localized and global discrepancies between model and observations that are, thus far, unexplained. The capabilities of shortwave surface spectrometry have been improved in recent years at the Southern Great Plains facility (SGP) of the ARM Climate Research Facility through the addition of new instrumentation, the Shortwave Array Spectroradiometer, and upgrades to existing instrumentation, the Shortwave Spectroradiometer and the Rotating Shadowband Spectroradiometer. An airborne-based instrument, the HydroRad Spectroradiometer, was also deployed at the ARM site during the Routine ARM Aerial Facility Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign. Using the new and upgraded spectral observations along with radiative transfer models, cloud scenes at the SGP are presented with the goal of characterizing the instrumentation and the cloud fields themselves.

  19. Climatology analysis of cirrus cloud in ARM site: South Great Plain

    NASA Astrophysics Data System (ADS)

    Olayinka, K.

    2017-12-01

    Cirrus cloud play an important role in the atmospheric energy balance and hence in the earth's climate system. The properties of optically thin clouds can be determined from measurements of transmission of the direct solar beam. The accuracy of cloud optical properties determined in this way is compromised by contamination of the direct transmission by light that is scattered into the sensors field of view. With the forward scattering correction method developed by Min et al., (2004), the accuracy of thin cloud retrievals from MFRSR has been improved. Our result shows over 30% of cirrus cloud present in the atmosphere are within optical depth between (1-2). In this study, we do statistics studies on cirrus clouds properties based on multi-years cirrus cloud measurements from MFRSR at ARM site from the South Great Plain (SGP) site due to its relatively easy accessibility, wide variability of climate cloud types and surface flux properties, large seasonal variation in temperature and specific humidity. Through the statistic studies, temporal and spatial variations of cirrus clouds are investigated. Since the presence of cirrus cloud increases the effect of greenhouse gases, we will retrieve the aerosol optical depth in all the cirrus cloud regions using a radiative transfer model for atmospheric correction. Calculate thin clouds optical depth (COD), and aerosol optical depth (AOD) using a radiative transfer model algorithm, e.g.: MODTRAN (MODerate resolution atmospheric TRANsmission)

  20. Land-atmosphere coupling and soil moisture memory contribute to long-term agricultural drought

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Newman, M.; Lawrence, D. M.; Livneh, B.; Lombardozzi, D. L.

    2017-12-01

    We assessed the contribution of land-atmosphere coupling and soil moisture memory on long-term agricultural droughts in the US. We performed an ensemble of climate model simulations to study soil moisture dynamics under two atmospheric forcing scenarios: active and muted land-atmosphere coupling. Land-atmosphere coupling contributes to a 12% increase and 36% decrease in the decorrelation time scale of soil moisture anomalies in the US Great Plains and the Southwest, respectively. These differences in soil moisture memory affect the length and severity of modeled drought. Consequently, long-term droughts are 10% longer and 3% more severe in the Great Plains, and 15% shorter and 21% less severe in the Southwest. An analysis of Coupled Model Intercomparsion Project phase 5 data shows four fold uncertainty in soil moisture memory across models that strongly affects simulated long-term droughts and is potentially attributable to the differences in soil water storage capacity across models.

  1. 7 CFR 631.3 - Administration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Administration. 631.3 Section 631.3 Agriculture... AGRICULTURE LONG TERM CONTRACTING GREAT PLAINS CONSERVATION PROGRAM General Provisions § 631.3 Administration. (a) NRCS is responsible for the administration of the Great Plains Conservation Program (GPCP). (b...

  2. 7 CFR 631.3 - Administration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Administration. 631.3 Section 631.3 Agriculture... AGRICULTURE LONG TERM CONTRACTING GREAT PLAINS CONSERVATION PROGRAM General Provisions § 631.3 Administration. (a) NRCS is responsible for the administration of the Great Plains Conservation Program (GPCP). (b...

  3. 7 CFR 631.3 - Administration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Administration. 631.3 Section 631.3 Agriculture... AGRICULTURE LONG TERM CONTRACTING GREAT PLAINS CONSERVATION PROGRAM General Provisions § 631.3 Administration. (a) NRCS is responsible for the administration of the Great Plains Conservation Program (GPCP). (b...

  4. 7 CFR 631.3 - Administration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Administration. 631.3 Section 631.3 Agriculture... AGRICULTURE LONG TERM CONTRACTING GREAT PLAINS CONSERVATION PROGRAM General Provisions § 631.3 Administration. (a) NRCS is responsible for the administration of the Great Plains Conservation Program (GPCP). (b...

  5. Toward a national core course in agricultural medicine and curriculum in agricultural safety and health: the "building capacity" consensus process.

    PubMed

    Rudolphi, Josie M; Donham, Kelley J

    2015-01-01

    ABSTRACT The agricultural industry poses specific hazards and risks to its workers. Since the 1970s, the University of Iowa has been establishing programs to educate rural health care and safety professionals who in turn provide education and occupational health and safety services to farm families and farm workers. This program has been well established in the state of Iowa as a program of Iowa's Center for Agricultural Safety and Health (I-CASH). However, the National 1989 Agriculture at Risk Report indicated there was a great need for agricultural medicine training beyond Iowa's borders. In order to help meet this need, Building Capacity: A National Resource of Agricultural Medicine Professionals was initiated as a project of the National Institute for Occupational Safety and Health (NIOSH)-funded Great Plains Center for Agricultural Health in 2006. Before the first phase of this project, a consensus process was conducted with a group of safety and health professionals to determine topics and learning objectives for the course. Over 300 students attended and matriculated the agricultural medicine course during first phase of the project (2007-2010). Beginning the second phase of the project (2012-2016), an expanded advisory committee (38 internationally recognized health and safety professionals) was convened to review the progress of the first phase, make recommendations for revisions to the required topics and competencies, and discuss updates to the second edition of the course textbook (Agricultural Medicine: Occupational and Environmental Health for the Health Professions). A formal consensus process was held and included an online survey and also a face-to-face meeting. The group was charged with the responsibility of developing the next version of this course by establishing best practices and setting an agenda with the long-term goal of developing a national course in agricultural medicine.

  6. Study on the Groundwater Vulnerability Assessment in Sanjiang Plain in Northeast China

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Tang, W. K.; Liu, C.

    2012-12-01

    The Sanjiang Plain is located in eastern part of China's Heilongjiang Province.It's total area is 109 000 km2, with cultivated land area being 3.6677 million hm2. It is a major national commodity grain base. Rice planting area in Sanjiang Plain has been increasing year by year. Groundwater exploitation is increasing rapidly as a result of rapid increase of paddy field area. It is necessary to research and analyze spatial diversity of groundwater pollution vulnerability for Sanjiang Plain, so as to fulfill the goal of integrated planning, rational utilization of land and water resource, avoiding or minimizing groundwater contamination, and protecting grain security of China. Based on the commonly used DRASTIC method internationally, and according to hydrogeology, land use and other characteristics of Sanjiang Plain, this paper establishes groundwater vulnerability assessment index system. Since the Sanjiang Plain is an area that gives priority to agriculture, and impact of agricultural land and agricultural activity on groundwater vulnerability can not be ignored. Two indicators of agricultural land use rate (L) and population density (P) are increased in the DRASTC index system, the remaining 5 indicators are groundwater depth (D), aquifer net recharge(R), aquifer media type (A), soil type(S), aquifer hydraulic conductivity (C). Taking ArcGis as a calculation analysis platform to assess groundwater vulnerability of the Sanjiang Plain, by using hierarchical analysis method of the fuzzy mathematics method to calculate each index weigh of evaluation vulnerability. This paper applies 6 levels of assessment standard as follows: vulnerability index DI <2 stands for not vulnerable; 2 8 stands for extremely vulnerable. Groundwater vulnerably contaminated area is delineated based on the groundwater vulnerability spatial

  7. Preliminary data for northern Great Plains test well 1, quarter NE quarter Sec. 11, T.55N., R.77W., Sheridan County, Wyoming

    USGS Publications Warehouse

    Lobmeyer, D.H.; Anna, L.O.; Busby, J.F.

    1982-01-01

    This report documents the preliminary data obtained from Northern Great Plains test well 1 and describes the preliminary results and future testing plans. The intended audience includes hydrologists, local water users, drilling contractors, and water managers. The test well was drilled as part of the study to determine the water resource potential of the regional aquifer system in the Northern Great Plains, an area of about 250,000 sq mi. The well is 4,485 ft deep; nine cores were drilled totaling 182 ft; 157.42 ft of core were recovered. Sidewall cores were obtained from 24 horizons. Gamma and density scans of the cores were made, and selected parts were tested for density, porosity, and vertical and horizontal permeability. Eight zones were perforated and tested using conventional drill-stem tests and swabbing. Water samples were obtained from seven zones. No major potential sources of groundwater were penetrated by the test well. Estimated yields from selected zones range from about 240 gal/min with 400 ft of drawdown to about 5 gal/min flow at the surface. Dissolved-solids concentrations ranged from about 1,800 to 3,000 mg/l. (USGS)

  8. Monitoring Agricultural Cropping Patterns in the Great Lakes Basin Using MODIS-NDVI Time Series Data

    EPA Science Inventory

    This research examined changes in agricultural cropping patterns across the Great Lakes Basin (GLB) using the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. Specific research objectives were to characterize the distribut...

  9. Characterizing isotopic variability of primary production and consumers in Great Plains ecosystems during protracted regional drought

    NASA Astrophysics Data System (ADS)

    Haveles, A. W.; Fox-Dobbs, K.; Talmadge, K. A.; Fetrow, A.; Fox, D. L.

    2012-12-01

    Over the last few years (2010-2012), the Great Plains of the central USA experienced protracted drought conditions, including historically severe drought during Summer, 2011. Drought severity in the region generally decreases with increasing latitude, but episodic drought is a fundamental trait of grassland ecosystems. Documenting above ground energy and nutrient flow with current drought is critical to understanding responses of grassland ecosystems in the region to predicted increased episodicity of rainfall and recurrence of drought due to anthropogenic climate change. Characterization of biogeochemical variability of modern ecosystems at the microhabitat, local landscape, and regional scales is also necessary to interpret biogeochemical records of ancient grasslands based on paleosols and fossil mammals. Here, we characterize three grassland ecosystems that span the drought gradient in the Great Plains (sites in the Texas panhandle, southwest Kansas, and northwest Nebraska). We measured δ13C and δ15N values of plants and consumers to characterize the biogeochemical variability within each ecosystem. Vegetation at each site is a mix of trees, shrubs, herbs, and cool- and warm-growing season grasses (C3 and C4, respectively). Thus, consumers have access to isotopically distinct sources of forage that vary in abundance with microhabitat (e.g., open grassland, shrub thicket, riparian woodland). Observations indicate herbivorous arthropod (grasshoppers and crickets) abundance follows drought severity, with high abundance of many species in Texas, and low abundance of few species in Nebraska. Small mammal (rodents) abundance follows the inverse pattern with 0.8%, 3.2% and 17.2% capture success in Texas, Kansas and Nebraska, respectively. The inverse abundance patterns of consumer groups may result from greater sensitivity of small mammal consumers with high metabolic needs to lower local net primary productivity and forage quality under drought conditions. As a

  10. Long-term patterns of air temperatures, daily temperature range, precipitation, grass-reference evapotranspiration and aridity index in the USA Great Plains: Part I. Spatial trends

    NASA Astrophysics Data System (ADS)

    Kukal, M.; Irmak, S.

    2016-11-01

    Due to their substantial spatio-temporal behavior, long-term quantification and analyses of important hydrological variables are essential for practical applications in water resources planning, evaluating the water use of agricultural crop production and quantifying crop evapotranspiration patterns and irrigation management vs. hydrologic balance relationships. Observed data at over 800 sites across the Great Plains of USA, comprising of 9 states and 2,307,410 km2 of surface area, which is about 30% of the terrestrial area of the USA, were used to quantify and map large-scale and long-term (1968-2013) spatial trends of air temperatures, daily temperature range (DTR), precipitation, grass-reference evapotranspiration (ETo) and aridity index (AI) at monthly, growing season and annual time steps. Air temperatures had a strong north to south increasing trend, with annual average varying from -1 to 24 °C, and growing season average temperature varying from 8 to 30 °C. DTR gradually decreased from western to eastern parts of the region, with a regional annual and growing season averages of 14.25 °C and 14.79 °C, respectively. Precipitation had a gradual shift towards higher magnitudes from west to east, with the average annual and growing season (May-September) precipitation ranging from 163 to 1486 mm and from 98 to 746 mm, respectively. ETo had a southwest-northeast decreasing trend, with regional annual and growing season averages of 1297 mm and 823 mm, respectively. AI increased from west to east, indicating higher humidity (less arid) towards the east, with regional annual and growing season averages of 0.49 and 0.44, respectively. The spatial datasets and maps for these important climate variables can serve as valuable background for climate change and hydrologic studies in the Great Plains region. Through identification of priority areas from the developed maps, efforts of the concerned personnel and agencies and resources can be diverted towards development

  11. American Indian historical trauma: community perspectives from two great plains medicine men.

    PubMed

    Hartmann, William E; Gone, Joseph P

    2014-12-01

    The field of community psychology has long been interested in the relations between how community problems are defined, what interventions are developed in response, and to what degree power is distributed as a result. Tensions around these issues have come to the fore in debates over the influence of historical trauma (HT) in American Indian (AI) communities. After interviewing the two most influential medicine men on a Great Plains reservation to investigate how these tensions were being resolved, we found that both respondents were engaging with their own unique elaboration of HT theory. The first, George, engaged in a therapeutic discourse that reconfigured HT as a recognizable but malleable term that could help to communicate his "spiritual perspective" on distress and the need for healing in the reservation community. The second, Henry, engaged in a nation-building discourse that shifted attention away from past colonial military violence toward ongoing systemic oppression and the need for sociostructural change. These two interviews located HT at the heart of important tensions between globalization and indigeneity while opening the door for constructive but critical reflection within AI communities, as well as dialogue with allied social scientists, to consider how emerging discourses surrounding behavioral health disparities might be helpful for promoting healing and/or sociostructural change.

  12. Configuration and Intraseasonal Duration of Interannual Anomalies of the Great Plains Low-Level Jet

    NASA Technical Reports Server (NTRS)

    Helfand, H. M.

    2002-01-01

    Despite the fact that the low-level jet of the southern Great Plains (the GPLLJ) of the U.S. is primarily a nocturnal phenomenon that virtually vanishes during the daylight hours, it is one of the most persistent and stable climatological features of the low-level continental flow during the warm-season months, May through August. We have used significant-level data to validate the skill of the GEOS-1 Data Assimilation System (DAS) in realistically detecting this jet and inferring its structure and evolution. We have then carried out a 15-year reanalysis with the GEOS-1 DAS to determine its climatology and mean diurnal cycle and to study its interannual variability. Interannual anomalies of the meridional flow associated with the GPLLJ are much smaller than the mean diurnal fluctuations, than random intraseasonal anomalies, and than the mean wind itself. There are three maxima of low-level meridional flow variance over the Great Plains and the Gulf of Mexico: a 1.2 m2 s-2 peak over the southeast Texas, to the east and south of the mean velocity peak, a 1.0 m2 s-2 peak over the western Gulf of Mexico, and a .8 m2 s-2 peak over the upper Great Plains (UGP), near the Nebraska/South Dakota border. Each of the three variance maxima corresponds to a spatially coherent, jet-like pattern of low-level flow interannual variability. There are also three dominant modes of interannual variability corresponding to the three variance maxima, but not in a simple one-to-one relationship. Cross-sectional profiles of mean southerly wind over Texas remain relatively stable and recognizable from year to year with only its eastward flank showing significant variability. This variability, however, exhibits a distinct, biennial oscillation during the first six to seven years of the reanalysis period and only then. This intermittent biennial oscillation (IBO, one of the three modes discussed in the previous paragraph) in the lowlevel flow is restricted to the region surrounding eastern

  13. Multi-EM27/SUN Total Carbon Column Observing Network (TCCON) Comparison at the Southern Great Plains Site Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, H.; Hedelius, J.

    During the summer of 2015, a field campaign took place to help characterize off-the-shelf portable solar-viewing Fourier Transform Spectrometer (FTS) instruments (EM27/SUN). These instruments retrieve greenhouse gas (GHG) abundances from direct solar spectra. A focus of this campaign was to test possible dependence on different atmospheric conditions. Along with the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site in Oklahoma, experiments were conducted in Pasadena, California; Park Falls, Wisconsin; and the Armstrong Flight Research Center (AFRC), California. These locations are home to instruments in the Total Column Carbon Observing Network (TCCON). TCCONmore » measurements were used as standards for the portable (EM27/SUN) measurements. Comparisons between the two types of instruments are crucial in the attempt to use the portable instruments to broaden the capabilities of GHG measurements for monitoring, reporting, and verification of carbon in the atmosphere. This campaign was aimed at testing the response of the portable FTS to different atmospheric conditions both local and regional. Measurements made at ARM SGP provided data in an agricultural environment with a relatively clean atmosphere with respect to pollution. Due to the homogeneity of the region surrounding Lamont, Oklahoma, portable FTS measurements were less effected by large changes in column GHG abundances from air mass movement between regions. These conditions aided in characterizing potential artificial solar zenith angle dependence of the retrievals. Data collected under atmospheric conditions at ARM SGP also provide for the analysis of cloud interference on solar spectra. In situ measurements were also made using a Picarro isotopic methane analyzer to determine surface-level in situ GHG concentrations and possible influences due to local agriculture and nearby towns. Data collected in this campaign have been

  14. Determinants of fish assemblage structure in Northwestern Great Plains streams

    USGS Publications Warehouse

    Mullen, J.A.; Bramblett, R.G.; Guy, C.S.; Zale, A.V.; Roberts, D.W.

    2011-01-01

    Prairie streams are known for their harsh and stochastic physical conditions, and the fish assemblages therein have been shown to be temporally variable. We assessed the spatial and temporal variation in fish assemblage structure in five intermittent, adventitious northwestern Great Plains streams representing a gradient of watershed areas. Fish assemblages and abiotic conditions varied more spatially than temporally. The most important variables explaining fish assemblage structure were longitudinal position and the proportion of fine substrates. The proportion of fine substrates increased proceeding upstream, approaching 100% in all five streams, and species richness declined upstream with increasing fine substrates. High levels of fine substrate in the upper reaches appeared to limit the distribution of obligate lithophilic fish species to reaches further downstream. Species richness and substrates were similar among all five streams at the lowermost and uppermost sites. However, in the middle reaches, species richness increased, the amount of fine substrate decreased, and connectivity increased as watershed area increased. Season and some dimensions of habitat (including thalweg depth, absolute distance to the main-stem river, and watershed size) were not essential in explaining the variation in fish assemblages. Fish species richness varied more temporally than overall fish assemblage structure did because common species were consistently abundant across seasons, whereas rare species were sometimes absent or perhaps not detected by sampling. The similarity in our results among five streams varying in watershed size and those from other studies supports the generalization that spatial variation exceeds temporal variation in the fish assemblages of prairie and warmwater streams. Furthermore, given longitudinal position, substrate, and stream size, general predictions regarding fish assemblage structure and function in prairie streams are possible. ?? American

  15. Northern Great Plains Network water quality monitoring design for tributaries to the Missouri National Recreational River

    USGS Publications Warehouse

    Rowe, Barbara L.; Wilson, Stephen K.; Yager, Lisa; Wilson, Marcia H.

    2013-01-01

    The National Park Service (NPS) organized more than 270 parks with important natural resources into 32 ecoregional networks to conduct Inventory and Monitoring (I&M) activities for assessment of natural resources within park units. The Missouri National Recreational River (NRR) is among the 13 parks in the NPS Northern Great Plain Network (NGPN). Park managers and NGPN staff identified surface water resources as a high priority vital sign to monitor in park units. The objectives for the Missouri NRR water quality sampling design are to (1) assess the current status and long-term trends of select water quality parameters; and (2) document trends in streamflow at high-priority stream systems. Due to the large size of the Missouri River main stem, the NGPN water quality design for the Missouri NRR focuses on wadeable tributaries within the park unit. To correlate with the NGPN water quality protocols, monitoring of the Missouri NRR consists of measurement of field core parameters including dissolved oxygen, pH, specific conductance, and temperature; and streamflow. The purpose of this document is to discuss factors examined for selection of water quality monitoring on segments of the Missouri River tributaries within the Missouri NRR.Awareness of the complex history of the Missouri NRR aids in the current understanding and direction for designing a monitoring plan. Historical and current monitoring data from agencies and entities were examined to assess potential NGPN monitoring sites. In addition, the U.S. Environmental Protection Agency 303(d) list was examined for the impaired segments on tributaries to the Missouri River main stem. Because major tributaries integrate water quality effects from complex combinations of land use and environmental settings within contributing areas, a 20-mile buffer of the Missouri NRR was used to establish environmental settings that may impact the water quality of tributaries that feed the Missouri River main stem. For selection of

  16. Ground-water withdrawals from the Coastal Plain of New Jersey, 1956-1980

    USGS Publications Warehouse

    Vowinkel, E.F.

    1984-01-01

    Withdrawals and site data for wells with a pump capacity of 100 ,000 gallons per day or greater in the Coastal Plain of New Jersey are stored in computer files for 1956-80. The data are aggregated by computer into tables, graphs and maps to show the distribution of ground-water withdrawals. Withdrawals are reported by type of use and aquifer for each county in the Coastal Plain. Public-supply wells withdraw the largest quantity of ground water in the Coastal Plain, followed by industrial and agricultural wells. In 1980 public-supply withdrawals were about 280 million gallons per day; the maximum monthly rate was about 355 million gallons per day in July, and the lowest was about 215 million gallons per day in February. Average industrial withdrawals were about 65 million gallons per day. Ground-water withdrawals used for agriculture vary significantly during the year. In 1980, about 75 percent of the agricultural withdrawals occurred from June through September. Several aquifers are used as sources of water supply in the Coastal Plain. Five regional aquifers are the major sources of water for public-supply, industrial, or agricultural use. In decreasing order of withdrawals in 1980, in million gallons per day, they are: The Potomac-Raritan-Magothy aquifer system, 243; Kirkwood-Cohansey aquifer system, 70; Atlantic City 800-foot sand, 21; Englishtown aquifer, 12; and the Wenonah-Mount Laurel aquifer system, 5. (USGS)

  17. Land cover changes associated with recent energy development in the Williston Basin; Northern Great Plains, USA

    USGS Publications Warehouse

    Preston, Todd M.; Kim, Kevin

    2016-01-01

    The Williston Basin in the Northern Great Plains has experienced rapid energy development since 2000. To evaluate the land cover changes resulting from recent (2000 – 2015) development, the area and previous land cover of all well pads (pads) constructed during this time was determined, the amount of disturbed and reclaimed land adjacent to pads was estimated, land cover changes were analyzed over time for three different well types, and the effects from future development were predicted. The previous land cover of the 12,990 ha converted to pads was predominately agricultural (49.5%) or prairie (47.4%) with lesser amounts of developed (2.3%), aquatic (0.5%), and forest (0.4%). Additionally, 12,121 ha have likely been disturbed and reclaimed. The area required per gas well remained constant through time while the land required per oil well increased initially and then decreased as development first shifted from conventional to unconventional drilling and then to multi-bore pads. For non-oil-and- gas wells (i.e. stratigraphic test wells, water wells, injection wells, etc.), the area per well increased through time likely due to increased produced water disposal requirements. Future land cover change is expected to be 2.7 times greater than recent development with much of the development occurring in five counties in the core Bakken development area. Direct land cover change and disturbance from recent and expected development are predicted to affect 0.4% of the landscape across the basin; however, in the core Bakken development area, 2.3% of the landscape will be affected including 2.1% of the remaining grassland. Although future development will result in significant land cover change, evolving industry practices and proactive siting decisions, such as development along energy corridors and placing pads in areas previously altered by human activity, have the potential to reduce the ecological effects of future energy development in the Williston Basin.

  18. Evaluating hourly rainfall characteristics over the U.S. Great Plains in dynamically downscaled climate model simulations using NASA-Unified WRF

    NASA Astrophysics Data System (ADS)

    Lee, Huikyo; Waliser, Duane E.; Ferraro, Robert; Iguchi, Takamichi; Peters-Lidard, Christa D.; Tian, Baijun; Loikith, Paul C.; Wright, Daniel B.

    2017-07-01

    Accurate simulation of extreme precipitation events remains a challenge in climate models. This study utilizes hourly precipitation data from ground stations and satellite instruments to evaluate rainfall characteristics simulated by the NASA-Unified Weather Research and Forecasting (NU-WRF) regional climate model at horizontal resolutions of 4, 12, and 24 km over the Great Plains of the United States. We also examined the sensitivity of the simulated precipitation to different spectral nudging approaches and the cumulus parameterizations. The rainfall characteristics in the observations and simulations were defined as an hourly diurnal cycle of precipitation and a joint probability distribution function (JPDF) between duration and peak intensity of precipitation events over the Great Plains in summer. We calculated a JPDF for each data set and the overlapping area between observed and simulated JPDFs to measure the similarity between the two JPDFs. Comparison of the diurnal precipitation cycles between observations and simulations does not reveal the added value of high-resolution simulations. However, the performance of NU-WRF simulations measured by the JPDF metric strongly depends on horizontal resolution. The simulation with the highest resolution of 4 km shows the best agreement with the observations in simulating duration and intensity of wet spells. Spectral nudging does not affect the JPDF significantly. The effect of cumulus parameterizations on the JPDFs is considerable but smaller than that of horizontal resolution. The simulations with lower resolutions of 12 and 24 km show reasonable agreement but only with the high-resolution observational data that are aggregated into coarse resolution and spatially averaged.

  19. Advancing biological control of the wheat stem sawfly (Cephus cinctus) – new strategies in a 100 year struggle to manage a costly pest in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    The wheat stem sawfly (Cephus cinctus, Norton), has become a destructive pest of cereal crops in the Northern Great Plains, including: Montana, North Dakota, South Dakota, Minnesota, Saskatchewan, Alberta, and Manitoba. Wheat stem sawflies (WSS) typically infest wheat (Triticum sp.), but they also d...

  20. American-Indian diabetes mortality in the Great Plains Region 2002–2010

    PubMed Central

    Kelley, Allyson; Giroux, Jennifer; Schulz, Mark; Aronson, Bob; Wallace, Debra; Bell, Ronny; Morrison, Sharon

    2015-01-01

    Objective To compare American-Indian and Caucasian mortality rates from diabetes among tribal Contract Health Service Delivery Areas (CHSDAs) in the Great Plains Region (GPR) and describe the disparities observed. Research design and methods Mortality data from the National Center for Vital Statistics and Seer*STAT were used to identify diabetes as the underlying cause of death for each decedent in the GPR from 2002 to 2010. Mortality data were abstracted and aggregated for American-Indians and Caucasians for 25 reservation CHSDAs in the GPR. Rate ratios (RR) with 95% CIs were used and SEER*Stat V.8.0.4 software calculated age-adjusted diabetes mortality rates. Results Age-adjusted mortality rates for American-Indians were significantly higher than those for Caucasians during the 8-year period. In the GPR, American-Indians were 3.44 times more likely to die from diabetes than Caucasians. South Dakota had the highest RR (5.47 times that of Caucasians), and Iowa had the lowest RR, (1.1). Reservation CHSDA RR ranged from 1.78 to 10.25. Conclusions American-Indians in the GPR have higher diabetes mortality rates than Caucasians in the GPR. Mortality rates among American-Indians persist despite special programs and initiatives aimed at reducing diabetes in these populations. Effective and immediate efforts are needed to address premature diabetes mortality among American-Indians in the GPR. PMID:25926992

  1. Surface Forcing from CH4 at the North Slope of Alaska and Southern Great Plains Sites

    NASA Astrophysics Data System (ADS)

    Collins, W.; Feldman, D.; Turner, D. D.

    2014-12-01

    Recent increases in atmospheric CH4 have been spatially heterogeneous as indicated by in situ flask measurements and space-borne remote-sensing retrievals from the AIRS instrument, potentially leading to increased radiative forcing. We present detailed, specialized measurements at the DOE ARM North Slope of Alaska (NSA) and Southern Great Plains (SGP) sites to derive the time-series of both CH4 atmospheric concentrations and associated radiative implications at highly-contrasting natural and anthropogenic sources. Using a combination of spectroscopic measurements, in situ observations, and ancillary data for the atmospheric thermodynamic state from radiosondes and cloud-clearing from active sounders, we can separate out the contribution of CH4 to clear-sky downwelling radiance spectra and its infrared surface forcing. The time-series indicates year-to-year variation in shoulder season increases of CH4 concentration and forcing at NSA and large signals from anthropogenic activity at SGP.

  2. Impacts of Climate Change on Agricultural Technology Management in the Transylvanian Plain, Romania

    NASA Astrophysics Data System (ADS)

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian; Cacovean, Horea

    2013-04-01

    The impact of climate changes varies considerably in Europe, with different degrees of vulnerability. Romania is situated in an area with the lowest capacity to adapt to existing climate change and those that will occur, and the Transylvanian Plain (TP) is one of the most affected areas. In these conditions, the climate monitoring and implementation of measures to adapt to these changes are essential for sustainable development of agricultural technologies. The TP name comes from the Latin "silva" which means forest, namely an area covered with forests approximately 55-60% in the early nineteenth century, but today reached an average of 6.8% in the TP area. In time, the rugged terrain, deforestation, erosive slopes, and irrational agro technical practices for crop production altogether brought about the degradation of large areas of agricultural land, reducing its productivity. The degree of soil degradation in TP and climate change in recent years, have radically modified climatic conditions for cultural crops. Monitoring of temperature and water supply in TP aims to evaluate these two resources for agricultural production. The TP is a geographical region located in north-central Romania and it is bordered by large rivers to the north and south: the Somes and the Mures rivers. The altitude of the TP ranges from 231 to 662 m. TP, with an area of approx. 395,616 ha, includes areas of three counties (Cluj - CJ, Mures -MS, Bistrita-Nasaud - BN), has a predominantly agricultural character, and is characterized by hilly climate with oceanic influences, 9-100C average annual temperatures and 500-700 mm/year average annual precipitations. Monitoring the thermal and water supplies from TP was performed with twenty HOBO micro stations which determine the temperature (to a height of 1 m) and rainfalls same as temperature (at 10, 30, 50 cm depth in soil) and soil moisture (at 10 cm depth). Average precipitation recorded during 2009-2011, is 498.97 mm, which is beneath the

  3. Hydrological and Dynamical Characteristics of Summertime Droughts over U.S. Great Plains.

    NASA Astrophysics Data System (ADS)

    Chang, Fong-Chiau; Smith, Eric A.

    2001-05-01

    A drought pattern and its time evolution over the U.S. Great Plains are investigated from time series of climate divisional monthly mean surface air temperature and total precipitation anomalies. The spatial pattern consists of correlated occurrences of high (low) surface air temperature and deficit (excess) rainfall. The center of maximum amplitude in rain fluctuation is around Kansas City; that of temperature is over South Dakota. Internal consistency between temperature and precipitation variability is the salient feature of the drought pattern. A drought index is used to quantify drought severity for the period 1895-1996. The 12 severest drought months (in order) during this period are June 1933, June 1988, July 1936, August 1983, July 1934, July 1901, June 1931, August 1947, July 1930, June 1936, July 1954, and August 1936. Hydrological conditions are examined using National Centers for Environmental Prediction (NCEP) reanalysis precipitable water (PW) and monthly surface observations from Kansas City, Missouri, and Bismarck, North Dakota, near the drought centers. This analysis explains why droughts exhibit negative surface relative humidity anomalies accompanied by larger than normal monthly mean daily temperature ranges and why maximum PWs are confined to a strip of about 10° longitude from New Mexico and Arizona into the Dakotas and Minnesota.Dynamical conditions are examined using NCEP reanalysis sea level pressures and 500- and 200-mb geopotential heights. The analysis indicates a midtroposphere wave train with positive centers situated over the North Pacific, North America, and the North Atlantic, with negative centers in the southeastern Gulf of Alaska and Davis Strait. Above-normal sea level pressures over New Mexico, the North Atlantic, and the subtropical Pacific along with below-normal sea level pressures over the Gulf of Alaska eastward to Canada, Davis Strait, and Greenland are present during drought periods. The most prominent feature is the

  4. A New Boundary for the High Plains - Ogallala Aquifer Complex

    NASA Astrophysics Data System (ADS)

    Haacker, E. M.; Nozari, S.; Kendall, A. D.

    2017-12-01

    In the semi-arid Great Plains, water is the key ingredient for crop growth: the difference between meager yields for many crops and an agricultural bonanza. The High Plains-Ogallala Aquifer complex (HPA) underlies 452,000 square kilometers of the region, and over 95% of water withdrawn from the aquifer is used for irrigation. Much of the HPA is being pumped unsustainably, and since the region is heavily reliant on this resource for its social and economic health, the High Plains has been a leader in groundwater management planning. However, the geographic boundary of the High Plains region fails to reflect the hydrogeological realities of the aquifer. The current boundary, recognizable from countless textbooks and news articles, is only slightly modified from a version from the 1980's, and largely follows the physiographic borders of the High Plains - defined by surface features such as escarpments and rivers - rather than the edges of water-bearing sediment sufficient for high-volume pumping. This is supported by three lines of evidence: hydrogeological observations from the original aquifer boundary determination; the extent of irrigated land, as estimated by MODIS-MIrAD data; and statistical estimates of saturated thickness, incorporating improved maps of the aquifer base and an additional 35 years of water table measurements. In this project, new maps of saturated thickness are used to create an updated aquifer boundary, which conforms with the standard definition of an aquifer as a package of sediment that yields enough water to be economically pumped. This has major implications for social and physical models, as well as water planning and estimates of sustainability for the HPA. Much of the area of the HPA that has been labeled `sustainable' based upon estimates of recharge relative to pumping estimates falls outside the updated aquifer boundary. In reality, the sustainably-pumped area of this updated aquifer boundary is far smaller—a fact that if more

  5. Cover Crop Chart: An Outreach Tool for Agricultural Producers

    USDA-ARS?s Scientific Manuscript database

    Interest in cover crops by farmers and ranchers throughout the Northern Great Plains has increased the need for information on the suitability of a diverse portfolio of crops for different production and management resource goals. To help address this need, Northern Great Plains Research Laboratory...

  6. Evaluation of a Mesoscale Atmospheric Dispersion Modeling System with Observations from the 1980 Great Plains Mesoscale Tracer Field Experiment. Part I: Datasets and Meteorological Simulations.

    NASA Astrophysics Data System (ADS)

    Moran, Michael D.; Pielke, Roger A.

    1996-03-01

    The Colorado State University mesoscale atmospheric dispersion (MAD) numerical modeling system, which consists of a prognostic mesoscale meteorological model coupled to a mesoscale Lagrangian particle dispersion model, has been used to simulate the transport and diffusion of a perfluorocarbon tracer-gas cloud for one afternoon surface release during the July 1980 Great Plains mesoscale tracer field experiment. Ground-level concentration (GLC) measurements taken along arcs of samplers 100 and 600 km downwind of the release site at Norman, Oklahoma, up to three days after the tracer release were available for comparison. Quantitative measures of a number of significant dispersion characteristics obtained from analysis of the observed tracer cloud's moving GLC `footprint' have been used to evaluate the modeling system's skill in simulating this MAD case.MAD is more dependent upon the spatial and temporal structure of the transport wind field than is short-range atmospheric dispersion. For the Great Plains mesoscale tracer experiment, the observations suggest that the Great Plains nocturnal low-level jet played an important role in transporting and deforming the tracer cloud. A suite of ten two- and three-dimensional numerical meteorological experiments was devised to investigate the relative contributions of topography, other surface inhomogeneities, atmospheric baroclinicity, synoptic-scale flow evolution, and meteorological model initialization time to the structure and evolution of the low-level mesoscale flow field and thus to MAD. Results from the ten mesoscale meteorological simulations are compared in this part of the paper. The predicted wind fields display significant differences, which give rise in turn to significant differences in predicted low-level transport. The presence of an oscillatory ageostrophic component in the observed synoptic low-level winds for this case is shown to complicate initialization of the meteorological model considerably and is the

  7. Evidence of active dune sand on the Great Plains in the 19th century from accounts of early explorers

    USGS Publications Warehouse

    Muhs, D.R.; Holliday, V.T.

    1995-01-01

    Dune fields are found in several areas of the Great Plains, and though mostly stabilised today, the accounts of early explorers show that they were more mobile in the last century. Using an index of dune mobility and tree ring data, it is found that these periods of mobility were related to temperature-induced drought, the high temperatures increasing evapotranspiration. Explorers also record that rivers upwind of these dune fields had shallow braided channels in the 19th century, and these would have supplied further aeolian sand. It is concluded that these dunes are extremely susceptible to climate change and that it may not need global warming to increase their mobility again. -K.Clayton

  8. The role of the US Great Plains low-level jet in nocturnal migrant behavior

    NASA Astrophysics Data System (ADS)

    Wainwright, Charlotte E.; Stepanian, Phillip M.; Horton, Kyle G.

    2016-10-01

    The movements of aerial animals are under the constant influence of atmospheric flows spanning a range of spatiotemporal scales. The Great Plains nocturnal low-level jet is a large-scale atmospheric phenomenon that provides frequent strong southerly winds through a shallow layer of the airspace. The jet can provide substantial tailwind assistance to spring migrants moving northward, while hindering southward migration during autumn. This atmospheric feature has been suspected to play a prominent role in defining migratory routes, but the flight strategies used with respect to these winds are yet to be examined. Using collocated vertically pointing radar and lidar, we investigate the altitudinal selection behavior of migrants over Oklahoma during two spring and two autumn migration seasons. In general, migrants choose to fly within the jet in spring, often concentrating in the favorable wind speed maximum. Autumn migrants typically fly below the jet, although some will rapidly climb to reach altitudes above the inhibiting winds. The intensity of migration was relatively constant throughout the spring due to the predominantly favorable southerly jet winds. Conversely, autumn migrants were more apt to delay departure to wait for the relatively infrequent northerly winds.

  9. Develop an early warning climate indicator to support the Nation's resilience to 'flash' droughts over the US Great Plains

    NASA Astrophysics Data System (ADS)

    Fu, R.; Fernando, D. N.; YANG, Z.; Solis, R.

    2013-12-01

    'Flash' droughts refer to those droughts that intensify rapidly in spring and summer, coupled with a strong increase of summer extreme temperatures, such as those that occurred over Texas in 2011 and the Great Plains in 2012. These droughts represent a great threat to North American water security. Climate models have failed to predict these 'flash' droughts and are ambiguous in projecting their future changes largely because of models' weaknesses in predicting summer rainfall and soil moisture feedbacks. By contrast, climate models are more reliable in simulating changes of large-scale circulation and warming of temperatures during the winter and spring seasons. We present a prototype of an early warning indicator for the risk of 'flash' droughts in summer by using the large-scale circulation and land surface conditions in winter and spring based on observed relationships between these conditions and their underlying physical mechanisms established by previous observations and numerical model simulations. This prototype 'flash' drought indicator (IFDW) currently uses global and regional reanalysis products (e.g., CFSR, MERRA, NLDAS products) in winter and spring to provide an assessment of summer drought severity similar to drought severity indices like PDSI (Palmer Drought Severity Index), SPI (Standard Precipitation Index) etc., provided by the National Integrated Drought Information Center (NIDIS) with additional information about uncertainty and past probability distributions of IFDW. Preliminary evaluation of hindcasts suggests that the indicator captures the occurrences of all the regional severe to extreme summer droughts during the past 63 years (1949-2011) over the US Great Plains, and 95% of the drought ending. This prototype IFDW has several advantages over the available drought indices that simply track local drought conditions in the past, present and future: 1) It mitigates the weakness of current climate models in predicting future summer droughts

  10. Quantifying spatial and temporal variabilities of microwave brightness temperature over the U.S. Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Owe, M.; Ormsby, J. P.; Chang, A. T. C.; Wang, J. R.; Goward, S. N.; Golus, R. E.

    1987-01-01

    Spatial and temporal variabilities of microwave brightness temperature over the U.S. Southern Great Plains are quantified in terms of vegetation and soil wetness. The brightness temperatures (TB) are the daytime observations from April to October for five years (1979 to 1983) obtained by the Nimbus-7 Scanning Multichannel Microwave Radiometer at 6.6 GHz frequency, horizontal polarization. The spatial and temporal variabilities of vegetation are assessed using visible and near-infrared observations by the NOAA-7 Advanced Very High Resolution Radiometer (AVHRR), while an Antecedent Precipitation Index (API) model is used for soil wetness. The API model was able to account for more than 50 percent of the observed variability in TB, although linear correlations between TB and API were generally significant at the 1 percent level. The slope of the linear regression between TB and API is found to correlate linearly with an index for vegetation density derived from AVHRR data.

  11. I Got Them Dust Bowl Blues: Wind Erosion in the Music of the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Lee, J. A.

    2017-12-01

    This paper deals with the role of wind erosion and blowing dust on the music of the Dust Bowl region, a portion of the southern Great Plains of the United States. A defining characteristic of the region is dust storms, and in the 1930s, severe dust storms created dramatic images that came to symbolize all of the economic, social and environmental hardships suffered by the people during the 1930s. The music of the time, by Woody Guthrie and others, suggested that the region was being destroyed, never to recover. The region was resilient, however, and in recent decades, dust has been depicted in songs either as an adversity to be endured or simply as a normal part of life in the area. It may be that blowing dust has become a defining characteristic of the region because of a somewhat warped sense of pride in living in an often-difficult environment.

  12. Price, Weather, and `Acreage Abandonment' in Western Great Plains Wheat Culture.

    NASA Astrophysics Data System (ADS)

    Michaels, Patrick J.

    1983-07-01

    Multivariate analyses of acreage abandonment patterns in the U.S. Great Plains winter wheat region indicate that the major mode of variation is an in-phase oscillation confined to the western half of the overall area, which is also the area with lowest average yields. This is one of the more agroclimatically marginal environments in the United States, with wide interannual fluctuations in both climate and profitability.We developed a multiple regression model to determine the relative roles of weather and expected price in the decision not to harvest. The overall model explained 77% of the spatial and temporal variation in abandonment. The 36.5% of the non-spatial variation was explained by two simple transformations of climatic data from three monthly aggregates-September-October, November-February and March-April. Price factors, expressed as indexed future delivery quotations,were barely significant, with only between 3 and 5% of the non-spatial variation explained, depending upon the model.The model was based upon weather, climate and price data from 1932 through 1975. It was tested by sequentially withholding three-year blocks of data, and using the respecified regression coefficients, along with observed weather and price, to estimate abandonment in the withheld years. Error analyses indicate no loss of model fidelity in the test mode. Also, prediction errors in the 1970-75 period, characterized by widely fluctuating prices, were not different from those in the rest of the model.The overall results suggest that the perceived quality of the crop, as influenced by weather, is a much more important determinant of the abandonment decision than are expected returns based upon price considerations.

  13. 4/4/2018: The Ag Data Commons Metrics | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement | Information Quality | Privacy

  14. Exploring the linkage between drought, high temperatures, and hydrologic sensitivities: A case study of the 2012 Great Plains drought.

    NASA Astrophysics Data System (ADS)

    Livneh, B.; Hoerling, M. P.

    2014-12-01

    The occurrence of drought is associated with agricultural loss, water supply shortfalls, and other economic impacts. Here we explore the physical relationships between precipitation deficits, high temperatures, and hydrologic responses as a pathway to better anticipate drought impacts. Current methodologies to predict hydrologic scarcity include local monitoring of river flows, remote sensing of land-surface wetness, drought indices, expert judgment, climate indices (e.g. SST-relationships) and the application of hydrologic models. At longer lead times, predictions of drought have most frequently been made on the basis of GCM ensembles, with subsequent downscaling of those to scales over which hydrologic predictions can be made. This study focuses on two important aspects of drought. First, we explore the causal hydro-climatic timeline of a drought event, namely (a) the lack of precipitation, which serves to reduce soil moisture and produce (b) a skewed Bowen ratio, i.e. comparatively more sensible heating (warming) with less ET, resulting in (c) anomalously warm conditions. We seek to assess the extent to which the lack of precipitation contributes to warming temperatures, and the further effects of that warming on hydrology and the severity of drought impacts. An ensemble of GCM simulations will be used to explore the evolution of the land surface energy budget during a recent Great Plains drought event, which will subsequently be used to drive a hydrologic model. Second, we examine the impacts of the critical assumptions relating climatic variables with water demand, specifically the relationship between potential evapotranspiration (PET) and temperature. The common oversimplification in relating PET to temperature is explored against a more physically consistent energy balance estimate of PET, using the Penman-Monteith approach and the hydrologic impacts are presented. Results from this work are anticipated to have broad relevance for future water management

  15. The Plains of Venus

    NASA Astrophysics Data System (ADS)

    Sharpton, V. L.

    2013-12-01

    extremely fluid flows (i.e., channel formers), to viscous, possibly felsic lavas of steep-sided domes. Wrinkle ridges deform many plains units and this has been taken to indicate that these ridges essentially form an early stratigraphic marker that limits subsequent volcanism to a minimum. However, subtle backscatter variations within many ridged plains units suggest (but do not prove) that some plains volcanism continued well after local ridge deformation ended. Furthermore, many of volcanic sources show little, if any, indications of tectonic modification and detailed analyses have concluded that resurfacing rates could be similar to those on Earth. Improving constraints on the rates and styles of volcanism within the plains could lend valuable insights into the evolution of Venus's internal heat budget and the transition from thin-lid to thick-lid tectonic regimes. Improved spatial and radiometric resolution of radar images would greatly improve abilities to construct the complex local stratigraphy of ridged plains. Constraining the resurfacing history of Venus is central to understanding how Earth-sized planets evolve and whether or not their evolutionary pathways lead to habitability. This goal can only be adequately addressed if broad coverage is added to the implementation strategies of any future mapping missions to Venus.

  16. Evaluation of calving seasons and marketing strategies in Northern Great Plains beef enterprises. II. Retained ownership systems.

    PubMed

    Reisenauer Leesburg, V L; Tess, M W; Griffith, D

    2007-09-01

    Two bioeconomic computer models were used to evaluate calving seasons in combination with calf marketing strategies for a range-based cow-calf enterprise in the Northern Great Plains. Calving seasons studied were spring (SP, calving beginning March 15 and weaning October 31), spring with calf mortality increased by 5% (SP-IM), summer (SU, calving beginning May 15 and weaning December 31), summer with early weaning (SU-EW, calving beginning May 15 and weaning October 31), and fall (FA, calving beginning August 15 and weaning February 1). Marketing scenarios for steer calves and nonreplacement heifer calves were as follows: sold after weaning (WS), backgrounded in Montana and sold as feeder cattle (WBS), backgrounded in Montana and then fed to slaughter BW in Nebraska (WBFS), and shipped to Nebraska at weaning and fed to slaughter BW (WFS). Quarterly inflation-adjusted cattle and feedstuff prices were representative of the 1990s cattle cycle. Cumulative gross margin (CGM), the sum of ranch gross margin and net return from retained ownership was used to compare systems. At the peak of the cattle cycle, all forms of retained ownership (WBS, WBFS, WFS) were profitable for all calving seasons, but during the descending phase, only WBS increased CGM markedly over WS for SU-EW. At the cycle valley, retained ownership was not profitable for SP and SP-IM, whereas WBFS and WFS were profitable for SU and SU-EW, and all forms of retained ownership were profitable for FA. During the ascending phase, retained ownership was profitable for all calving season-marketing combinations. Systems with the greatest CGM at each phase of the cattle cycle were FA-WFS, SP-WBS, FA-WFS, and FA-WFS at the peak, descending, valley, and ascending phases, respectively. In beef enterprises representative of the Northern Great Plains, with a restricted grazing season and limited access to low-cost, good-quality grazeable forage, no single calving season and no single combination of calving season and

  17. Wetlands shrinkage, fragmentation and their links to agriculture in the Muleng-Xingkai Plain, China.

    PubMed

    Song, Kaishan; Wang, Zongming; Li, Lin; Tedesco, Lenore; Li, Fang; Jin, Cui; Du, Jia

    2012-11-30

    In the past five decades, the wetlands in the Muleng-Xingkai Plain, Northeast China, have experienced rapid shrinkage and fragmentation. In this study, wetlands cover change and agricultural cultivation were investigated through a time series of thematic maps from 1954, and Landsat satellite images representing the last five decades (1976, 1986, 1995, 2000, and 2005). Wetlands shrinkage and fragmentation were studied based on landscape metrics and the land use changes transition matrix. Furthermore, the driving forces were explored according to socioeconomic development and major natural environmental factors. The results indicate a significant decrease in the wetlands area in the past five decades, with an average annual decrease rate of 9004 ha/yr. Of the 625,268 ha of native wetlands in 1954, approximately 64% has been converted to other land use types by 2005, of which conversion to cropland accounts for the largest share (83%). The number of patches decreased from 1272 (1954) to 197 (1986) and subsequently increased to 326 (2005). The mean patch size changed from 480 ha (1954) to 1521 ha (1976), and then steadily decreased to 574 ha (2005). The largest patch index (total core area index) indicates wetlands shrinkage with decreased values from 31.73 (177,935 ha) to 3.45 (39,421 ha) respectively. Climatic changes occurred over the study period, providing a potentially favorable environment for agricultural development. At the same time population, groundwater harvesting, and fertilizer application increased significantly, resulting in wetlands degradation. According to the results, the shrinkage and fragmentation of wetlands could be explained by socioeconomic development and secondarily aided by changing climatic conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Decreased runoff response to precipitation, Little Missouri River Basin, northern Great Plains, USA

    USGS Publications Warehouse

    Griffin, Eleanor R.; Friedman, Jonathan M.

    2017-01-01

    High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976-2012 compared to 1939-1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (p < 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface-water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.

  19. Calculating accurate aboveground dry weight biomass of herbaceous vegetation in the Great Plains: A comparison of three calculations to determine the least resource intensive and most accurate method

    Treesearch

    Ben Butler

    2007-01-01

    Obtaining accurate biomass measurements is often a resource-intensive task. Data collection crews often spend large amounts of time in the field clipping, drying, and weighing grasses to calculate the biomass of a given vegetation type. Such a problem is currently occurring in the Great Plains region of the Bureau of Indian Affairs. A study looked at six reservations...

  20. Implications of Biofuel-Induced Land Use Change and Management on Irrigated Agriculture in the Texas High Plains

    NASA Astrophysics Data System (ADS)

    Ale, S.; Chen, Y.; Rajan, N.

    2016-12-01

    Texas High Plains (THP) is one of the important cotton (Gossypium hirsutum L.) growing regions in the US. Agriculture in the THP faces several challenges from declining groundwater levels and deteriorating groundwater quality in the underlying Ogallala Aquifer, and recurring droughts and severe wind erosion. Groundwater conservation districts in the THP have started setting up limits on annual allowable groundwater pumping for irrigation. Introducing cover crops in to the cotton production systems in the THP and/or changing land use from cotton to perennial bioenergy crops could not only address the above challenges, but also assist in meeting the national biofuel target. The overall goal of this study is to assess the implications of biofuel-indced land use managemt (growing winter wheat as a cover crop along with cotton) and land use change (replacing cotton with Alamo switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus giganteus)) on hydrology, water quality, wind erosion and biofuel production potential in the Double Mountain Fork Brazos watershed in the THP using the Agricultural Policy/Environmental eXtender (APEX) model. Results showed that, in comparison to the baseline (cotton monoculture) scenario, the average annual wind erosion reduced by 59% and 37% in irrigated and dryland areas, respectively, when winter wheat was grown as a cover crop along with cotton under the current 18-inch groundwater pumping restriction set up by the High Plains Water District. In addition, winter wheat produced about 2.6 and 2.0 Mg ha-1 of biomass for biofuel purposes under the irrigated and dryland conditions, respectively. Furthermore, the total nitrogen (TN) load and nitrate-nitrogen (NO3-N) leaching decreased by more than 43% and 73%, respectively, under the cover crop scenario. The land use change from cotton to switchgrass (in irrigated areas) and Miscanthus (in dryland areas) decreased the TN load, NO3-N leaching and wind erosion by more than 89% relative to

  1. Potentiometric-surface map of water in the Judith River Formation in the Northern Great Plains area of Montana

    USGS Publications Warehouse

    Levings, Gary W.

    1982-01-01

    The potentiometric surface of the Judith River Formation is mapped at a scale of 1:1,000,000. The map is one of a series produced as part of a regional study of aquifers of Cenozoic and Mesozoic age in the northern Great Plains of Montana. The contour interval is 200 feet. Water in the Judith River Formation occurs under water-table and artesian conditions. The direction of regional ground-water movement is from west to east. Water is discharged from the Judith River Formation to the Milk River from near Havre, Montana, to Malta and to the Missouri River south of the Bearpaw and Little Rocky Mountains. The average discharge from 236 wells is about 10 gallons per minute, and the specific capacity of 186 wells averages 0.66 gallon per minute per foot of drawdown. (USGS)

  2. 3/29/2018: Making Data Machine-Readable Webinar | National Agricultural

    Science.gov Websites

    Library Skip to main content Home National Agricultural Library United States Department of | USDA.gov | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement | Information

  3. Wind and wildlife in the Northern Great Plains: identifying low-impact areas for wind development.

    PubMed

    Fargione, Joseph; Kiesecker, Joseph; Slaats, M Jan; Olimb, Sarah

    2012-01-01

    Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production and has known and predicted adverse effects on wildlife. The Northern Great Plains (NGP) is home both to some of the world's best wind resources and to remaining temperate grasslands, the most converted and least protected ecological system on the planet. Thus, appropriate siting and mitigation of wind development is particularly important in this region. Steering energy development to disturbed lands with low wildlife value rather than placing new developments within large and intact habitats would reduce impacts to wildlife. Goals for wind energy development in the NGP are roughly 30 GW of nameplate capacity by 2030. Our analyses demonstrate that there are large areas where wind development would likely have few additional impacts on wildlife. We estimate there are ∼1,056 GW of potential wind energy available across the NGP on areas likely to have low-impact for biodiversity, over 35 times development goals. New policies and approaches will be required to guide wind energy development to low-impact areas.

  4. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    DOE PAGES

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; ...

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less

  5. Case study of developing an integrated water and nitrogen scheme for agricultural systems on the North China Plain

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Tao, F.; Luo, Y.; Ma, J.

    2013-12-01

    Appropriate irrigation and nitrogen fertilization, along with suitable crop management strategies, are essential prerequisites for optimum yields in agricultural systems. This research attempts to provide a scientific basis for sustainable agricultural production management for the North China Plain and other semi-arid regions. Based on a series of 72 treatments over 2003-2008, an optimized water and nitrogen scheme for winter wheat/summer maize cropping system was developed. Integrated systems incorporating 120 mm of water with 80 kg N ha-1 N fertilizer were used to simulate winter wheat yields in Hebei and 120 mm of water with 120 kg N ha-1 were used to simulate winter wheat yields in Shandong and Henan provinces in 2000-2007. Similarly, integrated treatments of 40 kg N ha-1 N fertilizer were used to simulate summer maize yields in Hebei, and 80 kg N ha-1 was used to simulate summer maize yields in Shandong and Henan provinces in 2000-2007. Under the optimized scheme, 341.74 107 mm ha-1 of water and 575.79 104 Mg of urea fertilizer could be saved per year under the wheat/maize rotation system. Despite slight drops in the yields of wheat and maize in some areas, water and fertilizer saving has tremendous long-term eco-environmental benefits.

  6. Pollution load index for heavy metals in Mian-Ab plain soil, Khuzestan, Iran.

    PubMed

    Jorfi, Sahand; Maleki, Rohangiz; Jaafarzadeh, Neemat; Ahmadi, Mehdi

    2017-12-01

    Soil pollution by heavy metals is a major concern in agricultural area. Potential impact of heavy metals in agricultural soil on human health by accumulating in food chain demonstrated elsewhere. In this regard Mian-Ab plain as a major agricultural site of Khuzestan province considered for Arsenic, cadmium and lead concentration as the main potential toxic pollutants in soil. 50 topsoil samples were collected and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Also Contamination level of selected heavy metals in Mian-Ab Plain, was assessed by single factor contaminant index (PI) and pollution load index (PLI). Results show mean concentration of arsenic, cadmium and lead were 2.52, 0.30 and 7.21 mg kg -1 . Base on PLI results 12 point (24%) of the studied area show moderately polluted and 38 point (76%) show unpolluted area.

  7. Great Barrier Reef, Queensland, Australia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Along the coast of Queensland, Australia (18.0S, 147.5E), timbered foothills of the Great Dividing Range separate the semi-arid interior of Queensland from the farmlands of the coastal plains. Prominent cleared areas in the forest indicate deforestation for farm and pasture lands. Offshore, islands and the Great Barrier Reef display sand banks along the southern sides of the structures indicating a dominant southerly wind and current direction.

  8. Nitrogen-limitation and invasive sweetclover impacts vary between two Great Plains plant communities

    USGS Publications Warehouse

    Van Riper, Laura C.; Larson, Diane L.; Larson, Jennifer L.

    2010-01-01

    Yellow sweetclover is an exotic herbaceous legume common in the Great Plains of the US. Although woody legumes have been shown to affect ecosystem processes through nitrogen (N) fixation (i.e., they can be considered "transformers" sensu Richardson et al. (2000)), the same has not been shown for short-lived herbaceous species. The objectives of this study were to (1) quantify the effects of yellow sweetclover on N mineralization and nitrification and (2) assess the effects of N fertilization on two plant communities, badlands sparse vegetation and western wheatgrass prairie. We used in situ (in wheatgrass prairie) and laboratory incubations (for both plant communities) to assess N dynamics at sites with high and low sweetclover cover in the two plant communities. We found that both N mineralization and nitrification were higher in the high sweetclover plots in the sparse plant community, but not in the wheatgrass prairie. To assess fertilization effects and determine if nutrients or water were limiting at our sites, we conducted a field experiment with five resource addition treatments, (1) N, (2) N + water, (3) water, (4) phosphorus, and (5) no addition. Water was limiting in the wheatgrass prairie but contrary to expectation, N was not. In contrast, N was limiting in the sparse community, where a fertilization effect was seen in exotic forbs, especially the toxic invader Halogeton glomeratus. Our results emphasize the contingent nature of plant invasion in which effects are largely dependent on attributes of the recipient vegetation.

  9. Microscopic composition measurements of organic individual particles collected in the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Bonanno, D.; China, S.; Fraund, M. W.; Pham, D.; Kulkarni, G.; Laskin, A.; Gilles, M. K.; Moffet, R.

    2016-12-01

    The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign was carried out to gain a better understanding of the lifecycle of shallow clouds. The HISCALE experiment was designed to contrast two seasons, wet and dry, and determine their effect on atmospheric cloud and aerosol processes. The spring component to HISCALE was selected to characterize mixing state for particles collected onto substrates. Sampling was performed before and after rain events to obtain airborne soil organic particles (ASOP), which are ejected after rain events. The unique composition of the ASOP may affect optical properties and/or hygroscopic properties. The collection of particles took place at the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) field site. The Scanning Transmission X-Ray Microscope (STXM) was used to image the samples collected during the first HI-SCALE Campaign to determine the carbonaceous mixing state. Scanning Electron Microscopy Energy-dispersive X-ray (SEM/EDX) analysis is more sensitive to the inorganic makeup of particles, while STXM renders a more comprehensive analysis of the organics. Measurements such as nephelometry, Particle Soot Absorption Photometry (PSAP), and Aerosol Mass Spectrometry (AMS) from the ARM archive will be correlated with microscopy measurements. The primary focus is the relation between composition and morphology of ASOP with hygroscopicity and optical properties. Further investigation of these organic particles will be performed to provide a mixing state parameterization and aid in the advancement of current climate models.

  10. Increased in Variability in Climatological Means and Extremes in the Great Plains

    NASA Astrophysics Data System (ADS)

    Basara, J. B.; Flanagan, P. X.; Christian, J.; Christian, K.

    2016-12-01

    The Great Plains (GP) of North America is characterized by orthogonal gradients of temperature and precipitation extending from the Gulf of Mexico in the south to the coniferous forests of Canada to the north and are bordered on the west by the Rocky Mountains and then spread east approximately 1000 km into the interior regions of North America. As a result, significant biodiversity exists across relatively short distances within the region. However, because the gradient of precipitation is large across the GP, multiple environmental factors can lead to significant variability in temperature and precipitation at periods spanning seasonal, to interannual, to decadal scales. In addition, the GP region has shown significant coupling between the surface and the atmosphere, especially during the warm season. As a result, the GP often experiences significant hydrometeorological and hydroclimatological extremes across varying spatial and temporal scales including long-term drought, flash drought, flash flooding, and long-term pluvial periods with significant impacts to ecosystem function. Results into analyses of drought to pluvial dipole events in the GP noted that on average, over twice as many dipoles existed in the latter half of the dataset (1955-2013) relative to the first half (1896-1954). In addition an Asynchronous Difference Index (ADI) computed by determining the difference between the dates of precipitation and temperature maxima revealed two physically distinct regimes of ADI (positive and negative), with comparable shifts in the timing of both the maximum of precipitation and temperature within the GP. Time series analysis of decadal average ADI yielded moderate shifts in ADI with increased variability occurring over much of the GP region.

  11. Seawater intrusion in the Salalah plain aquifer, Oman

    NASA Astrophysics Data System (ADS)

    Shammas, M. I.; Jacks, G.

    2007-11-01

    Salalah is situated on a fresh water aquifer that is replenished during the annual monsoon season. The aquifer is the only source of water in Salalah city. The rainfall and mist precipitation in the Jabal AlQara recharges the plain with significant renewable fresh groundwater that has allowed agricultural and industrial development to occur. In Salalah city where groundwater has been used extensively since the early 1980s for agricultural, industrial and municipal purposes, the groundwater has been withdrawn from the aquifer more rapidly than it can be replenished by natural recharge. The heavy withdrawal of large quantities of the groundwater from the aquifer has led to the intrusion of seawater. Agricultural activities utilize over 70% of the groundwater. For the study of the saltwater intrusion, the area has been divided into four strips, A, B, C and D, on the basis of land-use in the area. Water samples were collected from 18 water wells. Chemical analysis of major ions and pollution parameters in the groundwater was carried out and compared to the previous observed values. The electrical conductivity and chloride concentrations were highest in the agricultural and residential strips and Garziz grass farm. Before 1992 the aquifer was in a steady state, but presently (2005) the groundwater quality in most of the agricultural and residential strips does not meet drinking water standards. In addition, model simulations were developed with the computer code MODFLOW and MT3DMS for solute transport to determine the movement of the freshwater/saltwater interface. The study proposes the protection of the groundwater in Salalah plain aquifer from further encroachment by artificial recharge with reclaimed water, preferably along the Salalah coastal agricultural strip. This scheme can also be applied to other regions with similar conditions.

  12. Impacts of agricultural land use on biological integrity: A causal analysis

    USGS Publications Warehouse

    Riseng, C.M.; Wiley, M.J.; Black, R.W.; Munn, M.D.

    2011-01-01

    Agricultural land use has often been linked to nutrient enrichment, habitat degradation, hydrologic alteration, and loss of biotic integrity in streams. The U.S. Geological Survey's National Water Quality Assessment Program sampled 226 stream sites located in eight agriculture-dominated study units across the United States to investigate the geographic variability and causes of agricultural impacts on stream biotic integrity. In this analysis we used structural equation modeling (SEM) to develop a national and set of regional causal models linking agricultural land use to measured instream conditions. We then examined the direct, indirect, and total effects of agriculture on biotic integrity as it acted through multiple water quality and habitat pathways. In our nation-wide model, cropland affected benthic communities by both altering structural habitats and by imposing water quality-related stresses. Regionspecific modeling demonstrated that geographic context altered the relative importance of causal pathways through which agricultural activities affected stream biotic integrity. Cropland had strong negative total effects on the invertebrate community in the national, Midwest, and Western models, but a very weak effect in the Eastern Coastal Plain model. In theWestern Arid and Eastern Coastal Plain study regions, cropland impacts were transmitted primarily through dissolved water quality contaminants, but in the Midwestern region, they were transmitted primarily through particulate components of water quality. Habitat effects were important in the Western Arid model, but negligible in the Midwest and Eastern Coastal Plain models. The relative effects of riparian forested wetlands also varied regionally, having positive effects on biotic integrity in the Eastern Coastal Plain andWestern Arid region models, but no statistically significant effect in the Midwest. These differences in response to cropland and riparian cover suggest that best management practices and

  13. Death, Murder, and Mayhem: Stories of Violence and Healing on the Plains

    ERIC Educational Resources Information Center

    Maher, Susan Naramore

    2009-01-01

    Unexpected, dramatic stories of death have left deep marks on the physical landscape and in the cultural psyche since humans first began to weave narrative from the Plains. When scholars and writers converged in Omaha, Nebraska for the 34th Interdisciplinary Symposium of the Center for Great Plains Center, many stories received scholarly and…

  14. Gridding Cloud and Irradiance to Quantify Variability at the ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Riihimaki, L.; Long, C. N.; Gaustad, K.

    2017-12-01

    Ground-based radiometers provide the most accurate measurements of surface irradiance. However, geometry differences between surface point measurements and large area climate model grid boxes or satellite-based footprints can cause systematic differences in surface irradiance comparisons. In this work, irradiance measurements from a network of ground stations around Kansas and Oklahoma at the US Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains facility are examined. Upwelling and downwelling broadband shortwave and longwave radiometer measurements are available at each site as well as surface meteorological measurements. In addition to the measured irradiances, clear sky irradiance and cloud fraction estimates are analyzed using well established methods based on empirical fits to measured clear sky irradiances. Measurements are interpolated onto a 0.25 degree latitude and longitude grid using a Gaussian weight scheme in order to provide a more accurate statistical comparison between ground measurements and a larger area such as that used in climate models, plane parallel radiative transfer calculations, and other statistical and climatological research. Validation of the gridded product will be shown, as well as analysis that quantifies the impact of site location, cloud type, and other factors on the resulting surface irradiance estimates. The results of this work are being incorporated into the Surface Cloud Grid operational data product produced by ARM, and will be made publicly available for use by others.

  15. Provenance of aeolian sands in the Hetao Plain, northwestern China

    NASA Astrophysics Data System (ADS)

    Yang, Xingchen; Cai, Maotang; Ye, Peisheng; Ye, Mengni; Li, Chenglu; Wu, Hang; Lu, Jing; Wang, Tao; Zhao, Zhirong; Luzhou, Yangfan; Liu, Chao

    2018-06-01

    Patches of aeolian sand are distributed throughout the Hetao Plain, which pose threats to farming and agriculture. Identification of the provenance of the aeolian sands may help with efforts to alleviate ecological stress in Inner Mongolia and in the paleoenvironmental interpretation of sandy sequences. This study uses geochemical data to determine the provenance of aeolian sands from the Hetao Plain. Provenance discrimination diagrams revealed that the aeolian sands were mainly derived from mixed source felsic granites and granodiorites, which have undergone weak sedimentary recycling. The chemical index of alteration and A-CN-K data indicated that the aeolian sediments were transported over a short distance. Comparison of trace element and rare earth element (REE) ratios of the aeolian sands with rock samples from potential source areas has revealed that aeolian sand deposits in the Hetao Plain were mainly derived from Sertengshan and Yellow River sediments. The Langshan and Ordos Plateau may represent additional sand sources for the Hetao Plain.

  16. Drawn by the Bison: Late Prehistoric Native Migration into the Central Plains

    ERIC Educational Resources Information Center

    Ritterbush, Lauren W.

    2002-01-01

    Popular images of the Great Plains frequently portray horse-mounted Indians engaged in dramatic bison hunts. The importance of these hunts is emphasized by the oft-mentioned dependence of the Plains Indians on bison. This animal served as a source of not only food but also materials for shelter, clothing, containers, and many other necessities of…

  17. Wind and Wildlife in the Northern Great Plains: Identifying Low-Impact Areas for Wind Development

    PubMed Central

    Fargione, Joseph; Kiesecker, Joseph; Slaats, M. Jan; Olimb, Sarah

    2012-01-01

    Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production and has known and predicted adverse effects on wildlife. The Northern Great Plains (NGP) is home both to some of the world’s best wind resources and to remaining temperate grasslands, the most converted and least protected ecological system on the planet. Thus, appropriate siting and mitigation of wind development is particularly important in this region. Steering energy development to disturbed lands with low wildlife value rather than placing new developments within large and intact habitats would reduce impacts to wildlife. Goals for wind energy development in the NGP are roughly 30 GW of nameplate capacity by 2030. Our analyses demonstrate that there are large areas where wind development would likely have few additional impacts on wildlife. We estimate there are ∼1,056 GW of potential wind energy available across the NGP on areas likely to have low-impact for biodiversity, over 35 times development goals. New policies and approaches will be required to guide wind energy development to low-impact areas. PMID:22848505

  18. Breaking sod or breaking even? Flax on the northern Great Plains and Prairies, 1889-1930.

    PubMed

    MacFayden, Joshua D

    2009-01-01

    A new thirst for paint and color in cities made extensive flax production profitable in the northern Great Plains and Prairies and contributed to the cultivation of the most fragile grassland ecosystems. The production of flax seed for linseed oil became an early spin-off of the Prairie wheat economy but, unlike wheat, flax vanished from old land after one or two rotations and reappeared in districts with the most new breaking. Officials explained the migrant crop as preparing native grasslands for cultivation or exhausting soil in old land, but farmers brought flax to their new breaking for other reasons. Producers would only put flax on any land when a range of economic and environmental conditions were in place. It was never sown without promise of adequately high prices or in the absence of affordable seed and other inputs. When price allowed, it usually appeared on new breaking because it could be planted later and transported further without upsetting the balance of other activities and without farmers learning many new techniques. Scientists discovered that diseased soil drove flax off old land, not soil exhaustion. Circumventing the disease was possible but costly, and farmers simply replaced flax with the next most lucrative commodity.

  19. Correlation of Optical Properties with Atmospheric Solid Organic Particles (ASOPs) in the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Bonanno, D.; Fraund, M. W.; Pham, D.; China, S.; Wang, B.; Laskin, A.; Gilles, M. K.; Moffet, R.

    2017-12-01

    The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign was carried out to gain a better understanding of the lifecycle of shallow clouds. The HISCALE experiment was designed to contrast two seasons, wet and dry, and determine their effect on atmospheric cloud and aerosol processes. The spring component to HISCALE was selected to characterize mixing state for particles collected onto substrates. Sampling was performed to obtain airborne soil organic particles (ASOP), which are believed to be ejected following rain events. The unique composition of the ASOP have been shown to affect optical properties. The collection of particles took place at the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) field site. The Scanning Transmission X-Ray Microscope (STXM) was used to image the samples collected during the first HI-SCALE Campaign to determine the carbonaceous mixing state. Scanning Electron Microscopy Energy-dispersive X-ray (SEM/EDX) analysis is more sensitive to the inorganic makeup of particles, while STXM renders a more comprehensive analysis of the organics. Measurements such as nephelometry, Particle Soot Absorption Photometry (PSAP) from the ARM archive are correlated with microscopy measurements. The primary focus is the relation between composition and morphology of ASOP with optical properties.

  20. Concentrations of inorganic arsenic in groundwater, agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India.

    PubMed

    Kumar, Manoj; Ramanathan, A L; Rahman, Mohammad Mahmudur; Naidu, Ravi

    2016-12-15

    Concentrations of inorganic forms [arsenite, As(III) and arsenate, As(V) of arsenic (As) present in groundwater, agricultural soils and subsurface sediments located in the middle Gangetic plain of Bihar, India were determined. Approximately 73% of the groundwater samples (n=19) show As(III) as the dominant species while 27% reveals As(V) was the dominant species. The concentration of As(III) in agricultural soil samples varies from not detectable to 40μg/kg and As(V) was observed as the major species (ranging from 1050 to 6835μg/kg) while the total As concentration varied from 3528 to 14,690μg/kg. Total extracted concentration of As was higher in the subsurface sediments (range 9119-20,056μg/kg in Methrapur and 4788-19,681μg/kg in Harail Chapar) than the agricultural soil, indicating the subsurface sediment as a source of As. Results of X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) revealed the presence of hematite and goethite throughout the vertical section below while magnetite was observed only in the upper oxidized layer at Methrapur and Harail Chapar. Alteration of Fe-oxides and presence of fibrous goethite indicating presence of diagenetic sediment. Siderite plays a crucial role as sinks to the As in subsurface sediments. The study also concluded that decomposition of organic matter present in dark and grey sections promote the redox conditions and trigger mobilization of As into groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climatemore » change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.« less

  2. Water Flow in the High Plains Aquifer in Northwestern Oklahoma

    USGS Publications Warehouse

    Luckey, Richard R.; Osborn, Noel I.; Becker, Mark F.; Andrews, William J.

    2000-01-01

    The High Plains is a major agricultural area, supported primarily by water from the High Plains aquifer, which is used to irrigate wheat and corn and to raise cattle and swine. The U.S. Geological Survey (USGS) and the Oklahoma Water Resources Board (OWRB) began a study of the High Plains aquifer in 1996. One purpose of the study was to develop a ground-water flow model that the OWRB could use to allocate the amount of water withdrawn from the a aquifer. The study area in Oklahoma covers all or parts of Beaver, Cimarron, Dewey, Ellis, Harper, Texas, and Woodward Counties. To provide appropriate hydrologic boundaries for the ground-water flow model, the study area was expanded to include parts of Colorado, Kansas, New Mexico, and Texas.

  3. Land-atmosphere coupling and climate prediction over the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Williams, I. N.; Lu, Y.; Kueppers, L. M.; Riley, W. J.; Biraud, S.; Bagley, J. E.; Torn, M. S.

    2016-12-01

    Biases in land-atmosphere coupling in climate models can contribute to climate prediction biases, but land models are rarely evaluated in the context of this coupling. We tested land-atmosphere coupling and explored effects of land surface parameterizations on climate prediction in a single-column version of the NCAR Community Earth System Model (CESM1.2.2) and an offline Community Land Model (CLM4.5). The correlation between leaf area index (LAI) and surface evaporative fraction (ratio of latent to total turbulent heat flux) was substantially underpredicted compared to observations in the U.S. Southern Great Plains, while the correlation between soil moisture and evaporative fraction was overpredicted by CLM4.5. These correlations were improved by prescribing observed LAI, increasing soil resistance to evaporation, increasing minimum stomatal conductance, and increasing leaf reflectance. The modifications reduced the root mean squared error (RMSE) in daytime 2 m air temperature from 3.6 C to 2 C in summer (JJA), and reduced RMSE in total JJA precipitation from 133 to 84 mm. The modifications had the largest effect on prediction of summer drought in 2006, when a warm bias in daytime 2 m air temperature was reduced from +6 C to a smaller cold bias of -1.3 C, and a corresponding dry bias in total JJA precipitation was reduced from -111 mm to -23 mm. Thus, the role of vegetation in droughts and heat waves is likely underpredicted in CESM1.2.2, and improvements in land surface models can improve prediction of climate extremes.

  4. The Great Plains low-level jet in 1.5C and 2C HAPPI simulations: Implications for changes in extreme climate events

    NASA Astrophysics Data System (ADS)

    Weaver, S. J.; Barcikowska, M. J.

    2017-12-01

    Global temperature targets have become the cornerstone for global climate policy discussions. Given the goal of the Paris Accord to limit the rise in global mean temperature to well below 2.0oC above pre-industrial levels, and pursue efforts toward the more ambitious 1.5oC goal, there is increasing focus in the climate science community on what the relative changes in regional climate extremes may be for these two scenarios. Despite the successes of major climate science modeling efforts, there is still a significant information gap regarding the regional and seasonal changes in some climate extremes over the U.S. as a function of these global mean temperature targets.During the spring and summer, large amounts of heat and moisture are transported northward into the central and eastern U.S. by the Great Plains Low-Level Jet (GPLLJ) - an atmospheric river which dominates the subcontinental scale climate variability during the warm half of the year. Accordingly, the GPLLJ and its vast spatiotemporal variability is highly influential over several types of extreme climate anomalies east of the Rocky Mountains, including, drought and pluvial events, tornadic activity, and the evolution of central U.S warming hole. Changes in the GPLLJ and its variability are probed from the perspective of several hundred climate realizations afforded by the availability of climate model experiments from the Half a degree additional warming, Prognosis, and Projected Impacts (HAPPI) effort - a suite of multi-model ensemble AMIP simulations forced by 1.5oC and 2oC levels of global warming. The multimodel analysis focuses on the variable magnitude of the seasonal changes in the mean GPLLJ and shifts in the extremes of the prominent modes of GPLLJ variability - both of which have implications for the future shifts in extreme climate events over the Great Plains, Midwest, and southeast regions of the U.S.

  5. Microbial Community of High Arsenic Groundwater in Agricultural Irrigation Area of Hetao Plain, Inner Mongolia

    PubMed Central

    Wang, Yanhong; Li, Ping; Jiang, Zhou; Sinkkonen, Aki; Wang, Shi; Tu, Jin; Wei, Dazhun; Dong, Hailiang; Wang, Yanxin

    2016-01-01

    Microbial communities can play important role in arsenic release in groundwater aquifers. To investigate the microbial communities in high arsenic groundwater aquifers in agricultural irrigation area, 17 groundwater samples with different arsenic concentrations were collected along the agricultural drainage channels of Hangjinhouqi County, Inner Mongolia and examined by illumina MiSeq sequencing approach targeting the V4 region of the 16S rRNA genes. Both principal component analysis and hierarchical clustering results indicated that these samples were divided into two groups (high and low arsenic groups) according to the variation of geochemical characteristics. Arsenic concentrations showed strongly positive correlations with NH4+ and total organic carbon (TOC). Sequencing results revealed that a total of 329–2823 operational taxonomic units (OTUs) were observed at the 97% OTU level. Microbial richness and diversity of high arsenic groundwater samples along the drainage channels were lower than those of low arsenic groundwater samples but higher than those of high arsenic groundwaters from strongly reducing areas. The microbial community structure in groundwater along the drainage channels was different from those in strongly reducing arsenic-rich aquifers of Hetao Plain and other high arsenic groundwater aquifers including Bangladesh, West Bengal, and Vietnam. Acinetobacter and Pseudomonas dominated with high percentages in both high and low arsenic groundwaters. Alishewanella, Psychrobacter, Methylotenera, and Crenothrix showed relatively high abundances in high arsenic groundwater, while Rheinheimera and the unidentified OP3 were predominant populations in low arsenic groundwater. Archaeal populations displayed a low occurrence and mainly dominated by methanogens such as Methanocorpusculum and Methanospirillum. Microbial community compositions were different between high and low arsenic groundwater samples based on the results of principal coordinate

  6. Multi-modeling assessment of recent changes in groundwater resource: application to the semi-arid Haouz plain (Central Morocco)

    NASA Astrophysics Data System (ADS)

    Fakir, Younes; Brahim, Berjamy; Page Michel, Le; Fathallah, Sghrer; Houda, Nassah; Lionel, Jarlan; Raki Salah, Er; Vincent, Simonneaux; Said, Khabba

    2015-04-01

    The Haouz plain (6000 km2) is a part of the Tensift basin located in the Central Morocco. The plain has a semi-arid climate (250 mm/y of rainfall) and is bordered in the south by the High-Atlas mountains. Because the plain is highly anthropized, the water resources face heavy demands from various competing sectors, including agriculture (over than 273000 ha of irrigated areas), water supply for more than 2 million inhabitants and about 2 millions of tourists annually. Consequently the groundwater is being depleted on a large area of the plain, with problems of water scarcity which pose serious threats to water supplies and to sustainable development. The groundwater in the Haouz plain was modeled previously by MODFLOW (USGS groundwater numerical modeling) with annual time steps. In the present study a multi-modeling approach is applied. The aim is to enhance the evaluation of the groundwater pumping for irrigation, one of the most difficult data to estimate, and to improve the water balance assessment. In this purpose, two other models were added: SAMIR (Satellite Estimation of Agricultural Water Demand) and WEAP (integrated water resources planning). The three models are implemented at a monthly time step and calibrated over the 2001-2011 period, corresponding to 120 time steps. This multi-modeling allows assessing the evolution of water resources both in time and space. The results show deep changes during the last years which affect generally the water resources and groundwater particularly. These changes are induced by a remarkable urbanism development, succession of droughts, intensive agriculture activities and weak management of irrigation and water resources. Some indicators of these changes are as follow: (i) the groundwater table decrease varies between 1 to 3m/year, (ii) the groundwater depletion during the last ten year is equivalent to 50% of the lost reserves during 40 years, (iii) the annual groundwater deficit is about 100 hm3, (iv) the renewable

  7. Types, harms and improvement of saline soil in Songnen Plain

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjun; Zhuang, Jingjing; Zhao, Anping; Li, Xinxin

    2018-03-01

    Saline soil is an extremely difficult and modified soil, widely distributed around the world. According to UN-UNESCO and FAO, the world’s saline soil area is about 9.54×108hm2, and there is a growing trend, every year in 1.0×106-1.5×106hm2 speed growth, the effective utilization of land resources to the world is the most serious threat. The total area of saline-alkali land in China is about 9.91×107hm2, including the Songnen Plain, which is called one of the three major saline soil concentrations in the world. The Songnen plain is an important grain producing area in China, and the saline soil occupies most of the Songnen plain, so it is of great significance to study the saline soil and improvement in Songnen plain.

  8. Hydrology of area 59, northern Great Plains and Rocky Mountain coal provinces, Colorado and Wyoming

    USGS Publications Warehouse

    Gaggiani, Neville G.; Britton, Linda J.; Minges, Donald R.; Kilpatrick, F.A.; Parker, Randolph S.; Kircher, James E.

    1987-01-01

    Hydrologic information and analysis aid in decisions to lease federally owned coal and to prepare necessary Environmental Assessments and Impact Study reports. This need has become even more critical with the enactment of Public Law 95-87, the "Surface Mining Control and Reclamation Act of 1977." This act requires an appropriate regulatory agency to issue permits, based on the review of permit-application data to assess hydrologic impacts. This report, which partially fulfills this requirement, is one in a series of nationwide coal province reports that present information thematically, through the use of a brief text and accompanying maps, graphs, charts, or other illustrations for single hydrologic topics. The report broadly characterizes the hydrology of Area 59 in north-central Colorado and southeastern Wyoming.The report area, located within the South Platte River basin, covers a 16,000-square-mile area of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics.The South Platte River, the major stream in the area, and most of its tributaries originate in granitic mountains and flow into and through the sedimentary rocks of the Great Plains. Altitudes range from less than 5,000 feet to more than 14,000 feet above sea level. Precipitation in the mountains may exceed 40 inches annually, much of it during the winter, and produces deep snowpacks. Snowmelt during the spring and summer produces most streamflow. Transmountain diversion of water from the streams on the western slope of the mountains also adds to the streamflow. Precipitation in the plains is as little as 10 inches annually. Streams that originate in the plains are ephemeral.Streamflow quality is best in the mountains, where dissolved-solids concentrations are generally small. Concentrations increase in the plains as streams flow through sedimentary basins, and as urbanization and irrigation increase. The quality of some mountain streams is affected by

  9. Refining Rural Spaces: Women and Vernacular Gentility in the Great Plains, 1880-1920

    ERIC Educational Resources Information Center

    Radke, Andrea G.

    2004-01-01

    In 1887 the Plains photographer Solomon Butcher met the David Hilton family in Custer County, Nebraska. Mrs. Hilton desired a photograph to send to relatives back East, but felt embarrassed by the family's sod dwelling. She insisted that Butcher not take a photo of the house, but asked the men to drag the Hiltons' beautiful new pump organ out into…

  10. The evolution of the New Jersey Pine Plains.

    PubMed

    Ledig, F Thomas; Hom, John L; Smouse, Peter E

    2013-04-01

    Fire in the New Jersey Pine Plains has selectively maintained a dwarf growth form of pitch pine (Pinus rigida), which is distinct from the surrounding tall forest of the Pine Barrens and has several other inherited adaptations that enable it to survive in an environment dominated by fire. Pitch pine progeny from two Pine Plains sites, the West and East Pine Plains, were grown in common garden environments with progeny from two Pine Barrens stands, Batsto and Great Egg Harbor River. The tests were replicated in five locations: in New Jersey, Connecticut, two sites in Massachusetts, and Korea. One of the tests was monitored for up to 36 yr. Progeny of Pine Plains origin were, in general, shorter, more crooked, precocious, bore more cones, had a higher frequency of serotinous cones, and had a higher frequency of stem cones than did Pine Barrens progeny, wherever they were grown. The Pine Plains is an ecotype that has evolved in response to disturbance. The several characters that distinguish it from the surrounding tall forest of the Pine Barrens are inherited. The dwarf stature and crooked form not only enable the ecotype to persist in an environment of frequent fires but also increase its flammability.

  11. Interagency collaboration in the Rocky Mountains and Great Plains: Federal-university climate service networks for producing actionable information for climate change adaptation

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; McNie, E.; Averyt, K.; Morisette, J. T.; Derner, J. D.; Ojima, D. S.; Dilling, L.; Barsugli, J. J.

    2014-12-01

    Several federal agencies in north-central United States are each working to develop and disseminate useful climate information to enhance resilience to climate change. This talk will discuss how the U.S. Geological Survey (USGS) the North Central Climate Science Center, the National Oceanic and Atmospheric Administration Western Water Assessment RISA, and the U.S. Department of Agriculture Climate Hub, are building and managing a collaborative research and climate-service network in the Rocky Mountains and Great Plains. This presentation will describe the evolution of the interagency collaboration and the partnership with universities to build a climate service network. Such collaboration takes time and intention and must include the right people and organizations to effectively bridge the gap between use-inspired research and application. In particular, we will discuss a focus on the Upper Missouri Basin, developing research to meet needs in a basin that has had relatively less attention on risks of climate change and adaptation to those risks. Each organization has its own mission, stakeholders, and priorities, but there are many commonalities and potential synergies. Together, these organizations, and their agency scientists and university partners, are fostering cross-agency collaboration at the regional scale to optimize efficient allocation of resources while simultaneously enabling information to be generated at a scale that is relevant to decision makers. By each organization knowing the others needs and priorities, there are opportunities to craft research agendas and strategies for providing services that take advantage of the strengths and skills of the different organizations. University partners are key components of each organization, and of the collaboration, who bring in expertise beyond that in the agencies, in particular connections to social scientists, extension services.

  12. Soil salinity study in Northern Great Plains sodium affected soil

    NASA Astrophysics Data System (ADS)

    Kharel, Tulsi P.

    Climate and land-use changes when combined with the marine sediments that underlay portions of the Northern Great Plains have increased the salinization and sodification risks. The objectives of this dissertation were to compare three chemical amendments (calcium chloride, sulfuric acid and gypsum) remediation strategies on water permeability and sodium (Na) transport in undisturbed soil columns and to develop a remote sensing technique to characterize salinization in South Dakota soils. Forty-eight undisturbed soil columns (30 cm x 15 cm) collected from White Lake, Redfield, and Pierpont were used to assess the chemical remediation strategies. In this study the experimental design was a completely randomized design and each treatment was replicated four times. Following the application of chemical remediation strategies, 45.2 cm of water was leached through these columns. The leachate was separated into 120- ml increments and analyzed for Na and electrical conductivity (EC). Sulfuric acid increased Na leaching, whereas gypsum and CaCl2 increased water permeability. Our results further indicate that to maintain effective water permeability, ratio between soil EC and sodium absorption ratio (SAR) should be considered. In the second study, soil samples from 0-15 cm depth in 62 x 62 m grid spacing were taken from the South Dakota Pierpont (65 ha) and Redfield (17 ha) sites. Saturated paste EC was measured on each soil sample. At each sampling points reflectance and derived indices (Landsat 5, 7, 8 images), elevation, slope and aspect (LiDAR) were extracted. Regression models based on multiple linear regression, classification and regression tree, cubist, and random forest techniques were developed and their ability to predict soil EC were compared. Results showed that: 1) Random forest method was found to be the most effective method because of its ability to capture spatially correlated variation, 2) the short wave infrared (1.5 -2.29 mum) and near infrared (0

  13. Buteo Nesting Ecology: Evaluating Nesting of Swainson's Hawks in the Northern Great Plains.

    PubMed

    Inselman, Will M; Datta, Shubham; Jenks, Jonathan A; Jensen, Kent C; Grovenburg, Troy W

    2015-01-01

    Swainson's hawks (Buteo swainsoni) are long-distance migratory raptors that nest primarily in isolated trees located in areas of high grassland density. In recent years, anthropogenic conversion of grassland habitat has raised concerns about the status of the breeding population in the northern Great Plains. In 2013, we initiated a study to investigate the influence of extrinsic factors influencing Swainson's hawk nesting ecology in north-central South Dakota and south-central North Dakota. Using ground and aerial surveys, we located and monitored nesting Swainson's hawk pairs: 73 in 2013 and 120 in 2014. We documented 98 successful breeding attempts that fledged 163 chicks; 1.52 and 1.72 fledglings per successful nest in 2013 and 2014, respectively. We used Program MARK to evaluate the influence of land cover on nest survival. The top model, SDist2Farm+%Hay, indicated that nest survival (fledging at least one chick) decreased as nests were located farther from farm sites and as the percent of hay cover increased within 1200-m of the nest site (34.4%; 95% CI = 27.6%-42.3%). We used logistic regression analysis to evaluate the influence of landscape variables on nest-site selection; Swainson's hawks selected for nest sites located closer to roads. We suggest that tree belts associated with farm sites, whether occupied or not, provide critical breeding sites for Swainson's hawks. Additionally, poor breeding success may be related to the late migratory behavior of this species which requires them to occupy marginal habitat due to other raptors occupying the most suitable habitat prior to Swainson's hawks arriving to the breeding grounds.

  14. Perception of the drought hazard on the Great Plains and its sociological impacts

    NASA Astrophysics Data System (ADS)

    Woudenberg, Donna Louise

    Drought, a defining characteristic of the Great Plains, continues to be one of the most expensive natural disasters in the United States, with the lion's share of financial losses shouldered by crop and livestock producers. These producer's perceptions of and responses to drought were studied in the mid-1960s, the mid-1980s, and were examined again in this study, providing valuable longitudinal data. A number of direct and indirect impacts are experienced by non-farm businesses, communities, and individuals, as well. Some of those impacts have not been well researched and were integral to this project. Interviews with crop producers, livestock producers, and community members were conducted in Frontier County, Nebraska in late summer 2006. It was found that producers are very perceptive of the drought hazard, a result found in the two previous studies; recollections and estimates were well supported with 100 years of SPI and PDSI values. Adoption of drought mitigation practices has increased over the past 40 years. Producers were concerned about the myriad of factors they must consider when planning their farm/ranch operations, particularly as they are trying to adjust to water restrictions imposed as an outcome of the Kansas-Nebraska lawsuit on the Republican River (a task exacerbated by the long-term drought in recent years), but overall they are basically optimistic. Community members were very concerned about the future of farming and the quality of rural life. They expressed fears that changes in farming practices may lower the value of land, affect the tax base, and ultimately impact the school system and other county services.

  15. Land-atmosphere coupling and climate prediction over the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Williams, Ian N.; Lu, Yaqiong; Kueppers, Lara M.; Riley, William J.; Biraud, Sebastien C.; Bagley, Justin E.; Torn, Margaret S.

    2016-10-01

    Biases in land-atmosphere coupling in climate models can contribute to climate prediction biases, but land models are rarely evaluated in the context of this coupling. We tested land-atmosphere coupling and explored effects of land surface parameterizations on climate prediction in a single-column version of the National Center for Atmospheric Research Community Earth System Model (CESM1.2.2) and an off-line Community Land Model (CLM4.5). The correlation between leaf area index (LAI) and surface evaporative fraction (ratio of latent to total turbulent heat flux) was substantially underpredicted compared to observations in the U.S. Southern Great Plains, while the correlation between soil moisture and evaporative fraction was overpredicted by CLM4.5. To estimate the impacts of these errors on climate prediction, we modified CLM4.5 by prescribing observed LAI, increasing soil resistance to evaporation, increasing minimum stomatal conductance, and increasing leaf reflectance. The modifications improved the predicted soil moisture-evaporative fraction (EF) and LAI-EF correlations in off-line CLM4.5 and reduced the root-mean-square error in summer 2 m air temperature and precipitation in the coupled model. The modifications had the largest effect on prediction during a drought in summer 2006, when a warm bias in daytime 2 m air temperature was reduced from +6°C to a smaller cold bias of -1.3°C, and a corresponding dry bias in precipitation was reduced from -111 mm to -23 mm. The role of vegetation in droughts and heat waves is underpredicted in CESM1.2.2, and improvements in land surface models can improve prediction of climate extremes.

  16. Potential effects of climate change on aquatic ecosystems of the Great Plains of North America

    USGS Publications Warehouse

    Covich, A.P.; Fritz, S.C.; Lamb, P.J.; Marzolf, R.D.; Matthews, W.J.; Poiani, K.A.; Prepas, E.E.; Richman, M.B.; Winter, T.C.

    1997-01-01

    The Great Plains landscape is less topographically complex than most other regions within North America, but diverse aquatic ecosystems, such as playas, pothole lakes, ox-bow lakes, springs, groundwater aquifers, intermittent and ephemeral streams, as well as large rivers and wetlands, are highly dynamic and responsive to extreme climatic fluctuations. We review the evidence for climatic change that demonstrates the historical importance of extremes in north-south differences in summer temperatures and east-west differences in aridity across four large subregions. These physical driving forces alter density stratification, deoxygenation, decomposition and salinity. Biotic community composition and associated ecosystem processes of productivity and nutrient cycling respond rapidly to these climatically driven dynamics. Ecosystem processes also respond to cultural effects such as dams and diversions of water for irrigation, waste dilution and urban demands for drinking water and industrial uses. Distinguishing climatic from cultural effects in future models of aquatic ecosystem functioning will require more refinement in both climatic and economic forecasting. There is a need, for example, to predict how long-term climatic forecasts (based on both ENSO and global warming simulations) relate to the permanence and productivity of shallow water ecosystems. Aquatic ecologists, hydrologists, climatologists and geographers have much to discuss regarding the synthesis of available data and the design of future interdisciplinary research. ?? 1997 by John Wiley & Sons, Ltd.

  17. Analysis of ecosystem controls on soil carbon source-sink relationships in the northwest Great Plains

    USGS Publications Warehouse

    Tan, Z.; Liu, S.; Johnston, C.A.; Liu, J.; Tieszen, L.L.

    2006-01-01

    Our ability to forecast the role of ecosystem processes in mitigating global greenhouse effects relies on understanding the driving forces on terrestrial C dynamics. This study evaluated the controls on soil organic C (SOC) changes from 1973 to 2000 in the northwest Great Plains. SOC source-sink relationships were quantified using the General Ensemble Biogeochemical Modeling System (GEMS) based on 40 randomly located 10 × 10 km2 sample blocks. These sample blocks were aggregated into cropland, grassland, and forestland groups based on land cover composition within each sample block. Canonical correlation analysis indicated that SOC source-sink relationship from 1973 to 2000 was significantly related to the land cover type while the change rates mainly depended on the baseline SOC level and annual precipitation. Of all selected driving factors, the baseline SOC and nitrogen levels controlled the SOC change rates for the forestland and cropland groups, while annual precipitation determined the C source-sink relationship for the grassland group in which noticeable SOC sink strength was attributed to the conversion from cropped area to grass cover. Canonical correlation analysis also showed that grassland ecosystems are more complicated than others in the ecoregion, which may be difficult to identify on a field scale. Current model simulations need further adjustments to the model input variables for the grass cover-dominated ecosystems in the ecoregion.

  18. Ammonia losses from a southern high plains dairy during summer

    USDA-ARS?s Scientific Manuscript database

    Animal agriculture is a significant source of ammonia (NH3). Cattle excrete a large amount of nitrogen (N); most urinary N is converted to NH3, volatilized and lost to the atmosphere. Open lot dairies on the southern High Plains are a growing industry and face environmental challenges including repo...

  19. A comparison of native tallgrass prairie and plains bluestem forage systems for cow-calf production in the southern great plains.

    PubMed

    Coleman, S W; Phillips, W A; Volesky, J D; Buchanan, D

    2001-07-01

    The objective of this study was to compare an introduced warm-season perennial grass (plains bluestem, Bothriochloa ischaemum) to native tallgrass prairie for cow-calf production. Three systems were used, two based on tallgrass prairie with two different forms of protein supplementation and one based on plains bluestem as the primary forage. The systems were as follows: 1) native tallgrass prairie with pelleted oilseed meal as the winter protein supplement (native-control); 2) native tallgrass prairie with limited access to wheat pasture as the winter protein supplement (native-wheat); and 3) plains bluestem with limited access to wheat pasture as the protein supplement (bluestem-wheat). Oilseed meal protein supplements were fed twice weekly. Cows grazing wheat pasture were allowed 6 h of grazing twice weekly. Ninety-nine cows per year were used over the 3-yr study. Cows were sired by either Charolais, Gelbvieh, Angus, or Hereford bulls out of commercial Angus-Hereford dams. Calves were sired by Simmental bulls. Calving and weaning rate increased over time but did not differ among systems or breed types. System did not influence the size or body condition score of cows or the performance of calves, but changes in the weight and condition scores of cows were greater on either native system than on the bluestem-wheat system. Cows from Charolais and Gelbvieh bulls were taller (P < 0.05), and heavier (P < 0.05), and weaned heavier (P < 0.05) calves than cows from Angus or Hereford bulls. The weight of cows on the bluestem-wheat system tended to decrease over time, whereas cows grazing on the native systems tended to gain weight over time. The native-control system was the most profitable system based on cow production. If excess hay produced from the bluestem-wheat system was sold as a cash crop, then this system was the most profitable. In general, we conclude that limit-grazing wheat pasture is a viable alternative to oilseed meal as protein supplement for wintering

  20. Work More? The 8.2 kaBP Abrupt Climate Change Event and the Origins of Irrigation Agriculture and Surplus Agro-Production in Mesopotamia

    NASA Astrophysics Data System (ADS)

    Weiss, H.

    2003-12-01

    The West Asian archaeological record is of sufficient transparency and resolution to permit observation of the social responses to the major Holocene abrupt climate change events at 8.2, 5.2 and 4.2 kaBP. The 8.2kaBP abrupt climate change event in West Asia was a three hundred year aridification and cooling episode. During this period rain-fed agriculture, established for over a millennium in northern Mesopotamia, suddenly collapsed. Irrigation agriculture, pastoral nomadism, or migration were the only subsistence alternatives for populations previously supported by cereal dry-farming. Irrigation agriculture was not, however, possible along the northern alluvial plains of the Tigris and Euphrates Rivers, where incised riverbeds were several meters below plain level. Exploitable plain-level levees were only accessible in southern-most alluvial plain, at the head of the present-day Persian Gulf. The archaeological data from this region documents the first irrigation agriculture settlement of the plain during the 8.2 kaBP event. Irrigation agriculture provides about twice the yield of dry-farming in Mesopotamia, but at considerable labor costs relative to dry-farming. With irrigation agriculture surplus production was now available for deployment. But why work more? The 8.2 kaBP event provided the natural force for Mesopotamian irrigation agriculture and surplus production that were essential for the earliest class-formation and urban life.

  1. Stress hormone is implicated in satellite-caller associations and sexual selection in the Great Plains toad.

    PubMed

    Leary, Christopher J; Garcia, Apryl M; Knapp, Rosemary

    2006-10-01

    The effects of androgens on male-typical traits suggest that variation among males in circulating levels can play a major role in sexual selection. We examined whether variation in vocal attractiveness is attributable to differences in androgen levels among Great Plains toads (Bufo cognatus). We found that noncalling "satellite" males practicing an alternative mating tactic were more likely to associate with males producing long calls. However, callers with satellites did not have higher androgen levels than callers without satellites. Rather, callers with satellites had significantly lower corticosterone (CORT) levels than callers without satellites. A CORT manipulation experiment suggested that differences in calls for males with and without satellites were related to differences in CORT levels. Furthermore, there was a negative correlation between CORT level and call duration within most nights of chorus activity. However, the correlation was weak for the pooled data (across all nights), suggesting that local environmental and/or social factors also affect call duration. Last, we show that females preferred broadcast calls of longer duration, characteristic of males with satellites and low CORT. These results imply that satellites optimize their reproductive success by associating with males producing long calls. However, this association should negatively affect the fitness of attractive callers.

  2. Hydrology of Area 61, Northern Great Plains and Rocky Mountain Coal Provinces, Colorado and New Mexico

    USGS Publications Warehouse

    Abbott, P.O.; Geldon, Arthur L.; Cain, Doug; Hall, Alan P.; Edelmann, Patrick

    1983-01-01

    Area 61 is located on the Colorado-New Mexico boundary in Huerfano and Las Animas Counties, Colorado, and Colfax County, New Mexico, and includes the Raton Mesa coal region. The 5 ,900-square-mile area is an asymmetrical structural trough bounded by the Rocky Mountains on the west and the Great Plains on the east. The area is drained by the Huerfano, Apishapa, Purgatoire, and Canadian Rivers (and their tributaries), all tributary to the Arkansas River. The principal coal-bearing formations are the Vermejo Formation of Late Cretaceous age and the Raton Formation of Late Cretaceous and Paleocene age. Much of the coal in the area is of coking quality, important to the metallurgical industry. Topographic relief in the area is greater than 8,700 feet, and this influences the climate which in turn affects the runoff pattern of area streams. Summer thunderstorms often result in flash floods. Virtually all geologic units in the region yield water. Depth to ground water ranges from land surface to 400 feet. Surface and ground water in the area contain mostly bicarbonate and sulfate ions; locally in the ground water, chloride ions predominate. Potential hydrologic problems associated with surface coal mining in the area are water-quality degradation, water-table decline, and increased erosion and sedimentation.

  3. Mapping carbon flux uncertainty and selecting optimal locations for future flux towers in the Great Plains

    USGS Publications Warehouse

    Gu, Yingxin; Howard, Daniel M.; Wylie, Bruce K.; Zhang, Li

    2012-01-01

    Flux tower networks (e. g., AmeriFlux, Agriflux) provide continuous observations of ecosystem exchanges of carbon (e. g., net ecosystem exchange), water vapor (e. g., evapotranspiration), and energy between terrestrial ecosystems and the atmosphere. The long-term time series of flux tower data are essential for studying and understanding terrestrial carbon cycles, ecosystem services, and climate changes. Currently, there are 13 flux towers located within the Great Plains (GP). The towers are sparsely distributed and do not adequately represent the varieties of vegetation cover types, climate conditions, and geophysical and biophysical conditions in the GP. This study assessed how well the available flux towers represent the environmental conditions or "ecological envelopes" across the GP and identified optimal locations for future flux towers in the GP. Regression-based remote sensing and weather-driven net ecosystem production (NEP) models derived from different extrapolation ranges (10 and 50%) were used to identify areas where ecological conditions were poorly represented by the flux tower sites and years previously used for mapping grassland fluxes. The optimal lands suitable for future flux towers within the GP were mapped. Results from this study provide information to optimize the usefulness of future flux towers in the GP and serve as a proxy for the uncertainty of the NEP map.

  4. Development of an Assessment Tool for Agricultural Best Management Practice Iimplementation in the Great Lakes Restoration Initiative Priority Watersheds—Alger Creek, Tributary to Saginaw River, Michigan

    USGS Publications Warehouse

    Merriman, Katherine R.

    2015-11-19

    The Great Lakes face a number of serious challenges that cause damage to water quality, habitat, ecology, and coastal health. Excess nutrients from point and nonpoint sources have a history of causing harmful algal blooms (HABs); since the late 1990s, a resurgence of HABs have forced beach closures and resulted in water quality impairments across the Great Lakes. Studies increasingly point to phosphorus (P) runoff from agricultural lands as the cause of these HABs. In 2010, the Great Lakes Restoration Initiative (GLRI) was launched to revitalize the Great Lakes. The GLRI aims to address the challenges facing the Great Lakes and provide a framework for restoration and protection. As part of this effort, the Priority Watersheds Work Group (PWWG), cochaired by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Agriculture-Natural Resources Conservation Service (USDA–NRCS), is targeting Priority Watersheds (PWs) to reduce the amount of P reaching the Great Lakes. Within the PWs, USDA–NRCS identifies small-scale subbasins with high concentrations of agriculture for coordinated nutrient reduction efforts and enhanced monitoring and modeling. The USDA–NRCS supplies financial and/or technical assistance to producers to install or implement best management practices (BMPs) to lessen the negative effects of agriculture to water quality; additional funding is provided by the GLRI through USDA–NRCS to saturate the small-scale subbasins with BMPs. The watershed modeling component, introduced in this fact sheet, assesses the effectiveness of USDA–NRCS funded BMPs, and nutrient reductions because of GLRI or other funding programs are differentiated. Modeling scenarios consider BMPs that have already been applied and those planned to be implemented across the small-scale subbasins.

  5. Development of an Assessment Tool for Agricultural Best Management Practice Implementation in the Great Lakes Restoration Initiative Priority Watersheds—Eagle Creek, Tributary to Maumee River, Ohio

    USGS Publications Warehouse

    Merriman, Katherine R.

    2015-11-19

    The Great Lakes face a number of serious challenges that cause damage to water quality, habitat, ecology, and coastal health. Excess nutrients from point and nonpoint sources have a history of causing harmful algal blooms (HABs); since the late 1990s, a resurgence of HABs have forced beach closures and resulted in water quality impairments across the Great Lakes. Studies increasingly point to phosphorus (P) runoff from agricultural lands as the cause of these HABs. In 2010, the Great Lakes Restoration Initiative (GLRI) was launched to revitalize the Great Lakes. The GLRI aims to address the challenges facing the Great Lakes and provide a framework for restoration and protection. As part of this effort, the Priority Watersheds Work Group (PWWG), cochaired by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Agriculture-Natural Resources Conservation Service (USDA–NRCS), is targeting Priority Watersheds (PWs) to reduce the amount of P reaching the Great Lakes. Within the PWs, USDA–NRCS identifies small-scale subbasins with high concentrations of agriculture for coordinated nutrient reduction efforts and enhanced monitoring and modeling. The USDA–NRCS supplies financial and/or technical assistance to producers to install or implement best management practices (BMPs) to lessen the negative effects of agriculture to water quality; additional funding is provided by the GLRI through USDA–NRCS to saturate the small-scale subbasins with BMPs. The watershed modeling component, introduced in this fact sheet, assesses the effectiveness of USDA–NRCS funded BMPs, and nutrient reductions because of GLRI or other funding programs are differentiated. Modeling scenarios consider BMPs that have already been applied and those planned to be implemented across the small-scale subbasins.

  6. Using stable isotopes to understand hydrochemical processes in and around a Prairie Pothole wetland in the Northern Great Plains, USA

    USGS Publications Warehouse

    Mills, Christopher T.; Goldhaber, Martin B.; Stricker, Craig A.; Holloway, JoAnn M.; Morrison, Jean M.; Ellefsen, Karl J.; Rosenberry, Donald O.; Thurston, Roland S.

    2011-01-01

    Millions of internally drained wetland systems in the Prairie Potholes region of the northern Great Plains (USA and Canada) provide indispensable habitat for waterfowl and a host of other ecosystem services. The hydrochemistry of these systems is complex and a crucial control on wetland function, flora and fauna. Wetland waters can have high concentrations of SO2-4 due to the oxidation of large amounts of pyrite in glacial till that is in part derived from the Pierre shale. Water chemistry including δ18OH2O, δ2HH2O, and δ34SSO4 values, was determined for groundwater, soil pore water, and wetland surface water in and around a discharge wetland in North Dakota. The isotopic data for the first time trace the interaction of processes that affect wetland chemistry, including open water evaporation, plant transpiration, and microbial SO4 reduction.

  7. Water-level changes in the High Plains aquifer; predevelopment to 1991

    USGS Publications Warehouse

    McGrath, T.J.; Dugan, J.T.

    1993-01-01

    Regional variability in water-level change in the High Plains aquifer underlying parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming results from large regional differences in climate, soils, land use, and ground-water withdrawals for irrigation. From the beginning of significant development of the High Plains aquifer for irrigation to 1980, substantial water-level declines have occurred in several areas. The estimated average area-weighted water-level decline from predevelopment to 1980 for the High Plains was 9.9 feet, an average annual decline of about 0.25 foot. These declines exceeded 100 feet in some parts of the Central and Southern High Plains. Declines were much smaller and less extensive in the Northern High Plains as a result of later irrigation development. Since 1980, water levels in those areas of large declines in the Central and Southern High Plains have continued to decline, but at a much slower annual rate. The estimated average area-weighted water-level decline from 1980 to 1991 for the entire High Plains was 1.41 feet, an average annual decline of about 0.13 foot. The relatively small decline since 1980, in relation to the declines prior to 1980, is associated with a decrease in ground-water application for irrigated agriculture and greater than normal precipitation. Water-conserving practices and technology, in addition to reductions in irrigated acreages, contributed to the decrease in ground-water withdrawals for irrigation.

  8. Site scientific mission plan for the Southern Great Plains CART site, January-June 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1994-12-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1995, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Experiment Support Team [EST], Operations Team, Data Management Teammore » [DMT], Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods (IOPs). Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, The ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.« less

  9. Vulnerability of southern plains agriculture to climate change

    USDA-ARS?s Scientific Manuscript database

    Climate is a key driver for all ecological and economic systems; therefore, climate change introduces additional uncertainty and vulnerability into these systems. Agriculture represents a major land use that is critical to the survival of human societies and it is highly vulnerable to climate. Clima...

  10. Dendroclimatic potential of plains cottonwood (Populus deltoides subsp. monilifera) from the Northern Great Plains, USA

    USGS Publications Warehouse

    Edmonson, Jesse; Friedman, Jonathan; Meko, David; Touchan, Ramzi; Scott, Julian; Edmonson, Alan

    2014-01-01

    A new 368-year tree-ring chronology (A.D. 1643–2010) has been developed in western North Dakota using plains cottonwood (Populus deltoides subsp. monilifera) growing on the relatively undisturbed floodplain of the Little Missouri River in the North Unit of Theodore Roosevelt National Park. We document many slow-growing living trees between 150–370 years old that contradict the common understanding that cottonwoods grow fast and die young. In this northern location, cottonwood produces distinct annual rings with dramatic interannual variability that strongly crossdate. The detrended tree-ring chronology is significantly positively correlated with local growing season precipitation and soil moisture conditions (r  =  0.69). This time series shows periods of prolonged low radial tree growth during the known droughts of the instrumental record (e.g. 1931–1939 and 1980–1981) and also during prehistory (e.g. 1816–1823 and 1856–1865) when other paleoclimate studies have documented droughts in this region. Tree rings of cottonwood will be a useful tool to help reconstruct climate, streamflow, and the floodplain history of the Little Missouri River and other northern river systems.

  11. Climate change, water, and agriculture: a study of two contrasting regions

    NASA Astrophysics Data System (ADS)

    Kirilenko, A.; Dronin, N.; Zhang, X.

    2009-12-01

    We present a study of potential impacts of climate change on water resources and agriculture in two contrasting regions, the Aral Sea basin in Central Asia and the Northern Great Plains in the United States. The Aral Sea basin is one of the most anthropogenically modified areas of the world; it is also a zone of a water-related ecological crisis. We concentrate on studying water security of five countries in the region, which inherit their water regulation from the planned economy of USSR. Water management was targeted at maximizing agricultural output through diverting the river flow into an extensive and largely ineffective network of irrigation canals. The current water crisis is largely due to human activity; however the region is also strongly impacted by the climate. Climate change will contribute to water problems, escalating irrigation demand during the drought period, and increasing water loss with evaporation. The future of the countries of the Aral Sea basin then depends on both the regional scenario of water management policy and a global scenario of climate change, and is integrated with global socioeconomic scenarios. We formulate a set of regional policy scenarios (“Business as Usual”, “Falling Behind” and “Closing the Gap”) and demonstrate how each of them corresponds to IPCC SRES scenarios, the latter used as an input to the General Circulation Models (GCMs). Then we discuss the relative effectiveness of the introduced scenarios for mitigating water problems in the region, taking into account the adaptation through changing water demand for agriculture. Finally, we introduce the results of multimodel analysis of GCM climate projections, especially in relation to the change in precipitation and frequency of droughts, and discuss the impact of climate change on future development of the region. In the same way as the Aral Sea basin, the Northern Great Plains is expected to be a region heavily impacted by climate change. We concentrate on

  12. Hydrochemical Characterization of Groundwater Quality for Drinking and Agricultural Purposes: A Case Study in Rafsanjan Plain, Iran.

    PubMed

    Hosseinifard, Seyed Javad; Mirzaei Aminiyan, Milad

    One of the important purposes of hydrology is to ensure water supply in accordance with the quality criteria for agricultural, industrial, and drinking water uses. The groundwater is the main source of water supply in arid and semi-arid regions. This study was conducted to evaluate factors regulating groundwater quality in Rafsanjan plain. A total of 1040 groundwater samples randomly were collected from different areas of Rafsanjan. Then, each sample was analyzed for the major ions based on standard methods. The pH, SAR, EC, and TDS parameters and concentrations of Ca 2+ , Mg 2+ , and Na + cations, and Cl - , [Formula: see text], [Formula: see text] and [Formula: see text] anions were measured. Also boron concentration in each sample was determined. Although, maximum and minimum values of EC and TDS linked to the Anar-Beyaz area and Eastern Urban, respectively, irrigation water EC condition, however, was critical in the study areas. The pH value in Western Urban was higher than the other areas, and its value for Anar-Beyaz area was lower than the other areas, but pH value is at the optimal level in all the study areas. The results showed that hazard state with respect to Mg was critical except in Koshkoueiyeh and Anar-Beyaz areas, that these areas are marginal for irrigation use with little harm with reference to Mg. From the results, it was concluded that the status of boron concentration in study areas was critical. According to the hydrochemistry diagrams, the main groundwater type in different study areas was NaCl. Groundwater quality was not appropriate for drinking usage, and its status for agricultural practices was unsuitable in these areas.

  13. Surface-water quality in agricultural watersheds of the North Carolina Coastal Plain associated with concentrated animal feeding operations

    USGS Publications Warehouse

    Harden, Stephen L.

    2015-01-01

    A classification tree model was developed to examine relations of watershed environmental attributes among the study sites with and without CAFO manure effects. Model results indicated that variations in swine barn density, percentage of wetlands, and total acres available for applying swine-waste manures had an important influence on those watersheds where CAFO effects on water quality were either evident or mitigated. Measurable effects of CAFO waste manures on stream water quality were most evident in those SW and SP watersheds having lower percentages of wetlands combined with higher swine barn densities and (or) higher total acres available for applying waste manure at the swine CAFOs. Stream water quality was similar to background agricultural conditions in SW and SP watersheds with lower swine barn densities coupled with higher percentages of wetlands or lower acres available for swine manure applications. The model provides a useful tool for exploring and identifying similar, unmonitored watersheds in the North Carolina Coastal Plain with potential CAFO manure influences on water quality that might warrant further examination.

  14. Second chance for the plains bison

    USGS Publications Warehouse

    Freese, Curtis H.; Aune, K.; Boyd, D.; Derr, James N.; Forrest, Steven C.; Gates, C. Cormack; Gogan, Peter J.; Grassel, Shaun M.; Halbert, Natalie D.; Kunkel, Kyran; Redford, Kent

    2007-01-01

    Before European settlement the plains bison (Bison bison bison) numbered in the tens of millions across most of the temperate region of North America. Within the span of a few decades during the mid- to late-1800s its numbers were reduced by hunting and other factors to a few hundred. The plight of the plains bison led to one of the first major movements in North America to save an endangered species. A few individuals and the American Bison Society rescued the remaining animals. Attempts to hybridize cattle and bison when bison numbers were low resulted in extensive cattle gene introgression in bison. Today, though approximately 500,000 plains bison exist in North America, few are free of cattle gene introgression, 96% are subject to anthropogenic selection for commodity production, and only 4% are in herds managed primarily for conservation purposes. Small herd size, artificial selection, cattle-gene introgression, and other factors threaten the diversity and integrity of the bison genome. In addition, the bison is for all practical purposes ecologically extinct across its former range, with multiple consequences for grassland biodiversity. Urgent measures are needed to conserve the wild bison genome and to restore the ecological role of bison in grassland ecosystems. Socioeconomic trends in the Great Plains, combined with new information about bison conservation needs and new conservation initiatives by both the public and public sectors, have set the stage for significant progress in bison conservation over the next few years.

  15. Effects of the Bermuda High and the Great Plains low-level jet upon background and peak ozone concentrations in Texas urban areas

    NASA Astrophysics Data System (ADS)

    Estes, M. J.; Wang, Y.; Lei, R.; Wang, S. C.; Jia, B.

    2017-12-01

    Previous studies have established that the westward extent of the Bermuda High is strongly linked to the ozone concentrations in Houston. This study examines the linkages between the Bermuda High, the Great Plains low-level jet, background ozone in the eastern half of Texas, and local contributions to peak ozone in Texas urban areas. Analysis of North American Regional Reanalysis (NARR) wind and pressure fields will be used to establish the presence and strength of synoptic-scale weather features, and this information will be used with ozone data from air quality networks to determine the effects upon the seasonal and interannual variations of ozone. Quantification of the effects of large-scale meteorological factors will improve understanding of the causes of ozone variations, including decadal trends in Texas cities.

  16. Land-atmosphere coupling manifested in warm-season observations on the U.S. southern great plains

    DOE PAGES

    Phillips, Thomas J.; Klein, Stephen A.

    2014-01-28

    This study examines several observational aspects of land-atmosphere coupling on daily average time scales during warm seasons of the years 1997 to 2008 at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) Central Facility site near Lamont, Oklahoma. Characteristics of the local land-atmosphere coupling are inferred by analyzing the covariability of selected land and atmospheric variables that include precipitation and soil moisture, surface air temperature, relative humidity, radiant and turbulent fluxes, as well as low-level cloud base height and fractional coverage. For both the energetic and hydrological aspects of this coupling, it is found that large-scalemore » atmospheric forcings predominate, with local feedbacks of the land on the atmosphere being comparatively small much of the time. The weak land feedbacks are manifested by 1) the inability of soil moisture to comprehensively impact the coupled land-atmosphere energetics, and 2) the limited recycling of local surface moisture under conditions where most of the rainfall derives from convective cells that originate at remote locations. There is some evidence, nevertheless, of the local land feedback becoming stronger as the soil dries out in the aftermath of precipitation events, or on days when the local boundary-layer clouds are influenced by thermal updrafts known to be associated with convection originating at the surface. Finally, we also discuss potential implications of these results for climate-model representation of regional land-atmosphere coupling.« less

  17. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2003-01-01

    The Normalized Difference Vegetation Index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR) has been widely used to monitor moisture-related vegetation condition. The relationship between vegetation vigor and moisture availability, however, is complex and has not been adequately studied with satellite sensor data. To better understand this relationship, an analysis was conducted on time series of monthly NDVI (1989–2000) during the growing season in the north and central U.S. Great Plains. The NDVI was correlated to the Standardized Precipitation Index (SPI), a multiple-time scale meteorological-drought index based on precipitation. The 3-month SPI was found to have the best correlation with the NDVI, indicating lag and cumulative effects of precipitation on vegetation, but the correlation between NDVI and SPI varies significantly between months. The highest correlations occurred during the middle of the growing season, and lower correlations were noted at the beginning and end of the growing season in most of the area. A regression model with seasonal dummy variables reveals that the relationship between the NDVI and SPI is significant in both grasslands and croplands, if this seasonal effect is taken into account. Spatially, the best NDVI–SPI relationship occurred in areas with low soil water-holding capacity. Our most important finding is that NDVI is an effective indicator of vegetation-moisture condition, but seasonal timing should be taken into consideration when monitoring drought with the NDVI.

  18. Soil organic carbon dynamics as related to land use history in the northwestern Great Plains

    USGS Publications Warehouse

    Tan, Z.; Liu, S.; Johnston, C.A.; Loveland, Thomas R.; Tieszen, L.L.; Liu, J.; Kurtz, R.

    2005-01-01

    Strategies for mitigating the global greenhouse effect must account for soil organic carbon (SOC) dynamics at both spatial and temporal scales, which is usually challenging owing to limitations in data and approach. This study was conducted to characterize the SOC dynamics associated with land use change history in the northwestern Great Plains ecoregion. A sampling framework (40 sample blocks of 10 × 10 km2 randomly located in the ecoregion) and the General Ensemble Biogeochemical Modeling System (GEMS) were used to quantify the spatial and temporal variability in the SOC stock from 1972 to 2001. Results indicate that C source and sink areas coexisted within the ecoregion, and the SOC stock in the upper 20-cm depth increased by 3.93 Mg ha−1 over the 29 years. About 17.5% of the area was evaluated as a C source at 122 kg C ha−1 yr−1. The spatial variability of SOC stock was attributed to the dynamics of both slow and passive fractions, while the temporal variation depended on the slow fraction only. The SOC change at the block scale was positively related to either grassland proportion or negatively related to cropland proportion. We concluded that the slow C pool determined whether soils behaved as sources or sinks of atmospheric CO2, but the strength depended on antecedent SOC contents, land cover type, and land use change history in the ecoregion.

  19. Development of an Assessment Tool for Agricultural Best Management Practice Implementation in the Great Lakes Restoration Initiative Priority Watersheds—Upper East River, Tributary to Green Bay, Wisconsin

    USGS Publications Warehouse

    Merriman, Katherine R.

    2015-11-19

    The Great Lakes face a number of serious challenges that cause damage to water quality, habitat, ecology, and coastal health. Excess nutrients from point and nonpoint sources have a history of causing harmful algal blooms (HABs); since the late 1990s, a resurgence of HABs have forced beach closures and resulted in water quality impairments across the Great Lakes. Studies increasingly point to phosphorus (P) runoff from agricultural lands as the cause of these HABs. In 2010, the Great Lakes Restoration Initiative (GLRI) was launched to revitalize the Great Lakes. The GLRI aims to address the challenges facing the Great Lakes and provide a framework for restoration and protection. As part of this effort, the Priority Watersheds Work Group (PWWG), cochaired by the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Agriculture-Natural Resources Conservation Service (USDA–NRCS), is targeting Priority Watersheds (PWs) to reduce the amount of P reaching the Great Lakes. Within the PWs, USDA–NRCS identifies small-scale subbasins with high concentrations of agriculture for coordinated nutrient reduction efforts and enhanced monitoring and modeling. The USDA–NRCS supplies financial and/or technical assistance to producers to install or implement best management practices (BMPs) to lessen the negative effects of agriculture to water quality; additional funding is provided by the GLRI through USDA–NRCS to saturate the small-scale subbasins with BMPs. The watershed modeling component, introduced in this fact sheet, assesses the effectiveness of USDA–NRCS funded BMPs, and nutrient reductions because of GLRI or other funding programs are differentiated. Modeling scenarios consider BMPs that have already been applied and those planned to be implemented across the small-scale subbasins.

  20. Seasonal water-level perturbations beneath the high plains of the Llano Estacado.

    USDA-ARS?s Scientific Manuscript database

    The Llano Estacado of North America is a vast elevated plain favorably situated above a large portion of the Ogallala Aquifer.The Ogallala Aquifer provides an essential source of groundwater for a highly productive irrigated agricultural system. Each year, groundwater is pumped from the aquifer to i...

  1. Seasonal water-level perturbations beneath the high plains of the Llano Estacado

    USDA-ARS?s Scientific Manuscript database

    The Llano Estacado of North America is a vast elevated plain favorably situated above a large portion of the Ogallala Aquifer. The Ogallala Aquifer provides an essential source of freshwater for a highly productive irrigated agricultural system. Each year, groundwater is pumped from the aquifer to ...

  2. Agricultural Mechanics Laboratory Management Professional Development Needs of Wyoming Secondary Agriculture Teachers

    ERIC Educational Resources Information Center

    McKim, Billy R.; Saucier, P. Ryan

    2011-01-01

    Accidents happen; however, the likelihood of accidents occurring in the agricultural mechanics laboratory is greatly reduced when agricultural mechanics laboratory facilities are managed by secondary agriculture teachers who are competent and knowledgeable. This study investigated the agricultural mechanics laboratory management in-service needs…

  3. Bed site selection by neonate deer in grassland habitats on the northern Great Plains

    USGS Publications Warehouse

    Grovenburg, T.W.; Jacques, C.N.; Klaver, R.W.; Jenks, J.A.

    2010-01-01

    Bed site selection is an important behavioral trait influencing neonate survival. Vegetation characteristics of bed sites influence thermal protection of neonates and concealment from predators. Although previous studies describe bed site selection of neonatal white-tailed deer (Odocoileus virginianus) in regions of forested cover, none determined microhabitat effects on neonate bed site selection in the Northern Great Plains, an area of limited forest cover. During summers 2007–2009, we investigated bed site selection (n  =  152) by 81 radiocollared neonate white-tailed deer in north-central South Dakota, USA. We documented 80 (52.6%) bed sites in tallgrass–Conservation Reserve Program lands, 35 (23.0%) bed sites in forested cover, and 37 (24.3%) in other habitats (e.g., pasture, alfalfa, wheat). Bed site selection varied with age and sex of neonate. Tree canopy cover (P < 0.001) and tree basal area (P < 0.001) decreased with age of neonates, with no bed sites observed in forested cover after 18 days of age. Male neonates selected sites with less grass cover (P < 0.001), vertical height of understory vegetation (P < 0.001), and density of understory vegetation (P < 0.001) but greater bare ground (P  =  0.047), litter (P  =  0.028), and wheat (P  =  0.044) than did females. Odds of bed site selection increased 3.5% (odds ratio  =  1.035, 95% CI  =  1.008–1.062) for every 1-cm increase in vertical height of understory vegetation. Management for habitat throughout the grasslands of South Dakota that maximizes vertical height of understory vegetation would enhance cover characteristics selected by neonates.

  4. Buteo Nesting Ecology: Evaluating Nesting of Swainson’s Hawks in the Northern Great Plains

    PubMed Central

    Inselman, Will M.; Datta, Shubham; Jenks, Jonathan A.; Jensen, Kent C.; Grovenburg, Troy W.

    2015-01-01

    Swainson’s hawks (Buteo swainsoni) are long-distance migratory raptors that nest primarily in isolated trees located in areas of high grassland density. In recent years, anthropogenic conversion of grassland habitat has raised concerns about the status of the breeding population in the northern Great Plains. In 2013, we initiated a study to investigate the influence of extrinsic factors influencing Swainson’s hawk nesting ecology in north-central South Dakota and south-central North Dakota. Using ground and aerial surveys, we located and monitored nesting Swainson’s hawk pairs: 73 in 2013 and 120 in 2014. We documented 98 successful breeding attempts that fledged 163 chicks; 1.52 and 1.72 fledglings per successful nest in 2013 and 2014, respectively. We used Program MARK to evaluate the influence of land cover on nest survival. The top model, S Dist2Farm+%Hay, indicated that nest survival (fledging at least one chick) decreased as nests were located farther from farm sites and as the percent of hay cover increased within 1200-m of the nest site (34.4%; 95% CI = 27.6%–42.3%). We used logistic regression analysis to evaluate the influence of landscape variables on nest-site selection; Swainson’s hawks selected for nest sites located closer to roads. We suggest that tree belts associated with farm sites, whether occupied or not, provide critical breeding sites for Swainson’s hawks. Additionally, poor breeding success may be related to the late migratory behavior of this species which requires them to occupy marginal habitat due to other raptors occupying the most suitable habitat prior to Swainson’s hawks arriving to the breeding grounds. PMID:26327440

  5. Performance of precision mobile drip irrigation in the Texas High Plains region

    USDA-ARS?s Scientific Manuscript database

    Mobile drip irrigation (MDI) technology adapts driplines to the drop hoses of moving sprinkler systems to apply water as the drip lines are pulled across the field. There is interest in this technology among farmers in the Texas High Plains region to help sustain irrigated agriculture. However, info...

  6. The impact exploration of agricultural drought on winter wheat yield in the North China Plain

    NASA Astrophysics Data System (ADS)

    Yang, Jianhua; Wu, Jianjun; Han, Xinyi; Zhou, Hongkui

    2017-04-01

    Drought is one of the most serious agro-climatic disasters in the North China Plain, which has a great influence on winter wheat yield. Global warming exacerbates the drought trend of this region, so it is important to study the effect of drought on winter wheat yield. In order to assess the drought-induced winter wheat yield losses, SPEI (standardized precipitation evapotranspiration index), the widely used drought index, was selected to quantify the drought from 1981 to 2013. Additionally, the EPIC (Environmental Policy Integrated Climate) crop model was used to simulate winter wheat yield at 47 stations in this region from 1981 to 2013. We analyzed the relationship between winter wheat yield and the SPEI at different time scales in each month during the growing season. The trends of the SPEI and the trends of winter wheat yield at 47 stations over the past 32 years were compared with each other. To further quantify the effect of drought on winter wheat yield, we defined the year that SPEI varied from -0.5 to 0.5 as the normal year, and calculated the average winter wheat yield of the normal years as a reference yield, then calculated the reduction ratios of winter wheat based on the yields mentioned above in severe drought years. As a reference, we compared the results with the reduction ratios calculated from the statistical yield data. The results showed that the 9 to 12-month scales' SPEI in April, May and June had a high correlation with winter wheat yield. The trends of the SPEI and the trends of winter wheat yield over the past 32 years showed a positive correlation (p<0.01) and have similar spatial distributions. The proportion of the stations with the same change trend between the SPEI and winter wheat yield was 70%, indicating that drought was the main factor leading to a decline in winter wheat yield in this region. The reduction ratios based on the simulated yield and the reduction ratios calculated from the statistical yield data have a high positive

  7. Great Basin insect outbreaks

    Treesearch

    Barbara Bentz; Diane Alston; Ted Evans

    2008-01-01

    Outbreaks of native and exotic insects are important drivers of ecosystem dynamics in the Great Basin. The following provides an overview of range, forest, ornamental, and agricultural insect outbreaks occurring in the Great Basin and the associated management issues and research needs.

  8. Wastewater reuse and Ogallala Aquifer Recharge in the Southern High Plains of Texas

    USDA-ARS?s Scientific Manuscript database

    Municipalities in the Southern High Plains of TX use land application of treated wastewater extensively. For example, in the Texas Commission on Environmental Quality’s Region 2 counties (Lubbock and surrounding counties), there are ~ 7285 ha of agricultural land over lying the Ogallala Aquifer per...

  9. Adaptation to climate variability: The role of the USDA Southern Plains Climate Hub

    USDA-ARS?s Scientific Manuscript database

    The Southern Plains USDA Climate Hub was established in 2014 in El Reno, Oklahoma to develop and deliver science-based, information and technologies to agricultural and natural resource land managers that enable climate-informed decision-making, and to provide access to assistance to implement those...

  10. Hydrology of area 46, Northern Great Plains and Rocky Mountain coal provinces, North Dakota

    USGS Publications Warehouse

    Croft, M.G.; Crosby, Orlo A.

    1987-01-01

    This report is one of a series that describes the hydrology of coal provinces nationwide. The Northern Great Plains and Rocky Mountain Coal Provinces are divided into 20 separate reporting areas which are numbered 43 to 62. This report provides general hydrologic information for Area 46 using a brief text with accompanying maps, charts, or graphs. This information may be used to describe the hydrology of the general area of any existing or proposed mine. Some of the more obvious hydrologic problems of coal development that will need to be addressed before development are disruption of aquifers and potential contamination of streams, aquifers, and the atmosphere.Area 46 is in northwestern North Dakota and is composed of parts or all of 14 hydrologic units based on surface-water drainage basins. The area is drained by the Missouri and Souris Rivers.Lignite-bearing rocks of late Paleocene age underlie nearly all of Area 46. The thickest and most continuous lignite beds occur in the Sentinel Butte and Tongue River Members of the Fort Union Formation. Alluvial deposits and a veneer of glacial drift of late Pleistocene age overlie the lignite-bearing rocks. The climate of the area is semiarid. Mean annual precipitation ranges from 13.9 to 17.8 inches. Mean annual temperatures range from 37.7°F at Bowbells to 40.9°F at Williston. Mean monthly temperatures at Williston range from 8.3°F to 70°F. The growing season is about 125 days.A fairly comprehensive data base for streamflow and water quality in streams is available for Area 46. Many of the small-stream monitoring sites have been operated during the last few years to provide a data base before coal development. With the exception of the Missouri River, which is controlled by several dams, both the quantity and quality of water varies greatly in all streams. A ground-water observation network for water levels and water quality has been established through county ground-water resource investigations and other ground

  11. Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site

    NASA Astrophysics Data System (ADS)

    Chen, Haihan; Hodshire, Anna L.; Ortega, John; Greenberg, James; McMurry, Peter H.; Carlton, Annmarie G.; Pierce, Jeffrey R.; Hanson, Dave R.; Smith, James N.

    2018-01-01

    Most prior field studies of new particle formation (NPF) have been performed at or near ground level, leaving many unanswered questions regarding the vertical extent of NPF. To address this, we measured concentrations of 11-16 nm diameter particles from ground level to 1000 m during the 2013 New Particle Formation Study at the Atmospheric Radiation Measurement Southern Great Plains site in Lamont, Oklahoma. The measurements were performed using a tethered balloon carrying two condensation particle counters that were configured for two different particle cut-off diameters. These observations were compared to data from three scanning mobility particle sizers at the ground level. We observed that 11-16 nm diameter particles were generated at the top region of the boundary layer, and were then rapidly mixed throughout the boundary layer. We also estimate liquid water content of nanoparticles using ground-based measurements of particle hygroscopicity obtained with a Humidified Tandem Differential Mobility Analyzer and vertically resolved relative humidity (RH) and temperature measured with a Raman lidar. Our analyses of these observations lead to the following conclusions regarding nanoparticles formed during NPF events at this site: (1) ground-based observations may not always accurately represent the timing, distribution, and meteorological conditions associated with the onset of NPF; (2) nanoparticles are highly hygroscopic and typically contain up to 50 % water by volume, and during conditions of high RH combined with high particle hygroscopicity, particles can be up to 95 % water by volume; (3) increased liquid water content of nanoparticles at high RH greatly enhances the partitioning of water-soluble species like organic acids into ambient nanoparticles.

  12. Handbook of Agricultural Geophysics

    USDA-ARS?s Scientific Manuscript database

    Geophysical methods continue to show great promise for use in agriculture. The term “agricultural geophysics” denotes a subdiscipline of geophysics that is focused only on agricultural applications. The Handbook of Agricultural Geophysics was compiled to include a comprehensive overview of the geoph...

  13. Mitigation bank promotes research on restoring coastal plain depression wetlands (South Carolina)

    Treesearch

    Christopher D. Barton; Diane De Steven; John C. Kilgo

    2004-01-01

    Carolina bays and smaller depression wetlands support diverse plant communities and provide critical habitat for semi-aquatic fauna throughout the Coastal Plain region of the southeastern United States. Historically, many depression wetlands were altered or destroyed by surface ditching, drainage, and agricultural or silviculture uses. These important habitats are now...

  14. Ground-water flow, geochemistry, and effects of agricultural practices on nitrogen transport at study sites in the Piedmont and Coastal Plain physiographic provinces, Patuxent River basin, Maryland

    USGS Publications Warehouse

    McFarland, Randolph E.

    1997-01-01

    In an effort to improve water quality in Chesapeake Bay, agricultural practices are being promoted that are intended to reduce contaminant transport to the Bay. The effects of agricultural practices on nitrogen transport were assessed at two 10-acre study sites in the Patuxent River basin, Maryland, during 1986-92. Nitrogen load was larger in ground water than in surface runoff at both sites. At the study site in the Piedmont Province, nitrogen load in ground water decreased from 12 to 6 (lb/acre)/yr (pound per acre per year) as corn under no-till cultivation was replaced by no-till soybeans, continuous alfalfa, and contoured strip crops alternated among corn, alfalfa, and soybeans. At the study site in the Coastal Plain Province, no-till soybeans resulted in a nitrogen load in ground water of 12.55 (lb/acre)/yr, whereas conventional-till soybeans resulted in a nitrogen load in ground water of 11.51 (lb/acre)/yr.

  15. Historical Influences on Contemporary Tobacco Use by Northern Plains and Southwestern American Indians

    PubMed Central

    2016-01-01

    There are great differences in smoking- and tobacco-related mortality between American Indians on the Northern Plains and those in the Southwest that are best explained by (1) ecological differences between the two regions, including the relative inaccessibility and aridity of the Southwest and the lack of buffalo, and (2) differences between French and Spanish Indian relations policies. The consequence was the disruption of inter- and intratribal relations on the Northern Plains, where as a response to disruption the calumet (pipe) ceremony became widespread, whereas it did not in the Southwest. Tobacco was, thus, integrated into social relationships with religious sanctions on the Northern Plains, which increased the acceptability of commercial cigarettes in the 20th century. Smoking is, therefore, more deeply embedded in religious practices and social relationships on the Northern Plains than in the Southwest. PMID:26691134

  16. Remediation/restoration of degraded soil in the Central Great plains

    USDA-ARS?s Scientific Manuscript database

    Soil degradation became a problem in the arid region in the late 18th and early 19th century, as a consequence of agriculture expansion and conversion of native land to cropland. The objectives of this study are to evaluate the impact of different tillage practices, nitrogen (N) sources, and N rates...

  17. Ball Games of Native American Women of the Plains.

    ERIC Educational Resources Information Center

    Pesavento, Wilma J.

    The problem under investigation concerned (1) determining the ball games of Native American girls and women of the Great Plains, (2) determining the geographical spread of the games within the culture area, and (3) determining the characteristics of the various games. Data for this investigation were obtained from the 48 "Annual Reports of the…

  18. Diagnosing the Nature of Land-Atmosphere Coupling During the 2006-7 Dry/Wet Extremes in the U. S. Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Dong, Xiquan; Kennedy, Aaron D.

    2011-01-01

    The degree of coupling between the land surface and PBL in NWP models remains largely undiagnosed due to the complex interactions and feedbacks present across a range of scales. In this study, a framework for diagnosing local land-atmosphere coupling (LoCo) is presented using a coupled mesoscale model with observations during the summers of 2006/7 in the U.S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to NASA's Land Information System (LIS), which enables a suite of PBL and land surface model (LSM) options along provides a flexible and high-resolution representation and initialization of land surface physics and states. This coupling is one component of a larger project to develop a NASA-Unified WRF (NU-WRF) system. A range of diagnostics exploring the feedbacks between soil moisture and precipitation are examined for the dry/wet extremes, along with the sensitivity of PBL-LSM coupling to perturbations in soil moisture.

  19. Implications of invasion by Juniperus virginiana on small mammals in the southern Great Plains

    USGS Publications Warehouse

    Horncastle, V.J.; Hellgren, E.C.; Mayer, P.M.; Ganguli, A.C.; Engle, David M.; Leslie, David M.

    2005-01-01

    Changes in landscape cover in the Great Plains are resulting from the range expansion and invasion of eastern red cedar (Juniperus virginiana). By altering the landscape and local vegetation, red cedar is changing the structure and function of habitat for small mammals. We examined effects of invasion by eastern red cedar on small mammals in 3 plant communities (tallgrass prairie, old field, and cross-timbers forest) in the cross-timbers ecoregion in Oklahoma. We sampled small mammals seasonally from May 2001 to August 2002 by using Sherman live traps and mark-recapture techniques on 3.24-ha, 450-trap grids in each plant community. We sampled vegetation in two hundred twenty-five 12 x 12-m cells within each grid. The structure of the small-mammal community differed among the 3 habitat types, with higher species diversity and richness in the tallgrass-prairie and old-field sites. Overall, the small-mammal community shifted along a gradient of increasing eastern red cedar. In the old-field and tallgrass-prairie plots, occurrence of grassland mammals decreased with increasing red cedar, whereas only 1 woodland mammal species increased. In the cross-timbers forest site, percent woody cover (<1 m in height), rather than cover of red cedar, was the most important factor affecting woodland mammal species. Examination of our data suggests that an increase in overstory cover from 0% to 30% red cedar can change a species-rich prairie community to a depauperate community dominated by 1 species, Peromyscus leucopus. Losses in species diversity and changes in mammal distribution paralleled those seen in avian communities invaded by eastern red cedar. Our results highlight ecological effects of invasion by eastern red cedar on diversity and function at multiple trophic levels. ?? 2005 American Society of Mammalogists.

  20. Ground-water flow, geochemistry, and effects of agricultural practices on nitrogen transport at study sites in the Piedmont and Coastal Plain physiographic provinces, Patuxent River Basin, Maryland

    USGS Publications Warehouse

    McFarland, Randolph E.

    1995-01-01

    The effects of agricultural practices on nitrogen transport were assessed at two 10-acre study sites in the Patuxent River Basin, Maryland, during 1986- 92. Nitrogen load was larger in ground water than in surface runoff at both sites. Denitrification and (or) long traveltimes of ground water at the study site in the Piedmont Province resulted in lower concentrations of nitrate than at the site in the Coastal Plain Province. The study period was brief compared to traveltimes of nitrogen in ground water of several decades. Therefore, the effects of agricultural practices were observed only in parts of both sites. At the Piedmont site, nitrate concentration in two springs was 7 mg/L (milligrams per liter) two years after corn was grown under no-till cultivation, and decreased to 3.5 mg/L during 4 years while cultivation practices and crops included no-till soybeans, continuous alfalfa, and contoured strips alternated among corn, alfalfa, and soybeans. Nitrogen load in ground water decreased from 12 to 6 (lb/acre)/yr (pounds per acre per year). At the Coastal Plain site, the concentration of nitrate in ground water decreased from 10 mg/L after soybeans were grown under no-till cultivation for 2 years, to 9 mg/L after soybeans were grown under conventional till cultivation for 3 years. No-till cultivation in 1988 resulted in a greater nitrogen load in ground water (12.55 (lbs/acre)/yr), as well as greater ground-water recharge and discharge, than conventional till cultivation in 1991 (11.51 (lbs/ acre)/yr), even though the amount and timing of precipitation for both years were similar.

  1. A water resource assessment of the playa lakes of the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    Texas Water Development Board (TWDB) staff are studying the water-resource potential of playa lakes in the Texas High Plains in partnership with the U. S. Department of Agriculture— Agricultural Research Service and Texas Tech University. Phase 1 of the research seeks to measure the volume of water ...

  2. Water dynamics and nitrogen balance under different agricultural management practices in the low-lying plain of north-east Italy

    NASA Astrophysics Data System (ADS)

    Camarotto, Carlo; Dal Ferro, Nicola; Piccoli, Ilaria; Polese, Riccardo; Furlan, Lorenzo; Chiarini, Francesca; Berti, Antonio; Morari, Francesco

    2017-04-01

    In the last decades the adoption of sustainable land management practices (e.g. conservation agriculture, use of cover crops) has been largely subsidized by the EU policy in an attempt to combine competitive agricultural production with environmental protection, e.g. reduce nitrogen losses and optimize water management. However, the real environmental benefits of these practices is still questioned since strongly dependent on local pedo-climatic variability. This study aimed to evaluate water and nitrogen balances in sustainable land management systems including conservation agriculture (CA) practices or use of cover crops (CC). The experimental fields, established in 2010, are localized in the low-lying plain of the Veneto Region (NE Italy), characterized by a shallow water table and identified as Nitrate Vulnerable Zone. In March 2016, a total of nine soil-water monitoring stations have been installed in CA, CC and conventional fields. The stations (three per each field) were set up with multi-sensors probes (10 cm, 30 cm and 60 cm depth) for the continuous monitoring of soil electrical conductivity (EC, dS m-1), soil temperature (T, °C) and volumetric water content (WC, m3 m-3). A wireless system in ISM band has been designed to connect the soil-water monitoring stations to a unique access point, where the data were sent to a cloud platform via GSM. Water samples at each station were collected every two weeks using a suction cups (installed at 60 cm depth) and a phreatic wells, which were also used to record the water table level. Climatic data, collected from a weather station located in the experimental field, were combined with soil-water data to estimate water and nitrogen fluxes in the root zone. During the first year, relevant differences in water and nitrogen dynamics were observed between the treatments. It can be hypothesized that the combined effect of undisturbed soil conditions and continuous soil cover were major factors to affect water

  3. Fields of Opportunity: Wind Machines Return to the Plains

    ERIC Educational Resources Information Center

    Sowers, Jacob

    2006-01-01

    The last two decades have seen a rebirth of wind machines on the rural landscape. In ironic fashion the wind's kinetic energy has grown in significance through its ability to generate commercial amounts of electricity, the commodity that a few generations earlier hastened the demise of the old Great Plains windmill. Yet the reemergence of wind…

  4. Deathscapes, Topocide, Domicide: The Plains in Contemporary Print Media

    ERIC Educational Resources Information Center

    Dando, Christina E.

    2009-01-01

    The American print media are a powerful mechanism for communicating information about places and environment to the American public. When it comes to a landscape such as the Great Plains, experienced by many Americans as either sleep-through land in a car or flyover land in a plane, the print media may be their only real source of information…

  5. Circles of live buffer strips in a center pivot to improve multiple ecosystem services and sustainability of irrigated agriculture in the southern great plains

    USDA-ARS?s Scientific Manuscript database

    Declining Ogallala Aquifer has threatened sustainability of highly productive irrigated agriculture in the region. The region, known for the dust bowl of thirties, is scared of its return. Lower well outputs and increasing pumping costs have compelled farmers to adapt alternative conservation strate...

  6. Parcels versus pixels: modeling agricultural land use across broad geographic regions using parcel-based field boundaries

    USGS Publications Warehouse

    Sohl, Terry L.; Dornbierer, Jordan; Wika, Steve; Sayler, Kristi L.; Quenzer, Robert

    2017-01-01

    Land use and land cover (LULC) change occurs at a local level within contiguous ownership and management units (parcels), yet LULC models primarily use pixel-based spatial frameworks. The few parcel-based models being used overwhelmingly focus on small geographic areas, limiting the ability to assess LULC change impacts at regional to national scales. We developed a modified version of the Forecasting Scenarios of land use change model to project parcel-based agricultural change across a large region in the United States Great Plains. A scenario representing an agricultural biofuel scenario was modeled from 2012 to 2030, using real parcel boundaries based on contiguous ownership and land management units. The resulting LULC projection provides a vastly improved representation of landscape pattern over existing pixel-based models, while simultaneously providing an unprecedented combination of thematic detail and broad geographic extent. The conceptual approach is practical and scalable, with potential use for national-scale projections.

  7. Spatial variation in seed bank dynamics of two annual brome species in the northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Annual bromes decrease forage production in northern central plains rangelands of North America. Early life history stages are when plants are most failure-prone, yet studying death post-germination and prior to emergence is difficult. In seed bank collections conducted over the course of two growin...

  8. Ammonia losses and nitrogen partitioning at the southern High Plains open lot dairy

    USDA-ARS?s Scientific Manuscript database

    Animal agriculture is a significant source of ammonia (NH3). Cattle excrete most ingested nitrogen (N); most urinary N is converted to NH3, volatilized and lost to the atmosphere. Open lot dairies on the southern High Plains are a growing industry and face environmental challenges as well as reporti...

  9. Seasonal forecasts of groundwater levels in Lanyang Plain in Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Chi; Lin, Yi-Chiu

    2017-04-01

    Groundwater plays a critical and important role in world's freshwater resources and it is also an important part of Taiwan's water supply for domestic, agricultural and industrial use. Prolonged dry climatic conditions can induce groundwater drought and may have huge impact on water resources. Therefore, this study utilizes seasonal rainfall forecasts from the Model for Prediction Across Scales (MPAS) to simulate groundwater levels in Lanyang Plain in Taiwan up to three months into future. The MPAS is setup with 120 km uniform grid and the physics schemes including WSM6 micorphysics scheme, Kain-Fritsch cumulus scheme, RRTMG radiation scheme, and YSU planetary boundary layer scheme are used to provide the rainfall forecasts. Results of this study can provide a reference for water resources management to ensure the sustainability of groundwater resources in Lanyang Plain.

  10. Evaluation of the North American Land Data Assimilation System over the southern Great Plains during the warm season

    NASA Astrophysics Data System (ADS)

    Robock, Alan; Luo, Lifeng; Wood, Eric F.; Wen, Fenghua; Mitchell, Kenneth E.; Houser, Paul R.; Schaake, John C.; Lohmann, Dag; Cosgrove, Brian; Sheffield, Justin; Duan, Qingyun; Higgins, R. Wayne; Pinker, Rachel T.; Tarpley, J. Dan; Basara, Jeffery B.; Crawford, Kenneth C.

    2003-11-01

    North American Land Data Assimilation System (NLDAS) land surface models have been run for a retrospective period forced by atmospheric observations from the Eta analysis and actual precipitation and downward solar radiation to calculate land hydrology. We evaluated these simulations using in situ observations over the southern Great Plains for the periods of May-September of 1998 and 1999 by comparing the model outputs with surface latent, sensible, and ground heat fluxes at 24 Atmospheric Radiation Measurement/Cloud and Radiation Testbed stations and with soil temperature and soil moisture observations at 72 Oklahoma Mesonet stations. The standard NLDAS models do a fairly good job but with differences in the surface energy partition and in soil moisture between models and observations and among models during the summer, while they agree quite well on the soil temperature simulations. To investigate why, we performed a series of experiments accounting for differences between model-specified soil types and vegetation and those observed at the stations, and differences in model treatment of different soil types, vegetation properties, canopy resistance, soil column depth, rooting depth, root density, snow-free albedo, infiltration, aerodynamic resistance, and soil thermal diffusivity. The diagnosis and model enhancements demonstrate how the models can be improved so that they can be used in actual data assimilation mode.

  11. A spatial regression procedure for evaluating the relationship between AVHRR-NDVI and climate in the northern Great Plains

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2004-01-01

    The relationship between vegetation and climate in the grassland and cropland of the northern US Great Plains was investigated with Normalized Difference Vegetation Index (NDVI) (1989–1993) images derived from the Advanced Very High Resolution Radiometer (AVHRR), and climate data from automated weather stations. The relationship was quantified using a spatial regression technique that adjusts for spatial autocorrelation inherent in these data. Conventional regression techniques used frequently in previous studies are not adequate, because they are based on the assumption of independent observations. Six climate variables during the growing season; precipitation, potential evapotranspiration, daily maximum and minimum air temperature, soil temperature, solar irradiation were regressed on NDVI derived from a 10-km weather station buffer. The regression model identified precipitation and potential evapotranspiration as the most significant climatic variables, indicating that the water balance is the most important factor controlling vegetation condition at an annual timescale. The model indicates that 46% and 24% of variation in NDVI is accounted for by climate in grassland and cropland, respectively, indicating that grassland vegetation has a more pronounced response to climate variation than cropland. Other factors contributing to NDVI variation include environmental factors (soil, groundwater and terrain), human manipulation of crops, and sensor variation.

  12. Factors Affecting Nitrate Delivery to Streams from Shallow Ground Water in the North Carolina Coastal Plain

    USGS Publications Warehouse

    Harden, Stephen L.; Spruill, Timothy B.

    2008-01-01

    An analysis of data collected at five flow-path study sites between 1997 and 2006 was performed to identify the factors needed to formulate a comprehensive program, with a focus on nitrogen, for protecting ground water and surface water in the North Carolina Coastal Plain. Water-quality protection in the Coastal Plain requires the identification of factors that affect the transport of nutrients from recharge areas to streams through the shallow ground-water system. Some basins process or retain nitrogen more readily than others, and the factors that affect nitrogen processing and retention were the focus of this investigation to improve nutrient management in Coastal Plain streams and to reduce nutrient loads to coastal waters. Nitrate reduction in ground water was observed at all five flow-path study sites in the North Carolina Coastal Plain, although the extent of reduction at each site was influenced by various environmental, hydrogeologic, and geochemical factors. Denitrification was the most common factor responsible for decreases in nitrate along the ground-water flow paths. Specific factors, some of which affect denitrification rates, that appeared to influence ground-water nitrate concentrations along the flow paths or in the streams include soil drainage, presence or absence of riparian buffers, evapotranspiration, fertilizer use, ground-water recharge rates and residence times, aquifer properties, subsurface tile drainage, sources and amounts of organic matter, and hyporheic processes. The study data indicate that the nitrate-reducing capacity of the buffer zone combined with that of the hyporheic zone can substantially lower the amount of ground-water nitrate discharged to streams in agricultural settings of the North Carolina Coastal Plain. At the watershed scale, the effects of ground-water discharge on surface-water quality appear to be greatly influenced by streamflow conditions and the presence of extensive riparian vegetation. Streamflow statistics

  13. Understanding climate-hydrologic-human interactions to guide groundwater model development for Southern High Plains

    USDA-ARS?s Scientific Manuscript database

    The Ogallala aquifer is the only reliable source of water in the southern High Plains (SHP) region of Texas, New Mexico and Oklahoma. Groundwater availability has fostered a strong agricultural economy that has a significant impact on global food security. Groundwater models that not only capture ...

  14. Impact of dicyandiamide on emissions of nitrous oxide, nitric oxide and ammonia from agricultural field in the North China Plain.

    PubMed

    Zhou, Yizhen; Zhang, Yuanyuan; Tian, Di; Mu, Yujing

    2016-02-01

    Nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) emissions from an agricultural field in the North China Plain were compared for three treatments during a whole maize growing period from 26 June to 11 October, 2012. Compared with the control treatment (without fertilization, designated as CK), remarkable pulse emissions of N2O, NO and NH3 were observed from the normal fertilization treatment (designated as NP) just after fertilization, whereas only N2O and NH3 pulse emissions were evident from the nitrification inhibitor treatment (designated as ND). The reduction proportions of N2O and NO emissions from the ND treatment compared to those from the NP treatment during the whole maize growing period were 31% and 100%, respectively. A measurable increase of NH3 emission from the ND treatment was found with a cumulative NH3 emission of 3.8 ± 1.2 kg N/ha, which was 1.4 times greater than that from the NP treatment (2.7 ± 0.7 kg N/ha). Copyright © 2015. Published by Elsevier B.V.

  15. Physical restoration of eroded soils in the Northern Great Plains (NA)

    USDA-ARS?s Scientific Manuscript database

    Management of agricultural lands often seeks to modify or control non-human environmental factors so as to support diverse (and often conflicting) objectives, such as extraction of resources, profitability, human survival, soil and water conservation, maintenance of wildlife habitat, food security, ...

  16. Drought variability over Thessaly plain, Greece. Present and future changes

    NASA Astrophysics Data System (ADS)

    Nastos, Panagiotis T.; Kapsomenakis, John; Dalezios, Nicolas R.; Kotsopoulos, Spyridon; Poulos, Serafim

    2015-04-01

    The diachronic variability of precipitation is of major scientific concern, because it is linked to water availability or deficiency on regional scale. The latter, resulted from a prolonged period of abnormally low precipitation or permanent absence of precipitation, is associated with dryness, having on one hand, a substantial impact on agricultural production and thus the society itself, and on the other hand, the redistribution of flora and fauna. In some cases, dryness drive climate refugees, and this is a great challenge - threat - that must be faced - mitigated - by stake holders in international organizations and fora. The Aridity Index (AI) measures the degree of dryness of the climate at a given region, and according to the United Nations Environmental Programme (UNEP) it is defined as the ratio of precipitation to the potential evapotranspiration. In this study, we investigate the climate change impacts on AI over Thessaly plain, Greece. Thessaly, the largest plain and granary of Greece, includes a total area of 14,036 km2, which represents almost 11% of the Greek territory. Regarding the geomorphology, the ground is 50% mountainous-hilly and 50% flat, irrigated by Peneus, the third largest river in the country, which flows through the axis east-west. The assessment of AI was conducted utilizing daily evapotranspiration losses, based on the modified FAO-56 Penman-Monteith formula, and daily precipitation totals from a number of Regional Climate Models (RCMs), within the ENSEMBLE European Project. Further, the projected changes of AI between the period 1961-1990 (reference period) and the periods 2021-2050 (near future) and 2071-2100 (far future) along with the inter-model standard deviations are presented, under SRES A1B. The findings of the analysis revealed significant spatiotemporal changes of AI over Thessaly plain, focusing on their societal aspects. Acknowlegdements. This work is supported by the project AGROCLIMA (11SYN_3_1913), which is funded by

  17. Dryland agriculture in North America

    USDA-ARS?s Scientific Manuscript database

    Areas of North America with high density dryland farming include the Canadian Prairies, U.S. and Mexican Great Plains, and the Inland Pacific Northwest of the U.S., with wheat (Tritcum aestivum L.) being the dominant crop. Dryland farming is less dense but important in nearly every state in the west...

  18. Gulf Atlantic Coastal Plain Long Term Agroecosystem Research site, Tifton, GA

    Treesearch

    Timothy Strickland; David D. Bosch; Dinku M. Endale; Thomas L. Potter

    2016-01-01

    The Gulf-Atlantic Coastal Plain (GACP) physiographic region is an important agricultural production area within the southeastern U.S. that extends from Delaware in the Northeast to the Gulf Coast of Texas. The region consists mainly of low-elevation flat to rolling terrain with numerous streams, abundant rainfall, a complex coastline, and many wetlands. The GACP Long ...

  19. An analysis of relationships among climate forcing and time-integrated NDVI of grasslands over the U.S. northern and central Great Plains

    USGS Publications Warehouse

    Yang, Limin; Wylie, Bruce K.; Tieszen, Larry L.; Reed, Bradley C.

    1998-01-01

    Time-integrated normalized difference vegetation index (TI NDVI) derived from the multitemporal satellite imagery (1989–1993) was used as a surrogate for primary production to investigate climate impacts on grassland performance for central and northern Great Plains grasslands. Results suggest that spatial and temporal variability in growing season precipitation, potential evapotranspiration, and growing degree days are the most important controls on grassland performance and productivity. When TI NDVI and climate data of all grassland land cover classes were examined as a whole, a statistical model showed significant positive correlation between the TI NDVI and accumulated spring and summer precipitation, and a negative correlation between TI NDVI and spring potential evapotranspiration. The coefficient of determination (R2) of the general model was 0.45. When the TI NDVI-climate relationship was examined by individual land cover type, the relationship was generally better defined in terms of the variance accounted for by class-specific models . The photosynthetic pathway is an important determinant of grassland performance with northern mixed prairie (mixture of C3 and C4 grassland) TI NDVI affected by both thermal and moisture conditions during the growing season while southern plains grasslands (primarily C4grassland) were predominantly influenced by spring and summer precipitation. Grassland land cover classes associated with sandy soils also demonstrated a strong relationship between TI NDVI and growing season rainfall. Significant impact of interannual climate variability on the TI NDVI–climate relationship was also observed. The study suggests an integrated approach involving numerical models, satellite remote sensing, and field observations to monitor grassland ecosystem dynamics on a regional scale.

  20. Modeling long-term water use of cropping rotations in the Texas High Plains using SWAT

    USDA-ARS?s Scientific Manuscript database

    The Ogalalla Aquifer is used to supplement insufficient precipitation for agricultural production in the semi-arid Texas High Plains. However, decades of pumping combined with minimal recharge has resulted in decreased well capacity in most areas. The saturated thickness of the aquifer generally dec...

  1. Moistening of the northern North American Great Plains enhances land-atmosphere coupling

    NASA Astrophysics Data System (ADS)

    Gerken, T.; Bromley, G. T.; Stoy, P. C.

    2017-12-01

    Land use change impacts planetary boundary layer processes and regional climate by altering the magnitude and timing of water and energy flux into the atmosphere. In the North American Great Plains (NGP), a decline in the practice of summer fallow on the order of 20 Mha from the 1970s until the present has coincided with a decrease in summertime radiative forcing, on the order of 6 W m-2. MERRA 2 (Modern-Era Retrospective analysis for Research and Applications) for the area near Fort Peck, Montana, (a FLUXNET site established in 2000) shows a decrease of summertime (June-August) sensible heat fluxes ranging from -3.6 to -8.5 W m-2 decade-1, associated with an increase of latent heat fluxes (5.2-9.1 W m-2 decade-1) since the 1980s. Net radiation changed little. The result was a strong decrease of summer Bowen ratios from 1.5-2 in 1980 to approximately 1 in 2015. Findings are consistent with the effects on increased summertime evapotranspiration due to reduction in summer fallow that should lead to smaller Bowen ratios and a larger build-up of moist static energy. We use a mixed-layer (ML) atmospheric modeling framework to further investigate the impact of the surface energy balance on convective development and local land-atmosphere coupling in the NGP. Using summertime eddy covariance data from Fort Peck and atmospheric soundings from the nearby Glasgow airport, we compare the development of modeled ML and lifted condensation level (LCL) to find times of ML exceeding LCL, a necessary but not sufficient condition for the occurrence of convective precipitation. We establish that the ML model adequately captures ML heights and timing of locally triggered convection at the site and that there is a c. 10% increase in modeled convection permitting conditions today compared to 1975-85 in response to ML-moistening and decreasing Bo. We find that growing season land-atmosphere coupling develops from wet preference in May to dry coupling in July and atmospheric suppression

  2. A Prototype Physical Database for Passive Microwave Retrievals of Precipitation over the US Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ringerud, S.; Kummerow, C. D.; Peters-Lidard, C. D.

    2015-01-01

    An accurate understanding of the instantaneous, dynamic land surface emissivity is necessary for a physically based, multi-channel passive microwave precipitation retrieval scheme over land. In an effort to assess the feasibility of the physical approach for land surfaces, a semi-empirical emissivity model is applied for calculation of the surface component in a test area of the US Southern Great Plains. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are utilized along with coincident brightness temperatures (Tbs) from the TRMM Microwave Imager (TMI), and cloud-resolving model profiles. Ice profiles are modified to be consistent with the higher frequency microwave Tbs. Resulting modeled top of the atmosphere Tbs show correlations to observations of 0.9, biases of 1K or less, root-mean-square errors on the order of 5K, and improved agreement over the use of climatological emissivity values. The synthesis of these models and data sets leads to the creation of a simple prototype Tb database that includes both dynamic surface and atmospheric information physically consistent with the land surface model, emissivity model, and atmospheric information.

  3. Strontium isotope geochemistry of groundwater in the central part of the Dakota (Great Plains) aquifer, USA

    USGS Publications Warehouse

    Gosselin, D.C.; Harvey, F.E.; Frost, C.; Stotler, R.; Macfarlane, P.A.

    2004-01-01

    The Dakota aquifer of the central and eastern Great Plains of the United States is an important source of water for municipal supplies, irrigation and industrial use. Although the regional flow system can be characterized generally as east to northeasterly from the Rocky Mountains towards the Missouri River, locally the flow systems are hydrologically complex. This study uses Sr isotopic data from groundwater and leached aquifer samples to document the complex subsystems within the Dakota aquifer in Nebraska and Kansas. The interaction of groundwater with the geologic material through which it flows has created spatial patterns in the isotopic measurements that are related to: long-term water-rock interaction, during which varying degrees of isotopic equilibrium between water and rock has been achieved; and the alteration of NaCl fluids by water-rock interaction. Specifically, Sr isotopic data distinguish brines from Kansas and western Nebraska from those in eastern Nebraska: the former are interpreted to reflect interaction with Permian rocks, whereas the latter record interaction with Pennsylvanian rocks. The Sr isotopic composition of groundwater from other parts of Nebraska and Kansas are a function of the dynamic interaction between groundwater and unlithified sediments (e.g., glacial till and loess), followed by interaction with oxidized and unoxidized sediments within the Dakota Formation. This study illustrates the power of combining Sr chemistry with more conventional geochemical data to obtain a more complete understanding of groundwater flow systems within regional aquifer systems where extensive monitoring networks do not exist. ?? 2003 Elsevier Ltd. All rights reserved.

  4. Generalized potentiometric surface, estimated depth to water, and estimated saturated thickness of the High Plains aquifer system, March–June 2009, Laramie County, Wyoming

    USGS Publications Warehouse

    Bartos, Timothy T.; Hallberg, Laura L.

    2011-01-01

    The High Plains aquifer system, commonly called the High Plains aquifer in many publications, is a nationally important water resource that underlies a 111-million-acre area (173,000 square miles) in parts of eight States including Wyoming. Through irrigation of crops with groundwater from the High Plains aquifer system, the area that overlies the aquifer system has become one of the major agricultural regions in the world. In addition, the aquifer system also serves as the primary source of drinking water for most residents of the region. The High Plains aquifer system is one of the largest aquifers or aquifer systems in the world. The High Plains aquifer system underlies an area of 8,190 square miles in southeastern Wyoming. Including Laramie County, the High Plains aquifer system is present in parts of five counties in southeastern Wyoming. The High Plains aquifer system underlies 8 percent of Wyoming, and 5 percent of the aquifer system is located within the State. Based on withdrawals for irrigation, public supply, and industrial use in 2000, the High Plains aquifer system is the most utilized source of groundwater in Wyoming. With the exception of the Laramie Mountains in western Laramie County, the High Plains aquifer system is present throughout Laramie County. In Laramie County, the High Plains aquifer system is the predominant groundwater resource for agricultural (irrigation), municipal, industrial, and domestic uses. Withdrawal of groundwater for irrigation (primarily in the eastern part of the county) is the largest use of water from the High Plains aquifer system in Laramie County and southeastern Wyoming. Continued interest in groundwater levels in the High Plains aquifer system in Laramie County prompted a study by the U.S. Geological Survey in cooperation with the Wyoming State Engineer's Office to update the potentiometric-surface map of the aquifer system in Laramie County. Groundwater levels were measured in wells completed in the High Plains

  5. Impacts of agricultural management and climate change on future soil organic carbon dynamics in North China Plain.

    PubMed

    Wang, Guocheng; Li, Tingting; Zhang, Wen; Yu, Yongqiang

    2014-01-01

    Dynamics of cropland soil organic carbon (SOC) in response to different management practices and environmental conditions across North China Plain (NCP) were studied using a modeling approach. We identified the key variables driving SOC changes at a high spatial resolution (10 km × 10 km) and long time scale (90 years). The model used future climatic data from the FGOALS model based on four future greenhouse gas (GHG) concentration scenarios. Agricultural practices included different rates of nitrogen (N) fertilization, manure application, and stubble retention. We found that SOC change was significantly influenced by the management practices of stubble retention (linearly positive), manure application (linearly positive) and nitrogen fertilization (nonlinearly positive) - and the edaphic variable of initial SOC content (linearly negative). Temperature had weakly positive effects, while precipitation had negligible impacts on SOC dynamics under current irrigation management. The effects of increased N fertilization on SOC changes were most significant between the rates of 0 and 300 kg ha-1 yr-1. With a moderate rate of manure application (i.e., 2000 kg ha-1 yr-1), stubble retention (i.e., 50%), and an optimal rate of nitrogen fertilization (i.e., 300 kg ha-1 yr-1), more than 60% of the study area showed an increase in SOC, and the average SOC density across NCP was relatively steady during the study period. If the rates of manure application and stubble retention doubled (i.e., manure application rate of 4000 kg ha-1 yr-1 and stubble retention rate of 100%), soils across more than 90% of the study area would act as a net C sink, and the average SOC density kept increasing from 40 Mg ha-1 during 2010s to the current worldwide average of ∼ 55 Mg ha-1 during 2060s. The results can help target agricultural management practices for effectively mitigating climate change through soil C sequestration.

  6. Impacts of Agricultural Management and Climate Change on Future Soil Organic Carbon Dynamics in North China Plain

    PubMed Central

    Wang, Guocheng; Li, Tingting; Zhang, Wen; Yu, Yongqiang

    2014-01-01

    Dynamics of cropland soil organic carbon (SOC) in response to different management practices and environmental conditions across North China Plain (NCP) were studied using a modeling approach. We identified the key variables driving SOC changes at a high spatial resolution (10 km×10 km) and long time scale (90 years). The model used future climatic data from the FGOALS model based on four future greenhouse gas (GHG) concentration scenarios. Agricultural practices included different rates of nitrogen (N) fertilization, manure application, and stubble retention. We found that SOC change was significantly influenced by the management practices of stubble retention (linearly positive), manure application (linearly positive) and nitrogen fertilization (nonlinearly positive) – and the edaphic variable of initial SOC content (linearly negative). Temperature had weakly positive effects, while precipitation had negligible impacts on SOC dynamics under current irrigation management. The effects of increased N fertilization on SOC changes were most significant between the rates of 0 and 300 kg ha−1 yr−1. With a moderate rate of manure application (i.e., 2000 kg ha−1 yr−1), stubble retention (i.e., 50%), and an optimal rate of nitrogen fertilization (i.e., 300 kg ha−1 yr−1), more than 60% of the study area showed an increase in SOC, and the average SOC density across NCP was relatively steady during the study period. If the rates of manure application and stubble retention doubled (i.e., manure application rate of 4000 kg ha−1 yr−1 and stubble retention rate of 100%), soils across more than 90% of the study area would act as a net C sink, and the average SOC density kept increasing from 40 Mg ha−1 during 2010s to the current worldwide average of ∼55 Mg ha−1 during 2060s. The results can help target agricultural management practices for effectively mitigating climate change through soil C sequestration. PMID:24722689

  7. Understanding the ecological background of rice agriculture on the Ningshao Plain during the Neolithic Age: pollen evidence from a buried paddy field at the Tianluoshan cultural site

    NASA Astrophysics Data System (ADS)

    Li, Chunhai; Zheng, Yunfei; Yu, Shiyong; Li, Yongxiang; Shen, Huadong

    2012-03-01

    The progressive rise of atmospheric CH4 level since 5 ka has been hypothesized to result from human agricultural activities that turned forested lands, which would otherwise be a carbon sink, into paddy fields. Increasing numbers of Neolithic cultural sites unearthed in coastal eastern China, providing unique opportunities to test this hypothesis. Here, we present detailed pollen data from a buried paddy field at Tianluoshan cultural site on the Ningshao Plain, eastern China, to reconstruct the ecological conditions associated with the establishment of paddy fields. Stratigraphic data, radiocarbon ages, and pollen analyses show that vegetation underwent six phases of evolution and paddy fields were developed from 7000 to 4200 cal. yr BP. We found no evidence of slash-and-burn agriculture at the study site. Together with no presence of the irrigation system, our pollen data suggest the paddy fields at this site originated from wetlands. Hence, our findings do not support the hypothesis that anthropogenic-induced deforestation play ed a significant role in the rise of the atmospheric CH4 rise since the middle Holocene.

  8. Observing the Great Plains Low-Level Jet Using the Aircraft Communications Addressing and Reporting System (ACARS): A Comparison with Boundary Layer Profiler Observations

    NASA Astrophysics Data System (ADS)

    Skinner, P. S.; Basu, S.

    2009-12-01

    Wind resources derived from the nocturnal low-level jet of the Great Plains of the United States are a driving factor in the proliferation of wind energy facilities across the region. Accurate diagnosis and forecasting of the low-level jet is important to not only assess the wind resource but to estimate the potential for shear-induced stress generation on turbine rotors. This study will examine the utility of Aircraft Communications Addressing and Reporting System (ACARS) observations in diagnosing low-level jet events across the Texas Panhandle. ACARS observations from Lubbock International Airport (KLBB) will be compared to observations from a 915 MHZ Doppler radar vertical boundary-layer profiler with 60m vertical resolution located at the field experiment site of Texas Tech University. The ability of ACARS data to adequately observe low-level jet events during the spring and summer of 2009 will be assessed and presented.

  9. Effects on environment and agriculture of geothermal wastewater and boron pollution in great Menderes basin.

    PubMed

    Koç, Cengiz

    2007-02-01

    Boron toxicity is an important disorder that can be limit plant growth on soils of arid and semi arid environments through the world. High concentrations of Boron may occur naturally in the soil or in groundwater, or be added to the soil from mining, fertilizers, or irrigation water. Off all the potential resources, irrigation water is the most important contributor to high levels of soil boron, boron is often found in high concentrations in association with saline soil and saline well water. Although of considerable agronomic importance, our understanding of Boron toxicity is rather fragment and limited. In this study, Boron content of Great Menderes River and Basin was researched. Great Menderes Basin is one of the consequence basins having agricultural potential, aspect of water and soil resources in Turkey. Great Menderes River, water resource of the basin was to be polluted by geothermal wastewater and thermal springs including Boron element. Great Menderes Basin has abundant geothermal water resources which contain high amounts of Boron and these ground water are brought to surface and used for various purposes such as power generation, heating or thermal spring and than discharged to Great Menderes River. In order to prevent Boron pollution and hence unproductively in soils, it is necessary not to discharged water with Boron to irrigation water. According to results, it was obtained that Boron content of River was as high in particular Upper Basin where there was a ground thermal water reservoir. Boron has been accumulated more than plant requirement in this area irrigated by this water. Boron content of River was relatively low in rainy months and irrigation season while it was high in dry season. Boron concentration in the River was to decrease from upstream to downstream. If it is no taken measure presently, about 130,000 ha irrigation areas which was constructed irrigation scheme in the Great Menderes basin will expose the Boron pollution and salinity

  10. The Great Plains Agricultural Frontier and What Lay Ahead for Rural America.

    ERIC Educational Resources Information Center

    Hewitt, William L.

    1988-01-01

    Advocates a greater emphasis upon rural history through the study of the farming frontier. Suggests methods for introducing this topic to students. Criticizes Turner's thesis for not recognizing the extent of homesteading after 1890 and for concentrating only on agrarian settlement in the Midwest. (KO)

  11. Ground-water geology of the Gonaives Plain, Haiti

    USGS Publications Warehouse

    Taylor, George C.; Lemoine, Rémy C.

    1950-01-01

    The Gonaives Plain lies in northern Haiti at the head of the Gulf of Gonaives. Ground water in the plain is used widely for domestic and stock purposes but only to limited extent for irrigation. The future agricultural development of the plain will depend in large measure on the proper utilization of available ground-water supplies for irrigation. The rocks in the region of the Gonaives Plain belong to the upper (?) Cretaceous series of the Cretaceous system, the Nocene and Oligovene series of the Tertiary system, and the Pleistocene and Recent series of the Quarternary system. The structural depression occupied by the Gonaives Plain was formed in post-Miocene time by the dislocation of Oligocene and older rocks along normal faults and by the tilting of the adjacent crustal blocks. The lower parts of the depression contain a Pleistocene and Recent alluvial fill deposited by streams tributary to the plain. The upper (?) Cretaceous rocks include aniesite and basalt lava flows locally intercalated with some beds of tuff and agglomerate. These rocks are generally dense and impervious but locally small springs rise from fractures and bedding planes or from weathered zones. The Nocene rocks are hard, thin-bedded, cherty limestones with some beds of massive chalky limestone. Considerable ground water circulates through joints, bedding planes, and solution passages in these rocks giving rise to important springs such as Sources Madame Charles. These springs discharge at the rate of about 110 liters per second. The Oligocene rocks include limestone, shely limestone, limy sandstone, marl, and shale. The limestone beds contain solution passages and other openings and these may afford capacity for the circulation of ground water. However, no wells or springs in Oligocene rocks were observed during the present study. The alluvial fill of the plain is composed of interbedded lenses of clay, silt, sand, and gravel. These deposits contain a zone of saturation whose upper limit is

  12. Great Basin wildlife disease concerns

    Treesearch

    Russ Mason

    2008-01-01

    In the Great Basin, wildlife diseases have always represented a significant challenge to wildlife managers, agricultural production, and human health and safety. One of the first priorities of the U.S. Department of Agriculture, Division of Fish and Wildlife Services was Congressionally directed action to eradicate vectors for zoonotic disease, particularly rabies, in...

  13. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains

    USGS Publications Warehouse

    Otto, Clint R.; Roth, Cali; Carlson, Benjamin; Smart, Matthew

    2016-01-01

    Human reliance on insect pollination services continues to increase even as pollinator populations exhibit global declines. Increased commodity crop prices and federal subsidies for biofuel crops, such as corn and soybeans, have contributed to rapid land-use change in the US Northern Great Plains (NGP), changes that may jeopardize habitat for honey bees in a part of the country that supports >40% of the US colony stock. We investigated changes in biofuel crop production and grassland land covers surrounding ∼18,000 registered commercial apiaries in North and South Dakota from 2006 to 2014. We then developed habitat selection models to identify remotely sensed land-cover and land-use features that influence apiary site selection by Dakota beekeepers. Our study demonstrates a continual increase in biofuel crops, totaling 1.2 Mha, around registered apiary locations in North and South Dakota. Such crops were avoided by commercial beekeepers when selecting apiary sites in this region. Furthermore, our analysis reveals how grasslands that beekeepers target when selecting commercial apiary locations are becoming less common in eastern North and South Dakota, changes that may have lasting impact on pollinator conservation efforts. Our study highlights how land-use change in the NGP is altering the landscape in ways that are seemingly less conducive to beekeeping. Our models can be used to guide future conservation efforts highlighted in the US national pollinator health strategy by identifying areas that support high densities of commercial apiaries and that have exhibited significant land-use changes.

  14. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    NASA Astrophysics Data System (ADS)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  15. Anomalous Lightning Behavior During the 26-27 August 2007 Northern Great Plains Severe Weather Event

    NASA Astrophysics Data System (ADS)

    Logan, Timothy

    2018-02-01

    Positive polarity lightning strokes can be useful indicators of thunderstorm behavior. A combination of National Lightning Detection Network and Next Generation Radar retrievals is used to analyze the anomalous positive cloud-to-ground (CG) lightning behavior of a rare, late summer severe weather event that occurred on 26-27 August 2007 in the Northern Great Plains region of the United States and southern Canada. Seven discrete supercells (SC1-SC7) exhibiting frequent and intense lightning were responsible for numerous reports of severe weather (e.g., severe hail and 16 tornadoes) including catastrophic damage to the town of Northwood, North Dakota, caused by SC2. Biomass burning smoke from wildfires in Idaho and Montana was present prior to convective initiation. A positive CG lightning stroke rate of nearly 30 strokes per minute was observed 10 min before the EF4 tornado struck Northwood. SC2 was also responsible for all the reports of tornadoes exceeding an EF2 rating. The strongest peak currents (>200 kA) were observed in SC1-SC4 with SC2 having a maximum value of 280 kA. SC2 dominated the statistics of the line of supercells accounting for 27% of all CG lightning strokes. Positive CG lightning accounted for over 40% of all CG lightning strokes in SC4-SC7 on average, and the maximum exceeded 90% in SC6 and SC7. Increasing positive CG lightning dominance was correlated with an increasing northward gradient of smoke aerosol loading in addition to severe weather being reported before the maximum in positive CG lighting stroke rate (SC5 and SC6). This suggests that a complex combination of synoptic forcing and aerosol perturbation likely led to the observed anomalous positive CG lightning behavior in the supercells.

  16. Soil organic matter stabilization in buried paleosols of the Great Plains

    NASA Astrophysics Data System (ADS)

    Chaopricha, N. T.; Marin-Spiotta, E.; Mason, J. A.; Mueller, C. W.

    2010-12-01

    Understanding the mechanisms that control soil organic matter (SOM) stabilization is important for understanding how soil carbon is sequestered over millennia, and for predicting how future disturbances may affect soil carbon stocks. We are studying the mechanisms controlling SOM stabilization in the Brady Soil, a buried paleosol in Holocene loess deposits spanning much of the central Great Plains of the United States. The Brady Soil developed 9,000-13,500 years ago during a time of warming and drying that resulted in a shift from C3 to C4 dominated plants. The Brady soil is unusual in that it has very dark coloring, although it contains less than <1 % organic C. Although the Brady Soil has low C concentrations, it contains significant carbon stocks due to its thickness (~1 m) and wide geographic extent. We sampled the modern surface A horizon and multiple buried paleosol horizons from two roadcuts near Wauneta in southwestern Nebraska. We are using isotopic, spectroscopic, and geochemical techniques to examine what plant and microbially-derived compounds are have been preserved in the Brady Soil. We used a combined physical density and particle size fractionation method to separate particulate organic matter associated with minerals from that within and outside of soil aggregates. We found the largest and darkest amounts of organic C in aggregate-protected SOM greater than 20 µm in diameter. Density and textural fractionation revealed that much of the SOM is bound within aggregates, indicating that protection within aggregates is a major contributor to SOM- stabilization in the Brady Soil. We are conducting a long-term lab soil incubation with soils collected from the modern A horizon and the Brady Soil to determine if the buried SOM becomes microbially available when exposed to the modern atmosphere. We are measuring potential rates of respiration and production of CH4 and N2O. Results so far show respiration rates at field moisture for both modern and buried

  17. Estimating landscape-scale impacts of agricultural management on soil carbon using measurements and models

    NASA Astrophysics Data System (ADS)

    Schipanski, M.; Rosenzweig, S. T.; Robertson, A. D.; Sherrod, L. A.; Ghimire, R.; McMaster, G. S.

    2017-12-01

    Agriculture covers 40% of Earth's ice-free land area and has broad impacts on global biogeochemical cycles. While some agricultural management changes are small in scale or impact, others have the potential to shift biogeochemical cycles at landscape and larger scales if widely adopted. Understanding which management practices have the potential to contribute to climate change adaptation and mitigation while maintaining productivity requires scaling up estimates spatially and temporally. We used on-farm, long-term, and landscape scale datasets to estimate how crop rotations impact soil organic carbon (SOC) accumulation rates under current and future climate scenarios across the semi-arid Central and Southern Great Plains. We used a stratified, landscape-scale soil sampling approach across 96 farm fields to evaluate crop rotation intensity effects on SOC pools and pesticide inputs. Replacing traditional wheat-fallow rotations with more diverse, continuously cropped rotations increased SOC by 17% and 12% in 0-10 cm and 0-20 cm depths, respectively, and reduced herbicide use by 50%. Using USDA Cropland Data Layer, we estimated soil C accumulation and pesticide reduction potentials of shifting to more intensive rotations. We also used a 30-year cropping systems experiment to calibrate and validate the Daycent model to evaluate rotation intensify effects under future climate change scenarios. The model estimated greater SOC accumulation rates under continuously cropped rotations, but SOC stocks peaked and then declined for all cropping systems beyond 2050 under future climate scenarios. Perennial grasslands were the only system estimated to maintain SOC levels in the future. In the Southern High Plains, soil C declined despite increasing input intensity under current weather while modest gains were simulated under future climate for sorghum-based cropping systems. Our findings highlight the potential vulnerability of semi-arid regions to climate change, which will be

  18. Novel approach for computing photosynthetically active radiation for productivity modeling using remotely sensed images in the Great Plains, United States

    USGS Publications Warehouse

    Singh, Ramesh K.; Liu, Shu-Guang; Tieszen, Larry L.; Suyker, Andrew E.; Verma, Shashi B.

    2012-01-01

    Gross primary production (GPP) is a key indicator of ecosystem performance, and helps in many decision-making processes related to environment. We used the Eddy covariancelight use efficiency (EC-LUE) model for estimating GPP in the Great Plains, United States in order to evaluate the performance of this model. We developed a novel algorithm for computing the photosynthetically active radiation (PAR) based on net radiation. A strong correlation (R2=0.94,N=24) was found between daily PAR and Landsat-based mid-day instantaneous net radiation. Though the Moderate Resolution Spectroradiometer (MODIS) based instantaneous net radiation was in better agreement (R2=0.98,N=24) with the daily measured PAR, there was no statistical significant difference between Landsat based PAR and MODIS based PAR. The EC-LUE model validation also confirms the need to consider biological attributes (C3 versus C4 plants) for potential light use efficiency. A universal potential light use efficiency is unable to capture the spatial variation of GPP. It is necessary to use C3 versus C4 based land use/land cover map for using EC-LUE model for estimating spatiotemporal distribution of GPP.

  19. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes.

    PubMed

    Wilcox, Kevin R; von Fischer, Joseph C; Muscha, Jennifer M; Petersen, Mark K; Knapp, Alan K

    2015-01-01

    Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2-year experiment in three US Great Plains grasslands--the C4-dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3-dominated northern mixed grass prairie (NMP; intermediate ANPP)--to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high-rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11-13) small or (ii) fewer (3-5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3 -dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above- and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even

  20. Evaluation and comparison of gross primary production estimates for the Northern Great Plains grasslands

    USGS Publications Warehouse

    Zhang, Li; Wylie, Bruce K.; Loveland, Thomas R.; Fosnight, Eugene A.; Tieszen, Larry L.; Ji, Lei; Gilmanov, Tagir

    2007-01-01

    Two spatially-explicit estimates of gross primary production (GPP) are available for the Northern Great Plains. An empirical piecewise regression (PWR) GPP model was developed from flux tower measurements to map carbon flux across the region. The Moderate Resolution Imaging Spectrometer (MODIS) GPP model is a process-based model that uses flux tower data to calibrate its parameters. Verification and comparison of the regional PWR GPP and the global MODIS GPP are important for the modeling of grassland carbon flux. This study compared GPP estimates from PWR and MODIS models with five towers in the grasslands. Among them, PWR GPP and MODIS GPP showed a good agreement with tower-based GPP at three towers. The global MODIS GPP, however, did not agree well with tower-based GPP at two other towers, probably because of the insensitivity of MODIS model to regional ecosystem and climate change and extreme soil moisture conditions. Cross-validation indicated that the PWR model is relatively robust for predicting regional grassland GPP. However, the PWR model should include a wide variety of flux tower data as the training data sets to obtain more accurate results.In addition, GPP maps based on the PWR and MODIS models were compared for the entire region. In the northwest and south, PWR GPP was much higher than MODIS GPP. These areas were characterized by the higher water holding capacity with a lower proportion of C4 grasses in the northwest and a higher proportion of C4 grasses in the south. In the central and southeastern regions, PWR GPP was much lower than MODIS GPP under complicated conditions with generally mixed C3/C4 grasses. The analysis indicated that the global MODIS GPP model has some limitations on detecting moisture stress, which may have been caused by the facts that C3 and C4 grasses are not distinguished, water stress is driven by vapor pressure deficit (VPD) from coarse meteorological data, and MODIS land cover data are unable to differentiate the sub

  1. Chemical assessment and fractionation of some heavy metals and arsenic in agricultural soils of the mining affected Drama plain, Macedonia, northern Greece.

    PubMed

    Sofianska, E; Michailidis, K

    2015-03-01

    The concentration and chemical fractionation of some heavy metals (Mn, Pb, Zn, Cu, Cd) and As in agricultural soils of the western Drama plain (northern Greece) were determined using inductively coupled plasma-mass spectrometry (ICP-MS) technique. Drama plain constitutes the recipient of the effluents from Xiropotamos stream, which passes through the abandoned "25 km Mn-mine" place. Results showed that soils were found to have elevated concentrations of potentially harmful elements which are mainly associated with Mn mineralization. Peak total concentrations (in mg kg(-1)) of 130,013 for Mn, 1996 for Pb, 2140 for Zn, 147 for Cu, 28 for Cd, and 1077 for As were found in sampling points close and along both sides of the Xiropotamos stream, as a result of downstream transfer and dispersion of Mn mine wastes via flooding episodes. Contaminated sites are important sources of pollution and may pose significant environmental hazards for terrestrial and aquatic ecosystems. The geochemical influence of the mine wastes as a source of soil pollution is substantially reduced in sites 200 m remote of the Xiropotamos stream course. The chemical partitioning patterns indicated that the potential for Mn, Pb, Zn, Cu, Cd, and As remobilization and bioavailability is low, as most of these elements were present in the residual and/or the more stable Mn- and Fe-hydroxide fractions. The partitioning in significant percent (14-25 %) of Cd with the weakly bound exchangeable/carbonate fraction indicated that this metal could be highly mobile as well as bioavailable in the studied contaminated soils and this could be concern to human health.

  2. Farming system and wheat cultivar affect infestation of, and parasitism on, Cephus cinctus in the Northern Great Plains.

    PubMed

    Adhikari, Subodh; Seipel, Tim; Menalled, Fabian D; Weaver, David K

    2018-03-26

    Cephus cinctus infestation causes $350 million in annual losses in the Northern Great Plains. We compared infestation and parasitism of C. cinctus in spring (including Kamut; Triticum turgidum ssp. turanicum) and winter wheat cultivars grown in organic and conventional fields in Montana, USA. In the greenhouse, we compared C. cinctus preference and survival in Kamut, Gunnison, and Reeder spring wheat cultivars. Stems cut by C. cinctus varied by farming system and the seasonality of the wheat crop. No stems of Kamut in organic fields were cut by C. cinctus, but 1.5% [±0.35% standard error (SE)] of stems in conventional spring wheat, 5% (±0.70% SE) of stems in organic winter wheat, and 20% (±0.93% SE) of stems in conventional winter wheat fields were cut by C. cinctus. More larvae of C. cinctus were parasitized in organic (27 ± 0.03% SE) compared with conventional (5 ± 0.01% SE) winter wheat fields. Cephus cinctus oviposition, survival, and the number of stems cut were lowest in Kamut compared with Gunnison and Reeder. Cephus cinctus infestation was more common in winter wheat than in spring wheat. Organic fields with fewer cut stems also supported more parasitoids. Kamut is a genetic resource for developing C. cinctus-resistant cultivars. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. Agricultural landscapes dynamic at the North-West of Russia

    NASA Astrophysics Data System (ADS)

    Guzel, N.

    2012-04-01

    The process of reduction of agrolandscapes has taken place some decades in the North-Western European Russia. During 100 last years the area of agricultural lands have reduced in 1,4 times on the Karelian Isthmus. The most part of it had been abandoned after change of State border after of the Second World War. The processes of overgrowing of the former agricultural lands are studied on the landscapes base. The types of landscapes are distinguished on the based of the morphological relief symptoms, characteristics of the structure rock and the humid regime. Agricultural lands occupy landscapes such as kames, sandy, sandy-loam, clayey plains, sometimes with excess moistening, sandy fluvioglacial plains, loamy morainic plains, mesotrophic and evtrophic peat-bogs. Four stages can be revealed. I - (period to 20 years after termination of agricultural use) - grass-herb meadow with unclosed brush II - (20 - 40) - shrub layer with closed or low-closed canopy and unclosed or low closed small-leaved regrowth III - (40 - 80) - closed small-leaved forest, sometime including the coniferous trees IY - predomination of the coniferous on small-leaved trees Reestablish vegetation successions can be realised by different ways, with different rate, including various trees and ecological groups of species in different landscapes. In the different sites many traits in common are discovered during this processes. The processes taking place in soil of abandoned agricultural lands are expressed more poorly than in vegetation as soil is more "conservative" element of landscape. Now most area occupies former agricultural lands, inhering on III stage and presenting itself small-leaved forest. Over the last decade because of a change in the socio-political situation there has emerged a tendency towards an increase in the area of the cultivated land in the Karelian Isthmus including the secondary development of previously abandoned lands. However, this process is going on spontaneously; there

  4. Daniel Inman | NREL

    Science.gov Websites

    of Agriculture Natural Resources Conservation Service, 2000-2001 Graduate Research Assistant, Dept . "A Synthesis of Multi-Disciplinary Research in Precision Agriculture: Site-Specific Management Zones in the Semi-Arid Western Great Plains of the USA." Journal of Precision Agriculture 9 (2008

  5. A collaborative program to provide native plant materials for the Great Basin

    Treesearch

    Nancy Shaw; Mike Pellant; Matthew Fisk; Erin Denney

    2012-01-01

    The Great Basin as defined on a floristic basis includes the hydrographic Great Basin plus the Owyhee Uplands and Snake River Plain of southern Idaho (Fig. 1). The region encompasses about 60 million ha, of which more than two-thirds are publicly owned. Vegetation ranges from salt desert and sagebrush shrublands in the basins to conifer forests in the more than 200...

  6. Indicators of the sources and distribution of nitrate in water from shallow domestic wells in agricultural areas of the New Jersey Coastal Plain

    USGS Publications Warehouse

    Vowinkel, Eric F.; Tapper, Robert J.

    1995-01-01

    Previously collected and new water-quality data from shallow wells (screened interval less than 30 meters below the land surface) in predominantly agricultural areas of the New Jersey Coastal Plain were used to determine the relation of nitrate concentrations in shallow ground water to various hydrogeologic and land-use factors in the study area. Information on land use, well construction, hydrogeology, and water quality were used to predict the conditions under which concentrations of nitrate as nitrogen in water from domestic wells in predominantly agricultural areas are most likely to be equal to or larger than the U.S. Environmental Protection Agency maximum contaminant level (MCL) of 10 milligrams per liter. Results of the analyses of water-quality samples collected during 1980-89 from 230 shallow wells in the outcrop areas of the Kirkwood-Cohansey and Potomac-Raritan-Magothy aquifer systems were used to evaluate the regional effects of land use on shallow-ground-water quality. Results of statistical analysis indicate that concentrations of nitrate in shallow ground water are significantly different (p= 0.001) in agricultural areas than in undeveloped areas in both aquifer systems. Concentrations of nitrate nitrogen exceeded the MCL in water from more than 33 percent of the 60 shallow wells in agricultural areas. Concentrations of hitrate in water from shallow wells in agricultural areas increased as the percentage of agricultural land within an 800-meter-radius buffer zone of the wellhead increased (r= 0.81). Concentrations ofhitrate in water from domestic wells in agricultural areas were similar (p= 0.23) to those concentrations in water from irrigation wells. These results indicate that most of the nitrate in water from domestic wells in agricultural areas results from agricultural practices rather than other sources, such as septic systems. Water-quality samples collected from 12 shallow domestic wells in agricultural areas screened in the outcrop areas of

  7. Changing hydrology under a changing climate for a Coastal Plain Watershed

    USDA-ARS?s Scientific Manuscript database

    Analysis of climate data from the Little River Experimental Watershed near Tifton, Georgia, in the South Atlantic Coastal Plain of the U.S.A. indicate air temperatures will increase (0.15 to 0.41°C decade-1) along with a slight increase in total annual precipitation in the 21st century. The greates...

  8. Water movement and solute transport in deep vadose zone under four irrigated agricultural land-use types in the North China Plain

    NASA Astrophysics Data System (ADS)

    Min, Leilei; Shen, Yanjun; Pei, Hongwei; Wang, Ping

    2018-04-01

    Groundwater-fed agriculture has caused water table declines and groundwater quality degradation in the North China Plain. Based on sediment sampling in deep vadose zone (with a maximum depth of 11.0 m), groundwater recharge, seepage velocity, solute inventory and transport under four typical irrigated agricultural land-use types (winter wheat and summer maize, WM; pear orchards, PO; outdoor vegetables, VE; and cotton, CO) were investigated in this study. The results reveal that there are many solutes stored in the vadose zone. Nitrate storage per unit depth in the vadose zone is highest under PO (1703 kg/ha), followed by VE (970 kg/ha), WM (736 kg/ha) and CO (727 kg/ha). However, the amount of annual leached nitrate under the four land-use types results in a different order (VE, 404 kg/ha; WM, 108 kg/ha; PO, 23 kg/ha; CO, 13 kg/ha). The estimated average recharge rates are 180 mm/yr for WM, 27 mm/yr for CO, 320 mm/yr for VE and 49 mm/yr for PO. The seepage velocity under VE (2.22 m/yr) exceeds the values under the other three land-use types (WM, 0.85 m/yr; PO, 0.49 m/yr; CO, 0.09 m/yr). The highest seepage velocity under VE caused significant nitrate contamination in groundwater, whereas the other two land-use types (WM and PO) had no direct influence on groundwater quality. The results of this work could be used for groundwater resources management.

  9. Kansas environmental and resource study: A Great Plains model

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Kanemasu, E. T.; Morain, S. A.; Yarger, H. L.; Ulaby, F. T. (Principal Investigator)

    1973-01-01

    The land use category of subimage regions over Kansas within an MSS image can be identified with an accuracy of about 70% using the textural-spectral features of the multi-images from the four MSS bands. Ground truth measurements indicate that reflectance ratios of the 545 and 655 nm wavebands provide an index of plant development and possibly physiological stress. Agricultural consultants have expressed substantial interest in work conducted on center pivot irrigation and have inquired as to how they may use ERTS-1 imagery to aid those in the irrigation field. Results of the land use mapping experiment indicate that ERTS-1 imagery has major potential in regionalization. The ways in which land is utilized within these regions may then be studied more effectively than if no adequate regionalization is available.

  10. An Unremembered Diversity: Mixed Husbandry and the American Grasslands

    PubMed Central

    SYLVESTER, KENNETH; CUNFER, GEOFF

    2009-01-01

    The Green Revolution of the 1960s brought about a dramatic rise in global crop yields. But, as most observers acknowledge, this has come at a considerable cost to biodiversity. Plant breeding, synthetic fertilizers, and mechanization steadily narrowed the number of crop varieties commercially available to farmers and promoted fencerow-to-fencerow monocultures. Many historians trace the origins of this style of industrialized agriculture to the last great plow-up of the Great Plains in the 1920s. In the literature, farms in the plains are often described metaphorically as wheat factories, degrading successive landscapes. While in many ways these farms were a departure from earlier forms of husbandry in the American experience, monocultures were quite rare during the early transformation of the plains. Analysis of a large representative sample, based on manuscript agricultural censuses and involving twenty-five townships across the state of Kansas, demonstrates that diverse production reached even the most challenging of plains landscapes. PMID:19839113

  11. Landsat classification of surface-water presence during multiple years to assess response of playa wetlands to climatic variability across the Great Plains Landscape Conservation Cooperative region

    USGS Publications Warehouse

    Manier, Daniel J.; Rover, Jennifer R.

    2018-02-15

    To improve understanding of the distribution of ecologically important, ephemeral wetland habitats across the Great Plains, the occurrence and distribution of surface water in playa wetland complexes were documented for four different years across the Great Plains Landscape Conservation Cooperative (GPLCC) region. This information is important because it informs land and wildlife managers about the timing and location of habitat availability. Data with an accurate timestamp that indicate the presence of water, the percent of the area inundated with water, and the spatial distribution of playa wetlands with water are needed for a host of resource inventory, monitoring, and research applications. For example, the distribution of inundated wetlands forms the spatial pattern of available habitat for resident shorebirds and water birds, stop-over habitats for migratory birds, connectivity and clustering of wetland habitats, and surface waters that recharge the Ogallala aquifer; there is considerable variability in the distribution of playa wetlands holding water through time. Documentation of these spatially and temporally intricate processes, here, provides data required to assess connections between inundation and multiple environmental drivers, such as climate, land use, soil, and topography. Climate drivers are understood to interact with land cover, land use and soil attributes in determining the amount of water that flows overland into playa wetlands. Results indicated significant spatial variability represented by differences in the percent of playas inundated among States within the GPLCC. Further, analysis-of-variance comparison of differences in inundation between years showed significant differences in all cases. Although some connections with seasonal moisture patterns may be observed, the complex spatial-temporal gradients of precipitation, temperature, soils, and land use need to be combined as covariates in multivariate models to effectively account for

  12. Coronado and Aesop: Fable and Violence on the Sixteenth-Century Plains

    ERIC Educational Resources Information Center

    Palmer, Daryl W.

    2009-01-01

    In the spring of 1540, Francisco Vazquez de Coronado led an "entrada" from present-day Mexico into the region we call New Mexico, where the expedition spent a violent winter among pueblo peoples. The following year, after a long march across the Great Plains, Coronado led an elite group of his men north into present-day Kansas where,…

  13. [Impacts of land use change on ecosystem services in the agricultural area of North China Plain: A case study of Shangqiu City, Henan Province, China.

    PubMed

    Liu, Ya Ru; Wang, Cong; Yan, Li Jiao

    2018-05-01

    Under the rapid urbanization, quantitatively assessing the impacts of land use and cover change (LUCC) on ecosystem service is of great significance for regional ecological environment construction. Based on the land use maps of Shangqiu City (as the typical agricultural area of North China Plain) in the year of 1990, 2005 and 2015, the spatio-temporal dynamics of land use and ecosystem service were analyzed, and the impacts of LUCC on ecosystem services was quantified with the impact assessment model. The results showed that, from 1990 to 2015, farmland and construction land area, which covered more than 95% of the total area of the research area, changed the most in quantity as -104.38 and 201.59 km 2 respectively, while forestland, grassland and water area changed the most by 79.3%, -73.7% and -24.2%, respectively. The total value of ecosystem service continuously decreased by 1.005 billion yuan, among which the value of hydrolo-gical regulation service suffered the most. The value of ecosystem service (ESV) presented an increasing trend in the west and a decreasing trend in the east. Extending from the center of the city to the outside, the value of ecosystem services was "high-low-high" in the east to west direction. The rate of farmland and water area contributed more than 95% to the total ecosystem service value, which had the greatest impact. The main drivers for the changes of land use and ESV in Shangqiu were population pressure, economic growth, regional policy, and urban planning. In the urban and rural development planning of Shangqiu City, more attention should be paid to the protection of na-tural resources and rational adjustment of the land use structure to realize sustainable development based on the harmony of economy, society and environment.

  14. National coal resource assessment non-proprietary data: Location, stratigraphy, and coal quality for selected tertiary coal in the Northern Rocky Mountains and Great Plains region

    USGS Publications Warehouse

    Flores, Romeo M.; Ochs, A.M.; Stricker, G.D.; Ellis, M.S.; Roberts, S.B.; Keighin, C.W.; Murphy, E.C.; Cavaroc, V.V.; Johnson, R.C.; Wilde, E.M.

    1999-01-01

    One of the objectives of the National Coal Resource Assessment in the Northern Rocky Mountains and Great Plains region was to compile stratigraphic and coal quality-trace-element data on selected and potentially minable coal beds and zones of the Fort Union Formation (Paleocene) and equivalent formations. In order to implement this objective, drill-hole information was compiled from hard-copy and digital files of the: (1) U.S. Bureau of Land Management (BLM) offices in Casper, Rawlins, and Rock Springs, Wyoming, and in Billings, Montana, (2) State geological surveys of Montana, North Dakota, and Wyoming, (3) Wyoming Department of Environmental Quality in Cheyenne, (4) U.S. Office of Surface Mining in Denver, Colorado, (5) U.S. Geological Survey, National Coal Resource Data System (NCRDS) in Reston, Virginia, (6) U.S. Geological Survey coal publications, (7) university theses, and (8) mining companies.

  15. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains

    PubMed Central

    Otto, Clint R. V.; Roth, Cali L.; Carlson, Benjamin L.; Smart, Matthew D.

    2016-01-01

    Human reliance on insect pollination services continues to increase even as pollinator populations exhibit global declines. Increased commodity crop prices and federal subsidies for biofuel crops, such as corn and soybeans, have contributed to rapid land-use change in the US Northern Great Plains (NGP), changes that may jeopardize habitat for honey bees in a part of the country that supports >40% of the US colony stock. We investigated changes in biofuel crop production and grassland land covers surrounding ∼18,000 registered commercial apiaries in North and South Dakota from 2006 to 2014. We then developed habitat selection models to identify remotely sensed land-cover and land-use features that influence apiary site selection by Dakota beekeepers. Our study demonstrates a continual increase in biofuel crops, totaling 1.2 Mha, around registered apiary locations in North and South Dakota. Such crops were avoided by commercial beekeepers when selecting apiary sites in this region. Furthermore, our analysis reveals how grasslands that beekeepers target when selecting commercial apiary locations are becoming less common in eastern North and South Dakota, changes that may have lasting impact on pollinator conservation efforts. Our study highlights how land-use change in the NGP is altering the landscape in ways that are seemingly less conducive to beekeeping. Our models can be used to guide future conservation efforts highlighted in the US national pollinator health strategy by identifying areas that support high densities of commercial apiaries and that have exhibited significant land-use changes. PMID:27573824

  16. Analysis of environmental variation in a Great Plains reservoir using principal components analysis and geographic information systems

    USGS Publications Warehouse

    Long, J.M.; Fisher, W.L.

    2006-01-01

    We present a method for spatial interpretation of environmental variation in a reservoir that integrates principal components analysis (PCA) of environmental data with geographic information systems (GIS). To illustrate our method, we used data from a Great Plains reservoir (Skiatook Lake, Oklahoma) with longitudinal variation in physicochemical conditions. We measured 18 physicochemical features, mapped them using GIS, and then calculated and interpreted four principal components. Principal component 1 (PC1) was readily interpreted as longitudinal variation in water chemistry, but the other principal components (PC2-4) were difficult to interpret. Site scores for PC1-4 were calculated in GIS by summing weighted overlays of the 18 measured environmental variables, with the factor loadings from the PCA as the weights. PC1-4 were then ordered into a landscape hierarchy, an emergent property of this technique, which enabled their interpretation. PC1 was interpreted as a reservoir scale change in water chemistry, PC2 was a microhabitat variable of rip-rap substrate, PC3 identified coves/embayments and PC4 consisted of shoreline microhabitats related to slope. The use of GIS improved our ability to interpret the more obscure principal components (PC2-4), which made the spatial variability of the reservoir environment more apparent. This method is applicable to a variety of aquatic systems, can be accomplished using commercially available software programs, and allows for improved interpretation of the geographic environmental variability of a system compared to using typical PCA plots. ?? Copyright by the North American Lake Management Society 2006.

  17. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-09-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  18. Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility

    NASA Astrophysics Data System (ADS)

    McFarlane, S. A.; Gaustad, K. L.; Mlawer, E. J.; Long, C. N.; Delamere, J.

    2011-05-01

    We present a method for identifying dominant surface type and estimating high spectral resolution surface albedo at the Atmospheric Radiation Measurement (ARM) facility at the Southern Great Plains (SGP) site in Oklahoma for use in radiative transfer calculations. Given a set of 6-channel narrowband visible and near-infrared irradiance measurements from upward and downward looking multi-filter radiometers (MFRs), four different surface types (snow-covered, green vegetation, partial vegetation, non-vegetated) can be identified. A normalized difference vegetation index (NDVI) is used to distinguish between vegetated and non-vegetated surfaces, and a scaled NDVI index is used to estimate the percentage of green vegetation in partially vegetated surfaces. Based on libraries of spectral albedo measurements, a piecewise continuous function is developed to estimate the high spectral resolution surface albedo for each surface type given the MFR albedo values as input. For partially vegetated surfaces, the albedo is estimated as a linear combination of the green vegetation and non-vegetated surface albedo values. The estimated albedo values are evaluated through comparison to high spectral resolution albedo measurements taken during several Intensive Observational Periods (IOPs) and through comparison of the integrated spectral albedo values to observed broadband albedo measurements. The estimated spectral albedo values agree well with observations for the visible wavelengths constrained by the MFR measurements, but have larger biases and variability at longer wavelengths. Additional MFR channels at 1100 nm and/or 1600 nm would help constrain the high resolution spectral albedo in the near infrared region.

  19. Assessment of time-series MODIS data for cropland mapping in the U.S. central Great Plains

    NASA Astrophysics Data System (ADS)

    Masialeti, Iwake

    This study had three general objectives. First, to explore ways of creating and refining a reference data set when reference data set is unobtainable. Second, extend work previously done in Kansas by Wardlow et al. (2007) to Nebraska, several exploratory approaches were used to further investigate the potential of MODIS NDVI 250-m data in agricultural-related land cover research other parts of the Great Plains. The objective of this part of the research was to evaluate the applicability of time-series MODIS 250-m NDVI data for crop-type discrimination by spectrally characterizing and discriminating major crop types in Nebraska using the reference data set collected and refined under research performed for the first objective. Third, conduct an initial investigation into whether time-series NDVI response curves for crops over a growing season for one year could be used to classify crops for a different year. In this case, time-series NDVI response curves for 2001 and 2005 were investigated to ascertain whether or not the 2001 data set could be used to classify crops for 2005. GIS operations, and reference data refinement using clustering and visual assessment of each crop's NDVI cluster profiles in Nebraska, demonstrated that it is possible to devise an alternative reference data set and refinement plan that redresses the unexpected loss of training and validation data. The analysis enabled the identification and removal of crop pattern outliers and sites atypical of crop phenology under consideration, and after editing, a total of 1,288 field sites remained, which were used as a reference data set for classification of Nebraska crop types. A pixel-level analysis of the time-series MODIS 250-m NDVI for 1,288 field sites representing each of the eight cover types under investigation across Nebraska found that each crop type had a distinctive MODIS 250-m NDVI profile corresponding to the crop calendar. A visual and statistical comparison of the average NDVI profiles

  20. Groundwater Pollution Sources Apportionment in the Ghaen Plain, Iran

    PubMed Central

    Berndtsson, Ronny; Adamowski, Jan; Sadatipour, Elaheh

    2018-01-01

    Although Iran’s Ghaen Plain provides saffron to much of the world, no regional groundwater quality (GQ) assessment has yet been undertaken. Given the region’s potential for saltwater intrusion and heavy metal contamination, it is important to assess the GQ and determine its main probable source of pollution (MPSP). Such knowledge would allow for informed mitigation or elimination of the potential adverse health effects of this groundwater through its use as drinking water, or indirectly as a result of the consumption of groundwater-irrigated crops. Total dissolved solids, sodium, and chloride in the water of the majority of 16 wells sampled within the region exceeded World Health Organization and Iranian permissible standards for drinking water. The groundwater proved to only be suitable for irrigating salt tolerant crops under good drainage conditions. Due to the precipitation of calcium carbonate in the water supply facilities, the water from all wells was deemed unsuitable for industrial purposes. Heavy metal pollution and contamination indices showed no groundwater contamination. Analysis of ionic ratios and the application of principal components analysis indicated the MPSP to be saltwater intrusion, with the geology subtending the plain, and to a lesser extent, anthropogenic activities. Reducing groundwater withdrawals, particularly those for agricultural production by using high performance irrigation methods could reduce saltwater intrusion and improve GQ in the Ghaen Plain. PMID:29361791

  1. Groundwater Pollution Sources Apportionment in the Ghaen Plain, Iran.

    PubMed

    Vesali Naseh, Mohammad Reza; Noori, Roohollah; Berndtsson, Ronny; Adamowski, Jan; Sadatipour, Elaheh

    2018-01-22

    Although Iran's Ghaen Plain provides saffron to much of the world, no regional groundwater quality (GQ) assessment has yet been undertaken. Given the region's potential for saltwater intrusion and heavy metal contamination, it is important to assess the GQ and determine its main probable source of pollution (MPSP). Such knowledge would allow for informed mitigation or elimination of the potential adverse health effects of this groundwater through its use as drinking water, or indirectly as a result of the consumption of groundwater-irrigated crops. Total dissolved solids, sodium, and chloride in the water of the majority of 16 wells sampled within the region exceeded World Health Organization and Iranian permissible standards for drinking water. The groundwater proved to only be suitable for irrigating salt tolerant crops under good drainage conditions. Due to the precipitation of calcium carbonate in the water supply facilities, the water from all wells was deemed unsuitable for industrial purposes. Heavy metal pollution and contamination indices showed no groundwater contamination. Analysis of ionic ratios and the application of principal components analysis indicated the MPSP to be saltwater intrusion, with the geology subtending the plain, and to a lesser extent, anthropogenic activities. Reducing groundwater withdrawals, particularly those for agricultural production by using high performance irrigation methods could reduce saltwater intrusion and improve GQ in the Ghaen Plain.

  2. The geochemical transformation of soils by agriculture and its dependence on soil erosion: An application of the geochemical mass balance approach.

    PubMed

    Yoo, Kyungsoo; Fisher, Beth; Ji, Junling; Aufdenkampe, Anthony; Klaminder, Jonatan

    2015-07-15

    Agricultural activities alter elemental budgets of soils and thus their long-term geochemical development and suitability for food production. This study examined the utility of a geochemical mass balance approach that has been frequently used for understanding geochemical aspect of soil formation, but has not previously been applied to agricultural settings. Protected forest served as a reference to quantify the cumulative fluxes of Ca, P, K, and Pb at a nearby tilled crop land. This comparison was made at two sites with contrasting erosional environments: relatively flat Coastal Plain in Delaware vs. hilly Piedmont in Pennsylvania. Mass balance calculations suggested that liming not only replenished the Ca lost prior to agricultural practice but also added substantial surplus at both sites. At the relatively slowly eroding Coastal Plain site, the agricultural soil exhibited enrichment of P and less depletion of K, while both elements were depleted in the forest soil. At the rapidly eroding Piedmont site, erosion inhibited P enrichment. In similar, agricultural Pb contamination appeared to have resulted in Pb enrichment in the relatively slowly eroding Coastal Plain agricultural soil, while not in the rapidly eroding Piedmont soils. We conclude that agricultural practices transform soils into a new geochemical state where current levels of Ca, P, and Pb exceed those provided by the local soil minerals, but such impacts are significantly offset by soil erosion. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Nitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain.

    PubMed

    Gao, Jianmin; Xie, Yingxin; Jin, Haiyang; Liu, Yuan; Bai, Xueying; Ma, Dongyun; Zhu, Yunji; Wang, Chenyang; Guo, Tiancai

    2016-01-01

    The application of crop residues combined with Nitrogen (N) fertilizer has been broadly adopted in China. Crop residue amendments can provide readily available C and N, as well as other nutrients to agricultural soils, but also intensify the N fixation, further affecting N2O emissions. N2O pulses are obviously driven by rainfall, irrigation and fertilization. Fertilization before rainfall or followed by flooding irrigation is a general management practice for a wheat-maize rotation in the North China Plain. Yet, little is known on the impacts of crop residues combined with N fertilizer application on N2O emission under high soil moisture content. A laboratory incubation experiment was conducted to investigate the effects of two crop residue amendments (maize and wheat), individually or in combination with N fertilizer, on N2O emissions and denitrifier abundance in two main agricultural soils (one is an alluvial soil, pH 8.55, belongs to Ochri-Aquic Cambosols, OAC, the other is a lime concretion black soil, pH 6.61, belongs to Hapli-Aquic Vertosols, HAV) under 80% WFPS (the water filled pore space) in the North China Plain. Each type soil contains seven treatments: a control with no N fertilizer application (CK, N0), 200 kg N ha-1 (N200), 250 kg N ha-1 (N250), maize residue plus N200 (MN200), maize residue plus N250 (MN250), wheat residue plus N200 (WN200) and wheat residue plus N250 (WN250). Results showed that, in the HAV soil, MN250 and WN250 increased the cumulative N2O emissions by 60% and 30% compared with N250 treatment, respectively, but MN200 and WN200 decreased the cumulative N2O emissions by 20% and 50% compared with N200. In the OAC soil, compared with N200 or N250, WN200 and WN250 increased the cumulative N2O emission by 40%-50%, but MN200 and MN250 decreased the cumulative N2O emission by 10%-20%. Compared with CK, addition of crop residue or N fertilizer resulted in significant increases in N2O emissions in both soils. The cumulative N2O emissions

  4. STS-55 Earth observation of agricultural development in northern Argentina

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-55 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, is of agricultural development in northern Argentina. This photograph is from a mapping strip of photographs acquired by the STS-55 crew. This mapping strip runs from the 'eyelash forests' of the Bolivian Andes, southeast across the Chaco Plains, and into the upper Parana River Basin of north-central Argentina. The formerly densely forested areas between the upper Rio Pilcomayo and the Rio Teuco of NW Argentina rest on deep, rich alluvial and loess deposits. These modern soils were carried into the region by rivers from the Andes and by dust storms from large playa areas of the Altiplano (high plains) of Peru and Boliva. In this scene, representative of the long mapping strip, the process of converting forests to agriculture is far advanced. The original road network, a series of grids laid out in the forest, has nearly coalesced into a farm and ranch landscape. Some few relict forests are still visible as distin

  5. Carbonate microbialites and hardgrounds from Manito Lake, an alkaline, hypersaline lake in the northern Great Plains of Canada

    NASA Astrophysics Data System (ADS)

    Last, Fawn M.; Last, William M.; Halden, Norman M.

    2010-03-01

    Manito Lake is a large, perennial, Na-SO 4 dominated saline to hypersaline lake located in the northern Great Plains of western Canada. Significant water level decrease over the past several decades has led to reduction in volume and surface area, as well as an increase in salinity. The salinity has increased from 10 ppt to about 50 ppt TDS. This decrease in water level has exposed large areas of nearshore microbialites. These organogenic structures range in size from several cm to over a meter and often form large bioherms several meters high. They have various external morphologies, vary in mineralogical composition, and show a variety of internal fabrics from finely laminated to massive. In addition to microbiolities and bioherms, the littoral zone of Manito Lake contains a variety of carbonate hardgrounds, pavements, and cemented clastic sediments. Dolomite and aragonite are the most common minerals found in these shoreline structures, however, calcite after ikaite, monohydrocalcite, magnesian calcite, and hydromagnesite are also present. The dolomite is nonstoichiometric and calcium-rich; the magnesian calcite has about 17 mol% MgCO 3. AMS radiocarbon dating of paired organic matter and endogenic carbonate material confirms little or no reservoir affect. Although there is abundant evidence for modern carbonate mineral precipitation and microbialite formation, most of the larger microbialites formed between about 2300 and 1000 cal BP, whereas the hardgrounds, cements, and laminated crusts formed about 1000-500 cal BP.

  6. Agricultural BMPs and ecosystem services in Beasley Lake, a CEAP watershed

    USDA-ARS?s Scientific Manuscript database

    Aquatic ecosystems such as oxbow lakes found throughout the Lower Mississippi Alluvial Plain (i.e. the Mississippi Delta) can provide valuable goods and services such as water supply, fisheries, wildlife habitat and aesthetic value. Agriculture occurring intensively in the same region also provides...

  7. Charon's Smooth Plains

    NASA Astrophysics Data System (ADS)

    Beyer, R. A.; Spencer, J. R.; Nimmo, F.; Beddingfield, C.; Grundy, W. M.; McKinnon, W. B.; Moore, J.; Robbins, S.; Runyon, K.; Schenk, P.; Singer, K.; Weaver, H.; Young, L. A.; Ennico, K.; Olkin, C.; Stern, S. A.; New Horizons Science Team

    2018-06-01

    We hypothesize that Charon's smooth plains result from its global extension that caused crustal blocks to founder. Then, a viscous cryoflow composed of ammonia-rich mantle material rose up, enveloped the sinking blocks, and produced the plains.

  8. PROBABILISTIC ASSESSMENT OF GROUNDWATER VULNERABILITY TO NONPOINT SOURCE POLLUTION IN AGRICULTURAL WATERSHEDS

    EPA Science Inventory

    This paper presents a probabilistic framework for the assessment of groundwater pollution potential by pesticides in two adjacent agricultural watersheds in the Mid-Altantic Coastal Plain. Indices for estimating streams vulnerability to pollutants' load from the surficial aquifer...

  9. Evaluation of agricultural nonpoint source pollution potential risk over China with a Transformed-Agricultural Nonpoint Pollution Potential Index method.

    PubMed

    Yang, Fei; Xu, Zhencheng; Zhu, Yunqiang; He, Chansheng; Wu, Genyi; Qiu, Jin Rong; Fu, Qiang; Liu, Qingsong

    2013-01-01

    Agricultural nonpoint source (NPS) pollution has been the most important threat to water environment quality. Understanding the spatial distribution of NPS pollution potential risk is important for taking effective measures to control and reduce NPS pollution. A Transformed-Agricultural Nonpoint Pollution Potential Index (T-APPI) model was constructed for evaluating the national NPS pollution potential risk in this study; it was also combined with remote sensing and geographic information system techniques for evaluation on the large scale and at 1 km2 spatial resolution. This model considers many factors contributing to the NPS pollution as the original APPI model, summarized as four indicators of the runoff, sediment production, chemical use and the people and animal load. These four indicators were analysed in detail at 1 km2 spatial resolution throughout China. The T-APPI model distinguished the four indicators into pollution source factors and transport process factors; it also took their relationship into consideration. The studied results showed that T-APPI is a credible and convenient method for NPS pollution potential risk evaluation. The results also indicated that the highest NPS pollution potential risk is distributed in the middle-southern Jiangsu province. Several other regions, including the North China Plain, Chengdu Basin Plain, Jianghan Plain, cultivated lands in Guangdong and Guangxi provinces, also showed serious NPS pollution potential. This study can provide a scientific reference for predicting the future NPS pollution risk throughout China and may be helpful for taking reasonable and effective measures for preventing and controlling NPS pollution.

  10. Changes in water levels and storage in the High Plains Aquifer, predevelopment to 2009

    USGS Publications Warehouse

    McGuire, V.L.

    2011-01-01

    The High Plains aquifer underlies 111.8 million acres (175,000 square miles) in parts of eight States - Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The area overlying the High Plains aquifer is one of the primary agricultural regions in the Nation. Water-level declines began in parts of the High Plains aquifer soon after the onset of substantial irrigation with groundwater from the aquifer (about 1950 and termed "predevelopment" in this fact sheet). By 1980, water levels in the High Plains aquifer in parts of Texas, Oklahoma, and southwestern Kansas had declined more than 100 feet (ft) (Luckey and others, 1981). In 1987, in response to declining water levels, Congress directed the U.S. Geological Survey (USGS), in collaboration with numerous Federal, State, and local water-resources entities, to assess and track water-level changes in the aquifer. This fact sheet summarizes changes in water levels and drainable water in storage in the High Plains aquifer from predevelopment to 2009. Drainable water in storage is the fraction of water in the aquifer that will drain by gravity and can be withdrawn by wells. The remaining water in the aquifer is held to the aquifer material by capillary forces and generally cannot be withdrawn by wells. Drainable water in storage is termed "water in storage" in this report. A companion USGS report presents more detailed and technical information about water-level and storage changes in the High Plains aquifer during this period (McGuire, 2011).

  11. Restoring the Great Lakes: DOI stories of success and partnership in implementing the Great Lakes Restoration Initiative

    USGS Publications Warehouse

    ,; ,; ,; ,; ,

    2013-01-01

    The Great Lakes are a monumentally unique national treasure containing nearly ninety-five percent of the United States' fresh surface water. Formed by receding glaciers, the Great Lakes support a thriving, resilient ecosystem rich with fish, wildlife, and abundant natural resources. The Great Lakes also support an array of commercial uses, including shipping, and provide a source of recreation, drinking water, and other critical services that drive the economy of the region and the Nation. Regrettably, activities such as clear cutting of mature forests, over-harvesting of fish populations, industrial pollution, invasive species, and agricultural runoffs have degraded these treasured lakes over the decades creating long-term impacts to the surrounding watershed. Fortunately, the people who live, work, and recreate in the region recognize the critical importance of a healthy Great Lakes ecosystem, and have come together to support comprehensive restoration. To stimulate and promote the goal of a healthy Great Lakes region, President Obama and Congress created the Great Lakes Restoration Initiative (GLRI) in 2009. This program provides the seed money to clean up legacy pollution, restore habitats, protect wildlife, combat invasive species, and address agricultural runoff in the Great Lakes watershed. At the same time GLRI promotes public outreach, education, accountability, and partnerships.

  12. Changes in Carbon Pools 50 Years after Reversion of a Landscape Dominated by Agriculture to Managed Forests in the Upper Southeastern Atlantic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Trettin, C.; Parresol, B. R.; Li, C.

    2010-12-01

    The landscape of the upper coastal plain of South Carolina in the late 1940’s was typified by rural agricultural communities and farms comprising cleared fields and mixed-use woodlots. Approximately 80,000 ha of that landscape was appropriated by the US Government in the early 1950’s to form the Savannah River Site which is now managed by the US Dept. of Energy. The US Forest Service was engaged to reforest the agricultural parcels, 40% of the tract, and to develop sustainable management practices for the woodlots and restored areas. As part of the acquisition process in 1951, a complete inventory of the land and forest resources were conducted. In 2001, an intensive forest survey was conducted which encompassed 90% of the tract, detailing the above-ground biomass pools. We’ve used those inventories in conjunction with soil resource data to assemble a carbon balance sheet encompassing the above and belowground carbon pools over the 50 year period. We’ve also employed inventories on forest removals, forest burning and runoff to estimate fluxes from the landscape over the same period. There was a net sequestration of 5,486 Gg of C in forest vegetation over the 50 yr. period (1.5 Mg ha-1 yr-1), with carbon density increasing from 6.3 to 83.3 Mg ha-1. The reforestation of the agricultural land and the increased density of the former woodlots was the cause of the gain. Fifty years after imposition of silvicultural prescriptions, the forest composition has changed from being dominated by hardwoods to pine. The forest floor increased by 311 Gg carbon. Fluxes in form of harvested wood and oxidation from burning were 24% and 10% respectively of the net gain in vegetative biomass. These findings document real changes in carbon storage on a landscape that was changed from mixed agricultural use to managed forests, and they suggest responses that should be similar if reforestation for biofuels production is expanded.

  13. Colonization and extinction in dynamic habitats: an occupancy approach for a Great Plains stream fish assemblage.

    PubMed

    Falke, Jeffrey A; Bailey, Larissa L; Fausch, Kurt D; Bestgen, Kevin R

    2012-04-01

    Despite the importance of habitat in determining species distribution and persistence, habitat dynamics are rarely modeled in studies of metapopulations. We used an integrated habitat-occupancy model to simultaneously quantify habitat change, site fidelity, and local colonization and extinction rates for larvae of a suite of Great Plains stream fishes in the Arikaree River, eastern Colorado, USA, across three years. Sites were located along a gradient of flow intermittency and groundwater connectivity. Hydrology varied across years: the first and third being relatively wet and the second dry. Despite hydrologic variation, our results indicated that site suitability was random from one year to the next. Occupancy probabilities were also independent of previous habitat and occupancy state for most species, indicating little site fidelity. Climate and groundwater connectivity were important drivers of local extinction and colonization, but the importance of groundwater differed between periods. Across species, site extinction probabilities were highest during the transition from wet to dry conditions (range: 0.52-0.98), and the effect of groundwater was apparent with higher extinction probabilities for sites not fed by groundwater. Colonization probabilities during this period were relatively low for both previously dry sites (range: 0.02-0.38) and previously wet sites (range: 0.02-0.43). In contrast, no sites dried or remained dry during the transition from dry to wet conditions, yielding lower but still substantial extinction probabilities (range: 0.16-0.63) and higher colonization probabilities (range: 0.06-0.86), with little difference among sites with and without groundwater. This approach of jointly modeling both habitat change and species occupancy will likely be useful to incorporate effects of dynamic habitat on metapopulation processes and to better inform appropriate conservation actions.

  14. Holocene environmental and climatic change in the Northern Great Plains as recorded in the geochemistry of sediments in Pickerel Lake, South Dakota

    USGS Publications Warehouse

    Dean, W.E.; Schwalb, A.

    2000-01-01

    m cycles (ca. 400-500 yr periodicity) in susceptibility. These cycles are interpreted as being due to variations in the influx of eolian detrital-clastic material. Century-scale cyclic variations in different proxy variables for aridity and eolian activity from sediments deposited over the past 2000 yr in other lakes in the northern Great Plains, as well as in sand dune activity, suggest that aridity cycles were the dominant feature of late Holocene climate of the northern Great Plains. (C) 2000 Elsevier Science Ltd and INQUA. All rights reserved.

  15. Bird use of agricultural fields under reduced and conventional tillage in the Texas Panhandle

    USGS Publications Warehouse

    Flickinger, Edward L.; Pendleton, G.W.

    1994-01-01

    We conducted bird surveys in reduced-tillage and conventional tillage fields in spring, summer, fall, and winter from 1987 to 1991 in the Texas Panhandle. Eastern meadowlarks, longspurs, and savannah sparrows were more common in reduced-tillage (sorghum and wheat stubble) fields than in conventionally tilled (plowed) fields in at least 1 season. Other species also had patterns suggestive of greater abundance in reduced-tillage fields. Hornedlarks, which prefer habitat with sparse vegetation, were more abundant in plowed fields in all seasons except summer. Bird diversity was greater in reduced-tillage fields than in conventionally tilled fields in summer. Cover density and height were greater in reduced tillage fields in all seasons except spring. Cover density and height rather than cover composition (e.g.,grain stubble or live plants) seemed to be the important factors affecting bird distribution. Patterns of bird abundance between sorghum and wheat stubble fields also were dependent on cover. Herbicide use was not greater in reduced-tillage fields than in conventionally tilled fields. Reduced-tillage agriculture for sorghum and wheat farming should be encouraged in the southern Great Plains as a means of improving the attractiveness of agricultural land to many bird species.

  16. Cover Crop Chart: An intuitive educational resource for extension professionals

    USDA-ARS?s Scientific Manuscript database

    Interest in cover crops by agricultural producers has increased the need for information regarding the suitability of crops for addressing different production and natural resource goals. To help address this need, staff at the USDA Agricultural Research Service Northern Great Plains Research Labor...

  17. Observational Evaluation of Simulated Land-Atmosphere Coupling on the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Phillips, T. J.; Klein, S. A.

    2014-12-01

    In a recent study of observed features of land-atmosphere coupling (LAC) at the ARM Southern Great Plains (ARM SGP) site in northern Oklahoma (Phillips and Klein, 2014 Journal of Geophysical Research), we identified statistically significant interactions between 1997-2008 summertime daily averages of soil moisture (at 10 cm depth) and a number of surface atmospheric variables, such as surface evaporation, relative humidity, and temperature. Here we will report on an evaluation of similar features of LAC simulated by version 5 of the global Community Atmosphere Model (CAM5), coupled to its native CLM4 land model, and downscaled to the vicinity of the ARM SGP site. In these case studies, the CAM5 was initialized from a 6-hourly atmospheric reanalysis for each day of the years 2008 and 2009 (where the CLM4 land state was equilibrated to the atmospheric model state), thus permitting a close comparison of the modeled and observed summer daily average features of the LAC in these years. Correlation coefficients R and "sensitivity indices" I (a measure of the comparative change of an atmospheric variable for a one-standard-deviation change in soil moisture) provided quantitative measures of the respective coupling strengths. Such a comparison of observed versus modeled LAC is complicated by differences in atmospheric forcings of the land; for example, the CAM5's summertime precipitation is too scant, and thus the model's upper soil layer often is drier than observed. The modeled daily average covariations of soil moisture with lower atmospheric variables also display less coherence (lower R values), but sometimes greater "sensitivity" (higher I values) than are observed at the ARM SGP site. Since the observational estimate of LAC may itself be sensitive to soil moisture measurement biases, we also will report on a planned investigation of the dependence of LAC on several alternative choices of soil moisture data sets local to the ARM SGP site. AcknowledgmentsThis work was

  18. Evaluation of a single column model at the Southern Great Plains climate research facility

    NASA Astrophysics Data System (ADS)

    Kennedy, Aaron D.

    Despite recent advancements in global climate modeling, models produce a large range of climate sensitivities for the Earth. This range of sensitivities results in part from uncertainties in modeling clouds. To understand and to improve cloud parameterizations in Global Climate Models (GCMs), simulations should be evaluated using observations of clouds. Detailed studies can be conducted at Atmospheric Radiation Measurements (ARM) sites which provide adequate observations and forcing for Single Column Model (SCM) studies. Unfortunately, forcing for SCMs is sparse and not available for many locations or times. This study had two main goals: (1) evaluate clouds from the GISS Model E AR5 SCM at the ARM Southern Great Plains site and (2) determine whether reanalysis-based forcing was feasible at this location. To accomplish these goals, multiple model runs were conducted from 1999--2008 using forcing provided by ARM and forcing developed from the North American Regional Reanalysis (NARR). To better understand cloud biases and differences in the forcings, atmospheric states were classified using Self Organizing Maps (SOMs). Although model simulations had many similarities with the observations, there were several noticeable biases. Deep clouds had a negative bias year-round and this was attributed to clouds being too thin during frontal systems and a lack of convection during the spring and summer. These results were consistent regardless of the forcing used. During August, SCM simulations had a positive bias for low clouds. This bias varied with the forcing suggesting that part of the problem was tied to errors in the forcing. NARR forcing had many favorable characteristics when compared to ARM observations and forcing. In particular, temperature and wind information were more accurate than ARM when compared to balloon soundings. During the cool season, NARR forcing produced results similar to ARM with reasonable precipitation and a similar cloud field. Although NARR

  19. A Profile of Agricultural Education Teachers with Exemplary Rural Agricultural Entrepreneurship Education Programs

    ERIC Educational Resources Information Center

    Heinert, Seth B.; Roberts, T. Grady

    2017-01-01

    Rural entrepreneurship education programs may be a great tool for enhancing rural livelihoods and reducing rural outmigration. Entrepreneurship has received attention in school based agricultural education, primarily through implementation of Supervised Agricultural Experience (SAE) programs. Very little research has looked at the teaching of…

  20. Use of the Budyko Framework to Estimate the Virtual Water Content in Shijiazhuang Plain, North China

    NASA Astrophysics Data System (ADS)

    Zhang, E.; Yin, X.

    2017-12-01

    One of the most challenging steps in implementing analysis of virtual water content (VWC) of agricultural crops is how to properly assess the volume of consumptive water use (CWU) for crop production. In practice, CWU is considered equivalent to the crop evapotranspiration (ETc). Following the crop coefficient method, ETc can be calculated under standard or non-standard conditions by multiplying the reference evapotranspiration (ET0) by one or a few coefficients. However, when current crop growing conditions deviate from standard conditions, accurately determining the coefficients under non-standard conditions remains to be a complicated process and requires lots of field experimental data. Based on regional surface water-energy balance, this research integrates the Budyko framework into the traditional crop coefficient approach to simplify the coefficients determination. This new method enables us to assess the volume of agricultural VWC only based on some hydrometeorological data and agricultural statistic data in regional scale. To demonstrate the new method, we apply it to the Shijiazhuang Plain, which is an agricultural irrigation area in the North China Plain. The VWC of winter wheat and summer maize is calculated and we further subdivide VWC into blue and green water components. Compared with previous studies in this study area, VWC calculated by the Budyko-based crop coefficient approach uses less data and agrees well with some of the previous research. It shows that this new method may serve as a more convenient tool for assessing VWC.