Sample records for agricultural residues potential

  1. An integrated assessment of the potential of agricultural and forestry residues for energy production in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Ji; Zhang, Aiping; Lam, Shu Kee

    Biomass has been widely recognized as an important energy source with high potential to reduce greenhouse gas emissions while minimizing environmental pollution. In this study, we employ the Global Change Assessment Model to estimate the potential of agricultural and forestry residue biomass for energy production in China. Potential availability of residue biomass as an energy source was analyzed for the 21st century under different climate policy scenarios. Currently, the amount of total annual residue biomass, averaged over 2003-2007, is around 15519PJ in China, consisting of 10818PJ from agriculture residues (70%) and 4701PJ forestry residues (30%). We estimate that 12693PJ ofmore » the total biomass is available for energy production, with 66% derived from agricultural residue and 34% from forestry residue. Most of the available residue is from south central China (3347PJ), east China (2862PJ) and south-west China (2229PJ), which combined exceeds 66% of the total national biomass. Under the reference scenario without carbon tax, the potential availability of residue biomass for energy production is projected to be 3380PJ by 2050 and 4108PJ by 2095, respectively. When carbon tax is imposed, biomass availability increases substantially. For the CCS 450ppm scenario, availability of biomass increases to 9002PJ (2050) and 11524PJ (2095), respectively. For the 450ppm scenario without CCS, 9183 (2050) and 11150PJ (2095) residue biomass, respectively, is projected to be available. Moreover, the implementation of CCS will have a little impact on the supply of residue biomass after 2035. Our results suggest that residue biomass has the potential to be an important component in China's sustainable energy production portfolio. As a low carbon emission energy source, climate change policies that involve carbon tariff and CCS technology promote the use of residue biomass for energy production in a low carbon-constrained world.« less

  2. Agricultural residue availability in the United States.

    PubMed

    Haq, Zia; Easterly, James L

    2006-01-01

    The National Energy Modeling System (NEMS) is used by the Energy Information Administration (EIA) to forecast US energy production, consumption, and price trends for a 25-yr-time horizon. Biomass is one of the technologies within NEMS, which plays a key role in several scenarios. An endogenously determined biomass supply schedule is used to derive the price-quantity relationship of biomass. There are four components to the NEMS biomass supply schedule including: agricultural residues, energy crops, forestry residues, and urban wood waste/mill residues. The EIA's Annual Energy Outlook 2005 includes updated estimates of the agricultural residue portion of the biomass supply schedule. The changes from previous agricultural residue supply estimates include: revised assumptions concerning corn stover and wheat straw residue availabilities, inclusion of non-corn and non-wheat agricultural residues (such as barley, rice straw, and sugarcane bagasse), and the implementation of assumptions concerning increases in no-till farming. This article will discuss the impact of these changes on the supply schedule.

  3. Global bioenergy potential from high-lignin agricultural residue

    PubMed Central

    Mendu, Venugopal; Shearin, Tom; Campbell, J. Elliott; Stork, Jozsef; Jae, Jungho; Crocker, Mark; Huber, George; DeBolt, Seth

    2012-01-01

    Almost one-quarter of the world's population has basic energy needs that are not being met. Efforts to increase renewable energy resources in developing countries where per capita energy availability is low are needed. Herein, we examine integrated dual use farming for sustained food security and agro-bioenergy development. Many nonedible crop residues are used for animal feed or reincorporated into the soil to maintain fertility. By contrast, drupe endocarp biomass represents a high-lignin feedstock that is a waste stream from food crops, such as coconut (Cocos nucifera) shell, which is nonedible, not of use for livestock feed, and not reintegrated into soil in an agricultural setting. Because of high-lignin content, endocarp biomass has optimal energy-to-weight returns, applicable to small-scale gasification for bioelectricity. Using spatial datasets for 12 principal drupe commodity groups that have notable endocarp byproduct, we examine both their potential energy contribution by decentralized gasification and relationship to regions of energy poverty. Globally, between 24 million and 31 million tons of drupe endocarp biomass is available per year, primarily driven by coconut production. Endocarp biomass used in small-scale decentralized gasification systems (15–40% efficiency) could contribute to the total energy requirement of several countries, the highest being Sri Lanka (8–30%) followed by Philippines (7–25%), Indonesia (4–13%), and India (1–3%). While representing a modest gain in global energy resources, mitigating energy poverty via decentralized renewable energy sources is proposed for rural communities in developing countries, where the greatest disparity between societal allowances exist. PMID:22355123

  4. Biochemical production of bioenergy from agricultural crops and residue in Iran.

    PubMed

    Karimi Alavijeh, Masih; Yaghmaei, Soheila

    2016-06-01

    The present study assessed the potential for biochemical conversion of energy stored in agricultural waste and residue in Iran. The current status of agricultural residue as a source of bioenergy globally and in Iran was investigated. The total number of publications in this field from 2000 to 2014 was about 4294. Iran ranked 21st with approximately 54 published studies. A total of 87 projects have been devised globally to produce second-generation biofuel through biochemical pathways. There are currently no second-generation biorefineries in Iran and agricultural residue has no significant application. The present study determined the amount and types of sustainable agricultural residue and oil-rich crops and their provincial distribution. Wheat, barley, rice, corn, potatoes, alfalfa, sugarcane, sugar beets, apples, grapes, dates, cotton, soybeans, rapeseed, sesame seeds, olives, sunflowers, safflowers, almonds, walnuts and hazelnuts have the greatest potential as agronomic and horticultural crops to produce bioenergy in Iran. A total of 11.33million tonnes (Mt) of agricultural biomass could be collected for production of bioethanol (3.84gigaliters (Gl)), biobutanol (1.07Gl), biogas (3.15billion cubic meters (BCM)), and biohydrogen (0.90BCM). Additionally, about 0.35Gl of biodiesel could be obtained using only 35% of total Iranian oilseed. The potential production capacity of conventional biofuel blends in Iran, environmental and socio-economic impacts including well-to-wheel greenhouse gas (GHG) emissions, and the social cost of carbon dioxide reduction are discussed. The cost of emissions could decrease up to 55.83% by utilizing E85 instead of gasoline. The possible application of gaseous biofuel in Iran to produce valuable chemicals and provide required energy for crop cultivation is also studied. The energy recovered from biogas produced by wheat residue could provide energy input for 115.62 and 393.12 thousand hectares of irrigated and rain-fed wheat

  5. Absorption of mercuric cation by tannins in agricultural residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waiss, A.C. Jr.; Wiley, M.E.; Kuhnle, J.A.

    1973-01-01

    Two common environmental pollutants are agricultural residues (skins, pits, husks, tannin bark, grape pomace) and waste streams of water containing only traces of heavy metals (such as mercury at 10 or more ppb) from mining or manufacturing operations. Agricultural residues contain tannins, polyphenolic substances, pectin, and other polymers-all with chemically reactive groups that can chelate, reduce, oxidize, demonstrate ion exchange properties, and aid in removing traces of heavy metals from dilute waste water streams at low cost. Finely ground and water-washed agricultural residues were slurried in water and packed into columns for absorption tests with heavy metals. Solutions of knownmore » concentrations of heavy metals were passed through the packed columns which were then eluted with water or with alkaline or acidic solutions. The fractions and the column absorbents were then analyzed by standard atomic absorption methods. The nature of the physical and chemical forces that are effective in metal absorption from agricultural residues is not clear.« less

  6. Crop residue stabilization and application to agricultural and degraded soils: A review.

    PubMed

    Medina, Jorge; Monreal, Carlos; Barea, José Miguel; Arriagada, César; Borie, Fernando; Cornejo, Pablo

    2015-08-01

    Agricultural activities produce vast amounts of organic residues including straw, unmarketable or culled fruit and vegetables, post-harvest or post-processing wastes, clippings and residuals from forestry or pruning operations, and animal manure. Improper disposal of these materials may produce undesirable environmental (e.g. odors or insect refuges) and health impacts. On the other hand, agricultural residues are of interest to various industries and sectors of the economy due to their energy content (i.e., for combustion), their potential use as feedstock to produce biofuels and/or fine chemicals, or as a soil amendments for polluted or degraded soils when composted. Our objective is review new biotechnologies that could be used to manage these residues for land application and remediation of contaminated and eroded soils. Bibliographic information is complemented through a comprehensive review of the physico-chemical fundamental mechanisms involved in the transformation and stabilization of organic matter by biotic and abiotic soil components. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. An optical instrument to test pesticide residues in agricultural products

    NASA Astrophysics Data System (ADS)

    Qiu, Zhengjun; Zheng, Wenzhong; Fang, Hui; He, Yong

    2005-10-01

    Pesticide is one of the indispensability materials in modern agricultural management, however the excessive use of pesticides has threatened the ecological environment and people's health. This paper introduced an optical instrument to test the pesticide residues in agricultural products based on the inhibition rate of organophosphates against acrtyl-cholinesterase (AchE). The instrument consists mainly of a solid light source with 410nm wavelength, a sampling container, an optical sensor, a temperature sensor, and a MCU based data acquisition board. The light illuminated through the liquid in the sampling container, and the absorptivity was determined by the amount of the pesticide residues in the liquid. This paper involves the design of optical testing system, the data acquisition and calibration of the optical sensor, the design of microcontroller-based electrical board. Tests were done to reveal the affection of temperature and reacting time on AchE, to establish the relationship between the amount of methamidophos and dichlorvos with AchE. The results showed that the absorption rate was related to the pesticide residues and it could be concluded that the pesticide residues exceeded the normal level when the inhibition rate was over 50 percent. The instrument has potential application in vegetable markets.

  8. Agricultural residues for cellulolytic enzyme production by Aspergillus niger: effects of pretreatment.

    PubMed

    Salihu, Aliyu; Abbas, Olagunju; Sallau, Abdullahi Balarabe; Alam, Md Zahangir

    2015-12-01

    Different agricultural residues were considered in this study for their ability to support cellulolytic enzyme production by Aspergillus niger. A total of eleven agricultural residues including finger millet hulls, sorghum hulls, soybean hulls, groundnut husk, banana peels, corn stalk, cassava peels, sugarcane bagasse, saw dust, rice straw and sheanut cake were subjected to three pretreatment (acid, alkali and oxidative) methods. All the residues supported the growth and production of cellulases by A. niger after 96 h of incubation. Maximum cellulase production was found in alkali-treated soybean hulls with CMCase, FPase and β-glucosidase yields of 9.91 ± 0.04, 6.20 ± 0.13 and 5.69 ± 0.29 U/g, respectively. Further studies in assessing the potential of soybean hulls are being considered to optimize the medium composition and process parameters for enhanced cellulase production.

  9. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application.

    PubMed

    Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E

    2015-10-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may

  10. Polylactide-based renewable green composites from agricultural residues and their hybrids.

    PubMed

    Nyambo, Calistor; Mohanty, Amar K; Misra, Manjusri

    2010-06-14

    Agricultural natural fibers like jute, kenaf, sisal, flax, and industrial hemp have been extensively studied in green composites. The continuous supply of biofibers in high volumes to automotive part makers has raised concerns. Because extrusion followed by injection molding drastically reduces the aspect ratio of biofibers, the mechanical performance of injection molded agricultural residue and agricultural fiber-based composites are comparable. Here, the use of inexpensive agricultural residues and their hybrids that are 8-10 times cheaper than agricultural fibers is demonstrated to be a better way of getting sustainable materials with better performance. Green renewable composites from polylactide (PLA), agricultural residues (wheat straw, corn stover, soy stalks, and their hybrids) were successfully prepared through twin-screw extrusion, followed by injection molding. The effect on mechanical properties of varying the wheat straw amount from 10 to 40 wt % in PLA-wheat straw composites was studied. Tensile moduli were compared with theoretical calculations from the rule of mixture (ROM). Combination of agricultural residues as hybrids is proved to reduce the supply chain concerns for injection molded green composites. Densities of the green composites were found to be lower than those of conventional glass fiber composites.

  11. Focus on agricultural residues: Microstructure of almond hull (abstract)

    USDA-ARS?s Scientific Manuscript database

    Agricultural residues have historically been used as animal feed or burned for disposal. These residues, therefore, have little economic value and may end up becoming disposal problems because tighter air quality control measures may limit burning of the residues. Therefore, value-added products mad...

  12. Developing an Integrated Model Framework for the Assessment of Sustainable Agricultural Residue Removal Limits for Bioenergy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Muth, Jr.; Jared Abodeely; Richard Nelson

    Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues can have negative impacts on soil health. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist capable of simultaneously addressing all environmental factors that can limit availability of residue. The VE-Suite model integration framework has been used to couple a set of environmental process models to support agricultural residue removal decisions. The RUSLE2, WEPS, and Soil Conditioning Index models have been integrated. A disparate set of databases providing the soils, climate, and management practice datamore » required to run these models have also been integrated. The integrated system has been demonstrated for two example cases. First, an assessment using high spatial fidelity crop yield data has been run for a single farm. This analysis shows the significant variance in sustainably accessible residue across a single farm and crop year. A second example is an aggregate assessment of agricultural residues available in the state of Iowa. This implementation of the integrated systems model demonstrates the capability to run a vast range of scenarios required to represent a large geographic region.« less

  13. Redefining Agricultural Residues as Bioenergy Feedstocks

    PubMed Central

    Caicedo, Marlon; Barros, Jaime; Ordás, Bernardo

    2016-01-01

    The use of plant biomass is a sustainable alternative to the reduction of CO2 emissions. Agricultural residues are interesting bioenergy feedstocks because they do not compete with food and add extra value to the crop, which might help to manage these residues in many regions. Breeding crops for dual production of food and bioenergy has been reported previously, but the ideal plant features are different when lignocellulosic residues are burnt for heat or electricity, or fermented for biofuel production. Stover moisture is one of the most important traits in the management of agricultural waste for bioenergy production which can be modified by genetic improvement. A delayed leaf senescence or the stay-green characteristic contributes to higher grain and biomass yield in standard, low nutrient, and drought-prone environments. In addition, the stay-green trait could be favorable for the development of dual purpose varieties because this trait could be associated with a reduction in biomass losses and lodging. On the other hand, the stay-green trait could be detrimental for the management of agricultural waste if it is associated with higher stover moisture at harvest, although this hypothesis has been insufficiently tested. In this paper, a review of traits relevant to the development of dual purpose varieties is presented with particular emphasis on stover moisture and stay-green, because less attention has been paid to these important traits in the literature. The possibility of developing new varieties for combined production is discussed from a breeding perspective. PMID:28773750

  14. Dry fermentation of agricultural residues

    NASA Astrophysics Data System (ADS)

    Jewell, W. J.; Chandler, J. A.; Dellorto, S.; Fanfoni, K. J.; Fast, S.; Jackson, D.; Kabrick, R. M.

    1981-09-01

    A dry fermentation process is discussed which converts agricultural residues to methane, using the residues in their as produced state. The process appears to simplify and enhance the possibilities for using crop residues as an energy source. The major process variables investigated include temperature, the amount and type of inoculum, buffer requirements, compaction, and pretreatment to control the initial available organic components that create pH problems. A pilot-scale reactor operation on corn stover at a temperature of 550 C, with 25 percent initial total solids, a seed-to-feed ratio of 2.5 percent, and a buffer-to-feed ratio of 8 percent achieved 33 percent total volatile solids destruction in 60 days. Volumetric biogas yields from this unit were greater than 1 vol/vol day for 12 days, and greater than 0.5 vol/vol day for 32 days, at a substrate density of 169 kg/m (3).

  15. Evaluation of agricultural residues pyrolysis under non-isothermal conditions: Thermal behaviors, kinetics, and thermodynamics.

    PubMed

    Chen, Jianbiao; Wang, Yanhong; Lang, Xuemei; Ren, Xiu'e; Fan, Shuanshi

    2017-10-01

    The thermal conversion characteristics, kinetics, and thermodynamics of agricultural residues, rape straw (RS) and wheat bran (WB), were investigated under non-isothermal conditions. TGA experiments showed that the pyrolysis characteristics of RS were quite different from those of WB. As reflected by the comprehensive devolatilization index, when the heating rate increased from 10 to 30Kmin -1 , the pyrolysis performance of RS and WB were improved 5.27 and 5.96 times, respectively. The kinetic triplets of the main pyrolysis process of agricultural residues were calculated by the Starink method and the integral master-plots method. Kinetic analysis results indicated that the most potential kinetic models for the pyrolysis of RS and WB were D 2 and F 2.7 , respectively. The thermodynamic parameters (ΔH, ΔG, and ΔS) were determined by the activated complex theory. The positive ΔH, positive ΔG, and negative ΔS at characteristic temperatures validated that the pyrolysis of agricultural residues was endothermic and non-spontaneous. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Agricultural Residues and Other Carbon-Based Resources as Feedstocks for Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Yong

    Agricultural residues are generally considered as renewable, economical and environmental-friendly sources to produce carbon-based nanomaterials with many advanced applications. Agricultural residues and by-products generated from the agricultural industry, such as distiller's dried grains with solubles (DDGS), are produced every year on a large scale but lack of proper utilization. As a result, seeking high-value applications based on agricultural residues is essential for the promotion of the economy in agricultural producing states like North Dakota, USA. With the fast development of nanotechnology in recent years, carbon-based nanomaterials have attracted intense research interests in the fields of chemistry, materials science and condensed matter physics due to many unique properties (e.g., chemical and thermal stability, electrical conductivity, mechanical strength, etc.). The development of low-cost nanomaterials using agricultural residues as feedstocks can be a promising route for the sustainable development of the agricultural industry. In this dissertation, the preparation of carbon-based materials from agricultural residues is explored. Many advanced applications are investigated, especially in the field of energy storage devices. The development of porous activate carbons were investigated in detail, and their application as electrode materials of supercapacitors was demonstrated. Hydrothermal carbonization of biomass to produce carbonaceous materials was also covered in this dissertation. In addition to traditional raw materials such as cellulose produced from wood industry, novel material sources such as bacterial cellulose were used to prepare nanocomposites that can be used for the electrodes of supercapacitors. This dissertation contributes to the sustainable development of the agricultural industry in North Dakota.

  17. Fuel ethanol production from agricultural residues

    USDA-ARS?s Scientific Manuscript database

    Ethanol is a renewable oxygenated fuel. In 2012, about 13.3 billion gallons of fuel ethanol was produced from corn in the USA which makes up 10% of gasoline supply. Various agricultural residues such as corn stover, wheat straw, rice straw and barley straw can serve as low-cost lignocellulosic fee...

  18. Agricultural residues and energy crops as potentially economical and novel substrates for microbial production of butanol (a biofuel)

    USDA-ARS?s Scientific Manuscript database

    This review describes production of acetone butanol ethanol (ABE) from a variety of agricultural residues and energy crops employing biochemical or fermentation processes. A number of organisms are available for this bioconversion including Clostridium beijerinckii P260, C. beijerinckii BA101, C. a...

  19. [Simultaneous determination of pesticide residues in agricultural products by LC-MS/MS].

    PubMed

    Watanabe, Minae; Ueno, Eiji; Inoue, Tomomi; Ohno, Haruka; Ikai, Yoshitomo; Morishita, Toshio; Oshima, Harumi; Hayashi, Rumiko

    2013-01-01

    A method for the simultaneous determination of multiple pesticide residues in agricultural products was developed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The sample was extracted with acetonitrile. Co-extractives were removed by GPC/graphitized carbon column SPE, and silica gel/PSA cartridge column SPE. Pesticides in the test solution were determined by LC-MS/MS using scheduled MRM. Recoveries of 124 pesticides from spinach, brown rice, soybean, orange and tomato were tested at the level of 0.1 µg/g, and those of 121 pesticides ranged from 70 to 120% (RSD≤15%). Pesticide residues in 239 agricultural products were investigated by this method, and residues of 49 pesticides were detected in 98 agricultural products.

  20. Product distribution from pyrolysis of wood and agricultural residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Blasi, C.; Signorelli, G.; Di Russo, C.

    1999-06-01

    The pyrolysis characteristics of agricultural residues (wheat straw, olive husks, grape residues, and rice husks) and wood chips have been investigated on a bench scale. The experimental system establishes the conditions encountered by a thin (4 {times} 10{sup {minus}2} m diameter) packed bed of biomass particles suddenly exposed in a high-temperature environment, simulated by a radiant furnace. Product yields (gases, liquids, and char) and gas composition, measured for surface bed temperatures in the range 650--1000 K, reproduce trends already observed for wood. However, differences are quantitatively large. Pyrolysis of agricultural residues is always associated with much higher solid yields (upmore » to a factor of 2) and lower liquid yields. Differences are lower for the total gas, and approximate relationships exist among the ratios of the main gas species yields, indicating comparable activation energies for the corresponding apparent kinetics of formation. However, while the ratios are about the same for wood chips, rice husks, and straw, much lower values are shown by olive and grape residues. Large differences have also been found in the average values of the specific devolatilization rates. The fastest (up to factors of about 1.5 with respect to wood) have been observed for wheat straw and the slowest (up to factors of 2) for grape residues.« less

  1. Assessment of agricultural biomass potential to electricity generation in Riau Province

    NASA Astrophysics Data System (ADS)

    Papilo, P.; Kusumanto, I.; Kunaifi, K.

    2017-05-01

    Utilization of biomass as a source of electrical power is one potential solution that can be developed in order to increase of the electrification ratio and to Achieve the national energy security. However, now it is still difficult, to Determine the amount of potential energy that can be used as an alternative power generation. Therefore, as a preliminary step to assess the feasibility of biomass development as a power generation source, an analysis of potential resources are required, especially from some of the main commodities, both of residues of agriculture and plantation. This study aims to assessing the potential of biomass-based supply from unutilized resources that can be Obtained from the residues of agricultural and plantations sectors, such as rice straw and rice husk; Dry straw and chaff of rice; corn stalks and cobs; stalks of cassava; and fiber, shell, empty fruit Bunches, kernels and liquid wastes in the palm oil factories. More research is focused on the theoretical energy potential measurements using a statistical approach which has been developed by Biomass Energy Europe (BEE). Results of the assessment has been done and showed that the total theoretical biomass energy that can be produced is equal to 77,466,754.8 Gj year -1. Theoretically, this potential is equivalent to generate electricityof year 21,518,542.8 MWh -1.

  2. Efficiency Improvement of Some Agricultural Residue Modified Materials for Textile Dyes Absorption

    NASA Astrophysics Data System (ADS)

    Boonsong, P.; Paksamut, J.

    2018-03-01

    In this work, the adsorption efficiency was investigated of some agricultural residue modified materials as natural bio-adsorbents which were rice straw (Oryza sativa L.) and pineapple leaves (Ananas comosus (L.) Merr.) for the removal of textile dyes. Reactive dyes were used in this research. The improvement procedure of agricultural residue materials properties were alkali-acid modification with sodium hydroxide solution and hydrochloric acid solution. Adsorption performance has been investigated using batch experiments. Investigated adsorption factors consisted of adsorbent dose, contact time, adsorbent materials and pH of solution. The results were found that rice straw had higher adsorption capacity than pineapple leaves. The increasing of adsorption capacity depends on adsorbent dose and contact time. Moreover, the optimum pH for dye adsorption was acidic range because lowering pH increased the positively charges on the adsorbent surface which could be attacked by negatively charge of acid dyes. The agricultural residue modified materials had significant dye removal efficiency which these adsorbents could be used for the treatment of textile effluent in industries.

  3. Spatial and temporal dynamics of agricultural residue resources in the last 30 years in China.

    PubMed

    Yang, Yanli; Zhang, Peidong; Yang, Xutong; Xu, Xiaoning

    2016-12-01

    The availability and distribution of biomass resources are important for the development of the bioenergy industry in a region. Biomass resources are abundant in China; however, the raw material is severely deficient, which makes the Chinese bioenergy industry an embarrassment and a contradiction. Unclear reserves and distribution and changing trends of biomass resources are the reason for this situation. A collection coefficient model of Chinese agricultural residue resources was established and the spatial and temporal pattern dynamics of agricultural residue resources in the last 30 years were analyzed. The results show that agricultural residue resources increased in stages from 1978 to 2011, including a rapid increase from 1978 to 1999, a significant fall from 2000 to 2004, and a slow increase from 2004 to 2011. Crops straw and livestock manure are the main ingredients of agricultural residue resources with proportions of 53-59% and 31-38%, respectively. However, the former has gradually decreased, while the latter is increasing. This mainly resulted from the strategic reorganization of the Chinese agriculture structure and the rapid development of large-scale livestock breeding and agricultural mechanization. Large regional differences existed in Chinese agricultural residue resources, and three distribution types formed, including resource-rich areas in North China, Northeast and Inner Mongolia, resource-limited areas in Central and Southwest China, and resource-poor areas along Northwest and Southeast coasts. This pattern is a reverse of the distributions of climatic conditions, water resources, economic development, human resources, and technological levels. Finally, it can be predicted that livestock manure and biomass conversion technology at low temperature will play increasingly significant roles in bioenergy industry development. © The Author(s) 2016.

  4. Quantification of mitigation potentials of agricultural practices for Europe

    NASA Astrophysics Data System (ADS)

    Lesschen, J. P.; Kuikman, P. J.; Smith, P.; Schils, R. L.; Oudendag, D.

    2009-04-01

    Agriculture has a significant impact on climate, with a commonly estimated contribution of 9% of total greenhouse gases (GHG) emissions. Besides, agriculture is the main source of nitrous oxide and methane emissions to the atmosphere. On the other hand, there is a large potential for climate change mitigation in agriculture through carbon sequestration into soils. Within the framework of the PICCMAT project (Policy Incentives for Climate Change Mitigation Agricultural Techniques) we quantified the mitigation potential of 11 agricultural practices at regional level for the EU. The focus was on smaller-scale measures towards optimised land management that can be widely applied at individual farm level and which can have a positive climate change mitigating effect and be beneficial to soil conditions, e.g. cover crops and reduced tillage. The mitigation potentials were assessed with the MITERRA-Europe model, a deterministic and static N cycling model which calculates N emissions on an annual basis, using N emission factors and N leaching fractions. For the PICCMAT project the model was extended with a soil carbon module, to assess changes in soil organic carbon according to the IPCC Tier1 approach. The amount of soil organic carbon (SOC) is calculated by multiplying the soil reference carbon content, which depends on soil type and climate, by coefficients for land use, land management and input of organic matter. By adapting these coefficients changes in SOC as result of the measures were simulated. We considered both the extent of agricultural area across Europe on which a measure could realistically be applied (potential level of implementation), and the current level of implementation that has already been achieved . The results showed that zero tillage has the highest mitigation potential, followed by adding legumes, reduced tillage, residue management, rotation species, and catch crops. Optimising fertiliser application and fertiliser type are the measures with

  5. An in-depth analysis of the physico-mechanical properties imparted by agricultural fibers and food processing residues in polypropylene biocomposites

    NASA Astrophysics Data System (ADS)

    Murdy, Rachel Campbell; Mak, Michelle; Misra, Manjusri; Mohanty, Amar K.

    2015-05-01

    The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass, wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler's intrinsic properties on the resulting material performance.

  6. Potential for electricity generation from biomass residues in Cuba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lora, E.S.

    The purpose of this paper is the study of the availability of major biomass residues in Cuba and the analysis of the electricity generation potential by using different technologies. An analysis of the changes in the country`s energy balance from 1988 up to date is presented, as well as a table with the availability study results and the energy equivalent for the following biomass residues: sugar cane bagasse and trash, rice and coffee husk, corn an cassava stalks and firewood. A total equivalent of 4.42 10{sup 6} tons/year of fuel-oil was obtained. Possible scenarios for the electricity production increase inmore » the sugar industry are presented too. The analysis is carried out for a high stream parameter CEST and two BIG/GT system configurations. Limitations are introduced about the minimal milling capacity of the sugar mills for each technology. The calculated {open_quotes}real{close_quotes} electricity generation potential for BIG/GT systems, based on GE LM5000 CC gas turbines, an actual cane harvest of 58.0 10{sup 6} tons/year, half the available trash utilization and an specific steam consumption of 210 kg/tc, was 18601,0 GWh/year. Finally different alternatives are presented for low-scale electricity generation based on the other available agricultural residues.« less

  7. Evaluation of the biomass potential for the production of lignocellulosic bioethanol from various agricultural residues in Austria and Worldwide

    NASA Astrophysics Data System (ADS)

    Kahr, Heike; Steindl, Daniel; Wimberger, Julia; Schürz, Daniel; Jäger, Alexander

    2013-04-01

    Due to the fact that the resources of fossil fuels are steadily decreasing, researchers have been trying to find alternatives over the past few years. As bioethanol of the first generation is based on potential food, its production has become an increasingly controversial topic. Therefore the focus of research currently is on the production of bioethanol of the second generation, which is made from cellulosic and lignocellulosic materials. However, for the production of bioethanol of the second generation the fibres have to be pre-treated. In this work the mass balances of various agricultural residues available in Austria were generated and examined in lab scale experiments for their bioethanol potential. The residues were pretreatment by means of state of the art technology (steam explosion), enzymatically hydrolysed and fermented with yeast to produce ethanol. Special attention was paid the mass balance of the overall process. Due to the pretreatment the proportion of cellulose increases with the duration of the pre-treatment, whereby the amount of hemicellulose decreases greatly. However, the total losses were increasing with the duration of the pre-treatment, and the losses largely consist of hemicellulose. The ethanol yield varied depending on the cellulose content of the substrates. So rye straw 200 °C 20 min reaches an ethanol yield of 169 kg/t, by far the largest yield. As result on the basis of the annual straw yield in Austria, approximately 210 000 t of bioethanol (266 million litres) could be produced from the straw of wheat (Triticum vulgare), rye (Secale cereale), oat (Avena sativa) and corn (Zea mays) as well as elephant grass (Miscanthus sinensis) using appropriate pre-treatment. So the greenhouse gas emissions produced by burning fossil fuels could be reduced significantly. About 1.8 million tons of motor gasoline are consumed in Austria every year. The needed quantity for a transition to E10 biofuels could thus be easily provided by bioethanol

  8. 40 CFR 180.7 - Petitions proposing tolerances or exemptions for pesticide residues in or on raw agricultural...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Petitions proposing tolerances or exemptions for pesticide residues in or on raw agricultural commodities or processed foods. 180.7 Section 180... proposing tolerances or exemptions for pesticide residues in or on raw agricultural commodities or processed...

  9. 40 CFR 180.7 - Petitions proposing tolerances or exemptions for pesticide residues in or on raw agricultural...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Petitions proposing tolerances or exemptions for pesticide residues in or on raw agricultural commodities or processed foods. 180.7 Section 180... proposing tolerances or exemptions for pesticide residues in or on raw agricultural commodities or processed...

  10. An in-depth analysis of the physico-mechanical properties imparted by agricultural fibers and food processing residues in polypropylene biocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murdy, Rachel Campbell; Mak, Michelle; Misra, Manjusri

    The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass,more » wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler’s intrinsic properties on the resulting material performance.« less

  11. Net global warming potential and greenhouse gas intensity of conventional and conservation agriculture system in rainfed semi arid tropics of India

    NASA Astrophysics Data System (ADS)

    Pratibha, G.; Srinivas, I.; Rao, K. V.; Shanker, Arun K.; Raju, B. M. K.; Choudhary, Deepak K.; Srinivas Rao, K.; Srinivasarao, Ch.; Maheswari, M.

    2016-11-01

    Agriculture has been considered as one of the contributors to greenhouse gas (GHG) emissions and it continues to increase with increase in crop production. Hence development of sustainable agro techniques with maximum crop production, and low global warming potential is need of the hour. Quantifying net global warming potential (NGWP) and greenhouse gas intensity (GHGI) of an agricultural activity is a method to assess the mitigation potential of the activity. But there is dearth of information on NGWP of conservation agriculture under rainfed conditions. Hence in this study two methods such as crop based (NGWPcrop) and soil based (NGWPsoil) were estimated from the data of the experiment initiated in 2009 in rainfed semiarid regions of Hyderabad, India with different tillage practices like conventional tillage (CT), reduced tillage (RT), zero tillage (ZT) and residue retention levels by harvesting at different heights which includes 0, 10 and 30 cm anchored residue in pigeonpea-castor systems. The results of the study revealed that under rainfed conditions CT recorded 24% higher yields over ZT, but CT and RT were on par with each other. However, the yield gap between the tillage treatments is narrowing down over 5 years of study. ZT and RT recorded 26 and 11% lower indirect GHG emissions (emissions from farm operations and input use) over CT, respectively. The percent contribution of CO2 eq. N2O emission is higher to total GHG emissions in both the crops. Both NGWPcrop, NGWPsoil, GHGIcrop, and GHGIsoil based were influenced by tillage and residue treatments. Further, castor grown on pigeonpea residue recorded 20% higher GHG emissions over pigeonpea grown on castor residues. The fuel consumption in ZT was reduced by 58% and 81% as compared to CT in pigeonpea and castor, respectively. Lower NGWP and GHGI based on crop and soil was observed with increase in crop residues and decrease in tillage intensity in both the crops. The results of the study indicate that, there

  12. Bioactive compounds and antioxidant potential for polyphenol-rich cocoa extract obtained by agroindustrial residue.

    PubMed

    Gabbay Alves, Taís Vanessa; Silva da Costa, Russany; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Perego, Patrizia; Pinheiro Arruda, Mara Silvia; Carréra Silva Júnior, José Otávio; Converti, Attilio; Ribeiro Costa, Roseane Maria

    2017-11-10

    Processing of cocoa (Theobroma cacao L.) beans responsible for agricultural exports leads to large amounts of solid waste that were discarded, however, this one presents high contents of metabolites with biological activities. The major objective of this study was to valorise cocoa agroindustrial residue obtained by hydraulic pressing for extract rich in antioxidants. For it, the centesimal composition of residue was investigated, the green extraction was carried out from the residue after, the bioactive compounds, sugar contents and screaming by HPTLC were quantified for extract. The extract has a total polyphenol content of 229.64 mg/g and high antioxidant activity according to ABTS 225.0 μM/g. HTPLC analysis confirmed the presence in the extract, residue of terpenes, sesquiterpenes, flavonoids and antioxidant activity. These results, as a whole, suggest that the extract from the cocoa residue has interesting characteristics to alternative crops with potential industrial uses.

  13. Assessment of agroforestry residue potentials for the bioeconomy in the European Union.

    PubMed

    Thorenz, Andrea; Wietschel, Lars; Stindt, Dennis; Tuma, Axel

    2018-03-01

    The biobased chemical industry is characterised by strong growth. Innovative products and materials such as biopolymers have been developed, and current European demand for biopolymers exceeds the domestic supply. Agroforestry residues can serve as main sources of the basic building blocks for chemicals and materials. This work assesses sustainably available agroforestry residues to feed a high added-value materials and product bioeconomy. To evaluate bioeconomic potential, a structured three-step approach is applied. Cultivation practices, sustainability issues, legislative restrictions, technical limitations and competitive applications are considered. All data regarding bioeconomic potential are processed on a regional level and mapped by ArcGIS. Our results identify wheat straw as the most promising source in the agricultural sector, followed by maize stover, barley straw and rape straw, which all contain a total concentration of lignocellulose of more than 80% of dry matter. In the forestry sector, residue bark from two coniferous species, spruce and pine, is the most promising source, with approximately 70% lignocellulose. Additionally, coniferous bark contains considerable amounts of tannin, which has attracted increasing interest for industrial utilisation. A sensitivity analysis concerning removal rates, residue-to-crop ratios, changes in farming technologies and competing applications is applied at the end of the study to consolidate our results.

  14. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation.

    PubMed

    Nitsos, Christos; Matsakas, Leonidas; Triantafyllidis, Kostas; Rova, Ulrika; Christakopoulos, Paul

    2015-01-01

    Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones.

  15. Viscoelastic properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover were investigated. The corn stover MFC gels exhibited concentration-dependent viscoelastic properties. Higher corn stover MFC concentrations resulted in stronger viscoelastic properties. Th...

  16. Viscoelastic properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover were investigated. The corn stover MFC gels exhibited concentration-dependent viscoelastic solid properties. Higher corn stover MFC concentrations resulted in stronger viscoelastic propertie...

  17. Screening of pesticide residues in soil and water samples from agricultural settings

    PubMed Central

    Akogbéto, Martin C; Djouaka, Rousseau F; Kindé-Gazard, Dorothée A

    2006-01-01

    Background The role of agricultural practices in the selection of insecticide resistance in malaria vectors has so far been hypothesized without clear evidence. Many mosquito species, Anopheles gambiae in particular, lay their eggs in breeding sites located around agricultural settings. There is a probability that, as a result of farming activities, insecticide residues may be found in soil and water, where they exercise a selection pressure on the larval stage of various populations of mosquitoes. To confirm this hypothesis, a study was conducted in the Republic of Benin to assess the environmental hazards which can be generated from massive use of pesticides in agricultural settings. Methods Lacking an HPLC machine for direct quantification of insecticide residues in samples, this investigation was performed using indirect bioassays focussed on the study of factors inhibiting the normal growth of mosquito larvae in breeding sites. The speed of development was monitored as well as the yield of rearing An. gambiae larvae in breeding sites reconstituted with water and soil samples collected in agricultural areas known to be under pesticide pressure. Two strains of An. gambiae were used in this indirect bioassay: the pyrethroid-susceptible Kisumu strain and the resistant Ladji strain. The key approach in this methodology is based on comparison of the growth of larvae in test and in control breeding sites, the test samples having been collected from two vegetable farms. Results Results obtained clearly show the presence of inhibiting factors on test samples. A normal growth of larvae was observed in control samples. In breeding sites simulated by using a few grams of soil samples from the two vegetable farms under constant insecticide treatments (test samples), a poor hatching rate of Anopheles eggs coupled with a retarded growth of larvae and a low yield of adult mosquitoes from hatched eggs, was noticed. Conclusion Toxic factors inhibiting the hatching of anopheles

  18. Degradation of Lignin in Agricultural Residues by locally Isolated Fungus Neurospora discreta.

    PubMed

    Pamidipati, Sirisha; Ahmed, Asma

    2017-04-01

    Locally isolated fungus, Neurospora discreta, was evaluated for its ability to degrade lignin in two agricultural residues: cocopeat and sugarcane bagasse with varying lignin concentrations and structures. Using Klason's lignin estimation, high-performance liquid chromatography, and UV-visible spectroscopy, we found that N. discreta was able to degrade up to twice as much lignin in sugarcane bagasse as the well-known white rot fungus Phanerochaete chrysosporium and produced nearly 1.5 times the amount of lignin degradation products in submerged culture. Based on this data, N. discreta is a promising alternative to white rot fungi for faster microbial pre-treatment of agricultural residues. This paper presents the lignin degrading capability of N. discreta for the first time and also discusses the difference in biodegradability of cocopeat and sugarcane bagasse as seen from the analysis carried out using Fourier transform infrared spectroscopy.

  19. Evaluation of Mediterranean Agricultural Residues as a Potential Feedstock for the Production of Biogas via Anaerobic Fermentation

    PubMed Central

    Nitsos, Christos; Triantafyllidis, Kostas

    2015-01-01

    Hydrothermal, dilute acid, and steam explosion pretreatment methods, were evaluated for their efficiency to improve the methane production yield of three Mediterranean agricultural lignocellulosic residues such as olive tree pruning, grapevine pruning, and almond shells. Hydrothermal and dilute acid pretreatments provided low to moderate increase in the digestibility of the biomass samples, whereas steam explosion enabled the highest methane yields to be achieved for almond shells at 232.2 ± 13.0 mL CH4/gVS and olive pruning at 315.4 ± 0.0 mL CH4/gVS. Introduction of an enzymatic prehydrolysis step moderately improved methane yields for hydrothermal and dilute acid pretreated samples but not for the steam exploded ones. PMID:26609521

  20. Identification of Soil Properties and Organophosphate Residues From Agricultural Land in Wanasari Sub-District, Brebes, Indonesia

    NASA Astrophysics Data System (ADS)

    Joko, Tri; Anggoro, Sutrisno; Sunoko, Henna Rya; Rachmawati, Savitri

    2018-02-01

    Organophosphates have been used to eradicate pests and prevent losses from harvest failures caused by pest attack. It is undeniable that the organophosphate persist in soil. This study aims to identify the organophosphate residue and soil properties include pH, soil texture, and permeability. The soil samples were taken from cropland in 10 villages, Wanasari sub-district, Brebes, Indonesia. Organophosphate residue determined by gas chromatography using Flame Photometric Detector. Soil texture was determined by soil texture triangle from NRCS USDA, and the permeability value was determined by falling head method. The mean value of chlorpyrifos, profenofos, diazinon were 0.0078; 0.0388; 0.2271 mg/l respectively. The soil texture varies from clay, silt clay, loam, silt loam, and silt clay loam with permeability value at 10-7 with the soil pH value between 6.4 - 8.1. The results showed that organophosphate residues found in the soil and its potential affect the soil fertility decline. We recommend to conduct routine soil quality analysis to prevent soil damage in the agricultural environment.

  1. Using a Decision Support System to Optimize Production of Agricultural Crop Residue Biofeedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed L. Hoskinson; Ronald C. Rope; Raymond K. Fink

    2007-04-01

    For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest, for growing a crop such as wheat, potatoes, corn, or cotton. In support of the growing interest in agricultural crop residues as a bioenergy feedstock, we have extended the capability ofmore » the DSS4Ag to develop a variable-rate fertilizer recipe for the simultaneous economically optimum production of both grain and straw, and have been conducting field research to test this new DSS4Ag. In this paper we report the results of two years of field research testing and enhancing the DSS4Ag’s ability to economically optimize the fertilization for the simultaneous production of both grain and its straw, where the straw is an agricultural crop residue that can be used as a biofeedstock.« less

  2. [Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture].

    PubMed

    Yan, Changrong; He, Wenqing; Xue, Yinghao; Liu, Enke; Liu, Qin

    2016-06-25

    Plastic film has become an important agriculture production material in recent years. Over the past three decades, the amount and application area of plastic film have increased steadily, and in 2014, which are 1.4 million tons and more than 180 million hm² respectively. It plays a key role for ensuring the supply of agricultural goods in China. Meanwhile, plastic film residual pollution becomes more and more serious, and in some regions, the amount of plastic film residues has reached over 250 kg/hm². In part of the Northwest region, soil structure of farmland has been destroyed by plastic film residues and then crop growth and farming operations were suppressed. It is recognized as a good choice to replace plastic film with biodegradable plastic film, an effective measure to solve the plastic film residue pollution. Now, it is in a critical stage of study and assessment of biodegradable plastic film in China and fortunately some biodegradable plastic films show effects in the production of potatoes, peanuts and tobacco. Overall, a series of challenges has still been faced by the biodegradable plastic film, mainly including improving the quality of biodegradable plastic products, such as tensile strength, flexibility, improving the controllability of rupture and degradation, enhancing the ability of increasing soil temperature and preserving soil moisture, and to satisfy the demand of crops production with mulching. In addition, it is essential to reduce the cost of the biodegradable film and promote the application of biodegradable film on large-scale. With the development of biodegradable plastic technology and agricultural production environment, the application of the biodegradable film will have a good future.

  3. Agricultural policies and biomass fuels

    NASA Astrophysics Data System (ADS)

    Flaim, S.; Hertzmark, D.

    The potentials for biomass energy derived from agricultural products are examined. The production of energy feedstocks from grains is discussed for the example of ethanol production from grain, with consideration given to the beverage process and the wet milling process for obtaining fuel ethanol from grains and sugars, the nonfeedstock costs and energy requirements for ethanol production, the potential net energy gain from ethanol fermentation, the effect of ethanol fuel production on supplies of protein, oils and feed and of ethanol coproducts, net ethanol costs, and alternatives to corn as an ethanol feedstock. Biomass fuel production from crop residues is then considered; the constraints of soil fertility on crop residue removal for energy production are reviewed, residue yields with conventional practices and with reduced tillage are determined, technologies for the direct conversion of cellulose to ethanol and methanol are described, and potential markets for the products of these processes are identified. Implications for agricultural policy of ethanol production from grain and fuel and chemical production from crop residues are also discussed.

  4. 40 CFR 180.7 - Petitions proposing tolerances or exemptions for pesticide residues in or on raw agricultural...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exemptions for pesticide residues in or on raw agricultural commodities or processed foods. 180.7 Section 180.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Procedural Regulations § 180.7 Petitions...

  5. 40 CFR 180.7 - Petitions proposing tolerances or exemptions for pesticide residues in or on raw agricultural...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exemptions for pesticide residues in or on raw agricultural commodities or processed foods. 180.7 Section 180.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Procedural Regulations § 180.7 Petitions...

  6. 40 CFR 180.7 - Petitions proposing tolerances or exemptions for pesticide residues in or on raw agricultural...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... exemptions for pesticide residues in or on raw agricultural commodities or processed foods. 180.7 Section 180.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Procedural Regulations § 180.7 Petitions...

  7. Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields

    PubMed Central

    Haberl, Helmut; Erb, Karl-Heinz; Krausmann, Fridolin; Bondeau, Alberte; Lauk, Christian; Müller, Christoph; Plutzar, Christoph; Steinberger, Julia K.

    2011-01-01

    There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a “food first” approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios for the year 2050 based on a consistent representation of FAO projections of future agricultural development in a global biomass balance model. The model discerns 11 regions, 10 crop aggregates, 2 livestock aggregates, and 10 food aggregates. It incorporates detailed accounts of land use, global net primary production (NPP) and its human appropriation as well as socioeconomic biomass flow balances for the year 2000 that are modified according to a set of scenario assumptions to derive the biomass potential for 2050. We calculate the amount of biomass required to feed humans and livestock, considering losses between biomass supply and provision of final products. Based on this biomass balance as well as on global land-use data, we evaluate the potential to grow bioenergy crops and estimate the residue potentials from cropland (forestry is outside the scope of this study). We assess the sensitivity of the biomass potential to assumptions on diets, agricultural yields, cropland expansion and climate change. We use the dynamic global vegetation model LPJmL to evaluate possible impacts of changes in temperature, precipitation, and elevated CO2 on agricultural yields. We find that the gross (primary) bioenergy potential ranges from 64 to 161 EJ y−1, depending on climate impact, yields and diet, while the dependency on cropland expansion is weak. We conclude that food requirements for a growing world population, in particular feed required for livestock, strongly influence bioenergy potentials, and that integrated approaches are needed to optimize food and bioenergy supply

  8. Productivity limits and potentials of the principles of conservation agriculture.

    PubMed

    Pittelkow, Cameron M; Liang, Xinqiang; Linquist, Bruce A; van Groenigen, Kees Jan; Lee, Juhwan; Lundy, Mark E; van Gestel, Natasja; Six, Johan; Venterea, Rodney T; van Kessel, Chris

    2015-01-15

    One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts. Here we conduct a global meta-analysis using 5,463 paired yield observations from 610 studies to compare no-till, the original and central concept of conservation agriculture, with conventional tillage practices across 48 crops and 63 countries. Overall, our results show that no-till reduces yields, yet this response is variable and under certain conditions no-till can produce equivalent or greater yields than conventional tillage. Importantly, when no-till is combined with the other two conservation agriculture principles of residue retention and crop rotation, its negative impacts are minimized. Moreover, no-till in combination with the other two principles significantly increases rainfed crop productivity in dry climates, suggesting that it may become an important climate-change adaptation strategy for ever-drier regions of the world. However, any expansion of conservation agriculture should be done with caution in these areas, as implementation of the other two principles is often challenging in resource-poor and vulnerable smallholder farming systems, thereby increasing the likelihood of yield losses rather than gains. Although farming systems are multifunctional, and environmental and socio-economic factors need to be considered, our analysis indicates that the potential contribution of no-till to the

  9. Development of an enzyme-linked immunosorbent assay for residue analysis of the insecticide emamectin benzoate in agricultural products.

    PubMed

    Kondo, Mika; Yamashita, Hiroshi; Uchigashima, Mikiko; Kono, Takeshi; Takemoto, Toshihide; Fujita, Masahiro; Saka, Machiko; Iwasa, Seiji; Ito, Shigekazu; Miyake, Shiro

    2009-01-28

    A direct competitive enzyme-linked immunosorbent assay (dc-ELISA) for the analysis of emamectin residues in agricultural products was developed using a prepared mouse monoclonal antibody. The working range was 0.3-3.0 ng/mL, and the 50% inhibition concentration (IC(50)) was 1.0 ng/mL. The assay was sufficiently sensitive for analysis of the maximum residue limits in agricultural products in Japan (>0.1 microg/g). Emamectin residues contain the following metabolites: the 4''-epi-amino analogue, the 4''-epi-(N-formyl)amino analogue, the 4''-epi-(N-formyl-N-methyl)amino analogue, and the 8,9-Z isomer. The dc-ELISA reacted with these compounds at ratios of 113, 55, 38, and 9.1% of the IC(50) value of emamectin benzoate. Seven kinds of vegetables were spiked with emamectin benzoate at concentrations of 15-300 ng/g, and the recoveries were 91-117% in the dc-ELISA. The dc-ELISA results agreed reasonably well with results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using spiked samples and actual (incurred) samples. The results indicate that the dc-ELISA was useful for the analysis of emamectin benzoate residues in agricultural products.

  10. [Emission inventory of greenhouse gases from agricultural residues combustion: a case study of Jiangsu Province].

    PubMed

    Liu, Li-hua; Jiang, Jing-yan; Zong, Liang-gang

    2011-05-01

    Burning of agricultural crop residues was a major source greenhouse gases. In this study, the proportion of crop straws (rice, wheat, maize, oil rape, cotton and soja) in Jiangsu used as household fuel and direct open burning in different periods (1990-1995, 1996-2000, 2001-2005 and 2006-2008) was estimated through questionnaire. The emission factors of CO2, CO, CH4 and NO20 from the above six types of crop straws were calculated by the simulated burning experiment. Thus the emission inventory of greenhouse gases from crop straws burning was established according to above the burning percentages and emission factors, ratios of dry residues to production and crop productions of different periods in Jiangsu province. Results indicated that emission factors of CO2, CO, CH4 and N2O depended on crop straw type. The emission factors of CO2 and CH4 were higher for oil rape straw than the other straws, while the maize and the rice straw had the higher N2O and CO emission factor. Emission inventory of greenhouse gases from agricultural residues burning in Jiangsu province showed, the annual average global warming potential (GWP) of six tested crop straws were estimated to be 9.18 (rice straw), 4.35 (wheat straw), 2.55 (maize straw), 1.63 (oil rape straw), 0.55 (cotton straw) and 0. 39 (soja straw) Tg CO2 equivalent, respectively. Among the four study periods, the annual average GWP had no obvious difference between the 1990-1995 and 2006-2008 periods, while the maximal annual average GWP (23.83 Tg CO2 equivalent) happened in the 1996-2000 period, and the minimum (20.30 Tg CO2 equivalent) in 1996-2000 period.

  11. Green house gas emissions from open field burning of agricultural residues in India.

    PubMed

    Murali, S; Shrivastava, Rajnish; Saxena, Mohini

    2010-10-01

    In India, about 435.98 MMT of agro-residues are produced every year, out of which 313.62 MMT are surplus. These residues are either partially utilized or un-utilised due to various constraints. To pave the way for subsequent season for agriculture activity, the excess crop residues are burnt openly in the fields, unmindful of their ill effects on the environment. The present study has been undertaken to evaluate the severity of air pollution through emission of green house gases (GHGs) due to open field burning of agro-residues in India. Open field burning of surplus agro-residues in India results in the emission of GHG. Emissions of CH4 and N2O in 1997-98 and 2006-07 have been 3.73 and 4.06 MMT CO2 equivalent, which is an increase of 8.88% over a decade. About three-fourths of GHG emissions from agro-residues burning were CH4 and the remaining one-fourth were N2O. Burning of wheat and paddy straws alone contributes to about 42% of GHGs. These GHG emissions can be avoided once the agro-residues are employed for sustainable, cost-effective and environment- friendly options like power generation.

  12. Potential hazards of fumigant residues.

    PubMed Central

    Fishbein, L

    1976-01-01

    A spectrum of fumigants (primarily ethylene dibromide, 1,2-dibromo-3-chloropropane, ethylene oxide, symdibromotetetrachloroethane, 1,3-dichloropropene, dichlorovos, carbon tetrachloride, methyl bromide) as well as their degradation products in foodstuffs and soil have been examined mainly in regard to the potential mutagenicity of their residues. PMID:789068

  13. On-farm bioremediation of dimethazone and trifluralin residues in runoff water from an agricultural field.

    PubMed

    Antonious, George F

    2012-01-01

    Bioremediation is the use of living organisms, primarily microorganisms, to degrade environmental contaminants into less toxic forms. Nine biobeds (ground cavity filled with a mixture of composted organic matter, topsoil, and a surface grass) were established at Kentucky State University research farm (Franklin County, KY) to study the impact of this practice on reducing surface runoff water contamination by residues of dimethazone and trifluralin herbicides arising from an agricultural field. Biobed (biofilter) systems were installed at the bottom of the slope of specially designed runoff plots to examine herbicides retention and degradation before entering streams and rivers. In addition to biobed systems, three soil management practices: municipal sewage sludge (SS), SS mixed with yard waste compost (SS + YW), and no-mulch rototilled bare soil (NM used for comparison purposes) were used to monitor the impact of soil amendments on herbicide residues in soil following natural rainfall events. Organic amendments increased soil organic matter content and herbicide residues retained in soil following rainfall events. Biobeds installed in NM soil reduced dimethazone and trifluralin by 84 and 82%, respectively in runoff water that would have been transported down the land slope of agricultural fields and contaminated natural water resources. Biobeds installed in SS and SS+YW treatments reduced dimethazone by 65 and 46% and trifluralin by 52 and 79%, respectively. These findings indicated that biobeds are effective for treating dimethazone and trifluralin residues in runoff water.

  14. The global potential of bioenergy on abandoned agriculture lands.

    PubMed

    Campbell, J Elliott; Lobell, David B; Genova, Robert C; Field, Christopher B

    2008-08-01

    Converting forest lands into bioenergy agriculture could accelerate climate change by emitting carbon stored in forests, while converting food agriculture lands into bioenergy agriculture could threaten food security. Both problems are potentially avoided by using abandoned agriculture lands for bioenergy agriculture. Here we show the global potential for bioenergy on abandoned agriculture lands to be less than 8% of current primary energy demand, based on historical land use data, satellite-derived land cover data, and global ecosystem modeling. The estimated global area of abandoned agriculture is 385-472 million hectares, or 66-110% of the areas reported in previous preliminary assessments. The area-weighted mean production of above-ground biomass is 4.3 tons ha(-1) y(-1), in contrast to estimates of up to 10 tons ha(-1) y(-1) in previous assessments. The energy content of potential biomass grown on 100% of abandoned agriculture lands is less than 10% of primary energy demand for most nations in North America, Europe, and Asia, but it represents many times the energy demand in some African nations where grasslands are relatively productive and current energy demand is low.

  15. GHG emissions and mitigation potential in Indian agriculture

    NASA Astrophysics Data System (ADS)

    Vetter, Sylvia; Feliciano, Diana; Sapkota, Tek; Hillier, Jon; Smith, Pete; Stirling, Clare

    2016-04-01

    India is one of the world's largest greenhouse gas (GHG) emitter, accounting for about 5% of global emissions with further increases expected in the future. The Government of India aims to reduce emission intensities by 20-25% by 2020 compared with the 2005 level. In a recent departure from past practice the reconvened Council on Climate Change stated that climate change in agriculture would include a component that would focus on reducing emissions in agriculture, particularly methane and nitrous oxide emissions. To develop recommendations for mitigation in agriculture in India, a baseline study is presented to analyse the GHG emissions from agriculture for current management (Directorate of Economics and Statistics of the government of India). This analysis is done for the two states Bihar and Haryana, which differ in their management and practises based on different climate and policies. This first analysis shows were the highest GHG emissions in agriculture is produced and were the highest mitigation potential might be. The GHG emissions and mitigation potential are calculated using the CCAFS Mitigation Option Tool (CCAFS-MOT) (https://ccafs.cgiar.org/mitigation-option-tool-agriculture#.VpTnWL826d4) with modifications for the special modelling. In a second step, stakeholder meetings provided a wide range of possible and definite scenarios (management, policy, technology, costs, etc.) for the future to mitigate emissions in agriculture as well as how to increase productivity. These information were used to create scenarios to give estimates for the mitigation potential in agriculture for India in 2020.

  16. Pesticides residues and metals in plant products from agricultural area of Belgrade, Serbia.

    PubMed

    Ethorđević, Tijana; Ethurović, Rada

    2012-03-01

    The objective of study was to assess the levels of selected metals and pesticides in plant products from agricultural area of Belgrade, Serbia in order to indicate their possible sources and risks of contamination and to evaluate their sanitary probity and safety. The concentrations of cadmium, copper, iron, manganese, nickel, lead and zinc were below limits established by national and international regulations (maximum found concentrations were 0.028, 1.91, 11.16, 1.77, 0.605, 0.073 and 1.76 mg kg(-1) respectively). Only residue of one of examined pesticides was found in amount below MRL (bifenthrin 2.46 μg kg(-1)) in only one of analysed samples, while others were below detection limits. Obtained results indicate that crops from examined agricultural areas are unpolluted by contaminants used for plant protection and nutrition, indicating good agricultural practice regarding pesticides and fertilizer usage as well as moderate industrial production within examined areas.

  17. Agricultural practices and residual corn during spring crane and waterfowl migration in Nebraska

    USGS Publications Warehouse

    Sherfy, M.H.; Anteau, M.J.; Bishop, A.A.

    2011-01-01

    Nebraska's Central Platte River Valley (CPRV) is a major spring-staging area for migratory birds. Over 6 million ducks, geese, and sandhill cranes (Grus canadensis) stage there en route to tundra, boreal forest, and prairie breeding habitats, storing nutrients for migration and reproduction by consuming primarily corn remaining in fields after harvest (hereafter residual corn). In springs 2005-2007, we measured residual corn density in randomly selected harvested cornfields during early (n=188) and late migration (n=143) periods. We estimated the mean density of residual corn for the CPRV and examined the influence of agricultural practices (post-harvest field management) and migration period on residual corn density. During the early migration period, residual corn density was greater in idle harvested fields than any other treatments of fields (42%, 48%, 53%, and 92% more than grazed, grazed and mulched, mulched, and tilled fields, respectively). Depletion of residual corn from early to late migration did not differ among post-harvest treatments but was greatest during the year when overall corn density was lowest (2006). Geometric mean early-migration residual corn density for the CPRV in 2005-2007 (42.4 kg/ha; 95% CI=35.2-51.5 kg/ha) was markedly lower than previously published estimates, indicating that there has been a decrease in abundance of residual corn available to waterfowl during spring staging. Increases in harvest efficiency have been implicated as a cause for decreasing corn densities since the 1970s. However, our data show that post-harvest management of cornfields also can substantially influence the density of residual corn remaining in fields during spring migration. Thus, managers may be able to influence abundance of high-energy foods for spring-staging migratory birds in the CPRV through programs that influence post-harvest management of cornfields. ?? 2011 The Wildlife Society.

  18. The effects of rape residue mulching on net global warming potential and greenhouse gas intensity from no-tillage paddy fields.

    PubMed

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha(-1)) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0-20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha(-1) season(-1) to 1654 kg C ha(-1) season(-1) than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9-30% but significantly decreased net GWP by 33-71% and GHGI by 35-72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China.

  19. Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues.

    PubMed

    Babbar, Neha; Oberoi, Harinder Singh; Sandhu, Simranjeet Kaur

    2015-01-01

    The growing interest in the substitution of synthetic food antioxidants by natural ones has fostered research in identifying new low-cost antioxidants having commercial potential. Fruits such as mango, banana, and those belonging to the citrus family leave behind a substantial amount of residues in the form of peels, pulp, seeds, and stones. Due to lack of infrastructure to handle a huge quantity of available biomass, lack of processing facilities, and high processing cost, these residues represent a major disposal problem, especially in developing countries. Because of the presence of phenolic compounds, which impart nutraceutical properties to fruit residues, such residues hold tremendous potential in food, pharmaceutical, and cosmetic industries. The biological properties such as anticarcinogenicity, antimutagenicity, antiallergenicity, and antiageing activity have been reported for both natural as well as synthetic antioxidants. Special attention is focused on extraction of bioactive compounds from inexpensive or residual sources. The purpose of this review is to characterize different phenolics present in the fruit residues, discuss the antioxidant potential of such residues and the assays used in determination of antioxidant properties, discuss various methods for efficient extraction of the bioactive compounds, and highlight the importance of fruit residues as potential nutraceutical resources and biopreservatives.

  20. Organophosphate Pesticide Residues in Drinking Water from Artesian Wells and Health Risk Assessment of Agricultural Communities, Thailand

    PubMed Central

    Jaipieam, S.; Visuthismajarn, P.; Sutheravut, P.; Siriwong, W.; Thoumsang, S.; Borjan, M.; Robson, M.

    2010-01-01

    Organophosphate pesticide (OPPs) concentrations in artesian wells located in Thai agricultural and non-agricultural communities were studied during both wet and dry seasons. A total of 100 water samples were collected and subjects were asked to complete a survey. Gas chromatography flame photometric detector was used for OPP analysis. The average OPP concentration in the agricultural communities (0.085 and 0.418 µg/l in dry and wet season) was higher than in the non-agricultural communities (0.004 µg/l in both seasons). Ingestion of OPPs in contaminated water in the agricultural communities were estimated to be 0.187 and 0.919 µg/day during the dry and wet seasons, respectively, and 0.008 µg/day during both seasons in the non-agricultural communities. Agricultural communities were exposed to pesticide residues under the oral chronic reference dose. This study suggests that people in agricultural communities may be exposed to significantly greater levels of pesticides than non-agricultural populations during the dry and wet seasons (p < .001, .001). PMID:20485459

  1. Organophosphate Pesticide Residues in Drinking Water from Artesian Wells and Health Risk Assessment of Agricultural Communities, Thailand.

    PubMed

    Jaipieam, S; Visuthismajarn, P; Sutheravut, P; Siriwong, W; Thoumsang, S; Borjan, M; Robson, M

    2009-01-01

    Organophosphate pesticide (OPPs) concentrations in artesian wells located in Thai agricultural and non-agricultural communities were studied during both wet and dry seasons. A total of 100 water samples were collected and subjects were asked to complete a survey. Gas chromatography flame photometric detector was used for OPP analysis. The average OPP concentration in the agricultural communities (0.085 and 0.418 microg/l in dry and wet season) was higher than in the non-agricultural communities (0.004 microg/l in both seasons). Ingestion of OPPs in contaminated water in the agricultural communities were estimated to be 0.187 and 0.919 microg/day during the dry and wet seasons, respectively, and 0.008 microg/day during both seasons in the non-agricultural communities. Agricultural communities were exposed to pesticide residues under the oral chronic reference dose. This study suggests that people in agricultural communities may be exposed to significantly greater levels of pesticides than non-agricultural populations during the dry and wet seasons (p < .001, .001).

  2. Drought, Climate Change and Potential Agricultural Productivity

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Herrera-Estrada, J. E.; Caylor, K. K.; Wood, E. F.

    2011-12-01

    Drought is a major factor in agricultural productivity, especially in developing regions where the capacity for water resources management is limited and climate variability ensures that drought is recurrent and problematic. Recent events in East Africa are testament to this, where drought conditions that have slowly developed over multiple years have contributed to reduced productivity and ultimately food crises and famine. Prospects for the future are not promising given ongoing problems of dwindling water supplies from non-renewable sources and the potential for increased water scarcity and increased drought with climate change. This is set against the expected increase in population by over 2 billion people by 2050 and rise in food demand, coupled with changes in demographics that affect food choices and increases in non-food agriculture. In this talk we discuss the global variability of drought over the 20th century and recent years, and the projected changes over the 21st century, and how this translates into changes in potential agricultural productivity. Drought is quantified using land surface hydrological models driven by a hybrid reanalysis-observational meteorological forcing dataset. Drought is defined in terms of anomalies of hydroclimatic variables, in particular precipitation, evaporation and soil moisture, and we calculate changes in various drought characteristics. Potential agricultural productivity is derived from the balance of precipitation to crop water demand, where demand is based on potential evaporation and crop coefficients for a range of staple crops. Some regional examples are shown of historic variations in drought and potential productivity, and the estimated water deficit for various crops. The multitude of events over the past decade, including heat waves in Europe, fires in Russia, long-term drought in northern China, southeast Australia, the Western US and a series of droughts in the Amazon and Argentina, hint at the influence of

  3. The potential of residues of furfural and biogas as calcareous soil amendments for corn seed production.

    PubMed

    Zhao, Yunchen; Yan, Zhibin; Qin, Jiahai; Ma, Zhijun; Zhang, Youfu; Zhang, Li

    2016-04-01

    Intensive corn seed production in Northwest of China produced large amounts of furfural residues, which represents higher treatment cost and environmental issue. The broad calcareous soils in the Northwest of China exhibit low organic matter content and high pH, which led to lower fertility and lower productivity. Recycling furfural residues as soil organic and nutrient amendment might be a promising agricultural practice to calcareous soils. A 3-year field study was conducted to evaluate the effects of furfural as a soil amendment on corn seed production on calcareous soil with compared to biogas residues. Soil physical-chemical properties, soil enzyme activities, and soil heavy metal concentrations were assessed in the last year after the last application. Corn yield was determined in each year. Furfural residue amendments significantly decreased soil pH and soil bulk density. Furfural residues combined with commercial fertilizers resulted in the greater cumulative on soil organic matter, total phosphorus, available phosphorus, available potassium, and cation exchange capacity than that of biogas residue. Simultaneously, urease, invertase, catalase, and alkaline phosphatase increased even at the higher furfural application rates. Maize seed yield increased even with lower furfural residue application rates. Furfural residues resulted in lower Zn concentration and higher Cd concentration than that of biogas residues. Amendment of furfural residues led to higher soil electrical conductivity (EC) than that of biogas residues. The addition of furfural residues to maize seed production may be considered to be a good strategy for recycling the waste, converting it into a potential resource as organic amendment in arid and semi-arid calcareous soils, and may help to reduce the use of mineral chemical fertilizers in these soils. However, the impact of its application on soil health needs to be established in long-term basis.

  4. Revealing Pesticide Residues Under High Pesticide Stress in Taiwan's Agricultural Environment Probed by Fresh Honey Bee (Hymenoptera: Apidae) Pollen.

    PubMed

    Nai, Yu-Shin; Chen, Tsui-Yao; Chen, Yi-Cheng; Chen, Chun-Ting; Chen, Bor-Yann; Chen, Yue-Wen

    2017-10-01

    Significant pesticide residues are among the most serious problems for sustainable agriculture. In the beekeeping environment, pesticides not only impact a honey bee's survival, but they also contaminate bee products. Taiwan's agricultural environment has suffered from pesticide stress that was higher than that found in Europe and America. This study deciphered problems of pesticide residues in fresh honey bee pollen samples collected from 14 monitoring apiaries in Taiwan, which reflected significant contaminations within the honey bee population. In total, 155 pollen samples were screened for 232 pesticides, and 56 pesticides were detected. Among the residues, fluvalinate and chlorpyrifos showed the highest concentrations, followed by carbendazim, carbaryl, chlorfenapyr, imidacloprid, ethion, and flufenoxuron. The average frequency of pesticide residues detected in pollen samples was ca. 74.8%. The amounts and types of pesticides were higher in winter and in southwestern Taiwan. Moreover, five of these pollen samples were contaminated with 11-15 pesticides, with average levels between 1,560 and 6,390 μg/kg. Compared with the literature, this study emphasized that pollen gathered by honey bee was highly contaminated with more pesticides in Taiwan than in the America, France, and Spain. The ubiquity of pesticides in the pollen samples was likely due to the field applications of common pesticides. Recently, the Taiwanese government began to improve the pesticide policy. According to the resurvey data in 2016, there were reductions in several pesticide contamination parameters in pollen samples from west to southwest Taiwan. A long-term investigation of pollen pesticide residues should be conducted to inspect pesticides usage in Taiwan's agriculture. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Assessing the mitigation potential of agricultural systems by optimization of the agricultural management: A modeling study on 8 agricultural observation sites across Europe with the process based model LandscapeDNDC

    NASA Astrophysics Data System (ADS)

    Molina Herrera, Saul; Haas, Edwin; Klatt, Steffen; Kraus, David; Kiese, Ralf; Butterbach-Bahl, Klaus

    2014-05-01

    The use of mineral nitrogen (N) fertilizers increase crop yields but cause the biggest anthropogenic source of nitrous oxide (N2O) emissions and strongly contribute to surface water eutrophication (e.g. nitrate leaching). The necessity to identify affordable strategies that improve crop production while improving ecosystem services are in continuous debate between policy decision makers and farmers. In this line, a lack commitment from farmers to enforce laws might result in the reduction of benefits. For this reason, farmers should aim to increase crop production and to reduce environmental harm by the adoption of precision climate smart agriculture tools applied to management practices for instance. In this study we present optimized strategies for 8 sites (agricultural and grassland ecosystems) with long term field observation across Europe to show the mitigation potential to reduce reactive nitrogen losses under the constrain of keeping yields at observed levels. LandscapeDNDC simulations of crop yields and associated nitrogen losses (N2O emissions and NO3 leaching) were evaluated against long term field measurements. The sites presented different management regimes including the main commodity crops (maize, wheat, barley, rape seeds, etc) and fertilization amendments (synthetic and organic fertilizers) in Europe. The simulations reproduced the observed yields, captured N2O emissions and NO3 leaching losses with high statistical presicion (r2), acurrency (ME) and agreement (RMSPEn). The mitigation potentials to reduce N losses while keeping yields at observed levels for all 8 sites were assesed by Monte Carlo optimizations of the individual underlying multi year agricultural management options (timings of planting and harvest, fertilization & manure applications and rates, residues management). In this study we present for all 8 agricultural observations sites their individual mitigation potentials to reduce N losses for multi year rotations. The conclusions

  6. Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model.

    PubMed

    Ren, Xiu'e; Chen, Jianbiao; Li, Gang; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi

    2018-08-01

    The study concerned the thermal oxidative degradation kinetics of agricultural residues, peanut shell (PS) and sunflower shell (SS). The thermal behaviors were evaluated via thermogravimetric analysis and the kinetic parameters were determined by using distributed activation energy model (DAEM) and global kinetic model (GKM). Results showed that thermal oxidative decomposition of two samples processed in three zones; the ignition, burnout, and comprehensive combustibility between two agricultural residues were of great difference; and the combustion performance could be improved by boosting heating rate. The activation energy ranges calculated by the DAEM for the thermal oxidative degradation of PS and SS were 88.94-145.30 kJ mol -1 and 94.86-169.18 kJ mol -1 , respectively. The activation energy obtained by the GKM for the oxidative decomposition of hemicellulose and cellulose was obviously lower than that for the lignin oxidation at identical heating rate. To some degree, the determined kinetic parameters could acceptably simulate experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Fuel gas production from animal and agricultural residues and biomass. Quarterly coordination meeting, December 11-12, 1978, Denver, Colorado. Second Quarterly progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, D L; Ashare, E; Wentworth, R L

    1979-01-05

    The tenth quarterly coordination meeting of the methane production group of the Fuels from Biomass Systems Branch, US Department of Energy was held at Denver, Colorado, December 11-12, 1978. Progress reports were presented by the contractors and a site visit was made to the Solar Energy Research Institute, Golden, Colorado. A meeting agenda, a list of attendees, and progress are presented. Report titles are: pipeline fuel gas from an environmental feedlot; operation of a 50,000 gallon anaerobic digester at the Monroe State Dairy Farm near Monroe, Washington; anaerobic fermentation of livestock and crop residues; anaerobic fermentation of agricultural residues -more » potential for improvement and implementation; heat treatment of organics for increasing anaerobic biodegradability; and biological conversion of biomass to methane. (DC)« less

  8. Towards efficient bioethanol production from agricultural and forestry residues: Exploration of unique natural microorganisms in combination with advanced strain engineering.

    PubMed

    Zhao, Xinqing; Xiong, Liang; Zhang, Mingming; Bai, Fengwu

    2016-09-01

    Production of fuel ethanol from lignocellulosic feedstocks such as agricultural and forestry residues is receiving increasing attention due to the unsustainable supply of fossil fuels. Three key challenges include high cellulase production cost, toxicity of the cellulosic hydrolysate to microbial strains, and poor ability of fermenting microorganisms to utilize certain fermentable sugars in the hydrolysate. In this article, studies on searching of natural microbial strains for production of unique cellulase for biorefinery of agricultural and forestry wastes, as well as development of strains for improved cellulase production were reviewed. In addition, progress in the construction of yeast strains with improved stress tolerance and the capability to fully utilize xylose and glucose in the cellulosic hydrolysate was also summarized. With the superior microbial strains for high titer cellulase production and efficient utilization of all fermentable sugars in the hydrolysate, economic biofuels production from agricultural residues and forestry wastes can be realized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review.

    PubMed

    Väisänen, Taneli; Haapala, Antti; Lappalainen, Reijo; Tomppo, Laura

    2016-08-01

    Natural fiber-polymer composites (NFPCs) are becoming increasingly utilized in a wide variety of applications because they represent an ecological and inexpensive alternative to conventional petroleum-derived materials. On the other hand, considerable amounts of organic waste and residues from the industrial and agricultural processes are still underutilized as low-value energy sources. Organic materials are commonly disposed of or subjected to the traditional waste management methods, such as landfilling, composting or anaerobic digestion. The use of organic waste and residue materials in NFPCs represents an ecologically friendly and a substantially higher value alternative. This is a comprehensive review examining how organic waste and residues could be utilized in the future as reinforcements or additives for NFPCs from the perspective of the recently reported work in this field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for chlorpyrifos residue determination in Chinese agricultural smaples

    USDA-ARS?s Scientific Manuscript database

    A monoclonal antibody-based competitive antibody-coated enzyme-linked immunosorbent assay (ELISA) was developed and optimized for determining chlorpyrifos residue in agricultural products. The IC50 and IC10 of this ELISA were 3.3 ng/mL and 0.1 ng/mL respectively. The average recoveries recovery rate...

  11. Agriculture and climate change: Potential for mitigation in Spain.

    PubMed

    Albiac, Jose; Kahil, Taher; Notivol, Eduardo; Calvo, Elena

    2017-08-15

    Agriculture and forestry activities are one of the many sources of greenhouse gas (GHG) emissions, but they are also sources of low-cost opportunities to mitigate these emissions compared to other economic sectors. This paper provides a first estimate of the potential for mitigation in the whole Spanish agriculture. A set of mitigation measures are selected for their cost-effectiveness and abatement potential and an efficient mix of these measures is identified with reference to a social cost of carbon of 40 €/tCO 2 e. This mix of measures includes adjusting crop fertilization and managing forests for carbon sequestration. Results indicate that by using the efficient mix of mitigation measures the annual abatement potential could reach 10 million tCO 2 e, which represents 28% of current agricultural emissions in Spain. This potential could further increase if the social cost of carbon rises covering the costs of applying manure to crops. Results indicate also that economic instruments such as input and emission taxes could be only ancillary measures to address mitigation in agriculture. These findings can be used to support the mitigation efforts in Spain and guide policymakers in the design of country-level mitigation strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. [An experimental proficiency test for ability to screen 104 residual pesticides in agricultural products].

    PubMed

    Tsumura, Yukari; Ishimitsu, Susumu; Otaki, Kayo; Uchimi, Hiroyuki; Matsumoto, Nobuyuki; Daba, Masaki; Tsuchiya, Tetsu; Ukyo, Masaho; Tonogai, Yasuhide

    2003-10-01

    An experimental proficiency test program for ability to screen 104 residual pesticides in agricultural products has been conducted. Eight Japanese laboratories joined the program. Items tested in the present study were limit of detection, internal proficiency test (self spike) and external proficiency test (blind spike). All 104 pesticides were well detected and recovered from agricultural foods in the internal proficiency test. However, the results of the external proficiency test did not completely agree with those of the internal proficiency tests. After 5 rounds of the blind spike test, the ratio of the number of correctly detected pesticides to that of actually contained ones (49 total) ranged from 65% to 100% among laboratories. The numbers of mistakenly detected pesticides by a laboratory were 0 to 15. Thus, there was a great difference among the laboratories in the ability to screen multiresidual pesticides.

  13. Inverting Residual Self-Potential Data for Redox Potentials of Contaminant Plumes

    NASA Astrophysics Data System (ADS)

    Linde, N.; Revil, A.

    2007-05-01

    Self-potential (SP) data can be separated into a streaming potential component that is associated with pore water flow and a redox potential component, which is sensitive to differences in the redox potentials of organic-rich contaminant plumes and the surroundings. This work presents the first inversion method that uses residual SP (i.e., corrected for the streaming potential component) to invert for the redox potentials of contaminant plumes. We consider a two-layered electrical conductivity structure, where the boundary corresponds to the water table. We assume that the electrical dipole sources are associated with microbial breakdown of contaminants at the water table. This geobattery model is hypothesized to exist (1) because the water table is associated with a strong redox gradient between highly reducing conditions within the contaminated groundwater (due to biodegradation and oxygen depletion) and the oxidized vadose zone, and (2) because the microbial biofilms and precipitation of metallic particles can provide an electron conductor to complete the circuit required for the geobattery. The inverse method was applied to residual SP estimated from SP measurements collected at the ground surface in the vicinity of the Entressen landfill, South of France. The estimated redox potentials correlate well with in situ measurements (correlation coefficient is 0.93) and the estimated amplitudes of the redox potentials are similar to those measured in situ. A sensitivity analysis reveals that meaningful estimates of the redox potential can be derived even if the electrical conductivity structure is only known within an order of magnitude. These results provide further evidence that the SP method can be useful to monitor the spreading of contaminants around landfills and to evaluate the efficiency of remediation programs.

  14. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.

    PubMed

    Biswas, Bijoy; Pandey, Nidhi; Bisht, Yashasvi; Singh, Rawel; Kumar, Jitendra; Bhaskar, Thallada

    2017-08-01

    Pyrolysis studies on conventional biomass were carried out in fixed bed reactor at different temperatures 300, 350, 400 and 450°C. Agricultural residues such as corn cob, wheat straw, rice straw and rice husk showed that the optimum temperatures for these residues are 450, 400, 400 and 450°C respectively. The maximum bio-oil yield in case of corn cob, wheat straw, rice straw and rice husk are 47.3, 36.7, 28.4 and 38.1wt% respectively. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. All bio-oils contents were mainly composed of oxygenated hydrocarbons. The higher area percentages of phenolic compounds were observed in the corn cob bio-oil than other bio-oils. From FT-IR and 1 H NMR spectra showed a high percentage of aliphatic functional groups for all bio-oils and distribution of products is different due to differences in the composition of agricultural biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. FEASIBILITY STUDY TO PRODUCE BIODIESEL FROM LOW COST OILS AND NEW CATALYSTS DERIVED FROM AGRICULTURAL & FORESTRY RESIDUES - PHASE I

    EPA Science Inventory

    This research will develop and demonstrate the feasibility of preparing reusable and recoverable solid, porous acid and base catalysts for biodiesel production using activated carbon generated from agricultural and forestry residues (i.e., a sustainable biomass).  These ne...

  16. Oxidation in Acidic Medium of Lignins from Agricultural Residues

    NASA Astrophysics Data System (ADS)

    Labat, Gisele Aparecida Amaral; Gonçalves, Adilson Roberto

    Agricultural residues as sugarcane straw and bagasse are burned in boilers for generation of energy in sugar and alcohol industries. However, excess of those by-products could be used to obtain products with higher value. Pulping process generates cellulosic pulps and lignin. The lignin could be oxidized and applied in effluent treatments for heavy metal removal. Oxidized lignin presents very strong chelating properties. Lignins from sugarcane straw and bagasse were obtained by ethanol-water pulping. Oxidation of lignins was carried out using acetic acid and Co/Mn/Br catalytical system at 50, 80, and 115 °C for 5 h. Kinetics of the reaction was accomplished by measuring the UV-visible region. Activation energy was calculated for lignins from sugarcane straw and bagasse (34.2 and 23.4 kJ mol-1, respectively). The first value indicates higher cross-linked formation. Fourier-transformed infrared spectroscopy data of samples collected during oxidation are very similar. Principal component analysis applied to spectra shows only slight structure modifications in lignins after oxidation reaction.

  17. Detection of residual organochlorine and organophosphorus pesticides in agricultural soil in Rio Verde region of San Luis Potosi, Mexico.

    PubMed

    Velasco, Antonio; Hernández, Sergio; Ramírez, Martha; Ortíz, Irmene

    2014-01-01

    Organochlorine pesticides were intensively used in Mexico from 1950 until their ban and restriction in 1991. However, the presence of these compounds is commonly reported in many regions of the country. The aim of the present study was to identify and quantify residual organochlorine and organophosphorus pesticides in agricultural soil in Rio Verde region, San Luis Potosi state, which has been identified as possibly polluted by pesticides. Composed samples from 24 zones covering an area of approximately 5,440 ha were analyzed. The most frequently found pesticides were p,p'-DDT followed by ,p,p'-DDE, heptachlor, endosulfan and γ-HCH whose frequency rates were 100, 91, 83 and 54%, respectively. The concentration of p,p'-DDT in the crops grown in these soils was in the following order: chili > maize > tomato > alfalfa. The results obtained in this study show that p,p'-DDT values are lower or similar to those found in other agricultural regions of Mexico. Methyl and ethyl parathion were the most frequent organophosphate pesticide detected in 100% and 62.5% of the samples with average concentrations of 25.20 and 47.48 μg kg(-1), respectively. More research is needed to establish the background levels of pesticides in agricultural soils and their potential ecological and human health effects in this region.

  18. Technical feasibility and carbon footprint of biochar co-production with tomato plant residue.

    PubMed

    Llorach-Massana, Pere; Lopez-Capel, Elisa; Peña, Javier; Rieradevall, Joan; Montero, Juan Ignacio; Puy, Neus

    2017-09-01

    World tomato production is in the increase, generating large amounts of organic agricultural waste, which are currently incinerated or composted, releasing CO 2 into the atmosphere. Organic waste is not only produced from conventional but also urban agricultural practices due recently gained popularity. An alternative to current waste management practices and carbon sequestration opportunity is the production of biochar (thermally converted biomass) from tomato plant residues and use as a soil amendment. To address the real contribution of biochar for greenhouse gas mitigation, it is necessary to assess the whole life cycle from the production of the tomato biomass feedstock to the actual distribution and utilisation of the biochar produced in a regional context. This study is the first step to determine the technical and environmental potential of producing biochar from tomato plant (Solanum lycopersicum arawak variety) waste biomass and utilisation as a soil amendment. The study includes the characterisation of tomato plant residue as biochar feedstock (cellulose, hemicellulose, lignin and metal content); feedstock thermal stability; and the carbon footprint of biochar production under urban agriculture at pilot and small-scale plant, and conventional agriculture at large-scale plant. Tomato plant residue is a potentially suitable biochar feedstock under current European Certification based on its lignin content (19.7%) and low metal concentration. Biomass conversion yields of over 40%, 50% carbon stabilization and low pyrolysis temperature conditions (350-400°C) would be required for biochar production to sequester carbon under urban pilot scale conditions; while large-scale biochar production from conventional agricultural practices have not the potential to sequestrate carbon because its logistics, which could be improved. Therefore, the diversion of tomato biomass waste residue from incineration or composting to biochar production for use as a soil amendment

  19. The potential for land sparing to offset greenhouse gas emissions from agriculture

    NASA Astrophysics Data System (ADS)

    Lamb, Anthony; Green, Rhys; Bateman, Ian; Broadmeadow, Mark; Bruce, Toby; Burney, Jennifer; Carey, Pete; Chadwick, David; Crane, Ellie; Field, Rob; Goulding, Keith; Griffiths, Howard; Hastings, Astley; Kasoar, Tim; Kindred, Daniel; Phalan, Ben; Pickett, John; Smith, Pete; Wall, Eileen; Zu Ermgassen, Erasmus K. H. J.; Balmford, Andrew

    2016-05-01

    Greenhouse gas emissions from global agriculture are increasing at around 1% per annum, yet substantial cuts in emissions are needed across all sectors. The challenge of reducing agricultural emissions is particularly acute, because the reductions achievable by changing farming practices are limited and are hampered by rapidly rising food demand. Here we assess the technical mitigation potential offered by land sparing--increasing agricultural yields, reducing farmland area and actively restoring natural habitats on the land spared. Restored habitats can sequester carbon and can offset emissions from agriculture. Using the UK as an example, we estimate net emissions in 2050 under a range of future agricultural scenarios. We find that a land-sparing strategy has the technical potential to achieve significant reductions in net emissions from agriculture and land-use change. Coupling land sparing with demand-side strategies to reduce meat consumption and food waste can further increase the technical mitigation potential--however, economic and implementation considerations might limit the degree to which this technical potential could be realized in practice.

  20. ASSESSMENT FOR FUTURE ENVIRONMENTAL PROBLEMS - AGRICULTURAL RESIDUES

    EPA Science Inventory

    This assessment was undertaken to determine whether agricultural burning constitutes an environmental problem in the United States. Preliminary indications are that agricultural burning is not likely to become a national problem. The report summarizes available information on loc...

  1. Potential GHG mitigation options for agriculture in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erda, Lin; Yue, Li; Hongmin, Dong

    1996-12-31

    Agriculture contributes more or less to anthropogenic emissions of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). China`s agriculture accounts for about 5-15% of total emissions for these gases. Land-use changes related to agriculture are not major contributors in China. Mitigation options are available that could result in significant decrease in CH{sub 4} and N{sub 2}O emissions from agricultural systems. If implemented, they are likely to increase crop and animal productivity. Implementation has the potential to decrease CH{sub 4} emissions from rice, ruminants, and animal waste by 4-40%. The key to decreasing N{sub 2}O emissions ismore » improving the efficiency of plant utilization of fertilizer N. This could decrease N{sub 2}O emissions from agriculture by almost 20%. Using animal waste to produce CH{sub 4} for energy and digested manure for fertilizer may at some time be cost effective. Economic analyses of options proposed should show positive economic as well as environmental benefits.« less

  2. Nitrous Oxide Emission and Denitrifier Abundance in Two Agricultural Soils Amended with Crop Residues and Urea in the North China Plain.

    PubMed

    Gao, Jianmin; Xie, Yingxin; Jin, Haiyang; Liu, Yuan; Bai, Xueying; Ma, Dongyun; Zhu, Yunji; Wang, Chenyang; Guo, Tiancai

    2016-01-01

    The application of crop residues combined with Nitrogen (N) fertilizer has been broadly adopted in China. Crop residue amendments can provide readily available C and N, as well as other nutrients to agricultural soils, but also intensify the N fixation, further affecting N2O emissions. N2O pulses are obviously driven by rainfall, irrigation and fertilization. Fertilization before rainfall or followed by flooding irrigation is a general management practice for a wheat-maize rotation in the North China Plain. Yet, little is known on the impacts of crop residues combined with N fertilizer application on N2O emission under high soil moisture content. A laboratory incubation experiment was conducted to investigate the effects of two crop residue amendments (maize and wheat), individually or in combination with N fertilizer, on N2O emissions and denitrifier abundance in two main agricultural soils (one is an alluvial soil, pH 8.55, belongs to Ochri-Aquic Cambosols, OAC, the other is a lime concretion black soil, pH 6.61, belongs to Hapli-Aquic Vertosols, HAV) under 80% WFPS (the water filled pore space) in the North China Plain. Each type soil contains seven treatments: a control with no N fertilizer application (CK, N0), 200 kg N ha-1 (N200), 250 kg N ha-1 (N250), maize residue plus N200 (MN200), maize residue plus N250 (MN250), wheat residue plus N200 (WN200) and wheat residue plus N250 (WN250). Results showed that, in the HAV soil, MN250 and WN250 increased the cumulative N2O emissions by 60% and 30% compared with N250 treatment, respectively, but MN200 and WN200 decreased the cumulative N2O emissions by 20% and 50% compared with N200. In the OAC soil, compared with N200 or N250, WN200 and WN250 increased the cumulative N2O emission by 40%-50%, but MN200 and MN250 decreased the cumulative N2O emission by 10%-20%. Compared with CK, addition of crop residue or N fertilizer resulted in significant increases in N2O emissions in both soils. The cumulative N2O emissions

  3. Mitigation of dimethazone residues in soil and runoff water from agricultural field.

    PubMed

    Antonious, George F

    2011-01-01

    Dimethazone, also known as clomazone [2-[(2-chlorophenyl) methyl]- 4,4-dimethyl-3-isoxaolidinone] is a pre-emergent nonionic herbicide commonly used in agriculture. A field study was conducted on a silty-loam soil of 10 % slope to monitor off-site movement and persistence of dimethazone in soil under three management practices. Eighteen plots of 22 x 3.7 m each were separated using stainless steel metal borders and the soil in six plots was mixed with municipal sewage sludge (MSS) and yard waste (YW) compost (MSS+YW) at 15 t acre⁻¹ on dry weight basis, six plots were mixed with MSS at 15 t acre⁻¹, and six unamended plots (NM) were used for comparison purposes. The objectives of this investigation were to: (i) monitor the dissipation and half-life (T₁/₂) of dimethazone in soil under three management practices; (ii) determine the concentration of dimethazone residues in runoff and infiltration water following natural rainfall events; and (iii) assess the impact of soil amendments on the transport of NO₃, NH₄, and P into surface and subsurface water. Gas chromatography/mass spectrometery (GC/MS) analyses of soil extracts indicated the presence of ion fragments at m/z 125 and 204 that can be used for identification of dimethazone residues. Intitial deposits of dimethazone varied from 1.3 μg g⁻¹ dry native soil to 3.2 and 11.8 μg g⁻¹ dry soil in MSS and MSS+YW amended soil, respectively. Decline of dimethazone residues in the top 15 cm native soil and soil incorporated with amendments revealed half-life (T₁/₂) values of 18.8, 25.1, and 43.0 days in MSS+YW, MSS, and NM treatments, respectively. Addition of MSS+YW mix and MSS alone to native soil increased water infiltration, lowering surface runoff water volume and dimethazone residues in runoff following natural rainfall events.

  4. Smallholder Farms and the Potential for Sustainable Intensification

    PubMed Central

    Mungai, Leah M.; Snapp, Sieglinde; Messina, Joseph P.; Chikowo, Regis; Smith, Alex; Anders, Erin; Richardson, Robert B.; Li, Guiying

    2016-01-01

    The sustainable intensification of African agriculture is gaining momentum with the compelling need to increase food and agricultural production. In Southern Africa, smallholder farming systems are predominately maize-based and subject to erratic climatic conditions. Farmer crop and soil management decisions are influenced by a plethora of complex factors such as market access resource availability, social relations, environment, and various messages on sustainable farming practices. Such factors pose barriers to increasing sustainable intensification in Africa. This paper characterizes smallholder farming practices in Central Malawi, at Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) project sites. We present findings from a survey of 324 farmers, located within four Africa RISING sites selected in a stratified random manner to represent (1) low agricultural potential (high evapotranspiration, variable rainfall), (2) medium agricultural potential (two sites), and (3) high agricultural potential (well-distributed rainfall). Soil fertility was low overall, and certain farming practices appeared to limit the sustainability of agricultural production. Nearly half of farmers did not value legume residues as a high nutrient value resource for soil amelioration, as legume residues were removed (17.9%) or burned (21.4%). Conversely, maize residues were rarely removed (4.5%) or burned (10.4%). We found that farmers do not allocate soil amendment resources to legume fields (zero instances of mineral fertilizer or manure application to legumes compared to 88 and 22% of maize systems, respectively). Policy makers in Malawi have led initiatives to intensify agricultural systems through subsidizing farmer access to mineral fertilizer as well as maize hybrid seed, and only rarely to improved legume seed. In this survey, farmers allocate mineral fertilizer to maize systems and not legume systems. There is urgent need to invest in education

  5. Smallholder Farms and the Potential for Sustainable Intensification.

    PubMed

    Mungai, Leah M; Snapp, Sieglinde; Messina, Joseph P; Chikowo, Regis; Smith, Alex; Anders, Erin; Richardson, Robert B; Li, Guiying

    2016-01-01

    The sustainable intensification of African agriculture is gaining momentum with the compelling need to increase food and agricultural production. In Southern Africa, smallholder farming systems are predominately maize-based and subject to erratic climatic conditions. Farmer crop and soil management decisions are influenced by a plethora of complex factors such as market access resource availability, social relations, environment, and various messages on sustainable farming practices. Such factors pose barriers to increasing sustainable intensification in Africa. This paper characterizes smallholder farming practices in Central Malawi, at Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) project sites. We present findings from a survey of 324 farmers, located within four Africa RISING sites selected in a stratified random manner to represent (1) low agricultural potential (high evapotranspiration, variable rainfall), (2) medium agricultural potential (two sites), and (3) high agricultural potential (well-distributed rainfall). Soil fertility was low overall, and certain farming practices appeared to limit the sustainability of agricultural production. Nearly half of farmers did not value legume residues as a high nutrient value resource for soil amelioration, as legume residues were removed (17.9%) or burned (21.4%). Conversely, maize residues were rarely removed (4.5%) or burned (10.4%). We found that farmers do not allocate soil amendment resources to legume fields (zero instances of mineral fertilizer or manure application to legumes compared to 88 and 22% of maize systems, respectively). Policy makers in Malawi have led initiatives to intensify agricultural systems through subsidizing farmer access to mineral fertilizer as well as maize hybrid seed, and only rarely to improved legume seed. In this survey, farmers allocate mineral fertilizer to maize systems and not legume systems. There is urgent need to invest in education

  6. Evaluation of agricultural nonpoint source pollution potential risk over China with a Transformed-Agricultural Nonpoint Pollution Potential Index method.

    PubMed

    Yang, Fei; Xu, Zhencheng; Zhu, Yunqiang; He, Chansheng; Wu, Genyi; Qiu, Jin Rong; Fu, Qiang; Liu, Qingsong

    2013-01-01

    Agricultural nonpoint source (NPS) pollution has been the most important threat to water environment quality. Understanding the spatial distribution of NPS pollution potential risk is important for taking effective measures to control and reduce NPS pollution. A Transformed-Agricultural Nonpoint Pollution Potential Index (T-APPI) model was constructed for evaluating the national NPS pollution potential risk in this study; it was also combined with remote sensing and geographic information system techniques for evaluation on the large scale and at 1 km2 spatial resolution. This model considers many factors contributing to the NPS pollution as the original APPI model, summarized as four indicators of the runoff, sediment production, chemical use and the people and animal load. These four indicators were analysed in detail at 1 km2 spatial resolution throughout China. The T-APPI model distinguished the four indicators into pollution source factors and transport process factors; it also took their relationship into consideration. The studied results showed that T-APPI is a credible and convenient method for NPS pollution potential risk evaluation. The results also indicated that the highest NPS pollution potential risk is distributed in the middle-southern Jiangsu province. Several other regions, including the North China Plain, Chengdu Basin Plain, Jianghan Plain, cultivated lands in Guangdong and Guangxi provinces, also showed serious NPS pollution potential. This study can provide a scientific reference for predicting the future NPS pollution risk throughout China and may be helpful for taking reasonable and effective measures for preventing and controlling NPS pollution.

  7. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.

    PubMed

    Scholtz, M T; Bidleman, T F

    2007-05-01

    In the first part of this paper, a simple coupled dynamic soil-atmosphere model for studying the gaseous exchange of pesticide soil residues with the atmosphere is described and evaluated by comparing model results with published measurements of pesticide concentrations in air and soil. In Part II, the model is used to study the concentration profiles of pesticide residues in both undisturbed and annually tilled agricultural soils. Future trends are estimated for the measured air and soil concentrations of lindane and six highly persistent pesticides (toxaphene, p,p'-DDE, dieldrin, cis- and trans-chlordane and trans-nonachlor) over a twenty-year period due to volatilization and leaching into the deeper soil. Wet deposition and particle associated pesticide deposition (that increase soil residue concentrations) and soil erosion, degradation in the soil (other than for lindane) and run-off in precipitation are not considered in this study. Estimates of the rain deposition fluxes are reported that show that, other than for lindane, net volatilization fluxes greatly exceed rain deposition fluxes. The model shows that the persistent pesticides studied are highly immobile in soil and that loss of these highly persistent residues from the soil is by volatilization rather than leaching into the deeper soil. The soil residue levels of these six pesticides are currently sources of net volatilization to the atmosphere and will remain so for many years. The maximum rate of volatilization from the soil was simulated by setting the atmospheric background concentration to zero; these simulations show that the rates of volatilization will not be significantly increased since soil resistance rather than the atmospheric concentration controls the volatilization rates. Annual tilling of the soils increases the volatilization loss to the atmosphere. Nonetheless, the model predicts that, if only air-soil exchange is considered, more than 76% of current persistent pesticide residues

  8. Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy.

    PubMed

    Phitsuwan, Paripok; Laohakunjit, Natta; Kerdchoechuen, Orapin; Kyu, Khin Lay; Ratanakhanokchai, Khanok

    2013-03-01

    Cellulase (CEL) presently constitutes a major group of industrial enzyme based on its diverse ranges of utilization. Apart from such current and well-established applications-as in cotton processing, paper recycling, detergent formulation, juice extraction, and animal feed additives-their uses in agricultural biotechnology and bioenergy have been exploited. Supplementation of CELs to accelerate decomposition of plant residues in soil results in improved soil fertility. So far, applying CELs/antagonistic cellulolytic fungi to crops has shown to promote plant growth performance, including enhanced seed germination and protective effects. Their actions are believed mainly to trigger plant defense mechanisms and/or to act as biocontrol agents that mediate disease suppression. However, the exact interaction between the enzymes/fungi and plants has not been clearly elucidated. Under mild conditions, removal of plant cell wall polysaccharides by CELs for protoplast preparation results in reduced protoplast damage and increased viability and yields. CELs have recently shown great potential in enzyme aid extraction of bioactive compounds from plant materials before selective extraction through enhancing release of target molecules, especially those associated with the wall matrix. To date, attempts have been made to formulate CEL preparation for cellulosic-based bioethanol production. The high cost of CELs has created a bottleneck, resulting in an uneconomic production process. The utilization of low-cost carbohydrates, strain improvement, and gene manipulations has been alternatively aimed at reducing the cost of CEL production. In this review, we focus on and discuss current knowledge of CELs and their applications in agriculture, biotechnology, and bioenergy.

  9. Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine.

    PubMed

    Chen, Jianwei; Wu, Qihao; Hua, Yi; Chen, Jun; Zhang, Huawei; Wang, Hong

    2017-12-01

    Rhamnolipids have recently emerged as promising bioactive molecules due to their novel structures, diverse and versatile biological functions, lower toxicity, higher biodegradability, as well as production from renewable resources. The advantages of rhamnolipids make them attractive targets for research in a wide variety of applications. Especially rhamnolipids are likely to possess potential applications of the future in areas such as biomedicine, therapeutics, and agriculture. The purpose of this mini review is to provide a comprehensive prospective of biosurfactant rhamnolipids as potential antimicrobials, immune modulators, and virulence factors, and anticancer agents in the field of biomedicine and agriculture that may meet the ever-increasing future pharmacological treatment and food safety needs in human health.

  10. Agricultural areas in potentially contaminated sites: characterization, risk, management.

    PubMed

    Vanni, Fabiana; Scaini, Federica; Beccaloni, Eleonora

    2016-01-01

    In Italy, the current legislation for contaminants in soils provides two land uses: residential/public or private gardens and commercial/industrial; there are not specific reference values for agricultural soils, even if a special decree has been developed and is currently going through the legislative approval process. The topic of agricultural areas is relevant, also in consideration of their presence near potentially contaminated sites. Aim and results. In this paper, contamination sources and transport modes of contaminants from sources to the target in agricultural areas are examined and a suitable "conceptual model" to define appropriate characterization methods and risk assessment procedures is proposed. These procedures have already been used by the National Institute of Health in various Italian areas characterized by different agricultural settings. Finally, specific remediation techniques are suggested to preserve soil resources and, if possible, its particular land use.

  11. Biofertilizers: a potential approach for sustainable agriculture development.

    PubMed

    Mahanty, Trishna; Bhattacharjee, Surajit; Goswami, Madhurankhi; Bhattacharyya, Purnita; Das, Bannhi; Ghosh, Abhrajyoti; Tribedi, Prosun

    2017-02-01

    The worldwide increase in human population raises a big threat to the food security of each people as the land for agriculture is limited and even getting reduced with time. Therefore, it is essential that agricultural productivity should be enhanced significantly within the next few decades to meet the large demand of food by emerging population. Not to mention, too much dependence on chemical fertilizers for more crop productions inevitably damages both environmental ecology and human health with great severity. Exploitation of microbes as biofertilizers is considered to some extent an alternative to chemical fertilizers in agricultural sector due to their extensive potentiality in enhancing crop production and food safety. It has been observed that some microorganisms including plant growth promoting bacteria, fungi, Cyanobacteria, etc. have showed biofertilizer-like activities in the agricultural sector. Extensive works on biofertilizers have revealed their capability of providing required nutrients to the crop in sufficient amounts that resulted in the enhancement of crop yield. The present review elucidates various mechanisms that have been exerted by biofertilizers in order to promote plant growth and also provides protection against different plant pathogens. The aim of this review is to discuss the important roles and applications of biofertilizers in different sectors including agriculture, bioremediation, and ecology.

  12. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    PubMed

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Empirical solvent-mediated potentials hold for both intra-molecular and inter-molecular inter-residue interactions.

    PubMed Central

    Keskin, O.; Bahar, I.; Badretdinov, A. Y.; Ptitsyn, O. B.; Jernigan, R. L.

    1998-01-01

    Whether knowledge-based intra-molecular inter-residue potentials are valid to represent inter-molecular interactions taking place at protein-protein interfaces has been questioned in several studies. Differences in the chain connectivity effect and in residue packing geometry between interfaces and single chain monomers have been pointed out as possible sources of distinct energetics for the two cases. In the present study, the interfacial regions of protein-protein complexes are examined to extract inter-molecular inter-residue potentials, using the same statistical methods as those previously adopted for intra-molecular residue pairs. Two sets of energy parameters are derived, corresponding to solvent-mediation and "average residue" mediation. The former set is shown to be highly correlated (correlation coefficient 0.89) with that previously obtained for inter-residue interactions within single chain monomers, while the latter exhibits a weaker correlation (0.69) with its intra-molecular counterpart. In addition to the close similarity of intra- and inter-molecular solvent-mediated potentials, they are shown to be significantly more residue-specific and thereby discriminative compared to the residue-mediated ones, indicating that solvent-mediation plays a major role in controlling the effective inter-residue interactions, either at interfaces, or within single monomers. Based on this observation, a reduced set of energy parameters comprising 20 one-body and 3 two-body terms is proposed (as opposed to the 20 x 20 tables of inter-residue potentials), which reproduces the conventional 20 x 20 tables with a correlation coefficient of 0.99. PMID:9865952

  14. Dynamics of biological and chemical parameters during vermicomposting of solid textile mill sludge mixed with cow dung and agricultural residues.

    PubMed

    Kaushik, Priya; Garg, V K

    2004-09-01

    In India, thousands of tons of textile mill sludge are produced every year. We studied the ability of epigeic earthworm Eisenia foetida to transform textile mill sludge mixed with cow dung and/or agricultural residues into value added product, i.e., vermicompost. The growth, maturation, mortality, cocoon production, hatching success and the number of hatchlings were monitored in a range of different feed mixtures for 11 weeks in the laboratory under controlled environmental conditions. The maximum growth and reproduction was obtained in 100% cow dung, but worms grew and reproduced favorably in 80% cow dung + 20% solid textile mill sludge and 70% cow dung + 30% solid textile mill sludge also. Addition of agricultural residues had adverse effects on growth and reproduction of worms. Vermicomposting resulted in significant reduction in C:N ratio and increase in TKN, TP, TK and TCa after 77 days of worm activity in all the feeds. Vermicomposting can be an alternate technology for the management of textile mill sludge if mixed with cow dung in appropriate quantities. Copyright 2003 Elsevier Ltd.

  15. Positive selection moments identify potential functional residues in human olfactory receptors

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Weisinger-Lewin, Y.; Lancet, D.; Shepherd, G. M.

    1996-01-01

    Correlated mutation analysis and molecular models of olfactory receptors have provided evidence that residues in the transmembrane domains form a binding pocket for odor ligands. As an independent test of these results, we have calculated positive selection moments for the alpha-helical sixth transmembrane domain (TM6) of human olfactory receptors. The moments can be used to identify residues that have been preferentially affected by positive selection and are thus likely to interact with odor ligands. The results suggest that residue 622, which is commonly a serine or threonine, could form critical H-bonds. In some receptors a dual-serine subsite, formed by residues 622 and 625, could bind hydroxyl determinants on odor ligands. The potential importance of these residues is further supported by site-directed mutagenesis in the beta-adrenergic receptor. The findings should be of practical value for future physiological studies, binding assays, and site-directed mutagenesis.

  16. Potential use and perspectives of nitric oxide donors in agriculture.

    PubMed

    Marvasi, Massimiliano

    2017-03-01

    Nitric oxide (NO) has emerged in the last 30 years as a key molecule involved in many physiological processes in plants, animals and bacteria. Current research has shown that NO can be delivered via donor molecules. In such cases, the NO release rate is dependent on the chemical structure of the donor itself and on the chemical environment. Despite NO's powerful signaling effect in plants and animals, the application of NO donors in agriculture is currently not implemented and research remains mainly at the experimental level. Technological development in the field of NO donors is rapidly expanding in scope to include controlling seed germination, plant development, ripening and increasing shelf-life of produce. Potential applications in animal production have also been identified. This concise review focuses on the use of donors that have shown potential biotechnological applications in agriculture. Insights are provided into (i) the role of donors in plant production, (ii) the potential use of donors in animal production and (iii) future approaches to explore the use and applications of donors for the benefit of agriculture. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Improved crop residue cover estimates by coupling spectral indices for residue and moisture

    USDA-ARS?s Scientific Manuscript database

    Remote sensing assessment of soil residue cover (fR) and tillage intensity will improve our predictions of the impact of agricultural practices and promote sustainable management. Spectral indices for estimating fR are sensitive to soil and residue water content, therefore, the uncertainty of estima...

  18. High Residue Winter Cover Crops Deplete Winter Annual Weed Seed Across a Landscape in a Long-Term Tillage Study

    USDA-ARS?s Scientific Manuscript database

    High residue conservation agriculture systems have the potential to maximize environmental benefits achieved when practicing reduced tillage. A greenhouse study was conducted in 2006 through 2008 to determine the effects of cover crop residue on weed seed density within the soil seedbank under varyi...

  19. Earthworm tolerance to residual agricultural pesticide contamination: field and experimental assessment of detoxification capabilities.

    PubMed

    Givaudan, Nicolas; Binet, Françoise; Le Bot, Barbara; Wiegand, Claudia

    2014-09-01

    This study investigates if acclimatization to residual pesticide contamination in agricultural soils is reflected in detoxification, antioxidant enzyme activities and energy budget of earthworms. Five fields within a joint agricultural area exhibited different chemical and farming histories from conventional cultivation to organic pasture. Soil multiresidual pesticide analysis revealed up to 9 molecules including atrazine up to 2.4 ng g(-1) dry soil. Exposure history of endogeic Aporrectodea caliginosa and Allolobophora chlorotica modified their responses to pesticides. In the field, activities of soluble glutathione-S-transferases (sGST) and catalase increased with soil pesticide contamination in A. caliginosa. Pesticide stress was reflected in depletion of energy reserves in A. chlorotica. Acute exposure of pre-adapted and naïve A. caliginosa to pesticides (fungicide Opus(®), 0.1 μg active ingredient epoxiconazole g(-1) dry soil, RoundUp Flash(®), 2.5 μg active ingredient glyphosate g(-1) dry soil, and their mixture), revealed that environmental pre-exposure accelerated activation of the detoxification enzyme sGST towards epoxiconazole. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Environmental consequences of deltamethrin residues in cattle feces in an African agricultural landscape.

    PubMed

    Sands, Bryony; Mgidiswa, Neludo; Nyamukondiwa, Casper; Wall, Richard

    2018-03-01

    Pyrethroid insecticides are widely used to control ectoparasites of livestock, particularly ticks and biting flies. Their use in African livestock systems is increasing, driven by the need to increase productivity and local food security. However, insecticide residues present in the dung after treatment are toxic to dung-inhabiting insects. In a semiarid agricultural habitat in Botswana, dung beetle adult mortality, brood ball production, and larval survival were compared between untreated cattle dung and cattle dung spiked with deltamethrin, to give concentrations of 0.01, 0.1, 0.5, or 1 ppm. Cattle dung-baited pitfall traps were used to measure repellent effects of deltamethrin in dung on Scarabaeidae. Dung decomposition rate was also examined. There was significantly increased mortality of adult dung beetles colonizing pats that contained deltamethrin compared to insecticide-free pats. Brood ball production was significantly reduced at concentrations of 1 ppm; larval survival was significantly reduced in dung containing 0.1 ppm deltamethrin and above. There was no difference in the number of Scarabaeidae attracted to dung containing any of the deltamethrin concentrations. Dung decomposition was significantly reduced even at the lowest concentration (0.01 ppm) compared to insecticide-free dung. The widespread use of deltamethrin in African agricultural ecosystems is a significant cause for concern; sustained use is likely to damage dung beetle populations and their provision of environmentally and economically important ecosystem services. Contaminated dung buried by paracoprid (tunneling) beetles may retain insecticidal effects, with impacts on developing larvae below ground. Lethal and sublethal effects on entire dung beetle (Scarabaeidae) communities could impair ecosystem function in agricultural landscapes.

  1. Plastic degradation by thermophilic Bacillus sp. BCBT21 isolated from composting agricultural residual in Vietnam

    NASA Astrophysics Data System (ADS)

    Dang, Thi Cam Ha; Thang Nguyen, Dang; Thai, Hoang; Chinh Nguyen, Thuy; Thu Hien Tran, Thi; Le, Viet Hung; Huynh Nguyen, Van; Bach Tran, Xuan; Phuong Thao Pham, Thi; Giang Nguyen, Truong; Nguyen, Quang Trung

    2018-03-01

    Three different kinds of plastic bags HL, VHL, and VN1 with different chemical nature were degraded by a novel thermophilic bacterial strain isolated from composting agricultural residual in Vietnam in shaking liquid medium at 55 °C after 30 d. The new strain was classified in the Bacillus genus by morphological property and sequence of partial 16Sr RNA coding gene and named as Bacillus sp. BCBT21. This strain could produce extracellular hydrolase enzymes including lipase, CMCase, xylanase, chitinase, and protease with different level of activity in the same media. After a 30-d treatment at 55 °C with Bacillus sp. BCBT21, all characteristics including properties and morphology of treated plastic bags had been significantly changed. The weight loss, structure and surface morphology of these bags as well as the change in the average molecular weight of VHL bag were detected. Especially, the average molecular weight of VHL bag was significantly reduced from 205 000 to 116 760. New metabolites from the treated bags indicated biodegradation occurring with the different pathways. This finding suggests that there is high potential to develop an effective integrated method for plastic bags degradation by a combination of extracellular enzymes from bacteria and fungi existing in the composting process.

  2. Identifying potential recommendation domains for conservation agriculture in Ethiopia, Kenya, and Malawi.

    PubMed

    Tesfaye, Kindie; Jaleta, Moti; Jena, Pradyot; Mutenje, Munyaradzi

    2015-02-01

    Conservation agriculture (CA) is being promoted as an option for reducing soil degradation, conserving water, enhancing crop productivity, and maintaining yield stability. However, CA is a knowledge- and technology-intensive practice, and may not be feasible or may not perform better than conventional agriculture under all conditions and farming systems. Using high resolution (≈1 km(2)) biophysical and socioeconomic geospatial data, this study identified potential recommendation domains (RDs) for CA in Ethiopia, Kenya, and Malawi. The biophysical variables used were soil texture, surface slope, and rainfall while the socioeconomic variables were market access and human and livestock population densities. Based on feasibility and comparative performance of CA over conventional agriculture, the biophysical and socioeconomic factors were first used to classify cultivated areas into three biophysical and three socioeconomic potential domains, respectively. Combinations of biophysical and socioeconomic domains were then used to develop potential RDs for CA based on adoption potential within the cultivated areas. About 39, 12, and 5% of the cultivated areas showed high biophysical and socioeconomic potential while 50, 39, and 21% of the cultivated areas showed high biophysical and medium socioeconomic potential for CA in Malawi, Kenya, and Ethiopia, respectively. The results indicate considerable acreages of land with high CA adoption potential in the mixed crop-livestock systems of the studied countries. However, there are large differences among countries depending on biophysical and socio-economic conditions. The information generated in this study could be used for targeting CA and prioritizing CA-related agricultural research and investment priorities in the three countries.

  3. Identifying Potential Recommendation Domains for Conservation Agriculture in Ethiopia, Kenya, and Malawi

    NASA Astrophysics Data System (ADS)

    Tesfaye, Kindie; Jaleta, Moti; Jena, Pradyot; Mutenje, Munyaradzi

    2015-02-01

    Conservation agriculture (CA) is being promoted as an option for reducing soil degradation, conserving water, enhancing crop productivity, and maintaining yield stability. However, CA is a knowledge- and technology-intensive practice, and may not be feasible or may not perform better than conventional agriculture under all conditions and farming systems. Using high resolution (≈1 km2) biophysical and socioeconomic geospatial data, this study identified potential recommendation domains (RDs) for CA in Ethiopia, Kenya, and Malawi. The biophysical variables used were soil texture, surface slope, and rainfall while the socioeconomic variables were market access and human and livestock population densities. Based on feasibility and comparative performance of CA over conventional agriculture, the biophysical and socioeconomic factors were first used to classify cultivated areas into three biophysical and three socioeconomic potential domains, respectively. Combinations of biophysical and socioeconomic domains were then used to develop potential RDs for CA based on adoption potential within the cultivated areas. About 39, 12, and 5 % of the cultivated areas showed high biophysical and socioeconomic potential while 50, 39, and 21 % of the cultivated areas showed high biophysical and medium socioeconomic potential for CA in Malawi, Kenya, and Ethiopia, respectively. The results indicate considerable acreages of land with high CA adoption potential in the mixed crop-livestock systems of the studied countries. However, there are large differences among countries depending on biophysical and socio-economic conditions. The information generated in this study could be used for targeting CA and prioritizing CA-related agricultural research and investment priorities in the three countries.

  4. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model.

    PubMed

    Einarsson, Rasmus; Persson, U Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates' biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures' carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent).

  5. Analyzing key constraints to biogas production from crop residues and manure in the EU—A spatially explicit model

    PubMed Central

    Persson, U. Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates’ biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures’ carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent). PMID:28141827

  6. Environmental behavior and analysis of agricultural sulfur.

    PubMed

    Griffith, Corey M; Woodrow, James E; Seiber, James N

    2015-11-01

    Sulfur has been widely used for centuries as a staple for pest and disease management in agriculture. Presently, it is the largest-volume pesticide in use worldwide. This review describes the sources and recovery methods for sulfur, its allotropic forms and properties and its agricultural uses, including development and potential advantages of nanosulfur as a fungicide. Chemical and microbial reactivity, interactions in soil and water and analytical methods for determination in environmental samples and foodstuffs, including inexpensive analytical methods for sulfur residues in wine, beer and other food/beverage substrates, will be reviewed. The toxicology of sulfur towards humans and agriculturally important fungi is included, with some restrictions on use to promote safety. The review concludes with areas for which more research is warranted. © 2015 Society of Chemical Industry.

  7. Unrealized potential and residual consequences of electronic prescribing on pharmacy workflow in the outpatient pharmacy.

    PubMed

    Nanji, Karen C; Rothschild, Jeffrey M; Boehne, Jennifer J; Keohane, Carol A; Ash, Joan S; Poon, Eric G

    2014-01-01

    Electronic prescribing systems have often been promoted as a tool for reducing medication errors and adverse drug events. Recent evidence has revealed that adoption of electronic prescribing systems can lead to unintended consequences such as the introduction of new errors. The purpose of this study is to identify and characterize the unrealized potential and residual consequences of electronic prescribing on pharmacy workflow in an outpatient pharmacy. A multidisciplinary team conducted direct observations of workflow in an independent pharmacy and semi-structured interviews with pharmacy staff members about their perceptions of the unrealized potential and residual consequences of electronic prescribing systems. We used qualitative methods to iteratively analyze text data using a grounded theory approach, and derive a list of major themes and subthemes related to the unrealized potential and residual consequences of electronic prescribing. We identified the following five themes: Communication, workflow disruption, cost, technology, and opportunity for new errors. These contained 26 unique subthemes representing different facets of our observations and the pharmacy staff's perceptions of the unrealized potential and residual consequences of electronic prescribing. We offer targeted solutions to improve electronic prescribing systems by addressing the unrealized potential and residual consequences that we identified. These recommendations may be applied not only to improve staff perceptions of electronic prescribing systems but also to improve the design and/or selection of these systems in order to optimize communication and workflow within pharmacies while minimizing both cost and the potential for the introduction of new errors.

  8. Partitioning Residue-derived and Residue-induced Emissions of N2O Using 15N-labelled Crop Residues

    NASA Astrophysics Data System (ADS)

    Farrell, R. E.; Carverhill, J.; Lemke, R.; Knight, J. D.

    2014-12-01

    Estimates of N2O emissions in Canada indicate that 17% of all agriculture-based emissions are associated with the decomposition of crop residues. However, research specific to the western Canadian prairies (including Saskatchewan) has shown that the N2O emission factor for N sources in this region typically ranges between 0.2 and 0.6%, which is well below the current IPCC default emission factor of 1.0%. Thus, it stands to reason that emissions from crop residues should also be lower than those calculated using the current IPCC emission factor. Current data indicates that residue decomposition, N mineralization and N2O production are affected by a number of factors such as C:N ratio and chemical composition of the residue, soil type, and soil water content; thus, a bench-scale incubation study was conducted to examine the effects of soil type and water content on N2O emissions associated with the decomposition of different crop residues. The study was carried out using soils from the Black, Dark Brown, Brown, and Gray soil zones and was conducted at both 50% and 70% water-filled pore space (WFPS); the soils were amended with 15N-labeled residues of wheat, pea, canola, and flax, or with an equivalent amount of 15N-labeled urea; 15N2O production was monitored using a Picarro G5101-i isotopic N2O analyzer. Crop residue additions to the soils resulted in both direct and indirect emissions of N2O, with residue derived emissions (RDE; measured as 15N2O) generally exceeding residue-induced emissions (RIE) at 50% WFPS—with RDEs ranging from 42% to 88% (mean = 58%) of the total N2O. Conversely, at 70% WFPS, RDEs were generally lower than RIEs—ranging from 21% to 83% (mean = 48%). Whereas both water content and soil type had an impact on N2O production, there was a clear and consistent trend in the emission factors for the residues; i.e., emissions were always greatest for the canola residue and lowest for the wheat residue and urea fertilizer; and intermediate for pea

  9. Production of Enzymes From Agricultural Wastes and Their Potential Industrial Applications.

    PubMed

    Bharathiraja, S; Suriya, J; Krishnan, M; Manivasagan, P; Kim, S-K

    Enzymatic hydrolysis is the significant technique for the conversion of agricultural wastes into valuable products. Agroindustrial wastes such as rice bran, wheat bran, wheat straw, sugarcane bagasse, and corncob are cheapest and plentifully available natural carbon sources for the production of industrially important enzymes. Innumerable enzymes that have numerous applications in industrial processes for food, drug, textile, and dye use have been produced from different types of microorganisms from agricultural wastes. Utilization of agricultural wastes offers great potential for reducing the production cost and increasing the use of enzymes for industrial purposes. This chapter focuses on economic production of actinobacterial enzymes from agricultural wastes to make a better alternative for utilization of biomass generated in million tons as waste annually. © 2017 Elsevier Inc. All rights reserved.

  10. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils.

    PubMed

    Adamo, Paola; Iavazzo, Pietro; Albanese, Stefano; Agrelli, Diana; De Vivo, Benedetto; Lima, Annamaria

    2014-12-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Use of Fe/Al drinking water treatment residuals as amendments for enhancing the retention capacity of glyphosate in agricultural soils.

    PubMed

    Zhao, Yuanyuan; Wendling, Laura A; Wang, Changhui; Pei, Yuansheng

    2015-08-01

    Fe/Al drinking water treatment residuals (WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications could significantly decrease glyphosate retention by soils and that the adsorbed glyphosate is potentially mobile, high sorption capacity and stability of glyphosate in agricultural soils are needed to prevent pollution of water by glyphosate. Therefore, we investigated the feasibility of reusing Fe/Al WTR as a soil amendment to enhance the retention capacity of glyphosate in two agricultural soils. The results of batch experiments showed that the Fe/Al WTR amendment significantly enhanced the glyphosate sorption capacity of both soils (p<0.001). Up to 30% of the previously adsorbed glyphosate desorbed from the non-amended soils, and the Fe/Al WTR amendment effectively decreased the proportion of glyphosate desorbed. Fractionation analyses further demonstrated that glyphosate adsorbed to non-amended soils was primarily retained in the readily labile fraction (NaHCO3-glyphosate). The WTR amendment significantly increased the relative proportion of the moderately labile fraction (HCl-glyphosate) and concomitantly reduced that of the NaHCO3-glyphosate, hence reducing the potential for the release of soil-adsorbed glyphosate into the aqueous phase. Furthermore, Fe/Al WTR amendment minimized the inhibitory effect of increasing solution pH on glyphosate sorption by soils and mitigated the effects of increasing solution ionic strength. The present results indicate that Fe/Al WTR is suitable for use as a soil amendment to prevent glyphosate pollution of aquatic ecosystems by enhancing the glyphosate retention capacity in soils. Copyright © 2015. Published by Elsevier B.V.

  12. From Nutrition Plus to Nutrition Driven: how to realize the elusive potential of agriculture for nutrition?

    PubMed

    Haddad, Lawrence

    2013-03-01

    Agriculture has the potential to have a bigger impact on nutrition status than it currently does. The pathways between agriculture and nutrition are well known. Yet the evidence on how to increase the impact of agriculture on nutrition is weak. To outline some of the possible reasons for the weak evidentiary link between agriculture and income and to highlight some approaches to incentivizing agriculture to give nutrition a greater priority. A review of literature reviews and other studies. Agriculture does not have a strong poverty and nutrition impact culture, the statistical links between aggregate agriculture and nutrition data are weak, literature reviews to date have not been sufficiently clear on the quality of evidence admitted, and the evidence for the impact of biofortification on nutrition status is positive, but small. Some tools are proposed and described that may be helpful in raising the profile of nutrition outcomes, building nutrition outcomes into impact assessments of agriculture, measuring the commitment to undernutrition reduction, and helping to prioritize nutrition-relevant actions within agriculture. Leadership in agriculture and nutrition is also an understudied issue. Agriculture has a vast potential to increase its impact on nutrition outcomes. We don't know if this potential is being fully realized as yet. I suspect it is not. Tools that help promote the visibility of nutrition within agriculture and the accountability of agriculture toward nutrition can possibly contribute to moving "from Nutrition Plus to Nutrition Driven" agriculture.

  13. Residual susceptibility of the red imported fire ant (Hymenoptera: Formicidae) to four agricultural insecticides.

    PubMed

    Seagraves, Michael P; McPherson, Robert M

    2003-06-01

    The red imported fire ant, Solenopsis invicta Buren, is an abundant predator in cropping systems throughout its range. It has been documented to be an important predator of numerous crop pests, as well as being an agricultural pest itself. Information on the impact of insecticides on natural enemies such as fire ants is necessary for the integration of biological and chemical control tactics in an effective pest management program. Therefore, a residual vial bioassay was developed to determine the concentration-mortality responses of S. invicta workers to four commonly used insecticides: acephate, chlorpyrifos, methomyl and lambda-cyhalothrin. Fire ant workers showed a mortality response to serial dilutions to all four chemicals. Methomyl (LC50 0.04 microg/vial, fiducial limits 0.03-0.06) was the most toxic, followed by chlorpyrifos (LC50 0.11 microg/vial, fiducial limits 0.07-0.17) and acephate (LC50 0.76 microg/vial, fiducial limits 0.50-1.04). Of the chemicals assayed, it took a much higher concentration of lambda-cyhalothrin (LC50 2.30 microg/vial, fiducial limits 1.57-3.59) to kill 50% of the workers compared with the other three chemicals. The results of this study demonstrate the wide range in responses of fire ants to four insecticides that are labeled and commonly used on numerous agricultural crops throughout the United States. These results further suggest the possibility of using a discriminating dose of lambda-cyhalothrin to control the target pest species while conserving fire ants in the agricultural systems in which their predatory behavior is beneficial to the integrated pest management program.

  14. 7 CFR 29.427 - Pesticide residue standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Pesticide residue standards. 29.427 Section 29.427... REGULATIONS TOBACCO INSPECTION Regulations Miscellaneous § 29.427 Pesticide residue standards. The maximum concentration of residues of the following pesticides allowed in flue-cured or burley tobacco, expressed as...

  15. 7 CFR 29.427 - Pesticide residue standards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Pesticide residue standards. 29.427 Section 29.427... REGULATIONS TOBACCO INSPECTION Regulations Miscellaneous § 29.427 Pesticide residue standards. The maximum concentration of residues of the following pesticides allowed in flue-cured or burley tobacco, expressed as...

  16. 7 CFR 29.427 - Pesticide residue standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Pesticide residue standards. 29.427 Section 29.427... REGULATIONS TOBACCO INSPECTION Regulations Miscellaneous § 29.427 Pesticide residue standards. The maximum concentration of residues of the following pesticides allowed in flue-cured or burley tobacco, expressed as...

  17. 7 CFR 29.427 - Pesticide residue standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Pesticide residue standards. 29.427 Section 29.427... REGULATIONS TOBACCO INSPECTION Regulations Miscellaneous § 29.427 Pesticide residue standards. The maximum concentration of residues of the following pesticides allowed in flue-cured or burley tobacco, expressed as...

  18. 7 CFR 29.427 - Pesticide residue standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Pesticide residue standards. 29.427 Section 29.427... REGULATIONS TOBACCO INSPECTION Regulations Miscellaneous § 29.427 Pesticide residue standards. The maximum concentration of residues of the following pesticides allowed in flue-cured or burley tobacco, expressed as...

  19. Reduction potential, shadow prices, and pollution costs of agricultural pollutants in China.

    PubMed

    Tang, Kai; Gong, Chengzhu; Wang, Dong

    2016-01-15

    This paper analyses the reduction potential, shadow prices, and pollution costs of agricultural pollutants in China based on provincial panel data for 2001-2010. Using a parameterized quadratic form for the directional output distance function, we find that if agricultural sectors in all provinces were to produce on the production frontier, China could potentially reduce agricultural emissions of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) by 16.0%, 16.2%, and 20.4%, respectively. Additionally, our results show that the shadow price of TN increased rapidly and continuously, while that of COD and TP fluctuated for the whole period. For the whole country, the average shadow price of COD, TN, and TP are 8266 Yuan/tonne, 25,560 Yuan/tonne, and 10,160 Yuan/tonne, respectively. The regional shadow prices of agricultural pollutants are unbalanced. Furthermore, we show that the pollution costs from emissions of COD, TN, and TP are 6.09% of the annual gross output value of the agricultural sector and are highest in the Western and lowest in the Eastern provinces. Our estimates suggest that there is scope for further pollution abatement and simultaneous output expansion for China's agriculture if farmers promote greater efficiency in their production process. Policymakers are required to dynamically adjust the pollution tax rates and ascertain the initial permit price in an emission trading system. Policymakers should also consider the different pollution costs for each province when making the reduction allocations within the agricultural sector. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Adoption potential of conservation agriculture practices in sub-Saharan Africa: results from five case studies.

    PubMed

    Ndah, Hycenth Tim; Schuler, Johannes; Uthes, Sandra; Zander, Peter; Traore, Karim; Gama, Mphatso-S; Nyagumbo, Isaiah; Triomphe, Bernard; Sieber, Stefan; Corbeels, Marc

    2014-03-01

    Despite the reported benefits of conservation agriculture (CA), its wider up-scaling in Sub-Saharan Africa (SSA) has remained fairly limited. This paper shows how a newly developed qualitative expert assessment approach for CA adoption (QAToCA) was applied to determine its adoption potential in SSA. CA adoption potential is not a predictor of observed adoption rates. Instead, our aim was to systematically check relevant factors that may be influencing its adoption. QAToCA delivers an assessment of how suitable conditions "and thus the likelihood for CA adoption" are. Results show that the high CA adoption potentials exhibited by the Malawi and Zambia case relate mostly to positive institutional factors. On the other hand, the low adoption potential of the Zimbabwe case, in spite of observed higher estimates, is attributed mainly to unstable and less secured market conditions for CA. In the case of Southern Burkina Faso, the potential for CA adoption is determined to be high, and this assessment deviates from lower observed figures. This is attributed mainly to strong competition of CA and livestock for residues in this region. Lastly, the high adoption potential found in Northern Burkina Faso is explained mainly by the fact that farmers here have no alternative other than to adopt the locally adapted CA system-Zaï farming. Results of this assessment should help promoters of CA in the given regions to reflect on their activities and to eventually adjust or redesign them based on a more explicit understanding of where problems and opportunities are found.

  1. Adoption Potential of Conservation Agriculture Practices in Sub-Saharan Africa: Results from Five Case Studies

    NASA Astrophysics Data System (ADS)

    Ndah, Hycenth Tim; Schuler, Johannes; Uthes, Sandra; Zander, Peter; Traore, Karim; Gama, Mphatso-S.; Nyagumbo, Isaiah; Triomphe, Bernard; Sieber, Stefan; Corbeels, Marc

    2014-03-01

    Despite the reported benefits of conservation agriculture (CA), its wider up-scaling in Sub-Saharan Africa (SSA) has remained fairly limited. This paper shows how a newly developed qualitative expert assessment approach for CA adoption (QAToCA) was applied to determine its adoption potential in SSA. CA adoption potential is not a predictor of observed adoption rates. Instead, our aim was to systematically check relevant factors that may be influencing its adoption. QAToCA delivers an assessment of how suitable conditions "and thus the likelihood for CA adoption" are. Results show that the high CA adoption potentials exhibited by the Malawi and Zambia case relate mostly to positive institutional factors. On the other hand, the low adoption potential of the Zimbabwe case, in spite of observed higher estimates, is attributed mainly to unstable and less secured market conditions for CA. In the case of Southern Burkina Faso, the potential for CA adoption is determined to be high, and this assessment deviates from lower observed figures. This is attributed mainly to strong competition of CA and livestock for residues in this region. Lastly, the high adoption potential found in Northern Burkina Faso is explained mainly by the fact that farmers here have no alternative other than to adopt the locally adapted CA system—Zaï farming. Results of this assessment should help promoters of CA in the given regions to reflect on their activities and to eventually adjust or redesign them based on a more explicit understanding of where problems and opportunities are found.

  2. Assessment of potential impacts of climate change on agricultural development in the Lower Benue River Basin.

    PubMed

    Abah, Roland Clement; Petja, Brilliant Mareme

    2016-12-01

    Agriculture in the Lower Benue River Basin faces several challenges which threaten the future of agricultural development. This study was an assessment of potential impacts of climate change on agricultural development in the Lower Benue River Basin. Through analysis of physical and socioeconomic parameters, the study adapted an impact assessment model to rank potential impacts on agricultural development in the study area. Rainfall intensity seemed to be increasing with a gradual reduction in the number of rainy days. The average discharge at Makurdi hydrological station was 3468.24 cubic metres per second (m 3  s -1 ), and the highest peak flow discharge was 16,400 m 3  s -1 . The daily maximum temperature and annual temperature averages for the study area are gradually rising leading to increased heat stress. Physical and chemical analyses showed that the soils are moderately fertile but require effective application of inorganic and organic fertilisers. The main occupational activities in the study area are agricultural based. The identified potential impacts of climate change on agriculture were categorised under atmospheric carbon dioxides and oxides, rainfall intensity, frequency of floods and droughts, temperature intensity and variation, heat stress, surface water trends, and soil quality and fertility. The identified potential impacts related to population dynamics on agriculture were categorised under population growth, rural-urban migration, household income and infectious diseases and HIV and AIDS. Community-level mitigation strategies were proffered. Policy makers are advised to promote irrigation farming, support farmers with farm inputs and credit facilities and establish active agricultural extension services to support the sustainable development of agriculture.

  3. Rapid and simple immunochemical screening combined with hand-shaking extraction for thiamethoxam residue in agricultural products.

    PubMed

    Watanabe, Eiki; Kobara, Yuso; Miyake, Shiro

    2013-06-01

    With the aim of expanding the applicability of a kit-based enzyme-linked immunosorbent assay (ELISA) for the neonicotinoid insecticide thiamethoxam, the ELISA was newly applied to three kinds of agricultural samples (green pepper, eggplant and spinach). To offer the ELISA as a screening analysis for thiamethoxam residues, a rapid and simple method of extraction by hand-shaking was used, and speed-up and simplification of the sample treatment before the ELISA analysis were examined. Finally, the validity of the ELISA combined with the proposed extraction method was verified against a reference high-performance liquid chromatography (HPLC) method using real-world agricultural samples. There were no marked matrix effects derived from green pepper and eggplant extracts. On the other hand, although the effect due to a pigment in spinach extract on the assay performance was significant, it was effectively avoided by increasing the dilution level of the spinach extract. For thiamethoxam-spiked samples, acceptable recoveries of 97.9-109.1% and coefficients of variation of 0.3-11.5% were obtained. Inspection of the validity of the ELISA by comparison with the reference HPLC method showed that the two analytical results were very similar, and a high correlation was found between them (r>0.997). The evaluated ELISA combined with hand-shaking extraction provided a rapid and simple screening analysis that was quantitative and reliable for the detection of thiamethoxam in complex agricultural products. © 2012 Society of Chemical Industry.

  4. Closing the gap: global potential for increasing biofuel production through agricultural intensification

    NASA Astrophysics Data System (ADS)

    Johnston, Matt; Licker, R.; Foley, J.; Holloway, T.; Mueller, N. D.; Barford, C.; Kucharik, C.

    2011-07-01

    Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap—essentially improving global yields to median levels—the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike—helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.

  5. Using Multispectral Analysis in GIS to Model the Potential for Urban Agriculture in Philadelphia

    NASA Astrophysics Data System (ADS)

    Dmochowski, J. E.; Cooper, W. P.

    2010-12-01

    In the context of growing concerns about the international food system’s dependence on fossil fuels, soil degradation, climate change, and other diverse issues, a number of initiatives have arisen to develop and implement sustainable agricultural practices. Many seeking to reform the food system look to urban agriculture as a means to create localized, sustainable agricultural production, while simultaneously providing a locus for community building, encouraging better nutrition, and promoting the rebirth of depressed urban areas. The actual impact of such system, however, is not well understood, and many critics of urban agriculture regard its implementation as impractical and unrealistic. This project uses multispectral imagery from United States Department of Agriculture’s National Agricultural Imagery Program with a one-meter resolution to quantify the potential for increasing urban agriculture in an effort to create a sustainable food system in Philadelphia. Color infrared images are classified with a minimum distance algorithm in ArcGIS to generate baseline data on vegetative cover in Philadelphia. These data, in addition to mapping on the ground, form the basis of a model of land suitable for conversion to agriculture in Philadelphia, which will help address questions related to potential yields, workforce, and energy requirements. This research will help city planners, entrepreneurs, community leaders, and citizens understand how urban agriculture can contribute to creating a sustainable food system in a major North American city.

  6. Linking energy-sanitation-agriculture: Intersectional resource management in smallholder households in Tanzania.

    PubMed

    Krause, Ariane; Rotter, Vera Susanne

    2017-07-15

    In order to create sustainable systems for resource management, residues from cooking and ecological sanitation (EcoSan) can be employed in recycling-driven soil fertility management. However, the link between energy, sanitation, and agricultural productivity is often neglected. Hence, the potential self-sufficient nature of many smallholdings in sub-Saharan Africa is underexploited. To compare those cooking and sanitation technologies most commonly used in north-western Tanzania with locally developed alternatives, with respect to (i) resource consumption, (ii) potential to recover resources, and (iii) environmental emissions. This study examines technologies at the household level, and was carried out using material flow analysis (MFA). The specific bioenergy technologies analysed include: three-stone fires; charcoal burners; improved cooking stoves (ICS), such as rocket and microgasifier stoves; and biogas systems. The specific sanitation alternatives studied comprise: pit latrines; two approaches to EcoSan; and septic systems. The use of ICS reduces total resource consumption; using charcoal or biogas does not. The residues from microgasifiers were analysed as having a substantial recovery potential for carbon (C) and phosphorus (P). The fact that input substrates for biogas digesters are post-agricultural in nature means that biogas slurry is not considered an 'untapped resource' despite its ample nutrient content. Exchanging pit latrines for water-based sanitation systems places heavy pressure on already scarce water resources for local smallholders. In contrast, the implementation of waterless EcoSan facilities significantly promotes nutrient recovery and reduces environmental emissions, particularly through greenhouse gas emission and nutrient leaching. Recycled outputs from the triple energy-sanitation-agriculture nexus display complementary benefits: residues from cooking can be used to restore organic matter in soils, while sanitation residues contribute

  7. Review: Balancing Limiting Factors and Economic Drivers to Achieve Sustainable Midwestern US Agricultural Residue Feedstock Supplies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wally W. Wilhelm; J. Richard Hess; Douglas L. Karlen

    2010-10-01

    Advanced biofuels will be developed using cellulosic feedstock rather than grain or oilseed crops that can also be used for food and feed. To be sustainable, these new agronomic production systems must be economically viable without degrading soil resources. This review examines six agronomic factors that collectively define many of the limits and opportunities for harvesting crop residue for biofuel feedstock. These six “limiting factors” are discussed in relationship to economic drivers associated with harvesting corn (Zea mays L.) stover as a potential cellulosic feedstock. The limiting factors include soil organic carbon, wind and water erosion, plant nutrient balance, soilmore » water and temperature dynamics, soil compaction, and off-site environmental impacts. Initial evaluations using the Revised Universal Soil Loss Equation 2.0 (RUSLE2) show that a single factor analysis based on simply meeting tolerable soil loss might indicate stover could be harvested sustainably, but the same analysis based on maintaining soil organic carbon shows the practice to be non-sustainable. Modifying agricultural management to include either annual or perennial cover crops is shown to meet both soil erosion and soil carbon requirements. The importance of achieving high yields and planning in a holistic manner at the landscape scale are also shown to be crucial for balancing limitations and drivers associated with renewable bioenergy production.« less

  8. Poly(butylene adipate-co-terephthalate) and sunflower head residue composites: Effects of composition and compatibilization on properties

    USDA-ARS?s Scientific Manuscript database

    Utilizing the abundant byproducts generated from processing of agricultural materials has sustainable and cost–saving potential benefits. In this work, Sunflower Head Residues (SHR) in 3 different compositions were introduced into biodegradable Poly(butylene adipate-co-terephthalate) (PBAT) matrices...

  9. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  10. Quality and utilization of food co-products and residues

    NASA Astrophysics Data System (ADS)

    Cooke, P.; Bao, G.; Broderick, C.; Fishman, M.; Liu, L.; Onwulata, C.

    2010-06-01

    Some agricultural industries generate large amounts of low value co-products/residues, including citrus peel, sugar beet pulp and whey protein from the production of orange juice, sugar and cheese commodities, respectively. National Program #306 of the USDA Agricultural Research Service aims to characterize and enhance quality and develop new processes and uses for value-added foods and bio-based products. In parallel projects, we applied scanning microscopies to examine the molecular organization of citrus pectin gels, covalent crosslinking to reduce debonding in sugar beet pulp-PLA composites and functional modification of whey protein through extrusion in order to evaluate new methods of processing and formulating new products. Also, qualitative attributes of fresh produce that could potentially guide germ line development and crop management were explored through fluorescence imaging: synthesis and accumulation of oleoresin in habanero peppers suggest a complicated mechanism of secretion that differs from the classical scheme. Integrated imaging appears to offer significant structural insights to help understand practical properties and features of important food co-products/residues.

  11. Taking inventory of woody residuals

    Treesearch

    David McKeever

    2003-01-01

    USDA Forest Service analysis finds 104 million tons of woody residuals available for recovery in the U.S., with wood in MSW and C&D debris streams comprising 28 million tons. The U.S. Department of Agriculture Forest Service conducts a variety of analyses to estimate the quantity of woody residuals in the United States. Its Forest Products Laboratory in Madison,...

  12. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges.

    PubMed

    Paudel, Shukra Raj; Banjara, Sushant Prasad; Choi, Oh Kyung; Park, Ki Young; Kim, Young Mo; Lee, Jae Woo

    2017-12-01

    The anaerobic digestion (AD) of agricultural biomass is an attractive second generation biofuel with potential environmental and economic benefits. Most agricultural biomass contains lignocellulose which requires pretreatment prior to AD. For optimization, the pretreatment methods need to be specific to the characteristics of the biomass feedstock. In this review, cereal residue, fruit and vegetable wastes, grasses and animal manure were selected as the agricultural biomass candidates, and the fundamentals and current state of various pretreatment methods used for AD of these feedstocks were investigated. Several nonconventional methods (electrical, ionic liquid-based chemicals, ruminant biological pretreatment) offer potential as targeted pretreatments of lignocellulosic biomass, but each comes with its own challenges. Pursuing an energy-intensive route, a combined bioethanol-biogas production could be a promising a second biofuel refinery option, further emphasizing the importance of pretreatment when lignocellulosic feedstock is used. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture

    PubMed Central

    Alori, Elizabeth T.; Glick, Bernard R.; Babalola, Olubukola O.

    2017-01-01

    The use of excess conventional Phosphorus (P) fertilizers to improve agricultural productivity, in order to meet constantly increasing global food demand, potentially causes surface and ground water pollution, waterway eutrophication, soil fertility depletion, and accumulation of toxic elements such as high concentration of selenium (Se), arsenic (As) in the soil. Quite a number of soil microorganisms are capable of solubilizing/mineralizing insoluble soil phosphate to release soluble P and making it available to plants. These microorganisms improve the growth and yield of a wide variety of crops. Thus, inoculating seeds/crops/soil with Phosphate Solubilizing Microorganisms (PSM) is a promising strategy to improve world food production without causing any environmental hazard. Despite their great significance in soil fertility improvement, phosphorus-solubilizing microorganisms have yet to replace conventional chemical fertilizers in commercial agriculture. A better understanding of recent developments in PSM functional diversity, colonizing ability, mode of actions and judicious application should facilitate their use as reliable components of sustainable agricultural systems. In this review, we discussed various soil microorganisms that have the ability to solubilize phosphorus and hence have the potential to be used as bio fertilizers. The mechanisms of inorganic phosphate solubilization by PSM and the mechanisms of organic phosphorus mineralization are highlighted together with some factors that determine the success of this technology. Finally we provide some indications that the use of PSM will promote sustainable agriculture and conclude that this technology is ready for commercial exploitation in various regions worldwide. PMID:28626450

  14. Steam pretreatment of agricultural residues facilitates hemicellulose recovery while enhancing enzyme accessibility to cellulose.

    PubMed

    Chandra, Richard P; Arantes, Valdeir; Saddler, Jack

    2015-06-01

    The origins of lignocellulosic biomass and the pretreatment used to enhance enzyme accessibility to the cellulosic component are known to be strongly influenced by various substrate characteristics. To assess the impact that fibre properties might have on enzymatic hydrolysis, seven agricultural residues were characterised before and after steam pretreatment using a single pretreatment condition (190°C, 5min, 3% SO2) previously shown to enhance fractionation and hydrolysis of the cellulosic component of corn stover. When the fibre length, width and coarseness, viscosity, water retention value and cellulose crystallinity were monitored, no clear correlation was observed between any single substrate characteristic and the substrate's ease of enzymatic hydrolysis. However, the amount of hemicellulose that was solubilised during pretreatment correlated (r(2)=0.98) with the effectiveness of enzyme hydrolysis of each pretreated substrate. Simons's staining, to measure the cellulose accessibility, showed good correlation (r(2)=0.83) with hemicellulose removal and the extent of enzymatic hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Survey and Risk Assessment of Apis mellifera (Hymenoptera: Apidae) Exposure to Neonicotinoid Pesticides in Urban, Rural, and Agricultural Settings.

    PubMed

    Lawrence, T J; Culbert, E M; Felsot, A S; Hebert, V R; Sheppard, W S

    2016-04-01

    A comparative assessment of apiaries in urban, rural, and agricultural areas was undertaken in 2013 and 2014 to examine potential honey bee colony exposure to neonicotinoid insecticides from pollen foraging. Apiaries ranged in size from one to hundreds of honey bee colonies, and included those operated by commercial, sideline (semicommercial), and hobbyist beekeepers. Residues in and on wax and beebread (stored pollen in the hive) were evaluated for the nitro-substituted neonicotinoid insecticides imidacloprid and its olefin metabolite and the active ingredients clothianidin, thiamethoxam, and dinotefuran. Beebread and comb wax collected from hives in agricultural landscapes were more likely to have detectable residues of thiamethoxam and clothianidin than that collected from hives in rural or urban areas (∼50% of samples vs. <10%). The maximum neonicotinoid residue detected in either wax or beebread was 3.9 ppb imidacloprid. A probabilistic risk assessment was conducted on the residues recovered from beebread in apiaries located in commercial, urban, and rural landscapes. The calculated risk quotient based on a dietary no observable adverse effect concentration (NOAEC) suggested low potential for negative effects on bee behavior or colony health.

  16. Work Characteristics and Pesticide Exposures among Migrant Agricultural Families: A Community-Based Research Approach.

    ERIC Educational Resources Information Center

    McCauley, Linda A.; Lasarev, Michael R.; Higgins, Gregory; Rothlein, Joan; Muniz, Juan; Ebbert, Caren; Phillips, Jacki

    2001-01-01

    Assessment of pesticide exposure in 96 homes of migrant Latino farmworkers with preschool children found the most frequent pesticide residue to be azinphos-methyl (AZM). AZM levels in farmworker homes were related to distance from fields and number of resident agricultural workers. Children's play areas had potential for disproportionate exposure.…

  17. THE POTENTIAL FOR HUMAN EXPOSURES TO PET-BORNE DIAZINON RESIDUES FOLLOWING RESIDENTIAL LAWN APPLICATIONS

    EPA Science Inventory

    This observational study examined the potential for indoor/outdoor pet dogs to be an important pathway for transporting diazinon residues into homes and onto occupants following residential lawn applications. The primary objective was to investigate the potential exposures of chi...

  18. Does agricultural ecosystem cause environmental pollution in Pakistan? Promise and menace.

    PubMed

    Ullah, Arif; Khan, Dilawar; Khan, Imran; Zheng, Shaofeng

    2018-05-01

    The increasing trend of atmospheric carbon dioxide (CO 2 ) is the main cause of harmful anthropogenic greenhouse gas emissions, which may result in environmental pollution, global warming, and climate change. These issues are expected to adversely affect the agricultural ecosystem and well-being of the society. In order to minimize food insecurity and prevent hunger, a timely adaptation is desirable to reduce potential losses and to seek alternatives for promoting a global knowledge system for agricultural sustainability. This paper examines the causal relationship between agricultural ecosystem and CO 2 emissions as an environmental pollution indicator in Pakistan from the period 1972 to 2014 by employing Johansen cointegration, autoregressive distributed lag (ARDL) model, and Granger causality approach. The Johansen cointegration results show that there is a significant long-run relationship between the agricultural ecosystem and the CO 2 emissions. The long-run relationship shows that a 1% increase in biomass burned crop residues, emissions of CO 2 equivalent of nitrous oxide (N 2 O) from synthetic fertilizers, stock of livestock, agricultural machinery, cereal production, and other crop productions will increase CO 2 emissions by 1.29, 0.05, 0.45, 0.05, 0.03, and 0.65%, respectively. Further, our finding detects that there is a bidirectional causality of CO 2 emissions with rice area paddy harvested, cereal production, and other crop productions. The impulse response function analysis displays that biomass-burned crop residues, stock of livestock, agriculture machinery, cereal production, and other crop productions are significantly contributing to CO 2 emissions in Pakistan.

  19. 40 CFR 180.337 - Oxytetracycline; tolerance for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Oxytetracycline; tolerance for... § 180.337 Oxytetracycline; tolerance for residues. Tolerances are established for residues of the pesticide oxytetracycline in or on the following raw agricultural commodities: Commodity Parts per million...

  20. 9 CFR 381.80 - General; biological residues.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false General; biological residues. 381.80 Section 381.80 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Carcasses and Parts § 381.80 General; biological residues. (a) The carcasses or parts of carcasses of all...

  1. Endosulfan in China 2-emissions and residues.

    PubMed

    Jia, Hongliang; Sun, Yeqing; Li, Yi-Fan; Tian, Chongguo; Wang, Degao; Yang, Meng; Ding, Yongshen; Ma, Jianmin

    2009-05-01

    Endosulfan is one of the organochlorine pesticides (OCPs) and also a candidate to be included in a group of new persistent organic pollutants (UNEP 2007). The first national endosulfan usage inventories in China with 1/4 degrees longitude by 1/6 degrees latitude resolution has been reported in an accompanying paper. In the second part of the paper, we compiled the gridded historical emissions and soil residues of endosulfan in China from the usage inventories. Based on the residue/emission data, gridded concentrations of endosulfan in Chinese soil and air have been calculated. These inventories will provide valuable data for the further study of endosulfan. Emission and residue of endosulfan were calculated from endosulfan usage by using a simplified gridded pesticide emission and residue model-SGPERM, which is an integrated modeling system combining mathematical model, database management system, and geographic information system. By using the emission and residue inventories, annual air and soil concentrations of endosulfan in each cell were determined. Historical gridded emission and residue inventories of alpha- and beta-endosulfan in agricultural soil in China with 1/4 degrees longitude by 1/6 degrees latitude resolution have been created. Total emissions were around 10,800 t, with alpha-endosulfan at 7,400 t and beta-endosulfan at 3,400 t from 1994 to 2004. The highest residues were 140 t for alpha-endosulfan and 390 t for beta-endosulfan, and the lowest residues were 0.7 t for alpha-endosulfan and 170 t for beta-endosulfan in 2004 in Chinese agricultural soil where endosulfan was applied. Based on the emission and residue inventories, concentrations of alpha- and beta-endosulfan in Chinese air and agricultural surface soil were also calculated for each grid cell. We have estimated annual averaged air concentrations and the annual minimum and maximum soil concentrations across China. The real concentrations will be different from season to season. Although

  2. Bioenergy residues applied as soil amendments: N2O emissions and C sequestration potential

    NASA Astrophysics Data System (ADS)

    Cayuela, M.; Kuikman, P.; Oenema, O.; Bakker, R.; van Groenigen, J.

    2009-12-01

    Biofuels have been proposed as environmentally benign substitutes to fossil fuels. There is, however, substantial uncertainty in the scientific literature about how an expanding bioenergy sector would interact with other land uses and what could be the environmental consequences. In the particular case of greenhouse gas balance, the magnitude of discrepancy is tremendously high among different studies. Such controversy has been often attributed to the way the co-products generated were accounted for. It is likely that the intensification of bioenergy production will lead to an increased input of these co-products to the soil as alternative amendments or fertilizers. However, limited research has been done to determine how this will influence microbial transformation processes in soil and thereby the emissions of greenhouse gases. Neither have related issues such as the stabilization of soil organic matter, soil structure and soil fertility been adequately studied. Here, we report a laboratory study on the effects of the application of bioenergy residues on C and N mineralization and greenhouse gas emissions in an agricultural soil. Ten co-products were selected from different energy sectors: anaerobic digestion (digestates), first generation biofuel residues (rapeseed meal, distilled dried grains with solubles), second generation biofuel residues (non-fermentables from hydrolysis of different lignocellulosic materials) and pyrolysis (biochars). They were added at the same N rate (150 kg N ha-1) to a moist (80% water filled pore space) sandy soil and incubated at 20 C for 60 days. Most residues followed fast mineralization dynamics with a flush of CO2 respiration within the first week. The biochars were the exception: they showed very low respiration rates. After 60 days, first generation biofuel residues had emitted more than 80% of added C as CO2. Around 60% was emitted in the case of second generation biofuel residues and 40% with digestates. Biochars were the

  3. Agriculture’s Soil Conservation Programs Miss Full Potential in the Fight against Soil Erosion.

    DTIC Science & Technology

    1983-11-28

    Soil Loss Equation ( USLE ) and Wind Erosion Equation can be used with a reasonable degree of accuracy. It is the intention of ASCS to expand VC/SL to...HD-R37 495 AGRICULTURE’S SOIL CONSERVATION PROGRAMS MISS FULL i/i POTENTIAL IN THE FIGHT.(U) GENERAL ACCOUNTING OFFICE WASHINGTON DC RESOURCES...GENERAL Report To The Congress OF THE UNITED STATES Agriculture’s Soil Conservation Programs Miss Full Potential In The Fight Against Soil Erosion

  4. Current Status and Future Potential of Energy Derived from Chinese Agricultural Land: A Review

    PubMed Central

    Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction. PMID:25874229

  5. Current status and future potential of energy derived from Chinese agricultural land: a review.

    PubMed

    Zhai, Ningning; Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction.

  6. Emission factors of atmospheric and climatic pollutants from crop residues burning.

    PubMed

    Santiago-De La Rosa, Naxieli; González-Cardoso, Griselda; Figueroa-Lara, José de Jesús; Gutiérrez-Arzaluz, Mirella; Octaviano-Villasana, Claudia; Ramírez-Hernández, Irma Fabiola; Mugica-Álvarez, Violeta

    2018-04-13

    Biomass burning is a common agricultural practice, because it allows elimination of postharvesting residues; nevertheless, it involves an inefficient combustion process that generates atmospheric pollutants emission, which has implications on health and climate change. This work focuses on the estimation of emission factors (EFs) of PM 2.5 , PM 10 , organic carbon (OC), elemental carbon (EC), carbon monoxide (CO), carbon dioxide (CO 2 ), and methane (CH 4 ) of residues from burning alfalfa, barley, beans, cotton, maize, rice, sorghum, and wheat in Mexico. Chemical characteristics of the residues were determined to establish their relationship with EFs, as well as with the modified combustion efficiency (MCE). Essays were carried out in an open combustion chamber with isokinetic sampling, following modified EPA 201-A method. EFs did not present statistical differences among different varieties of the same crop, but were statistically different among different crops, showing that generic values of EFs for all the agricultural residues can introduce significant uncertainties when used for climatic and atmospheric pollutant inventories. EFs of PM 2.5 ranged from 1.19 to 11.30 g kg -1 , and of PM 10 from 1.77 to 21.56 g kg -1 . EFs of EC correlated with lignin content, whereas EFs of OC correlated inversely with carbon content. EFs of EC and OC in PM 2.5 ranged from 0.15 to 0.41 g kg -1 and from 0.33 to 5.29 g kg -1 , respectively, and in PM 10 , from 0.17 to 0.43 g kg -1 and from 0.54 to 11.06 g kg -1 . CO 2 represented the largest gaseous emissions volume with 1053.35-1850.82 g kg -1 , whereas the lowest was CH 4 with 1.61-5.59 g kg -1 . CO ranged from 28.85 to 155.71 g kg -1 , correlating inversely with carbon content and MCE. EFs were used to calculate emissions from eight agricultural residues burning in the country during 2016, to know the potential mitigation of climatic and atmospheric pollutants, provided this practice was banned. The emission factors

  7. Effect of fruit and vegetable processing on reduction of synthetic pyrethroid residues.

    PubMed

    Chauhan, Reena; Kumari, Beena; Rana, M K

    2014-01-01

    In this review, we emphasize that the advantages associated with applying pesticides to enhance agricultural productivity must be weighed against the possible health hazards arising from the appearance of toxic pesticide residues in food. First and foremost, pesticides should be handled and applied in compliance with good agricultural practices to minimize environmental or food commodity contamination.In developing countries, good agricultural practices are not fully abided by.When vegetables are produced in such countries, pesticides are applied or prospectively applied at each growth stage of the crop. Hence, contamination of vegetables and other food commodities occur. It is well known that processing of food derived from pesticide treated crop commodities can serve to reduce residues that reach consumers. Food safety can therefore partially be enhanced by employing suitable food processing techniques and appropriate storage periods, even in developing countries. Even common and simple household processing techniques for certain foods acquire significance as means to reduce the intake of harmful pesticide food residues.Pesticide residue levels in post-harvest raw agricultural commodities (RAC) are affected by the storage, handling and the processing steps they pass through, while being prepared for human consumption. The review of cogent literature presented in this article demonstrated differences among the pyrethroid insecticide residues present on or in foods, depending on how the RAC from which they came were processed for consumption. Peeling vegetables or fruit reduced pyrethroid residues the most (60-100% ), and juicing was nearly as effective in reducing residues (70-100% ). The least reduction occurred for foodstuffs that were only washed with tap water (I 0-70% ). Washing RACs with saline water and detergent was more effective(34-60%) in reducing residues than was simple washing under tap water. Freezing is also effective in reducing residue levels and

  8. [Preliminary assessment of the potential of biochar technology in mitigating the greenhouse effect in China].

    PubMed

    Jiang, Zhi-Xiang; Zheng, Hao; Li, Feng-Min; Wang, Zhen-Yu

    2013-06-01

    The production of biochar by pyrolysis and its application to soil can sequester the CO2 which was absorbed by plants from atmosphere into soil, in addition it can also bring multiple benefits for agriculture production. On the basis of the available potential survey of the biomass residues from agriculture and forestry section, life cycle assessment was employed to quantify the potential of biochar technology in mitigation of greenhouse gases in our country. The results showed: In China, the amount of available biomass resource was 6.04 x 10(8) t every year and its net greenhouse effect potential was 5.32 x 10(8) t CO(2e) (CO(2e): CO2 equivalent), which was equivalent to 0.88 t CO(2e) for every ton biomass. The greatest of contributor to the total potential was plant carbon sequestration in soil as the form of biochar which accounts for 73.94%, followed by production of renewable energy and its percentage was 23.85%. In summary, production of biochar from agriculture and forestry biomass residues had a significant potential for our country to struggle with the pressure of greenhouse gas emission.

  9. Material Utilization of Organic Residues.

    PubMed

    Peinemann, Jan Christoph; Pleissner, Daniel

    2018-02-01

    Each year, 1.3 billion tons of food waste is generated globally. This waste traces back to industrial and agricultural producers, bakeries, restaurants, and households. Furthermore, lignocellulosic materials, including grass clippings, leaves, bushes, shrubs, and woods, appear in large amounts. Depending on the region, organic waste is either composted, burned directly, or converted into biogas. All of the options set aside the fact that organic residues are valuable resources containing carbohydrates, lipids, proteins, and phosphorus. Firstly, it is clear that avoidance of organic residues is imperative. However, the residues that accumulate nonetheless should be utilized by material means before energy production is targeted. This review presents different processes for the microbial utilization of organic residues towards compounds that are of great importance for the bioeconomy. The focus thereby is on the challenges coming along with downstream processing when the utilization of organic residues is carried out decentralized. Furthermore, a future process for producing lactic acid from organic residues is sketched.

  10. Renewable energy: energy from agricultural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-06-01

    This study discusses major issues concerning fuels derived from agricultural products. Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10% of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10% mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Principle areas of interest are: Growing crops such as napier grass or harvestingmore » water hyacinths to produce methane that can be substituted for natural gas; expanded use of sugar, starch, and industrial and agricultural wastes as raw materials for ethanol production; improved efficiency in conversion processes such as anaerobic digestion and fermentation. The Institute of Food and Agricultural Sciences at the University of Florida plays a leading national role in energy crops research, while Walt Disney World is using a demonstration project to convert water hyacinths into methane. Increased use of fuels produced from agricultural products depends largely on their costs compared to other fuels. Ethanol is currently attractive because of federal and state tax incentives. The growth potential of ethanol and methane is enhanced by the ease with which they can be blended with fossil fuels and thereby utilize the current energy distribution system. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production.« less

  11. Renewable energy: energy from agricultural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-06-01

    This report discusses the major issues concerning fuels derived from agricultural products. Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10 percent of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10 percent mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Principle areas of interest are: growing crops such as napiermore » grass or harvesting water hyacinths to produce methane that can be substituted for natural gas; expanded use of sugar, starch, and industrial and agricultural wastes as raw materials for ethanol production; and improved efficiency in conversion processes such as anaerobic digestion and fermentation. The Institute of Food and Agricultural Sciences at the University of Florida plays a leading national role in energy crops research, while Walt Disney World is using a demonstration project to convert water hyacinths into methane. Increased use of fuels produced from agricultural products depends largely on their costs compared to other fuels. Ethanol is currently attractive because of federal and state tax incentives. The growth potential of ethanol and methane is enhanced by the ease with which they can be blended with fossil fuels and thereby utilize the current energy distribution system. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production.« less

  12. Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics.

    PubMed

    Wang, Xun; Hu, Mian; Hu, Wanyong; Chen, Zhihua; Liu, Shiming; Hu, Zhiquan; Xiao, Bo

    2016-11-01

    Pyrolytic kinetic of an agricultural residue (AR) feedstock, a mixture of plants (cotton, wheat, rich, corn) stems, was investigated based on combined kinetics. The most suitable mechanism for AR one-step pyrolysis was f(α)=(1-α)(1.1816)α(-1.8428) with kinetic parameters of: apparent activation energy 221.7kJ/mol, pre-exponential factor 4.17E16s(-1). Pyrolysis of AR feedstock could not be described by one-step reaction attributes to heterogeneous features of pyrolysis processes. Combined kinetics three-parallel-reaction (CK-TPR) model fitted the pyrolysis experimental data very well. Reaction mechanisms for pseudo hemicelluloses, cellulose, lignin in CK-TPR model was f(α)=(1-α)(1.6244)α(-0.3371)[-ln(1-α)](-0.0515), f(α)=(1-α)(1.0597)α(-0.6909)[-ln(1-α)](0.9026) and f(α)=(1-α)(2.9577)α(-4.7719), respectively. Apparent activation energy of three pseudo components followed the order of Elignin(197.3kJ/mol)>Ecellulose(176.3kJ/mol)>Ehemicelluloses (151.1kJ/mol). Mechanism of hemicelluloses pyrolysis could be further expressed as f(α)=(1-α)(1.4). The pyrolytic mechanism of cellulose met the Nucleation well. However, mechanism of lignin pyrolysis was complex, which possibly was the combined effects of Nucleation, Diffusion, Geometrical contraction, and Power law. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The accumulation of heavy metals in agricultural land and the associated potential ecological risks in Shenzhen, China.

    PubMed

    Wu, Jiansheng; Song, Jing; Li, Weifeng; Zheng, Maokun

    2016-01-01

    Accumulation of heavy metals in agricultural land and their ecological risks are key issues in soil security studies. This study investigated the concentrations of six heavy metals--copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and chromium (Cr) in Shenzhen's agricultural lands and examined the potential hazards and possible sources of these metals. Eighty-two samples from agricultural topsoil were collected. Potential ecological risk index was used to calculate the potential risk of heavy metals. Principal component analysis (PCA) was applied to explore pollution sources of the metals. Finally, Kriging was used to predict the spatial distribution of the metals' potential ecological risks. The concentrations of the heavy metals were higher than their background values. Most of them presented little potential ecological risk, except for the heavy metal cadmium (Cd). Four districts (Longgang, Longhua, Pingshan, and Dapeng) exhibited some degree of potential risk, which tended to have more industries and road networks. Three major sources of heavy metals included geochemical processes, industrial pollutants, and traffic pollution. The heavy metal Cd was the main contributor to the pollution in agricultural land during the study period. It also poses the potential hazard for the future. High potential risk is closely related to industrial pollution and transportation. Since the 1980s, the sources of heavy metals have evolved from parent rock weathering, erosion, degradation of organics, and mineralization to human disturbances resulting in chemical changes in the soil.

  14. 40 CFR 180.420 - Fluridone; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (free and bound) of the herbicide fluridone (1-methyl-3-phenyl-5-[3-trifluoromethyl)phenyl]-4(1H)-5-[3... established for residues of the herbicide fluridone in the following raw agricultural commodities: Commodity... following irrigated crops and crop groupings for residues of the herbicide fluridone resulting from use of...

  15. Pesticide residue quantification analysis by hyperspectral imaging sensors

    NASA Astrophysics Data System (ADS)

    Liao, Yuan-Hsun; Lo, Wei-Sheng; Guo, Horng-Yuh; Kao, Ching-Hua; Chou, Tau-Meu; Chen, Junne-Jih; Wen, Chia-Hsien; Lin, Chinsu; Chen, Hsian-Min; Ouyang, Yen-Chieh; Wu, Chao-Cheng; Chen, Shih-Yu; Chang, Chein-I.

    2015-05-01

    Pesticide residue detection in agriculture crops is a challenging issue and is even more difficult to quantify pesticide residue resident in agriculture produces and fruits. This paper conducts a series of base-line experiments which are particularly designed for three specific pesticides commonly used in Taiwan. The materials used for experiments are single leaves of vegetable produces which are being contaminated by various amount of concentration of pesticides. Two sensors are used to collected data. One is Fourier Transform Infrared (FTIR) spectroscopy. The other is a hyperspectral sensor, called Geophysical and Environmental Research (GER) 2600 spectroradiometer which is a batteryoperated field portable spectroradiometer with full real-time data acquisition from 350 nm to 2500 nm. In order to quantify data with different levels of pesticide residue concentration, several measures for spectral discrimination are developed. Mores specifically, new measures for calculating relative power between two sensors are particularly designed to be able to evaluate effectiveness of each of sensors in quantifying the used pesticide residues. The experimental results show that the GER is a better sensor than FTIR in the sense of pesticide residue quantification.

  16. Potential of Biological Agents in Decontamination of Agricultural Soil

    PubMed Central

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation. PMID:27293964

  17. Potential of Biological Agents in Decontamination of Agricultural Soil.

    PubMed

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  18. Changing agricultural practices: Potential consequences to aquatic organisms

    USGS Publications Warehouse

    Lasier, Peter J.; Urich, Matthew L.; Hassan, Sayed M.; Jacobs, Whitney N.; Bringolf, Robert B.; Owens, Kathleen M.

    2016-01-01

    Agricultural practices pose threats to biotic diversity in freshwater systems with increasing use of glyphosate-based herbicides for weed control and animal waste for soil amendment becoming common in many regions. Over the past two decades, these particular agricultural trends have corresponded with marked declines in populations of fish and mussel species in the Upper Conasauga River watershed in Georgia/Tennessee, USA. To investigate the potential role of agriculture in the population declines, surface waters and sediments throughout the basin were tested for toxicity and analyzed for glyphosate, metals, nutrients, and steroid hormones. Assessments of chronic toxicity with Ceriodaphnia dubia and Hyalella azteca indicated that few water or sediment samples were harmful and metal concentrations were generally below impairment levels. Glyphosate was not observed in surface waters, although its primary degradation product, aminomethyl phosphonic acid (AMPA), was detected in 77% of the samples (mean = 509 μg/L, n = 99) and one or both compounds were measured in most sediment samples. Waterborne AMPA concentrations supported an inference that surfactants associated with glyphosate may be present at levels sufficient to affect early life stages of mussels. Nutrient enrichment of surface waters was widespread with nitrate (mean = 0.7 mg NO3-N/L, n = 179) and phosphorus (mean = 275 μg/L, n = 179) exceeding levels associated with eutrophication. Hormone concentrations in sediments were often above those shown to cause endocrine disruption in fish and appear to reflect the widespread application of poultry litter and manure. Observed species declines may be at least partially due to hormones, although excess nutrients and herbicide surfactants may also be implicated.

  19. Toward optimal soil organic carbon sequestration with effects of agricultural management practices and climate change in Tai-Lake paddy soils of China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Liming; Zhuang, Qianlai; He, Yujie

    Understanding the impacts of climate change and agricultural management practices on soil organic carbon (SOC) dynamics is critical for implementing optimal farming practices and maintaining agricultural productivity. This study examines the influence of climate and agricultural management on carbon sequestration potentials in Tai-Lake Paddy soils of China using the DeNitrification-DeComposition (DNDC) model, with a high-resolution soil database (1:50,000). Model simulations considered the effects of no tillage, increasing manure application, increasing/decreasing of N-fertilizer application and crop residues, water management, and climatic shifts in temperature and precipitation. We found that the carbon sequestration potential for the 2.32 Mha paddy soils of themore » Tai-Lake region varied from 4.71 to 44.31 Tg C during the period 2001-2019, with an annual average SOC changes ranged from 107 to 1005 kg C ha -1 yr -1. The sequestration potential significantly increased with increasing application of N-fertilizer, manure, conservation tillage, and crop residues. To increase soil C sequestration in this region, no-tillage and increasing of crop residue return to soils and manure application are recommended. Our analysis of climate impacts on SOC sequestration suggests that the rice paddies in this region will continue to be a carbon sink under future warming conditions. In addition, because the region’s annual precipitation (>1200 mm) is high, we also recommend reducing irrigation water use for these rice paddies to conserve freshwater in the Tai-Lake region.« less

  20. Production of versatile peroxidase from Pleurotus eryngii by solid-state fermentation using agricultural residues and evaluation of its catalytic properties.

    PubMed

    Palma, C; Lloret, L; Sepúlveda, L; Contreras, E

    2016-01-01

    Interest in production of ligninolytic enzymes has been growing over recent years for their use in various applications such as recalcitrant pollutants bioremediation; specifically, versatile peroxidase (VP) presents a great potential due to its catalytic versatility. The proper selection of the fermentation mode and the culture medium should be an imperative to ensure a successful production by an economic and available medium that favors the process viability. VP was produced by solid-state fermentation (SSF) of Pleurotus eryngii, using the agricultural residue banana peel as growth medium; an enzymatic activity of 10,800 U L(-1) (36 U g(-1) of substrate) was detected after 18 days, whereas only 1800 U L(-1) was reached by conventional submerged fermentation (SF) with glucose-based medium. The kinetic parameters were determined by evaluating the H2O2 and Mn(2+) concentration effects on the Mn(3+)-tartrate complex formation. The results indicated that although the H2O2 inhibitory effect was observed for the enzyme produced by both media, the reaction rates for VP obtained by SSF were less impacted. This outcome suggests the presence of substances released from banana peel during the fermentation, which might exhibit a protective effect resulting in an improved kinetic behavior of the enzyme.

  1. Spatial decision support system to evaluate crop residue energy potential by anaerobic digestion.

    PubMed

    Escalante, Humberto; Castro, Liliana; Gauthier-Maradei, Paola; Rodríguez De La Vega, Reynel

    2016-11-01

    Implementing anaerobic digestion (AD) in energy production from crop residues requires development of decision tools to assess its feasibility and sustainability. A spatial decision support system (SDSS) was constructed to assist decision makers to select appropriate feedstock according to biomethanation potential, identify the most suitable location for biogas facilities, determine optimum plant capacity and supply chain, and evaluate associated risks and costs. SDSS involves a spatially explicit analysis, fuzzy multi-criteria analysis, and statistical and optimization models. The tool was validated on seven crop residues located in Santander, Colombia. For example, fique bagasse generates about 0.21millionm(3)CH4year(-1) (0.329m(3)CH4kg(-1) volatile solids) with a minimum profitable plant of about 2000tonyear(-1) and an internal rate of return of 10.5%. SDSS can be applied to evaluate other biomass resources, availability periods, and co-digestion potential. Copyright © 2016. Published by Elsevier Ltd.

  2. Cognitive Potential: How Different Are Agriculture Students?

    ERIC Educational Resources Information Center

    Rhoades, Emily B.; Ricketts, John; Friedel, Curt

    2009-01-01

    Given the interest, research, and effort extended to help faculty in colleges of agriculture provide educational discourse at higher cognitive levels over the last few years, one would expect that students enrolled in colleges of agriculture would exhibit higher levels of critical thinking and need for cognition. This study thus aimed to discover…

  3. Food and processing residues in California: resource assessment and potential for power generation.

    PubMed

    Matteson, Gary C; Jenkins, B M

    2007-11-01

    The California agricultural industry produces more than 350 commodities with a combined yearly value in excess of $28 billion. The processing of many of these crops results in the production of residue streams, and the food processing industry faces increasing regulatory pressure to reduce environmental impacts and provide for sustainable management and use. Surveys of food and other processing and waste management sectors combined with published state data yield a total resource in excess of 4 million metric tons of dry matter, with nearly half of this likely to be available for utilization. About two-thirds of the available resource is produced as high-moisture residues that could support 134 MWe of power generation by anaerobic digestion and other conversion techniques. The other third is generated as low-moisture materials, many of which are already employed as fuel in direct combustion biomass power plants. The cost of energy conversion remains high for biochemical systems, with tipping or disposal fees of the order of $30-50Mg(-1) required to align power costs with current market prices. Identifying ways to reduce capital and operating costs of energy conversion, extending operating seasons to increase capacity factors through centralizing facilities, combining resource streams, and monetizing environmental benefits remain important goals for restructuring food and processing waste management in the state.

  4. Residues and potential ecological risks of veterinary antibiotics in manures and composts associated with protected vegetable farming.

    PubMed

    Zhang, Haibo; Luo, Yongming; Wu, Longhua; Huang, Yujuan; Christie, Peter

    2015-04-01

    Veterinary antibiotics (VAs) are emerging contaminants and enter into soil principally by agricultural application of organic fertilizer. A total of 33 solid animal manures and 17 compost samples from protected vegetable farms in nine areas of China were analyzed for the antibiotic classes of tetracyclines, fluoroquinolones, sulfonamides, and macrolides (17 substances in total). Oxytetracycline was found as a dominant compound in the samples, and its highest concentration reached 416.8 mg kg(-1) in a chicken manure sample from Shouguang, Shandong Province. Among the samples, animal manures (especially pig manure) contained higher VA residues than composts. However, fluoroquinolones exhibited higher persistence in the compost samples than other antibiotic classes. This is particularly the case in the rice husk compost, which contained the highest level of ofloxacin and ciprofloxacin (1334.5 and 1717.4 μg kg(-1) on average, respectively). The veterinary antibiotic profile in the risk husk compost had a good relationship with that in the corresponding manures. The refined commercial compost had the lowest VA residues among the compost samples in general. This implied that composting process might be important to reduce the antibiotic residue. High residue of antibiotics in soil was assumed to be a hazard to ecosystem. This is especially noticeable under current application rates (150 t ha(-1) a(-1)) in protected vegetable farming because over half of the samples exhibited a risk quotient (RQ) >1 for one or more antibiotics.

  5. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw agricultural...

  6. 40 CFR 180.444 - Sulfur dioxide; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Sulfur dioxide; tolerances for... § 180.444 Sulfur dioxide; tolerances for residues. A tolerance is established as follows for sulfite residues of the fungicide sulfur dioxide (determined as (SO2)) in or on the following raw agricultural...

  7. Barium as a potential indicator of phosphorus in agricultural runoff.

    PubMed

    Ahlgren, Joakim; Djodjic, Faruk; Wallin, Mats

    2012-01-01

    In many catchments, anthropogenic input of contaminants, and in particular phosphorus (P), into surface water is a mixture of agricultural and sewage runoff. Knowledge about the relative contribution from each of these sources is vital for mitigation of major environmental problems such as eutrophication. In this study, we investigated whether the distribution of trace elements in surface waters can be used to trace the contamination source. Water from three groups of streams was investigated: streams influenced only by agricultural runoff, streams influenced mainly by sewage runoff, and reference streams. Samples were collected at different flow regimes and times of year and analyzed for 62 elements using ICP-MS. Our results show that there are significant differences between the anthropogenic sources affecting the streams in terms of total element composition and individual elements, indicating that the method has the potential to trace anthropogenic impact on surface waters. The elements that show significant differences between sources are strontium (p < 0.001), calcium (p < 0.004), potassium (p < 0.001), magnesium (p < 0.001), boron (p < 0.001), rhodium (p = 0.001), and barium (p < 0.001). According to this study, barium shows the greatest potential as a tracer for an individual source of anthropogenic input to surface waters. We observed a strong relationship between barium and total P in the investigated samples (R(2) = 0.78), which could potentially be used to apportion anthropogenic sources of P and thereby facilitate targeting of mitigation practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Vegetable fibres from agricultural residues as thermo-mechanical reinforcement in recycled polypropylene-based green foams.

    PubMed

    Ardanuy, Mònica; Antunes, Marcelo; Velasco, José Ignacio

    2012-02-01

    Novel lightweight composite foams based on recycled polypropylene reinforced with cellulosic fibres obtained from agricultural residues were prepared and characterized. These composites, initially prepared by melt-mixing recycled polypropylene with variable fibre concentrations (10-25 wt.%), were foamed by high-pressure CO(2) dissolution, a clean process which avoids the use of chemical blowing agents. With the aim of studying the influence of the fibre characteristics on the resultant foams, two chemical treatments were applied to the barley straw in order to increase the α-cellulose content of the fibres. The chemical composition, morphology and thermal stability of the fibres and composites were analyzed. Results indicate that fibre chemical treatment and later foaming of the composites resulted in foams with characteristic closed-cell microcellular structures, their specific storage modulus significantly increasing due to the higher stiffness of the fibres. The addition of the fibres also resulted in an increase in the glass transition temperature of PP in both the solid composites and more significantly in the foams. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. A FEASIBILITY STUDY EXAMINING THE POTENTIAL FOR HUMAN EXPOSURE TO PET-BORNE DIAZINON RESIDUES FOLLOWING RESIDENTIAL TURF APPLICATIONS

    EPA Science Inventory

    The domestic dog may be a vehicle for translocation of pesticide residues following residential applications to turf. In addition, human occupants may be exposed to residues deposited inside homes by pets or by intimate contacts with them. This study examines the potential of ...

  10. Long Term Sugarcane Crop Residue Retention Offers Limited Potential to Reduce Nitrogen Fertilizer Rates in Australian Wet Tropical Environments.

    PubMed

    Meier, Elizabeth A; Thorburn, Peter J

    2016-01-01

    The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues ('trash'). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a 'trash blanket' in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N fertilizer

  11. Long Term Sugarcane Crop Residue Retention Offers Limited Potential to Reduce Nitrogen Fertilizer Rates in Australian Wet Tropical Environments

    PubMed Central

    Meier, Elizabeth A.; Thorburn, Peter J.

    2016-01-01

    The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues (‘trash’). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a ‘trash blanket’ in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N

  12. Gasification of agricultural residues in a demonstrative plant: corn cobs.

    PubMed

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2014-12-01

    Biomass gasification couples the high power efficiency with the possibility of valuably using the byproducts heat and biochar. The use of agricultural wastes instead of woody feedstock extends the seasonal availability of biomasses. The downdraft type is the most used reactor but has narrow ranges of feedstock specifications (above all on moisture and particle size distribution), so tests on a demonstrative scale are conducted to prove the versatility of the gasifier. Measurements on pressure drops, syngas flow rate and composition are studied to assess the feasibility of such operations with corn cobs. Material and energy balances, and performance indexes are compared for the four tests carried out under different biomass loads (66-85 kg/h). A good operability of the plant and interesting results are obtained (gas specific production of 2 m3/kg, gas heating value 5.6-5.8 MJ/m3, cold gas efficiency in the range 66-68%, potential net power efficiency 21.1-21.6%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The Development of a Curriculum for Renewable Energy: A Case Study of Charcoal Briquettes from Agricultural Residues for Environmental Literacy of Secondary School Students at Samaki Wittaya Municipality School

    ERIC Educational Resources Information Center

    Klakayan, Jagree; Singseewo, Adisak

    2016-01-01

    This research aimed to (1) design a curriculum on Production of Charcoal Briquettes from Agricultural Residues, (2) implement the designed curriculum, and (3) study and compare the learning achievements of Matthayomsuksa 3 students at Samakee Wittaya Municipality School in terms of knowledge, learning skills, and participation in the production of…

  14. Assessment of polyaromatic hydrocarbons and pesticide residues in domestic and imported pangasius (Pangasianodon hypophthalmus) fish in India.

    PubMed

    Chatterjee, Niladri Sekhar; Banerjee, Kaushik; Utture, Sagar; Kamble, Narayan; Rao, B Madhusudana; Panda, Satyen Kumar; Mathew, Suseela

    2016-05-01

    The pangasius catfish (Pangasianodon hypophthalmus) is a ubiquitous item of seafood in global markets. However, pesticide residues in aquaculture fish, arising from agricultural run-off and/or direct application during pond preparation, pest control and harvest, are a potential food safety concern. This study assessed the level of chemical hazard in domestic and imported pangasius fish in India. A total of 119 contaminants, including polyaromatic hydrocarbons (PAHs), organochlorines (OCs) and other groups of pesticides, were screened in 148 samples during 2014-2015 as the first endeavour of its kind in an Indian context, employing a validated gas chromatography/tandem mass spectrometry (GC/MS/MS) method. Apart from the low-level incidence of OCs, pesticides such as quinalphos, malathion, parathion-methyl, etc. were detected in 38% of the samples. In comparison with Indian pangasius, fewer contaminants at low residue level were detected in pangasius fillets imported from Vietnam. The human dietary exposures of the residue concentrations detected were less than the maximum permissible intakes and hence appeared safe. However, detection of commonly used pesticides indicated their direct application in aquaculture and contamination from agricultural run-off. This emphasizes the need for continual residue monitoring in aquaculture fish. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  15. Monitoring of Pesticide Residues in Commonly Used Fruits and Vegetables in Kuwait.

    PubMed

    Jallow, Mustapha F A; Awadh, Dawood G; Albaho, Mohammed S; Devi, Vimala Y; Ahmad, Nisar

    2017-07-25

    The presence of pesticide residues in primary and derived agricultural products raises serious health concerns for consumers. The aim of this study was to assess the level of pesticide residues in commonly consumed fruits and vegetables in Kuwait. A total of 150 samples of different fresh vegetables and fruits were analyzed for the presence of 34 pesticides using the quick easy cheap effective rugged and safe (QuEChERS) multi-residue extraction, followed by gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem mass spectrometry (LC - MS / MS). Pesticide residues above the maximum residue limits (MRL) were detected in 21% of the samples and 79% of the samples had no residues of the pesticides surveyed or contained residues below the MRL. Multiple residues were present in 40% of the samples with two to four pesticides, and four samples were contaminated with more than four pesticide residues. Of the pesticides investigated, 16 were detected, of which imidacloprid, deltamethrin, cypermethrin, malathion, acetamiprid, monocrotophos, chlorpyrifos-methyl, and diazinon exceeded their MRLs. Aldrin, an organochlorine pesticide, was detected in one apple sample, with residues below the MRL. The results indicate the occurrence of pesticide residues in commonly consumed fruits and vegetables in Kuwait, and pointed to an urgent need to develop comprehensive intervention measures to reduce the potential health risk to consumers. The need for the regular monitoring of pesticide residues and the sensitization of farmers to better pesticide safety practices, especially the need to adhere to recommended pre-harvest intervals is recommended.

  16. Utilization of agricultural residues of pineapple peels and sugarcane bagasse as cost-saving raw materials in Scenedesmus acutus for lipid accumulation and biodiesel production.

    PubMed

    Rattanapoltee, Panida; Kaewkannetra, Pakawadee

    2014-07-01

    The aim of this study is to optimize the lipid accumulation in microalgae by using two agricultural residues of pineapple peels and sugarcane bagasse as low-cost organic carbon sources. Green microalgae Scenedesmus acutus was isolated and selected for cultivation. Effects of three initial sugar concentrations and the stage for adding sugar during cultivation on biomass and lipid production were investigated. The results clearly showed that two-stage cultivation is more suitable than one-stage. The maximum biomass concentration and productivity were obtained at 3.85 g/L and 160.42 mg/L/day when sugarcane bagasse was used. The highest lipid content and lipid yield was reached at 28.05 % and 0.93 g/L when pineapple peels were used, while in the case of sugarcane bagasse, 40.89 % and 1.24 g/L lipid content and yield were obtained. Lipid content was found in normal condition (autotrophic) at 17.71 % which was approximately 2.13-fold lower than when sugarcane bagasse was used (40.89 %). Biodiesel production via in situ transesterification was also investigated; the main fatty acids of palmitic acid and oleic acid were found. This work indicates that using agricultural residues as organic carbon sources could be able to increase lipid content and reduce the cost of biofuel production.

  17. The Application of Nano-TiO2 Photo Semiconductors in Agriculture

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Sun, Changjiao; Zhao, Xiang; Cui, Bo; Zeng, Zhanghua; Wang, Anqi; Liu, Guoqiang; Cui, Haixin

    2016-11-01

    Nanometer-sized titanium dioxide (TiO2) is an environmentally friendly optical semiconductor material. It has wide application value in many fields due to its excellent structural, optical, and chemical properties. The photocatalytic process of nano-TiO2 converts light energy into electrical or chemical energy under mild conditions. In recent years, the study and application of nano-TiO2 in the agricultural sector has gradually attracted attention. The nano-TiO2 applications of degrading pesticides, plant germination and growth, crop disease control, water purification, pesticide residue detection, etc. are good prospects. This review describes all of these applications and the research status and development, including the underlying principles, features, comprehensive applications, functional modification, and potential future directions, for TiO2 in agriculture.

  18. Potential ecological and economic consequences of climate-driven agricultural and silvicultural transformations in central Siberia

    NASA Astrophysics Data System (ADS)

    Tchebakova, Nadezhda M.; Zander, Evgeniya V.; Pyzhev, Anton I.; Parfenova, Elena I.; Soja, Amber J.

    2014-05-01

    Increased warming predicted from general circulation models (GCMs) by the end of the century is expected to dramatically impact Siberian forests. Both natural climate-change-caused disturbance (weather, wildfire, infestation) and anthropogenic disturbance (legal/illegal logging) has increased, and their impact on Siberian boreal forest has been mounting over the last three decades. The Siberian BioClimatic Model (SiBCliM) was used to simulate Siberian forests, and the resultant maps show a severely decreased forest that has shifted northwards and a changed composition. Predicted dryer climates would enhance the risks of high fire danger and thawing permafrost, both of which challenge contemporary ecosystems. Our current goal is to evaluate the ecological and economic consequences of climate warming, to optimise economic loss/gain effects in forestry versus agriculture, to question the relative economic value of supporting forestry, agriculture or a mixed agro-forestry at the southern forest border in central Siberia predicted to undergo the most noticeable landcover and landuse changes. We developed and used forest and agricultural bioclimatic models to predict forest shifts; novel tree species and their climatypes are introduced in a warmer climate and/or potential novel agriculture are introduced with a potential variety of crops by the end of the century. We applied two strategies to estimate climate change effects, motivated by forest disturbance. One is a genetic means of assisting trees and forests to be harmonized with a changing climate by developing management strategies for seed transfer to locations that are best ecologically suited to the genotypes in future climates. The second strategy is the establishment of agricultural lands in new forest-steppe and steppe habitats, because the forests would retreat northwards. Currently, food, forage, and biofuel crops primarily reside in the steppe and forest-steppe zones which are known to have favorable

  19. Conversion of agricultural residues to carboxymethylcellulose and carboxymethylcellulose acetate

    USDA-ARS?s Scientific Manuscript database

    In view of continuing interest in the use of agricultural by-products, we have converted cellulose, wheat straw, barley straw, and rice hull into carboxymethylcellulose (CMC). Microwave-assisted synthesis was found to be a partly effective alternative to the conventional heating process. The CMC thu...

  20. Agricultural residues are efficient abrasive tools for weed control

    USDA-ARS?s Scientific Manuscript database

    Non-chemical control of weeds is one of the most important needs of organic agricultural production and, ironically, herbicide resistant crops. There is a knowledge gap regarding alternative control methods that reduce the use of herbicides. This need for alternatives is motivated by increased consu...

  1. 40 CFR 180.556 - Pymetrozine; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... these raw agricultural commodities. Commodity Parts per million Asparagus 0.04 Brassica, head and stem...

  2. 40 CFR 180.556 - Pymetrozine; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... these raw agricultural commodities. Commodity Parts per million Asparagus 0.04 Brassica, head and stem...

  3. Potential nitrogen credits from peanut residue

    USDA-ARS?s Scientific Manuscript database

    Availability of residue nitrogen (N) to succeeding crops is dependent on N mineralization rates during decomposition. Following peanut (Arachis hypogaea L.) production, extension currently recommends 22-67 kg N ha-1 credit to subsequent crops, but these recommendations are not supported in the liter...

  4. Pectic oligosaccharides from agricultural by-products: production, characterization and health benefits.

    PubMed

    Babbar, Neha; Dejonghe, Winnie; Gatti, Monica; Sforza, Stefano; Elst, Kathy

    2016-08-01

    Pectin containing agricultural by-products are potential sources of a new class of prebiotics known as pectic oligosaccharides (POS). In general, pectin is made up of homogalacturonan (HG, α-1,4-linked galacturonic acid monomers) and rhamnogalacturonan (RG, alternate galacturonic acid and rhamnose backbone with neutral side chains). Controlled hydrolysis of pectin containing agricultural by-products like sugar beet, apple, olive and citrus by chemical, enzymatic and hydrothermal can be used to produce oligo-galacturonides (GalpOS), galacto-oligosaccharides (GalOS), rhamnogalacturonan-oligosaccharides (RGOS), etc. However, extensive research is needed to establish the role of POS, both as a prebiotic as well as therapeutic agent. This review comprehensively covers different facets of POS, including the nature and chemistry of pectin and POS, potential agricultural residual sources of pectin, pre-treatment methods for facilitating selective extraction of pectin, identification and characterization of POS, health benefits and important applications of POS in food and feed. This review has been compiled to establish a platform for future research in the purification and characterization of POS and for in vivo and in vitro studies of important POS, so that they could be commercially exploited.

  5. Storage potential and residual emissions from fresh and stabilized waste samples from a landfill simulation experiment.

    PubMed

    Morello, Luca; Raga, Roberto; Sgarbossa, Paolo; Rosson, Egle; Cossu, Raffaello

    2018-05-01

    The storage capacity and the potentially residual emissions of a stabilized waste coming from a landfill simulation experiment were evaluated. The evolution in time of the potential emissions and the mobility of some selected elements or compounds were determined, comparing the results of the stabilized waste samples with the values detected in the related fresh waste samples. Analyses were conducted for the total bulk waste and also for each identified category (under-sieve, kitchen residues, green and wooden materials, plastics, cellulosic material and textiles) to highlight the contribution of the different waste fractions in the total emission potential. The waste characterization was performed through analyses on solids and on leaching test eluates; the chemical speciation of carbon, nitrogen, chlorine and sulfur together with the partitioning of heavy metals through a SCE procedure were carried out. Results showed that the under-sieve is the most environmentally relevant fraction, hosting a consistent part of mobile compounds in fresh waste (40.7% of carbon, 44.0% of nitrogen, 47.6% of chloride and 40.0% of sulfur) and the greater part of potentially residual emissions in stabilized waste (88.4% of carbon, 90.9% of nitrogen, 98.4% of chloride and 91.1% of sulfur). Landfilled Municipal Solid Waste (MSW) proved to be an effective sink, finally storing more than 55% of carbon, 53% of nitrogen, 33% of sulfur and 90% of heavy metals (HM) which were initially present in fresh waste samples. A general decrease in leachable fractions from fresh to stabilized waste was observed for each category. Tests showed that solid waste is not a good sink for chlorine, whose residual non-mobile fraction amounts to 12.3% only. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides.

    PubMed

    Lozowicka, B; Kaczynski, P; Paritova, Capital A Cyrillic Е; Kuzembekova, G B; Abzhalieva, A B; Sarsembayeva, N B; Alihan, K

    2014-02-01

    This paper presents the first study of pesticide residue results in grain from Kazakhstan. A total of 80 samples: barley, oat, rye, and wheat were collected and tested in the accredited laboratory. Among 180 pesticides, 10 active substances were detected. Banned pesticides, such as DDTs, γ-HCH, aldrin and diazinon were found in cereal grain. Chlorpyrifos methyl and pirimiphos methyl were the most frequently detected residues. No residues were found in 77.5% of the samples, 13.75% contained pesticide residues at or below MRLs, and 8.75% above MRLs. The greatest percentage of samples with residues (29%) was noted for wheat, and the lowest for rye (20%). Obtained data were used to estimate potential health risks associated with exposure to these pesticides. The highest estimated daily intakes (EDIs) were as follows: 789% of the ADI for aldrin (wheat) and 49.8% of the ADI for pirimiphos methyl (wheat and rye). The acute risk from aldrin and tebuconazole in wheat was 315.9% and 98.7% ARfD, respectively. The results show that despite the highest EDIs of pesticide residues in cereals, the current situation could not be considered a serious public health problem. Nevertheless, an investigation into continuous monitoring of pesticide residues in grain is recommended. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Denitrification potential of different land-use types in an agricultural watershed, lower Mississippi valley

    USGS Publications Warehouse

    Ullah, S.; Faulkner, S.P.

    2006-01-01

    Expansion of agricultural land and excessive nitrogen (N) fertilizer use in the Mississippi River watershed has resulted in a three-fold increase in the nitrate load of the river since the early 1950s. One way to reduce this nitrate load is to restore wetlands at suitable locations between croplands and receiving waters to remove run-off nitrate through denitrification. This research investigated denitrification potential (DP) of different land uses and its controlling factors in an agricultural watershed in the lower Mississippi valley (LMV) to help identify sites with high DP for reducing run-off nitrate. Soil samples collected from seven land-use types of an agricultural watershed during spring, summer, fall and winter were incubated in the laboratory for DP determination. Low-elevation clay soils in wetlands exhibited 6.3 and 2.5 times greater DP compared to high-elevation silt loam and low-elevation clay soils in croplands, respectively. DP of vegetated-ditches was 1.3 and 4.2 times that of un-vegetated ditches and cultivated soils, respectively. Soil carbon and nitrogen availability, bulk density, and soil moisture significantly affected DP. These factors were significantly influenced in turn by landscape position and land-use type of the watershed. It is evident from these results that low-elevation, fine-textured soils under natural wetlands are the best locations for mediating nitrate loss from agricultural watersheds in the LMV. Landscape position and land-use types can be used as indices for the assessment/modeling of denitrification potential and identification of sites for restoration for nitrate removal in agricultural watersheds. ?? 2006 Elsevier B.V. All rights reserved.

  8. Residues of azoxystrobin from grapes to raisins.

    PubMed

    Lentza-Rizos, Chaido; Avramides, Elizabeth J; Kokkinaki, Kalliopi

    2006-01-11

    Azoxystrobin, a fungicide of the strobilurin group, has an European Union maximum residue level (MRL) of 2 mg/kg for grapes. This work aimed to assess residues on fresh and washed grapes and on raisins following processing with (i) alkali treatment and sun drying and (ii) sun drying only. QUADRIS 25% SC was applied according to good agricultural practice for two consecutive years on a typical cv. Thomson seedless and a seed-producing clone. Samples were collected 0, 15, and 21 days postapplication and analyzed using gas chromatography/electron capture detection; recoveries were 86 +/- 12% for grapes and 99 +/- 15% for raisins. Residues on grapes were 0.49-1.84 mg/kg, and washing removed 75% of the residue. Residues in raisins produced from seedless grapes were 0.51-1.49 (treatment 1) and 1.42-2.08 mg/kg (treatment 2), with residue transfer factors sometimes >1, even following alkali treatment, which reduced residues considerably. To avoid trade problems, a higher MRL for raisins is necessary.

  9. Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils.

    PubMed

    Fang, Hua; Han, Lingxi; Zhang, Houpu; Long, Zhengnan; Cai, Lin; Yu, Yunlong

    2018-05-29

    The dissemination of antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and antibiotic-resistant HPB (ARHPB) from animal feedlot to nearby environment poses a potentially high risk to environmental ecology and public health. Here, a metagenomic analysis was employed to explore the dissemination of ARGs, HPB, and ARHPB from a pig feedlot to surrounding stream and agricultural soils. In total, not detectable (ND)-1,628.4 μg/kg of antibiotic residues, 18 types of ARGs, 48 HPB species, and 216 ARB isolates were detected in all samples. Antibiotic residues from pig feedlot mainly migrated into stream sediments and greenhouse soil. The dominant ARGs and HPB species from pig feedlot spread into stream sediments (tetracycline resistance genes, Clostridium difficile, and Mycobacterium tuberculosis), stream water (multidrug resistance (MDR) genes, Shigella flexneri, and Bordetella pertussis), and greenhouse soil (MDR genes, Bacillus anthracis, and Brucella melitensis). It is concerning that 54.4% of 216 ARB isolates from all samples were potential ARHPB species, and genome sequencing and functional annotation of 4 MDR HPB isolates showed 9 ARG types. Our findings revealed the potential migration and dissemination of antibiotic residues, ARGs, HPB, and ARHPB from pig feedlot to surrounding stream and agricultural soils via pig sewage discharge and manure fertilization. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Drug and chemical residues in domestic animals.

    PubMed

    Mussman, H C

    1975-02-01

    Given the large number of chemical substances that may find their way into the food supply, a system is needed to monitor their presence. The U. S. Department of Agriculture's Meat and Poultry Inspection Program routinely tests for chemical residues in animals coming to slaughter. Pesticides, heavy metals, growth promotants (hormones and hormonelike agents), and antibiotics are included. Samples are taken statistically so that inferences as to national incidence of residues can be drawn. When a problem is identified, a more selective sampling is designed to help follow up on the initial regulatory action. In testing for pesticides, only DDT and dieldrin are found with any frequency and their levels are decreasing; violative residues of any chlorinated hydrocarbon are generally a result of an industrial accident rather than agricultural usage. Analyses for heavy metals have revealed detectable levels of mercury, lead, and others, but none at levels that are considered a health hazard. Of the hormone or hormonelike substances, only diethylstilbestrol has been a residue problem and its future is uncertain. The most extensive monitoring for veterinary drugs is on the antimicrobials, including sulfonamides, streptomycin, and the tetracycline group of antibiotics that constitute the bulk of the violations; their simultaneous use prophylactically and therapeutically has contributed to the problem in certain cases. A strong, well-designed user education program on proper application of pesticides, chemicals, and veterinary drugs appears to be one method of reducing the incidence of unwanted residues.

  11. Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria.

    PubMed

    Elum, Z A; Modise, D M; Nhamo, G

    2017-02-01

    Energy is pivotal to the economic development of every nation. However, its production and utilization leads to undesirable carbon emissions that aggravate global warming which results in climate change. The agriculture sector is a significant user of energy. However, it has the potential to be a major contributor to Nigeria's energy supply mix in meeting its energy deficit. More so, in the light of current and impending adverse effects of climate change, there is a need to contain GHG's emissions. This paper focuses on bioenergy utilization as a climate change mitigation strategy and one that can, through effective waste management, enhance sustainable economic development in Nigeria. The paper employed a critical discourse analysis to examine the potential of the agricultural sector to provide biofuels from energy crops and other biomass sources. We conclude that Nigeria can reduce its GHG emissions and greatly contribute to global climate change mitigation while also alleviating its energy supply deficit if the agricultural and municipal wastes readily available in its towns and cities are converted to bioenergy. Such engagements will not only promote a clean and healthy environment but also create jobs for economic empowerment and a better standard of living for the people.

  12. 40 CFR 180.455 - Procymidone; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... following raw agricultural commodity: Commodity Parts per million Grape, wine 5.0 [59 FR 42514, Aug. 18...

  13. 40 CFR 180.455 - Procymidone; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... following raw agricultural commodity: Commodity Parts per million Grape, wine 5.0 [59 FR 42514, Aug. 18...

  14. Large-scale alcohol production from corn, grain sorghum, and crop residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turhollow, A.F. Jr.

    1982-01-01

    The potential impacts that large-scale alcohol production from corn, grain sorghum, and crop residues may have on US agriculture in the year 2000 are investigated. A one-land-group interregional linear-programming model is used. The objective function is to minimize the cost of production in the agricultural sector, given specified crop demands and constrained resources. The impacts that levels of alcohol production, ranging from zero to 12 billion gallons, have at two projected levels of crop demands, two grain-to-alcohol conversion and two milling methods, wet and dry, rates are considered. The impacts that large-scale fuel alcohol production has on US agriculture aremore » small. The major impacts that occur are the substitution of milling by-products, DDG, gluten feed, and gluten meal, for soybean meal in livestock feed rations. Production of 12 billion gallons of alcohol is estimated to be equivalent to an 18 percent increase in crop exports. Improving the grain-to-alcohol conversion rate from 2.6 to 3.0 gallons per bushels reduces the overall cost of agricultural production by $989 billion when 12 billion gallons of alcohol are produced.« less

  15. A FEASIBILITY STUDY EXAMINING THE POTENTIAL FOR HUMAN HEALTH EXPOSURE TO PET-BORNE DIAZINON RESIDUES FOLLOWING RESIDENTIAL TURF APPLICATIONS

    EPA Science Inventory

    The domestic dog may be a vehicle for translocation of pesticide residues following residential applications to turf. In addition, human occupants may be exposed to residues deposited inside homes by pets or by intimate contacts with them. This study examines the potential of a...

  16. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practicesmore » [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].« less

  17. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture

    PubMed Central

    Lim, Felix; James, Rachael H.; Pearce, Christopher R.; Scholes, Julie; Freckleton, Robert P.; Beerling, David J.

    2017-01-01

    Restricting future global temperature increase to 2°C or less requires the adoption of negative emissions technologies for carbon capture and storage. We review the potential for deployment of enhanced weathering (EW), via the application of crushed reactive silicate rocks (such as basalt), on over 680 million hectares of tropical agricultural and tree plantations to offset fossil fuel CO2 emissions. Warm tropical climates and productive crops will substantially enhance weathering rates, with potential co-benefits including decreased soil acidification and increased phosphorus supply promoting higher crop yields sparing forest for conservation, and reduced cultural eutrophication. Potential pitfalls include the impacts of mining operations on deforestation, producing the energy to crush and transport silicates and the erosion of silicates into rivers and coral reefs that increases inorganic turbidity, sedimentation and pH, with unknown impacts for biodiversity. We identify nine priority research areas for untapping the potential of EW in the tropics, including effectiveness of tropical agriculture at EW for major crops in relation to particle sizes and soil types, impacts on human health, and effects on farmland, adjacent forest and stream-water biodiversity. PMID:28381631

  18. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture.

    PubMed

    Edwards, David P; Lim, Felix; James, Rachael H; Pearce, Christopher R; Scholes, Julie; Freckleton, Robert P; Beerling, David J

    2017-04-01

    Restricting future global temperature increase to 2°C or less requires the adoption of negative emissions technologies for carbon capture and storage. We review the potential for deployment of enhanced weathering (EW), via the application of crushed reactive silicate rocks (such as basalt), on over 680 million hectares of tropical agricultural and tree plantations to offset fossil fuel CO 2 emissions. Warm tropical climates and productive crops will substantially enhance weathering rates, with potential co-benefits including decreased soil acidification and increased phosphorus supply promoting higher crop yields sparing forest for conservation, and reduced cultural eutrophication. Potential pitfalls include the impacts of mining operations on deforestation, producing the energy to crush and transport silicates and the erosion of silicates into rivers and coral reefs that increases inorganic turbidity, sedimentation and pH, with unknown impacts for biodiversity. We identify nine priority research areas for untapping the potential of EW in the tropics, including effectiveness of tropical agriculture at EW for major crops in relation to particle sizes and soil types, impacts on human health, and effects on farmland, adjacent forest and stream-water biodiversity. © 2017 The Author(s).

  19. Productivity ranges of sustainable biomass potentials from non-agricultural land

    NASA Astrophysics Data System (ADS)

    Schueler, Vivian; Fuss, Sabine; Steckel, Jan Christoph; Weddige, Ulf; Beringer, Tim

    2016-07-01

    Land is under pressure from a number of demands, including the need for increased supplies of bioenergy. While bioenergy is an important ingredient in many pathways compatible with reaching the 2 °C target, areas where cultivation of the biomass feedstock would be most productive appear to co-host other important ecosystems services. We categorize global geo-data on land availability into productivity deciles, and provide a geographically explicit assessment of potentials that are concurrent with EU sustainability criteria. The deciles unambiguously classify the global productivity range of potential land currently not in agricultural production for biomass cultivation. Results show that 53 exajoule (EJ) sustainable biomass potential are available from 167 million hectares (Mha) with a productivity above 10 tons of dry matter per hectare and year (tD Mha-1 a-1), while additional 33 EJ are available on 264 Mha with yields between 4 and 10 tD M ha-1 a-1: some regions lose less of their highly productive potentials to sustainability concerns than others and regional contributions to bioenergy potentials shift when less productive land is considered. Challenges to limit developments to the exploitation of sustainable potentials arise in Latin America, Africa and Developing Asia, while new opportunities emerge for Transition Economies and OECD countries to cultivate marginal land.

  20. 9 CFR 311.39 - Biological residues.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Biological residues. 311.39 Section 311.39 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... INSPECTION AND CERTIFICATION DISPOSAL OF DISEASED OR OTHERWISE ADULTERATED CARCASSES AND PARTS § 311.39...

  1. Simulating Changes in Land-Atmosphere Interactions From Expanding Agriculture and Irrigation in India and the Potential Impacts on the Indian Monsoon.

    NASA Astrophysics Data System (ADS)

    Douglas, E. M.; Beltran-Przekurat, A.; Niyogi, D.; Pielke, R. A.

    2006-05-01

    With over 57 million hectares under irrigation in 2002, India has the largest irrigated agricultural area on the planet. Between 80 and 90% of India's water use goes to support irrigated agriculture. The Indian monsoon belt is a home to a large part of the world's population and agriculture is the major land-use activity in the region. Previous results showed that annual vapor fluxes in India have increased by 17% (340 km3) over that which would be expected from a natural (non-agricultural) land cover. Two-thirds of this increase was attributed to irrigated agriculture. The largest increases in vapor and latent heat fluxes occurred where both cropland and irrigated lands were the predominant contemporary land cover classes (particularly northwest and north-central India). Our current study builds upon this work by evaluating possible changes in near-surface energy fluxes and regional atmospheric circulation patterns resulting from the expansion of irrigated agriculture on the Indian sub-continent using a regional atmospheric model RAMS. We investigate three separate land- use scenarios: Scenario 1, with a potential (pre-agricultural) land cover, Scenario 2: the potential land-cover overlain by cropland and Scenario 3: potential land-cover overlain by cropland and irrigated area. We will assess the impact of agricultural land-cover conversion and intensive irrigation on water and energy fluxes between the land and the atmosphere and how these flux changes may affect regional weather patterns. The simulation period covers July 16-20, 2002 which allow us to assess potential impacts of land-cover changes on the onset of the Indian Monsoon.

  2. Energy potential from rice husk through direct combustion and fast pyrolysis: A review.

    PubMed

    Quispe, Isabel; Navia, Rodrigo; Kahhat, Ramzy

    2017-01-01

    Rapid population growth and consumption of goods and services imply that demand for energy and resources increases continuously. Energy consumption linked to non-renewable resources contributes to greenhouse gas emissions and enhances resource depletion. In this context, the use of agricultural solid residues such as rice husk, coffee husk, wheat straw, sugar cane bagasse, among others, has been widely studied as an alternative energy source in order to decrease the use of fossil fuels. However, rice husk is among those agricultural residues that are least used to obtain energy in developing countries. Approximately 134 million tonnes of rice husk are produced annually in the world, of which over 90% are burned in open air or discharged into rivers and oceans in order to dispose of them. This review examines the energetic potential of agricultural residues, focused on rice husk. The review describes direct combustion and fast pyrolysis technologies to transform rice husk into energy considering its physical and chemical properties. In addition, a review of existing studies analyzing these technologies from an environmental life cycle thinking perspective, contributing to their sustainable use, is performed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Modeling of pesticide emissions from agricultural ecosystems

    NASA Astrophysics Data System (ADS)

    Li, Rong

    2012-04-01

    Pesticides are applied to crops and soils to improve agricultural yields, but the use of pesticides has become highly regulated because of concerns about their adverse effects on human health and environment. Estimating pesticide emission rates from soils and crops is a key component for risk assessment for pesticide registration, identification of pesticide sources to the contamination of sensitive ecosystems, and appreciation of transport and fate of pesticides in the environment. Pesticide emission rates involve processes occurring in the soil, in the atmosphere, and on vegetation surfaces and are highly dependent on soil texture, agricultural practices, and meteorology, which vary significantly with location and/or time. To take all these factors into account for simulating pesticide emissions from large agricultural ecosystems, this study coupled a comprehensive meteorological model with a dynamic pesticide emission model. The combined model calculates hourly emission rates from both emission sources: current applications and soil residues resulting from historical use. The coupled modeling system is used to compute a gridded (36 × 36 km) hourly toxaphene emission inventory for North America for the year 2000 using a published U.S. toxaphene residue inventory and a Mexican toxaphene residue inventory developed using its historical application rates and a cropland inventory. To my knowledge, this is the first such hourly toxaphene emission inventory for North America. Results show that modeled emission rates have strong diurnal and seasonal variations at a given location and over the entire domain. The simulated total toxaphene emission from contaminated agricultural soils in North America in 2000 was about 255 t, which compares reasonably well to a published annual estimate. Most emissions occur in spring and summer, with domain-wide emission rates in April, May and, June of 36, 51, and 35 t/month, respectively. The spatial distribution of emissions depends

  4. Work characteristics and pesticide exposures among migrant agricultural families: a community-based research approach.

    PubMed

    McCauley, L A; Lasarev, M R; Higgins, G; Rothlein, J; Muniz, J; Ebbert, C; Phillips, J

    2001-05-01

    There are few data on pesticide exposures of migrant Latino farmworker children, and access to this vulnerable population is often difficult. In this paper we describe a community-based approach to implement culturally appropriate research methods with a migrant Latino farmworker community in Oregon. Assessments were conducted in 96 farmworker homes and 24 grower homes in two agricultural communities in Oregon. Measurements included surveys of pesticide use and work protection practices and analyses of home-dust samples for pesticide residues of major organophosphates used in area crops. Results indicate that migrant farmworker housing is diverse, and the amounts and types of pesticide residues found in homes differ. Azinphos-methyl (AZM) was the pesticide residue found most often in both farmworker and grower homes. The median level of AZM in farmworker homes was 1.45 ppm compared to 1.64 ppm in the entry area of grower homes. The median level of AZM in the play areas of grower homes was 0.71 ppm. The levels of AZM in migrant farmworker homes were most associated with the distance from fields and the number of agricultural workers in the home. Although the levels of AZM in growers and farmworker homes were comparable in certain areas, potential for disproportionate exposures occur in areas of the homes where children are most likely to play. The relationship between home resident density, levels of pesticide residues, and play behaviors of children merit further attention.

  5. Work characteristics and pesticide exposures among migrant agricultural families: a community-based research approach.

    PubMed Central

    McCauley, L A; Lasarev, M R; Higgins, G; Rothlein, J; Muniz, J; Ebbert, C; Phillips, J

    2001-01-01

    There are few data on pesticide exposures of migrant Latino farmworker children, and access to this vulnerable population is often difficult. In this paper we describe a community-based approach to implement culturally appropriate research methods with a migrant Latino farmworker community in Oregon. Assessments were conducted in 96 farmworker homes and 24 grower homes in two agricultural communities in Oregon. Measurements included surveys of pesticide use and work protection practices and analyses of home-dust samples for pesticide residues of major organophosphates used in area crops. Results indicate that migrant farmworker housing is diverse, and the amounts and types of pesticide residues found in homes differ. Azinphos-methyl (AZM) was the pesticide residue found most often in both farmworker and grower homes. The median level of AZM in farmworker homes was 1.45 ppm compared to 1.64 ppm in the entry area of grower homes. The median level of AZM in the play areas of grower homes was 0.71 ppm. The levels of AZM in migrant farmworker homes were most associated with the distance from fields and the number of agricultural workers in the home. Although the levels of AZM in growers and farmworker homes were comparable in certain areas, potential for disproportionate exposures occur in areas of the homes where children are most likely to play. The relationship between home resident density, levels of pesticide residues, and play behaviors of children merit further attention. PMID:11401767

  6. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from Great Basin hot springs with agricultural residues and energy crops.

    PubMed

    Zhao, Chao; Deng, Yunjin; Wang, Xingna; Li, Qiuzhe; Huang, Yifan; Liu, Bin

    2014-09-01

    In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA librarybased analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

  7. Characterisation of agroindustrial solid residues as biofuels and potential application in thermochemical processes.

    PubMed

    Virmond, Elaine; De Sena, Rennio F; Albrecht, Waldir; Althoff, Christine A; Moreira, Regina F P M; José, Humberto J

    2012-10-01

    In the present work, selected agroindustrial solid residues from Brazil - biosolids from meat processing wastewater treatment and mixture of sawdust with these biosolids; residues from apple and orange juice industries; sugarcane bagasse; açaí kernels (Euterpe oleracea) and rice husk - were characterised as solid fuels and an evaluation of their properties, including proximate and ultimate composition, energy content, thermal behaviour, composition and fusibility of the ashes was performed. The lower heating value of the biomasses ranged from 14.31 MJkg(-1) to 29.14 MJkg(-1), on a dry and ash free basis (daf), all presenting high volatile matter content, varying between 70.57 wt.% and 85.36 wt.% (daf) what improves the thermochemical conversion of the solids. The fouling and slagging tendency of the ashes was predicted based on the fuel ash composition and on the ash fusibility correlations proposed in the literature, which is important to the project and operation of biomass conversion systems. The potential for application of the Brazilian agroindustrial solid residues studied as alternative energy sources in thermochemical processes has been identified, especially concerning direct combustion for steam generation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. 40 CFR 180.311 - Cacodylic acid; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... raw agricultural commodity as follows: Commodity Parts per million Cotton, undelinted seed 2.8 (b...

  9. The use of biogas plant fermentation residue for the stabilisation of toxic metals in agricultural soils

    NASA Astrophysics Data System (ADS)

    Geršl, Milan; Šotnar, Martin; Mareček, Jan; Vítěz, Tomáš; Koutný, Tomáš; Kleinová, Jana

    2015-04-01

    Our department has been paying attention to different methods of soil decontamination, including the in situ stabilisation. Possible reagents to control the toxic metals mobility in soils include a fermentation residue (FR) from a biogas plant. Referred to as digestate, it is a product of anaerobic decomposition taking place in such facilities. The fermentation residue is applied to soils as a fertiliser. A new way of its use is the in situ stabilisation of toxic metals in soils. Testing the stabilisation of toxic metals made use of real soil samples sourced from five agriculturally used areas of the Czech Republic with 3 soil samples taken from sites contaminated with Cu, Pb and Zn and 2 samples collected at sites of natural occurrence of Cu, Pb and Zn ores. All the samples were analysed using the sequential extraction procedure (BCR) (determine the type of Cu, Pb and Zn bonds). Stabilisation of toxic metals was tested in five soil samples by adding reagents as follows: dolomite, slaked lime, goethite, compost and fermentation residue. A single reagent was added at three different concentrations. In the wet state with the added reagents, the samples were left for seven days, shaken twice per day. After seven days, metal extraction was carried out: samples of 10 g soil were shaken for 2 h in a solution of 0.1M NH4NO3 at a 1:2.5 (g.ml-1), centrifuged for 15 min at 5,000 rpm and then filtered through PTFE 0.45 μm mesh filters. The extracts were analysed by ICP-OES. Copper The best reduction of Cu concentration in the extract was obtained at each of the tested sites by adding dolomite (10 g soil + 0.3 g dolomite). The concentration of Cu in the leachate decreased to 2.1-18.4% compare with the leachate without addition. Similar results were also shown for the addition of fermentation residue (10 g soil + 1 g FR). The Cu concentration in the leachate decreased to 16.7-26.8% compared with the leachate without addition. Lead The best results were achieved by adding

  10. Impacts of corn residue grazing and baling on wind erosion potential in a semiarid environment

    USDA-ARS?s Scientific Manuscript database

    Implications of corn (Zea mays L.) residue grazing and baling on wind erosion in integrated crop-livestock systems are not well understood. We studied: 1) soil properties affecting wind erosion potential including dry aggregate-size distribution, geometric mean diameter (GMDA), geometric standard de...

  11. The potential and sustainability of agricultural land use in a changing ecosystem in southern Greenland

    NASA Astrophysics Data System (ADS)

    Hunziker, Matthias; Caviezel, Chatrina; Kuhn, Nikolaus J.

    2015-04-01

    Southern Greenland currently experiences an increase in summer temperatures and a prolonged growing season (Masson-Delmotte et al. 2012), resulting in an increased potential regarding agricultural land use. Subsequently, the agricultural sector is expected to grow. Thereby, a higher hay production and grazing capacity is pursued by applying more efficient farming practices (Greenland Agriculture Advisory Board 2009). However, agricultural potential at borderline ecotones is not only influenced by factors like temperature and growing season but also by other ecologic parameters. In addition, the intensification of land use in the fragile boreal - tundra border ecotone has various environmental impacts (Perren et al. 2012; Normand et al. 2013). Already the Norse settlers practiced animal husbandry in southern Greenland between 986-1450 AD. Several authors mention the unadapted land use as main reason for the demise of the Norse in Greenland, as grazing pressure exceeded the resilience of the landscape and pasture economy failed (Fredskild 1988; Perren et al. 2012). During the field work in summer 2014, we compared the pedologic properties of already used hay fields, grazed land, birch woodland and barren, unused land around Igaliku (South Greenland), in order to estimate the potential and the sustainability of the land use in southern Greenland. Beside physical soil properties, nutrient condition of the different land use types, the shrub woodland and barren areas was analyzed. The results of the study show that the most suitable areas for intensive agricultural activity are mostly occupied. Further on, the fields, which were used by the Norse, seem to be the most productive sites nowadays. Less productive hay fields are characterized by a higher coarse fraction, leading to a reduced ability to store water and to an unfavorable nutrient status. An intensification of the agricultural land use by applying fertilizer would lead to an increased environmental impact

  12. Utilizing by-products in agriculture and reducing metal uptake by crops

    USDA-ARS?s Scientific Manuscript database

    Several million tons of industrial, municipal, and agricultural byproducts are produced annually in the United States (U.S.). Some of the byproducts that are being used in agriculture are coal combustion materials, drinking water treatment residual (DWTR), biosolids, animal manure, steel slag, and ...

  13. Maximizing Amazonia's Ecosystem Services: Juggling the potential for carbon storage, agricultural yield and biodiversity in the Amazon

    NASA Astrophysics Data System (ADS)

    O'Connell, C. S.; Foley, J. A.; Gerber, J. S.; Polasky, S.

    2011-12-01

    The Amazon is not only an exceptionally biodiverse and carbon-rich tract of tropical forest, it is also a case study in land use change. Over the next forty years it will continue to experience pressure from an urbanizing and increasingly affluent populace: under a business-as-usual scenario, global cropland, pasture and biofuels systems will carry on expanding, while the Amazon's carbon storage potential will likely become another viable revenue source under REDD+. Balancing those competing land use pressures ought also take into account Amazonia's high - but heterogeneous - biodiversity. Knowing where Amazonia has opportunities to make efficient or optimal trade offs between carbon storage, agricultural production and biodiversity can allow policymakers to direct or influence LUC drivers. This analysis uses a spatially-explicit model that takes climate and management into account to quantify the potential agricultural yield of both the Amazon's most important agricultural commodities - sugar, soy and maize - as well as several that are going to come into increasing prominence, including palm oil. In addition, it maps the potential for carbon to be stored in forest biomass and relative species richness across Amazonia. We then compare carbon storage, agricultural yield and species richness and identify areas where efficient trade offs occur between food, carbon, and biodiversity - three critical ecosystem goods and services provided by the world's largest tropical forest.

  14. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - A review.

    PubMed

    Christou, Anastasis; Agüera, Ana; Bayona, Josep Maria; Cytryn, Eddie; Fotopoulos, Vasileios; Lambropoulou, Dimitra; Manaia, Célia M; Michael, Costas; Revitt, Mike; Schröder, Peter; Fatta-Kassinos, Despo

    2017-10-15

    The use of reclaimed wastewater (RWW) for the irrigation of crops may result in the continuous exposure of the agricultural environment to antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In recent years, certain evidence indicate that antibiotics and resistance genes may become disseminated in agricultural soils as a result of the amendment with manure and biosolids and irrigation with RWW. Antibiotic residues and other contaminants may undergo sorption/desorption and transformation processes (both biotic and abiotic), and have the potential to affect the soil microbiota. Antibiotics found in the soil pore water (bioavailable fraction) as a result of RWW irrigation may be taken up by crop plants, bioaccumulate within plant tissues and subsequently enter the food webs; potentially resulting in detrimental public health implications. It can be also hypothesized that ARGs can spread among soil and plant-associated bacteria, a fact that may have serious human health implications. The majority of studies dealing with these environmental and social challenges related with the use of RWW for irrigation were conducted under laboratory or using, somehow, controlled conditions. This critical review discusses the state of the art on the fate of antibiotics, ARB and ARGs in agricultural environment where RWW is applied for irrigation. The implications associated with the uptake of antibiotics by plants (uptake mechanisms) and the potential risks to public health are highlighted. Additionally, knowledge gaps as well as challenges and opportunities are addressed, with the aim of boosting future research towards an enhanced understanding of the fate and implications of these contaminants of emerging concern in the agricultural environment. These are key issues in a world where the increasing water scarcity and the continuous appeal of circular economy demand answers for a long-term safe use of RWW for irrigation. Copyright © 2017 Elsevier

  15. A spatially explicit representation of conservation agriculture for application in global change studies.

    PubMed

    Prestele, Reinhard; Hirsch, Annette L; Davin, Edouard L; Seneviratne, Sonia I; Verburg, Peter H

    2018-05-10

    Conservation agriculture (CA) is widely promoted as a sustainable agricultural management strategy with the potential to alleviate some of the adverse effects of modern, industrial agriculture such as large-scale soil erosion, nutrient leaching and overexploitation of water resources. Moreover, agricultural land managed under CA is proposed to contribute to climate change mitigation and adaptation through reduced emission of greenhouse gases, increased solar radiation reflection, and the sustainable use of soil and water resources. Due to the lack of official reporting schemes, the amount of agricultural land managed under CA systems is uncertain and spatially explicit information about the distribution of CA required for various modeling studies is missing. Here, we present an approach to downscale present-day national-level estimates of CA to a 5 arcminute regular grid, based on multicriteria analysis. We provide a best estimate of CA distribution and an uncertainty range in the form of a low and high estimate of CA distribution, reflecting the inconsistency in CA definitions. We also design two scenarios of the potential future development of CA combining present-day data and an assessment of the potential for implementation using biophysical and socioeconomic factors. By our estimates, 122-215 Mha or 9%-15% of global arable land is currently managed under CA systems. The lower end of the range represents CA as an integrated system of permanent no-tillage, crop residue management and crop rotations, while the high estimate includes a wider range of areas primarily devoted to temporary no-tillage or reduced tillage operations. Our scenario analysis suggests a future potential of CA in the range of 533-1130 Mha (38%-81% of global arable land). Our estimates can be used in various ecosystem modeling applications and are expected to help identifying more realistic climate mitigation and adaptation potentials of agricultural practices. © 2018 The Authors. Global

  16. Potential Applications of Polyamines in Agriculture and Plant Biotechnology.

    PubMed

    Tiburcio, Antonio F; Alcázar, Rubén

    2018-01-01

    The polyamines putrescine, spermidine and spermine have been implicated in a myriad of biological functions in many organisms. Research done during the last decades has accumulated a large body of evidence demonstrating that polyamines are key modulators of plant growth and development. Different experimental approaches have been employed including the measurement of endogenous polyamine levels and the activities of polyamine metabolic enzymes, the study of the effects resulting from exogenous polyamine applications and chemical or genetic manipulation of endogenous polyamine titers. This chapter reviews the role of PAs in seed germination, root development, plant architecture, in vitro plant regeneration, flowering and plant senescence. Evidence presented here indicates that polyamines should be regarded as plant growth regulators with potential applications in agriculture and plant biotechnology.

  17. Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union.

    PubMed

    Silva, Vera; Montanarella, Luca; Jones, Arwyn; Fernández-Ugalde, Oihane; Mol, Hans G J; Ritsema, Coen J; Geissen, Violette

    2018-04-15

    Approval for glyphosate-based herbicides in the European Union (EU) is under intense debate due to concern about their effects on the environment and human health. The occurrence of glyphosate residues in European water bodies is rather well documented whereas only few, fragmented and outdated information is available for European soils. We provide the first large-scale assessment of distribution (occurrence and concentrations) of glyphosate and its main metabolite aminomethylphosphonic acid (AMPA) in EU agricultural topsoils, and estimate their potential spreading by wind and water erosion. Glyphosate and/or AMPA were present in 45% of the topsoils collected, originating from eleven countries and six crop systems, with a maximum concentration of 2mgkg -1 . Several glyphosate and AMPA hotspots were identified across the EU. Soil loss rates (obtained from recently derived European maps) were used to estimate the potential export of glyphosate and AMPA by wind and water erosion. The estimated exports, result of a conceptually simple model, clearly indicate that particulate transport can contribute to human and environmental exposure to herbicide residues. Residue threshold values in soils are urgently needed to define potential risks for soil health and off site effects related to export by wind and water erosion. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Determination of low-level agricultural residues in soft drinks and sports drinks by liquid chromatography/tandem mass spectrometry: single-laboratory validation.

    PubMed

    Paske, Nathan; Berry, Bryan; Schmitz, John; Sullivan, Darryl

    2007-01-01

    In this study, sponsored by PepsiCo Inc., a method was validated for measurement of 11 pesticide residues in soft drinks and sports drinks. The pesticide residues determined in this validation were alachlor, atrazine, butachlor, isoproturon, malaoxon, monocrotophos, paraoxon-methyl, phorate, phorate sulfone, phorate sulfoxide, and 2,4-dichlorophenoxyacetic acid (2,4-D) when spiked at 0.100 microg/L (1.00 microg/L for phorate). Samples were filtered (if particulate matter was present), degassed (if carbonated), and analyzed using liquid chromatography with tandem mass spectrometry. Quantitation was performed with matrix-matched external standard calibration solutions. The standard curve range for this assay was 0.0750 to 10.0 microg/L. The calibration curves for all agricultural residues had coefficient of determination (r2) values greater than or equal to 0.9900 with the exception of 2 values that were 0.9285 and 0.8514. Fortification spikes at 0.100 microg/L (1.00 microg/L for phorate) over the course of 2 days (n=8 each day) for 3 matrixes (7UP, Gatorade, and Diet Pepsi) yielded average percent recoveries (and percent relative standard deviations) as follows (n=48): 94.4 (15.2) for alachlor, 98.2 (13.5) for atrazine, 83.1 (41.6) for butachlor, 89.6 (24.5) for isoproturon, 87.9 (24.4) for malaoxon, 96.1 (9.26) for monocrotophos, 101 (25.7) for paraoxon-methyl, 86.6 (20.4) for phorate, 101 (16.5) for phorate sulfone, 93.6 (25.5) for phorate sulfoxide, and 98.2 (6.02) for 2,4-D.

  19. Pesticide Residues and Bees – A Risk Assessment

    PubMed Central

    Sanchez-Bayo, Francisco; Goka, Koichi

    2014-01-01

    Bees are essential pollinators of many plants in natural ecosystems and agricultural crops alike. In recent years the decline and disappearance of bee species in the wild and the collapse of honey bee colonies have concerned ecologists and apiculturalists, who search for causes and solutions to this problem. Whilst biological factors such as viral diseases, mite and parasite infections are undoubtedly involved, it is also evident that pesticides applied to agricultural crops have a negative impact on bees. Most risk assessments have focused on direct acute exposure of bees to agrochemicals from spray drift. However, the large number of pesticide residues found in pollen and honey demand a thorough evaluation of all residual compounds so as to identify those of highest risk to bees. Using data from recent residue surveys and toxicity of pesticides to honey and bumble bees, a comprehensive evaluation of risks under current exposure conditions is presented here. Standard risk assessments are complemented with new approaches that take into account time-cumulative effects over time, especially with dietary exposures. Whilst overall risks appear to be low, our analysis indicates that residues of pyrethroid and neonicotinoid insecticides pose the highest risk by contact exposure of bees with contaminated pollen. However, the synergism of ergosterol inhibiting fungicides with those two classes of insecticides results in much higher risks in spite of the low prevalence of their combined residues. Risks by ingestion of contaminated pollen and honey are of some concern for systemic insecticides, particularly imidacloprid and thiamethoxam, chlorpyrifos and the mixtures of cyhalothrin and ergosterol inhibiting fungicides. More attention should be paid to specific residue mixtures that may result in synergistic toxicity to bees. PMID:24718419

  20. Examining the Potential for Agricultural Benefits from Pollinator Habitat at Solar Facilities in the United States.

    PubMed

    Walston, Leroy J; Mishra, Shruti K; Hartmann, Heidi M; Hlohowskyj, Ihor; McCall, James; Macknick, Jordan

    2018-06-13

    Of the many roles insects serve for ecosystem function, pollination is possibly the most important service directly linked to human well-being. However, land use changes have contributed to the decline of pollinators and their habitats. In agricultural landscapes that also support renewable energy developments such as utility-scale solar energy [USSE] facilities, opportunities may exist to conserve insect pollinators and locally restore their ecosystem services through the implementation of vegetation management approaches that aim to provide and maintain pollinator habitat at USSE facilities. As a first step toward understanding the potential agricultural benefits of solar-pollinator habitat, we identified areas of overlap between USSE facilities and surrounding pollinator-dependent crop types in the United States (U.S.). Using spatial data on solar energy developments and crop types across the U.S., and assuming a pollinator foraging distance of 1.5 km, we identified over 3,500 km 2 of agricultural land near existing and planned USSE facilities that may benefit from increased pollination services through the creation of pollinator habitat at the USSE facilities. The following five pollinator-dependent crop types accounted for over 90% of the agriculture near USSE facilities, and these could benefit most from the creation of pollinator habitat at existing and planned USSE facilities: soybeans, alfalfa, cotton, almonds, and citrus. We discuss how our results may be used to understand potential agro-economic implications of solar-pollinator habitat. Our results show that ecosystem service restoration through the creation of pollinator habitat could improve the sustainability of large-scale renewable energy developments in agricultural landscapes.

  1. Comparing impacts of climate change and mitigation on global agriculture by 2050

    NASA Astrophysics Data System (ADS)

    van Meijl, Hans; Havlik, Petr; Lotze-Campen, Hermann; Stehfest, Elke; Witzke, Peter; Pérez Domínguez, Ignacio; Bodirsky, Benjamin Leon; van Dijk, Michiel; Doelman, Jonathan; Fellmann, Thomas; Humpenöder, Florian; Koopman, Jason F. L.; Müller, Christoph; Popp, Alexander; Tabeau, Andrzej; Valin, Hugo; van Zeist, Willem-Jan

    2018-06-01

    Systematic model inter-comparison helps to narrow discrepancies in the analysis of the future impact of climate change on agricultural production. This paper presents a set of alternative scenarios by five global climate and agro-economic models. Covering integrated assessment (IMAGE), partial equilibrium (CAPRI, GLOBIOM, MAgPIE) and computable general equilibrium (MAGNET) models ensures a good coverage of biophysical and economic agricultural features. These models are harmonized with respect to basic model drivers, to assess the range of potential impacts of climate change on the agricultural sector by 2050. Moreover, they quantify the economic consequences of stringent global emission mitigation efforts, such as non-CO2 emission taxes and land-based mitigation options, to stabilize global warming at 2 °C by the end of the century under different Shared Socioeconomic Pathways. A key contribution of the paper is a vis-à-vis comparison of climate change impacts relative to the impact of mitigation measures. In addition, our scenario design allows assessing the impact of the residual climate change on the mitigation challenge. From a global perspective, the impact of climate change on agricultural production by mid-century is negative but small. A larger negative effect on agricultural production, most pronounced for ruminant meat production, is observed when emission mitigation measures compliant with a 2 °C target are put in place. Our results indicate that a mitigation strategy that embeds residual climate change effects (RCP2.6) has a negative impact on global agricultural production relative to a no-mitigation strategy with stronger climate impacts (RCP6.0). However, this is partially due to the limited impact of the climate change scenarios by 2050. The magnitude of price changes is different amongst models due to methodological differences. Further research to achieve a better harmonization is needed, especially regarding endogenous food and feed

  2. 7 CFR 29.425 - Submission and disposition of pesticide residues and end user(s) certification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Submission and disposition of pesticide residues and... Miscellaneous § 29.425 Submission and disposition of pesticide residues and end user(s) certification. (a) Completion of certification: The importer shall complete a pesticide residue and end user(s) certification on...

  3. 7 CFR 29.425 - Submission and disposition of pesticide residues and end user(s) certification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Submission and disposition of pesticide residues and... Miscellaneous § 29.425 Submission and disposition of pesticide residues and end user(s) certification. (a) Completion of certification: The importer shall complete a pesticide residue and end user(s) certification on...

  4. 7 CFR 29.425 - Submission and disposition of pesticide residues and end user(s) certification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Submission and disposition of pesticide residues and... Miscellaneous § 29.425 Submission and disposition of pesticide residues and end user(s) certification. (a) Completion of certification: The importer shall complete a pesticide residue and end user(s) certification on...

  5. 7 CFR 29.425 - Submission and disposition of pesticide residues and end user(s) certification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Submission and disposition of pesticide residues and... Miscellaneous § 29.425 Submission and disposition of pesticide residues and end user(s) certification. (a) Completion of certification: The importer shall complete a pesticide residue and end user(s) certification on...

  6. The 47th annual Florida pesticide residue workshop

    USDA-ARS?s Scientific Manuscript database

    This is an introductory article to a special section of the Journal of Agricultural and Food Chemistry consisting of publications from the 47th Annual Florida Pesticide Residue Workshop held in St. Pete Beach, FL in July of 2010....

  7. Agricultural chemicals in groundwater of the midwestern United States: Relations to land use

    USGS Publications Warehouse

    Kolpin, D.W.

    1997-01-01

    To determine the relations between land use and concentrations of selected agricultural chemicals (nitrate, atrazine residue [atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) + deethylatrazinc (2-amino-4-chloro-6-isopropylamino-s-triazine) + deisopropylatrazine (2-amino-4-chloro-6-ethylamino-s-triazine)], and alachlor residue [alachlor, [2-chloro-2′,6′-diethyl-N-(methoxymethyl) acetanilide] + alachlor ethanesulfonic acid (alachlor-ESA; 2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid)] in groundwater, detailed land use information based on accurate measurements from aerial photographs for the 1991 growing season was obtained within a 2-km radius surrounding 100 wells completed in near-surface unconsolidated aquifers in the midwestern USA. The most significant land use factors to the agricultural chemicals examined were: nitrate (amount of irrigated crop production, positive relation), atrazine residue (amount of irrigated crop production, positive relation), and alachlor residue (amount of highly erodible land, inverse relation). The investigation of smaller buffer sizes (size of circular area around sampled wells) proved insightful for this study. Additional land use factors having significant relations to all three agricultural chemicals were identified using these smaller buffer radii. The most significant correlations (correlation maxima) generally occurred at ≤500-m for nitrate and ≥1000-m for atrazine residue and alachlor residue. An attempt to improve the statistical relations to land use by taking hydrologic considerations into account (removing land outside the estimated most probable recharge area from the statistical analysis) was not as successful as anticipated. Only 45% of the nitrate, 32% of the atrazine residue, and 20% of the alachlor residue correlations were improved by a consideration of the estimated most probable recharge area.

  8. Red/Green Currant and Sea Buckthorn Berry Press Residues as Potential Sources of Antioxidants for Food Use.

    PubMed

    Puganen, Anna; Kallio, Heikki P; Schaich, Karen M; Suomela, Jukka-Pekka; Yang, Baoru

    2018-04-04

    The potential for using extracts of press residues from black, green, red, and white currants and from sea buckthorn berries as sources of antioxidants for foods use was investigated. Press residues were extracted with ethanol in four consecutive extractions, and total Folin-Ciocalteu (F-C) reactive material and authentic phenolic compounds were determined. Radical quenching capability and mechanisms were determined from total peroxyl radical-trapping antioxidant capacity (TRAP) and oxygen radical absorbance capacity (ORAC) assays and from diphenylpicrylhydrazyl (DPPH) kinetics, respectively; specific activities were normalized to F-C reactive concentrations. Levels of total F-C reactive materials in press residue extracts were higher than in many fruits and showed significant radical quenching activity. Black currant had the highest authentic phenol content and ORAC, TRAP, and DPPH reactivity. Sea buckthorn grown in northern Finland showed extremely high total specific DPPH reactivity. These results suggest that berry press residues offer attractive value-added products that can provide antioxidants for use in stabilizing and fortifying foods.

  9. [Effects of residue management and fertilizer application mode on soil organic carbon pools in an oasis cotton region.

    PubMed

    Zhang, Peng Peng; Liu, Yan Jie; Pu, Xiao Zhen; Zhang, Guo Juan; Wang, Jin; Zhang, Wang Feng

    2016-11-18

    To reveal the regulation mechanisms of agricultural management practices on soil organic carbon (SOC) pools and provide scientific basis for improving soil productivity and formulating agricultural fixed carbon and reducing discharge measures, we monitored the changes of SOC pools and organic carbon fractions in an oasis cotton field under different residue management and fertilizer application modes. A split-plot experimental design was used with differing residue management including residue incorporation (S) and residue removing (NS) in the main plots and differing fertilizer application modes including no fertilizer (CK), NPK fertilizer (NPK), organic manure (OM) and NPK fertilizer plus organic manure (NPK+OM) in the subplot. The results showed that fertilization and residue incorporation significantly increased SOC pool, soil organic carbon (C T ), labile carbon (C L ), microbial biomass carbon (C MB ), water-soluble organic carbon (C WS ), hot-water-soluble organic carbon (C HWS ), accumulative amount of soil organic carbon mineralization (C TM ) and carbon management index (CMI). The SOC pool was increased by 20.6% by residue incorporation compared to residue removing. SOC pools were increased by 7.8%, 29.5% and 37.7% in NPK, OM and NPK+OM treatments compared to CK, respectively. The contents of C T , C L , C MB , C WS and C HWS under different fertilization treatments were shown as NPK+OM>OM>NPK>CK. C TM was increased by 5.9% by residue incorporation compared to residue removing and C TM was increased by 32.7%, 59.5% and 97.3% in NPK, OM and NPK+OM treatments compared to CK, respectively. There was a significant correlation between CMI and C T , C MB , C L , C WS , C HWS , C TM , C pool and C sequestration. Therefore, we concluded that CMI is an important index for evaluating the effect of agricultural management practices on soil quality. In order to construct high-standard oasis farmland in arid region and develop cotton production, we should consider

  10. Lead in Urban Soils: A Real or Perceived Concern for Urban Agriculture?

    PubMed

    Brown, Sally L; Chaney, Rufus L; Hettiarachchi, Ganga M

    2016-01-01

    Urban agriculture is growing in cities across the United States. It has the potential to provide multiple benefits, including increased food security. Concerns about soil contamination in urban areas can be an impediment to urban agriculture. Lead is the most common contaminant in urban areas. In this paper, direct (soil ingestion via outdoor and indoor exposure) and indirect (consumption of food grown in Pb-contaminated soils) exposure pathways are reviewed. It is highly unlikely that urban agriculture will increase incidences of elevated blood Pb for children in urban areas. This is due to the high likelihood that agriculture will improve soils in urban areas, resulting in reduced bioavailability of soil Pb and reduced fugitive dust. Plant uptake of Pb is also typically very low. The exceptions are low-growing leafy crops where soil-splash particle contamination is more likely and expanded hypocotyl root vegetables (e.g., carrot). However, even with higher bioaccumulation factors, it is not clear that the Pb in root vegetables or any other crops will be absorbed after eating. Studies have shown limited absorption of Pb when ingested with food. Best management practices to assure minimal potential for exposure are also common practices in urban gardens. These include the use of residuals-based composts and soil amendments and attention to keeping soil out of homes. This review suggests that benefits associated with urban agriculture far outweigh any risks posed by elevated soil Pb. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Multi-scales and multi-satellites estimates of evapotranspiration with a residual energy balance model in the Muzza agricultural district in Northern Italy

    NASA Astrophysics Data System (ADS)

    Corbari, C.; Bissolati, M.; Mancini, M.

    2015-05-01

    Evapotranspiration estimates were performed with a residual energy balance model (REB) over an agricultural area using remote sensing data. REB uses land surface temperature (LST) as main input parameter so that energy fluxes were computed instantaneously at the time of data acquisition. Data from MODIS and SEVIRI sensors were used and downscaling techniques were implemented to improve their spatial resolutions. Energy fluxes at the original spatial resolutions (1000 m for MODIS and 5000 m for SEVIRI) as well as at the downscaled resolutions (250 m for MODIS and 1000 m for SEVIRI) were calculated with the REB model. Ground eddy covariance data and remote sensing information from the Muzza agricultural irrigation district in Italy from 2010 to 2012 gave the opportunity to validate and compare spatially distributed energy fluxes. The model outputs matched quite well ground observations when ground LST data were used, while differences increased when MODIS and SEVIRI LST were used. The spatial analysis revealed significant differences between the two sensors both in term of LST (around 2.8 °C) and of latent heat fluxes with values (around 100 W m-2).

  12. Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China.

    PubMed

    Sun, Jianteng; Pan, Lili; Zhan, Yu; Lu, Hainan; Tsang, Daniel C W; Liu, Wenxin; Wang, Xilong; Li, Xiangdong; Zhu, Lizhong

    2016-02-15

    To reveal the pollution status associated with rapid urbanization and economic growth, extensive areas of agricultural soils (approximately 45,800 km(2)) in the Yangtze River Delta of China were investigated with respect to selected endocrine disruptor compounds (EDCs), including phthalate esters (PAEs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs). The residues of sum of 15 PAEs, sum of 15 OCPs and sum of 13 PBDEs were in the range of 167-9370 ng/g, 1.0-3520 ng/g, and <1.0-382 ng/g, respectively. The OCPs residuals originated from both historical usage and recent input. Agricultural plastic film was considered to be an important source of PAEs. Discharge from furniture industry was potential major source of PBDEs in this region. The selected pollutants showed quite different spatial distributions within the studied region. It is worth noting that much higher concentrations of the EDCs were found on the borders between Shanghai and the two neighboring provinces, where agriculture and industry developed rapidly in recent years. Contaminants from both agricultural and industrial activities made this area a pollution hotspot, which should arouse more stringent regulation to safeguard the environment and food security. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. DEVELOPMENT OF A DIETARY EXPOSURE POTENTIAL MODEL FOR EVALUATING DIETARY EXPOSURE TO CHEMICAL RESIDUES IN FOOD

    EPA Science Inventory

    The Dietary Exposure Potential Model (DEPM) is a computer-based model developed for estimating dietary exposure to chemical residues in food. The DEPM is based on food consumption data from the 1987-1988 Nationwide Food Consumption Survey (NFCS) administered by the United States ...

  14. Corn residue removal and CO2 emissions

    USDA-ARS?s Scientific Manuscript database

    Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) are the primary greenhouse gases (GHG) emitted from the soil due to agricultural activities. In the short-term, increases in CO2 emissions indicate increased soil microbial activity. Soil micro-organisms decompose crop residues and release...

  15. Examining the Potential for Agricultural Benefits from Pollinator Habitat at Solar Facilities in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCall, James D; Macknick, Jordan E; Walston, Leroy J.

    Of the many roles insects serve for ecosystem function, pollination is possibly the most important service directly linked to human well-being. However, land use changes have contributed to the decline of pollinators and their habitats. In agricultural landscapes that also support renewable energy developments such as utility-scale solar energy [USSE] facilities, opportunities may exist to conserve insect pollinators and locally restore their ecosystem services through the implementation of vegetation management approaches that aim to provide and maintain pollinator habitat at USSE facilities. As a first step toward understanding the potential agricultural benefits of solar-pollinator habitat, we identified areas of overlapmore » between USSE facilities and surrounding pollinator-dependent crop types in the United States (U.S.). Using spatial data on solar energy developments and crop types across the U.S., and assuming a pollinator foraging distance of 1.5 km, we identified over 3,500 km2 of agricultural land near existing and planned USSE facilities that may benefit from increased pollination services through the creation of pollinator habitat at the USSE facilities. The following five pollinator-dependent crop types accounted for over 90% of the agriculture near USSE facilities, and these could benefit most from the creation of pollinator habitat at existing and planned USSE facilities: soybeans, alfalfa, cotton, almonds, and citrus. We discuss how our results may be used to understand potential agro-economic implications of solar-pollinator habitat. Our results show that ecosystem service restoration through the creation of pollinator habitat could improve the sustainability of large-scale renewable energy developments in agricultural landscapes.« less

  16. Determination of neonicotinoid pesticides residues in agricultural samples by solid-phase extraction combined with liquid chromatography-tandem mass spectrometry.

    PubMed

    Xie, Wen; Han, Chao; Qian, Yan; Ding, Huiying; Chen, Xiaomei; Xi, Junyang

    2011-07-15

    This work reports a new sensitive multi-residue liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for detection, confirmation and quantification of six neonicotinoid pesticides (dinotefuran, thiamethoxam, clothiandin, imidacloprid, acetamiprid and thiacloprid) in agricultural samples (chestnut, shallot, ginger and tea). Activated carbon and HLB solid-phase extraction cartridges were used for cleaning up the extracts. Analysis is performed by LC-MS/MS operated in the multiple reaction monitoring (MRM) mode, acquiring two specific precursor-product ion transitions per target compound. Quantification was carried by the internal standard method with D(4)-labeled imidacloprid. The method showed excellent linearity (R(2)≥0.9991) and precision (relative standard deviation, RSD≤8.6%) for all compounds. Limits of quantification (LOQs) were 0.01 mg kg(-1) for chestnut, shallot, ginger sample and 0.02 mg kg(-1) for tea sample. The average recoveries, measured at three concentrations levels (0.01 mg kg(-1), 0.02 mg kg(-1) and 0.1 mg kg(-1) for chestnut, shallot, ginger sample, 0.02 mg kg(-1), 0.04 mg kg(-1) and 0.2 mg kg(-1) for tea sample), were in the range 82.1-108.5%. The method was satisfactorily validated for the analysis of 150 agricultural samples (chestnut, shallot, ginger and tea). Imidacloprid and acetamiprid were detected at concentration levels ranging from 0.05 to 3.6 mg kg(-1). Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSutter, T.M.; Cihacek, L.J.

    2009-07-15

    Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant,more » and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.« less

  18. Virus-Bacteria Interactions: Implications and Potential for the Applied and Agricultural Sciences.

    PubMed

    Moore, Matthew D; Jaykus, Lee-Ann

    2018-02-02

    Eukaryotic virus-bacteria interactions have recently become an emerging topic of study due to multiple significant examples related to human pathogens of clinical interest. However, such omnipresent and likely important interactions for viruses and bacteria relevant to the applied and agricultural sciences have not been reviewed or compiled. The fundamental basis of this review is that these interactions have importance and deserve more investigation, as numerous potential consequences and applications arising from their discovery are relevant to the applied sciences. The purpose of this review is to highlight and summarize eukaryotic virus-bacteria findings in the food/water, horticultural, and animal sciences. In many cases in the agricultural sciences, mechanistic understandings of the effects of virus-bacteria interactions remain unstudied, and many studies solely focus on co-infections of bacterial and viral pathogens. Given recent findings relative to human viral pathogens, further research related to virus-bacteria interactions would likely result in numerous discoveries and beneficial applications.

  19. PILOT STUDY OF THE POTENTIAL FOR HUMAN EXPOSURES TO PET-BORNE DIAZINON RESIDUES FOLLOWING LAWN APPLICATIONS IN NORTH CAROLINA

    EPA Science Inventory

    This study examined the potential for indoor/outdoor pet dogs to be an important pathway for transporting diazinon residues into homes and onto occupants following residential lawn applications. The primary objective was to investigate the potential exposures of children and thei...

  20. [Effects of agricultural activities and transgenic crops on agricultural biodiversity].

    PubMed

    Zhang, Xi-Tao; Luo, Hong-Bing; Li, Jun-Sheng; Huang, Hai; Liu, Yong-Bo

    2014-09-01

    Agricultural biodiversity is a key part of the ecosystem biodiversity, but it receives little concern. The monoculture, environmental pollution and habitat fragmentation caused by agricultural activities have threatened agricultural biodiversity over the past 50 years. To optimize agricultural management measures for crop production and environmental protection, we reviewed the effects of agricultural activities, including cultivation patterns, plastic mulching, chemical additions and the cultivation of transgenic crops, on agricultural biodiversity. The results showed that chemical pesticides and fertilizers had the most serious influence and the effects of transgenic crops varied with other factors like the specific transgene inserted in crops. The environmental risk of transgenic crops should be assessed widely through case-by-case methods, particularly its potential impacts on agricultural biodiversity. It is important to consider the protection of agricultural biodiversity before taking certain agricultural practices, which could improve agricultural production and simultaneously reduce the environmental impacts.

  1. Examining the potential of forest residue-based amendments for post-wildfire rehabilitation in Colorado, USA

    Treesearch

    Charles C. Rhoades; Kerri L. Minatre; Derek N. Pierson; Timothy S. Fegel; M. Francesca Cotrufo; Eugene F. Kelly

    2017-01-01

    Wildfire is a natural disturbance, though elemental losses and changes that occur during combustion and post-fire erosion can have long-term impacts on soil properties, ecosystem productivity, and watershed condition. Here we evaluate the potential of forest residue-based materials to rehabilitate burned soils. We compare soil nutrient and water availability, and plant...

  2. Analysis of wind energy potential for agriculture pump in mountain area Aceh Besar

    NASA Astrophysics Data System (ADS)

    Syuhada, Ahmad; Maulana, Muhammad Ilham; Fuadi, Zahrul

    2017-06-01

    In this study, the potential of wind power for agricultural pump driver in Saree mountainous area of Aceh Besar is analyzed. It is found that the average usable wind speed is 6.41 m/s, which is potential to produce 893.96 Watt of electricity with the wind turbine rotor diameter of 3 m. This energy can be used to drive up to 614 Watt of water pump with static head of 20 m to irrigate 19 hectare of land, 7 hours a day. HOMER analysis indicated the lowest simulated NPC value of USD 10.028 with CoE of USD 0.717 kWh. It is also indicated that the wind has potential to produce 3452 kWh/year with lifetime of 15 years.

  3. Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry

    Treesearch

    Stephen S. Kelley; Roger M. Rowell; Mark Davis; Cheryl K. Jurich; Rebecca Ibach

    2004-01-01

    The chemical composition of a variety of agricultural biomass samples was analyzed with near infrared spectroscopy and pyrolysis molecular beam mass spectroscopy. These samples were selected from a wide array of agricultural residue samples and included residues that had been subjected to a variety of di2erent treatments including solvent extractions and chemical...

  4. Assessment of potential biomass energy production in China towards 2030 and 2050

    NASA Astrophysics Data System (ADS)

    Zhao, Guangling

    2018-01-01

    The objective of this paper is to provide a more detailed picture of potential biomass energy production in the Chinese energy system towards 2030 and 2050. Biomass for bioenergy feedstocks comes from five sources, which are agricultural crop residues, forest residues and industrial wood waste, energy crops and woody crops, animal manure, and municipal solid waste. The potential biomass production is predicted based on the resource availability. In the process of identifying biomass resources production, assumptions are made regarding arable land, marginal land, crops yields, forest growth rate, and meat consumption and waste production. Four scenarios were designed to describe the potential biomass energy production to elaborate the role of biomass energy in the Chinese energy system in 2030. The assessment shows that under certain restrictions on land availability, the maximum potential biomass energy productions are estimated to be 18,833 and 24,901 PJ in 2030 and 2050.

  5. Removal of metal ions from contaminated water using agricultural residues

    Treesearch

    Roger M. Rowell

    2006-01-01

    As the world population grows, there is a growing awareness that our environment is getting more polluted. Clean water is becoming a critical issue for many parts of the world for human, animal and agricultural use. Filtration systems to clean our air and water are a growing industry. There are many approaches to removing contaminates from our water supply ranging from...

  6. Aligning land use with land potential: The role of integrated agriculture

    USDA-ARS?s Scientific Manuscript database

    Contemporary agricultural land use is dominated by an emphasis on provisioning services by applying energy-intensive inputs through relatively uniform production systems across variable landscapes. This approach to agricultural land use is not sustainable. Achieving sustainable use of agricultural...

  7. Existing agricultural ecosystem in China leads to environmental pollution: an econometric approach.

    PubMed

    Hongdou, Lei; Shiping, Li; Hao, Li

    2018-06-17

    Sustainable agriculture ensures food security and prevents starvation. However, the need to meet the increasing food demands of the growing population has led to poor and unsustainable agricultural practices, which promote environmental degradation. Given the contributions of agricultural ecosystems to environmental pollution, we investigated the impact of the agricultural ecosystem on environmental pollution in China using time series data from 1960 to 2014. We employed several methods for econometric analysis including the unit root test, Johansen test of cointegration, Granger causality test, and vector error correction model. Evidence based on the long-run elasticity indicates that a 1% increase in the emissions of carbon dioxide (CO 2 ) equivalent to nitrous oxide from synthetic fertilizers will increase the emissions of CO 2 by 1.52% in the long run. Similarly, a 1% increase in the area of harvested rice paddy, cereal production, biomass of burned crop residues, and agricultural GDP will increase the carbon dioxide emissions by 0.85, 0.63, 0.37, and 0.22%, respectively. The estimated results indicate that there are long-term equilibrium relationships among the selected variables considered for the agricultural ecosystem and carbon dioxide emissions. In particular, we identified bidirectional causal associations between CO 2 emissions, biomass of burned crop residues, and cereal production. Graphical abstract ᅟ.

  8. 40 CFR 180.117 - S-Ethyl dipropylthiocarba-mate; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific... agricultural commodities: Commodity Parts per million Almond, hulls 0.1(N) Asparagus 0.1(N) Castorbean, seed 0...

  9. Nested archetypes of vulnerability in African drylands: where lies potential for sustainable agricultural intensification?

    NASA Astrophysics Data System (ADS)

    Sietz, D.; Ordoñez, J. C.; Kok, M. T. J.; Janssen, P.; Hilderink, H. B. M.; Tittonell, P.; Van Dijk, H.

    2017-09-01

    Food production is key to achieving food security in the drylands of sub-Saharan Africa. Since agricultural productivity is limited, however, due to inherent agro-ecological constraints and land degradation, sustainable agricultural intensification has been widely discussed as an opportunity for improving food security and reducing vulnerability. Yet vulnerability determinants are distributed heterogeneously in the drylands of sub-Saharan Africa and sustainable intensification cannot be achieved everywhere in cost-effective and efficient ways. To better understand the heterogeneity of farming systems’ vulnerability in order to support decision making at regional scales, we present archetypes, i.e. socio-ecological patterns, of farming systems’ vulnerability in the drylands of sub-Saharan Africa and reveal their nestedness. We quantitatively indicated the most relevant farming systems’ properties at a sub-national resolution. These factors included water availability, agro-ecological potential, erosion sensitivity, population pressure, urbanisation, remoteness, governance, income and undernourishment. Cluster analysis revealed eight broad archetypes of vulnerability across all drylands of sub-Saharan Africa. The broad archetype representing better governance and highest remoteness in extremely dry and resource-constrained regions encompassed the largest area share (19%), mainly indicated in western Africa. Moreover, six nested archetypes were identified within those regions with better agropotential and prevalent agricultural livelihoods. Among these patterns, the nested archetype depicting regions with highest erosion sensitivity, severe undernourishment and lower agropotential represented the largest population (30%) and area (28%) share, mainly found in the Sahel region. The nested archetype indicating medium undernourishment, better governance and lowest erosion sensitivity showed particular potential for sustainable agricultural intensification, mainly in

  10. The Impact of Post Harvest Agricultural Crop Residue Fires on Volatile Organic Compounds and Formation of Secondary Air Pollutants in the N.W. Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Chandra, P.; Kumar, V.; Sarkar, C.

    2015-12-01

    The N.W. Indo-Gangetic Plain (IGP) is an agriculturally and demographically important region of the world. Every year during the post harvest months of April-May and October-November, large scale open burning of wheat straw and paddy straw occurs in the region impairing the regional air quality and resulting in air pollution episodes. Here, using online in-situ measurements from the IISER Mohali Atmospheric Chemistry Facility (Sinha et al., Atmos Chem Phys, 2014), which is located at a regionally representative suburban site in the agricultural state of Punjab, India, we investigated the effects of this activity on gas phase chemistry. The online data pertaining to the pre harvest and post harvest paddy residue fires in 2012, 2013 and 2014 were analyzed to understand the effect of this anthropogenic activity on atmospheric chemistry and regional air quality with respect to health relevant VOCs such as benzenoids and isocyanic acid and trace gases such as ozone and carbon monoxide. These compounds showed marked increases (factor of 2-3 times higher) in their concentrations which correlated with the biomass combustion tracers such as acetonitrile. Emissions from the paddy residue fires did not result in significant enhancement of ambient ozone in 2012 but instead sustained hourly daytime ozone concentrations at ~ 50 ppb during the late post monsoon season, despite decreases in solar radiation and temperature. Results of such massive perturbations to ambient chemical composition, reactivity and formation of secondary pollutants and its implications for human health will be presented in this paper.

  11. Potential impacts of agricultural drought on crop yield variability under a changing climate in Texas

    NASA Astrophysics Data System (ADS)

    Lee, K.; Leng, G.; Huang, M.; Sheffield, J.; Zhao, G.; Gao, H.

    2017-12-01

    Texas has the largest farm area in the U.S, and its revenue from crop production ranks third overall. With the changing climate, hydrological extremes such as droughts are becoming more frequent and intensified, causing significant yield reduction in rainfed agricultural systems. The objective of this study is to investigate the potential impacts of agricultural drought on crop yields (corn, sorghum, and wheat) under a changing climate in Texas. The Variable Infiltration Capacity (VIC) model, which is calibrated and validated over 10 major Texas river basins during the historical period, is employed in this study.The model is forced by a set of statistically downscaled climate projections from Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The CMIP5 projections contain four Representative Concentration Pathways (RCP) that represent different greenhouse gas concentration (4.5 and 8.5 w/m2 are selected in this study). To carry out the analysis, VIC simulations from 1950 to 2099 are first analyzed to investigate how the frequency and severity of agricultural droughts will be altered in Texas (under a changing climate). Second, future crop yields are projected using a statistical crop model. Third, the effects of agricultural drought on crop yields are quantitatively analyzed. The results are expected to contribute to future water resources planning, with a goal of mitigating the negative impacts of future droughts on agricultural production in Texas.

  12. Presence of pesticide residues on produce cultivated in Suriname.

    PubMed

    Abdoel Wahid, F; Wickliffe, J; Wilson, M; Van Sauers, A; Bond, N; Hawkins, W; Mans, D; Lichtveld, M

    2017-06-01

    Agricultural pesticides are widely used in Suriname, an upper middle-income Caribbean country located in South America. Suriname imported 1.8 million kg of agricultural pesticides in 2015. So far, however, national monitoring of pesticides in crops is absent. Reports from the Netherlands on imported Surinamese produce from 2010 to 2015 consistently showed that samples exceeded plant-specific pesticide maximum residue limits (MRLs) of the European Union (EU). Consumption of produce containing unsafe levels of pesticide residues can cause neurological disorders, and particularly, pregnant women and children may be vulnerable. This pilot study assessed the presence of pesticide residues in commonly consumed produce items cultivated in Suriname. Thirty-two insecticides (organophosphates, organochlorines, carbamates, and pyrethroids) and 12 fungicides were evaluated for their levels in nine types of produce. Pesticide residue levels exceeding MRLs in this study regarded cypermethrin (0.32 μg/g) in tomatoes (USA MRL 0.20 μg/g), lambda-cyhalothrin (1.08 μg/g) in Chinese cabbage (USA MRL 0.40 μg/g), endosulfan (0.07 μg/g) in tannia (EU MRL 0.05 μg/g), and lindane (0.02 and 0.03 μg/g, respectively) in tannia (EU MRL 0.01 μg/g). While only a few pesticide residues were detected in this small pilot study, these residues included two widely banned pesticides (endosulfan and lindane). There is a need to address environmental policy gaps. A more comprehensive sampling and analysis of produce from Suriname is warranted to better understand the scope of the problem. Preliminary assessments, using intake rate, hazard quotient, and level of concern showed that it is unlikely that daily consumption of tannia leads to adverse health effects.

  13. Presence of pesticide residues on produce cultivated in Suriname

    PubMed Central

    Wickliffe, J.; Wilson, M.; Van Sauers, A.; Bond, N.; Hawkins, W.; Mans, D.; Lichtveld, M.

    2017-01-01

    Agricultural pesticides are widely used in Suriname, an upper middle-income Caribbean country located in South America. Suriname imported 1.8 million kg of agricultural pesticides in 2015. So far, however, national monitoring of pesticides in crops is absent. Reports from the Netherlands on imported Surinamese produce from 2010 to 2015 consistently showed that samples exceeded plant-specific pesticide maximum residue limits (MRLs) of the European Union (EU). Consumption of produce containing unsafe levels of pesticide residues can cause neurological disorders, and particularly, pregnant women and children may be vulnerable. This pilot study assessed the presence of pesticide residues in commonly consumed produce items cultivated in Suriname. Thirty-two insecticides (organophosphates, organochlorines, carbamates, and pyrethroids) and 12 fungicides were evaluated for their levels in nine types of produce. Pesticide residue levels exceeding MRLs in this study regarded cypermethrin (0.32 μg/g) in tomatoes (USA MRL 0.20 μg/g), lambda-cyhalothrin (1.08 μg/g) in Chinese cabbage (USA MRL 0.40 μg/g), endosulfan (0.07 μg/g) in tannia (EU MRL 0.05 μg/g), and lindane (0.02 and 0.03 μg/g, respectively) in tannia (EU MRL 0.01 μg/g). While only a few pesticide residues were detected in this small pilot study, these residues included two widely banned pesticides (endosulfan and lindane). There is a need to address environmental policy gaps. A more comprehensive sampling and analysis of produce from Suriname is warranted to better understand the scope of the problem. Preliminary assessments, using intake rate, hazard quotient, and level of concern showed that it is unlikely that daily consumption of tannia leads to adverse health effects. PMID:28567597

  14. Evaluation of various soaking agents as a novel tool for pesticide residues mitigation from cauliflower (Brassica oleracea var. botrytis).

    PubMed

    Abdullah; Randhawa, Muhammad Atif; Asghar, Ali; Pasha, Imran; Usman, Rabia; Shamoon, Muhammad; Bhatti, Muhammad Arslan; Irshad, Muhammad Asim; Ahmad, Naveed

    2016-08-01

    The increasing use of pesticides for boosting the yield of agricultural crops also impart toxic residues which ultimately extend to numerous physiological disorders upon consumption. The present study was designed as an effort to assess the reduction potential of various chemical solutions and to minimize the pesticide residues in cauliflower ( Brassica oleracea var. botrytis ). The samples were soaked in various solutions along with tap water to mitigate pesticide residues. Afterwards, the extracted supernatant was passed through column containing anhydrous sodium sulfate trailed by activated carbon for clean-up. Eluents were first evaporated and then completely dried under gentle stream of Nitrogen. Finally, the residues were determined using gas chromatography equipped with electron capture detector (GC-ECD). Results revealed the highest reduction of endosulfan, bifenthrin and cypermethrin residues with acetic acid (10 %) was 1.133 ± 0.007 (41 %), 0.870 ± 0.022 (60 %) and 0.403 ± 0.003 (75 %), respectively among the tested solutions. However, simple tap water treatment also resulted in 0.990 ± 0.02 (12 %), 1.323 ± 0.015 (14 %) and 1.274 ± 0.002 (21 %) elimination of endosulfan, bifenthrin and cypermethrin residues, respectively. Moreover, among various solutions, acetic acid depicted maximum reduction potential followed by citric acid, hydrogen peroxide, sodium chloride and sodium carbonate solutions. The percent reduction by various solutions ranged from 12 to 41, 14 to 60 and 21 to 75 % for the elimination of endosulfan, bifenthrin and cypermethrin residues, respectively.

  15. Potential Climate-driven Silvicultural and Agricultural Transformations in Siberia in the 21 Century

    NASA Astrophysics Data System (ADS)

    Tchebakova, N. M.; Parfenova, E. I.; Shvetsov, E.; Soja, A. J.

    2017-12-01

    Simulations of Siberian forests in a changing climate showed them to be changed in composition, decreased, and shifted northwards. Our goals were to evaluate the ecological consequences for the forests and agriculture in Siberia and to offer adaptive measures that may be undertaken to minimize negative consequences and maximize benefits from a rapidly changing environment in the socially important region of southern Siberia. We considered two strategies to estimate climate-change effects on potentially failing forests within an expanding forest-steppe ecotone. To support forestry, seed transfers from locations that are best suited to the genotypes in future climates may be applied to assist trees and forests in a changing climate. To support agriculture, in view of the growing world concerns on food safety, new farming lands may be established in a new forest-steppe ecotone with its favorable climatic and soil resources. We used our bioclimatic vegetation models of various levels: a forest type model to predict forest shifts and forest-failing lands, tree species range and their climatypes models to predict what tree species/climatype would be suitable and crop models to predict crops to introduce in potentially climate-disturbed areas in Siberia. Climate change data for the 2080s were calculated from the ensemble of 20 general circulation models of the Coupled Model Intercomparison Project phase 5 (CMIP5) and two scenarios to characterize the range of climate change: mild climate (RCP2.6 scenario) and sharp climate (RCP 8.5 scenario). By the 2080s, forest-steppe and steppe rather than forests would dominate up to half of Siberia in the warmer and dryer RCP 8.5 climate. Water stress tolerant and fire-resistant light-needled species Pinus sylvestris and Larix spp. would dominate the forest-steppe ecotone. Failing forests in a dryer climate may be maintained by moving and substituting proper climatypes from locations often hundreds of km away. Agriculture in Siberia

  16. Nitrous oxide production from soils amended with biogas residues and cattle slurry.

    PubMed

    Abubaker, J; Odlare, M; Pell, M

    2013-07-01

    The amount of residues generated from biogas production has increased dramatically due to the worldwide interest in renewable energy. A common way to handle the residues is to use them as fertilizers in crop production. Application of biogas residues to agricultural soils may be accompanied with environmental risks, such as increased NO emission. In 24-d laboratory experiments, NO dynamics and total production were studied in arable soils (sandy, clay, and organic) amended with one of two types of anaerobically digested biogas residues (BR-A and BR-B) generated from urban and agricultural waste and nondigested cattle slurry (CS) applied at rates corresponding to 70 kg NH-N ha. Total NO-N losses from the sandy soil were higher after amendment with BR-B (0.32 g NO-N m) than BR-A or CS (0.02 and 0.18 g NO-N m, respectively). In the clay soil, NO-N losses were very low for CS (0.02 g NO-N m) but higher for BR-A and BR-B (0.25 and 0.15 g NO-N m, respectively). In the organic soil, CS gave higher total NO-N losses (0.31 g NO-N m) than BR-A or BR-B (0.09 and 0.08 g NO-N m, respectively). Emission peaks differed considerably between soils, occurring on Day 1 in the organic soil and on Days 11 to 15 in the sand, whereas in the clay the peak varied markedly (Days 1, 6, and 13) depending on residue type. In all treatments, NH concentration decreased with time, and NO concentration increased. Potential ammonium oxidation and potential denitrification activity increased significantly in the amended sandy soil but not in the organic soil and only in the clay amended with CS. The results showed that fertilization with BR can increase NO emissions and that the size is dependent on the total N and organic C content of the slurry and on soil type. In conclusion, the two types of BR and the CS are not interchangeable regarding their effects on NO production in different soils, and, hence, matching fertilizer type to soil type could reduce NO emissions. For instance, it could be

  17. Development and application of modern agricultural biotechnology in Botswana: The potentials, opportunities and challenges

    PubMed Central

    Batlang, Utlwang; Tsurupe, Gorata; Segwagwe, Amogelang; Obopile, Motshwari

    2014-01-01

    In Botswana, approximately 40% of the population live in rural areas and derive most of their livelihood from agriculture by keeping livestock and practising arable farming. Due to the nature of their farming practises livestock and crops are exposed to diseases and environmental stresses. These challenges offer opportunities for application of biotechnology to develop adaptable materials to the country's environment. On the other hand, the perceived risk of genetically modified organisms (GMOs) has dimmed the promise of the technology for its application in agriculture. This calls for a holistic approach to the application of biotechnology to address issues of biosafety of GMOs. We have therefore assessed the potentials, challenges and opportunities to apply biotechnology with specific emphasis on agriculture, taking cognisance of requirement for its research, development and application in research and teaching institutions. In order to achieve this, resource availability, infrastructure, human and laboratory requirements were analyzed. The analysis revealed that the country has the capacity to carry out research in biotechnology in the development and production of genetically modified crops for food and fodder crops. These will include gene discovery, genetic transformation and development of systems to comply with the world regulatory framework on biosafety. In view of the challenges facing the country in agriculture, first generation biotech crops could be released for production. Novel GM products for development may include disease diagnosis kits, animal disease vaccines, and nutrient use efficiency, drought, and pest and disease resistant food and fodder crops. PMID:25437237

  18. Development and application of modern agricultural biotechnology in Botswana: the potentials, opportunities and challenges.

    PubMed

    Batlang, Utlwang; Tsurupe, Gorata; Segwagwe, Amogelang; Obopile, Motshwari

    2014-07-03

    In Botswana, approximately 40% of the population live in rural areas and derive most of their livelihood from agriculture by keeping livestock and practising arable farming. Due to the nature of their farming practises livestock and crops are exposed to diseases and environmental stresses. These challenges offer opportunities for application of biotechnology to develop adaptable materials to the country's environment. On the other hand, the perceived risk of genetically modified organisms (GMOs) has dimmed the promise of the technology for its application in agriculture. This calls for a holistic approach to the application of biotechnology to address issues of biosafety of GMOs. We have therefore assessed the potentials, challenges and opportunities to apply biotechnology with specific emphasis on agriculture, taking cognisance of requirement for its research, development and application in research and teaching institutions. In order to achieve this, resource availability, infrastructure, human and laboratory requirements were analyzed. The analysis revealed that the country has the capacity to carry out research in biotechnology in the development and production of genetically modified crops for food and fodder crops. These will include gene discovery, genetic transformation and development of systems to comply with the world regulatory framework on biosafety. In view of the challenges facing the country in agriculture, first generation biotech crops could be released for production. Novel GM products for development may include disease diagnosis kits, animal disease vaccines, and nutrient use efficiency, drought, and pest and disease resistant food and fodder crops.

  19. Agricultural Baseline (BL0) scenario

    DOE Data Explorer

    Davis, Maggie R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000181319328); Hellwinckel, Chad M [University of Tennessee] (ORCID:0000000173085058); Eaton, Laurence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000312709626); Turhollow, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000228159350); Brandt, Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000214707379); Langholtz, Matthew H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000281537154)

    2016-07-13

    Scientific reason for data generation: to serve as the reference case for the BT16 volume 1 agricultural scenarios. The agricultural baseline runs from 2015 through 2040; a starting year of 2014 is used. Date the data set was last modified: 02/12/2016 How each parameter was produced (methods), format, and relationship to other data in the data set: simulation was developed without offering a farmgate price to energy crops or residues (i.e., building on both the USDA 2015 baseline and the agricultural census data (USDA NASS 2014). Data generated are .txt output files by year, simulation identifier, county code (1-3109). Instruments used: POLYSYS (version POLYS2015_V10_alt_JAN22B) supplied by the University of Tennessee APAC The quality assurance and quality control that have been applied: • Check for negative planted area, harvested area, production, yield and cost values. • Check if harvested area exceeds planted area for annuals. • Check FIPS codes.

  20. GREENHOUSE GAS MITIGATION POTENTIAL IN U.S. FORESTRY AND AGRICULTURE

    EPA Science Inventory

    This report describes the FASOM-GHG model (Forestry and Agriculture Sector Optimization Model with Greenhouse Gases), the GHG mitigation scenarios for U.S. forestry and agriculture run through the FASOM-GHG model, and the results and insights that are generated. GHG mitigation po...

  1. Pesticides in household dust and soil: exposure pathways for children of agricultural families.

    PubMed

    Simcox, N J; Fenske, R A; Wolz, S A; Lee, I C; Kalman, D A

    1995-12-01

    Child of agriculture families are likely to be exposed to agricultural chemicals, even if they are not involved in farm activities. This study was designed to determine whether such children are exposed to higher levels of pesticides than children whose parents are not involved in agriculture and whose homes are not close to farms. Household dust and soil samples were collected in children's play areas from 59 residences in eastern Washington State (26 farming, 22 farmworker, and 11 nonfarming families). The majority of the farm families lived within 200 feet of an operating apple or pear orchard, whereas all reference homes were located at least a quarter of a mile from an orchard. Four organophosphorous (OP) insecticides commonly used on tree fruit were targeted for analysis: azinphosmethyl, chlorpyrifos, parathion, and phosmet. Samples were extracted and analyzed by gas chromatography/mass selective detection. Pesticide concentrations in household dust were significantly higher than in soil for all groups. OP levels for farmer/farm-worker families ranged from nondetectable to 930 ng/g in soil (0.93 ppm) and from nondetectable to 17,000 ng/g in dust (17 ppm); all four OP compounds were found in 62% of household dust samples, and two-thirds of the farm homes contained at least one OP above 1000 ng/g. Residues were found less frequently in reference homes and all levels were below 1000 ng/g. Household dust concentrations for all four target compounds were significantly lower in reference homes when compared to farmer/farmworker homes (Mann Whitney, U test; p < 0.05). These results demonstrate that children of agricultural families have a higher potential for exposure to OP pesticides than children of nonfarm families in this region. Measurable residues of a toxicity, I compound registered exclusively for agricultural use, azcnphosmettyl were found in household dust samples from all study homes, suggesting that low level exposure to such chemicals occurs throughout

  2. Characterizing the ozone formation potential of agricultural sources in California's San Joaquin Valley: A computational and experimental approach

    NASA Astrophysics Data System (ADS)

    Howard, Cody Jerome

    The global pattern of expanding urban centers and increasing agricultural intensity is leading to more frequent interactions between air pollution emissions from urban and agricultural sources. The confluence of these emissions that traditionally have been separated by hundreds of kilometers is creating new air quality challenges in numerous regions across the United States. An area of particular interest is California's San Joaquin Valley (SJV), which has an agricultural output higher than many countries, a rapidly expanding human population, and ozone concentrations that are already higher than many dense urban areas. New regulations in the SJV restrict emissions of reactive organic gases (ROG) from animal sources in an attempt to meet Federal and State ozone standards designed to protect human health. A transportable "smog" chamber was developed and tested to directly measure the ozone formation potential of a variety of agricultural emissions in representative urban and rural atmospheres. After validation of the experimental procedure, four animal types were examined: beef cattle, dairy cattle, swine, and poultry, as well as six commonly used animal feeds: cereal silage (wheat grain and oat grain), alfalfa silage, corn silage, high moisture ground corn, almond shells, almond hulls, and total mixed ration. The emitted ROG composition was also measured so that the theoretical incremental reactivity could be calculated for a variety of atmospheres and directly compared with the measured ozone formation potential (OFP) under the experimental conditions. A computational model was created based on a modified form of the Caltech Atmospheric Chemistry Mechanism and validated against experimental results. After validation, the computational model was used to predict OFP across a range of NOx and ROG concentrations. The ROG OFP measurements combined with adjusted agricultural ROG emissions inventory estimates were used to predict the actual ozone production in the SJV

  3. Analysis of potency and development of renewable energy based on agricultural biomass waste in Jambi province

    NASA Astrophysics Data System (ADS)

    Devita, W. H.; Fauzi, A. M.; Purwanto, Y. A.

    2018-05-01

    Indonesia has the big potency of biomass. The source of biomass energy is scattered all over the country. The big potential in concentrated scale is on the island of Sumatera. Jambi province which is located in Sumatra Island has the potency of biomass energy due to a huge area for estate crop and agriculture. The Indonesian government had issued several policies which put a higher priority on the utilization of renewable energy. This study aimed to identify the conditions and distribution of biomass waste potential in Jambi province. The potential biomass waste in Jambi province was 27,407,183 tons per year which dominated of oil palm residue (46.16%), rice husk and straw (3.52%), replanting rubberwood (50.32%). The total power generated from biomass waste was 129 GWhth per year which is consisted of palm oil residue (56 GWhth per year), rice husk and straw (3.22 GWhth per year), rubberwood (70.56 GWhth per year). Based on the potential of biomass waste, then the province of Jambi could obtain supplies of renewable energy from waste biomass with electricity generated amount to 32.34 GWhe per year.

  4. Conversion of agricultural residues into activated carbons for water purification: Application to arsenate removal.

    PubMed

    Torres-Perez, Jonatan; Gerente, Claire; Andres, Yves

    2012-01-01

    The conversion of two agricultural wastes, sugar beet pulp and peanut hulls, into sustainable activated carbons is presented and their potential application for the treatment of arsenate solution is investigated. A direct and physical activation is selected as well as a simple chemical treatment of the adsorbents. The material properties, such as BET surface areas, porous volumes, elemental analysis, ash contents and pH(PZC), of these alternative carbonaceous porous materials are determined and compared with a commercial granular activated carbon. An adsorption study based on experimental kinetic and equilibrium data is conducted in a batch reactor and completed by the use of different models (intraparticle diffusion, pseudo-second-order, Langmuir and Freundlich) and by isotherms carried out in natural waters. It is thus demonstrated that sugar beet pulp and peanut hulls are good precursors to obtain activated carbons for arsenate removal.

  5. Prevalence of a potentially lethal parasite of wading birds in natural and agricultural wetlands in south Louisiana

    USGS Publications Warehouse

    Luent, Margaret C.; Collins, Melissa; Jeske, Clinton; Leberg, Paul

    2012-01-01

    Gambusia affinis (Western Mosquitofish) were sampled from 18 sites representing marsh, forested wetlands, and agricultural wetlands in south Louisiana to determine distribution and infection parameters of Eustrongylides ignotus, a potentially lethal nematode parasite of wading birds, (n = 400 per site). Overall, prevalence of infection was 0.3%, with significantly higher prevalence in agricultural wetlands than in marshes or swamps. Our findings are similar to work in Florida suggesting parasite prevalence is higher in disturbed wetlands, and suggest that birds foraging in crayfish ponds and rice fields may be at increased risk of exposure.

  6. Introduction of potential helix-capping residues into an engineered helical protein.

    PubMed

    Parker, M H; Hefford, M A

    1998-08-01

    MB-1 is an engineered protein that was designed to incorporate high percentages of four amino acid residues and to fold into a four-alpha-helix bundle motif. Mutations were made in the putative loop I and III regions of this protein with the aim of increasing the stability of the helix ends. Four variants, MB-3, MB-5, MB-11 and MB-13, have replacements intended to promote formation of an 'N-capping box'. The loop I and III sequences of MB-3 (both GDLST) and MB-11 (GGDST) were designed to cause alphaL C-terminal 'capping' motifs to form in helices I and III. MB-5 has a sequence, GPDST, that places proline in a favourable position for forming beta-turns, whereas MB-13 (GLDST) has the potential to form Schellman C-capping motifs. Size-exclusion chromatography suggested that MB-1, MB-3, MB-5, MB-11 and MB-13 all form dimers, or possibly trimers. Free energies for the unfolding of each of these variants were determined by urea denaturation, with the loss of secondary structure followed by CD spectroscopy. Assuming an equilibrium between folded dimer and unfolded monomer, MB-13 had the highest apparent stability (40.5 kJ/mol, with +/-2.5 kJ/mol 95% confidence limits), followed by MB-11 (39.3+/-5.9 kJ/mol), MB-3 (36.4+/-1.7 kJ/mol), MB-5 (34.7+/-2.1 kJ/mol) and MB-1 (29.3+/-1.3 kJ/mol); the same relative stabilities of the variants were found when a folded trimer to unfolded monomer model was used to calculate stabilities. All of the variants were relatively unstable for dimeric proteins, but were significantly more stable than MB-1. These findings suggest that it might be possible to increase the stability of a protein for which the three-dimensional structure is unknown by placing amino acid residues in positions that have the potential to form helix- and turn-stabilizing motifs.

  7. 40 CFR 180.175 - Maleic hydrazide; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... the following raw agricultural commodities: Commodity Parts per million Onion, bulb 15.0 Potato 50.0 (2) A food additive known as maleic hydrazide (1,2-dihydro-3,6-pyridazinedione) may be present in...

  8. 40 CFR 180.175 - Maleic hydrazide; tolerances for residues.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances... the following raw agricultural commodities: Commodity Parts per million Onion, bulb 15.0 Potato 50.0 (2) A food additive known as maleic hydrazide (1,2-dihydro-3,6-pyridazinedione) may be present in...

  9. Ethanol production potential from AFEX™ and steam-exploded sugarcane residues for sugarcane biorefineries.

    PubMed

    Mokomele, Thapelo; da Costa Sousa, Leonardo; Balan, Venkatesh; van Rensburg, Eugéne; Dale, Bruce E; Görgens, Johann F

    2018-01-01

    Expanding biofuel markets are challenged by the need to meet future biofuel demands and mitigate greenhouse gas emissions, while using domestically available feedstock sustainably. In the context of the sugar industry, exploiting under-utilized cane leaf matter (CLM) in addition to surplus sugarcane bagasse as supplementary feedstock for second-generation ethanol production has the potential to improve bioenergy yields per unit land. In this study, the ethanol yields and processing bottlenecks of ammonia fibre expansion (AFEX™) and steam explosion (StEx) as adopted technologies for pretreating sugarcane bagasse and CLM were experimentally measured and compared for the first time. Ethanol yields between 249 and 256 kg Mg -1 raw dry biomass (RDM) were obtained with AFEX™-pretreated sugarcane bagasse and CLM after high solids loading enzymatic hydrolysis and fermentation. In contrast, StEx-pretreated sugarcane bagasse and CLM resulted in substantially lower ethanol yields that ranged between 162 and 203 kg Mg -1 RDM. The ethanol yields from StEx-treated sugarcane residues were limited by the aggregated effect of sugar degradation during pretreatment, enzyme inhibition during enzymatic hydrolysis and microbial inhibition of S. cerevisiae 424A (LNH-ST) during fermentation. However, relatively high enzyme dosages (> 20 mg g -1 glucan) were required irrespective of pretreatment method to reach 75% carbohydrate conversion, even when optimal combinations of Cellic ® CTec3, Cellic ® HTec3 and Pectinex Ultra-SP were used. Ethanol yields per hectare sugarcane cultivation area were estimated at 4496 and 3416 L ha -1 for biorefineries using AFEX™- or StEx-treated sugarcane residues, respectively. AFEX™ proved to be a more effective pretreatment method for sugarcane residues relative to StEx due to the higher fermentable sugar recovery and enzymatic hydrolysate fermentability after high solids loading enzymatic hydrolysis and fermentation by S. cerevisiae 424A

  10. Adaptive nitrogen and integrated weed management in conservation agriculture: impacts on agronomic productivity, greenhouse gas emissions, and herbicide residues.

    PubMed

    Oyeogbe, Anthony Imoudu; Das, T K; Bhatia, Arti; Singh, Shashi Bala

    2017-04-01

    Increasing nitrogen (N) immobilization and weed interference in the early phase of implementation of conservation agriculture (CA) affects crop yields. Yet, higher fertilizer and herbicide use to improve productivity influences greenhouse gase emissions and herbicide residues. These tradeoffs precipitated a need for adaptive N and integrated weed management in CA-based maize (Zea mays L.)-wheat [Triticum aestivum (L.) emend Fiori & Paol] cropping system in the Indo-Gangetic Plains (IGP) to optimize N availability and reduce weed proliferation. Adaptive N fertilization was based on soil test value and normalized difference vegetation index measurement (NDVM) by GreenSeeker™ technology, while integrated weed management included brown manuring (Sesbania aculeata L. co-culture, killed at 25 days after sowing), herbicide mixture, and weedy check (control, i.e., without weed management). Results indicated that the 'best-adaptive N rate' (i.e., 50% basal + 25% broadcast at 25 days after sowing + supplementary N guided by NDVM) increased maize and wheat grain yields by 20 and 14% (averaged for 2 years), respectively, compared with whole recommended N applied at sowing. Weed management by brown manuring (during maize) and herbicide mixture (during wheat) resulted in 10 and 21% higher grain yields (averaged for 2 years), respectively, over the weedy check. The NDVM in-season N fertilization and brown manuring affected N 2 O and CO 2 emissions, but resulted in improved carbon storage efficiency, while herbicide residuals in soil were significantly lower in the maize season than in wheat cropping. This study concludes that adaptive N and integrated weed management enhance synergy between agronomic productivity, fertilizer and herbicide efficiency, and greenhouse gas mitigation.

  11. Effect of turning frequency on co-composting pig manure and fungus residue.

    PubMed

    Jiang-Ming, Zhou

    2017-03-01

    Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but also can recycle agricultural wastes and transform them into highly valuable products, such as fertilizers or soil conditioners, for agricultural applications. However, the composting process and final product are easily affected by the limited oxygen supply that results from insufficient aeration, especially in the center of a large-scale windrow. Hence, a pilot-scale experiment was conducted to investigate the effects of the turning frequency on the composting efficiency and compost quality of used pig manure and fungus residue. Physical and chemical characteristics were measured over the course of 63 days of composting. The data indicate that higher temperatures and more rapid moisture removal generally result from a turning treatment of once every 2-4 days than in fewer, or no, turning treatments. The total nitrogen, total phosphorus, and total potassium contents increased in all windrows as the organic matter content decreased, but both the increases and decrease were greater in windrows that were turned more frequently. The reduction of the organic matter mass by 53.7-66.0% for a turning of once every 2-8 days is significantly higher than that for the static windrow (39.1%). Although there is an increase in nitrogen mass loss with an increased turning frequency, lower nitrogen mass losses (12.7-25.7%) in all treatments were noted compared with previous studies. A final compost product with less moisture, less weight, higher nutrient content (N, P, and K), and greater stability was obtained in windrows with turning frequencies of once every 2-4 days, which is recommended when composting pig manure and fungus residue. Composting of agricultural wastes not only can reduce environmental pollution caused by improper disposal, but recycling of agricultural wastes transforms them into highly valuable products, such as fertilizers or soil conditioners, for

  12. The causal nexus between carbon dioxide emissions and agricultural ecosystem-an econometric approach.

    PubMed

    Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa

    2017-01-01

    Achieving a long-term food security and preventing hunger include a better nutrition through sustainable systems of production, distribution, and consumption. Nonetheless, the quest for an alternative to increasing global food supply to meet the growing demand has led to the use of poor agricultural practices that promote climate change. Given the contribution of the agricultural ecosystem towards greenhouse gas (GHG) emissions, this study investigated the causal nexus between carbon dioxide emissions and agricultural ecosystem by employing a data spanning from 1961 to 2012. Evidence from long-run elasticity shows that a 1 % increase in the area of rice paddy harvested will increase carbon dioxide emissions by 1.49 %, a 1 % increase in biomass-burned crop residues will increase carbon dioxide emissions by 1.00 %, a 1 % increase in cereal production will increase carbon dioxide emissions by 1.38 %, and a 1 % increase in agricultural machinery will decrease carbon dioxide emissions by 0.09 % in the long run. There was a bidirectional causality between carbon dioxide emissions, cereal production, and biomass-burned crop residues. The Granger causality shows that the agricultural ecosystem in Ghana is sensitive to climate change vulnerability.

  13. Characterisation and management of concrete grinding residuals.

    PubMed

    Kluge, Matt; Gupta, Nautasha; Watts, Ben; Chadik, Paul A; Ferraro, Christopher; Townsend, Timothy G

    2018-02-01

    Concrete grinding residue is the waste product resulting from the grinding, cutting, and resurfacing of concrete pavement. Potential beneficial applications for concrete grinding residue include use as a soil amendment and as a construction material, including as an additive to Portland cement concrete. Concrete grinding residue exhibits a high pH, and though not hazardous, it is sufficiently elevated that precautions need to be taken around aquatic ecosystems. Best management practices and state regulations focus on reducing the impact on such aquatic environment. Heavy metals are present in concrete grinding residue, but concentrations are of the same magnitude as typically recycled concrete residuals. The chemical composition of concrete grinding residue makes it a useful product for some soil amendment purposes at appropriate land application rates. The presence of unreacted concrete in concrete grinding residue was examined for potential use as partial replacement of cement in new concrete. Testing of Florida concrete grinding residue revealed no dramatic reactivity or improvement in mortar strength.

  14. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments.

    PubMed

    Saini, Jitendra Kumar; Saini, Reetu; Tewari, Lakshmi

    2015-08-01

    Production of liquid biofuels, such as bioethanol, has been advocated as a sustainable option to tackle the problems associated with rising crude oil prices, global warming and diminishing petroleum reserves. Second-generation bioethanol is produced from lignocellulosic feedstock by its saccharification, followed by microbial fermentation and product recovery. Agricultural residues generated as wastes during or after processing of agricultural crops are one of such renewable and lignocellulose-rich biomass resources available in huge amounts for bioethanol production. These agricultural residues are converted to bioethanol in several steps which are described here. This review enlightens various steps involved in production of the second-generation bioethanol. Mechanisms and recent advances in pretreatment, cellulases production and second-generation ethanol production processes are described here.

  15. Vitamin D analogues to target residual proteinuria: potential impact on cardiorenal outcomes

    PubMed Central

    Humalda, Jelmer K.; Goldsmith, David J. A.; Thadhani, Ravi; de Borst, Martin H.

    2015-01-01

    Residual proteinuria, the amount of proteinuria that remains during optimally dosed renin-angiotensin-aldosterone system (RAAS) blockade, is an independent risk factor for progressive renal function loss and cardiovascular complications in chronic kidney disease (CKD) patients. Dual RAAS blockade may reduce residual proteinuria but without translating into improved cardiorenal outcomes at least in diabetic nephropathy; rather, dual RAAS blockade may increase the risk of adverse events. These findings have challenged the concept of residual proteinuria as an absolute treatment target. Therefore, new strategies must be explored to address whether by further reduction of residual proteinuria using interventions not primarily targeting the RAAS benefit in terms of cardiorenal risk reduction would accrue. Both clinical and experimental intervention studies have demonstrated that vitamin D can reduce residual proteinuria through both RAAS-dependent and RAAS-independent pathways. Future research should prospectively explore vitamin D treatment as an adjunct to RAAS blockade in an interventional trial exploring clinically relevant cardiorenal end points. PMID:25609737

  16. Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue-walnut shell.

    PubMed

    Ding, Dahu; Lei, Zhongfang; Yang, Yingnan; Feng, Chuanping; Zhang, Zhenya

    2014-04-15

    A novel nickel (II) hexacyanoferrate (III) functionalized agricultural residue-walnut shell (Ni(II)HCF(III)-WS) was developed to selectively remove cesium ion (Cs(+)) from aqueous solutions. This paper showed the first integral study on Cs(+) removal behavior and waste reduction analysis by using biomass adsorption material. The results indicated that the removal process was rapid and reached saturation within 2h. As a special characteristic of Ni(II)HCF(III)-WS, acidic condition was preferred for Cs(+) removal, which was useful for extending the application scope of the prepared biomass material in treating acidic radioactive liquid waste. The newly developed Ni(II)HCF(III)-WS could selectively remove Cs(+) though the coexisting ions (Na(+) and K(+) in this study) exhibited negative effects. In addition, approximately 99.8% (in volume) of the liquid waste was reduced by using Ni(II)HCF(III)-WS and furthermore 91.9% (in volume) of the spent biomass material (Cs-Ni(II)HCF(III)-WS) was reduced after incineration (at 500°C for 2h). Due to its relatively high distribution coefficient and significant volume reduction, Ni(II)HCF(III)-WS is expected to be a promising material for Cs(+) removal in practice. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Agricultural aviation research

    NASA Technical Reports Server (NTRS)

    Chevalier, H. L. (Compiler); Bouse, L. F. (Compiler)

    1977-01-01

    A compilation of papers, comments, and results is provided during a workshop session. The purpose of the workshop was to review and evaluate the current state of the art of agricultural aviation, to identify and rank potentially productive short and long range research and development areas, and to strengthen communications between research scientists and engineers involved in agricultural research. Approximately 71 individuals actively engaged in agricultural aviation research were invited to participate in the workshop. These were persons familiar with problems related to agricultural aviation and processing expertise which are of value for identifying and proposing beneficial research.

  18. Comparative net energy ratio analysis of pellet produced from steam pretreated biomass from agricultural residues and energy crops

    DOE PAGES

    Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit; ...

    2016-04-05

    Here, a process model was developed to determine the net energy ratio (NER) for production of pellets from steam pretreated agricultural residue (AR) and energy crop (i.e. switchgrass in this case). The NER is a ratio of the net energy output to the total net energy input from non-renewable energy sources into a system. Scenarios were developed to measure the effects of temperature and level of steam pretreatment on the NER of steam pretreated AR- and switch grass-based pellets. The NER for the base case at 6 kg h -1 is 1.76 and 1.37 for steam-pretreated AR- and switchgrass-based pellets,more » respectively. The reason behind the difference is that more energy is required to dry switchgrass pellets than AR pellets. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 160 C with 50% pretreatment (half the feedstock is pretreated, while the rest is undergoes regular pelletization). The uncertainty results for NER for steam pretreated AR and switch grass pellets are 1.62 ± 0.10 and 1.42 ± 0.11, respectively.« less

  19. Effects of aluminium water treatment residuals, used as a soil amendment to control phosphorus mobility in agricultural soils.

    PubMed

    Ulén, Barbro; Etana, Ararso; Lindström, Bodil

    2012-01-01

    Phosphorus (P) leaching from agricultural soils is a serious environmental concern. Application of aluminium water treatment residuals (Al-WTRs) at a rate of 20 Mg ha(-1) to clay soils from central Sweden significantly increased mean topsoil P sorption index (PSI) from 4.6 to 5.5 μmol kg(-1) soil. Mean degree of P saturation in ammonium lactate extract (DPS-AL) significantly decreased from 17 to 13%, as did plant-available P (P-AL). Concentrations of dissolved reactive P (DRP) decreased by 10-85% in leaching water with Al-WTR treatments after exposure of topsoil lysimeters to simulated rain. Soil aggregate stability (AgS) for 15 test soils rarely improved. Three soils (clay loam, silty loam and loam sand) were tested in greenhouse pot experiments. Aluminium-WTR application of 15 or 30 ton ha(-1) to loam sand and a clay loam with P-AL values of 80-100 mg kg(-1) soil significantly increased growth of Italian ryegrass when fertilised with P but did not significantly affect growth of spring barley on any soil. Al-WTR should only be applied to soils with high P fertility where improved crop production is not required.

  20. Agricultural wetlands as potential hotspots for mercury bioaccumulation: Experimental evidence using caged fish

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eagles-Smith, Collin A.

    2010-01-01

    Wetlands provide numerous ecosystem services, but also can be sources of methylmercury (MeHg) production and export. Rice agricultural wetlands in particular may be important sites for MeHg bioaccumulation due to their worldwide ubiquity, periodic flooding schedules, and high use by wildlife. We assessed MeHg bioaccumulation within agricultural and perennial wetlands common to California's Central Valley during summer, when the majority of wetland habitats are shallowly flooded rice fields. We introduced caged western mosquitofish (Gambusia affinis) within white rice (Oryza sativa), wild rice (Zizania palustris), and permanent wetlands at water inlets, centers, and outlets. Total mercury (THg) concentrations and body burdens in caged mosquitofish increased rapidly, exceeding baseline values at introduction by 135% to 1197% and 29% to 1566% among sites, respectively, after only 60 days. Mercury bioaccumulation in caged mosquitofish was greater in rice fields than in permanent wetlands, with THg concentrations at wetland outlets increasing by 12.1, 5.8, and 2.9 times over initial concentrations in white rice, wild rice, and permanent wetlands, respectively. In fact, mosquitofish caged at white rice outlets accumulated 721 ng Hg/fish in just 60 days. Mercury in wild mosquito fish and Mississippi silversides (Menidia audens) concurrently sampled at wetland outlets also were greater in white rice and wild rice than permanent wetlands. Within wetlands, THg concentrations and body burdens of both caged and wild fish increased from water inlets to outlets in white rice fields, and tended to not vary among sites in permanent wetlands. Fish THg concentrations in agricultural wetlands were high, exceeding 0.2 ??g/g ww in 82% of caged fish and 59% of wild fish. Our results indicate that shallowly flooded rice fields are potential hotspots for MeHg bioaccumulation and, due to their global prevalence, suggest that agricultural wetlands may be important contributors to Me

  1. Examining the Potential of Forest Residue-Based Amendments for Post-Wildfire Rehabilitation in Colorado, USA

    PubMed Central

    Minatre, Kerri L.; Pierson, Derek N.; Fegel, Timothy S.; Cotrufo, M. Francesca; Kelly, Eugene F.

    2017-01-01

    Wildfire is a natural disturbance, though elemental losses and changes that occur during combustion and post-fire erosion can have long-term impacts on soil properties, ecosystem productivity, and watershed condition. Here we evaluate the potential of forest residue-based materials to rehabilitate burned soils. We compare soil nutrient and water availability, and plant recovery after application of 37 t ha−1 of wood mulch, 20 t ha−1 of biochar, and the combination of the two amendments with untreated, burned soils. We also conducted a greenhouse trial to examine how biochar influenced soil nutrient and water content under two wetting regimes. The effects of wood mulch on plant-available soil N and water content were significant and seasonally consistent during the three-year field study. Biochar applied alone had few effects under field conditions, but significantly increased soil pH, Ca, P, and water in the greenhouse. The mulched biochar treatment had the greatest effects on soil N and water availability and increased cover of the most abundant native plant. We found that rehabilitation treatments consisting of forest residue-based products have potential to enhance soil N and water dynamics and plant recovery following severe wildfire and may be justified where erosion risk or water supply protection are crucial. PMID:28321358

  2. Examining the Potential of Forest Residue-Based Amendments for Post-Wildfire Rehabilitation in Colorado, USA.

    PubMed

    Rhoades, Charles C; Minatre, Kerri L; Pierson, Derek N; Fegel, Timothy S; Cotrufo, M Francesca; Kelly, Eugene F

    2017-01-01

    Wildfire is a natural disturbance, though elemental losses and changes that occur during combustion and post-fire erosion can have long-term impacts on soil properties, ecosystem productivity, and watershed condition. Here we evaluate the potential of forest residue-based materials to rehabilitate burned soils. We compare soil nutrient and water availability, and plant recovery after application of 37 t ha -1 of wood mulch, 20 t ha -1 of biochar, and the combination of the two amendments with untreated, burned soils. We also conducted a greenhouse trial to examine how biochar influenced soil nutrient and water content under two wetting regimes. The effects of wood mulch on plant-available soil N and water content were significant and seasonally consistent during the three-year field study. Biochar applied alone had few effects under field conditions, but significantly increased soil pH, Ca, P, and water in the greenhouse. The mulched biochar treatment had the greatest effects on soil N and water availability and increased cover of the most abundant native plant. We found that rehabilitation treatments consisting of forest residue-based products have potential to enhance soil N and water dynamics and plant recovery following severe wildfire and may be justified where erosion risk or water supply protection are crucial.

  3. Comparison of bio-hydrogen production yield capacity between asynchronous and simultaneous saccharification and fermentation processes from agricultural residue by mixed anaerobic cultures.

    PubMed

    Li, Yameng; Zhang, Zhiping; Zhu, Shengnan; Zhang, Huan; Zhang, Yang; Zhang, Tian; Zhang, Quanguo

    2018-01-01

    Taken common agricultural residues as substrate, dark fermentation bio-hydrogen yield capacity from asynchronous saccharification and fermentation (ASF) and simultaneous saccharification and fermentation (SSF) was investigated. The highest hydrogen yield of 472.75mL was achieved with corncob using ASF. Hydrogen yield from corn straw, rice straw, corncob and sorghum stalk by SSF were 20.54%,10.31%,13.99% and 5.92% higher than ASF, respectively. The experimental data fitted well to the modified Gompertz model. SSF offered a distinct advantage over ASF with respect to reducing overall process time (60h of SSF, 108h of ASF). Meanwhile, SSF performed better than SSF with respect to shortening the lag-stage. The major metabolites of anaerobic fermentation hydrogen production by ASF and SSF were butyric acid and acetic acid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities.

    PubMed

    La Scala, N; De Figueiredo, E B; Panosso, A R

    2012-08-01

    Agricultural areas deal with enormous CO2 intake fluxes offering an opportunity for greenhouse effect mitigation. In this work we studied the potential of soil carbon sequestration due to the management conversion in major agricultural activities in Brazil. Data from several studies indicate that in soybean/maize, and related rotation systems, a significant soil carbon sequestration was observed over the year of conversion from conventional to no-till practices, with a mean rate of 0.41 Mg C ha(-1) year(-1). The same effect was observed in sugarcane fields, but with a much higher accumulation of carbon in soil stocks, when sugarcane fields are converted from burned to mechanised based harvest, where large amounts of sugarcane residues remain on the soil surface (1.8 Mg C ha(-1) year(-1)). The higher sequestration potential of sugarcane crops, when compared to the others, has a direct relation to the primary production of this crop. Nevertheless, much of this mitigation potential of soil carbon accumulation in sugarcane fields is lost once areas are reformed, or intensive tillage is applied. Pasture lands have shown soil carbon depletion once natural areas are converted to livestock use, while integration of those areas with agriculture use has shown an improvement in soil carbon stocks. Those works have shown that the main crop systems of Brazil have a huge mitigation potential, especially in soil carbon form, being an opportunity for future mitigation strategies.

  5. LIBS: a potential tool for industrial/agricultural waste water analysis

    NASA Astrophysics Data System (ADS)

    Karpate, Tanvi; K. M., Muhammed Shameem; Nayak, Rajesh; V. K., Unnikrishnan; Santhosh, C.

    2016-04-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a multi-elemental analysis technique with various advantages and has the ability to detect any element in real time. This technique holds a potential for environmental monitoring and various such analysis has been done in soil, glass, paint, water, plastic etc confirms the robustness of this technique for such applications. Compared to the currently available water quality monitoring methods and techniques, LIBS has several advantages, viz. no need for sample preparation, fast and easy operation, and chemical free during the process. In LIBS, powerful pulsed laser generates plasma which is then analyzed to get quantitative and qualitative details of the elements present in the sample. Another main advantage of LIBS technique is that it can perform in standoff mode for real time analysis. Water samples from industries and agricultural strata tend to have a lot of pollutants making it harmful for consumption. The emphasis of this project is to determine such harmful pollutants present in trace amounts in industrial and agricultural wastewater. When high intensity laser is made incident on the sample, a plasma is generated which gives a multielemental emission spectra. LIBS analysis has shown outstanding success for solids samples. For liquid samples, the analysis is challenging as the liquid sample has the chances of splashing due to the high energy of laser and thus making it difficult to generate plasma. This project also deals with determining the most efficient method for testing of water sample for qualitative as well as quantitative analysis using LIBS.

  6. Practicing Conservation Agriculture to mitigate and adapt to Climate Change in Jordan.

    NASA Astrophysics Data System (ADS)

    Khresat, Saeb

    2016-04-01

    Climate change scenarios indicate that Jordan and the Middle East could suffer from reduced agricultural productivity and water availability among other negative impacts. Based on the projection models for the area, average temperature in Jordan is projected to increase between 1.2 and 1.6 °C by 2050. Projections for precipitation trends are projected to decrease by 16% by the year 2050. Evaporation is likely to increase due to higher temperatures. This is likely to increase the incidence of drought potential since precipitation is projected to decrease. The dominant form of agriculture system in Jordan is based on intensive tillage. This form of tillage has resulted in large losses of organic soil carbon, weaker soil structure, and cause compaction. It has negative effects on soil aeration, root development and water infiltration among other factors. There is a need to transform farming practices to conservation agriculture to sequester carbon so that climate change mitigation becomes an inherent property of future farming systems. Conservation Agriculture, a system avoiding or minimizing soil disturbance, combined with soil cover and crop diversification, is considered to be a sustainable production system that can also sequester carbon unlike tillage agriculture. Conservation agriculture promotes minimal disturbance of the soil by tillage (zero tillage), balanced application of chemical inputs and careful management of residues and wastes. This study was conducted to develop a clear understanding of the impacts and benefits of the two most common types of agriculture, traditional tillage agriculture and conservation agriculture with respect to their effects on land productivity and on soil carbon pools. The study results indicated that conservation agriculture contributed to the reduction of the farming systems' greenhouse gas emissions and enhance its role as carbon sinks. Also, it was found that by shifting to conservation agriculture labor cost needed for

  7. 'Underutilised' agricultural land: its definitions, potential use for future biomass production and its environmental implications

    NASA Astrophysics Data System (ADS)

    Miyake, Saori; Bargiel, Damian

    2017-04-01

    A growing bioeconomy and increased demand for biomass products on food, health, fibre, industrial products and energy require land resources for feedstock production. It has resulted in significant environmental and socio-economic challenges on a global scale. As a result, consideration of such effects of land use change (LUC) from biomass production (particularly for biofuel feedstock) has emerged as an important area of policy and research, and several potential solutions have been proposed to minimise such adverse LUC effects. One of these solutions is the use of lands that are not in production or not suitable for food crop production, such as 'marginal', 'degraded', 'abandoned' and 'surplus' agricultural lands for future biomass production. The terms referring to these lands are usually associated with the potential production of 'marginal crops', which can grow in marginal conditions (e.g. poor soil fertility, low rainfall, drought) without much water and agrochemical inputs. In our research, we referred to these lands as 'underutilised' agricultural land and attempted to define them for our case study areas located in Australia and Central and Eastern Europe (CEE). Our goal is to identify lands that can be used for future biomass production and to evaluate their environmental implications, particularly impacts related to biodiversity, water and soil at a landscape scale. The identification of these lands incorporates remote sensing and spatially explicit approaches. Our findings confirmed that there was no universal or single definition of the term 'underutilised' agricultural land as the definitions significantly vary by country and region depending not only on the biophysical environment but also political, institutional and socio-economic conditions. Moreover, our results highlighted that the environmental implications of production of biomass on 'underutilised' agricultural land for biomass production are highly controversial. Thus land use change

  8. Undiscovered phosphate resources in the Caribbean region and their potential value for agricultural development

    USGS Publications Warehouse

    Sheldon, Richard Porter; Davidson, D.F.; Riggs, S.R.; Burnett, W.C.

    1985-01-01

    The countries of the world's humid tropical regions lack the soil fertility necessary for high agricultural productivity. A recently developed agricultural technology that increases soil fertility can make tropical agriculture highly productive, but the technique requires large inputs into the soil of phosphorus and other fertilizers and soil amendments. Use of fertilizers derived from phosphate rock is increasing greatly throughout the world, and fertilizer raw materials are being produced more and more frequently from phosphate rock deposits close to the areas of use. An increased understanding of the origin of phosphate rock in ancient oceans has enabled exploration geologists to target areas of potential mineral resource value and to search directly for deposits. However, because of the difficulty of prospecting for mineral deposits in forested tropical regions, phosphate rock deposits are not being explored for in the countries of the humid tropics, including most countries of the Caribbean region. As a result, the countries of the Caribbean must import phosphate rock or phosphorus fertilizer products. In the present trade market, imports of phosphate are too low for the initiation of new agricultural technology in the Caribbean and Central American region. A newly proposed program of discovery and development of undiscovered phosphate rock deposits revolves around reconnaissance studies, prospecting by core drilling, and analysis of bulk samples. The program should increase the chance of discovering economic phosphate rock deposits. The search for and evaluation of phosphate rock resources in the countries of the Caribbean region would take about 5 years and cost an average of $15 million per country. The program is designed to begin with high risk-low cost steps and end with low risk-high cost steps. A successful program could improve the foreign exchange positions of countries in the Caribbean region by adding earnings from agricultural product exports and

  9. Potential risks of nitrate pollution in aquifers from agricultural practices in the Nurra region, northwestern Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Ghiglieri, Giorgio; Barbieri, Giulio; Vernier, Antonio; Carletti, Alberto; Demurtas, Nicola; Pinna, Rosanna; Pittalis, Daniele

    2009-12-01

    SummaryThe paper describes the methodological and innovative approach, which aims to evaluate the potential risk of nitrate pollution in aquifers from agricultural practices by combining intrinsic aquifer vulnerability to contamination, according to the SINTACS R5 method, with agricultural nitrates hazard assessment, according to the IPNOA index. The proposed parametric model adopts a geographically based integrated evaluation system, comprising qualitative and semi-quantitative indicators. In some cases, the authors have modified this model, revising and adjusting scores and weights of the parameter to account for the different environmental conditions, and calibrating accordingly. The method has been successfully implemented and validated in the pilot area of the Alghero coastal plain (northwestern Sardinia, Italy) where aquifers with high productivity are present. The classes with a major score (high potential risk) are in the central part of the plain, in correspondence with the most productive aquifers, where most actual or potential pollution sources are concentrated. These are mainly represented by intensive agricultural activities, by industrial agglomerate and diffused urbanisation. For calibrating the model and optimizing and/or weighting the examined factors, the modelling results were validated by comparison with groundwater quality data, in particular nitrate content, and with the potential pollution sources census data. The parametric method is a popular approach to groundwater vulnerability assessment, in contrast to groundwater flow model and statistical method ones: it is, indeed, relatively inexpensive and straightforward, and use data commonly available or that can be estimated. The zoning of nitrate vulnerable areas provides regional authorities with a useful decision support tool for planning land-use properly managing groundwater and combating and/or mitigating desertification processes. However, a careful validation of the results is

  10. Effect of residue combinations on plant uptake of nutrients and potentially toxic elements.

    PubMed

    Brännvall, Evelina; Nilsson, Malin; Sjöblom, Rolf; Skoglund, Nils; Kumpiene, Jurate

    2014-01-01

    The aim of the plant pot experiment was to evaluate potential environmental impacts of combined industrial residues to be used as soil fertilisers by analysing i) element availability in fly ash and biosolids mixed with soil both individual and in combination, ii) changes in element phytoavailability in soil fertilised with these materials and iii) impact of the fertilisers on plant growth and element uptake. Plant pot experiments were carried out, using soil to which fresh residue mixtures had been added. The results showed that element availability did not correlate with plant growth in the fertilised soil with. The largest concentrations of K (3534 mg/l), Mg (184 mg/l), P (1.8 mg/l), S (760 mg/l), Cu (0.39 mg/l) and Zn (0.58 mg/l) in soil pore water were found in the soil mixture with biosolids and MSWI fly ashes; however plants did not grow at all in mixtures containing the latter, most likely due to the high concentration of chlorides (82 g/kg in the leachate) in this ash. It is known that high salinity of soil can reduce germination by e.g. limiting water absorption by the seeds. The concentrations of As, Cd and Pb in grown plants were negligible in most of the soils and were below the instrument detection limit values. The proportions of biofuel fly ash and biosolids can be adjusted in order to balance the amount and availability of macronutrients, while the possible increase of potentially toxic elements in biomass is negligible seeing as the plant uptake of such elements was low. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. How effective are common household preparations on removing pesticide residues from fruit and vegetables? A review.

    PubMed

    Chung, Stephen Wc

    2018-06-01

    Nowadays, the use of pesticides is inevitable for pest control in crops, especially for fruit and vegetables. After the harvest from raw agricultural commodities, the amount of pesticide residues in food is mainly influenced by the storage, handling and processing that follow. If good agricultural and good manufacturing practices are enforced effectively, the amount of pesticide residues would be brought below the corresponding maximum residue level. Thus, the consumption of raw and/or prepared fruit and vegetables would be safe. Nonetheless, reports regarding pesticide residues in fruit or vegetables on mass media have been worrying consumers, who are concerned about the adverse effects of pesticide residues. As a result, consumers perform household processing before consumption to reduce any related risks. However, can these preparations effectively remove pesticide residues? Reviewing the extensive literature, it showed that, in most cases, washing and soaking can only lead to a certain degree of reduction in residue level, while other processing such as peeling, soaking in chemical baths and blanching can reduce pesticide residues more effectively. In general, the behaviour of residues during processing can be rationalised in terms of the physico-chemical properties of the pesticide and the nature of the process. In contrast, the reported studies are diversified and some areas still lack sufficient studies to draw any remarks. Recommendations are provided with respect to the available information that aims to formulate an environmental friendly, cost-effective and efficient household processing of fruit and vegetables to reduce pesticide residues. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Identifying populations potentially exposed to agricultural pesticides using remote sensing and a Geographic Information System

    USGS Publications Warehouse

    Ward, M.H.; Nuckols, J.R.; Weigel, S. J.; Cantor, K.P.; Miller, Roger S.

    2000-01-01

    Pesticides used in agriculture may cause adverse health effects among the population living near agricultural areas. However, identifying the populations most likely to be exposed is difficult. We conducted a feasibility study to determine whether satellite imagery could be used to reconstruct historical crop patterns. We used historical Farm Service Agency records as a source of ground reference data to classify a late summer 1984 satellite image into crop species in a three-county area in south central Nebraska. Residences from a population-based epidemiologic study of non-Hodgkin lymphoma were located on the crop maps using a geographic information system (GIS). Corn, soybeans, sorghum, and alfalfa were the major crops grown in the study area. Eighty-five percent of residences could be located, and of these 22% had one of the four major crops within 500 m of the residence, an intermediate distance for the range of drift effects from pesticides applied in agriculture. We determined the proximity of residences to specific crop species and calculated crop-specific probabilities of pesticide use based on available data. This feasibility study demonstrated that remote sensing data and historical records on crop location can be used to create historical crop maps. The crop pesticides that were likely to have been applied can be estimated when information about crop-specific pesticide use is available. Using a GIS, zones of potential exposure to agricultural pesticides and proximity measures can be determined for residences in a study.

  13. Potential Implication of Residual Viremia in Patients on Effective Antiretroviral Therapy

    PubMed Central

    2015-01-01

    Abstract The current antiretroviral therapy (ART) has suppressed viremia to below the limit of detection of clinical viral load assays; however, it cannot eliminate viremia completely in the body even after prolonged treatment. Plasma HIV-1 loads persist at extremely low levels below the clinical detection limit. This low-level viremia (termed “residual viremia”) cannot be abolished in most patients, even after the addition of a new class of drug, i.e., viral integrase inhibitor, to the combined antiretroviral regimens. Neither the cellular source nor the clinical significance of this residual viremia in patients on ART remains fully clear at present. Since residual plasma viruses generally do not evolve with time in the presence of effective ART, one prediction is that these viruses are persistently released at low levels from one or more stable but yet unknown HIV-1 reservoirs in the body during therapy. This review attempts to emphasize the source of residual viremia as another important reservoir (namely, “active reservoir”) distinct from the well-known latent HIV-1 reservoir in the body, and why its elimination should be a priority in the effort for HIV-1 eradication. PMID:25428885

  14. Genomic Prediction Accounting for Residual Heteroskedasticity.

    PubMed

    Ou, Zhining; Tempelman, Robert J; Steibel, Juan P; Ernst, Catherine W; Bates, Ronald O; Bello, Nora M

    2015-11-12

    Whole-genome prediction (WGP) models that use single-nucleotide polymorphism marker information to predict genetic merit of animals and plants typically assume homogeneous residual variance. However, variability is often heterogeneous across agricultural production systems and may subsequently bias WGP-based inferences. This study extends classical WGP models based on normality, heavy-tailed specifications and variable selection to explicitly account for environmentally-driven residual heteroskedasticity under a hierarchical Bayesian mixed-models framework. WGP models assuming homogeneous or heterogeneous residual variances were fitted to training data generated under simulation scenarios reflecting a gradient of increasing heteroskedasticity. Model fit was based on pseudo-Bayes factors and also on prediction accuracy of genomic breeding values computed on a validation data subset one generation removed from the simulated training dataset. Homogeneous vs. heterogeneous residual variance WGP models were also fitted to two quantitative traits, namely 45-min postmortem carcass temperature and loin muscle pH, recorded in a swine resource population dataset prescreened for high and mild residual heteroskedasticity, respectively. Fit of competing WGP models was compared using pseudo-Bayes factors. Predictive ability, defined as the correlation between predicted and observed phenotypes in validation sets of a five-fold cross-validation was also computed. Heteroskedastic error WGP models showed improved model fit and enhanced prediction accuracy compared to homoskedastic error WGP models although the magnitude of the improvement was small (less than two percentage points net gain in prediction accuracy). Nevertheless, accounting for residual heteroskedasticity did improve accuracy of selection, especially on individuals of extreme genetic merit. Copyright © 2016 Ou et al.

  15. Genomic Prediction Accounting for Residual Heteroskedasticity

    PubMed Central

    Ou, Zhining; Tempelman, Robert J.; Steibel, Juan P.; Ernst, Catherine W.; Bates, Ronald O.; Bello, Nora M.

    2015-01-01

    Whole-genome prediction (WGP) models that use single-nucleotide polymorphism marker information to predict genetic merit of animals and plants typically assume homogeneous residual variance. However, variability is often heterogeneous across agricultural production systems and may subsequently bias WGP-based inferences. This study extends classical WGP models based on normality, heavy-tailed specifications and variable selection to explicitly account for environmentally-driven residual heteroskedasticity under a hierarchical Bayesian mixed-models framework. WGP models assuming homogeneous or heterogeneous residual variances were fitted to training data generated under simulation scenarios reflecting a gradient of increasing heteroskedasticity. Model fit was based on pseudo-Bayes factors and also on prediction accuracy of genomic breeding values computed on a validation data subset one generation removed from the simulated training dataset. Homogeneous vs. heterogeneous residual variance WGP models were also fitted to two quantitative traits, namely 45-min postmortem carcass temperature and loin muscle pH, recorded in a swine resource population dataset prescreened for high and mild residual heteroskedasticity, respectively. Fit of competing WGP models was compared using pseudo-Bayes factors. Predictive ability, defined as the correlation between predicted and observed phenotypes in validation sets of a five-fold cross-validation was also computed. Heteroskedastic error WGP models showed improved model fit and enhanced prediction accuracy compared to homoskedastic error WGP models although the magnitude of the improvement was small (less than two percentage points net gain in prediction accuracy). Nevertheless, accounting for residual heteroskedasticity did improve accuracy of selection, especially on individuals of extreme genetic merit. PMID:26564950

  16. Evaluation of benefits and risks associated with the agricultural use of organic wastes of pharmaceutical origin.

    PubMed

    Cucina, Mirko; Tacconi, Chiara; Ricci, Anna; Pezzolla, Daniela; Sordi, Simone; Zadra, Claudia; Gigliotti, Giovanni

    2018-02-01

    Industrial fermentations for the production of pharmaceuticals generate large volumes of wastewater that can be biologically treated to recover plant nutrients through the application of pharmaceutical-derived wastes to the soil. Nevertheless, benefits and risks associated with their recovery are still unexplored. Thus, the aim of the present work was to characterize three potential organic residues (sludge, anaerobic digestate and compost) derived from the wastewater generated by the daptomycin production process. The main parameters evaluated were the physico-chemical properties, potential contaminants (heavy metals, pathogens and daptomycin residues), organic matter stabilization and the potential toxicity towards soil microorganisms and plants. The results showed that all the studied materials were characterized by high concentrations of plant macronutrients (N, P and K), making them suitable for agricultural reuse. Heavy metal contents and pathogens were under the limits established by European and Italian legislations, avoiding the risk of soil contamination. The compost showed the highest organic matter stabilization within the studied materials, whereas the sludge and the anaerobic digestate were characterized by large amounts of labile organic compounds. Although the pharmaceutical-derived fertilizers did not negatively affect the soil microorganisms, as demonstrated by the enzymatic activities, the sludge and the anaerobic digestate caused a moderate and strong phytotoxicity, respectively. The compost showed no toxic effect towards plant development and, moreover, it positively affected the germination and growth in lettuce and barley. The results obtained in the present study demonstrate that the valorization of pharmaceutical-derived materials through composting permits their agricultural reuse and also represents a suitable strategy to move towards a zero-waste production process for daptomycin. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Potential residual biomass in mature pine stands of the Midsouth, U.S.A.

    Treesearch

    J.F. Rosson

    1989-01-01

    The extent, location, and ownership of residual woody biomass available on mature pine timberland prior to the harvest of log-size pine was determined for the Midsouth States. Most of this residual is on non-industrial private timberland. Sweetgum (Liquidambar styraciflua L.) and loblolly pine (Pinus taeda L.) are the dominant species in the residual. Stems of all...

  18. Building a knowledge-based statistical potential by capturing high-order inter-residue interactions and its applications in protein secondary structure assessment.

    PubMed

    Li, Yaohang; Liu, Hui; Rata, Ionel; Jakobsson, Eric

    2013-02-25

    The rapidly increasing number of protein crystal structures available in the Protein Data Bank (PDB) has naturally made statistical analyses feasible in studying complex high-order inter-residue correlations. In this paper, we report a context-based secondary structure potential (CSSP) for assessing the quality of predicted protein secondary structures generated by various prediction servers. CSSP is a sequence-position-specific knowledge-based potential generated based on the potentials of mean force approach, where high-order inter-residue interactions are taken into consideration. The CSSP potential is effective in identifying secondary structure predictions with good quality. In 56% of the targets in the CB513 benchmark, the optimal CSSP potential is able to recognize the native secondary structure or a prediction with Q3 accuracy higher than 90% as best scored in the predicted secondary structures generated by 10 popularly used secondary structure prediction servers. In more than 80% of the CB513 targets, the predicted secondary structures with the lowest CSSP potential values yield higher than 80% Q3 accuracy. Similar performance of CSSP is found on the CASP9 targets as well. Moreover, our computational results also show that the CSSP potential using triplets outperforms the CSSP potential using doublets and is currently better than the CSSP potential using quartets.

  19. Pesticide residues in Portuguese strawberries grown in 2009-2010 using integrated pest management and organic farming.

    PubMed

    Fernandes, Virgínia C; Domingues, Valentina F; Mateus, Nuno; Delerue-Matos, Cristina

    2012-11-01

    Pesticides are among the most widely used chemicals in the world. Because of the widespread use of agricultural chemicals in food production, people are exposed to low levels of pesticide residues through their diets. Scientists do not yet have a total understanding of the health effects of these pesticide residues. This work aims to determine differences in terms of pesticide residue content in Portuguese strawberries grown using different agriculture practices. The Quick, Easy, Cheap, Effective, Rugged, and Safe sample preparation method was conducted and shown to have good performance for multiclass pesticides extraction in strawberries. The screening of 25 pesticides residue was performed by gas chromatography-tandem mass spectrometry. In quantitative validation, acceptable performances were achieved with recoveries of 70-120 and <12 % residual standard deviation for 25 pesticides. Good linearity was obtained for all the target compounds, with highly satisfactory repeatability. The limits of detection were in the range of 0.1-28 μg/kg. The method was applied to analyze strawberry samples from organic and integrated pest management (IPM) practices harvested in 2009-2010. The results showed the presence of fludioxonil, bifenthrin, mepanipyrim, tolylfluanid, cyprodinil, tetraconazole, and malathion when using IPM below the maximum residue levels.

  20. Risk element sorption/desorption characteristics of dry olive residue: a technique for the potential immobilization of risk elements in contaminated soils.

    PubMed

    Hovorka, Miloš; Száková, Jiřina; García-Sánchez, Mercedes; Acebal, Mercedes Blanc; García-Romera, Inmaculada; Tlustoš, Pavel

    2016-11-01

    Olive oil production is one of the most relevant agroindustrial activities in the Mediterranean region and generates a huge amount of both solid and semi-solid wastes, the uncontrolled disposal of which might lead to serious environmental problems. Due to its organic matter and mineral nutrient content, the waste material can be applied to agricultural soil as a fertilizer. However, due to its high organic matter content, dry olive residue (DOR), commonly called "alperujo," has the potential to immobilize risk elements in contaminated soils. The main objective of this study was to assess the possible effect of DOR on sorption of risk elements such as cadmium (Cd), lead (Pb), and zinc (Zn) in the soil. A set of batch sorption experiments were carried out to assess the ability of DOR to adsorb Cd, Pb, and Zn where the effect of the preceding biotransformation of DOR by four species of fungi: Penicillium chrysogenum, Coriolopsis floccosa, Bjerkhandera adusta, and Chondrostereum purpureum was compared. The Freundlich and Langmuir sorption isotherms were calculated to assess the sorption characteristics of both transformed and non-transformed DOR. The results showed good potential sorption capacity of DOR, especially for Pb and to a lesser extent for Cd and Zn. Better sorption characteristics were reported for the biotransformed DOR samples, which are expected to show higher humification of the organic matter. However, the desorption experiments showed weakness and instability of the DOR-bound elements, especially in the case of Zn. Thus, future research should aim to verify the DOR sorption pattern in contaminated soil as well as the potential stabilization of the DOR element bounds where the increase of the pH levels of the DOR samples needs to be taken into account.

  1. A steady state model of agricultural waste pyrolysis: A mini review.

    PubMed

    Trninić, M; Jovović, A; Stojiljković, D

    2016-09-01

    Agricultural waste is one of the main renewable energy resources available, especially in an agricultural country such as Serbia. Pyrolysis has already been considered as an attractive alternative for disposal of agricultural waste, since the technique can convert this special biomass resource into granular charcoal, non-condensable gases and pyrolysis oils, which could furnish profitable energy and chemical products owing to their high calorific value. In this regard, the development of thermochemical processes requires a good understanding of pyrolysis mechanisms. Experimental and some literature data on the pyrolysis characteristics of corn cob and several other agricultural residues under inert atmosphere were structured and analysed in order to obtain conversion behaviour patterns of agricultural residues during pyrolysis within the temperature range from 300 °C to 1000 °C. Based on experimental and literature data analysis, empirical relationships were derived, including relations between the temperature of the process and yields of charcoal, tar and gas (CO2, CO, H2 and CH4). An analytical semi-empirical model was then used as a tool to analyse the general trends of biomass pyrolysis. Although this semi-empirical model needs further refinement before application to all types of biomass, its prediction capability was in good agreement with results obtained by the literature review. The compact representation could be used in other applications, to conveniently extrapolate and interpolate these results to other temperatures and biomass types. © The Author(s) 2016.

  2. Glyphosate Residues in Groundwater, Drinking Water and Urine of Subsistence Farmers from Intensive Agriculture Localities: A Survey in Hopelchén, Campeche, Mexico.

    PubMed

    Rendon-von Osten, Jaime; Dzul-Caamal, Ricardo

    2017-06-03

    The use of pesticides in Mexican agriculture creates an interest in learning about the presence of these substances in different environmental matrices. Glyphosate (GLY) is an herbicide widely used in the state of Campeche, located in the Mayan zone in the western Yucatan peninsula. Despite the fact that GLY is considered a non-toxic pesticide to humans, its presence in water bodies through spillage, runoff, and leaching are a risk to human health or biota that inhabit these ecosystems. In the present study, glyphosate residues were determined in groundwater, bottled drinking water, and the urine of subsistence farmers from various localities of the Hopelchén municipality in Campeche. Determination of GLY was carried out using Enzyme-Linked Immunosorbent Assay (ELISA). The highest concentrations of GLY were observed in the groundwater (1.42 μg/L) of Ich-Ek and urine (0.47 μg/L) samples of subsistence farmers from the Francisco J. Mújica communities. The glyphosate concentrations in groundwater and bottled drinking water indicate an exposure and excessive use of glyphosate in these agricultural communities. This is one of the first studies that reports glyphosate concentration levels in human urine and bottled drinking water in México and in the groundwater in the Yucatan Peninsula as part of a prospective pilot study, to which a follow-up will be performed to monitor this trend over time.

  3. Glyphosate Residues in Groundwater, Drinking Water and Urine of Subsistence Farmers from Intensive Agriculture Localities: A Survey in Hopelchén, Campeche, Mexico

    PubMed Central

    Rendón-von Osten, Jaime; Dzul-Caamal, Ricardo

    2017-01-01

    The use of pesticides in Mexican agriculture creates an interest in learning about the presence of these substances in different environmental matrices. Glyphosate (GLY) is an herbicide widely used in the state of Campeche, located in the Mayan zone in the western Yucatan peninsula. Despite the fact that GLY is considered a non-toxic pesticide to humans, its presence in water bodies through spillage, runoff, and leaching are a risk to human health or biota that inhabit these ecosystems. In the present study, glyphosate residues were determined in groundwater, bottled drinking water, and the urine of subsistence farmers from various localities of the Hopelchén municipality in Campeche. Determination of GLY was carried out using Enzyme-Linked Immunosorbent Assay (ELISA). The highest concentrations of GLY were observed in the groundwater (1.42 μg/L) of Ich-Ek and urine (0.47 μg/L) samples of subsistence farmers from the Francisco J. Mújica communities. The glyphosate concentrations in groundwater and bottled drinking water indicate an exposure and excessive use of glyphosate in these agricultural communities. This is one of the first studies that reports glyphosate concentration levels in human urine and bottled drinking water in México and in the groundwater in the Yucatan Peninsula as part of a prospective pilot study, to which a follow-up will be performed to monitor this trend over time. PMID:28587206

  4. Seasonal changes in chemical and mineralogical composition of sewage sludge incineration residues and their potential for metallic elements and valuable components recovery

    NASA Astrophysics Data System (ADS)

    Kasina, Monika; Kowalski, Piotr R.; Michalik, Marek

    2017-04-01

    Increasing energy needs, the implementation of the circular economy principles and rising environmental awareness caused that waste management is becoming a major social and economic issue. The EU Member States have committed to a significant reduction in the amount of waste produced and landfilled and to use their inherent energy and raw materials potential. One of the most reasonable option to fulfil these commitments is waste incineration. The aim of the waste incineration is to reduce their volume and toxicity by disinfection and detoxification at high temperatures. Thermal process and reduction of volume allows the recovery of minerals and metallic elements from residues as well as the energy production (waste-to-energy strategy) during incineration. As a result of waste incineration a variety of solid residues (bottom ash, fly ash, air pollution control residues) and technological waste (gas waste, wastewater) are produced. The goal of this study is to characterize fly ash and air pollution control (APC) residues formed as a result of municipal sewage sludge incineration in terms of their chemical and mineral composition and their extractive potential. Residues were sampled quarterly to study their seasonal changes in composition. The fly ash was a Si-P-C-Fe-Al dominated material, whereas the APC residues composition was dominated by Na-rich soluble phases. The removal of soluble phase ( 98% of the material) from the APC residues by dissolution in deionised water caused significant mass reduction and concentration of non-soluble elements. The main mineral phases in fly ash were quartz, hematite, Fe-PO4, whitlockite and feldspar, while in APC thenardite, and in lower amount calcite, apatite and quartz were present. The chemical composition of fly ash was practically invariable in different seasons, but significant differences were observed in APC residues. The lowest concentrations of all elements and the highest TOC content were measured in the samples

  5. Analysis of eight organophosphorus pesticide residues in fresh vegetables retailed in agricultural product markets of Nanjing, China.

    PubMed

    Wang, Ligang; Liang, Yongchao; Jiang, Xin

    2008-10-01

    A method to effectively remove pigments in fresh vegetables using activated carbon followed cleanup through solid phase extraction (SPE) cartridge to further reduce matrix interference and contamination, was established to determine eight organophosphorous pesticides (OPPs) by gas chromatography (GC) with nitrogen-phosphorus detection (NPD) in this study, and it has been successfully applied for the determination of eight OPPs in various fresh vegetables with the recoveries ranging from 61.8% to 107%. To evaluate eight OPPs residue level, some fresh vegetables retailed at three agricultural product markets (APM) of Nanjing in China were detected, the results showed that phorate in Shanghai green (0.0257 microg g(-1)) and Chinese cabbage (0.0398 microg g(-1)), dimethoate in Shanghai green (0.0466-0.0810 microg g(-1)), Chinese cabbage (0.077 microg g(-1)), and spinach (0.118-0.124 microg g(-1)), methyl-parathion in Shanghai green (0.0903 microg g(-1)), Chinese cabbage (0.157 microg g(-1)), and spinach (0.0924 microg g(-1)), malathion in Shanghai green (0.0342-0.0526 microg g(-1)), chorpyrifos in spinach (0.106-0.204 microg g(-1)), and Chinese cabbage (0.149 microg g(-1)), chlorfenvinfos in carrot (0.094-0.131 microg g(-1)), were found. However, fonofos and fenthion were not detected in all the collected vegetable samples.

  6. Agricultural waste utilisation strategies and demand for urban waste compost: Evidence from smallholder farmers in Ethiopia.

    PubMed

    Nigussie, Abebe; Kuyper, Thomas W; de Neergaard, Andreas

    2015-10-01

    The use of agricultural waste for soil amendment is limited in developing countries. Competition between fuel and feed is the major cause for the insufficient application of agricultural waste on cropland. The aims of this study were therefore (i) to investigate variation in agricultural waste allocation between groups of farmers with different livelihood strategies and link this allocation with the nutrient balances of their production systems, (ii) to identify farm characteristics that influence utilisation of agricultural waste for soil amendment, and (iii) to assess demand for urban waste compost. A total of 220 farmers were selected randomly and interviewed using standardised semi-structured questionnaires. Four groups of farmers, namely (i) field crop farmers, (ii) vegetable producers, (iii) ornamental-plant growers, and (iv) farmers practising mixed farming, were identified using categorical principal component and two-step cluster analyses. Field crop farmers produced the largest quantity of agricultural waste, but they allocated 80% of manure to fuel and 85% of crop residues to feed. Only <10% of manure and crop residues were applied on soils. Farmers also sold manure and crop residues, and this generated 5-10% of their annual income. Vegetable and ornamental-plant growers allocated over 40% of manure and crop residues to soil amendment. Hence, nutrient balances were less negative in vegetable production systems. Education, farm size, land tenure and access to extension services were the variables that impeded allocation of agricultural waste to soil amendment. Replacement of fuel and feed through sustainable means is a viable option for soil fertility management. Urban waste compost should also be used as alternative option for soil amendment. Our results showed variation in compost demand between farmers. Education, landownership, experience with compost and access to extension services explained variation in compost demand. We also demonstrated that

  7. Organic agriculture in the twenty-first century.

    PubMed

    Reganold, John P; Wachter, Jonathan M

    2016-02-03

    Organic agriculture has a history of being contentious and is considered by some as an inefficient approach to food production. Yet organic foods and beverages are a rapidly growing market segment in the global food industry. Here, we examine the performance of organic farming in light of four key sustainability metrics: productivity, environmental impact, economic viability and social wellbeing. Organic farming systems produce lower yields compared with conventional agriculture. However, they are more profitable and environmentally friendly, and deliver equally or more nutritious foods that contain less (or no) pesticide residues, compared with conventional farming. Moreover, initial evidence indicates that organic agricultural systems deliver greater ecosystem services and social benefits. Although organic agriculture has an untapped role to play when it comes to the establishment of sustainable farming systems, no single approach will safely feed the planet. Rather, a blend of organic and other innovative farming systems is needed. Significant barriers exist to adopting these systems, however, and a diversity of policy instruments will be required to facilitate their development and implementation.

  8. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review.

    PubMed

    Sud, Dhiraj; Mahajan, Garima; Kaur, M P

    2008-09-01

    Heavy metal remediation of aqueous streams is of special concern due to recalcitrant and persistency of heavy metals in environment. Conventional treatment technologies for the removal of these toxic heavy metals are not economical and further generate huge quantity of toxic chemical sludge. Biosorption is emerging as a potential alternative to the existing conventional technologies for the removal and/or recovery of metal ions from aqueous solutions. The major advantages of biosorption over conventional treatment methods include: low cost, high efficiency, minimization of chemical or biological sludge, regeneration of biosorbents and possibility of metal recovery. Cellulosic agricultural waste materials are an abundant source for significant metal biosorption. The functional groups present in agricultural waste biomass viz. acetamido, alcoholic, carbonyl, phenolic, amido, amino, sulphydryl groups etc. have affinity for heavy metal ions to form metal complexes or chelates. The mechanism of biosorption process includes chemisorption, complexation, adsorption on surface, diffusion through pores and ion exchange etc. The purpose of this review article is to provide the scattered available information on various aspects of utilization of the agricultural waste materials for heavy metal removal. Agricultural waste material being highly efficient, low cost and renewable source of biomass can be exploited for heavy metal remediation. Further these biosorbents can be modified for better efficiency and multiple reuses to enhance their applicability at industrial scale.

  9. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues.

    PubMed

    Bansal, Namita; Tewari, Rupinder; Soni, Raman; Soni, Sanjeev Kumar

    2012-07-01

    Various agricultural and kitchen waste residues were assessed for their ability to support the production of a complete cellulase system by Aspergillus niger NS-2 in solid state fermentation. Untreated as well as acid and base-pretreated substrates including corn cobs, carrot peelings, composite, grass, leaves, orange peelings, pineapple peelings, potato peelings, rice husk, sugarcane bagasse, saw dust, wheat bran, wheat straw, simply moistened with water, were found to be well suited for the organism's growth, producing good amounts of cellulases after 96 h without the supplementation of additional nutritional sources. Yields of cellulases were higher in alkali treated substrates as compared to acid treated and untreated substrates except in wheat bran. Of all the substrates tested, wheat bran appeared to be the best suited substrate producing appreciable yields of CMCase, FPase and β-glucosidase at the levels of 310, 17 and 33 U/g dry substrate respectively. An evaluation of various environmental parameters demonstrated that appreciable levels of cellulases could be produced over a wide range of temperatures (20-50 °C) and pH levels (3.0-8.0) with a 1:1.5 to 1:1.75 substrate to moisture ratio. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A sustainable biorefinery to convert agricultural residues into value-added chemicals.

    PubMed

    Liu, Zhiguo; Liao, Wei; Liu, Yan

    2016-01-01

    Animal wastes are of particular environmental concern due to greenhouse gases emissions, odor problem, and potential water contamination. Anaerobic digestion (AD) is an effective and widely used technology to treat them for bioenergy production. However, the sustainability of AD is compromised by two by-products of the nutrient-rich liquid digestate and the fiber-rich solid digestate. To overcome these limitations, this paper demonstrates a biorefinery concept to fully utilize animal wastes and create a new value-added route for animal waste management. The studied biorefinery includes an AD, electrocoagulation (EC) treatment of the liquid digestate, and fungal conversion of the solid fiber into a fine chemical-chitin. Animal wastes were first treated by an AD to produce methane gas for energy generation to power the entire biorefinery. The resulting liquid digestate was treated by EC to reclaim water. Enzymatic hydrolysis and fungal fermentation were then applied on the cellulose-rich solid digestate to produce chitin. EC water was used as the processing water for the fungal fermentation. The results indicate that the studied biorefinery converts 1 kg dry animal wastes into 17 g fungal biomass containing 12 % of chitin (10 % of glucosamine), and generates 1.7 MJ renewable energy and 8.5 kg irrigation water. This study demonstrates an energy positive and freshwater-free biorefinery to simultaneously treat animal wastes and produce a fine chemical-chitin. The sustainable biorefinery concept provides a win-win solution for agricultural waste management and value-added chemical production.

  11. Influence of agricultural activities, forest fires and agro-industries on air quality in Thailand.

    PubMed

    Phairuang, Worradorn; Hata, Mitsuhiko; Furuuchi, Masami

    2017-02-01

    Annual and monthly-based emission inventories in northern, central and north-eastern provinces in Thailand, where agriculture and related agro-industries are very intensive, were estimated to evaluate the contribution of agricultural activity, including crop residue burning, forest fires and related agro-industries on air quality monitored in corresponding provinces. The monthly-based emission inventories of air pollutants, or, particulate matter (PM), NOx and SO 2 , for various agricultural crops were estimated based on information on the level of production of typical crops: rice, corn, sugarcane, cassava, soybeans and potatoes using emission factors and other parameters related to country-specific values taking into account crop type and the local residue burning period. The estimated monthly emission inventory was compared with air monitoring data obtained at monitoring stations operated by the Pollution Control Department, Thailand (PCD) for validating the estimated emission inventory. The agro-industry that has the greatest impact on the regions being evaluated, is the sugar processing industry, which uses sugarcane as a raw material and its residue as fuel for the boiler. The backward trajectory analysis of the air mass arriving at the PCD station was calculated to confirm this influence. For the provinces being evaluated which are located in the upper northern, lower northern and northeast in Thailand, agricultural activities and forest fires were shown to be closely correlated to the ambient PM concentration while their contribution to the production of gaseous pollutants is much less. Copyright © 2016. Published by Elsevier B.V.

  12. 9 CFR 318.16 - Pesticide chemicals and other residues in products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION... ingredients. Residues of pesticide chemicals, food additives and color additives or other substances in or on ingredients (other than meat, meat byproducts, and meat food products) used in the formulation of products...

  13. Invasive species in agriculture

    USDA-ARS?s Scientific Manuscript database

    Agricultural production of food, feed, fiber or fuel is a local human activity with global ecological impacts, including the potential to foster invasions. Agriculture plays an unusual role in biological invasions, in that it is both a source of non-indigenous invasive species (NIS) and especially s...

  14. Study of hybrid power system potential to power agricultural water pump in mountain area

    NASA Astrophysics Data System (ADS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-03-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US 14,938.

  15. 9 CFR 381.74 - Poultry suspected of having biological residues.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Poultry suspected of having biological residues. 381.74 Section 381.74 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION...

  16. Mapping environmental land use conflict potentials and ecosystem services in agricultural watersheds.

    PubMed

    Kim, Ilkwon; Arnhold, Sebastian

    2018-07-15

    In mountainous watersheds, agricultural land use cause changes in ecosystem services, with trade-offs between crop production and erosion regulation. Management of these watersheds can generate environmental land use conflicts among regional stakeholders with different interests. Although several researches have made a start in mapping land use conflicts between human activities and conservation, spatial assessment of land use conflicts on environmental issues and ecosystem service trade-offs within agricultural areas has not been fully considered. In this study, we went further to map land use conflicts between agricultural preferences for crop production and environmental emphasis on erosion regulation. We applied an agricultural land suitability index, based on multi-criteria analysis, to estimate the spatial preference of agricultural activities, while applying the Revised Universal Soil Loss Equation (RUSLE) to reflect the environmental importance of soil erosion. Then, we classified the agricultural catchment into four levels of land use conflicts (lowest, low, high and highest) according to preference and importance of farmland areas, and we compared the classes by crop type. Soil loss in agricultural areas was estimated as 45.1thayr, and agricultural suitability as 0.873; this indicated that land use conflicts in the catchment could arise between severe soil erosion (environmental importance) and agricultural suitability (land preferences). Dry-field farms are mainly located in areas of low land use conflict level, where land preference outweighs environmental importance. When we applied farmland management scenarios with consideration of services, conversion to highest-conflict areas (Scenario 1) as 7.5% of the total area could reduce soil loss by 24.6%, while fallow land management (Scenario 2) could decrease soil loss 19.4% more than the current scenario (Business as usual). The result could maximize land management plans by extracting issues of spatial

  17. Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govasmark, Espen, E-mail: espen.govasmark@bioforsk.no; Staeb, Jessica; Holen, Borge

    2011-12-15

    In the present study, three full-scale biogas plants (BGP) were investigated for the concentration of heavy metals, organic pollutants, pesticides and the pathogenic bacteria Bacillus cereus and Escherichia coli in the anaerobically digested residues (ADR). The BGPs mainly utilize source-separated organic wastes and industrial food waste as energy sources and separate the ADR into an ADR-liquid and an ADR-solid fraction by centrifugation at the BGP. According to the Norwegian standard for organic fertilizers, the ADR were classified as quality 1 mainly because of high zinc (132-422 mg kg{sup -1} DM) and copper (23-93 mg kg{sup -1} DM) concentrations, but alsomore » because of high cadmium (0.21-0.60 mg kg{sup -1} DM) concentrations in the liquid-ADR. In the screening of organic pollutants, only DEHP (9.7-62.1 mg kg{sup -1}) and {Sigma} PAH 16 (0.2-1.98 mg kg{sup -1} DM) were detected in high concentrations according to international regulations. Of the 250 pesticides analyzed, 11 were detected, but only imazalil (<0.30-5.77 mg kg{sup -1} DM) and thiabendazol (<0.14-0.73 mg kg{sup -1} DM) were frequently detected in the ADR-fiber. Concentrations of imazalil and thiabendazol were highest during the winter months, due to a high consumption of citrus fruits in Norway in this period. Ten percent of the ADR-liquid samples contained cereulide-producing B. cereus, whereas no verotoxigenic E. coli was detected. The authors conclude that the risk of chemical and bacterial contamination of the food chain or the environment from agricultural use of ADR seems low.« less

  18. Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use.

    PubMed

    Govasmark, Espen; Stäb, Jessica; Holen, Børge; Hoornstra, Douwe; Nesbakk, Tommy; Salkinoja-Salonen, Mirja

    2011-12-01

    In the present study, three full-scale biogas plants (BGP) were investigated for the concentration of heavy metals, organic pollutants, pesticides and the pathogenic bacteria Bacillus cereus and Escherichia coli in the anaerobically digested residues (ADR). The BGPs mainly utilize source-separated organic wastes and industrial food waste as energy sources and separate the ADR into an ADR-liquid and an ADR-solid fraction by centrifugation at the BGP. According to the Norwegian standard for organic fertilizers, the ADR were classified as quality 1 mainly because of high zinc (132-422 mg kg(-1) DM) and copper (23-93 mg kg(-1) DM) concentrations, but also because of high cadmium (0.21-0.60 mg kg(-1) DM) concentrations in the liquid-ADR. In the screening of organic pollutants, only DEHP (9.7-62.1 mg kg(-1)) and ∑ PAH 16 (0.2-1.98 mg kg(-1) DM) were detected in high concentrations according to international regulations. Of the 250 pesticides analyzed, 11 were detected, but only imazalil (<0.30-5.77 mg kg(-1) DM) and thiabendazol (<0.14-0.73 mg kg(-1) DM) were frequently detected in the ADR-fiber. Concentrations of imazalil and thiabendazol were highest during the winter months, due to a high consumption of citrus fruits in Norway in this period. Ten percent of the ADR-liquid samples contained cereulide-producing B. cereus, whereas no verotoxigenic E. coli was detected. The authors conclude that the risk of chemical and bacterial contamination of the food chain or the environment from agricultural use of ADR seems low. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Potential of agricultural fungicides for antifungal drug discovery.

    PubMed

    Jampilek, Josef

    2016-01-01

    While it is true that only a small fraction of fungal species are responsible for human mycoses, the increasing prevalence of fungal diseases has highlighted an urgent need to develop new antifungal drugs, especially for systemic administration. This contribution focuses on the similarities between agricultural fungicides and drugs. Inorganic, organometallic and organic compounds can be found amongst agricultural fungicides. Furthermore, fungicides are designed and developed in a similar fashion to drugs based on similar rules and guidelines, with fungicides also having to meet similar criteria of lead-likeness and/or drug-likeness. Modern approved specific-target fungicides are well-characterized entities with a proposed structure-activity relationships hypothesis and a defined mode of action. Extensive toxicological evaluation, including mammalian toxicology assays, is performed during the whole discovery and development process. Thus modern agrochemical research (design of modern agrochemicals) comes close to drug design, discovery and development. Therefore, modern specific-target fungicides represent excellent lead-like structures/models for novel drug design and development.

  20. Organochlorine residues in Baluchistan/Pakistan: Blood and fat concentrations in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krawinkel, M.B.; Plehn, G.; Kruse, H.

    1989-12-01

    Organochlorine (OC)-residues are detected in measurable concentrations in various tissues of human beings because of the worldwide pollution of air, water, soil, and foods. The concentrations vary from region to region according to chemical, climatic, socio-economic, and geographic factors. Persisting pesticides used in agriculture are found in relevant concentrations in agriculture products, meat, and fish. As developing countries face economic pressure to increase their agricultural exports cheap pesticides are sometimes used without the precautions necessary to prevent contaminations of water and food. The authors conducted a small survey monitoring the OC-concentrations in human blood and fat tissue under the aimmore » to detect more recent as well as elder expositions.« less

  1. Enantiomeric fraction and isomeric composition to assess sources of DDT residues in soils.

    PubMed

    Bosch, Carme; Grimalt, Joan O; Fernández, Pilar

    2015-11-01

    Chiral pesticides such as o,p'-DDT can undergo enantioselective microbial degradation in soil. Hence, the enantiomeric fraction (EF) of o,p'-DDT was used as an approach to assess potential recent inputs of DDT in the lower part of the Ebro River basin (NE Spain), a region heavily impacted by agricultural and industrial activities, including a dicofol production and a chloro-alkali plants. The EFs of five out of nineteen soils were not different from the racemic value (0.505±0.010), confirming that the Ebro River and some of its tributaries, Segre and Cinca rivers, transported fresh DDT residues despite its ban in Spain during the 90 s. o,p'-DDT/p,p'-DDT ratios in soils suggest that recent use of technical DDT and/or DDT-contaminated dicofol may be responsible for the fresh DDT inputs in the Segre River, while in the Ebro River, they indicate a dominant contribution of technical DDT, likely related to the residues accumulated by the chloro-alkali plant discharges. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Green and sustainable succinic acid production from crude glycerol by engineered Yarrowia lipolytica via agricultural residue based in situ fibrous bed bioreactor.

    PubMed

    Li, Chong; Gao, Shi; Yang, Xiaofeng; Lin, Carol Sze Ki

    2018-02-01

    In situ fibrous bed bioreactor (isFBB) for efficient succinic acid (SA) production by Yarrowia lipolytica was firstly developed in our former study. In this study, agricultural residues including wheat straw, corn stalk and sugarcane bagasse were investigated for the improvement of isFBB, and sugarcane bagasse was demonstrated to be the best immobilization material. With crude glycerol as the sole carbon source, optimization for isFBB batch fermentation was carried out. Under the optimal conditions of 20g sugarcane bagasse as immobilization material, 120gL -1 crude glycerol as carbon source and 4Lmin -1 of aeration rate, the resultant SA concentration was 53.6gL -1 with an average productivity of 1.45gL -1 h -1 and a SA yield of 0.45gg -1 . By feeding crude glycerol, SA titer up to 209.7gL -1 was obtained from fed batch fermentation, which was the highest value that ever reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study.

    PubMed

    Cheng, Weixiao; Li, Jianan; Wu, Ying; Xu, Like; Su, Chao; Qian, Yanyun; Zhu, Yong-Guan; Chen, Hong

    2016-03-05

    This study aims to determine abundance and persistence of antibiotics and antibiotic resistance genes (ARGs) in eco-agricultural system (EAS), which starts from swine feces to anaerobic digestion products, then application of anaerobic digestion solid residue (ADSR) and anaerobic digestion liquid residue (ADLR) to the soil to grow ryegrass, one of swine feed. Oxytetracycline had the highest concentration in manure reaching up to 138.7 mg/kg. Most of antibiotics could be effectively eliminated by anaerobic digestion and removal rates ranged from 11% to 86%. ARGs abundance fluctuated within EAS. TetQ had the highest relative abundance and the relative abundance of tetG had the least variation within the system, which indicates that tetG is persistent in the agricultural environment and requires more attention. Compared to the relative abundance in manure, tetC and tetM increased in biogas residue while three ribosomal protection proteins genes (tetO, tetQ, tetW) decreased (p<0.05), with other genes showing no significant change after anaerobic fermentation (p>0.05). Most ARGs in downstream components (soils and fishpond) of EAS showed significantly higher relative abundance than the control agricultural system (p<0.05), except for tetG and sulI. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Environmental assessment of anaerobically digested sludge reuse in agriculture: potential impacts of emerging micropollutants.

    PubMed

    Hospido, Almudena; Carballa, Marta; Moreira, Maite; Omil, Francisco; Lema, Juan M; Feijoo, Gumersindo

    2010-05-01

    Agricultural application of sewage sludge has been emotionally discussed in the last decades, because the latter contains organic micropollutants with unknown fate and risk potential. In this work, the reuse of anaerobically digested sludge in agriculture is evaluated from an environmental point of view by using Life Cycle Assessment methodology. More specifically, the potential impacts of emerging micropollutants, such as pharmaceuticals and personal care products, present in the sludge have been quantified. Four scenarios were considered according to the temperature of the anaerobic digestion (mesophilic or thermophilic) and the sludge retention time (20 or 10d), and they have been compared with the non-treated sludge. From an environmental point of view, the disposal of undigested sludge is not the most suitable alternative, except for global warming due to the dominance (65-85%) of the indirect emissions associated to the electricity use. Nutrient-related direct emissions dominate the eutrophication category impact in all the scenarios (>71.4%), although a beneficial impact related to the avoidance of industrial fertilisers production is also quantified (up to 6.7%). In terms of human and terrestrial toxicity, the direct emissions of heavy metals to soil dominate these two impact categories (>70%), and the contribution of other micropollutants is minimal. Moreover, only six (Galaxolide, Tonalide, Diazepam, Ibuprofen, Sulfamethoxazole and 17alpha-ethinyloestradiol) out of the 13 substances considered are really significant since they account for more than 95% of the overall micropollutants impact.

  5. Addressing bystander exposure to agricultural pesticides in life cycle impact assessment.

    PubMed

    Ryberg, Morten Walbech; Rosenbaum, Ralph K; Mosqueron, Luc; Fantke, Peter

    2018-04-01

    Residents living near agricultural fields may be exposed to pesticides drifting from the fields after application to different field crops. To address this currently missing exposure pathway in life cycle assessment (LCA), we developed a modeling framework for quantifying exposure of bystanders to pesticide spray drift from agricultural fields. Our framework consists of three parts addressing: (1) loss of pesticides from an agricultural field via spray drift; (2) environmental fate of pesticide in air outside of the treated field; and (3) exposure of bystanders to pesticides via inhalation. A comparison with measured data in a case study on pesticides applied to potato fields shows that our model gives good predictions of pesticide air concentrations. We compared our bystander exposure estimates with pathways currently included in LCA, namely aggregated inhalation and ingestion exposure mediated via the environment for the general population, and general population exposure via ingestion of pesticide residues in consumed food crops. The results show that exposure of bystanders is limited relative to total population exposure from ingestion of pesticide residues in crops, but that the exposure magnitude of individual bystanders can be substantially larger than the exposure of populations not living in the proximity to agricultural fields. Our framework for assessing bystander exposure to pesticide applications closes a relevant gap in the exposure assessment included in LCA for agricultural pesticides. This inclusion aids decision-making based on LCA as previously restricted knowledge about exposure of bystanders can now be taken into account. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. An observational study of the potential for human exposures to pet-borne diazinon residues following lawn applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Marsha K.; Stout, Daniel M.; Jones, Paul A.

    This study examined the potential for pet dogs to be an important pathway for transporting diazinon residues into homes and onto its occupants following residential lawn applications. The primary objectives were to investigate the potential exposures of occupants and their pet dogs to diazinon after an application to turf at their residences and to determine if personal contacts between occupants and their pet dogs resulted in measurable exposures. It was conducted from April to August 2001 before the Agency phased out all residential uses of diazinon in December 2004. Six families and their pet dogs were recruited into the study.more » Monitoring was conducted at pre-, 1, 2, 4, and 8 days post-application of a commercial, granular formulation of diazinon to the lawn by the homeowner. Environmental samples collected included soil, indoor air, carpet dust, and transferable residues from lawns and floors. Samples collected from the pet dogs consisted of paw wipes, fur clippings, and transferable residues from the fur by a technician or child wearing a cotton glove(s). First morning void (FMV) urine samples were collected from each child and his/her parent on each sampling day. Diazinon was analyzed in all samples, except urine, by GC-MS. The metabolite 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMPy) was analyzed in the urine samples by HPLC-MS/MS. Mean airborne residues of diazinon on day 1 post-application were at least six times higher in both the living rooms (235{+-}267 ng/m{sup 3}) and children's bedrooms (179{+-}246 ng/m{sup 3}) than at pre-application. Mean loadings of diazinon in carpet dust samples were at least 20 times greater on days 2, 4, and 8 post-application than mean loadings (0.03{+-}0.04 ng/cm{sup 2}) at pre-application. The pet dogs had over 900 times higher mean loadings of diazinon residues on their paws on day 1 post-application (88.1{+-}100.1 ng/cm{sup 2}) compared to mean loadings (<0.09 ng/cm{sup 2}) at pre-application. The mean diazinon

  7. Variability in pesticides residues--the US experience.

    PubMed

    Suhre, F B

    2000-07-01

    The evolution of US Environmental Protection Agency's (EPA) process for estimating potential health risks from pesticide residues in or on food is examined in light of changes in US Legislation and the variability of residue data and assumptions used to estimate dietary exposure. In the 86 years since enactment of the Insecticide Act, pesticide laws have become progressively more health-based. Passage of the 1996 Food Quality Protection Act (FQPA) requires EPA to place particular emphasis on assessing potential risk from pesticides to infants and children. Primary factors affecting the actual pesticide residues in food include frequency of application, percentage of crop treated, and the interval from treatment to harvest. Primary factors affecting the estimated pesticide residues in food include the source of the residue data, calculation techniques for non-detected residues, and the availability of data reflecting post-harvest treatments. Risk assessors must thoroughly consider these factors when assessing dietary risk to pesticides. Risk managers will need to consider these factors as a means of mitigating dietary risk from pesticides.

  8. [Antibiotic Residue in Environmental Water in Vietnam].

    PubMed

    Harada, Kazuo

    2018-01-01

     The increasing prevalence of antimicrobial resistance (AMR) has caused intractable infections worldwide. Nearly 50% of the healthy population of Southeast Asia carries extended-spectrum β-lactamase (ESBL)-producing Escherichia coli. The overuse of antimicrobial agents in the agriculture, aquaculture, and medical care sectors causes environmental pollution, facilitating the spread of AMR. However, there is a lack of data pertaining to antimicrobial residues in environmental water in such regions. We investigated a total of 49 chemicals, including β-lactams, sulfonamides, quinolones, and tetracyclines. Water samples were collected from rivers in city centers, and ponds in livestock and aquaculture farms, in Ha Noi, Thai Binh, and Can Tho in Vietnam. We detected antimicrobial agents at 87 of 111 sampling sites (78.4%). Among the target analytes, sulfamethoxazole, sulfamethazine, trimethoprim, cephalexin, and ofloxacin were detected frequently. The residual levels of each antimicrobial agent ranged from 0.1 to 10000 ng/L. Moreover, we detected multi-drug resistant E. coli in fishes sampled from these rivers, suggesting unwanted effects of antimicrobial residues in the environment.

  9. Biobased products research at the National Center for Agricultural Utilization Research

    USDA-ARS?s Scientific Manuscript database

    Recent research by our group at the NCAUR has concerned the research and development of biobased products, most of which are derived from the residues produced during agricultural processing. These include: novel sophorolipids from yeast as natural emulsifiers and surfactants for certified organic...

  10. Assessing the Impact of Agricultural Pressures on N and P Loads and Potential Eutrophication Risk at Regional Scales

    NASA Astrophysics Data System (ADS)

    Dupas, R.; Gascuel-odoux, C.; Delmas, M.; Moatar, F.

    2014-12-01

    Excessive nutrient loading of freshwater bodies results in increased eutrophication risk worldwide. The processes controlling N/P transfer in agricultural landscapes are well documented through scientific studies conducted in intensively monitored catchments. However, managers need tools to assess water quality and evaluate the contribution of agriculture to eutrophication at regional scales, including unmonitored or poorly monitored areas. To this end, we present an assessment framework which includes: i) a mass-balance model to estimate diffuse N/P transfer and retention and ii) indicators based on N:P:Si molar ratios to assess potential eutrophication risk from external loads. The model, called Nutting (Dupas et al., 2013), integrates variables for both detailed description of agricultural pressures (N surplus, soil P content) and characterisation of physical attributes of catchments (including spatial attributes). It was calibrated on 160 catchments, and applied to 2210 unmonitored headwater bodies in France (Dupas et al., under review). N and P retention represented 53% and 95% of soil N and P surplus, respectively, and was mainly controlled by runoff and an index characterising infiltration/runoff properties. According to our estimates, diffuse agricultural sources represented a mean of 97% of N loads and N exceeded Si in 93% of the catchments, whilst they represented 46% of P loads and P exceeded Si in 26-65% of the catchments. Estimated eutrophication risk was highly sensitive to assumptions about P bioavailability, hence the range of headwaters potentially at risk spanned 26-63% of the catchments, depending on assumptions. To reduce this uncertainty, we recommend introducing P bioavailability tests in water monitoring programs, especially in sensitive areas. Dupas R et al. Assessing N emissions in surface water at the national level: comparison of country-wide vs. regionalized models. Sci Total Environ 2013; 443: 152-62. Dupas R et al. Assessing the impact

  11. 4,4'-DDE and Endosulfan Levels in Agricultural Soils of the Çukurova Region, Mediterranean Turkey.

    PubMed

    Akça, Muhittin Onur; Hisatomi, Shihoko; Takemura, Manami; Harada, Naoki; Nonaka, Masanori; Sakakibara, Futa; Takagi, Kazuhiro; Turgay, Oğuz Can

    2016-03-01

    Mediterranean Turkey has long been at the forefront of Turkish agriculture and the use of organochlorinated pesticides (OCPs) in this area rose considerably between the 1940s and 1980s. This study aimed to determine OCP residue levels in agricultural soils collected from the Mersin and Adana Districts, Çukurova Basin in Mediterranean Turkey. Most soil samples were contaminated with one, or both, of two OCP metabolites; 4,4'-dichlorodiphenyldichloroethylene (4,4'-DDE) and endosulfan sulfate. 4,4'-DDE occurred in 27 of the 29 samples and ranged from 6 to 1090 µg kg(-1)-dry soil (ds)(-1), while six samples contained endosulfan sulfate ranging between 82 and 1226 µg kg(-1)-ds(-1). Generally, horticultural and corn-planted soils contained only 4,4'-DDE, whereas greenhouse cultivation appeared to accumulate both residues. This study indicated that 4,4'-DDE occurred above acceptable levels of risk in agricultural soils of Mersin District and further studies on the qualitative and quantitative assessment of OCPs in other agricultural regions with intensive pesticide use are necessary to fully understand the impact of OCPs on agricultural soil in Turkey.

  12. Managing residual limb hyperhidrosis in wounded warriors.

    PubMed

    Pace, Sarah; Kentosh, Joshua

    2016-06-01

    Residual limb dermatologic problems are a common concern among young active traumatic amputee patients who strive to maintain an active lifestyle. Hyperhidrosis of residual limbs is a recognized inciting factor that often contributes to residual limb dermatoses and is driven by the design of the prosthetic liner covering the residual limb. Treatment of hyperhidrosis in this population presents a unique challenge. Several accepted treatments of hyperhidrosis can offer some relief but have been limited by lack of results or side-effect profiles. Microwave thermal ablation has presented an enticing potential for residual limb hyperhidrosis.

  13. Requiring Pollutant Discharge Permits for Pesticide Applications that Deposit Residues in Surface Waters

    PubMed Central

    Centner, Terence; Eberhart, Nicholas

    2014-01-01

    Agricultural producers and public health authorities apply pesticides to control pests that damage crops and carry diseases. Due to the toxic nature of most pesticides, they are regulated by governments. Regulatory provisions require pesticides to be registered and restrictions operate to safeguard human health and the environment. Yet pesticides used near surface waters pose dangers to non-target species and drinking water supplies leading some governments to regulate discharges of pesticides under pollution discharge permits. The dual registration and discharge permitting provisions are burdensome. In the United States, agricultural interest groups are advancing new legislation that would exempt pesticide residues from water permitting requirements. An analysis of the dangers posed by pesticide residues in drinking water leads to a conclusion that both pesticide registration and pollutant discharge permitting provisions are needed to protect human health and aquatic species. PMID:24814945

  14. AGRICULTURAL NONPOINT SOURCE POLLUTION (AGNPS)

    EPA Science Inventory

    Developed by the USDA Agricultural Research Service, Agricultural Nonpoint Source Pollution (AGNPS) model addresses concerns related to the potential impacts of point and nonpoint source pollution on surface and groundwater quality (Young et al., 1989). It was designed to quantit...

  15. Impact of management strategies on the global warming potential at the cropping system level.

    PubMed

    Goglio, Pietro; Grant, Brian B; Smith, Ward N; Desjardins, Raymond L; Worth, Devon E; Zentner, Robert; Malhi, Sukhdev S

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha(-1) decreased on average the emissions of N2O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  16. Dioxin congener patterns in commercial catfish from the United States and the indication of mineral clays as the potential source

    USDA-ARS?s Scientific Manuscript database

    Since 1991 the U.S. Department of Agriculture (USDA) has conducted annual surveys of pesticide residues in foods under the Agricultural Marketing Service’s Pesticide Data Program (PDP). To assess chemical residues in domestically marketed catfish products, 1479 catfish samples were collected during ...

  17. Long-term use of biosolids as organic fertilizers in agricultural soils: potentially toxic elements occurrence and mobility.

    PubMed

    Marguí, E; Iglesias, M; Camps, F; Sala, L; Hidalgo, M

    2016-03-01

    The presence of potentially toxic elements (PTEs) may hinder a more widespread application of biosolids in agriculture. At present, the European Directive 86/278/CEE limit the total concentrations of seven metals (Cu, Cr, Ni, Pb, Zn, Cd and Hg) in agricultural soils and in sewage sludges used as fertilizers but it has not taken into consideration the potential impacts of other emerging micropollutants that may be present in the biosolids as well as their mobility. The aim of this study was to evaluate the accumulation and mobility of 13 elements (including regulated metals and other inorganic species) in agricultural soils repeatedly amended with biosolids for 15 years. Firstly, three digestions programs using different acid mixtures were tested to evaluate the most accurate and efficient method for analysis of soil and sludge. Results demonstrated that sewage sludge application increased concentrations of Pb and Hg in soil, but values did not exceed the quality standard established by legislation. In addition, other elements (As, Co, Sb, Ag, Se and Mn) that at present are not regulated by the Spanish and European directives were identified in the sewage sludge, and significant differences were found between Ag content in soils amended with biosolids in comparison with control soils. This fact can be related to the increasing use of silver nanoparticles in consumer products due to their antibacterial properties. Results from the leaching tests show up that, in general, the mobility degree for both regulated and non-regulated elements in soils amended with biosolids was quite low (<10 %).

  18. Midwest Climate and Agriculture - Monitoring Tillage Practices with NASA Remote Sensors

    NASA Astrophysics Data System (ADS)

    Makar, N. I.; Archer, S.; Rooks, K.; Sparks, K.; Trigg, C.; Lourie, J.; Wilkins, K.

    2011-12-01

    Concerns about climate change have driven efforts to reduce or offset greenhouse gas emissions. Agricultural activity has drawn considerable attention because it accounts for nearly twelve percent of total anthropogenic emissions. Depending on the type of tillage method utilized, farm land can be either a source or a sink of carbon. Conventional tillage disturbs the soil and can release greenhouse gases into the atmosphere. Conservational tillage practices have been advocated for their ability to sequester carbon, reduce soil erosion, maintain soil moisture, and increase long-term productivity. If carbon credit trading systems are implemented, a cost-effective, efficient tillage monitoring system is needed to enforce offset standards. Remote sensing technology can expedite the process and has shown promising results in distinguishing crop residue from soil. Agricultural indices such as the CAI, SINDRI, and LCA illuminate the unique reflectance spectra of crop residue and are thus able to classify fields based on percent crop cover. The CAI requires hyperspectral data, as it relies on narrow bands within the shortwave infrared portion of the electromagnetic spectrum. Although limited in availability, hyperspectral data has been shown to produce the most accurate results for detecting crop residue on the soil. A new approach to using the CAI was the focus of this study. Previously acquired field data was located in a region covered by a Hyperion swath and is thus the primary study area. In previous studies, ground-based data were needed for each satellite swath to correctly calibrate the linear relationship between the index values and the fraction of residue cover. We hypothesized that there should be a standard method which is able to convert index values into residue classifications without ground data analysis. To do this, end index values for a particular data set were assumed to be associated with end values of residue cover percentages. This method may prove

  19. Integrated economic and environmental analysis of agricultural straw reuse in edible fungi industry

    PubMed Central

    Lu, Wencong; Yu, Shuao; Huang, Hairong

    2018-01-01

    Background China currently faces severe environmental pollution caused by burning agricultural straw; thus, resource utilization of these straws has become an urgent policy and practical objective for the Chinese government. Methods This study develops a bio-economic model, namely, “straw resource utilization for fungi in China (SRUFIC),” on the basis of a field survey of an edible fungi plant in Zhejiang, China, to investigate an integrated economic and environmental performance of straw reuse in fungi production. Five scenarios, which cover changes in the production scale, wage level, and price fluctuations of the main product and inputs, are simulated. Results Results reveal that (1) the pilot plant potentially provides enhanced economic benefits and disposes added agricultural residues by adjusting its production strategy; (2) the economic performance is most sensitive to fungi price fluctuations, whereas the environmental performance is more sensitive to production scale and price of fungi than other factors; (3) expanding the production scale can be the most efficient means of improving the performance of a plant economically and environmentally. Discussion Overall, agricultural straw reuse in the edible fungi industry can not only reduce the environmental risk derived from burning abandoned straws but also introduce economic benefits. Thus, the straw reuse in the fungi industry should be practiced in China, and specific economic incentive policies, such as price support or subsidies, must be implemented to promote the utilization of agricultural straws in the fungi industry. PMID:29682417

  20. Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River, China.

    PubMed

    Yang, Silin; Zhou, Dequn; Yu, Huayong; Wei, Rong; Pan, Bo

    2013-06-01

    The distribution and chemical speciation of typical metals (Cu, Zn, Cd and Pb) in agricultural and non-agricultural soils were investigated in the area of Nanpan River, upstream of the Pearl River. The investigated four metals showed higher concentrations in agricultural soils than in non-agricultural soils, and the site located in factory district contained metals much higher than the other sampling sites. These observations suggested that human activities, such as water irrigation, fertilizer and pesticide applications might have a major impact on the distribution of metals. Metal speciation analysis presented that Cu, Zn and Cd were dominated by the residual fraction, while Pb was dominated by the reducible fraction. Because of the low mobility of the metals in the investigated area, no remarkable difference could be observed between upstream and downstream separated by the factory site. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Production of biogas from co-digestion of livestock and agricultural residues: A case study.

    PubMed

    Arhoun, Brahim; Gomez-Lahoz, Cesar; Abdala-Diaz, Roberto Teofilo; Rodriguez-Maroto, Jose Miguel; Garcia-Herruzo, Francisco; Vereda-Alonso, Carlos

    2017-07-29

    This study was undertaken to determine the possible changes in the digester yield and performance for the anaerobic co-digestion under mesophilic conditions of strawberry residues (SRs) together with pig manure (PM). The first part of this paper deals with the digestion of SR as a single substrate. For organic loading rates (OLRs) of 4.4 (g L -1 d -1 ) or less, the experimental specific biogas and methane productions are 0.588 and 0.231 L g -1 , respectively. When higher OLRs (5.5 g L -1 d -1 ) are used the digester fails due to acidification. In the second part, the co-digestion of both residues is explored using a wide variety of SR:PM ratios and OLRs of 5.5 g L -1 d -1 with good stability. Therefore, it is demonstrated that co-digestion allows the improvement of the treatment capacity as compared with SR as a single residue. The methane and biogas productions increase as the SR:PM ratio increases. It may be concluded that, when a digester works with a certain OLR, the performance for co-digestion is always better than for single substrates because the presence of PM provides a better stability and the presence of SR improves the biogas and methane production.

  2. 76 FR 69692 - Withdrawal of a Pesticide Petition for Residues of Pesticide Chemicals in or on Various Commodities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... of a pesticide petition received under section 408 of the Federal Food, Drug, and Cosmetic Act (FFDCA... part 180 for residues of pesticide chemicals in or on various food commodities. Pursuant to 40 CFR 180... requirement of a tolerance for residues of lactoperoxidase (CAS No. 9003-99-0) in or on all raw agricultural...

  3. Assessment on the rates and potentials of soil organic carbon sequestration in agricultural lands in Japan using a process-based model and spatially explicit land-use change inventories - Part 2: Future potentials

    NASA Astrophysics Data System (ADS)

    Yagasaki, Y.; Shirato, Y.

    2014-08-01

    Future potentials of the sequestration of soil organic carbon (SOC) in agricultural lands in Japan were estimated using a simulation system we recently developed to simulate SOC stock change at country-scale under varying land-use change, climate, soil, and agricultural practices, in a spatially explicit manner. Simulation was run from 1970 to 2006 with historical inventories, and subsequently to 2020 with future scenarios of agricultural activity comprised of various agricultural policy targets advocated by the Japanese government. Furthermore, the simulation was run subsequently until 2100 while forcing no temporal changes in land-use and agricultural activity to investigate duration and course of SOC stock change at country scale. A scenario with an increased rate of organic carbon input to agricultural fields by intensified crop rotation in combination with the suppression of conversion of agricultural lands to other land-use types was found to have a greater reduction of CO2 emission by enhanced soil carbon sequestration, but only under a circumstance in which the converted agricultural lands will become settlements that were considered to have a relatively lower rate of organic carbon input. The size of relative reduction of CO2 emission in this scenario was comparable to that in another contrasting scenario (business-as-usual scenario of agricultural activity) in which a relatively lower rate of organic matter input to agricultural fields was assumed in combination with an increased rate of conversion of the agricultural fields to unmanaged grasslands through abandonment. Our simulation experiment clearly demonstrated that net-net-based accounting on SOC stock change, defined as the differences between the emissions and removals during the commitment period and the emissions and removals during a previous period (base year or base period of Kyoto Protocol), can be largely influenced by variations in future climate. Whereas baseline-based accounting, defined

  4. Comparing water, bovine milk, and indoor residual spraying as possible sources of DDT and pyrethroid residues in breast milk.

    PubMed

    Sereda, Barbara; Bouwman, Henk; Kylin, Henrik

    2009-01-01

    The presence of pollutants in human breast milk is of major concern, especially in malaria control areas where 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) is currently used as indoor residual spray (IRS). The levels of DDT and pyrethroids (PYR) were determined in breast milk, bovine milk, and drinking water from northern KwaZulu-Natal, South Africa. Both reference and exposed mothers used the same market food, but the DDT levels in the exposed mothers (mean SigmaDDT 10 microg/g milk fat [mf]) were much higher than for the reference mothers (mean SigmaDDT 1.3 microg/g milk fat). This difference in residue levels indicates uptake from IRS-applied DDT, most likely via air and skin contact, and excludes food as the main source of pollutants. DDT levels in bovine milk (mean SigmaDDT 0.15 microg/g mf) from the exposed area were less than levels in breast milk from the reference area, and lower than the 20 microg/L maximum residue limit (MRL) set by the Food and Agriculture Organization (FAO). Mean SigmaDDT in water was 0.0065 microg/L, much lower then the WHO limit of the sum of all metabolites in drinking water of 1 microg/L, and therefore highly unlikely to have contributed to any extent toward levels in breast milk. Permethrin in breast milk (mean 1.1-1.6 microg/g milk fat) was probably derived from home garden and indoor use, while the other PYR (cypermethrin and cyfluthrin) at lower concentrations were probably derived from food and agricultural exposure. It is postulated that a better understanding of the indoor dynamics of DDT and other insecticides, through a concept of Total Homestead Environment Approach (THEA), is crucial for investigating options of reducing human exposure and uptake under malaria control conditions.

  5. High-Resolution Biogeochemical Simulation Identifies Practical Opportunities for Bioenergy Landscape Intensification Across Diverse US Agricultural Regions

    NASA Astrophysics Data System (ADS)

    Field, J.; Adler, P. R.; Evans, S.; Paustian, K.; Marx, E.; Easter, M.

    2015-12-01

    The sustainability of biofuel expansion is strongly dependent on the environmental footprint of feedstock production, including both direct impacts within feedstock-producing areas and potential leakage effects due to disruption of existing food, feed, or fiber production. Assessing and minimizing these impacts requires novel methods compared to traditional supply chain lifecycle assessment. When properly validated and applied at appropriate spatial resolutions, biogeochemical process models are useful for simulating how the productivity and soil greenhouse gas fluxes of cultivating both conventional crops and advanced feedstock crops respond across gradients of land quality and management intensity. In this work we use the DayCent model to assess the biogeochemical impacts of agricultural residue collection, establishment of perennial grasses on marginal cropland or conservation easements, and intensification of existing cropping at high spatial resolution across several real-world case study landscapes in diverse US agricultural regions. We integrate the resulting estimates of productivity, soil carbon changes, and nitrous oxide emissions with crop production budgets and lifecycle inventories, and perform a basic optimization to generate landscape cost/GHG frontiers and determine the most practical opportunities for low-impact feedstock provisioning. The optimization is constrained to assess the minimum combined impacts of residue collection, land use change, and intensification of existing agriculture necessary for the landscape to supply a commercial-scale biorefinery while maintaining exiting food, feed, and fiber production levels. These techniques can be used to assess how different feedstock provisioning strategies perform on both economic and environmental criteria, and sensitivity of performance to environmental and land use factors. The included figure shows an example feedstock cost-GHG mitigation tradeoff frontier for a commercial-scale cellulosic

  6. United States Department of Agriculture-Agricultural Research Service research on natural products for pest management.

    PubMed

    Duke, Stephen O; Baerson, Scott R; Dayan, Franck E; Rimando, Agnes M; Scheffler, Brian E; Tellez, Mario R; Wedge, David E; Schrader, Kevin K; Akey, David H; Arthur, Frank H; De Lucca, Anthony J; Gibson, Donna M; Harrison, Howard F; Peterson, Joseph K; Gealy, David R; Tworkoski, Thomas; Wilson, Charles L; Morris, J Brad

    2003-01-01

    Recent research of the Agricultural Research Service of USDA on the use of natural products to manage pests is summarized. Studies of the use of both phytochemicals and diatomaceous earth to manage insect pests are discussed. Chemically characterized compounds, such as a saponin from pepper (Capsicum frutescens L), benzaldehyde, chitosan and 2-deoxy-D-glucose are being studied as natural fungicides. Resin glycosides for pathogen resistance in sweet potato and residues of semi-tropical leguminous plants for nematode control are also under investigation. Bioassay-guided isolation of compounds with potential use as herbicides or herbicide leads is underway at several locations. New natural phytotoxin molecular target sites (asparagine synthetase and fructose-1,6-bisphosphate aldolase) have been discovered. Weed control in sweet potato and rice by allelopathy is under investigation. Molecular approaches to enhance allelopathy in sorghum are also being undertaken. The genes for polyketide synthases involved in production of pesticidal polyketide compounds in fungi are found to provide clues for pesticide discovery. Gene expression profiles in response to fungicides and herbicides are being generated as tools to understand more fully the mode of action and to rapidly determine the molecular target site of new, natural fungicides and herbicides.

  7. Cellulosic feedstock production on Conservation Reserve Program land: Potential yields and environmental effects

    DOE PAGES

    LeDuc, Stephen D.; Zhang, Xuesong; Clark, Christopher M.; ...

    2016-02-26

    Producing biofuel feedstocks on current agricultural land raises questions of a ‘food-vs.-fuel’ trade-off. The use of current or former Conservation Reserve Program (CRP) land offers an alternative; yet the volumes of ethanol that could be produced and the potential environmental impacts of such a policy are unclear. Here, we applied the Environmental Policy Integrated Climate model to a US Department of Agriculture database of over 200 000 CRP polygons in Iowa, USA, as a case study. We simulated yields and environmental impacts of growing three cellulosic biofuel feedstocks on CRP land: (i) an Alamo-variety switchgrass ( Panicum virgatum L.); (ii)more » a generalized mixture of C4 and C3 grasses; (iii) and no-till corn ( Zea mays L.) with residue removal. We simulated yields, soil erosion, and soil carbon (C) and nitrogen (N) stocks and fluxes. We found that although no-till corn with residue removal produced approximately 2.6–4.4 times more ethanol per area compared to switchgrass and the grass mixture, it also led to 3.9–4.5 times more erosion, 4.4–5.2 times more cumulative N loss, and a 10% reduction in total soil carbon as opposed to a 6–11% increase. Switchgrass resulted in the best environmental outcomes even when expressed on a per liter ethanol basis. Our results suggest planting no-till corn with residue removal should only be done on low slope soils to minimize environmental concerns. Altogether, this analysis provides additional information to policy makers on the potential outcome and effects of producing biofuel feedstocks on current or former conservation lands.« less

  8. [Determination of Butroxydim in Agricultural Products by LC-MS].

    PubMed

    Minatani, Tomiaki; Nagai, Hiroyuki; Tada, Hiroyuki; Goto, Kotaro; Nemoto, Satoru

    2015-01-01

    An analytical method for the determination of butroxydim in agricultural products by LC-MS was developed. Butroxydim was extracted with acetonitrile and an aliquot of the crude extract was cleaned up on an octadecyl silanized silica gel (C18) cartridge column (1,000 mg), followed by a salting-out step to remove water. Before purification on a silica gel (SI) cartridge column (690 mg), polar matrices were precipitated by adding ethyl acetate, n-hexane and anhydrous sodium sulfate successively. This process effectively removed caffeine and catechins and improved recovery when analyzing residual butroxydim in tea leaves. Recovery and repeatability were good; the relative standard deviations were less than 5% for all 12 tested agricultural products (brown rice, soybean, potato, spinach, cabbage, apple, orange, grapefruit, lemon, tomato, peas with pods, and tea). Average recoveries for 11 agricultural products, except for lemon, were 74-92%.

  9. Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential.

    PubMed

    Briassoulis, D; Hiskakis, M; Babou, E; Antiohos, S K; Papadi, C

    2012-06-01

    A holistic environmentally sound waste management scheme that transforms agricultural plastic waste (APW) streams into labelled guaranteed quality commodities freely traded in open market has been developed by the European research project LabelAgriWaste. The APW quality is defined by the APW material requirements, translated to technical specifications, for recycling or energy recovery. The present work investigates the characteristics of the APW quality and the key factors affecting it from the introduction of the virgin product to the market to the APW stream reaching the disposer. Samples of APW from different countries were traced from their application to the field through their storage phase and transportation to the final destination. The test results showed that the majority of APW retained their mechanical properties after their use preserving a "very good quality" for recycling in terms of degradation. The degree of soil contamination concerning the APW recycling and energy recovery potential fluctuates depending on the agricultural plastic category and application. The chlorine and heavy metal content of the tested APW materials was much lower than the maximum acceptable limits for their potential use in cement industries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. The Potential of Genetic Engineering in Agriculture to Affect Global Stability

    DTIC Science & Technology

    2013-04-17

    manipulation in agriculture is thousands of years old, dating back to man’s first efforts of plant domestication. Over the last 200 years, and especially the...engineering.” In agriculture, genetic engineering describes the science of manipulating the genetic material (DNA) of plants by adding or taking...nature run its course. This paper does not delve into the science or even the raging safety debate over the use of genetic engineering in plants that

  11. Field Studies to Evaluate Potential Differences between Bt and non-Bt Corn Residue

    USDA-ARS?s Scientific Manuscript database

    Some reports suggest that the genetically-modified Bt corn residue may have higher lignin content and that the residue may be more resistant to decomposition. If true, then there are implications for both farming practices, e.g., tillage and planting, as well as global carbon budgets. We conducted ...

  12. Field Studies to Evaluate Potential Differences between Bt and non-Bt Corn Residue

    USDA-ARS?s Scientific Manuscript database

    Some reports suggest that the genetically-modified Bt corn residue may have higher lignin content and that the residue may be more resistant to decomposition. If true, then there are implications for both farming practices, e.g., tillage and planting, as well as global carbon budgets. We evaluated ...

  13. Estimating costs and potentials of different methods to reduce the Swedish phosphorus load from agriculture to surface water.

    PubMed

    Malmaeus, J M; Karlsson, O M

    2010-01-01

    This paper reviews 17 measures to reduce phosphorus leakage from Swedish agriculture to surface waters. Our aim is to evaluate the possible contribution from agriculture to achieve environmental goals including the Baltic Sea Action Plan. Using a regional approach integrating the variability in field specific characteristics, typical costs and national potential for the included measures may be estimated without identifying, e.g., suitable individual fields for implementation. The result may be helpful to select suitable measures but may also influence the design of environmental targets before they are determined. We find that the cheapest measures are reduced phosphorus content in animal food and fertilizer application supervision in pig farms, both measures with annual potentials of around 50t each, and costs of euro7 to euro11 kg(-1)yr(-1). The total potential of the listed measures is an annual phosphorus reduction to surface waters of 242t. If the most expensive measures are excluded (>euro1000 kg(-1)yr(-1)) and including retention in lakes the phosphorus transport to the sea could be reduced by 165 t yr(-1). This amount can be compared with the Swedish commitment in the Baltic Sea Action Plan (BSAP) to reduce input to the Baltic Proper by 290 t yr(-1).

  14. 7 CFR 29.429 - Disposition of imported tobacco exceeding pesticide residue standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Disposition of imported tobacco exceeding pesticide... Disposition of imported tobacco exceeding pesticide residue standards. Within 10 days of the receipt of test results from pesticide test samples, the Director shall notify the importer or entity responsible for the...

  15. 7 CFR 29.429 - Disposition of imported tobacco exceeding pesticide residue standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Disposition of imported tobacco exceeding pesticide... Disposition of imported tobacco exceeding pesticide residue standards. Within 10 days of the receipt of test results from pesticide test samples, the Director shall notify the importer or entity responsible for the...

  16. 7 CFR 29.429 - Disposition of imported tobacco exceeding pesticide residue standards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Disposition of imported tobacco exceeding pesticide... Disposition of imported tobacco exceeding pesticide residue standards. Within 10 days of the receipt of test results from pesticide test samples, the Director shall notify the importer or entity responsible for the...

  17. 7 CFR 29.429 - Disposition of imported tobacco exceeding pesticide residue standards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Disposition of imported tobacco exceeding pesticide... Disposition of imported tobacco exceeding pesticide residue standards. Within 10 days of the receipt of test results from pesticide test samples, the Director shall notify the importer or entity responsible for the...

  18. 7 CFR 29.429 - Disposition of imported tobacco exceeding pesticide residue standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Disposition of imported tobacco exceeding pesticide... Disposition of imported tobacco exceeding pesticide residue standards. Within 10 days of the receipt of test results from pesticide test samples, the Director shall notify the importer or entity responsible for the...

  19. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation

    PubMed Central

    Sultan, Benjamin; Gaetani, Marco

    2016-01-01

    West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture, and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensive overview of climate change impacts on agriculture in West Africa based on the recent scientific literature. West Africa is nowadays experiencing a rapid climate change, characterized by a widespread warming, a recovery of the monsoonal precipitation, and an increase in the occurrence of climate extremes. The observed climate tendencies are also projected to continue in the twenty-first century under moderate and high emission scenarios, although large uncertainties still affect simulations of the future West African climate, especially regarding the summer precipitation. However, despite diverging future projections of the monsoonal rainfall, which is essential for rain-fed agriculture, a robust evidence of yield loss in West Africa emerges. This yield loss is mainly driven by increased mean temperature while potential wetter or drier conditions as well as elevated CO2 concentrations can modulate this effect. Potential for adaptation is illustrated for major crops in West Africa through a selection of studies based on process-based crop models to adjust cropping systems (change in varieties, sowing dates and density, irrigation, fertilizer management) to future climate. Results of the cited studies are crop and region specific and no clear conclusions can be made regarding the most effective adaptation options. Further efforts are needed to improve modeling of the monsoon system and to better quantify the uncertainty in its changes under a warmer climate, in the response of the crops to such

  20. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation.

    PubMed

    Sultan, Benjamin; Gaetani, Marco

    2016-01-01

    West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture, and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensive overview of climate change impacts on agriculture in West Africa based on the recent scientific literature. West Africa is nowadays experiencing a rapid climate change, characterized by a widespread warming, a recovery of the monsoonal precipitation, and an increase in the occurrence of climate extremes. The observed climate tendencies are also projected to continue in the twenty-first century under moderate and high emission scenarios, although large uncertainties still affect simulations of the future West African climate, especially regarding the summer precipitation. However, despite diverging future projections of the monsoonal rainfall, which is essential for rain-fed agriculture, a robust evidence of yield loss in West Africa emerges. This yield loss is mainly driven by increased mean temperature while potential wetter or drier conditions as well as elevated CO2 concentrations can modulate this effect. Potential for adaptation is illustrated for major crops in West Africa through a selection of studies based on process-based crop models to adjust cropping systems (change in varieties, sowing dates and density, irrigation, fertilizer management) to future climate. Results of the cited studies are crop and region specific and no clear conclusions can be made regarding the most effective adaptation options. Further efforts are needed to improve modeling of the monsoon system and to better quantify the uncertainty in its changes under a warmer climate, in the response of the crops to such

  1. Career Preparation Programs for Potential Agribusinessmen, Agricultural Agency Employees, and Agricultural Instructors. Final Report. July 1, 1976-June 30, 1977.

    ERIC Educational Resources Information Center

    Mississippi State Univ., State College. Dept. of Agricultural Education.

    The purpose of the project was to develop innovative agricultural education programs within the comprehensive high school setting in selected school districts in the state of Mississippi, with the project's second year (described here) focusing on continuing existing specialized career preparation program in agriculture and continuing to orient…

  2. Genetic Technology and Agricultural Development

    ERIC Educational Resources Information Center

    Staub, William J.; Blase, Melvin G.

    1971-01-01

    Examines the nature, application, limits and potential of applied genetics in plant breeding as a factor in South Asian agricultural development. Concludes other factors were also present in recent agricultural growth, and indicates some economic implications of continued growth, including problems of employment of displaced rural workers. (AL)

  3. Organochlorine pesticide residues in ground water of Thiruvallur district, India.

    PubMed

    Jayashree, R; Vasudevan, N

    2007-05-01

    Modern agriculture practices reveal an increase in use of pesticides and fertilizers to meet the food demand of increasing population which results in contamination of the environment. In India crop production increased to 100% but the cropping area has increased marginally by 20%. Pesticides have played a major role in achieving the maximum crop production, but maximum usage and accumulation of pesticide residues was highly detrimental to aquatic and other ecosystem. The present study was chosen to know the level of organochlorines contamination in ground water of Thiruvallur district, Tamil Nadu, India. The samples were highly contaminated with DDT, HCH, endosulfan and their derivatives. Among the HCH derivatives, Gamma HCH residues was found maximum of 9.8 microg/l in Arumbakkam open wells. Concentrations of pp-DDT and op-DDT were 14.3 microg/l and 0.8 microg/l. The maximum residue (15.9 microg/l) of endosulfan sulfate was recorded in Kandigai village bore well. The study showed that the ground water samples were highly contaminated with organochlorine residues.

  4. Applications of DNA Technologies in Agriculture.

    PubMed

    Fang, Jinggui; Zhu, Xudong; Wang, Chen; Shangguan, Lingfei

    2016-08-01

    With the development of molecular biology, some DNA-based technologies have showed great potentiality in promoting the efficiency of crop breeding program, protecting germplasm resources, improving the quality and outputs of agricultural products, and protecting the eco-environment etc., making their roles in modern agriculture more and more important. To better understand the application of DNA technologies in agriculture, and achieve the goals to promote their utilities in modern agriculture, this paper describes, in some different way, the applications of molecular markers, transgenic engineering and gene's information in agriculture. Some corresponding anticipations for their development prospects are also made.

  5. Optical computation using residue arithmetic.

    PubMed

    Huang, A; Tsunoda, Y; Goodman, J W; Ishihara, S

    1979-01-15

    Using residue arithmetic it is possible to perform additions, subtractions, multiplications, and polynomial evaluation without the necessity for carry operations. Calculations can, therefore, be performed in a fully parallel manner. Several different optical methods for performing residue arithmetic operations are described. A possible combination of such methods to form a matrix vector multiplier is considered. The potential advantages of optics in performing these kinds of operations are discussed.

  6. Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues.

    PubMed

    Zhou, Jia-Wei; Zou, Xue-Mei; Song, Shang-Hong; Chen, Guan-Hua

    2018-02-14

    The pesticide and veterinary drug residues brought by large-scale agricultural production have become one of the issues in the fields of food safety and environmental ecological security. It is necessary to develop the rapid, sensitive, qualitative and quantitative methodology for the detection of pesticide and veterinary drug residues. As one of the achievements of nanoscience, quantum dots (QDs) have been widely used in the detection of pesticide and veterinary drug residues. In these methodology studies, the used QD-signal styles include fluorescence, chemiluminescence, electrochemical luminescence, photoelectrochemistry, etc. QDs can also be assembled into sensors with different materials, such as QD-enzyme, QD-antibody, QD-aptamer, and QD-molecularly imprinted polymer sensors, etc. Plenty of study achievements in the field of detection of pesticide and veterinary drug residues have been obtained from the different combinations among these signals and sensors. They are summarized in this paper to provide a reference for the QD application in the detection of pesticide and veterinary drug residues.

  7. Vegetated agricultural drainage ditches for the mitigation of pyrethroid-associated runoff.

    PubMed

    Bennett, Erin R; Moore, Matthew T; Cooper, Charles M; Smith, Sammie; Shields, F Douglas; Drouillard, Ken G; Schulz, Ralf

    2005-09-01

    Drainage ditches are indispensable components of the agricultural production landscape. A benefit of these ditches is contaminant mitigation of agricultural storm runoff. This study determined bifenthrin and lambda-cyhalothrin (two pyrethroid insecticides) partitioning and retention in ditch water, sediment, and plant material as well as estimated necessary ditch length required for effective mitigation. A controlled-release runoff simulation was conducted on a 650-m vegetated drainage ditch in the Mississippi Delta, USA. Bifenthrin and lambda-cyhalothrin were released into the ditch in a water-sediment slurry. Samples of water, sediment, and plants were collected and analyzed for pyrethroid concentrations. Three hours following runoff initiation, inlet bifenthrin and lambda-cyhalothrin water concentrations ranged from 666 and 374 microg/L, respectively, to 7.24 and 5.23 microg/L at 200 m downstream. No chemical residues were detected at the 400-m sampling site. A similar trend was observed throughout the first 7 d of the study where water concentrations were elevated at the front end of the ditch (0-25 m) and greatly reduced by the 400-m sampling site. Regression formulas predicted that bifenthrin and lambda-cyhalothrin concentrations in ditch water were reduced to 0.1% of the initial value within 280 m. Mass balance calculations determined that ditch plants were the major sink and/or sorption site responsible for the rapid aqueous pyrethroid dissipation. By incorporating vegetated drainage ditches into a watershed management program, agriculture can continue to decrease potential non-point source threats to downstream aquatic receiving systems. Overall results of this study illustrate that aquatic macrophytes play an important role in the retention and distribution of pyrethroids in vegetated agricultural drainage ditches.

  8. Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briassoulis, D., E-mail: briassou@aua.gr; Hiskakis, M.; Babou, E.

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Definition of parameters characterising agricultural plastic waste (APW) quality. Black-Right-Pointing-Pointer Analysis of samples to determine APW quality for recycling or energy recovery. Black-Right-Pointing-Pointer Majority of APW samples from various countries have very good quality for recycling. Black-Right-Pointing-Pointer Upper limit of 50% w/w soil contamination in APW acceptable for energy recovery. Black-Right-Pointing-Pointer Chlorine and heavy metals content in APW below the lowest limit for energy recovery. - Abstract: A holistic environmentally sound waste management scheme that transforms agricultural plastic waste (APW) streams into labelled guaranteed quality commodities freely traded in open market has been developed by the European researchmore » project LabelAgriWaste. The APW quality is defined by the APW material requirements, translated to technical specifications, for recycling or energy recovery. The present work investigates the characteristics of the APW quality and the key factors affecting it from the introduction of the virgin product to the market to the APW stream reaching the disposer. Samples of APW from different countries were traced from their application to the field through their storage phase and transportation to the final destination. The test results showed that the majority of APW retained their mechanical properties after their use preserving a 'very good quality' for recycling in terms of degradation. The degree of soil contamination concerning the APW recycling and energy recovery potential fluctuates depending on the agricultural plastic category and application. The chlorine and heavy metal content of the tested APW materials was much lower than the maximum acceptable limits for their potential use in cement industries.« less

  9. Dissipation and residue of azoxystrobin in banana under field condition.

    PubMed

    Wang, Siwei; Sun, Haibin; Liu, Yanping

    2013-09-01

    A method was developed for determining azoxystrobin in banana and cultivation soil using gas chromatography. The dissipation and residue of azoxystrobin in banana fields at GAP conditions were investigated. The average recoveries ranged from 80.3 to 96.0 % with relative standard deviations of 2.9 to 7.2 % at three different spiking levels for each matrix. The results indicated that the half-life of azoxystrobin in bananas and soil ranged from 7.5 to 13.5 days in Guangdong and from 8.7 to 12.7 days in Fujian. The dissipation rates of azoxystrobin in banana and soil were almost the same. Terminal residues in banana and banana flesh (0.01 mg/kg) were all below the maximum residue limit (2 mg/kg by Codex Alimentarius Commission and China). The results demonstrated that the safety of using azoxystrobin at the recommended agriculture dosage to protect bananas from diseases.

  10. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    PubMed Central

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  11. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry.

    PubMed

    Essack, Magbubah; Alzubaidy, Hanin S; Bajic, Vladimir B; Archer, John A C

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  12. Estimating the effects of potential climate and land use changes on hydrologic processes of a large agriculture dominated watershed

    NASA Astrophysics Data System (ADS)

    Neupane, Ram P.; Kumar, Sandeep

    2015-10-01

    Land use and climate are two major components that directly influence catchment hydrologic processes, and therefore better understanding of their effects is crucial for future land use planning and water resources management. We applied Soil and Water Assessment Tool (SWAT) to assess the effects of potential land use change and climate variability on hydrologic processes of large agriculture dominated Big Sioux River (BSR) watershed located in North Central region of USA. Future climate change scenarios were simulated using average output of temperature and precipitation data derived from Special Report on Emission Scenarios (SRES) (B1, A1B, and A2) for end-21st century. Land use change was modeled spatially based on historic long-term pattern of agricultural transformation in the basin, and included the expansion of corn (Zea mays L.) cultivation by 2, 5, and 10%. We estimated higher surface runoff in all land use scenarios with maximum increase of 4% while expanding 10% corn cultivation in the basin. Annual stream discharge was estimated higher with maximum increase of 72% in SRES-B1 attributed from higher groundwater contribution of 152% in the same scenario. We assessed increased precipitation during spring season but the summer precipitation decreased substantially in all climate change scenarios. Similar to decreased summer precipitation, discharge of the BSR also decreased potentially affecting agricultural production due to reduced future water availability during crop growing season in the basin. However, combined effects of potential land use change with climate variability enhanced for higher annual discharge of the BSR. Therefore, these estimations can be crucial for implications of future land use planning and water resources management of the basin.

  13. Statistical Techniques to Analyze Pesticide Data Program Food Residue Observations.

    PubMed

    Szarka, Arpad Z; Hayworth, Carol G; Ramanarayanan, Tharacad S; Joseph, Robert S I

    2018-06-26

    The U.S. EPA conducts dietary-risk assessments to ensure that levels of pesticides on food in the U.S. food supply are safe. Often these assessments utilize conservative residue estimates, maximum residue levels (MRLs), and a high-end estimate derived from registrant-generated field-trial data sets. A more realistic estimate of consumers' pesticide exposure from food may be obtained by utilizing residues from food-monitoring programs, such as the Pesticide Data Program (PDP) of the U.S. Department of Agriculture. A substantial portion of food-residue concentrations in PDP monitoring programs are below the limits of detection (left-censored), which makes the comparison of regulatory-field-trial and PDP residue levels difficult. In this paper, we present a novel adaption of established statistical techniques, the Kaplan-Meier estimator (K-M), the robust regression on ordered statistic (ROS), and the maximum-likelihood estimator (MLE), to quantify the pesticide-residue concentrations in the presence of heavily censored data sets. The examined statistical approaches include the most commonly used parametric and nonparametric methods for handling left-censored data that have been used in the fields of medical and environmental sciences. This work presents a case study in which data of thiamethoxam residue on bell pepper generated from registrant field trials were compared with PDP-monitoring residue values. The results from the statistical techniques were evaluated and compared with commonly used simple substitution methods for the determination of summary statistics. It was found that the maximum-likelihood estimator (MLE) is the most appropriate statistical method to analyze this residue data set. Using the MLE technique, the data analyses showed that the median and mean PDP bell pepper residue levels were approximately 19 and 7 times lower, respectively, than the corresponding statistics of the field-trial residues.

  14. Fuel alcohol production from agricultural lignocellulosic feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, G.E.; Barrier, J.W.; Forsythe, M.L.

    1988-01-01

    A two-stage, low-temperature, ambient pressure, acid hydrolysis process that utilizes separate unit operations to convert hemicellulose and cellulose in agricultural residues and crops to fermentable sugars is being developed and tested. Based on the results of the bench-scale tests, an acid hydrolysis experimental plant to demonstrate the concepts of low-temperature acid hydrolysis on a much larger scale was built. Plant tests using corn stover have been conducted for more that a year and conversion efficiences have equaled those achieved in the laboratory. Laboratory tests to determine the potential for low-temperature acid hydrolysis of other feedstocks - including red clover, alfalfa,more » kobe lespedeza, winter rape, and rye grass - are being conducted. Where applicable, process modifications to include extraction before or after hydrolysis also are being studied. This paper describes the experimental plant and process, results obtained in the plant, results of alternative feedstocks testing in the laboratory, and a plan for an integrated system that will produce other fuels, feed, and food from crops grown on marginal land.« less

  15. Case study: Is the 'catch-all-plastics bin' useful in unlocking the hidden resource potential in the residual waste collection system?

    PubMed

    Kranzinger, Lukas; Schopf, Kerstin; Pomberger, Roland; Punesch, Elisabeth

    2017-02-01

    Austria's performance in the collection of separated waste is adequate. However, the residual waste still contains substantial amounts of recyclable materials - for example, plastics, paper and board, glass and composite packaging. Plastics (lightweight packaging and similar non-packaging materials) are detected at an average mass content of 13% in residual waste. Despite this huge potential, only 3% of the total amount of residual waste (1,687,000 t y -1 ) is recycled. This implies that most of the recyclable materials contained in the residual waste are destined for thermal recovery and are lost for recycling. This pilot project, commissioned by the Land of Lower Austria, applied a holistic approach, unique in Europe, to the Lower Austrian waste management system. It aims to transfer excess quantities of plastic packaging and non-packaging recyclables from the residual waste system to the separately collected waste system by introducing a so-called 'catch-all-plastics bin'. A quantity flow model was constructed and the results showed a realistic increase in the amount of plastics collected of 33.9 wt%. This equals a calculated excess quantity of 19,638 t y -1 . The increased plastics collection resulted in a positive impact on the climate footprint (CO 2 equivalent) in line with the targets of EU Directive 94/62/EG (Circular Economy Package) and its Amendments. The new collection system involves only moderate additional costs.

  16. Occurrence and risk assessment of potentially toxic elements and typical organic pollutants in contaminated rural soils.

    PubMed

    Xu, Yongfeng; Dai, Shixiang; Meng, Ke; Wang, Yuting; Ren, Wenjie; Zhao, Ling; Christie, Peter; Teng, Ying

    2018-07-15

    The residual levels and risk assessment of several potentially toxic elements (PTEs), phthalate esters (PAEs) and polycyclic aromatic hydrocarbons (PAHs) in rural soils near different types of pollution sources in Tianjin, China, were studied. The soils were found to be polluted to different extents with PTEs, PAEs and PAHs from different pollution sources. The soil concentrations of chromium (Cr), nickel (Ni), di-n-butyl phthalate (DnBP), acenaphthylene (Any) and acenaphthene (Ane) were higher than their corresponding regulatory reference limits. The health risk assessment model used to calculate human exposure indicates that both non-carcinogenic and carcinogenic risks from selected pollutants were generally acceptable or close to acceptable. Different types of pollution sources and soil physicochemical properties substantially affected the soil residual concentrations of and risks from these pollutants. PTEs in soils collected from agricultural lands around industrial and residential areas and organic pollutants (PAEs and PAHs) in soils collected from agricultural areas around livestock breeding were higher than those from other types of pollution sources and merit long-term monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Process heat in California: Applications and potential for solar energy in the industrial, agricultural and commercial sectors

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Bartera, R. E.; Davis, E. S.; Hlavka, G. E.; Pivirotto, D. S.; Yanow, G.

    1978-01-01

    A summary of the results of a survey of potential applications of solar energy for supplying process heat requirements in the industrial, agricultural, and commercial sectors of California is presented. Technical, economic, and institutional characteristics of the three sectors are examined. Specific applications for solar energy are then discussed. Finally, implications for California energy policy are discussed along with recommendations for possible actions by the State of California.

  18. Myconanotechnology in agriculture: a perspective.

    PubMed

    Kashyap, Prem Lal; Kumar, Sudheer; Srivastava, Alok Kumar; Sharma, Arun Kumar

    2013-02-01

    Myconanotechnology is an emerging field, where fungi can be harnessed for the synthesis of nanomaterials or nanostructures with desirable shape and size. Though myconanotechnology is in its infancy, potential applications provide exciting waves of transformation in agriculture and fascinate microbiologists and other researchers to contribute in providing incremental solutions through green chemistry approaches for advancing food security. In this article, we provide a brief overview of the research efforts on the mycogenic synthesis of nanoparticles with particular emphasis on mechanisms and potential applications in agriculture and allied sectors.

  19. [Towards a renewable and sustainable agriculture. Biological agriculture: from marginal vanguard to spearhead of the agriculture of the future].

    PubMed

    Diek Van Mansvelt, J

    1992-01-01

    This work seeks to demonstrate how different types of organic agriculture can meet the need for renewable and sustainable agriculture, rural development, and management of the land and water resources. An obstacle to the spread of organic agriculture is the widespread perception that without intensive factors of production, demographic growth will necessarily outstrip the available food resources. Calculation of economic costs and benefits at present carries greater weight in planning than do soil erosion, deforestation, extinction of species, disappearance of habitats, and similar environmental damage. The different types of organic agriculture do not follow rigid rules and are not defined solely by the nonuse of nitrogenous fertilizers and pesticides. One of the main principles or organic agriculture is to respect local soil and climatic conditions. Self-sufficiency regarding external factors of production and an emphasis on recycling and optimal use of natural resources were concept ahead of their time when they initially were introduced in the 1920s. The specialization which restructured agriculture over the past century has seriously damaged the system of mixed agriculture and the chain of food production. The solution will be to seek for each region an appropriate balance linking animals and agricultural production in an organic process. The objective of organic agriculture, also known as autonomous ecosystem management, is to preserve as far as possible the balance between needs for food and fiber on the 1 hand and the potential of local ecosystems on the other. General principles of organic agriculture include mixed exploitation in which both plants and animals have specific functions in the context of their local soil and climatic characteristics. Different types of crop rotation are practiced to optimize mutual interactions between crops, and the varied organic cycles are also optimized within the framework of anorganic management in accord with nature

  20. Leaching of nitrogen and base cations from calcareous soil amended with organic residues.

    PubMed

    Zarabi, Mahboubeh; Jalali, Mohsen

    2012-01-01

    The potential for groundwater and surface water pollution by nutrients in organic residues, primarily nitrogen (N) and base cations (K+, Na+, Ca2+, Mg2+), is a consideration when applying such residues to land. In this study, we used a laboratory column leaching procedure to examine the leaching of N, K+, Na+, Ca2+ and Mg2+ in soils treated with two types of raw organic residues (poultry manure and potato residues) and one municipal waste compost, which are currently recycled on agricultural land in Iran. Each organic residue was thoroughly mixed with two different soils (sandy loam and clay) at the rate of 3%. Soil columns were leached at 4-d intervals for 92 d with distilled water, and effluents were analysed for pH, EC, nitrate (NO3(-)-N), ammonium (NH4(+)-N) K+, Na+, Ca2+ and Mg2+. The results indicated that the amounts of NO3(-)-N and NH4(+)-N leached from the poultry manure and potato residues could represent very important economic losses of N and pose an environmental threat under field conditions. The sandy loam soil amended with poultry manure lost the highest amount of NO3(-)-N (206.4 kg ha(-1)), and clay soil amended with poultry manure lost the highest amounts of NH4(+)-N (454.3 kg ha(-1)). The results showed that a treatment incorporating 3% of municipal waste compost could be used without negative effects to groundwater N concentration in clay soil. Significant amounts of K+, Na+, Ca2+, and Mg2+ were leached owing to the application of poultry manure, potato and municipal waste compost to soils. There was a positive relationship between K+, Na+, Ca2+, and Mg2+ with NO3(-)-N and NH4(+)-N leached in soils. Analysis of variance detected significant effects of amendment, soil type and time on the leaching NO3(-)-N, NH4(+)-N, K+, Na+, Ca2+ and Mg2+.

  1. Microbial pollution in wildlife: Linking agricultural manuring and bacterial antibiotic resistance in red-billed choughs.

    PubMed

    Blanco, Guillermo; Lemus, Jesús A; Grande, Javier

    2009-05-01

    The spread of pathogens in the environment due to human activities (pathogen pollution) may be involved in the emergence of many diseases in humans, livestock and wildlife. When manure from medicated livestock and urban effluents is spread onto agricultural land, both residues of antibiotics and bacteria carrying antibiotic resistance may be introduced into the environment. The transmission of bacterial resistance from livestock and humans to wildlife remains poorly understood even while wild animals may act as reservoirs of resistance that may be amplified and spread in the environment. We determined bacterial resistance to antibiotics in wildlife using the red-billed chough Pyrrhocorax pyrrhocorax as a potential bioindicator of soil health, and evaluated the role of agricultural manuring with waste of different origins in the acquisition and characteristics of such resistance. Agricultural manure was found to harbor high levels of bacterial resistance to multiple antibiotics. Choughs from areas where manure landspreading is a common agricultural practice harbor a high bacterial resistance to multiple antibiotics, resembling the resistance profile found in the waste (pig slurry and sewage sludge) used in each area. The transfer of bacterial resistance to wildlife should be considered as an important risk for environmental health when agricultural manuring involves fecal material containing multiresistant enteric bacteria including pathogens from livestock operations and urban areas. The assessment of bacterial resistance in wild animals may be valuable for the monitoring of environmental health and for the management of emergent infectious diseases influenced by the impact of different human activities in the environment.

  2. Potential of phytoceuticals to affect antibiotic residue detection tests in cow milk in a randomised trial

    PubMed Central

    Mullen, Keena AE; Beasley, Erin; Rizzo, Julio Q; Washburn, Steven P; Baynes, Ronald E; Mason, Sharon E

    2017-01-01

    Mastitis is a costly disease for dairy farmers. Some dairy farmers use herbal products, or phytoceuticals, to treat mastitis. Phytoceuticals have not been approved for this use by the United States Food and Drug Administration, and have not been tested to determine how they impact antibiotic residue detection testing. The current study tested the potential for phytoceuticals to cause positive results on two milk antibiotic residue screening tests, the Delvotest P and Charm SL Beta-lactam test, or to interfere with the detection of antibiotics by these tests. The three phytoceuticals tested were labelled for intramammary, topical or intravulvar administration. Testing was performed in vitro using the products diluted in milk obtained from healthy organic dairy cows. Phytoceuticals were tested at concentrations ranging from 1.5 per cent to 100 per cent. Concentration levels were replicated at least twice on each milk antibiotic residue screening test. The Delvotest P is based on detection of bacterial inhibitors and no positive results were obtained for any product at concentrations less than 50 per cent. The Charm SL Beta-lactam test uses a receptor for the detection of beta-lactam antibiotics and no concentration of phytoceuticals caused an interference with these tests. Based on dilution of the products in bovine milk at physiologically achievable levels, phytoceutical products tested at levels expected after treatment do not cause positive test results for the Delvotest P nor do they interfere with the Charm SL Beta-lactam test in detection of various antibiotics. PMID:28890791

  3. Tapping the Bioactivity Potential of Residual Stream from Its Pretreatments May Be a Green Strategy for Low-Cost Bioconversion of Rice Straw.

    PubMed

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Hu, Jiajun; Tsang, Yiu Fai; Gao, Min-Tian

    2018-04-16

    In this study, it was found that the residual stream from pretreatments of rice straw exhibited high antioxidant activity. Assays based on the Folin-Ciocalteu colorimetric method confirmed that the residual stream contained large amounts of phenolic compounds. Three antioxidant assays were employed to evaluate the bioactivity of the residual stream. Strong linear correlations existed among the release of phenolic compounds, saccharification efficiency, and antioxidant activity. The alkaline pretreatment provided a much greater release of phenolic compounds, especially phenolic acids, compared to the acid pretreatment, and consequently, it had stronger linear correlations than the acid pretreatment. Antibacterial experiments demonstrated the ability of the phenolic compounds in the residual stream to inhibit the growth of microorganisms, indicating the potential of these compounds as antimicrobial agents. To discuss the possibility of the co-production of antimicrobial agents and biofuels/biochemicals, both acid and alkaline pretreatments were optimized using response surface methodology. Under the optimal conditions, 285.7 g glucose could be produced from 1 kg rice straw with the co-production of 3.84 g FA and 6.98 g p-CA after alkaline pretreatment. These results show that the recovery of phenolic compounds from the residual stream could be a green strategy for the low-cost bioconversion of rice straw.

  4. Shell thinning and pesticide residues in Texas aquatic bird eggs, 1970

    USGS Publications Warehouse

    King, K.A.; Flickinger, Edward L.; Hildebrand, H.H.

    1978-01-01

    Significant decreases in eggshell thickness were found in 15 of 22 species of aquatic birds in Texas in 1970. Shell thickness reductions of 9 to 15 percent were found in white pelicans (Pelecanus erythrorhynchos), brown pelicans (P .occidentalis), and great blue herons (Ardea herodias). DDT family compounds were found in all eggs, and mean residues ranged from 0.4 ppm in white ibis (Eudocimus albus) to 23.2 ppm in great egrets (Casmerodius albus). GDDT residues were negatively correlated with shell thickness in five species; PCBs were negatively correlated in two. Residues in marine birds were generally lower and more uniform than levels in birds feeding in fresh and brackish water. DDT and dieldrin residues were higher in eggs from colonies near agricultural areas where these insecticides were heavily used; higher PCB residues were consistently associated with urban and industrial areas. Populations of five species have declined and deserve continued study: brown pelican, reddish egret (Dichromanassa rufescens), white-faced ibis (Plegadis chihi), laughing gull (Larus atricilla), and Forster's tern (Sterna forsteri). Population trends of four other species were undetermined and should be followed closely in future years.

  5. Quantitative analysis of agricultural land use change in China

    NASA Astrophysics Data System (ADS)

    Chou, Jieming; Dong, Wenjie; Wang, Shuyu; Fu, Yuqing

    This article reviews the potential impacts of climate change on land use change in China. Crop sown area is used as index to quantitatively analyze the temporal-spatial changes and the utilization of the agricultural land. A new concept is defined as potential multiple cropping index to reflect the potential sowing ability. The impacting mechanism, land use status and its surplus capacity are investigated as well. The main conclusions are as following; During 1949-2010, the agricultural land was the greatest in amount in the middle of China, followed by that in the country's eastern and western regions. The most rapid increase and decrease of agricultural land were observed in Xinjiang and North China respectively, Northwest China and South China is also changed rapid. The variation trend before 1980 differed significantly from that after 1980. Agricultural land was affected by both natural and social factors, such as regional climate and environmental changes, population growth, economic development, and implementation of policies. In this paper, the effects of temperature and urbanization on the coverage of agriculture land are evaluated, and the results show that the urbanization can greatly affects the amount of agriculture land in South China, Northeast China, Xinjiang and Southwest China. From 1980 to 2009, the extent of agricultural land use had increased as the surplus capacity had decreased. Still, large remaining potential space is available, but the future utilization of agricultural land should be carried out with scientific planning and management for the sustainable development.

  6. Biomass Energy | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    forest residues, mill and urban wastes, and agricultural residues, as well as energy crop potential developed biomass energy generation facilities including those that run on agricultural waste byproducts

  7. Crop residues as soil amendments and feedstock for bioethanol production.

    PubMed

    Lal, R

    2008-01-01

    Traditional solid fuels account for more than 90% of the energy supply for 3 billion people in developing countries. However, liquid biofuels (e.g., ethanol) are perceived as an important alternative to fossil fuel. Global crop residue production is estimated at about 4 billion Mg for all crops and 3 billion Mg per annum for lignocellulosic residues of cereals. One Mg of corn stover can produce 280L of ethanol, compared with 400L from 1Mg of corn grains; 1Mg of biomass is also equivalent to 18.5GJ of energy. Thus, 3 billion Mg of residues are equivalent to 840 billion L of ethanol or 56x10(9)GJ of energy. However, removal of crop residues exacerbates soil degradation, increases net emission of CO2, and aggravates food insecurity. Increasing the SOC pool by 1 Mg C ha(-1)yr(-1) through residue retention on soil can increase world food grain production by 24-40 million Mg yr(-1), and root/tuber production by 6-11 million Mg yr(-1). Thus, identifying alternate sources of biofuel feedstock (e.g., biofuel plantations, animal waste, municipal sold waste) is a high priority. Establishing biofuel plantations on agriculturally marginal or degraded lands can off-set 3.5-4 Pg Cyr(-1).

  8. Dewatering and low-temperature pyrolysis of oily sludge in the presence of various agricultural biomasses.

    PubMed

    Zhao, Song; Zhou, Xiehong; Wang, Chuanyi; Jia, Hanzhong

    2017-08-24

    Pyrolysis is potentially an effective treatment of waste oil residues for recovery of petroleum hydrocarbons, and the addition of biomass is expected to improve its dewatering and pyrolysis behavior. In this study, the dewatering and low-temperature co-pyrolysis of oil-containing sludge in the presence of various agricultural biomasses, such as rice husk, walnut shell, sawdust, and apricot shell, were explored. As a result, the water content gradually decreases with the increase of biomass addition within 0-1.0 wt % in original oily sludge. Comparatively, the dewatering efficiency of sludge in the presence of four types of biomasses follows the order of apricot shell > walnut shell > rice husk > sawdust. On the other hand, rice husk and sawdust are relatively more efficient in the recovery of petroleum hydrocarbons compared with walnut shell and apricot shell. The recovery efficiency generally increased with the increase in the biomass content in the range of 0-0.2 wt %, then exhibited a gradually decreasing trend with the increase in the biomass content from 0.2 to 1.0 wt %. The results suggest that optimum amount of biomass plays an important role in the recovery efficiency. In addition, the addition of biomass (such as rice husk) also promotes the formation of C x H y and CO, increasing the calorific value of pyrolysis residue, and controlled the pollution components of the exhaust gas discharged from residue incineration. The present work implies that biomass as addictive holds great potential in the industrial dewatering and pyrolysis of oil-containing sludge.

  9. Occurrence and diversity of tetracycline resistance genes in the agricultural soils of South Korea.

    PubMed

    Kim, Song Yeob; Kuppusamy, Saranya; Kim, Jang Hwan; Yoon, Young-Eun; Kim, Kwon-Rae; Lee, Yong Bok

    2016-11-01

    Reports on the occurrence and diversity of antibiotic-resistant bacteria and genes, which are considered to be emerging pollutants worldwide, have, to date, not been published on South Korean agricultural soils. This is the first study to investigate the persistence of tetracycline (oxytetracycline, tetracycline, and chlortetracycline)-resistant bacterial community and genes in natural and long-term fertilized (NPK, pig, and cattle manure composts) agricultural soils in South Korea. The results showed that oxytetracycline and chlortetracycline could be the dominant residues in animal manures; regular fertilization of manures, particularly pig manures, may be the prime cause for the spread and abundance of tetracycline resistance in South Korean agricultural soils. Both the country's natural and agricultural soils are reservoirs of antibiotic-resistant species. Of the 113 tetracycline-resistant isolates identified (19 typical bacterial genera and 36 distinct species), approximately 40 to 99 % belonged to Gram-positive bacteria and Bacillus constituted the predominant genera. Of the 24 tet genes targeted, tetG, tetH, tetK, tetY, tetO, tetS, tetW, and tetQ were detected in all soil samples, highlighting their predominance and robust adaptability in soils. Meanwhile, it is suggested that tetC, tetE, tetZ, tetM, tetT, and tetP(B) are the common residues in pig manures, and furthermore, the treatment of soils with pig manures may wield a different impact on the tet gene resistome in agricultural soils. This study thus highlights the necessity for regulating the usage of tetracyclines in South Korean animal farming. This must be followed by proper monitoring of the subsequent usage of animal manures especially that derived from pig farms located in agricultural soils.

  10. Safe apples for baby-food production: survey of pesticide treatment regimes leaving minimum residues.

    PubMed

    Ticha, Jana; Hajslova, Jana; Kovalczuk, Tomas; Jech, Martin; Honzicek, Jiri; Kocourek, Vladimir; Lansky, Miroslav; Kloutvorova, Jana; Falta, Vladan

    2007-06-01

    A total of 19 pesticide preparations were used according to agricultural practice in six trials in apple orchards. Using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), premature Golden Delicious apples collected 64, 50, 36 days before harvest and mature fruit were examined for residues of active ingredients. No residues of triflumuron, triazamate, chlorpyrifos, etofenprox, fenoxycarb, kresoxim-methyl, cyprodinyl, difenoconazole or thiram were detected in the first sampling. Also, the levels of chlorpyrifos-methyl, penconazole, tebuconazole and tolylfluanid dropped during the pre-harvest interval. Detectable residues of pyridaben, thiacloprid, trifloxystrobin and tetraconazole in harvested fruits were below 0.01 mg kg(-1), which is the maximum concentration of residues acceptable by baby-food producers in any raw material. The only residues exceeding this concentration were captan and teflubenzuron. Based on the data, farmers can choose pesticides for optimal treatment of plants, while enabling growth of a safe crop suitable for baby-food production.

  11. Agricultural Research Service: biodefense research.

    PubMed

    Gay, C G

    2013-01-01

    The National Animal Health Program at the Agricultural Research Service (ARS), United States Department of Agriculture (USDA), includes research programs dedicated to the defense of animal agriculture against the treat of biological agents with the potential of significant economic harm and/or public health consequences. This article provides a summary of the program and identifies its relevance to national initiatives to protect livestock and poultry as well as global food security. An introduction to setting research priorities and a selection of research accomplishments that define the scope of the biodefense research program is provided.

  12. Occurrence of pesticide residues in fish from south American rainfed agroecosystems.

    PubMed

    Ernst, Federico; Alonso, Beatriz; Colazzo, Marcos; Pareja, Lucia; Cesio, Verónica; Pereira, Alfredo; Márquez, Alejandro; Errico, Eugenia; Segura, Angel Manuel; Heinzen, Horacio; Pérez-Parada, Andrés

    2018-08-01

    Environmental sustainability of South American rainfed agroecosystems is of current concern. In this work, we evaluate the occurrence of multiple pesticide residues in muscle tissue of wild fish species from two large rivers in South America (Uruguay and Negro Rivers). Two sampling campaigns (representing summer and winter crops) were performed during 2015 targeting a wide biodiversity of fish species used for human consumption (ranging from migratory to non-migratory and from detritivorous to top-predators). Three different localities associated to rainfed agriculture were assessed, two of them enclosed to a RAMSAR site (National Park "Esteros de Farrapos e Islas del Rio Uruguay"). Pesticide residues occurred in muscle tissue of 143 from 149 sampled fishes (96%). Thirty different pesticides were detected at concentrations from <1 to 194μgkg -1 . Incidence of pesticides in fish were tightly related to: i) features of the contaminant: (Kow, environmental persistence and mobility) and ii) intensity of use of particular pesticides and land dedicated to rainfed agriculture. Trifloxystrobin, metolachlor and pyraclostrobin showed the highest rates of occurrence. Of great concern is that strobirulins have highest toxicity to fish from those detected compounds. From the pattern of pesticides occurring for non-migratory fish species it was possible to trend important spatial differences related to the intensity of rainfed agriculture. Results suggest a regular exposition of aquatic wild biota to sublethal concentrations of multiple semi-polar pesticides. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Potential of extensification of European agriculture for a more sustainable food system, focusing on nitrogen

    NASA Astrophysics Data System (ADS)

    van Grinsven, Hans J. M.; Willem Erisman, Jan; de Vries, Wim; Westhoek, Henk

    2015-02-01

    Most global strategies for future food security focus on sustainable intensification of production of food and involve increased use of nitrogen fertilizer and manure. The external costs of current high nitrogen (N) losses from agriculture in the European Union, are 0.3-1.9% of gross domestic product (GDP) in 2008. We explore the potential of sustainable extensification for agriculture in the EU and The Netherlands by analysing cases and scenario studies focusing on reducing N inputs and livestock densities. Benefits of extensification are higher local biodiversity and less environmental pollution and therefore less external costs for society. Extensification also has risks such as a reduction of yields and therewith a decrease of the GDP and farm income and a smaller contribution to the global food production, and potentially an i0ncrease of global demand for land. We demonstrate favourable examples of extensification. Reducing the N fertilization rate for winter wheat in Northwest Europe to 25-30% below current N recommendations accounts for the external N cost, but requires action to compensate for a reduction in crop yield by 10-20%. Dutch dairy and pig farmers changing to less intensive production maintain or even improve farm income by price premiums on their products, and/or by savings on external inputs. A scenario reducing the Dutch pig and poultry sector by 50%, the dairy sector by 20% and synthetic N fertilizer use by 40% lowers annual N pollution costs by 0.2-2.2 billion euro (40%). This benefit compensates for the loss of GDP in the primary sector but not in the supply and processing chain. A 2030 scenario for the EU27 reducing consumption and production of animal products by 50% (demitarean diet) reduces N pollution by 10% and benefits human health. This diet allows the EU27 to become a food exporter, while reducing land demand outside Europe in 2030 by more than 100 million hectares (2%), which more than compensates increased land demand when

  14. Presence and biomagnification of organochlorine chemical residues in oxbow lakes of northeastern Louisiana

    USGS Publications Warehouse

    Niethammer, K.R.; White, D.H.; Baskett, T.S.; Sayre, M.W.

    1984-01-01

    Samples (98) of 16 spp. of animals were collected at Lake Providence, 88 samples of 15 spp. at Lake Bruin and 21 samples of 5 spp. at Lake St. John, Louisiana, between July 15 and Sept. 25, 1980. Residues of 13 organochlorine compounds were identified in these samples. Substantial concentrations of many compounds throughout the food webs of all 3 lakes showed that the lakes acted as sumps, accumulating residues from nearby agricultural land. DDT and its metabolites (DDE, TDE and DDMU [1-chloro-2,2,-bis(p-chlorophenyl)ethylene]), toxaphene and polychlorobiphenyls (PCB) were the principal organochloride residues detected. With few exceptions, biomagnification of the principal residues was clearly illustrated. Tertiary consumers such as green-backed heron (Butorides striatus), snakes, spotted gar (Lepisosteus oculatus) and largemouth bass (Micropterus salmoides) contained the highest residues. Bluegill (Lepomis macrochirus), blacktail shiner (Notropis venustus), yellow-crowned night heron (Nycticorax violaceus) and other secondary consumers contained lower levels of residues. Primary consumers, crayfish (Orconectes lancifer) and threadfin shad (Dorosoma petenense), contained relatively low residue levels of most compounds. Frogs contained lower residue levels than expected based on their position in the food web. Residue levels in immature green-backed herons and .gtoreq. 1 of the longer-lived predators, e.g., snakes, gars or largemouth bass could be monitored to evaluate levels of organochlorine chemical contaminants in aquatic habitats.

  15. Global temperature change potential of nitrogen use in agriculture: A 50-year assessment

    PubMed Central

    Fagodiya, R. K.; Pathak, H.; Kumar, A.; Bhatia, A.; Jain, N.

    2017-01-01

    Nitrogen (N) use in agriculture substantially alters global N cycle with the short- and long-term effects on global warming and climate change. It increases emission of nitrous oxide, which contributes 6.2%, while carbon dioxide and methane contribute 76% and 16%, respectively of the global warming. However, N causes cooling due to emission of NOx, which alters concentrations of tropospheric ozone and methane. NOx and NH3 also form aerosols with considerable cooling effects. We studied global temperature change potential (GTP) of N use in agriculture. The GTP due to N2O was 396.67 and 1168.32 Tg CO2e on a 20-year (GTP20) and 439.94 and 1295.78 Tg CO2e on 100-year scale (GTP100) during years 1961 and 2010, respectively. Cooling effects due to N use were 92.14 and 271.39 Tg CO2e (GTP20) and 15.21 and 44.80 Tg CO2e (GTP100) during 1961 and 2010, respectively. Net GTP20 was 369.44 and 1088.15 Tg CO2e and net GTP100 was 429.17 and 1264.06 Tg CO2e during 1961 and 2010, respectively. Thus net GTP20 is lower by 6.9% and GTP100 by 2.4% compared to the GTP considering N2O emission alone. The study shows that both warming and cooling effects should be considered to estimate the GTP of N use. PMID:28322322

  16. Irradiation of northwest agricultural products

    NASA Astrophysics Data System (ADS)

    Eakin, D. E.; Tingey, G. I.

    1985-02-01

    Irradiation of food for disinfestation and preservation is increasing in importance because of increasing restrictions on various chemical treatments. Irradiation treatment is of particular interest in the Northwest because of a growing supply of agricultural products and the need to develop new export markets. Several products have, or could potentially have, significant export markets if stringent insect ocntrol procedures are developed and followed. Due to the recognized potential benefits of irradiation, this program was conducted to evaluate the benefits of using irradiation on Northwest agricultural products. Commodities currently included in the program are cherries, apples, asparagus, spices, hay, and hides.

  17. Using UAVs to enhance the quality of precision agriculture

    USDA-ARS?s Scientific Manuscript database

    Recent studies by USDA Agricultural Research Service (ARS) have indicated potential for significant improvement in the quality and application of Precision Agriculture products through the use of very high resolution imagery. An assessment of potential platforms to collect such imagery at an afford...

  18. Effect of the Agricultural Biomass Burning on the Ambient Air Quality of Lumbini

    NASA Astrophysics Data System (ADS)

    Mehra, M.; Panday, A. K.; Praveen, P. S.; Bhujel, A.; Pokhrel, S.; Ram, K.

    2017-12-01

    The emissions from increasing anthropogenic activities has led to degradation in ambient air quality of Lumbini (UNESCO world heritage site) and its surrounding environments. The presence of high concentrations of air pollutants is of concern because of its implications for public health, atmospheric visibility, chemistry, crop yield, weather and climate on a local to regional scale. The study region experiences wide-spread on-field agricultural residue burning, particularly in the months of November (paddy residue burning) and April (wheat residue burning). In an attempt to study the impact of emissions from post-harvest burning of paddy and wheat residue in Nepal, the International Centre for Integrated Mountain Development, in collaboration with the Government of Nepal's Department of Environment and the Lumbini International Research Institute, established the Lumbini Air Quality Observatory (LAQO) in May 2016 for continuous measurement of Black carbon (BC), particulate matter (PM10, PM2.5 & PM1), as well as concentration of gaseous pollutant and meteorological parameters. Here we present results of the surface observations from LAQO for the months with intensified paddy and wheat open biomass burning during November 2016 and April 2017, respectively. The average concentrations of BC, PM2.5 and PM10 were 11.3±6.2 µg m-3, 96.7±48.9 µg m-3 and 132.3±59.1 µg m-3 respectively during the month of November 2016. On the other hand, the surface concentrations of BC, PM2.5 and PM10 were found to be 11.0±8.3 µg m-3, 45.0±35.0 µg m-3 and 114.0±96.1 µg m-3 during April 2017. A significant increase in the primary pollutant concentration was observed during both types of open agricultural burning periods. However, BC/PM2.5 ratio was almost higher by factor of two during paddy burning as compared to wheat residue burning. Source characteristics and the relative contribution of agricultural burning to PM concentrations at Lumbini are being computed based on

  19. Regression models for estimating concentrations of atrazine plus deethylatrazine in shallow groundwater in agricultural areas of the United States

    USGS Publications Warehouse

    Stackelberg, Paul E.; Barbash, Jack E.; Gilliom, Robert J.; Stone, Wesley W.; Wolock, David M.

    2012-01-01

    Tobit regression models were developed to predict the summed concentration of atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] and its degradate deethylatrazine [6-chloro-N-(1-methylethyl)-1,3,5,-triazine-2,4-diamine] (DEA) in shallow groundwater underlying agricultural settings across the conterminous United States. The models were developed from atrazine and DEA concentrations in samples from 1298 wells and explanatory variables that represent the source of atrazine and various aspects of the transport and fate of atrazine and DEA in the subsurface. One advantage of these newly developed models over previous national regression models is that they predict concentrations (rather than detection frequency), which can be compared with water quality benchmarks. Model results indicate that variability in the concentration of atrazine residues (atrazine plus DEA) in groundwater underlying agricultural areas is more strongly controlled by the history of atrazine use in relation to the timing of recharge (groundwater age) than by processes that control the dispersion, adsorption, or degradation of these compounds in the saturated zone. Current (1990s) atrazine use was found to be a weak explanatory variable, perhaps because it does not represent the use of atrazine at the time of recharge of the sampled groundwater and because the likelihood that these compounds will reach the water table is affected by other factors operating within the unsaturated zone, such as soil characteristics, artificial drainage, and water movement. Results show that only about 5% of agricultural areas have greater than a 10% probability of exceeding the USEPA maximum contaminant level of 3.0 μg L-1. These models are not developed for regulatory purposes but rather can be used to (i) identify areas of potential concern, (ii) provide conservative estimates of the concentrations of atrazine residues in deeper potential drinking water supplies, and (iii) set priorities

  20. Ethephon As a Potential Abscission Agent for Table Grapes: Effects on Pre-Harvest Abscission, Fruit Quality, and Residue

    PubMed Central

    Ferrara, Giuseppe; Mazzeo, Andrea; Matarrese, Angela M. S.; Pacucci, Carmela; Trani, Antonio; Fidelibus, Matthew W.; Gambacorta, Giuseppe

    2016-01-01

    Some plant growth regulators, including ethephon, can stimulate abscission of mature grape berries. The stimulation of grape berry abscission reduces fruit detachment force (FDF) and promotes the development of a dry stem scar, both of which could facilitate the production of high quality stemless fresh-cut table grapes. The objective of this research was to determine how two potential abscission treatments, 1445 and 2890 mg/L ethephon, affected FDF, pre-harvest abscission, fruit quality, and ethephon residue of Thompson Seedless and Crimson Seedless grapes. Both ethephon treatments strongly induced abscission of Thompson Seedless berries causing >90% pre-harvest abscission. Lower ethephon rates, a shorter post-harvest interval, or berry retention systems such as nets, would be needed to prevent excessive pre-harvest losses. The treatments also slightly affected Thompson Seedless berry skin color, with treated fruit being darker, less uniform in color, and with a more yellow hue than non-treated fruit. Ethephon residues on Thompson Seedless grapes treated with the lower concentration of ethephon were below legal limits at harvest. Ethephon treatments also promoted abscission of Crimson Seedless berries, but pre-harvest abscission was much lower (≅49%) in Crimson Seedless compared to Thompson Seedless. Treated fruits were slightly darker than non-treated fruits, but ethephon did not affect SSC, acidity, or firmness of Crimson Seedless, and ethephon residues were below legal limits. PMID:27303407

  1. Laboratory tests to assess optimal agricultural residue traits for an abrasive weed control system

    USDA-ARS?s Scientific Manuscript database

    One of the biggest challenges to organic agricultural production and herbicide resistant crops in industrialized countries today is the non-chemical control of weed plants. Studies of new tools and methods for weed control have been motivated by an increased consumer demand for organic produce and c...

  2. Field potential soil variability index to identify precision agriculture opportunity

    USDA-ARS?s Scientific Manuscript database

    Precision agriculture (PA) technologies used for identifying and managing within-field variability are not widely used despite decades of advancement. Technological innovations in agronomic tools, such as canopy reflectance or electrical conductivity sensors, have created opportunities to achieve a ...

  3. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    PubMed

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A process-based agricultural model for the irrigated agriculture sector in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Ammar, M. E.; Davies, E. G.

    2015-12-01

    Connections between land and water, irrigation, agricultural productivity and profitability, policy alternatives, and climate change and variability are complex, poorly understood, and unpredictable. Policy assessment for agriculture presents a large potential for development of broad-based simulation models that can aid assessment and quantification of policy alternatives over longer temporal scales. The Canadian irrigated agriculture sector is concentrated in Alberta, where it represents two thirds of the irrigated land-base in Canada and is the largest consumer of surface water. Despite interest in irrigation expansion, its potential in Alberta is uncertain given a constrained water supply, significant social and economic development and increasing demands for both land and water, and climate change. This paper therefore introduces a system dynamics model as a decision support tool to provide insights into irrigation expansion in Alberta, and into trade-offs and risks associated with that expansion. It is intended to be used by a wide variety of users including researchers, policy analysts and planners, and irrigation managers. A process-based cropping system approach is at the core of the model and uses a water-driven crop growth mechanism described by AquaCrop. The tool goes beyond a representation of crop phenology and cropping systems by permitting assessment and quantification of the broader, long-term consequences of agricultural policies for Alberta's irrigation sector. It also encourages collaboration and provides a degree of transparency that gives confidence in simulation results. The paper focuses on the agricultural component of the systems model, describing the process involved; soil water and nutrients balance, crop growth, and water, temperature, salinity, and nutrients stresses, and how other disciplines can be integrated to account for the effects of interactions and feedbacks in the whole system. In later stages, other components such as

  5. Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue.

    PubMed

    Lee, Sang Soo; Lim, Jung Eun; El-Azeem, Samy A M Abd; Choi, Bongsu; Oh, Sang-Eun; Moon, Deok Hyun; Ok, Yong Sik

    2013-03-01

    Heavy metal contamination of agricultural soils has received great concern due to potential risk to human health. Cadmium and Pb are largely released from abandoned or closed mines in Korea, resulting in soil contamination. The objective of this study was to evaluate the effects of eggshell waste in combination with the conventional nitrogen, phosphorous, and potassium fertilizer (also known as NPK fertilizer) or the rapeseed residue on immobilization of Cd and Pb in the rice paddy soil. Cadmium and Pb extractabilities were tested using two methods of (1) the toxicity characteristics leaching procedure (TCLP) and (2) the 0.1 M HCl extraction. With 5 % eggshell addition, the values of soil pH were increased from 6.33 and 6.51 to 8.15 and 8.04 in combination with NPK fertilizer and rapeseed residue, respectively, compared to no eggshell addition. The increase in soil pH may contribute to heavy metal immobilization by altering heavy metals into more stable in soils. Concentrations of TCLP-extracted Cd and Pb were reduced by up to 67.9 and 93.2 % by addition of 5 % eggshell compared to control. For 0.1 M HCl extraction method, the concentration of 0.1 M HCl-Cd in soils treated with NPK fertilizer and rapeseed residue was significantly reduced by up to 34.01 and 46.1 %, respectively, with 5 % eggshell addition compared to control. A decrease in acid phosphatase activity and an increase in alkaline phosphatase activity at high soil pH were also observed. Combined application of eggshell waste and rapeseed residue can be cost-effective and beneficial way to remediate the soil contaminated with heavy metals.

  6. Potential alternative fuel sources for agricultural crops and plant components

    USDA-ARS?s Scientific Manuscript database

    The changing landscape of agricultural production is placing unprecedented demands on farmers as they face increasing global competition and greater natural resource conservation challenges. However, shrinking profit margins due to increasing input costs, particularly of fuel and fertilizer, can res...

  7. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    PubMed Central

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3 —N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems. PMID:26600462

  8. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    PubMed

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row

  9. Surface electrochemical properties of red mud (bauxite residue): zeta potential and surface charge density.

    PubMed

    Liu, Yanju; Naidu, Ravendra; Ming, Hui

    2013-03-15

    The surface electrochemical properties of red mud (bauxite residue) from different alumina refineries in Australia and China were studied by electrophoresis and measuring surface charge density obtained from acid/base potentiometric titrations. The electrophoretic properties were measured from zeta potentials obtained in the presence of 0.01 and 0.001 M KNO(3) over a wide pH range (3.5-10) by titration. The isoelectric point (IEP) values were found to vary from 6.35 to 8.70 for the red mud samples. Further investigation into the surface charge density of one sample (RRM) by acid/base potentiometric titration showed similar results for pH(PZC) with pH(IEP) obtained from electrokinetic measurements. The pH(IEP) determined from zeta potential measurements can be used as a characteristic property of red mud. The minerals contained in red mud contributed to the different values of pH(IEP) of samples obtained from different refineries. Different relationships of pH(IEP) with Al/Fe and Al/Si ratios (molar basis) were also found for different red mud samples. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Potential use of edible crops in the phytoremediation of endosulfan residues in soil.

    PubMed

    Mitton, Francesca M; Gonzalez, Mariana; Monserrat, José M; Miglioranza, Karina S B

    2016-04-01

    Endosulfan is a persistent and toxic organochlorine pesticide of banned or restricted use in several countries. It has been found in soil, water, and air and is bioaccumulated and magnified in ecosystems. Phytoremediation is a technology that promises effective and inexpensive cleanup of contaminated hazardous sites. The potential use of tomato, sunflower, soybean and alfalfa species to remove endosulfan from soil was investigated. All species were seeded and grown in endosulfan-spiked soils (8000 ng g(-1) dry weight) for 15 and 60 days. The phytoremediation potential was evaluated by studying the endosulfan levels and distribution in the soil-plant system, including the evaluation of soil dehydrogenase activity and toxic effects on plants. Plant endosulfan uptake leads to lower insecticide levels in the rhizosphere with regards to bulk soil or near root soil at 15 days of growth. Furthermore, plant growth-induced physical-chemical changes in soil were evidenced by differences in soil dehydrogenase activity and endosulfan metabolism. Sunflower showed differences in the uptake and distribution of endosulfan with regard to the other species, with a distribution pesticide pattern of aerial tissues > roots at 15 days of growth. Moreover, at 60 days, sunflower presented the highest pesticide levels in roots and leaves along with the highest phytoextraction capacity. Lipid peroxidation levels correlated positively with endosulfan accumulation, reflecting the negative effect of this insecticide on plant tissues. Considering biomass production and accumulation potential, in conjunction with the reduction of soil pesticide levels, sunflower plants seem to be the best phytoremediation candidate for endosulfan residues in soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Isolation and Characterization of Phosphate-Solubilizing Bacteria from Mushroom Residues and their Effect on Tomato Plant Growth Promotion.

    PubMed

    Zhang, Jian; Wang, Peng Cheng; Fang, Ling; Zhang, Qi-An; Yan, Cong Sheng; Chen, Jing Yi

    2017-03-30

    Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.

  12. OPEN BURNING OF AGRICULTURAL BIOMASS: PHYSICAL AND CHEMICAL PROPERTIES OF PARTICLE-PHASE EMISSIONS

    EPA Science Inventory

    This effort presents the physical and chemical characterization of PM2.5 emissions from simulated agricultural fires of surface residuals of two major grain crops, rice (Oryza sativa) and wheat (Triticum aestivum L). The O2 levels and CO/CO

  13. Chlorpyrifos residual behaviors in field crops and transfers during duck pellet feed processing.

    PubMed

    Li, Rui; Wei, Wei; He, Liang; Hao, Lili; Ji, Xiaofeng; Zhou, Yu; Wang, Qiang

    2014-10-22

    Chlorpyrifos is a widely used organophosphorus pesticide in agricultural crops (including food) and animal feeds in China, resulting in heavy contamination. Many studies have focused on the food-processing effects on chlorpyrifos removal, but sufficient information is not observed for feed-processing steps. Here, chlorpyrifos residual behaviors in field crops and its transfers in duck pellet feed-processing steps were evaluated. In field trials, the highest residues for rice grain, shelled corn, and soybean seed were 12.0, 0.605, and 0.220 mg/kg, respectively. Residues of all rice grain and about half of shelled corn exceeded the maximum residue limits (MRLs) of China, and five soybean seeds exceeded the MRL of China. Chlorpyrifos residue was reduced 38.2% in brown rice after the raw rice grain was hulled. The residue in bran increased 71.2% after milling from brown rice. During the squashing step, the residue reduced 73.8% in soybean meal. The residues reduced significantly (23.7-36.8%) during the process of granulating for rice, maize, and soybean products. Comparatively, the grinding process showed only limited influence on chlorpyrifos removal (<10%). The residues of duck pellet feeds produced from highly contaminated raw materials of this study were 1.01 mg/kg (maize-soybean feed) and 3.20 mg/kg (rice-soybean feed), which were much higher than the generally accepted value (>0.1 mg/kg) for animal feeding. Chlorpyrifos residues were removed significantly by processing steps of pellet feeds, but the residue of raw materials was the determining factor for the safety of duck feeding.

  14. Human health implications of organic food and organic agriculture: a comprehensive review.

    PubMed

    Mie, Axel; Andersen, Helle Raun; Gunnarsson, Stefan; Kahl, Johannes; Kesse-Guyot, Emmanuelle; Rembiałkowska, Ewa; Quaglio, Gianluca; Grandjean, Philippe

    2017-10-27

    This review summarises existing evidence on the impact of organic food on human health. It compares organic vs. conventional food production with respect to parameters important to human health and discusses the potential impact of organic management practices with an emphasis on EU conditions. Organic food consumption may reduce the risk of allergic disease and of overweight and obesity, but the evidence is not conclusive due to likely residual confounding, as consumers of organic food tend to have healthier lifestyles overall. However, animal experiments suggest that identically composed feed from organic or conventional production impacts in different ways on growth and development. In organic agriculture, the use of pesticides is restricted, while residues in conventional fruits and vegetables constitute the main source of human pesticide exposures. Epidemiological studies have reported adverse effects of certain pesticides on children's cognitive development at current levels of exposure, but these data have so far not been applied in formal risk assessments of individual pesticides. Differences in the composition between organic and conventional crops are limited, such as a modestly higher content of phenolic compounds in organic fruit and vegetables, and likely also a lower content of cadmium in organic cereal crops. Organic dairy products, and perhaps also meats, have a higher content of omega-3 fatty acids compared to conventional products. However, these differences are likely of marginal nutritional significance. Of greater concern is the prevalent use of antibiotics in conventional animal production as a key driver of antibiotic resistance in society; antibiotic use is less intensive in organic production. Overall, this review emphasises several documented and likely human health benefits associated with organic food production, and application of such production methods is likely to be beneficial within conventional agriculture, e.g., in integrated

  15. Results of an Assessment to Identify Potential Barriers to Sustainable Agriculture on American Indian Reservations in the Western United States

    ERIC Educational Resources Information Center

    Singletary, Loretta; Emm, Staci; Brummer, Fara Ann; Hill, George C.; Lewis, Steve; Hebb, Vicki

    2016-01-01

    Purpose: This paper reports the results of survey research conducted with tribal producers between 2011 and 2012 on 19 of the largest American Indian reservations in Idaho, Nevada, North Dakota, Oregon, South Dakota, and Washington. The purpose of the research was to identify potential barriers to sustainable agriculture on reservation lands. This…

  16. The fate and transport of the Cry1Ab protein in an agricultural field and laboratory aquatic microcosms.

    PubMed

    Strain, Katherine E; Lydy, Michael J

    2015-08-01

    Genetically engineered crops expressing insecticidal crystalline proteins derived from Bacillus thuringiensis (Bt), were commercialized almost two decades ago as a means to manage agricultural pests. The Bt proteins are highly specific and only lethal upon ingestion, limiting the scope of toxicity to target insects. However, concern of exposure to non-target organisms and negative public perceptions regarding Bt crops has caused controversy surrounding their use. The objective of this research was to monitor the fate and transport of a Bt protein, Cry1Ab, in a large-scale agricultural field containing maize expressing the Cry1Ab protein and a non-Bt near isoline, and in aquatic microcosms. The highest environmental concentrations of the Cry1Ab protein were found in runoff water and sediment, up to 130ngL(-1) and 143ngg(-1) dry weight, respectively, with the Cry1Ab protein detected in both Bt and non-Bt maize fields. As surface runoff and residual crop debris can transport Bt proteins to waterways adjacent to agricultural fields, a series of laboratory experiments were conducted to determine the potential fate of the Cry1Ab protein under different conditions. The results showed that sediment type and temperature can influence the degradation of the Cry1Ab protein in an aquatic system and that the Cry1Ab protein can persist for up to two months. Although Cry1Ab protein concentrations measured in the field soil indicate little exposure to terrestrial organisms, the consistent input of Bt-contaminated runoff and crop debris into agricultural waterways is relevant to understanding potential consequences to aquatic species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Relative potency estimates of acceptable residues and reentry intervals after nerve agent release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, A.P.; Jones, T.D.; Adams, J.D.

    1992-06-01

    In the event of an unplanned release of a chemical warfare agent during any stage of the Chemical Stockpile Disposal Program, the potential exists for off-post contamination of drinking water, forage crops, grains, garden produce, and livestock. The more persistent agents, such as the organophosphate nerve agent VX, pose the greatest human health concern for reentry. A relative potency approach comparing the toxicity of VX to organophosphate insecticide analogues is developed and used to estimate allowable residues for VX in agricultural products and reentry intervals for public access to contaminated areas. Analysis of mammalian LD50 data by all exposure routesmore » indicates that VX is 10(3) to 10(4) times more toxic than most commercially available organophosphate insecticides. Thus, allowable residues of VX could be considered at concentration levels 10(3) to 10(4) lower than those established for certain insecticides by the U.S. EPA. Evaluation of reentry intervals developed for these organophosphate analogues indicate that, if environmental monitoring cannot reliably demonstrate acceptable levels of VX, restricted access to suspect or contaminated areas may be on the order of weeks to months following agent release. Planning for relocation, mass care centers, and quarantine should take this time period into account.« less

  18. Influence of steam explosion pretreatment on the anaerobic digestion of vinegar residue.

    PubMed

    Feng, Jiayu; Zhang, Jiyu; Zhang, Jiafu; He, Yanfeng; Zhang, Ruihong; Liu, Guangqing; Chen, Chang

    2016-07-01

    Vinegar residue is the by-product in the vinegar production process. The large amount of vinegar residue has caused a serious environmental problem owing to its acidity and corrosiveness. Anaerobic digestion is an effective way to convert agricultural waste into bioenergy, and a previous study showed that vinegar residue could be treated by anaerobic digestion but still had room to improve digestion efficiency. In this study, steam explosion at pressure of 0.8, 1.2, and 1.5 MPa and residence time of 5, 10, 15, and 20 min were used to pretreat vinegar residue to improve methane production, respectively. Scanning electron microscopy and X-ray diffraction analyses were applied to validate structural changes of vinegar residue after steam explosion. Results showed that steam explosion pretreatment could destroy the structure of lignocellulose by removing the hemicellulose and lignin, and improve the methane yield effectively. Steam explosion-treated vinegar residue at 0.8 MPa for 5 min produced the highest methane yield of 153.58 mL gVS (-1), which was 27.65% (significant, α < 0.05) more than untreated vinegar residue (120.31 mL gVS (-1)). The analyses of pH, total ammonia-nitrogen, total alkalinity, and volatile fatty acids showed that steam explosion did not influence the stability of anaerobic digestion. This study suggested that steam explosion pretreatment on vinegar residue might be a promising approach and it is worth further study to improve the efficiency of vinegar residue waste utilisation. © The Author(s) 2016.

  19. Assessing different agricultural managements with the use of soil quality indices in a Mediteranean calcareous soil

    NASA Astrophysics Data System (ADS)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Mataix-Solera, Jorge; Arcenegui, Vicky; Cerdà, Artemi

    2013-04-01

    Soil erosion is a major problem in the Mediterranean region due to the arid conditions and torrential rainfalls, which contribute to the degradation of agricultural land. New strategies must be developed to reduce soil losses and recover or maintain soil functionality in order to achieve a sustainable agriculture. An experiment was designed to evaluate the effect of different agricultural management on soil properties and soil quality. Ten different treatments (contact herbicide, systemic herbicide, ploughing, Oat mulch non-plough, Oats mulch plough, leguminous plant, straw rice mulch, chipped pruned branches, residual-herbicide and agro geo-textile, and three control plots including no tillage or control and long agricultural abandonment (shrub on marls and shrub on limestone) were established in 'El Teularet experimental station' located in the Sierra de Enguera (Valencia, Spain). The soil is a Typic Xerorthent developed over Cretaceous marls in an old agricultural terrace. The agricultural management can modify the soil equilibrium and affect its quality. In this work two soil quality indices (models) developed by Zornoza et al. (2007) are used to evaluate the effects of the different agricultural management along 4 years. The models were developed studying different soil properties in undisturbed forest soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. Model 1, that explained 92% of the variance in soil organic carbon (SOC) showed that the SOC can be calculated by the linear combination of 6 physical, chemical and biochemical properties (acid phosphatase, water holding capacity (WHC), electrical conductivity (EC), available phosphorus (P), cation exchange capacity (CEC) and aggregate stability (AS). Model 2 explains 89% of the SOC variance, which can be calculated by means of 7 chemical and biochemical properties (urease, phosphatase, and ß-glucosidase activities, pH, EC, P and CEC). We use the

  20. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.

    PubMed

    Pucker, J; Jungmeier, G; Siegl, S; Pötsch, E M

    2013-06-01

    The greenhouse gas (GHG) emissions, expressed in carbon dioxide equivalents (CO2-eq), of different Austrian biogas systems were analyzed and evaluated using life-cycle assessment (LCA) as part of a national project. Six commercial biogas plants were investigated and the analysis included the complete process chain: viz., the production and collection of substrates, the fermentation of the substrates in the biogas plant, the upgrading of biogas to biomethane (if applicable) and the use of the biogas or biomethane for heat and electricity or as transportation fuel. Furthermore, the LCA included the GHG emissions of construction, operation and dismantling of the major components involved in the process chain, as well as the use of by-products (e.g. fermentation residues used as fertilizers). All of the biogas systems reduced GHG emissions (in CO2-eq) compared with fossil reference systems. The potential for GHG reduction of the individual biogas systems varied between 60% and 100%. Type of feedstock and its reference use, agricultural practices, coverage of storage tanks for fermentation residues, methane leakage at the combined heat and power plant unit and the proportion of energy used as heat were identified as key factors influencing the GHG emissions of anaerobic digestion processes.

  1. Use of drinking water treatment residuals as a potential best management practice to reduce phosphorus risk index scores.

    PubMed

    Dayton, E A; Basta, N T

    2005-01-01

    The P risk index system has been developed to identify agricultural fields vulnerable to P loss as a step toward protecting surface water. Because of their high Langmuir phosphorus adsorption maxima (P(max)), use of drinking water treatment residuals (WTRs) should be considered as a best management practice (BMP) to lower P risk index scores. This work discusses three WTR application methods that can be used to reduce P risk scores: (i) enhanced buffer strip, (ii) incorporation into a high soil test phosphorus (STP) soil, and (iii) co-blending with manure or biosolids. The relationship between WTR P(max) and reduction in P extractability and runoff P was investigated. In a simulated rainfall experiment, using a buffer strip enhanced with 20 Mg WTR ha(-1), runoff P was reduced by from 66.8 to 86.2% and reductions were related to the WTR P(max). When 25 g kg(-1) WTR was incorporated into a high STP soil of 315 mg kg(-1) determined using Mehlich-3 extraction, 0.01 M calcium chloride-extractable phosphorus (CaCl(2)-P) reductions ranged from 60.9 to 96.0% and were strongly (P < 0.01) related to WTR P(max). At a 100 g kg(-1) WTR addition, Mehlich 3-extractable P reductions ranged from 41.1 to 86.7% and were strongly (P < 0.01) related to WTR P(max). Co-blending WTR at 250 g kg(-1) to manure or biosolids reduced CaCl(2)-P by >75%. The WTR P(max) normalized across WTR application rates (P(max) x WTR application) was significantly related to reductions in CaCl(2)-P or STP. Using WTR as a P risk index modifying factor will promote effective use of WTR as a BMP to reduce P loss from agricultural land.

  2. Crop residues for advanced biofuels workshop: A synposis

    USDA-ARS?s Scientific Manuscript database

    Crop residues are being harvested for a variety of purposes including their use as livestock feed and to produce advanced biofuels. Crop residue harvesting, by definition, reduces the potential annual carbon input to the soil from aboveground biomass but does not affect input from plant roots. The m...

  3. Potential Land Mapping for Agricultural Extentification in Mengwi Sub-district to Support Food Balance in Badung Regency, Indonesia

    NASA Astrophysics Data System (ADS)

    Made Trigunasih, Ni; Lanya, Indayati; Ratna Adi, I. G. P.; Hutauruk, Jeremia; Feronika

    2017-12-01

    The availability of agricultural land for food crops, especially in Bali, is rapidly declining every year. The availability of rice fields in Badung regency, especially in Mengwi Sub-district until 2040 is no longer exist, this means that Mengwi Sub-district has lost the rice fields. The existence of land conversion will affect food availability for the country, so there will be food deficit. The food balance in Badung Regency in 2015 with Cultivation Index (IP) and initial productivity in each Sub-district showed a food deficit of 32,843.44 tons, then after increasing IP of 2,5 the productivity in Kecamatan Petang and Kuta at 7 tons / ha, and Abiansemal, Mengwi and North Kuta Sub-districts with 8 tons / ha which indicate a surplus in 2020 and 2030 respectively of 25,155.19 tons, and 3,401.79 tons. But in 2040 and 2050 there was a food deficiency of 18,434.78 tons and 11,824.82 tons respectively. Considering that productivity improvement efforts cannot rely solely on intensification approaches, but also need to be done with extensification or expansion of agricultural areas to support food production. This research was conducted in Mengwi Sub-district, Badung Regency. Mengwi Sub-district consists of 20 villages. The objectives of this research are: (1) to map potential land that can be converted to agricultural land of food crops, and (2) to know the amount of food demand to supply food balance in Badung Regency in 2040. Research methodology includes (1) preliminary study, (2) interpretation of satellite images, (3) mapping and measurement of land area, and (4) calculation of additional food availability. The results indicate that the potential land that can be converted to agricultural land for food crops is 132 ha, consists of 128.51 ha of mixed plantation and 3.49 ha of bare land/bush. The result of additional land produced 1601.73 tons of rice that increased the food availability in Mengwi Sub-district to 45425.7 tons. The addition of surplus in 2040 in Mengwi

  4. Agricultural Products | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag News Contact Us Search  Log inRegister Home Home Agricultural Products NEWT: National Extension Web , tables, graphs), Agricultural Products html National Animal Nutrition Program (NANP) Feed Composition

  5. Crop residue is key for sustaining maximum food production and for conservation of our biosphere

    USDA-ARS?s Scientific Manuscript database

    Crop residue is key in our efforts to move towards agricultural sustainability. This paper provides a quick overview of some selected references and looks at some of the newest advances related to cover crops. Several authors have described in detail the benefits derived from improving soil quality ...

  6. Improving agricultural knowledge management: The AgTrials experience

    PubMed Central

    Hyman, Glenn; Espinosa, Herlin; Camargo, Paola; Abreu, David; Devare, Medha; Arnaud, Elizabeth; Porter, Cheryl; Mwanzia, Leroy; Sonder, Kai; Traore, Sibiry

    2017-01-01

    Background: Opportunities to use data and information to address challenges in international agricultural research and development are expanding rapidly. The use of agricultural trial and evaluation data has enormous potential to improve crops and management practices. However, for a number of reasons, this potential has yet to be realized. This paper reports on the experience of the AgTrials initiative, an effort to build an online database of agricultural trials applying principles of interoperability and open access. Methods: Our analysis evaluates what worked and what did not work in the development of the AgTrials information resource. We analyzed data on our users and their interaction with the platform. We also surveyed our users to gauge their perceptions of the utility of the online database. Results: The study revealed barriers to participation and impediments to interaction, opportunities for improving agricultural knowledge management and a large potential for the use of trial and evaluation data.  Conclusions: Technical and logistical mechanisms for developing interoperable online databases are well advanced.  More effort will be needed to advance organizational and institutional work for these types of databases to realize their potential. PMID:28580127

  7. Agriculture land suitability analysis evaluation based multi criteria and GIS approach

    NASA Astrophysics Data System (ADS)

    Bedawi Ahmed, Goma; Shariff, Abdul Rashid M.; Balasundram, Siva Kumar; Abdullah, Ahmad Fikri bin

    2016-06-01

    Land suitability evaluation (LSE) is a valuable tool for land use planning in major countries of the world as well as in Malaysia. However, previous LSE studies have been conducted with the use of biophysical and ecological datasets for the design of equally important socio-economic variables. Therefore, this research has been conducted at the sub national level to estimate suitable agricultural land for rubber crops in Seremban, Malaysia by application of physical variables in combination with widely employed biophysical and ecological variables. The objective of this study has been to provide an up-to date GIS-based agricultural land suitability evaluation (ALSE) for determining suitable agricultural land for Rubber crops in Malaysia. Biophysical and ecological factors were assumed to influence agricultural land use were assembled and the weights of their respective contributions to land suitability for agricultural uses were assessed using an analytic hierarchical process. The result of this study found Senawang, Mambau, Sandakan and Rantau as the most suitable areas for cultivating Rubber; whereas, Nilai and Labu are moderately suitable for growing rubber. Lenggeng, Mantin and Pantai are not suitable for growing rubber as the study foresaw potential environmental degradation of these locations from agricultural intensification. While this study could be useful in assessing the potential agricultural yields and potential environmental degradation in the study area, it could also help to estimate the potential conversion of agricultural land to non-agricultural uses.

  8. The greenhouse gas intensity and potential biofuel production capacity of maize stover harvest in the US Midwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Curtis D.; Zhang, Xuesong; Reddy, Ashwan D.

    Agricultural residues are important sources of feedstock for a cellulosic biofuels industry that is being developed to reduce greenhouse gas emissions and improve energy independence. While the US Midwest has been recognized as key to providing maize stover for meeting near-term cellulosic biofuel production goals, there is uncertainty that such feedstocks can produce biofuels that meet federal cellulosic standards. Here, we conducted extensive site-level calibration of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystems model and applied the model at high spatial resolution across the US Midwest to improve estimates of the maximum production potential and greenhouse gas emissions expectedmore » from continuous maize residue-derived biofuels. A comparison of methodologies for calculating the soil carbon impacts of residue harvesting demonstrates the large impact of study duration, depth of soil considered, and inclusion of litter carbon in soil carbon change calculations on the estimated greenhouse gas intensity of maize stover-derived biofuels. Using the most representative methodology for assessing long-term residue harvesting impacts, we estimate that only 5.3 billion liters per year (bly) of ethanol, or 8.7% of the near-term US cellulosic biofuel demand, could be met under common no-till farming practices. However, appreciably more feedstock becomes available at modestly higher emissions levels, with potential for 89.0 bly of ethanol production meeting US advanced biofuel standards. Adjustments to management practices, such as adding cover crops to no-till management, will be required to produce sufficient quantities of residue meeting the greenhouse gas emission reduction standard for cellulosic biofuels. Considering the rapid increase in residue availability with modest relaxations in GHG reduction level, it is expected that management practices with modest benefits to soil carbon would allow considerable expansion of potential

  9. Productivity limits and potentials of the principles of conservation agriculture

    USDA-ARS?s Scientific Manuscript database

    One of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions of the future. Conservation agriculture (CA) represents a set of three crop manage...

  10. Potential for remote sensing of agriculture from the international space station

    NASA Astrophysics Data System (ADS)

    Morgenthaler, George W.; Khatib, Nader

    1999-01-01

    Today's spatial resolution of orbital sensing systems is too coarse to economically serve the yield-improvement/contamination-reduction needs of the small to mid-size farm enterprise. Remote sensing from aircraft is being pressed into service. However, satellite remote sensing constellations with greater resolution and more spectral bands, i.e., with resolutions of 1 m in the panchromatic, 4 m in the multi-spectral, and 8 m in the hyper-spectral are expected to be in orbit by the year 2000. Such systems coupled with Global Positioning System (GPS) capability will make ``precision agriculture,'' i.e., the identification of specific and timely fertilizer, irrigation, herbicide, and insecticide needs on an acre-by-acre basis and the ability to meet these needs with precision delivery systems at affordable costs, is what is needed and can be achieved. Current plans for remote sensing systems on the International Space Station (ISS) include externally attached payloads and a window observation platform. The planned orbit of the Space Station will result in overflight of a specific latitude and longitude at the same clock time every 3 months. However, a pass over a specific latitude and longitude during ``daylight hours'' could occur much more frequently. The ISS might thus be a space platform for experimental and developmental testing of future commercial space remote sensing precision agriculture systems. There is also a need for agricultural ``truth'' sites so that predictive crop yield and pollution models can be devised and corrective suggestions delivered to farmers at affordable costs. In Summer 1998, the University of Colorado at Boulder and the Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA) at Howard University, under NASA Goddard Space Flight Center funding, established an agricultural ``truth'' site in eastern Colorado. The ``truth'' site was highly instrumented for measuring trace gas concentrations (NOx, SOx, CO2, O3, organics

  11. Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia.

    PubMed

    Ho, Yu Bin; Zakaria, Mohamad Pauzi; Latif, Puziah Abdul; Saari, Nazamid

    2014-08-01

    Repeated applications of animal manure as fertilizer are normal agricultural practices that may release veterinary antibiotics and hormones into the environment from treated animals. Broiler manure samples and their respective manure-amended agricultural soil samples were collected in selected locations in the states of Selangor, Negeri Sembilan and Melaka in Malaysia to identify and quantify veterinary antibiotic and hormone residues in the environment. The samples were analyzed using ultrasonic extraction followed by solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The broiler manure samples were found to be contaminated with at least six target analytes, namely, doxycycline, enrofloxacin, flumequine, norfloxacin, trimethoprim and tylosin. These analytes were detected in broiler manure samples with maximum concentrations reaching up to 78,516 μg kg(-1) dry weight (DW) (doxycycline). For manure-amended agricultural soil samples, doxycycline and enrofloxacin residues were detected in every soil sample. The maximum concentration of antibiotic detected in soil was 1331 μg kg(-1) DW (flumequine). The occurrence of antibiotics and hormones in animal manure at high concentration poses a risk of contaminating agricultural soil via fertilization with animal manure. Some physico-chemical parameters such as pH, total organic carbon (TOC) and metal content played a considerable role in the fate of the target veterinary antibiotics and progesterone in the environment. It was suggested that these parameters can affect the adsorption of pharmaceuticals to solid environmental matrices. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils.

    PubMed

    Wang, Jun; Lv, Shenghong; Zhang, Manyun; Chen, Gangcai; Zhu, Tongbin; Zhang, Shen; Teng, Ying; Christie, Peter; Luo, Yongming

    2016-05-01

    Plastic film mulching has played an important role in Chinese agriculture, especially in vegetable production, but large amounts of film residues can accumulate in the soil. The present study investigated the effects of plastic film residues on the occurrence of soil PAEs and microbial activities using a batch pot experiment. PAE concentrations increased with increasing plastic film residues but the soil microbial carbon and nitrogen, enzyme activities and microbial diversity decreased significantly. At the end of the experiment the PAE concentrations were 0-2.02 mg kg(-1) in the different treatments. Soil microbial C and N, enzyme activities, AWCD value, and Shannon-Weaver and Simpson indices declined by about 28.9-76.2%, 14.9-59.0%, 4.9-22.7%, 23.0-42.0% and 1.8-18.7%, respectively. Soil microbial activity was positively correlated with soil PAE concentration, and soil PAE concentrations were impacted by plastic color and residue volume. Correlations among, and molecular mechanisms of, plastic film residues, PAE occurrence and microbial activity require further study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Biosolids amendment dramatically increases sequestration of crop residue-carbon in agricultural soils in western Illinois

    USDA-ARS?s Scientific Manuscript database

    Release of carbon dioxide through microbial respiration from the world’s crop residues (non-edible plant parts left in the field after harvest) represents an important form of carbon transfer from terrestrial ecosystems to the atmosphere. We hypothesized that alleviation of environmental stress (moi...

  14. ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China

    NASA Astrophysics Data System (ADS)

    Liu, E. K.; He, W. Q.; Yan, C. R.

    2014-09-01

    Plastic film mulching has played an important role in Chinese agriculture due to its soil warming and moisture conservation effects. With the help of plastic film mulch technology, grain and cash crop yields have increased by 20-35% and 20-60%, respectively. The area of plastic film coverage in China reached approximately 20 million hectares, and the amount of plastic film used reached 1.25 million tons in 2011. While producing huge benefits, plastic film mulch technology has also brought on a series of pollution hazards. Large amounts of residual plastic film have detrimental effects on soil structure, water and nutrient transport and crop growth, thereby disrupting the agricultural environment and reducing crop production. To control pollution, the Chinese government urgently needs to elevate plastic film standards. Meanwhile, research and development of biodegradable mulch film and multi-functional mulch recovery machinery will help promote effective control and management of residual mulch pollution.

  15. Current organic waste recycling and the potential for local recycling through urban agriculture in Metro Manila.

    PubMed

    Hara, Yuji; Furutani, Takashi; Murakami, Akinobu; Palijon, Armando M; Yokohari, Makoto

    2011-11-01

    Using the solid waste management programmes of three barangays (the smallest unit of local government in the Philippines) in Quezon City, Metro Manila, as a case study, this research aimed to further the development of efficient organic waste recycling systems through the promotion of urban agricultural activities on green and vacant spaces. First, the quantity of organic waste and compost produced through ongoing barangay projects was measured. The amount of compost that could potentially be utilized on farmland and vacant land within the barangays was then identified to determine the possibility of a local recycling system. The results indicate that, at present, securing buyers for compost is difficult and, therefore, most compost is distributed to large neighbouring farm villages. However, the present analysis of potential compost use within the barangay demonstrates that a more local compost recycling system is indeed feasible.

  16. How does different arable management affect potential N mineralisation?

    NASA Astrophysics Data System (ADS)

    Spiegel, Heide; Sandén, Taru; Dersch, Georg; Baumgarten, Andreas

    2017-04-01

    The production of food and animal feed on agricultural soils and an increasing need to generate biomass for material and energy use on the limited resource soil require optimal nutrient storage and cycling. Especially nitrogen (N) should be managed as accurate as possible to ensure beneficial yields and product qualities and to avoid adverse environmental effects, e.g. N leaching into waters and gaseous losses into the atmosphere. One biological indicator to assess the site specific potential to release N is the "potential N mineralisation". This parameter can be measured by routine analysis with the anaerobic incubation method (KEENEY, 1982), modified according to KANDELER (1993) on dried soils. The results of the potential N mineralisation measurements can be classified (high: > 70 mg N kg-1 7 d-1, medium and low: 35-70 mg and ≤ 35 N kg-1 7d-1, respectively) according to the Austrian guidelines for appropriate fertilisation (BMLFUW, 2017). The results of this biological soil parameter provide information about soil fertility and the nutrient status to the farmers and can be used to adjust N fertilisation recommendations. Furthermore, AGES runs long-term field experiments since several decades. We have evaluated the effects of different agricultural management, such as organic and mineral fertilisation and tillage, on the potential N mineralisation at different sites in Austria. Our results indicate that the potential N mineralisation increases significantly after long-term organic fertilisation (farmyard manure (FYM)), after long-term incorporation of crop residues and the reduction of tillage.

  17. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies.

    PubMed

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency.

  18. Production of 15N-Labelled Liquid Organic Fertilisers Based on Manure and Crop Residue for Use in Fertigation Studies

    PubMed Central

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Fernández, Carlos; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    Large quantities of crop residue and animal manure from agricultural and livestock activities are annually produced worldwide. With proper management, these residues are potentially valuable sources of plant nutrients, mainly N. Recycling such subproducts in sustainably-based agricultural systems can minimise the use of mineral fertilisers, and hence reduce the potential risk of surface and groundwater pollution. Therefore, the purpose of this study was to obtain (small scale) two liquid labelled-organic fertilisers, an animal- and a vegetal-based organic (AO and VO, respectively) fertiliser, to be used as organic N sources in subsequent fertigation studies. Forage maize (Zea mays L.) grown under 15N-labelled fertiliser supply was used as raw material for VO fertiliser production, and also as 15N-labelled sheep feed to obtain 15N-labelled manure. The labelled faeces fraction was used as raw material for the AO fertiliser. The VO fertiliser was obtained after an acidic and an enzyme-driven hydrolysis. The AO fertiliser was obtained after acidic hydrolysis. The VO liquid fertiliser presented an N concentration of 330 mg·L-1, 85% of total N was organic, while ammonium and nitrate N accounted for 55% and 45% of the mineral nitrogen fraction, respectively. This fertiliser also exhibited high K, Ca and S concentrations and notable values for the remaining macro- and micronutrients. The AO liquid fertiliser had a similar total N concentration (496 mg·L-1, 82% of total N in an organic form) to that of VO, but its mineral N fraction significantly differed, which came in a predominantly (95%) ammonia form. It also had a high content of N, P, K and other macronutrients, and sufficient Fe, Zn, Mn, Cu and B levels, which suggests its suitability as a potential fertiliser. The percentage of 15N enrichment in both VO and AO liquid fertilisers exceeded 2% 15N atom excess, which enabled their use in subsequent assays run to assess nitrogen uptake efficiency. PMID:26982183

  19. Agriculture: Agriculture and Air Quality

    EPA Pesticide Factsheets

    Information on air emissions from agricultural practices, types of agricultural burning, air programs that may apply to agriculture, reporting requirements, and links to state and other federal air-quality information.

  20. Inventory of heavy metal content in organic waste applied as fertilizer in agriculture: evaluating the risk of transfer into the food chain.

    PubMed

    Lopes, Carla; Herva, Marta; Franco-Uría, Amaya; Roca, Enrique

    2011-07-01

    In this work, an environmental risk assessment of reusing organic waste of differing origins and raw materials as agricultural fertilizers was carried out. An inventory of the heavy metal content in different organic wastes (i.e., compost, sludge, or manure) from more than 80 studies at different locations worldwide is presented. The risk analysis was developed by considering the heavy metal (primarily Cd, Cu, Ni, Pb, and Zn) concentrations in different organic residues to assess their potential environmental accumulation and biotransfer to the food chain and humans. A multi-compartment model was used to estimate the fate and distribution of metals in different environmental compartments, and a multi-pathway model was used to predict human exposure. The obtained hazard index for each waste was concerning in many cases, especially in the sludge samples that yielded an average value of 0.64. Among the metals, Zn was the main contributor to total risk in all organic wastes due to its high concentration in the residues and high biotransfer potential. Other more toxic metals, like Cd or Pb, represented a negligible contribution. These results suggest that the Zn content in organic waste should be reduced or more heavily regulated to guarantee the safe management and reuse of waste residues according to the current policies promoted by the European Union.

  1. Introduction to the JEEG Agricultural Geophysics Special Issue

    USGS Publications Warehouse

    Allred, Barry J.; Smith, Bruce D.

    2010-01-01

    Near-surface geophysical methods have become increasingly important tools in applied agricultural practices and studies. The great advantage of geophysical methods is their potential rapidity, low cost, and spatial continuity when compared to more traditional methods of assessing agricultural land, such as sample collection and laboratory analysis. Agricultural geophysics investigations commonly focus on obtaining information within the soil profile, which generally does not extend much beyond 2 meters beneath the ground surface. Although the depth of interest oftentimes is rather shallow, the area covered by an agricultural geophysics survey can vary widely in scale, from experimental plots (10 s to 100 s of square meters), to farm fields (10 s to 100 s of hectares), up to the size of watersheds (10 s to 100 s of square kilometers). To date, three predominant methods—resistivity, electromagnetic induction (EMI), and ground-penetrating radar (GPR)—have been used to obtain surface-based geophysical measurements within agricultural settings. However, a recent conference on agricultural geophysics (Bouyoucos Conference on Agricultural Geophysics, September 8–10, 2009, Albuquerque, New Mexico; www.ag-geophysics.org) illustrated that other geophysical methods are being applied or developed. These include airborne electromagnetic induction, magnetometry, seismic, and self-potential methods. Agricultural geophysical studies are also being linked to ground water studies that utilize deeper penetrating geophysical methods than normally used.

  2. Raman spectroscopic analysis of gunshot residue offering great potential for caliber differentiation.

    PubMed

    Bueno, Justin; Sikirzhytski, Vitali; Lednev, Igor K

    2012-05-15

    Near-infrared (NIR) Raman microspectroscopy combined with advanced statistics was used to differentiate gunshot residue (GSR) particles originating from different caliber ammunition. The firearm discharge process is analogous to a complex chemical reaction. The reagents of this process are represented by the chemical composition of the ammunition, firearm, and cartridge case. The specific firearm parameters determine the conditions of the reaction and thus the subsequent product, GSR. We found that Raman spectra collected from these products are characteristic for different caliber ammunition. GSR particles from 9 mm and 0.38 caliber ammunition, collected under identical discharge conditions, were used to demonstrate the capability of confocal Raman microspectroscopy for the discrimination and identification of GSR particles. The caliber differentiation algorithm is based on support vector machines (SVM) and partial least squares (PLS) discriminant analyses, validated by a leave-one-out cross-validation method. This study demonstrates for the first time that NIR Raman microspectroscopy has the potential for the reagentless differentiation of GSR based upon forensically relevant parameters, such as caliber size. When fully developed, this method should have a significant impact on the efficiency of crime scene investigations.

  3. Nanohardness and Residual Stress in TiN Coatings.

    PubMed

    Hernández, Luis Carlos; Ponce, Luis; Fundora, Abel; López, Enrique; Pérez, Eduardo

    2011-05-17

    TiN films were prepared by the Cathodic arc evaporation deposition method under different negative substrate bias. AFM image analyses show that the growth mode of biased coatings changes from 3D island to lateral when the negative bias potential is increased. Nanohardness of the thin films was measured by nanoindentation, and residual stress was determined using Grazing incidence X ray diffraction. The maximum value of residual stress is reached at -100 V substrate bias coinciding with the biggest values of adhesion and nanohardness. Nanoindentation measurement proves that the force-depth curve shifts due to residual stress. The experimental results demonstrate that nanohardness is seriously affected by the residual stress.

  4. On tide-induced Lagrangian residual current and residual transport: 1. Lagrangian residual current

    USGS Publications Warehouse

    Feng, Shizuo; Cheng, Ralph T.; Pangen, Xi

    1986-01-01

    Residual currents in tidal estuaries and coastal embayments have been recognized as fundamental factors which affect the long-term transport processes. It has been pointed out by previous studies that it is more relevant to use a Lagrangian mean velocity than an Eulerian mean velocity to determine the movements of water masses. Under weakly nonlinear approximation, the parameter k, which is the ratio of the net displacement of a labeled water mass in one tidal cycle to the tidal excursion, is assumed to be small. Solutions for tides, tidal current, and residual current have been considered for two-dimensional, barotropic estuaries and coastal seas. Particular attention has been paid to the distinction between the Lagrangian and Eulerian residual currents. When k is small, the first-order Lagrangian residual is shown to be the sum of the Eulerian residual current and the Stokes drift. The Lagrangian residual drift velocity or the second-order Lagrangian residual current has been shown to be dependent on the phase of tidal current. The Lagrangian drift velocity is induced by nonlinear interactions between tides, tidal currents, and the first-order residual currents, and it takes the form of an ellipse on a hodograph plane. Several examples are given to further demonstrate the unique properties of the Lagrangian residual current.

  5. Organochlorine pesticides residue in lakes of Khorezm, Uzbekistan

    USGS Publications Warehouse

    Rosen, Michael R.; Nishonov, Bakhriddin; Fayzieva, Dilorom; Saito, L.; Lamers, J.

    2009-01-01

    The Khorezm province in northwest Uzbekistan is a productive agricultural area within the Aral Sea Basin that produces cotton, rice and wheat. Various organochlorine pesticides were widely used for cotton production before Uzbekistan's independence in 1991. In Khorezm, small lakes have formed in natural depressions that receive inputs mostly from agricultural runoff. Samples from lake waters and sediments, as well as water from the Amu Darya River (which is the source of most of the lake water) have been analyzed to study variations in the concentrations of organochlorine pesticides residues during the year. Low concentrations of DDT, DDD, DDE, a-HCH and y-HCH compounds were found in water and sediment samples. The concentration of persistent organochlorine pesticides (DDT and HCH) in water and sediment is much lower than the maximum permissible concentrations that exist for water and soil. According to these preliminary results, the investigated lakes in Khorezm appear to be suitable for recreation or for aquaculture.

  6. Influence of local riparian cover and watershed runoff potential on invertebrate communities in agricultural streams in the Minnesota River Basin

    USGS Publications Warehouse

    ZumBerge, Jeremy Ryan; Perry, James A.; Lee, Kathy E.

    2003-01-01

    While it is difficult to determine the relative influence of watershed runoff potential and local riparian cover, invertebrate communities may be more strongly influenced by local wooded riparian cover than by watershed runoff potential. Invertebrate community measures indicate greater degradation at the open riparian cover, high runoff potential sites and less degradation at the wooded riparian cover, low runoff potential sites. In addition, differences between streams with wooded riparian cover and sites with open riparian cover were greater in watersheds with high runoff potential. The variance explained by riparian cover and runoff potential is relatively independent of other land-use effects. Wooded riparian cover influences invertebrate community composition by its relation to the other physical environmental variables. This study indicates that wooded riparian cover may be effective in maintaining stream biotic integrity in watersheds dominated by agricultural land use.

  7. Residues of organochlorine pesticides in soils from the southern Sonora, Mexico.

    PubMed

    Cantu-Soto, E U; Meza-Montenegro, Maria Mercedes; Valenzuela-Quintanar, A I; Félix-Fuentes, A; Grajeda-Cota, P; Balderas-Cortes, J J; Osorio-Rosas, C L; Acuña-García, G; Aguilar-Apodaca, M G

    2011-11-01

    Although, the Yaqui and Mayo valleys are the most important agricultural areas in Sonora, there is only limited data of the pesticides residue in soils in these valleys. This study measured the organochlorine pesticides (OCPs) in 234 soil samples (residential and agricultural) from 24 communities. The global results (mean, range) indicated that benzene hexachloride (19.2, ND-938.5 μg g(-1)), endrin (6.6, ND-377.3 μg g(-1)) and DDTs (36.45, ND-679.7 μg g(-1)) were the dominant contaminants. Soil is one of the most important routes of exposure to OCPs in the population of southern Sonora and this study can be used to establish background levels of OCPs.

  8. Green coffee seed residue: A sustainable source of antioxidant compounds.

    PubMed

    Castro, A C C M; Oda, F B; Almeida-Cincotto, M G J; Davanço, M G; Chiari-Andréo, B G; Cicarelli, R M B; Peccinini, R G; Zocolo, G J; Ribeiro, P R V; Corrêa, M A; Isaac, V L B; Santos, A G

    2018-04-25

    Oil extraction from green coffee seeds generates residual mass that is discarded by agribusiness and has not been previously studied. Bioactive secondary metabolites in coffee include antioxidant phenolic compounds, such as chlorogenic acids. Coffee seeds also contain caffeine, a pharmaceutically important methylxanthine. Here, we report the chemical profile, antioxidant activity, and cytotoxicity of hydroethanolic extracts of green Coffea arabica L. seed residue. The extracts of the green seeds and the residue have similar chemical profiles, containing the phenolic compounds chlorogenic acid and caffeine. Five monoacyl and three diacyl esters of trans-cinnamic acids and quinic acid were identified by ultra-performance liquid chromatography/electrospray ionization-quadruple time of flight mass spectrometry. The residue extract showed antioxidant potential in DPPH, ABTS, and pyranine assays and low cytotoxicity. Thus, coffee oil residue has great potential for use as a raw material in dietary supplements, cosmetic and pharmaceutical products, or as a source of bioactive compounds. Copyright © 2017. Published by Elsevier Ltd.

  9. Assessment of flubendiamide residues in pigeon pea in different agro-climatic zones of India.

    PubMed

    Kale, V D; Walunj, A R; Battu, R S; Sahoo, Sanjay K; Singh, Balwinder; Paramasivam, M; Roy, Sankhajit; Banerjee, Tirthankar; Banerjee, Hemanta; Rao, Cherukuri Sreenivasa; Reddy, D Jagdishwar; Reddy, K Narasimha; Reddy, C Narendra; Tripathy, Vandana; Jaya, Maisnam; Pant, Shashi; Gupta, Monika; Singh, Geeta; Sharma, K K

    2012-07-01

    Supervised field trials were conducted at the research farms of four agricultural universities located at different agro-climatic zones of India to find out the harvest time residues of flubendiamide and its des-iodo metabolite on pigeon pea (Cajanus cajan) during the year 2006-2007. Two spray applications of flubendiamide 20 WDG at 50 g (T(1)) and 100 g (T(2)) a.i./ha were given to the crop at 15-days interval. The foliage samples at different time intervals were drawn at only one location, however, the harvest time samples of pigeon pea grain, shell, and straw were drawn at all the four locations. The residues were estimated by HPLC coupled with UV-VIS variable detector. No residues of flubendiamide and its des-iodo metabolite were found at harvest of the crop at or above the LOQ level of 0.05 μg/g. On the basis of the data generated, a pre-harvest interval (PHI) of 28 days has been recommended and the flubendiamide 20 WDG has been registered for use on pigeon pea by Central Insecticide Board and Registration Committee, Ministry of Agriculture, Government of India and the MRL has been fixed by Ministry of Health and Family Welfare, Government of India under Prevention of Food and Adulteration as 0.05 μg/g on pigeon pea grains.

  10. Bee honey as an environmental bioindicator of pesticides' occurrence in six agricultural areas of Greece.

    PubMed

    Balayiannis, George; Balayiannis, Panos

    2008-10-01

    The pollution of six agricultural areas of Greece (north, central, south) by insecticides used in crop protection has been investigated utilizing, as a bioindicator, bee honey produced in those areas. Honey samples collected randomly from apiaries located in those areas were analyzed for pesticide residues with a multianalytical method, able to determine simultaneously up to 10 organophosphorous insecticides from the same honey extract. Findings concerning the acaricide coumaphos were also included, even though it is not used in crop protection. Coumaphos is used to control the mite Varroa destructor, an external parasite of the honeybee. The above areas are cultivated in large extent with citrus trees or cotton or sunflower crops, which are good forages for honeybees. The main pests of those crops are insects; hence, insecticides are used on a large scale for crop protection. The most contaminated samples originated from citrus groves; 16 out of 19 had pesticide residues: 4 samples had chlorfenvinphos (21.05%), 10 had chlorpyrifos (52.63%) and 2 had phorate (10.53%). Out of 17 samples from cotton fields, residues were found in 8, phorate in 6 (35.29%), chlorfenvinphos in 1 (5.88%), and chlorpyrifos in 1 (5.88%). Out of nine samples from fields of sunflower, four had phorate residues (44.44%). In brief, from the 50 analyzed samples, residues of chlorfenvinphos were detected in 5 samples (10%), residues of chlorpyrifos in 11 samples (22%), and residues of phorate in 12 samples (24%). Their levels ranged between 0.70 and 0.89 microg/kg. Coumaphos residues ranged from 0.10 up to 4.80 microg/kg and were derived exclusively from beehives treated with Perizin (the commercial formulation of coumaphos) for Varroa control. This study indicates that in agricultural areas with developed apiculture, useful information about the occurrence and the distribution of pesticide residues due to crop protection treatments can be derived from the analysis of randomly collected honey

  11. Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues.

    PubMed

    Bhatia, Poonam; Aureli, Federica; D'Amato, Marilena; Prakash, Ranjana; Cameotra, Swaranjit Singh; Nagaraja, Tejo Prakash; Cubadda, Francesco

    2013-09-01

    Cultivation of saprophytic fungi on selenium-rich substrates can be an effective means to produce selenium-fortified food. Pleurotus florida, an edible species of oyster mushrooms, was grown on wheat straw from the seleniferous belt of Punjab (India) and its potential to mobilize and accumulate selenium from the growth substrate was studied. Selenium concentration in biofortified mushrooms was 800 times higher compared with control samples grown on wheat straw from non selenium-rich areas (141 vs 0.17 μg Se g(-1) dry weight). Seventy-five percent of the selenium was extracted after in vitro simulated gastrointestinal digestion and investigation of the selenium molecular fractions by size exclusion HPLC-ICP-MS revealed that proteins and any other high molecular weight selenium-containing molecule were hydrolyzed to peptides and low molecular weight selenocompounds. Analysis of the gastrointestinal hydrolysates by anion exchange HPLC-ICP-MS showed that the bioaccessible selenium was mainly present as selenomethionine, a good bioavailable source of selenium, which accounted for 73% of the sum of the detected species. This study demonstrates the feasibility of producing selenium-biofortified edible mushrooms using selenium-rich agricultural by-products as growth substrates. The proposed approach can be used to evaluate whether selenium-contaminated plant waste materials harvested from high-selenium areas may be used to produce selenium-biofortified edible mushrooms based on the concentration, bioaccessibility and speciation of selenium in the mushrooms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Initial Effects of Differently Treated Biogas Residues from Municipal and Industrial Wastes on Spring Barley Yield Formation

    PubMed Central

    Prays, Nadia; Kaupenjohann, Martin

    2016-01-01

    Soil application of biogas residues (BGRs) is important for closing nutrient cycles. This study examined the efficiency and impact on yields and yield formation of solid-liquid separated residues from biodegradable municipal and industrial wastes (bio-waste) in comparison to complete BGRs, nitrification inhibitor, agricultural BGRs, mineral fertilizer and unfertilized plots as control. The experiment was set up as a randomized block design on silt loam Cambisol. Biogas residues from four biogas plants were evaluated. Plants per m², ears per plant, grains per ear and thousand grain weight (TGW) were measured at harvest. Fertilization with BGRs resulted in similar biomass yields compared with mineral fertilizer. Mineral fertilizer (71 dt/ha) and plots fertilized with liquid fraction (59–62 dt/ha) indicated a trend to higher yields than solid fraction or complete BGR due to its high ammonia content. Liquid fractions and fraction with nitrification inhibitor induced fewer plants per m² than corresponding solid and complete variants due to a potential phytotoxicity of high NH4-N concentration during germination. However, barley on plots fertilized with liquid fraction compensated the disadvantages at the beginning during the vegetation period and induced higher grain yields than solid fraction. This was attributable to a higher number of ears per plant and grains per ear. In conclusion, BGRs from biodegradable municipal and industrial wastes can be used for soil fertilization and replace considerable amounts of mineral fertilizer. Our study showed that direct application of the liquid fraction of BGR is the most suitable strategy to achieve highest grain yields. Nevertheless potential phytotoxicity of the high NH4-N concentration in the liquid fraction should be considered. PMID:27116355

  13. Pesticides in soils and ground water in selected irrigated agricultural areas near Havre, Ronan, and Huntley, Montana

    USGS Publications Warehouse

    Clark, D.W.

    1990-01-01

    Three areas in Montana representing a range of agricultural practices and applied pesticides, were studied to document whether agricultural pesticides are being transported into the soil and shallow groundwater in irrigated areas. Analytical scans for triazine herbicides, organic-acid herbicides, and carbamate insecticides were performed on soil and shallow groundwater samples. The results indicate pesticide residue in both types of samples. The concentrations of pesticides in the groundwater were less than Federal health-advisory limits. At the Havre Agricultural Experiment Station, eight wells were installed at two sites. All four soil samples and two of four water samples collected after application of pesticides contained detectable concentrations of atrazine or dicamba. In an area where seed potatoes are grown near Ronan, eight wells were installed at two sites. Pesticides were not detected after initial application of pesticides and irrigation water. The site was resampled after irrigation water was reapplied, and aldicarb metabolities were detected in four of five soil samples and one of five water samples. At the Huntley Agricultural Experiment Station, five wells were installed in a no-tillage corn field where atrazine was applied in 1987. Soil and water samples were collected in June and July 1988; pesticides were not detected in any samples. Results indicate residue of two pesticides in soil samples and three soluble pesticides in groundwater samples. Therefore, irrigated agricultural areas in Montana might be susceptible to transport of soluble pesticides through permeable soil to the shallow groundwater system. (USGS)

  14. Dissipation dynamic, residue distribution and processing factor of hexythiazox in strawberry fruits under open field condition.

    PubMed

    Saber, Ayman N; Malhat, Farag M; Badawy, Hany M A; Barakat, Dalia A

    2016-04-01

    Two independent field trials were performed to investigate the dissipation and residue levels of hexythiazox in strawberry. The study presents a method validation for extraction and quantitative analysis of hexythiazox residues in strawberry using HPLC-DAD. The results shown that the mean recoveries ranged from 85% to 93%, furthermore the intra- and inter-day relative standard deviations were less than 10%. The results suggest that the hexythiazox dissipation curves followed the first-order kinetic and its half-life ranged from 3.43 to 3.81 days. The final residues in strawberry were below the Codex maximum residue limit (MRL) (6 mg/kg) after three days of the application. The effects of household processing and storage on the levels of hexythiazox residues were quantified, and it's useful for reducing the dietary exposure. The processing factor after each stage were generally less than 1, indicating that the whole process can reduce the residues of hexythiazox in strawberry. The results could provide guidance to safe and reasonable use of hexythiazox in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Integral process assessment of sugarcane agricultural crop residues conversion to ethanol.

    PubMed

    Manfredi, Adriana Paola; Ballesteros, Ignacio; Sáez, Felicia; Perotti, Nora Inés; Martínez, María Alejandra; Negro, María José

    2018-07-01

    This work focuses a whole process assessment on post-harvesting sugarcane residues for 2G ethanol production by different saccharification-fermentation conditions at high solids loading, performed after steam explosion, alkaline and acidic pretreatments. Carbohydrate recoveries and enzymatic digestibility results showed that alkali and steam explosion pretreatments were effective for the biomass assayed. Due to a significant improvement (60%) of the glucose released by combining hemicellulases and cellulases only after the NaOH pretreatment, the most favorable process settled comprised an alkali-based pretreatment followed by a pre-saccharification and simultaneous saccharification and fermentation (PSSF). The produced ethanol reached 4.8% (w/w) as a result of an 80% conversion of the glucose from the pretreated biomass. Finally, an ethanol concentration of 3.2% (w/w) was obtained by means of a steam explosion followed by PSSF, representing a suitable start point to further develop a low environmental impact alternative for ethanol production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The natural abundance of 13C with different agricultural management by NIRS with fibre optic probe technology.

    PubMed

    Fuentes, Mariela; González-Martín, Inmaculada; Hernández-Hierro, Jose Miguel; Hidalgo, Claudia; Govaerts, Bram; Etchevers, Jorge; Sayre, Ken D; Dendooven, Luc

    2009-06-30

    In the present study the natural abundance of (13)C is quantified in agricultural soils in Mexico which have been submitted to different agronomic practices, zero and conventional tillage, retention of crop residues (with and without) and rotation of crops (wheat and maize) for 17 years, which have influenced the physical, chemical and biological characteristics of the soil. The natural abundance of C13 is quantified by near infrared spectra (NIRS) with a remote reflectance fibre optic probe, applying the probe directly to the soil samples. Discriminate partial least squares analysis of the near infrared spectra allowed to classify soils with and without residues, regardless of the type of tillage or rotation systems used with a prediction rate of 90% in the internal validation and 94% in the external validation. The NIRS calibration model using a modified partial least squares regression allowed to determine the delta(13)C in soils with or without residues, with multiple correlation coefficients 0.81 and standard error prediction 0.5 per thousand in soils with residues and 0.92 and 0.2 per thousand in soils without residues. The ratio performance deviation for the quantification of delta(13)C in soil was 2.5 in soil with residues and 3.8 without residues. This indicated that the model was adequate to determine the delta(13)C of unknown soils in the -16.2 per thousand to -20.4 per thousand range. The development of the NIR calibration permits analytic determinations of the values of delta(13)C in unknown agricultural soils in less time, employing a non-destructive method, by the application of the fibre optic probe of remote reflectance to the soil sample.

  17. Slow pyrolyzed biochars from crop residues for soil metal(loid) immobilization and microbial community abundance in contaminated agricultural soils.

    PubMed

    Igalavithana, Avanthi Deshani; Park, Jinje; Ryu, Changkook; Lee, Young Han; Hashimoto, Yohey; Huang, Longbin; Kwon, Eilhann E; Ok, Yong Sik; Lee, Sang Soo

    2017-06-01

    This study evaluated the feasibility of using biochars produced from three types of crop residues for immobilizing Pb and As and their effects on the abundance of microbial community in contaminated lowland paddy (P-soil) and upland (U-soil) agricultural soils. Biochars were produced from umbrella tree [Maesopsis eminii] wood bark [WB], cocopeat [CP], and palm kernel shell [PKS] at 500 °C by slow pyrolysis at a heating rate of 10 °C min -1 . Soils were incubated with 5% (w w -1 ) biochars at 25 °C and 70% water holding capacity for 45 d. The biochar effects on metal immobilization were evaluated by sequential extraction of the treated soil, and the microbial community was determined by microbial fatty acid profiles and dehydrogenase activity. The addition of WB caused the largest decrease in Pb in the exchangeable fraction (P-soil: 77.7%, U-soil: 91.5%), followed by CP (P-soil: 67.1%, U-soil: 81.1%) and PKS (P-soil: 9.1%, U-soil: 20.0%) compared to that by the control. In contrast, the additions of WB and CP increased the exchangeable As in U-soil by 84.6% and 14.8%, respectively. Alkalinity and high phosphorous content of biochars might be attributed to the Pb immobilization and As mobilization, respectively. The silicon content in biochars is also an influencing factor in increasing the As mobility. However, no considerable effects of biochars on the microbial community abundance and dehydrogenase activity were found in both soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Crop residues quantification to obtain self-consumption compost in an organic garden

    NASA Astrophysics Data System (ADS)

    Lopez de Fuentes, Pilar; Lopez Merino, María; Remedios Alvir, María; Briz de Felipe, Teresa

    2013-04-01

    This research focuses on quantifying the crop residue left after the campaign fall/winter (2011) for the organic garden crops of Agricultural ETSI, located in practice fields, to get compost for self-generated residues arising from within their own fields. This compost is produced by mixing this material with an organic residues source animal. In this way the plant organic residues provided the nitrogen required for an appropriate C/N and the animal organic residues can provide the carbon amount required to achieve an optimal scenario. The garden has a surface area of 180 m2 which was cultured with different seasonal vegetables, different families and attending practices and species associations' rotations, proper of farming techniques. The organic material of animal origin referred to, is rest from sheep renew bed, sustained management support the precepts of organic farming and cottage belongs to practice fields too. At the end of crop cycle, we proceeded to the harvest and sorting of usable crop residues, which was considered as net crop residues. In each case, these residues were subjected to a cutting treatment by the action of a mincing machine and then weighed to estimate the amounts given by each crop. For the sheep bed residue 1m2 was collected after three months having renewed. It had been made by providing 84 kg of straw bales in July and introducing about 12 Kg each. The herd consisted of three females and one playe. Each one of them was feed 300g and 600 g of straw per day. Two alternating different pens were used to simulate a regime of semi-intensive housing. A balance on how much organic residue material was obtained at the end and how much was obtained in the compost process is discussed in terms of volume and nutrients content is discussed.

  19. Needlestick Injuries in Agriculture Workers and Prevention Programs.

    PubMed

    Buswell, Minden L; Hourigan, Mary; Nault, André J; Bender, Jeffrey B

    2016-01-01

    There are a variety of biologics, vaccines, antibiotics, and hormones used in animal agriculture. Depending upon the procedure or pharmaceutical used, accidental injections or product exposures can result in mild to severe injuries. Needlestick injury (NSI) prevention, research, and education for veterinarians and agriculture workers is limited. The objective of this study was to collect and review published case reports and case series/surveys on human needlestick exposure to veterinary biologics and to summarize needlestick prevention strategies for agricultural workers/veterinarians. A search was conducted of PubMed and Centre for Agriculture Bioscience International (CABI) databases. References were reviewed to identify additional articles. NSI among agricultural workers were primarily included in this review. Thirty articles were applicable to exposures in agricultural settings. Relevant literature consisted of case reports, survey/case series articles, prevention documents, and background articles. Fifty-nine case patients were identified. Most of these cases were associated with exposures to specific vaccines or veterinary products. Injury location was identified from 36 individuals: 24 (67%) NSI to the hands, 10 (28%) injuries to the legs, and 2 to other body locations. Of the 59 cases, 20 (34%) involved oil-adjuvant vaccines. Evidence of hospitalization was recorded for 30 case patients. The length of hospitalization was available from 11 case patients. Median length of hospitalization was 3 days (range: 1-4). Surgical intervention was reported in 25 case patients. Outcome information was available on 30 case patients. Fifteen made a complete recovery within 2 weeks of treatment, 14 had residual sequelae attributed to the injury, and there was 1 reported death. Of the 13 survey/case series articles: 2 focused on oil-adjuvant products, 1 on Brucellosis RB-51 vaccine, 3 on tilmicosin, 1 on Salmonella enteritidis vaccine, 1 on high-pressure injection, and 5

  20. Landscape planning for agricultural nonpoint source pollution reduction III: Assessing phosphorus and sediment reduction potential

    USGS Publications Warehouse

    Diebel, M.W.; Maxted, J.T.; Robertson, Dale M.; Han, S.; Vander Zanden, M. J.

    2009-01-01

    Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale. ?? 2008 Springer Science+Business Media, LLC.

  1. Emissions of terpenoids, benzenoids, and other biogenic gas-phase organic compounds from agricultural crops and their potential implications for air quality

    NASA Astrophysics Data System (ADS)

    Gentner, D. R.; Ormeño, E.; Fares, S.; Ford, T. B.; Weber, R.; Park, J.-H.; Brioude, J.; Angevine, W. M.; Karlik, J. F.; Goldstein, A. H.

    2014-06-01

    Agriculture comprises a substantial, and increasing, fraction of land use in many regions of the world. Emissions from agricultural vegetation and other biogenic and anthropogenic sources react in the atmosphere to produce ozone and secondary organic aerosol, which comprises a substantial fraction of particulate matter (PM2.5). Using data from three measurement campaigns, we examine the magnitude and composition of reactive gas-phase organic carbon emissions from agricultural crops and their potential to impact regional air quality relative to anthropogenic emissions from motor vehicles in California's San Joaquin Valley, which is out of compliance with state and federal standards for tropospheric ozone PM2.5. Emission rates for a suite of terpenoid compounds were measured in a greenhouse for 25 representative crops from California in 2008. Ambient measurements of terpenoids and other biogenic compounds in the volatile and intermediate-volatility organic compound ranges were made in the urban area of Bakersfield and over an orange orchard in a rural area of the San Joaquin Valley during two 2010 seasons: summer and spring flowering. We combined measurements from the orchard site with ozone modeling methods to assess the net effect of the orange trees on regional ozone. When accounting for both emissions of reactive precursors and the deposition of ozone to the orchard, the orange trees are a net source of ozone in the springtime during flowering, and relatively neutral for most of the summer until the fall, when it becomes a sink. Flowering was a major emission event and caused a large increase in emissions including a suite of compounds that had not been measured in the atmosphere before. Such biogenic emission events need to be better parameterized in models as they have significant potential to impact regional air quality since emissions increase by several factors to over an order of magnitude. In regions like the San Joaquin Valley, the mass of biogenic

  2. Mortality in the Agricultural Health Study: 1993 - 2007

    EPA Science Inventory

    Comparing agricultural cohorts with the general population is challenging because the general healthiness of farmers may mask potential adverse health effects of farming. Using data from the Agricultural Health Study, a cohort of 89,656 pesticide applicators and their spouses (

  3. Production of green biodegradable plastics of poly(3-hydroxybutyrate) from renewable resources of agricultural residues.

    PubMed

    Dahman, Yaser; Ugwu, Charles U

    2014-08-01

    This work describes potential opportunities for utilization of agro-industrial residues to produce green biodegradable plastics of poly(3-hydroxybutyrate) (PHB). Wheat straws were examined with good efficacy of carbon substrates using Cupriavidus necator. Production was examined in separate hydrolysis and fermentation (SHF) in the presence and absence of WS hydrolysis enzymes, and in simultaneous saccharification and fermentation (SSF) with enzymes. Results showed that production of PHB in SSF was more efficient in terms of viable cell count, cell dry weight, and PHB production and yield compared to those of SHF and glucose-control cultures. While glucose control experiment produced 4.6 g/L PHB; SSF produced 10.0 g/L compared to 7.1 g/L in SHF when utilizing enzymes during WS hydrolysis. Results showed that most of sugars produced during the hydrolysis were consumed in SHF (~98 %) compared to 89.2 % in SSF. Results also demonstrated that a combination of glucose and xylose can compensate for the excess carbon required for enhancing PHB production by C. necator. However, higher concentration of sugars at the beginning of fermentation in SHF can lead to cell inhibition and consequently catabolite repressions. Accordingly, results demonstrated that the gradual release of sugars in SSF enhanced PHB production. Moreover, the presence of sugars other than glucose and xylose can eliminate PHB degradation in medium of low carbon substrate concentrations in SSF.

  4. Agricultural chemicals: life changer for mosquito vectors in agricultural landscapes?

    PubMed

    Kibuthu, Tabitha W; Njenga, Sammy M; Mbugua, Amos K; Muturi, Ephantus J

    2016-09-13

    Although many mosquito species develop within agricultural landscapes where they are potentially exposed to agricultural chemicals (fertilizers and pesticides), the effects of these chemicals on mosquito biology remain poorly understood. This study investigated the effects of sublethal concentrations of four agricultural chemicals on the life history traits of Anopheles arabiensis and Culex quinquefasciatus mosquitoes. Field and laboratory experiments were conducted to examine how sublethal concentrations of four agricultural chemicals: an insecticide (cypermethrin), a herbicide (glyphosate), and two nitrogenous fertilizers (ammonium sulfate and diammonium phosphate) alter oviposition site selection, emergence rates, development time, adult body size, and longevity of An. arabiensis and Cx. quinquefasciatus. Both mosquito species had preference to oviposit in fertilizer treatments relative to pesticide treatments. Emergence rates for An. arabiensis were significantly higher in the control and ammonium sulfate treatments compared to cypermethrin treatment, while emergence rates for Cx. quinquefasciatus were significantly higher in the diammonium phosphate treatment compared to glyphosate and cypermethrin treatments. For both mosquito species, individuals from the ammonium sulfate and diammonium phosphate treatments took significantly longer time to develop compared to those from cypermethrin and glyphosate treatments. Although not always significant, males and females of both mosquito species tended to be smaller in the ammonium sulfate and diammonium phosphate treatments compared to cypermethrin and glyphosate treatments. There was no significant effect of the agrochemical treatments on the longevity of either mosquito species. These results demonstrate that the widespread use of agricultural chemicals to enhance crop production can have unexpected effects on the spatial distribution and abundance of mosquito vectors of malaria and lymphatic filariasis.

  5. Determination of low-level agricultural residues in soft drinks and sports drinks by gas chromatography with mass-selective detection: single-laboratory validation.

    PubMed

    Paske, Nathan; Berry, Bryan; Schmitz, John; Sullivan, Darryl

    2007-01-01

    In this study, sponsored by PepsiCo Inc., a method was validated for measurement of 19 pesticide residues in soft drinks and sports drinks by gas chromatography/mass spectrometry (GC/MS) with mass selective detection The pesticide residues determined in this validation were alpha-benzenehexachloride (BHC); beta-BHC; gamma-BHC; delta-BHC; methyl parathion; malathion; chlorpyrifos; aldrin; 2,4-dichlorodiphenyldichloroethylene (DDE); alpha-endosulfan; 4,4-DDE; 2,4-dichlorodiphenyldichloroethane (DDD); dieldrin; ethion; 4,4-DDD; 2,4-dichlorodiphenyltrichloroethylene (DDT); beta-endosulfan; 4,4-DDT; and endosulfan sulfate when spiked into a 200 mL matrix sample at 0.50 microg/L. The samples were diluted with acetonitrile and water, then liquid-liquid phase extracted into petroleum ether. The resulting extract was concentrated to near dryness and diluted with hexane:dichloromethane (50:50). The concentrated samples were purified by gel permeation chromatography. The resulting solution was concentrated and separated on a Florisil substrate. The eluent was concentrated to near dryness, reconstituted to produce a 200-fold concentration, and analyzed using a GC/MS instrument operated in the selective ion monitoring mode. The GC/MS instrument was equipped with a large volume injector capable of injecting 25 microL. External standards prepared in dichloromethane were used for quantification without the need for matrix-matched calibration because the extraction step minimized the matrix effects. The calibration curves for all agricultural residues had coefficients of determination (r2) of greater than or equal to 0.9900, with the exception of one value that was 0.988. Fortification spikes at 0.50 microg/L in 3 matrixes (7UP, Gatorade, and Diet Pepsi) over the course of 2 days (4 days for Gatorade), where n=8 each day, yielded average percent recoveries (and percent relative standard deviations) as follows (n=64): 95.6 (24.8) for alpha-BHC; 91.9 (23.6) for beta-BHC; 89.1 (21

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muth, David J.; Bryden, Kenneth Mark; Nelson, R. G.

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States for bioenergy production. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform the sustainable agricultural residue removal assessment. Soil type represents the base spatialmore » unit for this study and is modeled using a national soil survey database at the 10–100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time. This biomass resource has the potential for producing over 68 billion liters of cellulosic biofuels.« less

  7. Quantitative analysis of fungicide azoxystrobin in agricultural samples with rapid, simple and reliable monoclonal immunoassay.

    PubMed

    Watanabe, Eiki; Miyake, Shiro

    2013-01-15

    This work presents analytical performance of a kit-based direct competitive enzyme-linked immunosorbent assay (dc-ELISA) for azoxystrobin detection in agricultural products. The dc-ELISA was sufficiently sensitive for analysis of residue levels close to the maximum residue limits. The dc-ELISA did not show cross-reactivity to other strobilurin analogues. Absorbance decreased with the increase of methanol concentration in sample solution from 2% to 40%, while the standard curve became most linear when the sample solution contained 10% methanol. Agricultural samples were extracted with methanol, and the extracts were diluted with water to 10% methanol adequate. No significant matrix interference was observed. Satisfying recovery was found for all of spiked samples and the results were well agreed with the analysis with liquid chromatography. These results clearly indicate that the kit-based dc-ELISA is suitable for the rapid, simple, quantitative and reliable determination of the fungicide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Screening of the presence organophosphates and organochlorines pesticide residues in vegetables and fruits using gas chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Putri, Dillani; Aryana, Nurhani; Aristiawan, Yosi; Styarini, Dyah

    2017-01-01

    Pesticides is commonly used to improve the quality of agricultural product, especially in vegetables and fruits. Due to pesticide residues in the product become a concern to consumer health, monitoring and analysis of pesticide residues in agriculture product need to be established. The certified reference material (CRM) is often benefited to obtain accurate results in analysis. It is required as the quality control to improve quality assurance of the testing results. Unfortunately in Indonesia, the development of matrix CRM for the analysis of pesticide residues in vegetables and fruits is still limited. This study is aimed to determine the type of commodity and target analyte to be employed in the development of CRM for pesticides in vegetables and fruits. As the preliminary study, the screening of 11 commodities of fresh vegetables and fruits has been conducted to review the information about the presence of organophosphates (OPs) and organochlorines (OCs) in the sample. In this analysis, QuEChERS technique was used in the extraction process and the qualitative analysis was evaluated by using GC-MS. The results showed that strawberry and celery contain residues of pesticide chlorpyrifos. Further analysis of the commodity celery from seven different places has been conducted, resulting that from 3 of all 7 samples (43%) were positive containing chlorpyrifos. Therefore, the development of CRM for chlorpyrifos in celery will be our next research project.

  9. Microfluidics for food, agriculture and biosystems industries.

    PubMed

    Neethirajan, Suresh; Kobayashi, Isao; Nakajima, Mitsutoshi; Wu, Dan; Nandagopal, Saravanan; Lin, Francis

    2011-05-07

    Microfluidics, a rapidly emerging enabling technology has the potential to revolutionize food, agriculture and biosystems industries. Examples of potential applications of microfluidics in food industry include nano-particle encapsulation of fish oil, monitoring pathogens and toxins in food and water supplies, micro-nano-filtration for improving food quality, detection of antibiotics in dairy food products, and generation of novel food structures. In addition, microfluidics enables applications in agriculture and animal sciences such as nutrients monitoring and plant cells sorting for improving crop quality and production, effective delivery of biopesticides, simplified in vitro fertilization for animal breeding, animal health monitoring, vaccination and therapeutics. Lastly, microfluidics provides new approaches for bioenergy research. This paper synthesizes information of selected microfluidics-based applications for food, agriculture and biosystems industries. © The Royal Society of Chemistry 2011

  10. Investigation of potential of agro-industrial residues for ethanol production by using Candida tropicalis and Zymomonas mobilis

    NASA Astrophysics Data System (ADS)

    Patle, Sonali

    India is becoming more susceptible regarding energy security with increasing world prices of crude oil and increasing dependence on imports. Based on experiments by the Indian Institute of Petroleum, a 10% ethanol blend with gasoline is being considered for use in vehicles in at least one state and it will be mandatory for all oil companies to blend petrol with 10% ethanol from October 2008. In view of the above, the Government has already started supply of 5% ethanol blended petrol from 2003 in nine states and four contiguous Union Territories. Currently, fuel ethanol is produced mainly from molasses, corn, wheat and sugar beets. The production cost of ethanol from these agro-feedstocks is more than twice the price of gasoline. The high feedstock cost poses a major obstacle to large scale implementation of ethanol as a transportation fuel. Molasses could be in short supply due to the implementation of 10% blending norm. A reduction in import duty for industrial alcohol from7.5% to 5% has been suggested. The use of lignocellulosic energy crops, and particularly low cost biomass residues, offers excellent perspectives for application of ethanol in transportation fuels (Ridder, 2000). These materials will increase the ethanol production capacity and reduce the production cost to a competitive level. There is a huge demand (500 million litres) of ethanol to meet the 5% blending in India. With the present infrastructure, only 90 million litres of ethanol was produced till November 2006 and could reach up to 140 million litres (around) till October 2007. Bioethanol from these materials provides a highly cost effective option for CO2 emission reduction in the transportation sector. The aim of the present investigation was to evaluate the potential of biomass as feedstock for ethanol production. The dedicated energy crops would require thorough support as well as planning efforts such as assessing resources, availability and utilization. Furthermore, applied research is

  11. Multi-pollutant emissions from the burning of major agricultural residues in China and the related health-economic effects

    NASA Astrophysics Data System (ADS)

    Li, Chunlin; Hu, Yunjie; Zhang, Fei; Chen, Jianmin; Ma, Zhen; Ye, Xingnan; Yang, Xin; Wang, Lin; Tang, Xingfu; Zhang, Renhe; Mu, Mu; Wang, Guihua; Kan, Haidong; Wang, Xinming; Mellouki, Abdelwahid

    2017-04-01

    Multi-pollutants in smoke particulate matter (SPM) were identified and quantified for the biomass burning of five major agricultural residues (wheat, rice, corn, cotton, and soybean straw) in China by an aerosol chamber system combined with various measurement techniques. The primary emission factors (EFs) for PM1. 0 and PM2. 5 are 3.04-12.64 and 3.25-15.16 g kg-1. Organic carbon (OC), elemental carbon (EC), water-soluble inorganics (WSIs), water-soluble organic acids (WSOAs), water-soluble amine salts (WSAs), trace mineral elements (THMs), polycyclic aromatic hydrocarbons (PAHs), and phenols in smoke PM1. 0/PM2. 5 are 1.34-6.04/1.54-7.42, 0.58-2.08/0.61-2.18, 0.51-3.52/0.52-3.81, 0.13-0.64/0.14-0.77, (4.39-85.72/4.51-104.79) × 10-3, (11.8-51.1/14.0-131.6) × 10-3, (1.1-4.0/1.8-8.3) × 10-3, and (7.7-23.5/9.7-41.5) × 10-3 g kg-1, respectively. Black carbon (BC) mainly exists in PM1. 0; heavy-metal-bearing particles favour residing in the range of smoke PM1. 0-2. 5, which is also confirmed by individual particle analysis. With respect to the five scenarios of burning activities, the average emissions and overall propagation of uncertainties at the 95 % confidence interval (CI) of SPM from agricultural open burning in China in 2012 were estimated to be 1005.7 (-24.6, 33.7 %), 901.4 (-24.4, 33.5 %), 432.4 (-24.2, 33.5 %), 134.2 (-24., 34.0 %), 249.8 (-25.4, 34.9 %), 25.1 (-33.3, 41.4 %), 5.8 (-30.1, 38.5 %), 8.7 (-26.6, 35.6 %), 0.5 (-26.0, 34.9 %), and 2.7 (-26.1, 35.1 %) Gg for PM2. 5, PM1. 0, OC, EC, WSI, WSOA, WSA, THM, PAHs, and phenols , respectively. The emissions were further spatio-temporally characterized using a geographic information system (GIS) in different regions in the summer and autumn post-harvest periods. It was found that less than 25 % of the total emissions were released during the summer harvest, which was mainly contributed by the North Plain and the centre of China, especially Henan, Shandong, and Anhui, which are the top three provinces

  12. Agricultural Nutrient Cycling at the Strawberry Creek Watershed: Insights Into Processes Using Stable Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Thuss, E.; English, M. C.; Spoelstra, J.

    2009-05-01

    When nitrogen availability exceeds biological demand, excess nitrogen, especially nitrate, may subsequently pollute ground and surface water. Agricultural practices in Southern Ontario typically supplement soils with organic and inorganic nutrients to aid in crop development, and employ various management techniques to limit nutrient loss. Excess nitrogen has several potential fates, which are controlled by the net effects of numerous nitrogen cycling reactions in the soil that are often difficult to measure directly. Nitrogen cycling in soils is controlled in large part by soil moisture, as it affects microbial activity and soil redox conditions. Stable isotope geochemistry is a powerful tool that provides information on nitrogen sources and processes. This study uses crop nitrogen and carbon isotope ratios to provide insights into the net effects of soil nitrogen cycling and nitrogen fate. This research was conducted at the Strawberry Creek Watershed (SCW), an agricultural research watershed located between Kitchener-Waterloo and Guelph, Ontario. The SCW exhibits elevated nitrate concentrations in groundwater, tile discharge, and the stream itself. Previous isotopic work revealed that this nitrate is largely derived from chemical fertilizer and manure applications. Field-scale hydrological processes lead to areas where the fate of applied nitrogen differs, which has an isotopic effect on the residual nitrogen that is available to plants. Results of this study indicate significant patterns in the isotopic signature of plant tissue, in both temporal and spatial scales. At the plot-scale where soil conditions are similar, there is little to no variation in foliar isotope values, but at the field-scale there appears to be a significant amount of variability related to soil moisture and nitrogen loss. This relationship can potentially provide insight into ideal conditions for nitrogen uptake efficiency. Reducing agricultural nitrogen leaching to ground and surface

  13. Vocational Agriculture Education. Agricultural Mechanics.

    ERIC Educational Resources Information Center

    Smith, Eddie; And Others

    To assist teachers in agricultural mechanics in providing comprehensive instruction to their students, this curriculum guide treats both the mechanical skills and knowlege necessary for this specialized area. Six sections are included, as follow: orientation and safety; agricultural mechanics skills; agricultural power and machinery; agricultural…

  14. Verification and Validation of Residual Stresses in Bi-Material Composite Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Stacy Michelle; Hanson, Alexander Anthony; Briggs, Timothy

    Process-induced residual stresses commonly occur in composite structures composed of dissimilar materials. These residual stresses form due to differences in the composite materials’ coefficients of thermal expansion and the shrinkage upon cure exhibited by polymer matrix materials. Depending upon the specific geometric details of the composite structure and the materials’ curing parameters, it is possible that these residual stresses could result in interlaminar delamination or fracture within the composite. Therefore, the consideration of potential residual stresses is important when designing composite parts and their manufacturing processes. However, the experimental determination of residual stresses in prototype parts can be time andmore » cost prohibitive. As an alternative to physical measurement, it is possible for computational tools to be used to quantify potential residual stresses in composite prototype parts. Therefore, the objectives of the presented work are to demonstrate a simplistic method for simulating residual stresses in composite parts, as well as the potential value of sensitivity and uncertainty quantification techniques during analyses for which material property parameters are unknown. Specifically, a simplified residual stress modeling approach, which accounts for coefficient of thermal expansion mismatch and polymer shrinkage, is implemented within the Sandia National Laboratories’ developed SIERRA/SolidMechanics code. Concurrent with the model development, two simple, bi-material structures composed of a carbon fiber/epoxy composite and aluminum, a flat plate and a cylinder, are fabricated and the residual stresses are quantified through the measurement of deformation. Then, in the process of validating the developed modeling approach with the experimental residual stress data, manufacturing process simulations of the two simple structures are developed and undergo a formal verification and validation process, including a mesh

  15. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region.

    PubMed

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M; McCarty, Gregory W; Hively, W Dean; Lang, Megan W

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  16. Impacts of Watershed Characteristics and Crop Rotations on Winter Cover Crop Nitrate-Nitrogen Uptake Capacity within Agricultural Watersheds in the Chesapeake Bay Region

    PubMed Central

    Lee, Sangchul; Yeo, In-Young; Sadeghi, Ali M.; McCarty, Gregory W.; Hively, W. Dean; Lang, Megan W.

    2016-01-01

    The adoption rate of winter cover crops (WCCs) as an effective conservation management practice to help reduce agricultural nutrient loads in the Chesapeake Bay (CB) is increasing. However, the WCC potential for water quality improvement has not been fully realized at the watershed scale. This study was conducted to evaluate the long-term impact of WCCs on hydrology and NO3-N loads in two adjacent watersheds and to identify key management factors that affect the effectiveness of WCCs using the Soil and Water Assessment Tool (SWAT) and statistical methods. Simulation results indicated that WCCs are effective for reducing NO3-N loads and their performance varied based on planting date, species, soil characteristics, and crop rotations. Early-planted WCCs outperformed late-planted WCCs on the reduction of NO3-N loads and early-planted rye (RE) reduced NO3-N loads by ~49.3% compared to the baseline (no WCC). The WCCs were more effective in a watershed dominated by well-drained soils with increased reductions in NO3-N fluxes of ~2.5 kg N·ha-1 delivered to streams and ~10.1 kg N·ha-1 leached into groundwater compared to poorly-drained soils. Well-drained agricultural lands had higher transport of NO3-N in the soil profile and groundwater due to increased N leaching. Poorly-drained agricultural lands had lower NO3-N due to extensive drainage ditches and anaerobic soil conditions promoting denitrification. The performance of WCCs varied by crop rotations (i.e., continuous corn and corn-soybean), with increased N uptake following soybean crops due to the increased soil mineral N availability by mineralization of soybean residue compared to corn residue. The WCCs can reduce N leaching where baseline NO3-N loads are high in well-drained soils and/or when residual and mineralized N availability is high due to the cropping practices. The findings suggested that WCC implementation plans should be established in watersheds according to local edaphic and agronomic

  17. Global threat to agriculture from invasive species.

    PubMed

    Paini, Dean R; Sheppard, Andy W; Cook, David C; De Barro, Paul J; Worner, Susan P; Thomas, Matthew B

    2016-07-05

    Invasive species present significant threats to global agriculture, although how the magnitude and distribution of the threats vary between countries and regions remains unclear. Here, we present an analysis of almost 1,300 known invasive insect pests and pathogens, calculating the total potential cost of these species invading each of 124 countries of the world, as well as determining which countries present the greatest threat to the rest of the world given their trading partners and incumbent pool of invasive species. We find that countries vary in terms of potential threat from invasive species and also their role as potential sources, with apparently similar countries sometimes varying markedly depending on specifics of agricultural commodities and trade patterns. Overall, the biggest agricultural producers (China and the United States) could experience the greatest absolute cost from further species invasions. However, developing countries, in particular, Sub-Saharan African countries, appear most vulnerable in relative terms. Furthermore, China and the United States represent the greatest potential sources of invasive species for the rest of the world. The analysis reveals considerable scope for ongoing redistribution of known invasive pests and highlights the need for international cooperation to slow their spread.

  18. Global threat to agriculture from invasive species

    PubMed Central

    Paini, Dean R.; Sheppard, Andy W.; Cook, David C.; De Barro, Paul J.; Worner, Susan P.; Thomas, Matthew B.

    2016-01-01

    Invasive species present significant threats to global agriculture, although how the magnitude and distribution of the threats vary between countries and regions remains unclear. Here, we present an analysis of almost 1,300 known invasive insect pests and pathogens, calculating the total potential cost of these species invading each of 124 countries of the world, as well as determining which countries present the greatest threat to the rest of the world given their trading partners and incumbent pool of invasive species. We find that countries vary in terms of potential threat from invasive species and also their role as potential sources, with apparently similar countries sometimes varying markedly depending on specifics of agricultural commodities and trade patterns. Overall, the biggest agricultural producers (China and the United States) could experience the greatest absolute cost from further species invasions. However, developing countries, in particular, Sub-Saharan African countries, appear most vulnerable in relative terms. Furthermore, China and the United States represent the greatest potential sources of invasive species for the rest of the world. The analysis reveals considerable scope for ongoing redistribution of known invasive pests and highlights the need for international cooperation to slow their spread. PMID:27325781

  19. Agricultural Baseline (BL0) scenario of the 2016 Billion-Ton Report

    DOE Data Explorer

    Davis, Maggie R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000181319328); Hellwinkel, Chad [University of Tennessee, APAC] (ORCID:0000000173085058); Eaton, Laurence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000312709626); Langholtz, Matthew H [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000281537154); Turhollow, Anthony [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000228159350); Brandt, Craig [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000214707379); Myers, Aaron [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)] (ORCID:0000000320373827)

    2016-07-13

    Scientific reason for data generation: to serve as the reference case for the BT16 volume 1 agricultural scenarios. The agricultural baseline runs from 2015 through 2040; a starting year of 2014 is used. Date the data set was last modified: 02/12/2016 How each parameter was produced (methods), format, and relationship to other data in the data set: simulation was developed without offering a farmgate price to energy crops or residues (i.e., building on both the USDA 2015 baseline and the agricultural census data (USDA NASS 2014). Data generated are .txt output files by year, simulation identifier, county code (1-3109). Instruments used: POLYSYS (version POLYS2015_V10_alt_JAN22B) supplied by the University of Tennessee APAC The quality assurance and quality control that have been applied: • Check for negative planted area, harvested area, production, yield and cost values. • Check if harvested area exceeds planted area for annuals. • Check FIPS codes.

  20. Energetic and environmental assessment of thermochemical and biochemical ways for producing energy from agricultural solid residues: Coffee Cut-Stems case.

    PubMed

    García, Carlos A; Peña, Álvaro; Betancourt, Ramiro; Cardona, Carlos A

    2018-06-15

    Forest residues are an important source of biomass. Among these, Coffee Cut-Stems (CCS) are an abundant wood waste in Colombia obtained from coffee crops renovation. However, only low quantities of these residues are used directly in combustion processes for heating and cooking in coffee farms where their energy efficiency is very low. In the present work, an energy and environmental assessment of two bioenergy production processes (ethanol fermentation and gasification) using CCS as raw material was performed. Biomass gasification seems to be the most promising thermochemical method for bioenergy production whereas, ethanol fermentation is a widely studied biochemical method to produce biofuels. Experimental runs of the CCS gasification were carried out and the synthesis gas composition was monitored. Prior to the fermentation process, a treatment of the CCS is required from which sugar content was determined and then, in the fermentation process, the ethanol yield was calculated. Both processes were simulated in order to obtain the mass and energy balance that are used to assess the energy efficiency and the potential environmental impact (PEI). Moderate high energy efficiency and low environmental impacts were obtained from the CCS gasification. In contrast, high environmental impacts in different categories and low energy efficiencies were calculated from the ethanolic fermentation. Biomass gasification seems to be the most promising technology for the use of Coffee Cut-Stems with high energy yields and low environmental issues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Long-term impact of precision agriculture on a farmer’s field

    USDA-ARS?s Scientific Manuscript database

    Targeting management practices and inputs with precision agriculture has high potential to meet some of the grand challenges of sustainability in the coming century. Although potential is high, few studies have documented long-term effects of precision agriculture on crop production and environmenta...

  2. Autohydrolysis of agricultural residues: study of reaction byproducts.

    PubMed

    Garrote, Gil; Falqué, Elena; Domínguez, Herminia; Parajó, Juan Carlos

    2007-07-01

    Samples of rice husks and corn cobs were subjected to hydrothermal treatments in aqueous media under conditions leading to maximal xylooligomer concentration, and the reaction liquors were extracted with dichloromethane (DCM) to assess the type and amount of reaction byproducts with potential application as food ingredients and cosmetics. The identified DCM-soluble compounds were classified in four categories (sugar-derived compounds, lignin-derived compounds, nitrogen-containing compounds and fatty acids). The experimental results were compared with literature data.

  3. Agriculture: About EPA's National Agriculture Center

    EPA Pesticide Factsheets

    EPA's National Agriculture Center (Ag Center), with the support of the United States Department of Agriculture, serves growers, livestock producers, other agribusinesses, and agricultural information/education providers.

  4. The potential of agricultural practices to increase C storage in cropped soils: an assessment for France

    NASA Astrophysics Data System (ADS)

    Chenu, Claire; Angers, Denis; Métay, Aurélie; Colnenne, Caroline; Klumpp, Katja; Bamière, Laure; Pardon, Lenaic; Pellerin, Sylvain

    2014-05-01

    Though large progress has been achieved in the last decades, net GHG emissions from the agricultural sector are still more poorly quantified than in other sectors. In this study, we examined i) technical mitigation options likely to store carbon in agricultural soils, ii) their potential of additional C storage per unit surface area and iii) applicable areas in mainland France. We considered only agricultural practices being technically feasible by farmers and involving no major change in either production systems or production levels. Moreover, only currently available techniques with validated efficiencies and presenting no major negative environmental impacts were taken into account. Four measures were expected to store additional C in agricultural soils: - Reducing tillage: either a switch to continuous direct seeding, direct seeding with occasional tillage once every five years, or continuous superficial (<15 cm) tillage. - Introducing cover crops in cropping systems: sown between two cash crops on arable farms, in orchards and vineyards (permanent or temporary cover cropping) . - Expanding agroforestry systems; planting of tree lines in cultivated fields and grasslands, and hedges around the field edges. - Increasing the life time of temporary sown grasslands: increase of life time to 5 years. The recent literature was reviewed in order to determine long term (>20yrs) C storage rates (MgC ha-1 y-1,) of cropping systems with and without the proposed practice. Then we analysed the conditions for potential application, in terms of feasibility, acceptance, limitation of yield losses and of other GHG emissions. According to the literature, additional C storage rates were 0.15 (0-0.3) MgC ha-1 y-1 for continuous direct seeding, 0.10 (0-0.2) MgC ha-1 y-1for occasional tillage one year in five, and 0.0 MgC ha-1 y-1 for superficial tillage. Cover crops were estimated to store 0.24 (0.13-0.37) MgC ha-1 y-1 between cash crops and 0.49 (0.23-0.72) MgC ha-1 y-1 when

  5. Pesticide Residue Monitoring on South African Fresh Produce Exported over a 6-Year Period.

    PubMed

    Mutengwe, M T; Chidamba, L; Korsten, L

    2016-10-01

    Six years of pesticide residue data from fresh produce destined for the export market were analyzed for the period 2009 to 2014. A total of 37,838 fruit (99.27%) and vegetable (0.73%) data sets analyzed for the presence of 73 pesticides were compared. Pesticides were detected on 56.46% of samples, of which 0.78% had multiple residues. Noncompliances detected were because of the use of unregistered pesticides (0.73%), values that exceeded established maximum residue levels (MRLs) (0.32%), or the combination of values that exceeded MRLs and the use of unregistered pesticide residues (0.003%). The most commonly detected pesticides that exceeded established MRLs were imazalil (37.71%), prochloraz (28.69%), and iprodione (5.74%). The unregistered pesticide most often found on grapes and avocados was also imazalil (62.23%) and, on nectarines and avocados, diphenylamine (11.15%). Exceedances of MRL values were mostly associated with oranges (43.44%), avocados (27.87%), grapefruits (7.38%), and lemons (6.56%). Residual pesticide monitoring on fruits and vegetables is a key tool to ensure conformity with regulatory requirements and compliance with good agricultural practices and the trade requirements set by the importing country.

  6. Effects of tropical ecosystem engineers on soil quality and crop performance under different tillage and residue management

    NASA Astrophysics Data System (ADS)

    Pulleman, Mirjam; Paul, Birthe; Fredrick, Ayuke; Hoogmoed, Marianne; Hurisso, Tunsisa; Ndabamenye, Telesphore; Saidou, Koala; Terano, Yusuke; Six, Johan; Vanlauwe, Bernard

    2014-05-01

    Feeding a future global population of 9 billion will require a 70-100% increase in food production, resulting in unprecedented challenges for agriculture and natural resources, especially in Sub-saharan Africa (SSA). Agricultural practices that contribute to sustainable intensification build on beneficial biological interactions and ecosystem services. Termites are the dominant soil ecosystem engineers in arid to sub-humid tropical agro-ecosystems. Various studies have demonstrated the potential benefits of termites for rehabilitation of degraded and crusted soils and plant growth in semi-arid and arid natural ecosystems. However, the contribution of termites to agricultural productivity has hardly been experimentally investigated, and their role in Conservation Agriculture (CA) systems remains especially unclear. Therefore, this study aimed to quantify the effects of termites and ants on soil physical quality and crop productivity under different tillage and residue management systems in the medium term. A randomized block trial was set up in sub-humid Western Kenya in 2003. Treatments included a factorial combination of residue retention and removal (+R/-R) and conventional and reduced tillage (+T/-T) under a maize (Zea mays L.) and soybean (Glyxine max. L.) rotation. A macrofauna exclusion experiment was superimposed in 2005 as a split-plot factor (exclusion +ins; inclusion -ins) by regular applications of pesticides (Dursban and Endosulfan) in half of the plots. Macrofauna abundance and diversity, soil aggregate fractions, soil carbon contents and crop yields were measured between 2005 and 2012 at 0-15 cm and 15-30 cm soil depths. Termites were the most important macrofauna species, constituting between 48-63% of all soil biota, while ants were 13-34%, whereas earthworms were present in very low numbers. Insecticide application was effective in reducing termites (85-56% exclusion efficacy) and earthworms (87%), and less so ants (49-81%) at 0-15 cm soil depth

  7. Utilization of organic residues using heterotrophic microalgae and insects.

    PubMed

    Pleissner, Daniel; Rumpold, Birgit A

    2018-02-01

    Various organic residues occur globally in the form of straw, wood, green biomass, food waste, feces, manure etc. Other utilization strategies apart from anaerobic digestion, composting and incineration are needed to make use of the whole potential of organic residues as sources of various value added compounds. This review compares the cultivation of heterotrophic microalgae and insects using organic residues as nutrient sources and illuminates their potential with regard to biomass production, productivity and yield, and utilization strategies of produced biomasses. Furthermore, cultivation processes as well as advantages and disadvantages of utilization processes are identified and discussed. It was shown that both heterotrophic algae and insects are able to reduce a sufficient amount of organic residues by converting it into biomass. The biomass composition of both organisms is similar which allows similar utilization strategies in food and feed, chemicals and materials productions. Even though insect is the more complex organism, biomass production can be carried out using simple equipment without sterilization and hydrolysis of organic residues. Contrarily, heterotrophic microalgae require a pretreatment of organic residues in form of sterilization and in most cases hydrolysis. Interestingly, the volumetric productivity of insect biomass exceeds the productivity of algal biomass. Despite legal restrictions, it is expected that microalgae and insects will find application as alternative food and feed sources in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bioinformatic prediction and in vivo validation of residue-residue interactions in human proteins

    NASA Astrophysics Data System (ADS)

    Jordan, Daniel; Davis, Erica; Katsanis, Nicholas; Sunyaev, Shamil

    2014-03-01

    Identifying residue-residue interactions in protein molecules is important for understanding both protein structure and function in the context of evolutionary dynamics and medical genetics. Such interactions can be difficult to predict using existing empirical or physical potentials, especially when residues are far from each other in sequence space. Using a multiple sequence alignment of 46 diverse vertebrate species we explore the space of allowed sequences for orthologous protein families. Amino acid changes that are known to damage protein function allow us to identify specific changes that are likely to have interacting partners. We fit the parameters of the continuous-time Markov process used in the alignment to conclude that these interactions are primarily pairwise, rather than higher order. Candidates for sites under pairwise epistasis are predicted, which can then be tested by experiment. We report the results of an initial round of in vivo experiments in a zebrafish model that verify the presence of multiple pairwise interactions predicted by our model. These experimentally validated interactions are novel, distant in sequence, and are not readily explained by known biochemical or biophysical features.

  9. Potential for thermochemical conversion of biomass residues from the integrated sugar-ethanol process - Fate of ash and ash-forming elements.

    PubMed

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Zevenhoven, Maria; Hupa, Mikko

    2017-06-01

    In this work, potential for thermochemical conversion of biomass residues from an integrated sugar-ethanol process and the fate of ash and ash-forming elements in the process are presented. Ash, ash-forming elements, and energy flows in the process were determined using mass balances and analyses of eight different biomass samples for ash contents, elemental compositions, and heating values. The results show that the ash content increases from the sugarcane to the final residue, vinasse. The cane straw, which is left in the field, contains one-third of the energy and 25% of the K and Cl while the vinasse contains 2% of the energy and 40% of the K and Cl in the cane. K and Cl in biomass fuels cause corrosion and fouling problems in boilers and gasifiers. Over 85% of these elements in the straw are water soluble indicating that water leaching would improve it for utilization in thermochemical conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Potential assessment of establishing a renewable energy plant in a rural agricultural area.

    PubMed

    Su, Ming-Chien; Kao, Nien-Hsin; Huang, Wen-Jar

    2012-06-01

    An evaluation of the green energy potential generated from biogas and solar power, using agricultural manure waste and a photovoltaic (PV) system, was conducted in a large geographical area of a rural county with low population density and low pollution. The studied area, Shoufeng Township in Hualien County, is located in eastern Taiwan, where a large amount of manure waste is generated from pig farms that are scattered throughout the county. The objective of the study is to assess the possibility of establishing an integrated manure waste treatment plant by using the generated biogas incorporated with the PV system to produce renewable energy and then feed it back to the incorporated farms. A filed investigation, geographic information system (GIS) application, empirical equations development, and RETScreen modeling were conducted in the study. The results indicate that Shoufeng Township has the highest priority in setting up an integrated treatment and renewable energy plant by using GIS mapping within a 10-km radius of the transportation range. Two scenarios were plotted in assessing the renewable energy plant and the estimated electricity generation, plus the greenhouse gas (GHG) reduction was evaluated. Under the current governmental green energy scheme and from a long-term perspective, the assessment shows great potential in establishing the plant, especially in reducing environmental pollution problems, waste treatment, and developing suitable renewable energy.

  11. Applying Adaptive Agricultural Management & Industrial Ecology Principles to Produce Lower- Carbon Ethanol from California Energy Beets

    NASA Astrophysics Data System (ADS)

    Alexiades, Anthy Maria

    The life cycle assessment of a proposed beet-to-ethanol pathway demonstrates how agricultural management and industrial ecology principles can be applied to reduce greenhouse gas emissions, minimize agrochemical inputs and waste, provide ecosystem services and yield a lower-carbon fuel from a highly land-use efficient, first-generation feedstock cultivated in California. Beets grown in California have unique potential as a biofuel feedstock. A mature agricultural product with well-developed supply chains, beet-sugar production in California has contracted over recent decades, leaving idle production capacity and forcing growers to seek other crops for use in rotation or find a new market for beets. California's Low Carbon Fuel Standard (LCFS) faces risk of steeply-rising compliance costs, as greenhouse gas reduction targets in the transportation sector were established assuming commercial volumes of lower-carbon fuels from second-generation feedstocks -- such as residues, waste, algae and cellulosic crops -- would be available by 2020. The expected shortfall of cellulosic ethanol has created an immediate need to develop lower-carbon fuels from readily available feedstocks using conventional conversion technologies. The life cycle carbon intensity of this ethanol pathway is less than 28 gCO2e/MJEthanol: a 72% reduction compared to gasoline and 19% lower than the most efficient corn ethanol pathway (34 gCO2e/MJ not including indirect land use change) approved under LCFS. The system relies primarily on waste-to-energy resources; nearly 18 gCO2e/MJ are avoided by using renewable heat and power generated from anaerobic digestion of fermentation stillage and gasification of orchard residues to meet 88% of the facility's steam demand. Co-products displace 2 gCO2e/MJ. Beet cultivation is the largest source of emissions, contributing 15 gCO 2e/MJ. The goal of the study is to explore opportunities to minimize carbon intensity of beet-ethanol and investigate the potential

  12. Weather extremes could affect agriculture

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    As Earth's climate warms, agricultural producers will need to adapt. Changes, especially increases in extreme events, are already having an impact on food production, according to speakers at a 1 May session on agriculture and food security at the AGU Science Policy Conference. Christopher Field, director of the Department of Global Ecology at the Carnegie Institution for Science of Washington, D. C., pointed out the complex factors that come into play in understanding food security, including spatially varying controls and stresses, incomplete models, and the potential for threshold responses. Factors that are likely to cause problems include increasing population; increasing preference for meat, which needs more land and energy inputs to produce; climate change; and increasing use of agricultural lands for biomass energy.

  13. Toxicity of two effluents from agricultural activity: Comparing the genotoxicity of sugar cane and orange vinasse.

    PubMed

    Garcia, Camila Fernandes H; Souza, Raphael B de; de Souza, Cleiton Pereira; Christofoletti, Cintya Ap; Fontanetti, Carmem S

    2017-08-01

    Vinasse, produced by several countries as a by-product of agricultural activity, has different alternatives for its reuse, mainly fertirrigation. Several monocultures, such as sugar cane and orange crops, produce this effluent. Sugar cane vinasse is already widely used in fertirrigation and orange vinasse has potential for this intention. However, its use as a fertilizer has caused great concern. Thus, ecotoxicological evaluation is extremely important in order to assess the possible effects on the environment. Therefore, the aim of this study was to evaluate the potential toxicity of vinasse of two different crops: sugar cane and orange. For this purpose, bioassays with Allium cepa as a test organism were performed with two vinasse dilutions (2.5% and 5%) to detect chromosomal aberrations and micronucleus induction. The results showed that both types of vinasse are able to induce chromosomal aberrations in meristematic cells, mainly nuclear and anaphasic bridges, suggesting genotoxic potential. The induction of micronuclei in cells of the F 1 region suggests that the two residues have mutagenic potential. Thus, caution is advised when applying these effluents in the environment. Copyright © 2017. Published by Elsevier Inc.

  14. Residual radioactivity of treated green diamonds.

    PubMed

    Cassette, Philippe; Notari, Franck; Lépy, Marie-Christine; Caplan, Candice; Pierre, Sylvie; Hainschwang, Thomas; Fritsch, Emmanuel

    2017-08-01

    Treated green diamonds can show residual radioactivity, generally due to immersion in radium salts. We report various activity measurements on two radioactive diamonds. The activity was characterized by alpha and gamma ray spectrometry, and the radon emanation was measured by alpha counting of a frozen source. Even when no residual radium contamination can be identified, measurable alpha and high-energy beta emissions could be detected. The potential health impact of radioactive diamonds and their status with regard to the regulatory policy for radioactive products are discussed. Copyright © 2017. Published by Elsevier Ltd.

  15. A National Residue Control Plan from the analytical perspective--the Brazilian case.

    PubMed

    Mauricio, Angelo de Q; Lins, Erick S; Alvarenga, Marcelo B

    2009-04-01

    Food safety is a strategic topic entailing not only national public health aspects but also competitiveness in international trade. An important component of any food safety program is the control and monitoring of residues posed by certain substances involved in food production. In turn, a National Residue Control Plan (NRCP) relies on an appropriate laboratory network, not only to generate analytical results, but also more broadly to verify and co-validate the controls built along the food production chain. Therefore laboratories operating under a NRCP should work in close cooperation with inspection bodies, fostering the critical alignment of the whole system with the principles of risk analysis. Beyond producing technically valid results, these laboratories should arguably be able to assist in the prediction and establishment of targets for official control. In pursuit of analytical excellence, the Brazilian government has developed a strategic plan for Official Agricultural Laboratories. Inserted in a national agenda for agricultural risk analysis, the plan has succeeded in raising laboratory budget by approximately 200%, it has started a rigorous program for personnel capacity-building, it has initiated strategic cooperation with international reference centres, and finally, it has completely renewed instrumental resources and rapidly triggered a program aimed at full laboratory compliance with ISO/IEC 17025 requirements.

  16. Transgenic Crops: Implications for Biodiversity and Sustainable Agriculture

    ERIC Educational Resources Information Center

    Garcia, Maria Alice; Altieri, Miguel A.

    2005-01-01

    The potential for genetically modified (GM) crops to threaten biodiversity conservation and sustainable agriculture is substantial. Megadiverse countries and centers of origin and/or diversity of crop species are particularly vulnerable regions. The future of sustainable agriculture may be irreversibly jeopardized by contamination of in situ…

  17. Agricultural SWOT analysis and wisdom agriculture design of chengdu

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Chen, Xiangyu; Du, Shaoming; Yin, Guowei; Yu, Feng; Liu, Guicai; Gong, Jin; Han, Fujun

    2017-08-01

    According to the status of agricultural information, this paper analyzed the advantages, opportunities and challenges of developing wisdom agriculture in Chengdu. By analyzed the local characteristics of Chengdu agriculture, the construction program of Chengdu wisdom agriculture was designed, which was based on the existing agricultural informatization. The positioning and development theme of Chengdu agriculture is leisure agriculture, urban agriculture and quality agriculture.

  18. Pesticide Residues on Three Cut Flower Species and Potential Exposure of Florists in Belgium.

    PubMed

    Toumi, Khaoula; Vleminckx, Christiane; van Loco, Joris; Schiffers, Bruno

    2016-09-23

    In order to assess the prevalence of pesticide contamination and the risk of florists' exposure when handling cut flowers, sampling and analysis of 90 bouquets of the most commonly sold cut flowers in Belgium (50 bouquets of roses; 20 of gerberas, and 20 of chrysanthemums) were carried out. The bouquets were collected from 50 florists located in the seven largest cities of Belgium (Antwerp, Brussels, Charleroi, Ghent, Leuven, Liege, and Namur) and from five supermarkets located in the different regions. To have a better understanding of the route of exposure and professional practices a questionnaire was also addressed to a group of 25 florists who volunteered to take part in the survey. All florists were interviewed individually when collecting the questionnaire. The residual pesticide deposit values on cut flowers were determined in an accredited laboratory using a multi-residue (QuEChERS Quick Easy Cheap Effective Rugged Safe) method and a combination of gas chromatography (GC) and liquid chormatograhphy (LC) analysis. A total of 107 active substances were detected from all samples; i.e., an average of about 10 active substances per bouquet. The most severely contaminated bouquet accumulated a total concentration of residues up to 97 mg/kg. Results show that roses are the most contaminated cut flowers; with an average of 14 substances detected per sample and a total concentration per rose sample of 26 mg/kg. Some active substances present an acute toxicity (acephate, methiocarb, monocrotophos, methomyl, deltamethrin, etc.) and exposure can generate a direct effect on the nervous system of florists. Nevertheless, fungicides (dodemorph, propamocarb, and procymidone) were the most frequently detected in samples and had the highest maximum concentrations out of all the active substances analysed. Dodemorph was the most frequently detected substance with the highest maximum concentration (41.9 mg/kg) measured in the rose samples. It appears from the survey that

  19. Pesticide Residues on Three Cut Flower Species and Potential Exposure of Florists in Belgium

    PubMed Central

    Toumi, Khaoula; Vleminckx, Christiane; van Loco, Joris; Schiffers, Bruno

    2016-01-01

    In order to assess the prevalence of pesticide contamination and the risk of florists’ exposure when handling cut flowers, sampling and analysis of 90 bouquets of the most commonly sold cut flowers in Belgium (50 bouquets of roses; 20 of gerberas, and 20 of chrysanthemums) were carried out. The bouquets were collected from 50 florists located in the seven largest cities of Belgium (Antwerp, Brussels, Charleroi, Ghent, Leuven, Liege, and Namur) and from five supermarkets located in the different regions. To have a better understanding of the route of exposure and professional practices a questionnaire was also addressed to a group of 25 florists who volunteered to take part in the survey. All florists were interviewed individually when collecting the questionnaire. The residual pesticide deposit values on cut flowers were determined in an accredited laboratory using a multi-residue (QuEChERS Quick Easy Cheap Effective Rugged Safe) method and a combination of gas chromatography (GC) and liquid chormatograhphy (LC) analysis. A total of 107 active substances were detected from all samples; i.e., an average of about 10 active substances per bouquet. The most severely contaminated bouquet accumulated a total concentration of residues up to 97 mg/kg. Results show that roses are the most contaminated cut flowers; with an average of 14 substances detected per sample and a total concentration per rose sample of 26 mg/kg. Some active substances present an acute toxicity (acephate, methiocarb, monocrotophos, methomyl, deltamethrin, etc.) and exposure can generate a direct effect on the nervous system of florists. Nevertheless, fungicides (dodemorph, propamocarb, and procymidone) were the most frequently detected in samples and had the highest maximum concentrations out of all the active substances analysed. Dodemorph was the most frequently detected substance with the highest maximum concentration (41.9 mg/kg) measured in the rose samples. It appears from the survey that

  20. Pesticide exposure on sloths (Bradypus variegatus and Choloepus hoffmanni) in an agricultural landscape of Northeastern Costa Rica.

    PubMed

    Pinnock Branford, Margaret Verónica; de la Cruz, Elba; Solano, Karla; Ramírez, Oscar

    2014-01-01

    Between 2005 and 2008, wild Bradypus variegatus and Choloepus hoffmanni inhabiting an agricultural landscape and captive animals from a rescue center in Northeastern Costa Rica were studied to assess exposure to pesticides. A total of 54 animals were sampled: 42 wild sloths captured at an agricultural landscape and 12 captive animals from a rescue center. Pesticides' active ingredients were determined in three sample matrices: hair, aqueous mixture (paws' wash) and cotton gauze (mouth clean) based on multi-residue gas chromatography methods. Recoveries tests ranged from 73 to 146% and relative standard deviations were less than 20% throughout all the recovery tests. Active ingredients detected in sloths samples were ametryn, chlorothalonil, chlorpyrifos, diazinon, difenoconazole, ethoprophos and thiabendazole. These active ingredients were used in intensive agricultural production for bananas, pineapples and other crops. Blood plasma cholinesterase activity (PChE) was determined by the Ellman method modified for micro plates. Enzyme activity determination was normalized to protein content in the samples according to Bradford method. Wild sloth PChE activity was similar for both species while sloths in captivity showed differences between species. Enzyme activity was significantly lower for two-toed sloths. This study showed that sloths were exposed to pesticides that caused acute and chronic effect in mammals and can also be a threat to other wildlife species. There is a need to better understand the potential effects of exposure to pesticides in sloths and other wild mammal populations, especially those threatened or endangered. More studies in this field must be carried out on the wildlife fauna inhabiting the agricultural landscape and its surroundings.