Sample records for agricultural runoff event

  1. Genotoxicity in native fish associated with agricultural runoff events

    USGS Publications Warehouse

    Whitehead, Andrew; Kuivila, Kathryn; Orlando, James L.; Kotelevtsev, S.; Anderson, Susan L.

    2004-01-01

    The primary objective of the present study was to test whether agricultural chemical runoff was associated with in-stream genotoxicity in native fish. Using Sacramento sucker (Catostomus occidentalis), we combined field-caging experiments in an agriculturally dominated watershed with controlled laboratory exposures to field-collected water samples, and we coupled genotoxicity biomarker measurements in fish with bacterial mutagenicity analysis of water samples. We selected DNA strand breakage as a genotoxicity biomarker and Ames Salmonella mutagenicity tests as a second, supporting indicator of genotoxicity. Data from experiments conducted during rainfall runoff events following winter application of pesticides in 2000 and 2001 indicated that DNA strand breaks were significantly elevated in fish exposed to San Joaquin River (CA, USA) water (38.8, 28.4, and 53.6% DNA strand breakage in year 2000 field, year 2000 lab, and year 2001 field exposures, respectively) compared with a nearby reference site (15.4, 8.7, and 12.6% DNA strand breakage in year 2000 field, year 2000 lab, and year 2001 field exposures, respectively). Time-course measurements in field experiments supported a linkage between induction of DNA strand breakage and the timing of agricultural runoff. San Joaquin River water also caused significant reversion mutation in two Ames Salmonella tester strains. Salmonella mutagenicity corroborated in-stream effects, further strengthening a causal relationship between runoff events and genotoxicity. Potentially responsible agents are discussed in the context of timing of runoff events in the field, concordance between laboratory and field exposures, pesticide application patterns in the drainage, and analytical chemistry data.

  2. Multiple runoff processes and multiple thresholds control agricultural runoff generation

    NASA Astrophysics Data System (ADS)

    Saffarpour, Shabnam; Western, Andrew W.; Adams, Russell; McDonnell, Jeffrey J.

    2016-11-01

    Thresholds and hydrologic connectivity associated with runoff processes are a critical concept for understanding catchment hydrologic response at the event timescale. To date, most attention has focused on single runoff response types, and the role of multiple thresholds and flow path connectivities has not been made explicit. Here we first summarise existing knowledge on the interplay between thresholds, connectivity and runoff processes at the hillslope-small catchment scale into a single figure and use it in examining how runoff response and the catchment threshold response to rainfall affect a suite of runoff generation mechanisms in a small agricultural catchment. A 1.37 ha catchment in the Lang Lang River catchment, Victoria, Australia, was instrumented and hourly data of rainfall, runoff, shallow groundwater level and isotope water samples were collected. The rainfall, runoff and antecedent soil moisture data together with water levels at several shallow piezometers are used to identify runoff processes in the study site. We use isotope and major ion results to further support the findings of the hydrometric data. We analyse 60 rainfall events that produced 38 runoff events over two runoff seasons. Our results show that the catchment hydrologic response was typically controlled by the Antecedent Soil Moisture Index and rainfall characteristics. There was a strong seasonal effect in the antecedent moisture conditions that led to marked seasonal-scale changes in runoff response. Analysis of shallow well data revealed that streamflows early in the runoff season were dominated primarily by saturation excess overland flow from the riparian area. As the runoff season progressed, the catchment soil water storage increased and the hillslopes connected to the riparian area. The hillslopes transferred a significant amount of water to the riparian zone during and following events. Then, during a particularly wet period, this connectivity to the riparian zone, and

  3. Effects of a simulated agricultural runoff event on sediment toxicity in a managed backwater wetland

    USDA-ARS?s Scientific Manuscript database

    permethrin (both cis and trans isomers), on 10-day sediment toxicity to Hyalella azteca in a managed natural backwater wetland after a simulated agricultural runoff event. Sediment samples were collected at 10, 40, 100, 300, and 500 m from inflow 13 days prior to amendment and 1, 5, 12, 22, and 36 ...

  4. Soil moisture controlled runoff mechanisms in a small agricultural catchment in Austria.

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, Mariette; Szeles, Borbala; Silasari, Rasmiaditya; Hogan, Patrick; Oismueller, Markus; Strauss, Peter; Wagner, Wolfgang; Bloeschl, Guenter

    2017-04-01

    Understanding runoff generation mechanisms is pivotal for improved estimation of floods in small catchments. However, this requires in situ measurements with a high spatial and temporal resolution of different land surface parameters, which are rarely available distributed over the catchment scale and for a long period. The Hydrological Open Air Laboratory (HOAL) is a hydrological observatory which comprises a complex agricultural catchment, covering 66 ha. Due to the agricultural land use and low permeability of the soil part of the catchment was tile drained in the 1940s. The HOAL is equipped with an extensive soil moisture network measuring at 31 locations, 4 rain gauges and 12 stream gauges. By measuring with so many sensors in a complex catchment, the collected data enables the investigation of multiple runoff mechanisms which can be observed simultaneously in different parts of the catchment. The aim of this study is to identify and characterize different runoff mechanisms and the control soil moisture dynamics exert on them. As a first step 72 rainfall events were identified within the period 2014-2015. By analyzing event discharge response, measured at the different stream gauges, and root zone soil moisture, four different runoff mechanisms are identified. The four mechanisms exhibit contrasting soil moisture-discharge relationships. In the presented study we characterize the runoff response types by curve-fitting the discharge response to the soil moisture state. The analysis provides insights in the main runoff processes occurring in agricultural catchments. The results of this study a can be of assistance in other catchments to identify catchment hydrologic response.

  5. Dissolved Organic Matter Compositional Change and Biolability During Two Storm Runoff Events in a Small Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Eckard, Robert S.; Pellerin, Brian A.; Bergamaschi, Brian A.; Bachand, Philip A. M.; Bachand, Sandra M.; Spencer, Robert G. M.; Hernes, Peter J.

    2017-10-01

    Agricultural watersheds are globally pervasive, supporting fundamentally different organic matter source, composition, and concentration profiles in comparison to natural systems. Similar to natural systems, agricultural storm runoff exports large amounts of organic carbon from agricultural land into waterways. But intense management of upper soil layers, waterway channelization, wetland and riparian habitat removal, and postharvest vegetation removal promise to uniquely drive organic matter release to waterways. During a winter first flush and a subsequent storm event, this study investigated the influence of a small agricultural watershed on dissolved organic matter (DOM) source, composition, and biolability. Storm water discharge released strongly terrestrial yet biolabile (23 to 32%) dissolved organic carbon (DOC). Following a 21 day bioassay, a parallel factor analysis identified an 80% reduction in a protein-like (phenylpropyl) component (C2) that was previously correlated to lignin phenol concentration, and a 10% reduction in a humic-like, terrestrially sourced component (C4). Storm-driven releases tripled DOC concentration (from 2.8 to 8.7 mg L-1) during the first flush event in comparison to base flow and were terrestrially sourced, with an eightfold increase in vascular plant derived lignin phenols (23.0 to 185 μg L-1). As inferred from system hydrology, lignin composition, and nitrate as a groundwater tracer, an initial pulse of dilute water from the upstream watershed caused a counterclockwise DOC hysteresis loop. DOC concentrations peaked after 3.5 days, with the delay between peak discharge and peak DOC attributed to storm water hydrology and a period of initial water repellency of agricultural soils, which delayed DOM leaching.

  6. Pesticide leaching by agricultural drainage in sloping, mid-textured soil conditions - the role of runoff components.

    PubMed

    Zajíček, Antonín; Fučík, Petr; Kaplická, Markéta; Liška, Marek; Maxová, Jana; Dobiáš, Jakub

    2018-04-01

    Dynamics of pesticides and their metabolites in drainage waters during baseflow periods and rainfall-runoff events (RREs) were studied from 2014 to 2016 at three small, tile-drained agricultural catchments in Bohemian-Moravian Highlands, Czech Republic. Drainage systems in this region are typically built in slopes with considerable proportion of drainage runoff originating outside the drained area itself. Continuous monitoring was performed by automated samplers, and the event hydrograph was separated using 18 O and 2 H isotopes and drainage water temperature. Results showed that drainage systems represent a significant source for pesticides leaching from agricultural land. Leaching of pesticide metabolites was mainly associated with baseflow and shallow interflow. Water from causal precipitation diluted their concentrations. The prerequisites for the leaching of parental compounds were a rainfall-runoff event occurring shortly after spraying, and the presence of event water in the runoff. When such situations happened consequently, pesticides concentrations in drainage water were high and the pesticide load reached several grams in a few hours. Presented results introduce new insights into the processes of pesticides movement in small, tile-drained catchments and emphasizes the need to incorporate drainage hydrology and flow-triggered sampling into monitoring programmes in larger catchments as well as in environment-conservation policy.

  7. Perceived agricultural runoff impact on drinking water.

    PubMed

    Crampton, Andrea; Ragusa, Angela T

    2014-09-01

    Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.

  8. Evaluation of Three Models for Simulating Pesticide Runoff from Irrigated Agricultural Fields.

    PubMed

    Zhang, Xuyang; Goh, Kean S

    2015-11-01

    Three models were evaluated for their accuracy in simulating pesticide runoff at the edge of agricultural fields: Pesticide Root Zone Model (PRZM), Root Zone Water Quality Model (RZWQM), and OpusCZ. Modeling results on runoff volume, sediment erosion, and pesticide loss were compared with measurements taken from field studies. Models were also compared on their theoretical foundations and ease of use. For runoff events generated by sprinkler irrigation and rainfall, all models performed equally well with small errors in simulating water, sediment, and pesticide runoff. The mean absolute percentage errors (MAPEs) were between 3 and 161%. For flood irrigation, OpusCZ simulated runoff and pesticide mass with the highest accuracy, followed by RZWQM and PRZM, likely owning to its unique hydrological algorithm for runoff simulations during flood irrigation. Simulation results from cold model runs by OpusCZ and RZWQM using measured values for model inputs matched closely to the observed values. The MAPE ranged from 28 to 384 and 42 to 168% for OpusCZ and RZWQM, respectively. These satisfactory model outputs showed the models' abilities in mimicking reality. Theoretical evaluations indicated that OpusCZ and RZWQM use mechanistic approaches for hydrology simulation, output data on a subdaily time-step, and were able to simulate management practices and subsurface flow via tile drainage. In contrast, PRZM operates at daily time-step and simulates surface runoff using the USDA Soil Conservation Service's curve number method. Among the three models, OpusCZ and RZWQM were suitable for simulating pesticide runoff in semiarid areas where agriculture is heavily dependent on irrigation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Event-based stormwater management pond runoff temperature model

    NASA Astrophysics Data System (ADS)

    Sabouri, F.; Gharabaghi, B.; Sattar, A. M. A.; Thompson, A. M.

    2016-09-01

    Stormwater management wet ponds are generally very shallow and hence can significantly increase (about 5.4 °C on average in this study) runoff temperatures in summer months, which adversely affects receiving urban stream ecosystems. This study uses gene expression programming (GEP) and artificial neural networks (ANN) modeling techniques to advance our knowledge of the key factors governing thermal enrichment effects of stormwater ponds. The models developed in this study build upon and compliment the ANN model developed by Sabouri et al. (2013) that predicts the catchment event mean runoff temperature entering the pond as a function of event climatic and catchment characteristic parameters. The key factors that control pond outlet runoff temperature, include: (1) Upland Catchment Parameters (catchment drainage area and event mean runoff temperature inflow to the pond); (2) Climatic Parameters (rainfall depth, event mean air temperature, and pond initial water temperature); and (3) Pond Design Parameters (pond length-to-width ratio, pond surface area, pond average depth, and pond outlet depth). We used monitoring data for three summers from 2009 to 2011 in four stormwater management ponds, located in the cities of Guelph and Kitchener, Ontario, Canada to develop the models. The prediction uncertainties of the developed ANN and GEP models for the case study sites are around 0.4% and 1.7% of the median value. Sensitivity analysis of the trained models indicates that the thermal enrichment of the pond outlet runoff is inversely proportional to pond length-to-width ratio, pond outlet depth, and directly proportional to event runoff volume, event mean pond inflow runoff temperature, and pond initial water temperature.

  10. On-farm bioremediation of dimethazone and trifluralin residues in runoff water from an agricultural field.

    PubMed

    Antonious, George F

    2012-01-01

    Bioremediation is the use of living organisms, primarily microorganisms, to degrade environmental contaminants into less toxic forms. Nine biobeds (ground cavity filled with a mixture of composted organic matter, topsoil, and a surface grass) were established at Kentucky State University research farm (Franklin County, KY) to study the impact of this practice on reducing surface runoff water contamination by residues of dimethazone and trifluralin herbicides arising from an agricultural field. Biobed (biofilter) systems were installed at the bottom of the slope of specially designed runoff plots to examine herbicides retention and degradation before entering streams and rivers. In addition to biobed systems, three soil management practices: municipal sewage sludge (SS), SS mixed with yard waste compost (SS + YW), and no-mulch rototilled bare soil (NM used for comparison purposes) were used to monitor the impact of soil amendments on herbicide residues in soil following natural rainfall events. Organic amendments increased soil organic matter content and herbicide residues retained in soil following rainfall events. Biobeds installed in NM soil reduced dimethazone and trifluralin by 84 and 82%, respectively in runoff water that would have been transported down the land slope of agricultural fields and contaminated natural water resources. Biobeds installed in SS and SS+YW treatments reduced dimethazone by 65 and 46% and trifluralin by 52 and 79%, respectively. These findings indicated that biobeds are effective for treating dimethazone and trifluralin residues in runoff water.

  11. Steroid hormone runoff from agricultural test plots applied with municipal biosolids

    USGS Publications Warehouse

    Yang, Yun-Ya; Gray, James L.; Furlong, Edward T.; Davis, Jessica G.; ReVollo, Rhiannon C.; Borch, Thomas

    2012-01-01

    The potential presence of steroid hormones in runoff from sites where biosolids have been used as agricultural fertilizers is an environmental concern. A study was conducted to assess the potential for runoff of seventeen different hormones and two sterols, including androgens, estrogens, and progestogens from agricultural test plots. The field containing the test plots had been applied with biosolids for the first time immediately prior to this study. Target compounds were isolated by solid-phase extraction (water samples) and pressurized solvent extraction (solid samples), derivatized, and analyzed by gas chromatography–tandem mass spectrometry. Runoff samples collected prior to biosolids application had low concentrations of two hormones (estrone -1 and androstenedione -1) and cholesterol (22.5 ± 3.8 μg L-1). In contrast, significantly higher concentrations of multiple estrogens (-1), androgens (-1), and progesterone (-1) were observed in runoff samples taken 1, 8, and 35 days after biosolids application. A significant positive correlation was observed between antecedent rainfall amount and hormone mass loads (runoff). Hormones in runoff were primarily present in the dissolved phase (<0.7-μm GF filter), and, to a lesser extent bound to the suspended-particle phase. Overall, these results indicate that rainfall can mobilize hormones from biosolids-amended agricultural fields, directly to surface waters or redistributed to terrestrial sites away from the point of application via runoff. Although concentrations decrease over time, 35 days is insufficient for complete degradation of hormones in soil at this site.

  12. Mitigating agrichemicals from an artificial runoff event using a managed riverine wetland.

    PubMed

    Lizotte, Richard E; Shields, F Douglas; Murdock, Justin N; Kröger, Robert; Knight, Scott S

    2012-06-15

    We examined the mitigation efficiency of a managed riverine wetland amended with a mixture of suspended sediment, two nutrients (nitrogen and phosphorus), and three pesticides (atrazine, metolachlor, and permethrin) during a simulated agricultural runoff event. Hydrologic management of the 500 m-long, 25 m-wide riverine wetland was done by adding weirs at both ends. The agrichemical mixture was amended to the wetland at the upstream weir simulating a four-hour, ~1cm rainfall event from a 16ha agricultural field. Water samples (1L) were collected every 30 min within the first 4h, then every 4h until 48 h, and again on days 5, 7, 14, 21, and 28 post-amendment at distances of 0m, 10 m, 40 m, 300 m and 500 m from the amendment point within the wetland for suspended solids, nutrient, and pesticide analyses. Peak sediment, nutrient, and pesticide concentrations occurred within 3 h of amendment at 0m, 10 m, 40 m, and 300 m downstream and showed rapid attenuation of agrichemicals from the water column with 79-98%, 42-98%, and 63-98% decrease in concentrations of sediments, nutrients, and pesticides, respectively, within 48 h. By day 28, all amendments were near or below pre-amendment concentrations. Water samples at 500 m showed no changes in sediment or nutrient concentrations; pesticide concentrations peaked within 48 h but at ≤11% of upstream peak concentrations and had dissipated by day 28. Managed riverine wetlands≥1 ha and with hydraulic residence times of days to weeks can efficiently trap agricultural runoff during moderate (1cm) late-spring and early-summer rainfall events, mitigating impacts to receiving rivers. Published by Elsevier B.V.

  13. Continental-Scale Estimates of Runoff Using Future Climate Storm Events

    EPA Science Inventory

    Recent runoff events have had serious repercussions to both natural ecosystems and human infrastructure. Understanding how shifts in storm event intensities are expected to change runoff responses are valuable for local, regional, and landscape planning. To address this challenge...

  14. Responses of Hyalella azteca and phytoplankton to a simulated agricultural runoff event in a managed backwater wetland

    USDA-ARS?s Scientific Manuscript database

    We assessed the aqueous toxicity mitigation capacity of a hydrologically managed floodplain wetland following a synthetic runoff event amended with a mixture of sediments, nutrients (nitrogen and phosphorus), and pesticides (atrazine, S-metolachlor, and permethrin) using 48-h Hyalella azteca surviva...

  15. Modeling of storm runoff and pollutant wash off processes during storm event in rapidly urbanizing catchment

    NASA Astrophysics Data System (ADS)

    Qin, H. P.; Yu, X. Y.; Khu, S. T.

    2009-04-01

    Many urban catchments in developing countries are undergoing fast economic growth, population expansion and land use/cover change. Due to the mixture of agricultural/industrial/residential land use or different urbanization level as well as lack of historical monitoring data in the developing area, storm-water runoff pollution modeling is faced with challenges of considerable spatial variations and data insufficiency. Shiyan Reservoir catchment is located in the rapidly urbanizing coastal region of Southeast China. It has six sub-catchments with largely different land use patterns and urbanization levels. A simple semi-distributed model was used to simulate the storm-water runoff pollution process during storm event in the catchment. The model adopted modified IHACRES model and exponential wash-off functions to describe storm-runoff and pollutant wash-off processes, respectively, in each of six sub-catchments. Temporary hydrological and water quality monitoring sites were set at the downstream section of each sub-catchment in Feb-May 2007, spanning non-rain and rain seasons. And the model was calibrated for storm-runoff and water quality data during two typical storm events with rainfall amount of 10mm/4hr and 73mm/5hr, respectively. The results indicated that the Nash-Sutcliffe (NS) coefficients are greater than 0.65 and 0.55 respectively for storm-runoff model calibration and validation. However although NS coefficients can reach 0.7~0.9 for pollutant wash-off model calibration based on measured data in each storm event, the simulation data can not fit well with the measured data in model validation. According to field survey observation, many litters and residuals were found to distribute in disorder in some sub-catchments or their drainage systems and to instantaneously wash off into the surface water when the rainfall amount and intensity are large enough. In order to improve storm-water runoff pollution simulation in the catchment, the variations of pollutant

  16. Pesticides in storm runoff from agricultural and urban areas in the Tuolumne River basin in the vicinity of Modesto, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1998-01-01

    The occurrence, concentrations, and loads of dissolved pesticides in storm runoff were compared for two contrasting land uses in the Tuolumne River Basin, California, during two different winter storms: agricultural areas (February 1994) and the Modesto urban area (February 1995). Both storms followed the main application period of pesticides on dormant almond orchards. Eight samples of runoff from agricultural areas were collected from a Tuolumne River site, and 10 samples of runoff from urban areas were collected from five storm drains. All samples were analyzed for 46 pesticides. Six pesticides were detected in runoff from agricultural areas, and 15 pesticides were detected in runoff from urban areas. Chlorpyrifos, diazinon, dacthal (DCPA), metolachlor, and simazine were detected in almost every sample. Median concentrations were higher in the runoff from urban areas for all pesticides except napropamide and simazine. The greater occurrence and concentrations in storm drains is partly attributed to dilution of agricultural runoff by nonstorm base-flow in the Tuolumne River and by storm runoff from nonagricultural and nonurban land. In most cases, the occurrence and relative concentrations of pesticides found in storm runoff from agricultural and urban areas were related to reported pesticide application. Pesticide concentrations in runoff from agricultural areas were more variable during the storm hydrograph than were concentrations in runoff from urban areas. All peak pesticide concentrations in runoff from agricultural areas occurred during the rising limb of the storm hydrograph, whereas peak concentrations in the storm drains occurred at varying times during the storm hydrograph. Transport of pesticides from agricultural areas during the February 1994 storm exceeded transport from urban areas during the February 1995 storm for chlorpyrifos, diazinon, metolachlor, napropamide, and simazine. Transport of DCPA was about the same from agricultural and urban

  17. Evaluation of the APEX Model to Simulate Runoff Quality from Agricultural Fields in the Southern Region of the United States.

    PubMed

    Ramirez-Avila, John J; Radcliffe, David E; Osmond, Deanna; Bolster, Carl; Sharpley, Andrew; Ortega-Achury, Sandra L; Forsberg, Adam; Oldham, J Larry

    2017-11-01

    The Agricultural Policy Environmental eXtender (APEX) model has been widely applied to assess phosphorus (P) loss in runoff water and has been proposed as a model to support practical decisions regarding agricultural P management, as well as a model to evaluate tools such as the P Index. The aim of this study is to evaluate the performance of APEX to simulate P losses from agricultural systems to determine its potential use for refinement or replacement of the P Index in the southern region of the United States. Uncalibrated and calibrated APEX model predictions were compared against measured water quality data from row crop fields in North Carolina and Mississippi and pasture fields in Arkansas and Georgia. Calibrated models satisfactorily predicted event-based surface runoff volumes at all sites (Nash-Sutcliffe efficiency [NSE] > 0.47, |percent bias [PBIAS]| < 34) except Arkansas (NSE < 0.11, |PBIAS| < 50) but did not satisfactory simulate sediment, dissolved P, or total P losses in runoff water. The APEX model tended to underestimate dissolved and total P losses from fields where manure was surface applied. The model also overestimated sediments and total P loads during irrigation events. We conclude that the capability of APEX to predict sediment and P losses is limited, and consequently so is the potential for using APEX to make P management recommendations to improve P Indices in the southern United States. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Event-based rainfall-runoff modelling of the Kelantan River Basin

    NASA Astrophysics Data System (ADS)

    Basarudin, Z.; Adnan, N. A.; Latif, A. R. A.; Tahir, W.; Syafiqah, N.

    2014-02-01

    Flood is one of the most common natural disasters in Malaysia. According to hydrologists there are many causes that contribute to flood events. The two most dominant factors are the meteorology factor (i.e climate change) and change in land use. These two factors contributed to floods in recent decade especially in the monsoonal catchment such as Malaysia. This paper intends to quantify the influence of rainfall during extreme rainfall events on the hydrological model in the Kelantan River catchment. Therefore, two dynamic inputs were used in the study: rainfall and river discharge. The extreme flood events in 2008 and 2004 were compared based on rainfall data for both years. The events were modeled via a semi-distributed HEC-HMS hydrological model. Land use change was not incorporated in the study because the study only tries to quantify rainfall changes during these two events to simulate the discharge and runoff value. Therefore, the land use data representing the year 2004 were used as inputs in the 2008 runoff model. The study managed to demonstrate that rainfall change has a significant impact to determine the peak discharge and runoff depth for the study area.

  19. Inter-event variability in urban stormwater runoff response associated with hydrologic connectivity

    NASA Astrophysics Data System (ADS)

    Hondula, K. L.

    2015-12-01

    Urbanization alters the magnitude and composition of hydrologic and biogeochemical fluxes from watersheds, with subsequent deleterious consequences for receiving waters. Projected changes in storm characteristics such as rainfall intensity and event size are predicted to amplify these impacts and render current regulations inadequate for protecting surface water quality. As stormwater management practices (BMPs) are increasingly being relied upon to reduce excess nutrient pollution in runoff from residential development, empirical investigation of their performance across a range of conditions is warranted. Despite substantial investment in urban and suburban BMPs, significant knowledge gaps exist in understanding how landscape structure and precipitation event characteristics influence the amount of stormwater runoff and associated nutrient loads from these complex catchments. Increasing infiltration of stormwater before it enters the sewer network (source control) is hypothesized to better mimic natural hydrologic and biogeochemical fluxes compared to more centralized BMPs at sewer outlets such as wet and dry ponds. Rainfall and runoff quality and quantity were monitored in four small (1-5 ha) residential catchments in Maryland to test the efficacy of infiltration-based stormwater management practices in comparison to end-of-pipe BMPs. Results indicated that reduced hydrologic connectivity associated with infiltration-based practices affected the relationship between the magnitude of rainfall events and water yield , but only for small precipitation events: compared to end-of-pipe BMPs, source control was associated with both lower runoff ratios and lower nutrient export per area for a given rainfall event size. We found variability in stormwater runoff responses (water yield, quality, and nutrient loads) was associated with precipitation event size, antecedent rainfall, and hydrologic connectivity as quantified by a modified directional connectivity index

  20. Rainfall-runoff of anthropogenic waste indicators from agricultural fields applied with municipal biosolids.

    PubMed

    Gray, James L; Borch, Thomas; Furlong, Edward T; Davis, Jessica G; Yager, Tracy J; Yang, Yun-Ya; Kolpin, Dana W

    2017-02-15

    The presence of anthropogenic contaminants such as antimicrobials, flame-retardants, and plasticizers in runoff from agricultural fields applied with municipal biosolids may pose a potential threat to the environment. This study assesses the potential for rainfall-induced runoff of 69 anthropogenic waste indicators (AWIs), widely found in household and industrial products, from biosolids amended field plots. The agricultural field containing the test plots was treated with biosolids for the first time immediately prior to this study. AWIs present in soil and biosolids were isolated by continuous liquid-liquid extraction and analyzed by full-scan gas chromatography/mass spectrometry. Results for 18 AWIs were not evaluated due to their presence in field blank QC samples, and another 34 did not have sufficient detection frequency in samples to analyze trends in data. A total of 17 AWIs, including 4-nonylphenol, triclosan, and tris(2-butoxyethyl)phosphate, were present in runoff with acceptable data quality and frequency for subsequent interpretation. Runoff samples were collected 5days prior to and 1, 9, and 35days after biosolids application. Of the 17 AWIs considered, 14 were not detected in pre-application samples, or their concentrations were much smaller than in the sample collected one day after application. A range of trends was observed for individual AWI concentrations (typically from 0.1 to 10μg/L) over the course of the study, depending on the combination of partitioning and degradation mechanisms affecting each compound most strongly. Overall, these results indicate that rainfall can mobilize anthropogenic contaminants from biosolids-amended agricultural fields, directly to surface waters and redistribute them to terrestrial sites away from the point of application via runoff. For 14 of 17 compounds examined, the potential for runoff remobilization during rainstorms persists even after three 100-year rainstorm-equivalent simulations and the passage of a

  1. Rainfall-runoff of anthropogenic waste indicators from agricultural fields applied with municipal biosolids

    USGS Publications Warehouse

    Gray, James L.; Borch, Thomas; Furlong, Edward T.; Davis, Jessica; Yager, Tracy; Yang, Yun-Ya; Kolpin, Dana W.

    2017-01-01

    The presence of anthropogenic contaminants such as antimicrobials, flame-retardants, and plasticizers in runoff from agricultural fields applied with municipal biosolids may pose a potential threat to the environment. This study assesses the potential for rainfall-induced runoff of 69 anthropogenic waste indicators (AWIs), widely found in household and industrial products, from biosolids amended field plots. The agricultural field containing the test plots was treated with biosolids for the first time immediately prior to this study. AWIs present in soil and biosolids were isolated by continuous liquid-liquid extraction and analyzed by full-scan gas chromatography/mass spectrometry. Results for 18 AWIs were not evaluated due to their presence in field blank QC samples, and another 34 did not have sufficient detection frequency in samples to analyze trends in data. A total of 17 AWIs, including 4-nonylphenol, triclosan, and tris(2-butoxyethyl)phosphate, were present in runoff with acceptable data quality and frequency for subsequent interpretation. Runoff samples were collected 5 days prior to and 1, 9, and 35 days after biosolids application. Of the 17 AWIs considered, 14 were not detected in pre-application samples, or their concentrations were much smaller than in the sample collected one day after application. A range of trends was observed for individual AWI concentrations (typically from 0.1 to 10 μg/L) over the course of the study, depending on the combination of partitioning and degradation mechanisms affecting each compound most strongly. Overall, these results indicate that rainfall can mobilize anthropogenic contaminants from biosolids-amended agricultural fields, directly to surface waters and redistribute them to terrestrial sites away from the point of application via runoff. For 14 of 17 compounds examined, the potential for runoff remobilization during rainstorms persists even after three 100-year rainstorm-equivalent simulations and the

  2. EFFECTIVENESS OF RESTORED WETLANDS FOR THE TREATMENT OF AGRICULTURAL RUNOFF

    EPA Science Inventory

    The integration of the tax ditches into a drainage management system provides obvious benefits, but can also present a source of significant nonpoint source pollution from agricultural runoff. Many of Delaware's tax ditches have been listed on Delaware's Clean
    Water Act 303(d)...

  3. Quantifying the capacity of compost buffers for treating agricultural runoff

    NASA Astrophysics Data System (ADS)

    Naranjo, S. A.; Beighley, R. E.; Buyuksonmez, F.

    2007-12-01

    Agricultural operations, specifically, avocado and commercial nurseries require frequent and significant fertilizing and irrigating which tends to result in excessive nutrient leaching and off-site runoff. The increased runoff contains high concentrations of nutrients which negatively impacts stream water quality. Researcher has demonstrated that best management practices such as compost buffers can be effective for reducing nutrient and sediment concentrations in agricultural runoff. The objective of this research is to evaluate both the hydraulic capacity and the nutrient removal efficiency of: (a) compost buffers and (b) buffers utilizing a combination of vegetation and compost. A series of experiments will be performed in the environmental hydraulics laboratory at San Diego State University. A tilting flume 12-m long, 27-cm wide and 25-cm deep will be used. Discharge is propelled by an axial flow pump powered by a variable speed motor with a maximum capacity of 30 liters per second. The experiments are designed to measure the ratio compost mass per flow rate per linear width. Two different discharges will be measured: (a) treatment discharge (maximum flow rate such that the buffer decreases the incoming nitrogen and phosphorus concentrations below a maximum allowable limit) and (b) breaking discharge (maximum flow rate the buffer can tolerate without structural failure). Experimental results are presented for the hydraulic analysis, and preliminary results are presented for the removal of nitrogen and phosphorus from runoff. The results from this project will be used to develop guidelines for installing compost buffers along the perimeters of nursery sites and avocado groves in southern California.

  4. Testing the Runoff Tool in Sicilian vineyards: adopting best management practices to prevent agricultural surface runoff

    NASA Astrophysics Data System (ADS)

    Singh, Manpriet; Dyson, Jeremy; Capri, Ettore

    2016-04-01

    Over the last decades rainfall has become more intense in Sicily, making large proportions of steeply sloping agricultural land more vulnerable to soil erosion, mainly orchards and vineyards (Diodato and Bellocchi 2010). The prevention of soil degradation is indirectly addressed in the European Union's Water Framework Directive (2000/60/EC) and Sustainable Use Directive (2009/128/EC). As a consequence, new EU compliance conditions for food producers requires them to have tools and solutions for on-farm implementation of sustainable practices (Singh et al. 2014). The Agricultural Runoff and Best Management Practice Tool has been developed by Syngenta to help farm advisers and managers diagnose the runoff potential from fields with visible signs of soil erosion. The tool consists of 4 steps including the assessment of three key landscape factors (slope, topsoil permeability and depth to restrictive horizon) and 9 mainly soil and crop management factors influencing the runoff potential. Based on the runoff potential score (ranging from 0 to 10), which is linked to a runoff potential class, the Runoff Tool uses in-field and edge-of-the-field Best Management Practices (BMPs) to mitigate runoff (aligned with advice from ECPA's TOPPS-prowadis project). The Runoff tool needs testing in different regions and crops to create a number of use scenarios with regional/crop specific advice on BMPs. For this purpose the Tool has been tested in vineyards of the Tasca d'Almerita and Planeta wineries, which are large family-owned estates with long-standing tradition in viticulture in Sicily. In addition to runoff potential scores, Visual Soil Assessment (VSA) scores have been calculated to allow for a comparison between different diagnostic tools. VSA allows for immediate diagnosis of soil quality (a higher score means a better soil quality) including many indicators of runoff (Shepherd 2008). Runoff potentials were moderate to high in all tested fields. Slopes were classified as

  5. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    PubMed

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  6. Reducing runoff and nutrient loss from agricultural land in the Lower Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Reba, M. L.; Bouldin, J.; Teague, T.; Choate, J.

    2011-12-01

    The Lower Mississippi River Basin (LMRB) yields suspended sediment, total phosphorus, total nitrogen and silicate that are disproportionately high for the area. In addition, groundwater pumping of the alluvial aquifer has been deemed unsustainable under current practices. Much of the LMRB is used for large-scale agricultural production of primarily cotton, soybeans and rice. The incorporation of conservation practices may improve nutrient use efficiency and reduce runoff from agricultural fields. Three paired fields have been instrumented at the edge-of-field to quantify nutrients and runoff. The fields are located in northeastern Arkansas in the Little River Ditches and St. Francis watersheds. Nutrient use efficiency will be gained by utilizing variable rate fertilizer application technology. Reduced runoff will be gained through improved irrigation management. This study quantifies the runoff and nutrient loss from the first year of a 5-year study and will serve as a baseline for a comparative study of conservation practices employed on the paired fields.

  7. Nutrient load generated by storm event runoff from a golf course watershed.

    PubMed

    King, K W; Balogh, J C; Hughes, K L; Harmel, R D

    2007-01-01

    Turf, including home lawns, roadsides, golf courses, parks, etc., is often the most intensively managed land use in the urban landscape. Substantial inputs of fertilizers and water to maintain turf systems have led to a perception that turf systems are a major contributor to nonpoint source water pollution. The primary objective of this study was to quantify nutrient (NO(3)-N, NH(4)-N, and PO(4)-P) transport in storm-generated surface runoff from a golf course. Storm event samples were collected for 5 yr (1 Apr. 1998-31 Mar. 2003) from the Morris Williams Municipal Golf Course in Austin, TX. Inflow and outflow samples were collected from a stream that transected the golf course. One hundred fifteen runoff-producing precipitation events were measured. Median NO(3)-N and PO(4)-P concentrations at the outflow location were significantly (p < 0.05) greater than like concentrations measured at the inflow location; however, median outflow NH(4)-N concentration was significantly less than the median inflow concentration. Storm water runoff transported 1.2 kg NO(3)-N ha(-1) yr(-1), 0.23 kg NH(4)-N ha(-1) yr(-1), and 0.51 kg PO(4)-P ha(-1) yr(-1) from the course. These amounts represent approximately 3.3% of applied N and 6.2% of applied P over the contributing area for the same period. NO(3)-N transport in storm water runoff from this course does not pose a substantial environmental risk; however, the median PO(4)-P concentration exiting the course exceeded the USEPA recommendation of 0.1 mg L(-1) for streams not discharging into lakes. The PO(4)-P load measured in this study was comparable to soluble P rates measured from agricultural lands. The findings of this study emphasize the need to balance golf course fertility management with environmental risks, especially with respect to phosphorus.

  8. Vegetated agricultural drainage ditches for the mitigation of pyrethroid-associated runoff.

    PubMed

    Bennett, Erin R; Moore, Matthew T; Cooper, Charles M; Smith, Sammie; Shields, F Douglas; Drouillard, Ken G; Schulz, Ralf

    2005-09-01

    Drainage ditches are indispensable components of the agricultural production landscape. A benefit of these ditches is contaminant mitigation of agricultural storm runoff. This study determined bifenthrin and lambda-cyhalothrin (two pyrethroid insecticides) partitioning and retention in ditch water, sediment, and plant material as well as estimated necessary ditch length required for effective mitigation. A controlled-release runoff simulation was conducted on a 650-m vegetated drainage ditch in the Mississippi Delta, USA. Bifenthrin and lambda-cyhalothrin were released into the ditch in a water-sediment slurry. Samples of water, sediment, and plants were collected and analyzed for pyrethroid concentrations. Three hours following runoff initiation, inlet bifenthrin and lambda-cyhalothrin water concentrations ranged from 666 and 374 microg/L, respectively, to 7.24 and 5.23 microg/L at 200 m downstream. No chemical residues were detected at the 400-m sampling site. A similar trend was observed throughout the first 7 d of the study where water concentrations were elevated at the front end of the ditch (0-25 m) and greatly reduced by the 400-m sampling site. Regression formulas predicted that bifenthrin and lambda-cyhalothrin concentrations in ditch water were reduced to 0.1% of the initial value within 280 m. Mass balance calculations determined that ditch plants were the major sink and/or sorption site responsible for the rapid aqueous pyrethroid dissipation. By incorporating vegetated drainage ditches into a watershed management program, agriculture can continue to decrease potential non-point source threats to downstream aquatic receiving systems. Overall results of this study illustrate that aquatic macrophytes play an important role in the retention and distribution of pyrethroids in vegetated agricultural drainage ditches.

  9. The effect of residential and agricultural runoff on the microbiology of a Hawaiian ahupua'a.

    PubMed

    Frank, Kiana

    2005-01-01

    The objective of this project was to study the relationship between environmental runoff and the incidence of antibiotic-resistant microorganisms (ARMO) in freshwater streams. Five water systems along the windward coast of the island of O'ahu were evaluated. Samples were collected from sites upstream of residential or agricultural areas, throughout these areas, and at sites of entrance into oceans or bays. It was hypothesized that the incidence of ARMO would increase as the stream received runoff from residential and agricultural areas. The percentage of ARMO did not increase as the streams passed through residential or agricultural areas. Surprisingly, pristine sites, well upstream from residential or agricultural areas, contained bacteria resistant to at least one antibiotic. Areas most affected by runoff did not show a significant increase in the incidence of antibiotic-resistant organisms, suggesting that the incidence of antibiotic resistance is not simply a function of contamination with agricultural or residential runoff. The correlation of antibiotic resistance with heavy metal resistance was evaluated, because others (Fasim et al., 1999; Lazar et al., 2002; Nies, 1999) have shown that antibiotic and heavy metal resistance are each carried on extrachromosomal plasmids. The vast majority of ARMO were also resistant to concentrations of heavy metals reported in the sediments of indicator streams (Waihee, system III), suggesting that an antibiotic-resistant bacterium has a high probability of having dual resistance to a heavy metal. A 3.2-kb plasmid (pSTAMP) was isolated from a bacterium with dual antibiotic and heavy metal resistance. Further analysis of the plasmid is currently in progress.

  10. Effects of surface run-off on the transport of agricultural chemicals to ground water in a sandplain setting

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    2002-01-01

    An experiment was conducted at a depressional (lowland) and an upland site in sandy soils to evaluate the effects of surface run-off on the transport of agricultural chemicals to ground water. Approximately 16.5 cm of water was applied to both sites during the experiment, representing a natural precipitation event with a recurrence interval of approximately 100 years. Run-off was quantified at the lowland site and was not detected at the upland site during the experiment. Run-off of water to the lowland site was the most important factor affecting differences in the concentrations and fluxes of the agricultural chemicals between the two sites. Run-off of water to the lowland site appears to have played a dual role by diluting chemical concentrations in the unsaturated zone as well as increasing the concentrations at the water table, compared to the upland site. Concentrations of chloride, nitrate and atrazine plus metabolites were noticeably greater at the water table than in the unsaturated zone at both sites. The estimated mass flux of chloride and nitrate to the water table during the test were 5-2 times greater, respectively, at the lowland site compared to the upland site, whereas the flux of sulfate and atrazine plus metabolites was slightly greater at the upland site. Results indicate that matrix flow of water and chemicals was the primary process causing the observed differences between the two sites. Results of the experiment illustrate the effects of heterogeneity and the complexity of evaluating chemical transport through the unsaturated zone. Copyright ?? 2002 Elsevier Science B.V.

  11. Effects of surface run-off on the transport of agricultural chemicals to ground water in a sandplain setting

    USGS Publications Warehouse

    Delin, Geoffrey N.; Landon, Matthew K.

    2002-01-01

    An experiment was conducted at a depressional (lowland) and an upland site in sandy soils to evaluate the effects of surface run-off on the transport of agricultural chemicals to ground water. Approximately 16.5 cm of water was applied to both sites during the experiment, representing a natural precipitation event with a recurrence interval of approximately 100 years. Run-off was quantified at the lowland site and was not detected at the upland site during the experiment. Run-off of water to the lowland site was the most important factor affecting differences in the concentrations and fluxes of the agricultural chemicals between the two sites. Run-off of water to the lowland site appears to have played a dual role by diluting chemical concentrations in the unsaturated zone as well as increasing the concentrations at the water table, compared to the upland site. Concentrations of chloride, nitrate and atrazine plus metabolites were noticeably greater at the water table than in the unsaturated zone at both sites. The estimated mass flux of chloride and nitrate to the water table during the test were 5–2 times greater, respectively, at the lowland site compared to the upland site, whereas the flux of sulfate and atrazine plus metabolites was slightly greater at the upland site. Results indicate that matrix flow of water and chemicals was the primary process causing the observed differences between the two sites. Results of the experiment illustrate the effects of heterogeneity and the complexity of evaluating chemical transport through the unsaturated zone.

  12. Can rice (Oryza sativa) mitigate pesticides and nutrients in agricultural runoff?

    USDA-ARS?s Scientific Manuscript database

    Phytoremediation of nutrients and pesticides in runoff is a growing conservation effort, particularly in agriculturally intensive areas such as the lower Mississippi River Valley. In the current study, rice (Oryza sativa) was examined for its mitigation capacity of nitrogen, phosphorus, diazinon, a...

  13. Agricultural runoff pollution control by a grassed swales coupled with wetland detention ponds system: a case study in Taihu Basin, China.

    PubMed

    Zhao, Jinhui; Zhao, Yaqian; Zhao, Xiaoli; Jiang, Cheng

    2016-05-01

    The performance of a field grassed swales (GSs) coupled with wetland detention ponds (WDPs) system was monitored under four typical rainfall events to assess its effectiveness on agricultural runoff pollution control in Taihu Basin, China. The results indicated that suspended solids (SS) derived from the flush process has significant influence on pollution loads in agricultural runoff. Determination of first flush effect (FFE) indicated that total suspended solids (TSS) and total phosphorus (TP) exhibited moderate FFE, while chemical oxygen demand (COD) and total nitrogen (TN) showed weak FFE. Average removal efficiencies of 83.5 ± 4.5, 65.3 ± 6.8, 91.6 ± 3.8, and 81.3 ± 5.8 % for TSS, COD, TN, and TP were achieved, respectively. The GSs played an important role in removing TSS and TP and acted as a pre-treatment process to prevent clogging of the subsequent WDPs. Particle size distributions (PSDs) analysis indicated that coarse particles larger than 75 μm accounted for 80 % by weight of the total particles in the runoff. GSs can effectively reduce coarse particles (≥75 μm) in runoff, while its removal efficiency for fine particles (<75 μm) was low, even minus results being recorded, especially for particles smaller than 25 μm. The length of GSs is a key factor in its performance. The WDPs can remove particles of all sizes by sedimentation. In addition, WDPs can improve water quality due to their buffering and dilution capacity during rainfall as well as their water purification ability during dry periods. Overall, the ecological system of GSs coupled with WDPs is an effective system for agricultural runoff pollution control.

  14. Mitigation of dimethazone residues in soil and runoff water from agricultural field.

    PubMed

    Antonious, George F

    2011-01-01

    Dimethazone, also known as clomazone [2-[(2-chlorophenyl) methyl]- 4,4-dimethyl-3-isoxaolidinone] is a pre-emergent nonionic herbicide commonly used in agriculture. A field study was conducted on a silty-loam soil of 10 % slope to monitor off-site movement and persistence of dimethazone in soil under three management practices. Eighteen plots of 22 x 3.7 m each were separated using stainless steel metal borders and the soil in six plots was mixed with municipal sewage sludge (MSS) and yard waste (YW) compost (MSS+YW) at 15 t acre⁻¹ on dry weight basis, six plots were mixed with MSS at 15 t acre⁻¹, and six unamended plots (NM) were used for comparison purposes. The objectives of this investigation were to: (i) monitor the dissipation and half-life (T₁/₂) of dimethazone in soil under three management practices; (ii) determine the concentration of dimethazone residues in runoff and infiltration water following natural rainfall events; and (iii) assess the impact of soil amendments on the transport of NO₃, NH₄, and P into surface and subsurface water. Gas chromatography/mass spectrometery (GC/MS) analyses of soil extracts indicated the presence of ion fragments at m/z 125 and 204 that can be used for identification of dimethazone residues. Intitial deposits of dimethazone varied from 1.3 μg g⁻¹ dry native soil to 3.2 and 11.8 μg g⁻¹ dry soil in MSS and MSS+YW amended soil, respectively. Decline of dimethazone residues in the top 15 cm native soil and soil incorporated with amendments revealed half-life (T₁/₂) values of 18.8, 25.1, and 43.0 days in MSS+YW, MSS, and NM treatments, respectively. Addition of MSS+YW mix and MSS alone to native soil increased water infiltration, lowering surface runoff water volume and dimethazone residues in runoff following natural rainfall events.

  15. Impact of agricultural management on pluvial flash floods - Case study of an extreme event observed in Austria in 2016

    NASA Astrophysics Data System (ADS)

    Lumassegger, Simon; Achleitner, Stefan; Kohl, Bernhard

    2017-04-01

    Central Europe was affected by extreme flash floods in summer 2016 triggered by short, high-intensity storm cells. Besides fluvial runoff, local pluvial floods appear to increase recently. In frame of the research project SAFFER-CC (sensitivity assessment of critical condition for local flash floods - evaluating the recurrence under climate change) surface runoff and pluvial flooding is assessed using a coupled hydrological/2D hydrodynamic model for the severely affected municipality of Schwertberg, Upper Austria. In this small catchment several flooding events occurred in the last years, where the most severe event occurred during summer 2016. Several areas could only be reached after the flood wave subsided with observed flood marks up to one meter. The modeled catchment is intensively cultivated with maize, sugar beets, winter wheat and soy on the hillside and hence highly vulnerable to water erosion. The average inclination is relatively steep with 15 % leading to high flow velocities of surface runoff associated with large amounts of transported sediments. To assess the influence of land use and soil conservation on flash floods, field experiments with a portable irrigation spray installation were carried out at different locations. The test plots were subjected to rainfall with constant intensity of 100 mm/h for one hour. Consecutively a super intense, one hour lasting, rainfall hydrograph was applied after 30 minutes at the same plots, ranging from 50 mm/h to 200 mm/h. Surface runoff was collected and measured in a tank and water samples were taken to determine the suspended material load. Large differences of runoff coefficients were determined depending on the agricultural management. The largest discharge was measured in a maize field, where surface runoff occurred immediately after start of irrigation. The determined runoff coefficients ranged from 0.22 for soy up to 0.65 for maize for the same soil type and inclination. The conclusion that runoff is

  16. Flooding of property by runoff from agricultural land in northwestern Europe

    NASA Astrophysics Data System (ADS)

    Boardman, John; Ligneau, Laurence; de Roo, Ad; Vandaele, Karel

    1994-08-01

    In the last twenty years there has been an increase in the incidence of flooding of property by runoff from agricultural land in many areas of northwestern Europe. These events take the form of inundations by soil-laden water associated with erision and the formation of ephemeral or talweg gullies developed in normally dry valley bottoms. Costs of such events may be considerable e.g. almost US$2M at Rottingdean, southern England, in 1987. These costs are largely borne by individual house occupants, insurance companies and local councils. The distribution of flooding is widespread but areas of high risk can be identified: the hilly area of central Belgium, parts of northern France, the South Downs in southern England and South-Limburg (the Netherlands). All these areas have silty, more or less loessial soils. Two types of flooding may be distinguished: winter flooding associated with wet soils and the cultivation of winter cereals, and summer flooding due to thunderstorm activity and runoff particularly from sugar beet, maize and potato crops. The distribution of these types of erosion varies in relation to the interaction between physical characteristics (soils and topography), climatic conditions and land use across the region. The reason for the recent increase in flooding events appears to be changes in land use, in the area of arable cropping, and the continued intensification of farming such as the use of chemical fertilizers, the decline in aggregate stability, the increase in the size of fields and compaction by farm vehicles. In some regions the risk of flooding has also increased because of expansion of urban areas in valley bottom locations. Communities have responded to the flooding hazard with emergency or protective measures usually involving engineered structures rather than land use change. The policy response to the increased risk of flooding has been very limited especially at the national and provincial level, the exception being plans developed

  17. Periphyton responses to nutrient and atrazine mixtures introduced through agricultural runoff.

    PubMed

    Murdock, Justin N; Shields, F Douglas; Lizotte, Richard E

    2013-03-01

    Agricultural runoff often contains pollutants with antagonistic impacts. The individual influence of nutrients and atrazine on periphyton has been extensively studied, but their impact when introduced together and with multiple agricultural pollutants is less clear. We simulated a field-scale runoff pulse into a riverine wetland that mimicked pollutant composition typical of field runoff of the Mississippi River Alluvial Plain. Periphyton biomass and functional responses were measured for 2 weeks along a 500 m section. Additionally, laboratory chamber assays were used to identify potential periphyton changes due to nutrients, atrazine, and their interactions. Generally, nutrients stimulated, and atrazine reduced chlorophyll a (Chl a) in chambers. In the wetland, nutrient and atrazine relationships with periphyton were weaker, and when found, were often opposite of trends in chambers. Total nitrogen (TN) was inversely related to Chl a, and total phosphorus was inversely related to respiration (R) rates. Atrazine (10-20 μg L(-1) in the wetland) had a positive relationship with ash-free dry mass (AFDM), and weakened the relationship between TN and AFDM. Wetland periphyton biomass was better correlated to total suspended solids than nutrients or atrazine. Periphyton function was resilient as periphyton gross primary production (GPP)/R ratios were not strongly impacted by runoff. However, whole-system GPP and R decreased over the 2-week period, suggesting that although periphyton metabolism recovered quickly, whole-system metabolism took longer to recover. The individual and combined impacts of nutrients and atrazine in complex pollutant mixtures can vary substantially from their influence when introduced separately, and non-linear impacts can occur with distance downstream of the pollutant introduction point.

  18. ASSESSMENT OF RISK REDUCTION STRATEGIES FOR THE MANAGEMENT OF AGRICULTURAL NONPOINT SOURCE PESTICIDE RUNOFF IN ESTUARINE ECOSYSTEMS

    EPA Science Inventory

    Agricultural nonpoint source (NPS) runoff may result in significant discharges of pesticides, suspended sediments, and fertilizers into estuarine habitats adjacent to agricultural areas or downstream from agricultural watersheds. Exposure of estuarine fin fish and shellfish to to...

  19. Can Rice (Oryza sativa) Mitigate Pesticides and Nutrients in Agricultural Runoff?

    PubMed

    Moore, M T; Locke, M A

    2018-01-01

    Phytoremediation of nutrients and pesticides in runoff is a growing conservation effort, particularly in agriculturally intensive areas such as the lower Mississippi River Valley. In the current study, rice (Oryza sativa) was examined for its mitigation capacity of nitrogen, phosphorus, diazinon, and permethrin. Twenty-two high density polyethylene circular containers (56 cm x 45 cm) were used as mesocosms, with 12 mesocosms planted with rice and 10 mesocosms remaining unvegetated. Mesocosms were hydraulically connected and arranged in a series of two, with each system providing a 4 h hydraulic retention time (HRT) for a total system retention time of 8 h. Two treatments (RICE/RICE and RICE/BARE) of four replicates each were utilized, with three replicates of controls (BARE/BARE). Systems with RICE/RICE (8 h HRT) significantly reduced diazinon (p = 0.0126), cis-permethrin (p = 0.0442), filtered orthophosphate (p = 0.0058), and total orthophosphate (p = 0.0123) compared to control systems. No significant differences were noted for trans-permethrin, nitrate, or ammonium. Results indicate promise in phytoremediation of agricultural runoff by rice. If further studies reveal contaminants are not transferred into seeds, then rice could potentially serve as both a remediation tool and food source in countries facing agricultural pollution challenges.

  20. Barium as a potential indicator of phosphorus in agricultural runoff.

    PubMed

    Ahlgren, Joakim; Djodjic, Faruk; Wallin, Mats

    2012-01-01

    In many catchments, anthropogenic input of contaminants, and in particular phosphorus (P), into surface water is a mixture of agricultural and sewage runoff. Knowledge about the relative contribution from each of these sources is vital for mitigation of major environmental problems such as eutrophication. In this study, we investigated whether the distribution of trace elements in surface waters can be used to trace the contamination source. Water from three groups of streams was investigated: streams influenced only by agricultural runoff, streams influenced mainly by sewage runoff, and reference streams. Samples were collected at different flow regimes and times of year and analyzed for 62 elements using ICP-MS. Our results show that there are significant differences between the anthropogenic sources affecting the streams in terms of total element composition and individual elements, indicating that the method has the potential to trace anthropogenic impact on surface waters. The elements that show significant differences between sources are strontium (p < 0.001), calcium (p < 0.004), potassium (p < 0.001), magnesium (p < 0.001), boron (p < 0.001), rhodium (p = 0.001), and barium (p < 0.001). According to this study, barium shows the greatest potential as a tracer for an individual source of anthropogenic input to surface waters. We observed a strong relationship between barium and total P in the investigated samples (R(2) = 0.78), which could potentially be used to apportion anthropogenic sources of P and thereby facilitate targeting of mitigation practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Characteristics of the event mean concentration (EMC) from rainfall runoff on an urban highway.

    PubMed

    Lee, Ju Young; Kim, Hyoungjun; Kim, Youngjin; Han, Moo Young

    2011-04-01

    The purpose of this study was to investigate the characterization of the event mean concentration (EMC) of runoff during heavy precipitation events on highways. Highway runoff quality data were collected from the 7th highway, in South Korea during 2007-2009. The samples were analyzed for runoff quantity and quality parameters such as COD(cr), TSS, TPHs, TKN, NO₃, TP, PO₄ and six heavy metals, e.g., As, Cu, Cd, Ni, Pb and Zn. Analysis of resulting hydrographs and pollutant graphs indicates that the peak of the pollutant concentrations in runoff occurs 20 min after the first rainfall runoff occurrence. The first flush effect depends on the preceding dry period and the rainfall intensity. The results of this study can be used as a reference for water quality management of urban highways. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  2. Sensitivity of agricultural runoff loads to rising levels of CO2 and climate change in the San Joaquin Valley watershed of California.

    PubMed

    Ficklin, Darren L; Luo, Yuzhou; Luedeling, Eike; Gatzke, Sarah E; Zhang, Minghua

    2010-01-01

    The Soil and Water Assessment Tool (SWAT) was used to assess the impact of climate change on sediment, nitrate, phosphorus and pesticide (diazinon and chlorpyrifos) runoff in the San Joaquin watershed in California. This study used modeling techniques that include variations of CO(2), temperature, and precipitation to quantify these responses. Precipitation had a greater impact on agricultural runoff compared to changes in either CO(2) concentration or temperature. Increase of precipitation by +/-10% and +/-20% generally changed agricultural runoff proportionally. Solely increasing CO(2) concentration resulted in an increase in nitrate, phosphorus, and chlorpyrifos yield by 4.2, 7.8, and 6.4%, respectively, and a decrease in sediment and diazinon yield by 6.3 and 5.3%, respectively, in comparison to the present-day reference scenario. Only increasing temperature reduced yields of all agricultural runoff components. The results suggest that agricultural runoff in the San Joaquin watershed is sensitive to precipitation, temperature, and CO(2) concentration changes.

  3. Simulation of rainfall-runoff for major flash flood events in Karachi

    NASA Astrophysics Data System (ADS)

    Zafar, Sumaira

    2016-07-01

    Metropolitan city Karachi has strategic importance for Pakistan. With the each passing decade the city is facing urban sprawl and rapid population growth. These rapid changes directly affecting the natural resources of city including its drainage pattern. Karachi has three major cities Malir River with the catchment area of 2252 sqkm and Lyari River has catchment area about 470.4 sqkm. These are non-perennial rivers and active only during storms. Change of natural surfaces into hard pavement causing an increase in rainfall-runoff response. Curve Number is increased which is now causing flash floods in the urban locality of Karachi. There is only one gauge installed on the upstream of the river but there no record for the discharge. Only one gauge located at the upstream is not sufficient for discharge measurements. To simulate the maximum discharge of Malir River rainfall (1985 to 2014) data were collected from Pakistan meteorological department. Major rainfall events use to simulate the rainfall runoff. Maximum rainfall-runoff response was recorded in during 1994, 2007 and 2013. This runoff causes damages and inundation in floodplain areas of Karachi. These flash flooding events not only damage the property but also cause losses of lives

  4. Assessment of runoff water quality for an integrated best-management practice system in an agricultural watershed

    USDA-ARS?s Scientific Manuscript database

    To better understand, implement and integrate best management practices (BMPs) in agricultural watersheds, critical information on their effectiveness is required. A representative agricultural watershed, Beasley Lake, was used to compare runoff water quality draining through an integrated system of...

  5. Narrow grass hedges reduce tylosin and associated antimicrobial resistance genes in agricultural runoff

    USDA-ARS?s Scientific Manuscript database

    Agricultural runoff from areas receiving livestock manure can potentially contaminate surface water with antimicrobials and antimicrobial resistance genes (ARGs). The objective of this study was to investigate the effectiveness of narrow grass hedges (NGHs) on reducing the transport of antimicrobial...

  6. Characteristics of pulsed runoff-erosion events under typical rainstorms in a small watershed on the Loess Plateau of China.

    PubMed

    Wu, Lei; Jiang, Jun; Li, Gou-Xia; Ma, Xiao-Yi

    2018-02-27

    The pulsed events of rainstorm erosion on the Loess Plateau are well-known, but little information is available concerning the characteristics of superficial soil erosion processes caused by heavy rainstorms at the watershed scale. This study statistically evaluated characteristics of pulsed runoff-erosion events based on 17 observed rainstorms from 1997-2010 in a small loess watershed on the Loess Plateau of China. Results show that: 1) Rainfall is the fundamental driving force of soil erosion on hillslopes, but the correlations of rainfall-runoff and rainfall-sediment in different rainstorms are often scattered due to infiltration-excess runoff and soil conservation measures. 2) Relationships between runoff and sediment for each rainstorm event can be regressed by linear, power, logarithmic and exponential functions. Cluster Analysis is helpful in classifying runoff-erosion events and formulating soil conservation strategies for rainstorm erosion. 3) Response characteristics of sediment yield are different in different levels of pulsed runoff-erosion events. Affected by rainfall intensity and duration, large changes may occur in the interactions between flow and sediment for different flood events. Results provide new insights into runoff-erosion processes and will assist soil conservation planning in the loess hilly region.

  7. Identifying the Tillage Effects on Phosphorus Export from Phaeozems-Dominated Agricultural Watershed: a Plot-Scale Rainfall-Runoff Study in Northeast China

    NASA Astrophysics Data System (ADS)

    Zhou, Yuyan; Xu, Y. Jun; Xiao, Weihua; Wang, Jianhua; Hao, Cailian; Zhou, Pu; Shi, Min

    2017-12-01

    Evaluating tillage effects on soil phosphorus (P) loss at the plot-scale has significant implication for developing best management practices (BMPs) to protect water quality and soil productivity management in agricultural watersheds. This paper aims to quantify P loss from tilled soils under different rainfall patterns in a Phaeozems-dominated agricultural watershed. Eleven rainfall events were monitored at three experimental sites growing corns with conventional till, conservational till, and no-till during a growing season from July to August in 2013. Mean event mean concentration of dissolved phosphorus was 0.130, 0.213 and 0.614 mg L-1 and mean particulate phosphorus transfer rate was 103.502, 33.359 and 27.127 g ha-1 hr-1, respectively for three tillage practices. Results showed that less tillage practices could significantly reduce sediment runoff and PP loss, accompanied with a moderate reduction of runoff yield. While the proportion of PP has been cut down, the proportion of DP could account for the majority. Hydrological factors, including antecedent soil moisture and rainfall variables, could exert various effects on DP, PP and sediment losses under different tillage conditions. Further, the results of this study imply that the soil P loss management and water quality protection in black soil region of Northeast China should take consideration of diverse effects of tillage on phosphorus loss and the dynamics of P between different forms.

  8. [Comparison of nitrogen loss via surface runoff from two agricultural catchments in semi-arid North China].

    PubMed

    Lu, Hai-Ming; Yin, Cheng-Qing; Wang, Xia-Hui; Zou, Ying

    2008-10-01

    Nitrogen loss characteristics via surface runoff from two typical agricultural catchments into Yuqiao Reservoir--the important drinking water source area for Tianjin city in semi-arid North China were investigated through two-year in-situ monitoring and indoor chemical analysis. The results showed that annual nitrogen export mainly concentrated in the rainy period between June to September. About 41% of the annual water output and 52% of the annual total nitrogen output took place in two rainfall events with rainfall> 60 mm in Taohuasi catchment (T catchment), while the distribution of water and nitrogen export among various rainfalls in Caogezhuang catchment (C catchment) was smooth. The rainfall thresholds for the appearance of water and nitrogen export from the outlet of T catchment and C catchment were 20 mm and 10 mm. The mean annual runoff coefficients of C and T catchments were 0.013 2 and 0.001 6, respectively. The mean annual total nitrogen exports from C catchment and T catchment were 1.048 kg x (hm2 x a)(-1) and 0.158 kg x (hm2 x a)(-1) respectively. The difference of micro-topography, landscape pattern and hydrological pathway between two catchments could explain the nitrogen export gap. Micro-topographical features created by long-term anthropological disturbance decrease the runoff generation ability. The distance between nitrogen source area and the outlet in T catchment was around 1 500 m, while such distance in C catchment was just around 200 m. The short distance added the nitrogen export risk via surface runoff. Road-type hydrological pathway in C catchment could transfer nitrogen into the receiving water via surface runoff directly, while nitrogen could be detained within the pathway by many sink structures such as small stones, vegetated buffer strip and dry ponds in T catchment.

  9. Phosphorus runoff from agricultural land and direct fertilizer effects: a review.

    PubMed

    Hart, Murray R; Quin, Bert F; Nguyen, M Long

    2004-01-01

    Phosphorus (P) is one of the most important mineral nutrients in agricultural systems, and along with nitrogen (N), is generally the most limiting nutrient for plant production. Farming systems have intensified greatly over time, and in recent years it has become apparent that the concomitant increase in losses of N and P from agricultural land is having a serious detrimental effect on water quality and the environment. The last two decades have seen a marked increase in research into the issues surrounding diffuse losses of P to surface and ground water. This paper reviews this research, examining the issue of P forms in runoff, and highlighting the exceptions to some generally held assumptions about land use and P transport. In particular the review focuses on P losses associated with recent P fertilizer application, as opposed to organic manures, both on the amounts and the forms of P in runoff water. The effects of the physicochemical characteristics of different forms of P fertilizer are explored, particularly in relation to water solubility. Various means of mitigating the risk of loss of P are discussed. It is argued that the influence of recent fertilizer applications is an under-researched area, yet may offer the most readily applicable opportunity to mitigate P losses by land users. This review highlights and discusses some options that have recently become available that may make a significant contribution to the task of sustainable management of nutrient losses from agriculture.

  10. Nutrient losses from manure and fertilizer applications as impacted by time to first runoff event.

    PubMed

    Smith, D R; Owens, P R; Leytem, A B; Warnemuende, E A

    2007-05-01

    Nutrient losses to surface waters following fertilization contribute to eutrophication. This study was conducted to compare the impacts of fertilization with inorganic fertilizer, swine (Sus scrofa domesticus) manure or poultry (Gallus domesticus) litter on runoff water quality, and how the duration between application and the first runoff event affects resulting water quality. Fertilizers were applied at 35 kg P ha-1, and the duration between application and the first runoff event varied between 1 and 29 days. Swine manure was the greatest risk to water quality 1 day after fertilization due to elevated phosphorus (8.4 mg P L-1) and ammonium (10.3 mg NH4-N L-1) concentrations; however, this risk decreased rapidly. Phosphorus concentrations were 2.6 mg L-1 29 days after fertilization with inorganic fertilizer. This research demonstrates that manures might be more environmentally sustainable than inorganic fertilizers, provided runoff events do not occur soon after application.

  11. Agricultural production and nutrient runoff in the Corn Belt: Assessing dynamic environmental performance

    EPA Science Inventory

    Agricultural production in the Corn Belt region of the Upper Mississippi River Basin (UMRB) remains a leading source of nitrogen runoff that contributes to the annual hypoxic 'Dead Zone' in the Gulf of Mexico. The rise of corn production, land conversion, and fertilizer use in re...

  12. Hydrology of a zero-order Southern Piedmont watershed through 45 years of changing agricultural land use. Part 1. Monthly and seasonal rainfall-runoff relationships

    NASA Astrophysics Data System (ADS)

    Endale, Dinku M.; Fisher, Dwight S.; Steiner, Jean L.

    2006-01-01

    Few studies have reported runoff from small agricultural watersheds over sufficiently long period so that the effect of different cover types on runoff can be examined. We analyzed 45-yrs of monthly and annual rainfall-runoff characteristics of a small (7.8 ha) zero-order typical Southern Piedmont watershed in southeastern United States. Agricultural land use varied as follows: 1. Row cropping (5-yrs); 2. Kudzu ( Pueraria lobata; 5-yrs); 3. Grazed kudzu and rescuegrass ( Bromus catharticus; 7-yrs); and 4. Grazed bermudagrass and winter annuals ( Cynodon dactylon; 28-yrs). Land use and rainfall variability influenced runoff characteristics. Row cropping produced the largest runoff amount, percentage of the rainfall partitioned into runoff, and peak flow rates. Kudzu reduced spring runoff and almost eliminated summer runoff, as did a mixture of kudzu and rescuegrass (KR) compared to row cropping. Peak flow rates were also reduced during the kudzu and KR. Peak flow rates increased under bermudagrass but were lower than during row cropping. A simple process-based 'tanh' model modified to take the previous month's rainfall into account produced monthly rainfall and runoff correlations with coefficient of determination ( R2) of 0.74. The model was tested on independent data collected during drought. Mean monthly runoff was 1.65 times the observed runoff. Sustained hydrologic monitoring is essential to understanding long-term rainfall-runoff relationships in agricultural watersheds.

  13. Effect of Season on the Persistence of Bacterial Pathogens in Runoff from Agricultural Plots

    EPA Science Inventory

    Runoff from agricultural fields undergoing manure applications may carry a variety of chemical and microbial contaminants that compromise water quality and increase the possibility of human exposure to pathogenic microorganisms when recreational waters are impacted. A series of r...

  14. Diagnostic evaluation of distributed physically based model at the REW scale (THREW) using rainfall-runoff event analysis

    NASA Astrophysics Data System (ADS)

    Tian, F.; Sivapalan, M.; Li, H.; Hu, H.

    2007-12-01

    The importance of diagnostic analysis of hydrological models is increasingly recognized by the scientific community (M. Sivapalan, et al., 2003; H. V. Gupta, et al., 2007). Model diagnosis refers to model structures and parameters being identified not only by statistical comparison of system state variables and outputs but also by process understanding in a specific watershed. Process understanding can be gained by the analysis of observational data and model results at the specific watershed as well as through regionalization. Although remote sensing technology can provide valuable data about the inputs, state variables, and outputs of the hydrological system, observational rainfall-runoff data still constitute the most accurate, reliable, direct, and thus a basic component of hydrology related database. One critical question in model diagnostic analysis is, therefore, what signature characteristic can we extract from rainfall and runoff data. To this date only a few studies have focused on this question, such as Merz et al. (2006) and Lana-Renault et al. (2007), still none of these studies related event analysis with model diagnosis in an explicit, rigorous, and systematic manner. Our work focuses on the identification of the dominant runoff generation mechanisms from event analysis of rainfall-runoff data, including correlation analysis and analysis of timing pattern. The correlation analysis involves the identification of the complex relationship among rainfall depth, intensity, runoff coefficient, and antecedent conditions, and the timing pattern analysis aims to identify the clustering pattern of runoff events in relation to the patterns of rainfall events. Our diagnostic analysis illustrates the changing pattern of runoff generation mechanisms in the DMIP2 test watersheds located in Oklahoma region, which is also well recognized by numerical simulations based on TsingHua Representative Elementary Watershed (THREW) model. The result suggests the usefulness of

  15. Identifying Hydrologic Processes in Agricultural Watersheds Using Precipitation-Runoff Models

    USGS Publications Warehouse

    Linard, Joshua I.; Wolock, David M.; Webb, Richard M.T.; Wieczorek, Michael

    2009-01-01

    Understanding the fate and transport of agricultural chemicals applied to agricultural fields will assist in designing the most effective strategies to prevent water-quality impairments. At a watershed scale, the processes controlling the fate and transport of agricultural chemicals are generally understood only conceptually. To examine the applicability of conceptual models to the processes actually occurring, two precipitation-runoff models - the Soil and Water Assessment Tool (SWAT) and the Water, Energy, and Biogeochemical Model (WEBMOD) - were applied in different agricultural settings of the contiguous United States. Each model, through different physical processes, simulated the transport of water to a stream from the surface, the unsaturated zone, and the saturated zone. Models were calibrated for watersheds in Maryland, Indiana, and Nebraska. The calibrated sets of input parameters for each model at each watershed are discussed, and the criteria used to validate the models are explained. The SWAT and WEBMOD model results at each watershed conformed to each other and to the processes identified in each watershed's conceptual hydrology. In Maryland the conceptual understanding of the hydrology indicated groundwater flow was the largest annual source of streamflow; the simulation results for the validation period confirm this. The dominant source of water to the Indiana watershed was thought to be tile drains. Although tile drains were not explicitly simulated in the SWAT model, a large component of streamflow was received from lateral flow, which could be attributed to tile drains. Being able to explicitly account for tile drains, WEBMOD indicated water from tile drains constituted most of the annual streamflow in the Indiana watershed. The Nebraska models indicated annual streamflow was composed primarily of perennial groundwater flow and infiltration-excess runoff, which conformed to the conceptual hydrology developed for that watershed. The hydrologic

  16. Water-quality data of stormwater runoff from Davenport, Iowa, 1992 and 1994

    USGS Publications Warehouse

    Schaap, B.D.; Einhellig, R.F.

    1996-01-01

    During 1992 and 1994, stormwater runoff in Davenport, Iowa, was sampled from the following land use types: agricultural and vacant, residential, commercial, parks and wooded areas, and industrial. Grab samples collected within the first hour of the runoff event were analyzed for many constituents including volatile organic compounds. Flow-weighted composite samples, composed from discrete samples collected at 15-minute intervals during the first three hours of the event or until discharge returned to pre-event levels, also were analyzed for many constituents including major ions, nitrogen, phosphorus, metals, total organic carbon, acid/base-neutral organics, organochlorine pesticides, and polycyclic aromatic hydrocarbons.

  17. The influences of changing weather patterns and land management on runoff biogeochemistry in a snowmelt dominated agricultural region

    NASA Astrophysics Data System (ADS)

    Wilson, H. F.; Elliott, J. A.; Glenn, A. J.

    2017-12-01

    Runoff generation and the associated export of nitrogen, phosphorus, and organic carbon on the Northern Great Plains have historically been dominated by snowmelt runoff. In this region the transport of elements primarily occurs in dissolved rather than particulate forms, so cropland management practices designed to reduce particulate losses tend to be ineffective in reducing nutrient runoff. Over the last decade a higher frequency of high volume and intensity rainfall has been observed, leading to rainfall runoff and downstream flooding. To evaluate interactions between tillage, crop residue management, fertilization practices, weather, and runoff biogeochemistry a network of 18 single field scale watersheds (2-6 ha.) has been established in Manitoba, Canada over a range of fertilization (no input to high input) and tillage (zero tillage to frequent tillage). Soils in this network are typical of cropland in the region with clay or clay loam textures, but soil phosphorus differs greatly depending on input practices (3 to 25 mg kg-1 sodium bicarbonate extractable P). Monitoring of runoff chemistry and hydrology at these sites was initiated in 2013 and over the course of 5 years high volume snowmelt runoff from deep snowpack (125mm snow water equivalent), low volume snowmelt from shallow snowpack (25mm snow water equivalent) and extreme rainfall runoff events in spring have all been observed. Event based analyses of the drivers of runoff chemistry indicate that spring fertilization practices (depth, amount, and timing) influence concentrations of N and P in runoff during large rainfall runoff events, but for snowmelt runoff the near surface soil chemistry, tillage, and crop residue management are of greater importance. Management recommendations that might be suggested to reduce nutrient export and downstream eutrophication in the region differ for snowmelt and rainfall, but are not mutually exclusive.

  18. Simulated rain events on an urban roadway to understand the dynamics of mercury mobilization in stormwater runoff.

    PubMed

    Eckley, Chris S; Branfireun, Brian

    2009-08-01

    This research focuses on mercury (Hg) mobilization in stormwater runoff from an urban roadway. The objectives were to determine: how the transport of surface-derived Hg changes during an event hydrograph; the influence of antecedent dry days on the runoff Hg load; the relationship between total suspended sediments (TSS) and Hg transport, and; the fate of new Hg input in rain and its relative importance to the runoff Hg load. Simulated rain events were used to control variables to elucidate transport processes and a Hg stable isotope was used to trace the fate of Hg inputs in rain. The results showed that Hg concentrations were highest at the beginning of the hydrograph and were predominantly particulate bound (HgP). On average, almost 50% of the total Hg load was transported during the first minutes of runoff, underscoring the importance of the initial runoff on load calculations. Hg accumulated on the road surface during dry periods resulting in the Hg runoff load increasing with antecedent dry days. The Hg concentrations in runoff were significantly correlated with TSS concentrations (mean r(2)=0.94+/-0.09). The results from the isotope experiments showed that the new Hg inputs quickly become associated with the surface particles and that the majority of Hg in runoff is derived from non-event surface-derived sources.

  19. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.

    PubMed

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L

    2010-01-01

    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  20. Simulation of Runoff Concentration on Arable Fields and the Impact of Adapted Tillage Practises

    NASA Astrophysics Data System (ADS)

    Winter, F.; Disse, M.

    2012-04-01

    Conservational tillage can reduce runoff on arable fields. Due to crop residues remaining on the fields a seasonal constant ground cover is achieved. This additional soil cover not only decreases the drying of the topsoil but also reduces the mechanical impact of raindrops and the possibly resulting soil crust. Further implications of the mulch layer can be observed during heavy precipitation events and occurring surface runoff. The natural roughness of the ground surface is further increased and thus the flow velocity is decreased, resulting in an enhanced ability of runoff to infiltrate into the soil (so called Runon-Infiltration). The hydrological model system WaSiM-ETH hitherto simulates runoff concentration by a flow time grid in the catchment, which is derived from topographical features of the catchment during the preprocessing analysis. The retention of both surface runoff and interflow is modelled by a single reservoir in every discrete flow time zone until the outlet of a subcatchment is reached. For a more detailed analysis of the flow paths in catchments of the lower mesoscale (< 1 km2) the model was extended by a kinematic wave approach for the surface runoff concentration. This allows the simulation of small-scale variation in runoff generation and its temporal distribution in detail. Therefore the assessment of adapted tillage systems can be derived. On singular fields of the Scheyern research farm north-west of Munich it can be shown how different crops and tillage practises can influence runoff generation and concentration during single heavy precipitation events. From the simulation of individual events in agricultural areas of the lower mesoscale hydrologically susceptible areas can be identified and the positive impact of an adapted agricultural management on runoff generation and concentration can be quantifed.

  1. Classical and generalized Horton laws for peak flows in rainfall-runoff events.

    PubMed

    Gupta, Vijay K; Ayalew, Tibebu B; Mantilla, Ricardo; Krajewski, Witold F

    2015-07-01

    The discovery of the Horton laws for hydrologic variables has greatly lagged behind geomorphology, which began with Robert Horton in 1945. We define the classical and the generalized Horton laws for peak flows in rainfall-runoff events, which link self-similarity in network geomorphology with river basin hydrology. Both the Horton laws are tested in the Iowa River basin in eastern Iowa that drains an area of approximately 32 400 km(2) before it joins the Mississippi River. The US Geological Survey continuously monitors the basin through 34 stream gauging stations. We select 51 rainfall-runoff events for carrying out the tests. Our findings support the existence of the classical and the generalized Horton laws for peak flows, which may be considered as a new hydrologic discovery. Three different methods are illustrated for estimating the Horton peak-flow ratio due to small sample size issues in peak flow data. We illustrate an application of the Horton laws for diagnosing parameterizations in a physical rainfall-runoff model. The ideas and developments presented here offer exciting new directions for hydrologic research and education.

  2. Climate change impacts on runoff, sediment, and nutrient loads in an agricultural watershed in the Lower Mississippi River Basin

    USDA-ARS?s Scientific Manuscript database

    Projected climate change can impact various aspects of agricultural systems, including the nutrient and sediment loads exported from agricultural fields. This study evaluated the potential changes in runoff, sediment, nitrogen, and phosphorus loads using projected climate estimates from 2041 – 2070 ...

  3. Nitrogen and phosphorus removed from a subsurface flow multi-stage filtration system purifying agricultural runoff.

    PubMed

    Zhao, Yaqi; Huang, Lei; Chen, Yucheng

    2018-07-01

    Agricultural nonpoint source pollution has been increasingly serious in China since the 1990s. The main causes were excessive inputs of nitrogen fertilizer and pesticides. A multi-stage filtration system was built to test the purification efficiencies and removal characteristics of nitrogen and phosphorus when treating agricultural runoff. Simulated runoff pollution was prepared by using river water as source water based on the monitoring of local agricultural runoff. Experimental study had been performed from September to November 2013, adopting 12 h for flooding and 12 h for drying. The results showed that the system was made adaptive to variation of inflow quality and quantity, and had good removal for dissolved total nitrogen, total nitrogen, dissolved total phosphorus (DTP), and total phosphorus, and the average removal rate was 27%, 36%, 32%, and 48%, respectively. Except nitrate ([Formula: see text]), other forms of nitrogen and phosphorus all decreased with the increase of stages. Nitrogen was removed mainly in particle form the first stage, and mostly removed in dissolved form the second and third stage. Phosphorus was removed mainly in particulate during the first two stages, but the removal of particulate phosphorus and DTP were almost the same in the last stage. An approximate logarithmic relationship between removal loading and influent loading to nitrogen and phosphorus was noted in the experimental system, and the correlation coefficient was 0.78-0.94. [Formula: see text]: ammonium; [Formula: see text]: nitrite; [Formula: see text]: nitrate; DTN: dissolved total nitrogen; TN: total nitrogen; DTP: dissolved total phosphorus; TP: total phosphorus; PN: particulate nitrogen; PP: particulate phosphorus.

  4. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.

    PubMed

    Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping

    2018-03-01

    The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide

  5. An integrated vegetated ditch system reduces chlorpyrifos loading in agricultural runoff.

    PubMed

    Phillips, Bryn M; Anderson, Brian S; Cahn, Michael; Rego, Jessa L; Voorhees, Jennifer P; Siegler, Katie; Zhang, Xuyang; Budd, Robert; Goh, Kean; Tjeerdema, Ron S

    2017-03-01

    Agricultural runoff containing toxic concentrations of the organophosphate pesticide chlorpyrifos has led to impaired water body listings and total maximum daily load restrictions in California's central coast watersheds. Chlorpyrifos use is now tightly regulated by the Central Coast Regional Water Quality Control Board. This study evaluated treatments designed to reduce chlorpyrifos in agricultural runoff. Initial trials evaluated the efficacy of 3 different drainage ditch installations individually: compost filters, granulated activated carbon (GAC) filters, and native grasses in a vegetated ditch. Treatments were compared to bare ditch controls, and experiments were conducted with simulated runoff spiked with chlorpyrifos at a 1.9 L/s flow rate. Chlorpyrifos concentrations and toxicity to Ceriodaphnia dubia were measured at the input and output of the system. Input concentrations of chlorpyrifos ranged from 858 ng/L to 2840 ng/L. Carbon filters and vegetation provided the greatest load reduction of chlorpyrifos (99% and 90%, respectively). Toxicity was completely removed in only one of the carbon filter trials. A second set of trials evaluated an integrated approach combining all 3 treatments. Three trials were conducted each at 3.2 L/s and 6.3 L/s flow rates at input concentrations ranging from 282 ng/L to 973 ng/L. Chlorpyrifos loadings were reduced by an average of 98% at the low flow rate and 94% at the high flow rate. Final chlorpyrifos concentrations ranged from nondetect (<50 ng/L) to 82 ng/L. Toxicity to C. dubia was eliminated in 3 of 6 integrated trials. Modeling of the ditch and its components informed design alterations that are intended to eventually remove up to 100% of pesticides and sediment. Future work includes investigating the adsorption capacity of GAC, costs associated with GAC disposal, and real-world field trials to further reduce model uncertainties and confirm design optimization. Trials with more water-soluble pesticides

  6. [Interception Effect of Ecological Ditch on Nitrogen Transport in Agricultural Runoff in Subtropical China].

    PubMed

    Wang, Di; Li, Hong-fang; Liu, Feng; Wang, Yi; Zhong, Yuan-chun; He, Yang; Xiao, Run-fin; Wu, Jin-shui

    2016-05-15

    Interception effects of an ecological ditch, used to control agricultural non-point source pollution in subtropical China, on nitrogen transport in surface runoff were studied by monthly measuring the runoff volume and concentrations of ammonium nitrogen (NH₄⁺-N), nitrate nitrogen (NO₃⁻-N) and total nitrogen (TN) at the ditch inlet and outlet from 2013 to 2014. In addition, differences of NH₄⁺-N, NO₃⁻-N and TN removal were compared between 2013 and 2014. The results showed that the study ecological ditch worked effectively in N removal with average NH₄⁺-N, NO₃⁻-N and TN removal rates of 77.8%, 58.3%, and 48.7%; and their interception rates were 38.4, 59.6, and 171.1 kg · a⁻¹, respectively. The average proportion of NH₄⁺-N and NO₃⁻-N in TN was 47.5% at inlet, and 33.6% at outlet, which was significantly lower than that at inlet (P < 0.01). All hydrophytes in the ecological ditch were replaced by Myriophyllum aquaticum in 2014, which led to the increased average NO₃⁻-N and TN removal rates of 30.5% and 18.2%, respectively, Compared to in 2013. The vegetation of Myriophyllum aquaticum was beneficial to the improvement of N interception in ecological ditch. These findings clearly demonstrated that ecological ditch can substantially reduce N loss from surface runoff and be used as an important technique to prevent agricultural non-point N pollution.

  7. Agricultural production and nutrient runoff in the Corn Belt ...

    EPA Pesticide Factsheets

    Agricultural production in the Corn Belt region of the Upper Mississippi River Basin (UMRB) remains a leading source of nitrogen runoff that contributes to the annual hypoxic 'Dead Zone' in the Gulf of Mexico. The rise of corn production, land conversion, and fertilizer use in response to ethanol policy incentives in recent years is well documented and may worsen this effect. We develop a spatially distributed dynamic environmental performance index (EPI), accounting for both desirable agricultural outputs and undesirable nonpoint source emissions from farm production, to examine the corresponding changes in environmental performance within the UMRB between 2002 and 2007, which is characterized by increasing policy incentives for ethanol production. County-level production data from the USDA agricultural census are aggregated to hydrologic unit code (HUC8) boundaries using a geographic information system (GIS), and a previously developed statistical model, which includes net anthropogenic nitrogen inputs (NANI) as well as precipitation and land use characteristics as inputs, is used to estimate annual nitrogen loadings delivered to streams from HUC8 watersheds. The EPI allows us to decompose performance of each HUC8 region over time into changes in productive efficiency and emissions efficiency. To our knowledge, this is the first study to examine the corresponding changes in environmental performance for producers in this region at the watershed scale. The resu

  8. Estrogen Transport in Surface Runoff from Agricultural Fields Treated with Two Application Methods of Dairy Manure.

    PubMed

    Mina, Odette; Gall, Heather E; Saporito, Louis S; Kleinman, Peter J A

    2016-11-01

    This study compares two methods of dairy manure application-surface broadcast and shallow disk injection-on the fate and transport of natural estrogens in surface runoff from 12 field plots in central Pennsylvania. Ten natural surface runoff events were sampled over a 9-mo period after fall manure application. Results show that the range of estrogen concentrations observed in surface runoff from the broadcast plots was several orders of magnitude higher (>5000 ng L) than the concentrations in runoff from the shallow disk injection plots (<10 ng L). Additionally, the transport dynamics differed, with the majority of the estrogen loads from the surface broadcast plots occurring during the first rainfall event after application, whereas the majority of the loads from the shallow disk injection plots occurred more than 6 mo later during a hail storm event. Total estrogen loads were, on average, two orders of magnitude lower for shallow disk injection compared with surface broadcast. Independent of the method of manure application, 17α-estradiol and estrone were preserved in the field for as long as 9 mo after application. Overall, injection of manure shows promise in reducing the potential for off-site losses of hormones from manure-amended soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Designing hybrid grass genomes to control runoff generation

    NASA Astrophysics Data System (ADS)

    MacLeod, C.; Binley, A.; Humphreys, M.; King, I. P.; O'Donovan, S.; Papadopoulos, A.; Turner, L. B.; Watts, C.; Whalley, W. R.; Haygarth, P.

    2010-12-01

    Sustainable management of water in landscapes requires balancing demands of agricultural production whilst moderating downstream effects like flooding. Pasture comprises 69% of global agricultural areas and is essential for producing food and fibre alongside environmental goods and services. Thus there is a need to breed forage grasses that deliver multiple benefits through increased levels of productivity whilst moderating fluxes of water. Here we show that a novel grass hybrid that combines the entire genomes of perennial ryegrass (Lolium perenne - the grass of choice for Europe’s forage agriculture) and meadow fescue (Festuca pratensis) has a significant role in flood prevention. Field plot experiments established differences in runoff generation with the hybrid cultivar reducing runoff by 50% compared to perennial ryegrass cultivar, and by 35% compared to a meadow fescue cultivar (34 events over two years, replicated randomized-block design, statistically significant differences). This important research outcome was the result of a project that combined plant genetics, soil physics and plot scale hydrology to identify novel grass genotypes that can reduce runoff from grassland systems. Through a coordinated series of experiments examining effects from the gene to plot scale, we have identified that the rapid growth and then turnover of roots in the L. perenne x F. pratensis hybrid is likely to be a key mechanism in reducing runoff generation. More broadly this is an exciting first step to realizing the potential to design grass genomes to achieve both food production, and to deliver flood control, a key ecosystem service.

  10. Enrichment behavior and transport mechanism of soil-bound PAHs during rainfall-runoff events.

    PubMed

    Zheng, Yi; Luo, Xiaolin; Zhang, Wei; Wu, Bin; Han, Feng; Lin, Zhongrong; Wang, Xuejun

    2012-12-01

    Polycyclic Aromatic Hydrocarbons (PAHs) transported by surface runoff result in nonpoint source pollution and jeopardize aquatic ecosystems. The transport mechanism of PAHs during rainfall-runoff events has been rarely studied regarding pervious areas. An experimental system was setup to simulate the runoff pollution process on PAHs-contaminated soil. The enrichment behavior of soil-bound PAHs was investigated. The results show that soil organic matters (SOM), rather than clay particles, seem to be the main carrier of PAHs. The enrichment is highly conditioned on runoff and erosion processes, and its magnitude varies among PAH compounds. It is not feasible to build a simple and universal relationship between enrichment ratio and sediment discharge following the traditional enrichment theory. To estimate the flux of PAHs from pervious areas, soil erosion process has to be clearly understood, and both organic carbon content and composition of SOM should be factored into the calculation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Influence of local riparian cover and watershed runoff potential on invertebrate communities in agricultural streams in the Minnesota River Basin

    USGS Publications Warehouse

    ZumBerge, Jeremy Ryan; Perry, James A.; Lee, Kathy E.

    2003-01-01

    While it is difficult to determine the relative influence of watershed runoff potential and local riparian cover, invertebrate communities may be more strongly influenced by local wooded riparian cover than by watershed runoff potential. Invertebrate community measures indicate greater degradation at the open riparian cover, high runoff potential sites and less degradation at the wooded riparian cover, low runoff potential sites. In addition, differences between streams with wooded riparian cover and sites with open riparian cover were greater in watersheds with high runoff potential. The variance explained by riparian cover and runoff potential is relatively independent of other land-use effects. Wooded riparian cover influences invertebrate community composition by its relation to the other physical environmental variables. This study indicates that wooded riparian cover may be effective in maintaining stream biotic integrity in watersheds dominated by agricultural land use.

  12. Use of Fuzzy rainfall-runoff predictions for claypan watersheds with conservation buffers in Northeast Missouri

    NASA Astrophysics Data System (ADS)

    Anomaa Senaviratne, G. M. M. M.; Udawatta, Ranjith P.; Anderson, Stephen H.; Baffaut, Claire; Thompson, Allen

    2014-09-01

    Fuzzy rainfall-runoff models are often used to forecast flood or water supply in large catchments and applications at small/field scale agricultural watersheds are limited. The study objectives were to develop, calibrate, and validate a fuzzy rainfall-runoff model using long-term data of three adjacent field scale row crop watersheds (1.65-4.44 ha) with intermittent discharge in the claypan soils of Northeast Missouri. The watersheds were monitored for a six-year calibration period starting 1991 (pre-buffer period). Thereafter, two of them were treated with upland contour grass and agroforestry (tree + grass) buffers (4.5 m wide, 36.5 m apart) to study water quality benefits. The fuzzy system was based on Mamdani method using MATLAB 7.10.0. The model predicted event-based runoff with model performance coefficients of r2 and Nash-Sutcliffe Coefficient (NSC) values greater than 0.65 for calibration and validation. The pre-buffer fuzzy system predicted event-based runoff for 30-50 times larger corn/soybean watersheds with r2 values of 0.82 and 0.68 and NSC values of 0.77 and 0.53, respectively. The runoff predicted by the fuzzy system closely agreed with values predicted by physically-based Agricultural Policy Environmental eXtender model (APEX) for the pre-buffer watersheds. The fuzzy rainfall-runoff model has the potential for runoff predictions at field-scale watersheds with minimum input. It also could up-scale the predictions for large-scale watersheds to evaluate the benefits of conservation practices.

  13. Runoff production in a small agricultural catchment in Lao PDR : influence of slope, land-use and observation scale.

    NASA Astrophysics Data System (ADS)

    Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.

    2009-04-01

    We study the surface and sub-surface hydrology of a small agricultural catchment (60ha) located in the Luang Prabang province of Lao PDR. This catchment is representative of the rural mountainous south east Asia. It exhibits steep slopes (up to 100% and more) under a monsoon climate. After years of traditional slash and burn cultures, it is now under high land pressures due to population resettling and environment preservation policies. This evolution leads to rapid land-use changes such as shifting cultivation reduction or growing of teak forest instead of classical crops. This catchment is a benchmark site of the Managing Soil Erosion Consortium since 1998. The international consortium aims to understand the effects of agricultural changes on the catchment hydrology and soil erosion in south east Asia. The Huay Pano catchment is subdivided into small sub-catchments that are gauged and monitored. Differ- ent agricultural practices where tested along the years. At a smaller scale, plot of 1m2 are instrumented to follow runoff and detachment of soil under natural rainfall along the monsoon season. Our modeling work aims to develop a distributed hydrological model integrating experimental data at the different scales. One of the objective is to understand the impact of land-use, soil properties (slope, crust, etc) and rainfall (dry and wet seasons) on surface and subsurface flows. We present here modeling results of the runoff plot experiments (1m2 scale) performed from 2002 to 2007. The plots distribution among the catchment and over the years gives a good representativity of the different runoff responses. The role of crust, slope and land-use on runoff is examined. Finally we discuss how this plot scale will be integrated in a sub-catchment model, with a particular attention on the observed paradox: how to explain that runoff coefficients at the catchment scale are much slower than at the plot scale ?

  14. Efficacy of Bioremediation of Agricultural Runoff Using Bacterial Communities in Woodchip Bioreactors.

    NASA Astrophysics Data System (ADS)

    Mortensen, Z. H.; Leandro, M.; Silveus, J. M.

    2016-12-01

    California's agricultural sector is fundamental in the State's economic growth and is responsible for supplying a large portion of the country's produce. In order to meet the market's demand for crop production the region's agrarian landscape requires an abundance of nutrient rich irrigation. The resultant agricultural effluent is a source of increased nutrient content in California's watershed and groundwater systems, promoting eutrophication and contributing to negative impacts on local ecosystems and human health. Previous studies have examined the denitrification potential of woodchip bioreactors. However, research has been deficient regarding specific variables that may affect the remediation process. To evaluate the efficacy of woodchip bioreactors in remediating waters containing high nitrate concentrations, denitrification rates were examined and parameters such as temperature, laminar flow, and hydraulic residence times were measured to identify potential methods for increasing denitrification efficiency. By measuring the rate of denitrification in a controlled environment where potentially confounding factors can be manipulated, physical components affecting the efficiency of woodchip bioreactors were examined to assess effects. Our research suggests the implementation of woodchip bioreactors to treat agricultural runoff would significantly reduce the concentration of nitrate in agricultural effluent and contribute to the mitigation of negative impacts associated with agricultural irrigation. Future research should focus on the ability of woodchip bioreactors to successfully remediate other agricultural pollutants, such as phosphates and pesticides, to optimize the efficiency of the bioremediation process.

  15. Water quality of storm runoff and comparison of procedures for estimating storm-runoff loads, volume, event-mean concentrations, and the mean load for a storm for selected properties and constituents for Colorado Springs, southeastern Colorado, 1992

    USGS Publications Warehouse

    Von Guerard, Paul; Weiss, W.B.

    1995-01-01

    The U.S. Environmental Protection Agency requires that municipalities that have a population of 100,000 or greater obtain National Pollutant Discharge Elimination System permits to characterize the quality of their storm runoff. In 1992, the U.S. Geological Survey, in cooperation with the Colorado Springs City Engineering Division, began a study to characterize the water quality of storm runoff and to evaluate procedures for the estimation of storm-runoff loads, volume and event-mean concentrations for selected properties and constituents. Precipitation, streamflow, and water-quality data were collected during 1992 at five sites in Colorado Springs. Thirty-five samples were collected, seven at each of the five sites. At each site, three samples were collected for permitting purposes; two of the samples were collected during rainfall runoff, and one sample was collected during snowmelt runoff. Four additional samples were collected at each site to obtain a large enough sample size to estimate storm-runoff loads, volume, and event-mean concentrations for selected properties and constituents using linear-regression procedures developed using data from the Nationwide Urban Runoff Program (NURP). Storm-water samples were analyzed for as many as 186 properties and constituents. The constituents measured include total-recoverable metals, vola-tile-organic compounds, acid-base/neutral organic compounds, and pesticides. Storm runoff sampled had large concentrations of chemical oxygen demand and 5-day biochemical oxygen demand. Chemical oxygen demand ranged from 100 to 830 milligrams per liter, and 5.-day biochemical oxygen demand ranged from 14 to 260 milligrams per liter. Total-organic carbon concentrations ranged from 18 to 240 milligrams per liter. The total-recoverable metals lead and zinc had the largest concentrations of the total-recoverable metals analyzed. Concentrations of lead ranged from 23 to 350 micrograms per liter, and concentrations of zinc ranged from 110

  16. Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain)

    USDA-ARS?s Scientific Manuscript database

    AnnAGNPS (Annualized Agricultural Non-Point Source Pollution Model) is a system of computer models developed to predict non-point source pollutant loadings within agricultural watersheds. It contains a daily time step distributed parameter continuous simulation surface runoff model designed to assis...

  17. An at-grade stabilization structure impact on runoff and suspended sediment

    USGS Publications Warehouse

    Minks, Kyle R.; Lowery, Birl; Madison, Fred W.; Ruark, Matthew; Frame, Dennis R.; Stuntebeck, Todd D.; Komiskey, Matthew J.

    2012-01-01

    In recent years, agricultural runoff has received more attention as a major contributor to surface water pollution. This is especially true for the unglaciated area of Wisconsin, given this area's steep topography, which makes it highly susceptible to runoff and soil loss. We evaluated the ability of an at-grade stabilization structure (AGSS), designed as a conservation practice to reduce the amount of overland runoff and suspended sediment transported to the surface waters of an agricultural watershed. Eight years of storm and baseflow data collected by the US Geological Survey–Wisconsin Water Science Center on a farm in west central Wisconsin were analyzed for changes in precipitation, storm runoff volume, and suspended sediment concentration before and after installation of an AGSS. The agricultural research site was designed as a paired watershed study in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects model analyses were conducted to determine if any statistically significant changes occurred in the water quality parameters before and after the AGSS was installed. Results indicated no significant changes (p = 0.51) in average event precipitation and runoff volumes before and after installation of the AGSS in either the treatment (NW) or control (SW) watersheds. However, the AGSS did significantly reduce the average suspended sediment concentration in the event runoff water (p = 0.02) in the NW from 972 to 263 mg L–1. In addition, particle size analyses, using light diffraction techniques, were conducted on soil samples taken from within the AGSS and adjacent valley and ridge top to determine if suspended sediments were being retained within the structure. Statistical analysis revealed a significantly (p < 0.001) larger proportion of clay inside the AGSS (37%) than outside (30%). These results indicate that the AGSS was successful in reducing the amount of suspended

  18. Using runoff slope-break to determine dominate factors of runoff decline in Hutuo River Basin, North China.

    PubMed

    Tian, Fei; Yang, Yonghui; Han, Shumin

    2009-01-01

    Water resources in North China have declined sharply in recent years. Low runoff (especially in the mountain areas) has been identified as the main factor. Hutuo River Basin (HRB), a typical up-stream basin in North China with two subcatchments (Ye and Hutuo River Catchments), was investigated in this study. Mann-Kendall test was used to determine the general trend of precipitation and runoff for 1960-1999. Then Sequential Mann-Kendall test was used to establish runoff slope-break from which the beginning point of sharp decline in runoff was determined. Finally, regression analysis was done to illustrate runoff decline via comparison of precipitation-runoff correlation for the period prior to and after sharp runoff decline. This was further verified by analysis of rainy season peak runoff flows. The results are as follows: (1) annual runoff decline in the basin is significant while that of precipitation is insignificant at alpha=0.05 confidence level; (2) sharp decline in runoff in Ye River Catchment (YRC) occurred in 1968 while that in Hutuo River Catchment (HRC) occurred in 1978; (3) based on the regression analysis, human activity has the highest impact on runoff decline in the basin. As runoff slope-breaks in both Catchments strongly coincided with increase in agricultural activity, agricultural water use is considered the dominate factor of runoff decline in the study area.

  19. Effectiveness of Perennial Vegetation Strips in Reducing Runoff in Annual Crop Production Systems

    NASA Astrophysics Data System (ADS)

    Hernandez-Santana, V.; Zhou, X.; Helmers, M.; Asbjornsen, H.; Kolka, R. K.

    2010-12-01

    In many parts of the world, unprecedented high crop yields have been attained by conversion of native perennial grasslands to intensively managed annual cropping systems. However, these achievements have often been accompanied by significant environmental impacts with far-reaching social and economic costs. Perhaps nowhere is this situation revealed more acutely than in the Midwestern US, where landscape-scale transformation of native tallgrass prairie to rowcrop corn and soybeans has dramatically altered the hydrologic cycle, increased nutrient and sediment loss, and diminished ecosystem services. The objective of this study was to assess the potential for reducing negative impacts of rowcrop agriculture on water quality and flow by incorporating native prairie vegetation in strategic locations within conventional rowcrop agriculture. Specifically, we tested the hypothesis that small amounts of prairie vegetation strategically located in agricultural landscapes would lead to disproportionate benefits by reducing runoff and nutrient and sediment loss. The study was conducted at the Neal Smith National Wildlife Refuge (Iowa), and consisted of a fully balanced, replicated, incomplete block design whereby twelve small experimental catchments (0.43 - 3.19 ha) received four treatments consisting of varying proportions (0%, 10%, and 20%) of prairie vegetation located in different watershed positions (downslope “toe” vs. contour strips). Pre- treatment data were collected in 2005, treatments installed in 2006, and post-treatment responses monitored annually (April-October) thereafter. Volume and rate of surface runoff were measured with an H-Flume installed in each catchment, and automated ISCO samplers used to collect event-based runoff samples that were analyzed for sediment, nitrate (N), and phosphorus (P) concentration. A total of 102 rainfall events were registered during the study period (April-October, 2008 and 2009), accounting for a total rainfall amount of

  20. A protocol for conducting rainfall simulation to study soil runoff.

    PubMed

    Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B

    2014-04-03

    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.

  1. A Protocol for Conducting Rainfall Simulation to Study Soil Runoff

    PubMed Central

    Kibet, Leonard C.; Saporito, Louis S.; Allen, Arthur L.; May, Eric B.; Kleinman, Peter J. A.; Hashem, Fawzy M.; Bryant, Ray B.

    2014-01-01

    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff. PMID:24748061

  2. Assessing edge-of-field nutrient runoff from agricultural lands in the United States: How clean is clean enough?

    USDA-ARS?s Scientific Manuscript database

    Excess nutrients from numerous sources (e.g., agricultural and urban runoff, treatment plant discharge, streambank erosion) continue to adversely impact water resources in spite of improved treatment technologies and management practices. In fact, determination of cause(s) of accelerated nutrient e...

  3. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff

    PubMed Central

    Ranaivoson, Andry Z.; Feyereisen, Gary W.; Rosen, Carl J.; Moncrief, John F.

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both. PMID:27930684

  4. Comparison of Contaminant Transport in Agricultural Drainage Water and Urban Stormwater Runoff.

    PubMed

    Ghane, Ehsan; Ranaivoson, Andry Z; Feyereisen, Gary W; Rosen, Carl J; Moncrief, John F

    2016-01-01

    Transport of nitrogen and phosphorus from agricultural and urban landscapes to surface water bodies can cause adverse environmental impacts. The main objective of this long-term study was to quantify and compare contaminant transport in agricultural drainage water and urban stormwater runoff. We measured flow rate and contaminant concentration in stormwater runoff from Willmar, Minnesota, USA, and in drainage water from subsurface-drained fields with surface inlets, namely, Unfertilized and Fertilized Fields. Commercial fertilizer and turkey litter manure were applied to the Fertilized Field based on agronomic requirements. Results showed that the City Stormwater transported significantly higher loads per unit area of ammonium, total suspended solids (TSS), and total phosphorus (TP) than the Fertilized Field, but nitrate load was significantly lower. Nitrate load transport in drainage water from the Unfertilized Field was 58% of that from the Fertilized Field. Linear regression analysis indicated that a 1% increase in flow depth resulted in a 1.05% increase of TSS load from the City Stormwater, a 1.07% increase in nitrate load from the Fertilized Field, and a 1.11% increase in TP load from the Fertilized Field. This indicates an increase in concentration with a rise in flow depth, revealing that concentration variation was a significant factor influencing the dynamics of load transport. Further regression analysis showed the importance of targeting high flows to reduce contaminant transport. In conclusion, for watersheds similar to this one, management practices should be directed to load reduction of ammonium and TSS from urban areas, and nitrate from cropland while TP should be a target for both.

  5. Contrasting nutrient mitigation and denitrification potential of agricultural drainage environments with different emergent aquatic macrophytes.

    USDA-ARS?s Scientific Manuscript database

    Remediation of excess nitrogen (N) in agricultural runoff can be enhanced by establishing wetland vegetation but the role of denitrification in N removal is not well understood in drainage ditches. We quantified differences in N retention during experimental runoff events followed by stagnant period...

  6. Pesticide trapping efficiency of a modified backwater wetland using a simulated runoff event

    USDA-ARS?s Scientific Manuscript database

    This study examined the trapping efficiency of a modified backwater wetland amended with a mixture of three pesticides, atrazine, metolachlor, and fipronil, using a simulated runoff event. The 700 m long, 25 m wide wetland, located along the Coldwater River in Tunica County, Mississippi, was modifie...

  7. Evaluating the impacts on runoff of landscape-based Best Management Practices in a rain-fed agroecosystem of the US Midwest

    NASA Astrophysics Data System (ADS)

    Papanicolaou, T.; Elhakeem, M.; Wilson, C. G.; Dermisis, D. C.; Abaci, O.

    2010-12-01

    Conversion of the natural prairie-forested landscape in US Midwestern states to a corn-soybean crop rotation has altered the runoff condition and stream hydrology throughout the region by creating more dynamic surface water flow regimes and increasing the likelihood of severe floods. Flooding and the associated water quality issues in the region adversely affect crop yields, downstream ecosystem health, and water availability. In response to these concerns, Midwestern agricultural producers have adopted Best Management Practices (BMPs) to increase runoff retention and reduce sediment delivery. Common BMPs in the region are Grassed WaterWays (GWWs), which have been found to effectively reduce runoff/sediment conveyance by slowing water flow and increasing infiltration rates. This study examined the storm-event based efficiency of GWWs at reducing runoff within an agricultural watershed of the US Midwest using the Water Erosion Prediction Project (WEPP). Reductions in runoff volume in a representative field increased by 9 times as the length of the GWW increased. GWW efficiency was governed by the hydrology, expressed as Qpeak. The GWWs were more efficient during events with smaller Qpeak values, while the efficiency decreased during larger events. Building on these simulations for a single hillslope, a standardized hydrologic analysis was conducted in the watershed using established hydrologic modeling techniques (i.e., WIN TR-20) to quantify and mitigate potential flooding impacts for the entire watershed. The outcome of this study was to identify and quantify the management practices (e.g., conversion to grass or no-till) and detention structures needed to mitigate large flood events in the watershed. The results suggested that detention structures located along the stream channel corridor were most effective with the landscape changes as a secondary effort. A high level of land use conversion was needed to produce significant runoff reductions. Average reductions

  8. Runoff of pharmaceuticals and personal care products following application of biosolids to an agricultural field.

    PubMed

    Topp, Edward; Monteiro, Sara C; Beck, Andrew; Coelho, Bonnie Ball; Boxall, Alistair B A; Duenk, Peter W; Kleywegt, Sonya; Lapen, David R; Payne, Michael; Sabourin, Lyne; Li, Hongxia; Metcalfe, Chris D

    2008-06-15

    Municipal biosolids are a source of nutrients for crop production. Beneficial Management Practices (BMPs) can be used to minimize the risk of contamination of adjacent water resources with chemical or microbial agents that are of public or environmental health concern. In this field study, we applied biosolids slurry at a commercial rate using either subsurface injection or broadcast application followed by incorporation. Precipitation was simulated at 1, 3, 7, 22, 36 and 266 days post-application on 2 m(2) microplots to evaluate surface runoff of 9 model pharmaceuticals and personal care products (PPCPs), atenolol, carbamazepine, cotinine, gemfibrozil, naproxen, ibuprofen, acetaminophen, sulfamethoxazole and triclosan. In runoff from the injected plots, concentrations of the model PPCPs were generally below the limits of quantitation. In contrast, in the broadcast application treatment, the concentrations of atenolol, carbamazepine, cotinine, gemfibrozil, naproxen, sulfamethoxazole and triclosan on the day following application ranged from 70-1477 ng L(-1) in runoff and generally declined thereafter with first order kinetics. The total mass of PPCPs mobilized in surface runoff per m(2) of the field ranged from 0.63 microg for atenolol to 21.1 microg for ibuprofen. For ibuprofen and acetaminophen, concentrations in runoff first decreased and then increased, suggesting that these drugs were initially chemically or physically sequestered in the biosolids slurry, and subsequently released in the soil. Carbamazepine and triclosan were detected at low concentrations in a runoff event 266 days after broadcast application. Overall, this study showed that injection of biosolids slurry below the soil surface could effectively eliminate surface runoff of PPCPs.

  9. Gastrointestinal symptoms among swimmers following rain events at a beach impacted by urban runoff

    EPA Science Inventory

    Gastrointestinal symptoms among swimmers following rain events at a beach impacted by urban runoff Timothy J. Wade, Reagan R. Converse, Elizabeth A. Sams, Ann H. Williams, Edward Hudgens, Alfred P. Dufour Gastrointestinal symptoms among swimmers have been associated with fecal ...

  10. Glacier Runoff and Human Vulnerability to Climate Change: The Case of Export Agriculture in Peru (Invited)

    NASA Astrophysics Data System (ADS)

    Carey, M.

    2013-12-01

    There is growing concern about the effects of climate change and ensuing glacier shrinkage on water supplies for mountain communities worldwide. The issue is only becoming more complex as researchers seek to quantify glacier contributions to streamflow and to pinpoint when and how much glacier runoff will likely change as a result of future climate change and glacier variation. Additionally, some researchers are beginning to recognize the importance of understanding the human dimensions of glacier retreat to identify which social groups (stakeholders) use glacier runoff and how much they use, as well as what socio-environmental forces affect both water supplies and water use. This presentation examines these societal aspects of glacier runoff to analyze human vulnerability to hydrological changes in Peru's Santa River watershed below the most glaciated tropical mountain range in the world, the Cordillera Blanca. Specifically, it focuses on the billion-dollar export-oriented agricultural industry within the Chavimochic irrigation project, which uses Santa River water to irrigate approximately 80,000 hectares in the coastal desert region. Since the 1980s, Santa River water has allowed Chavimochic to sustain a major export economy, provide jobs in the agro-industry and related services, stimulate human migration, enhance or alter livelihoods, generate hydroelectricity, supply drinking water, and shape urban growth and land use practices. All of these variables are dependent on glacier meltwater from the Cordillera Blanca, especially during the dry season when glaciers provide most of the Santa River's water. In short, hundreds of thousands of people have come to depend on glacier runoff, thus revealing their high level of vulnerability to hydrological fluctuations in a glacier-fed watershed. What's more, people worldwide rely on the asparagus, avocados, and artichokes grown with glacier runoff. Consequently, the export-oriented agriculture, through the "virtual water

  11. Evaluation of Management Practices to Mitigate Pesticide Transport and Ecological Risk of Runoff from Agricultural and Turf Systems

    USDA-ARS?s Scientific Manuscript database

    Highly managed biotic systems such as agricultural crops and golf courses often require multiple applications of pesticides that may be transported with runoff to surrounding surface waters. Pesticides have been detected in surface waters of rural and urban watersheds invoking concern of their sour...

  12. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    PubMed

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  13. Runoff Analysis Considering Orographical Features Using Dual Polarization Radar Rainfall

    NASA Astrophysics Data System (ADS)

    Noh, Hui-seong; Shin, Hyun-seok; Kang, Na-rae; Lee, Choong-Ke; Kim, Hung-soo

    2013-04-01

    performed. Then hydrologic component of the runoff hydrographs, peak flows and total runoffs from the estimated rainfall and the observed rainfall are compared. The results show that hydrologic components have high fluctuations depending on storm rainfall event. Thus, it is necessary to choose appropriate radar rainfall data derived from the above radar rainfall transform formulas to analyze the runoff of radar rainfall. The simulated hydrograph by radar in the three basins of agricultural areas is more similar to the observed hydrograph than the other three basins of mountainous areas. Especially the peak flow and shape of hydrograph of the agricultural areas is much closer to the observed ones than that of mountainous areas. This result comes from the difference of radar rainfall depending on the basin elevation. Therefore we need the examination of radar rainfall transform formulas following rainfall event and runoff analysis based on basin elevation for the improvement of radar rainfall application. Acknowledgment This study was financially supported by the Construction Technology Innovation Program(08-Tech-Inovation-F01) through the Research Center of Flood Defence Technology for Next Generation in Korea Institute of Construction & Transportation Technology Evaluation and Planning(KICTEP) of Ministry of Land, Transport and Maritime Affairs(MLTM)

  14. Temporal association between land-based runoff events and California sea otter (Enhydra lutris nereis) protozoal mortalities.

    PubMed

    Shapiro, Karen; Miller, Melissa; Mazet, Jonna

    2012-04-01

    Toxoplasma gondii and Sarcocystis neurona have caused significant morbidity and mortality in threatened Southern sea otters (Enhydra lutris nereis) along the central California coast. Because only terrestrial animals are known to serve as definitive hosts for T. gondii and S. neurona, infections in otters suggest a land to sea flow of these protozoan pathogens. To better characterize the role of overland runoff in delivery of terrestrially derived fecal pathogens to the near shore, we assessed the temporal association between indicators of runoff and the timing of sea otter deaths due to T. gondii and S. neurona. Sea otter stranding records 1998-2004, from Monterey and Estero bays were reviewed and cases identified for which T. gondii or S. neurona were determined to be a primary or contributing cause of death. Precipitation and stream flow data from both study sites were used as indicators of land-based runoff. Logistic regression was applied to determine if a temporal association could be detected between protozoal mortalities and runoff indicators that occur in the 2 mo preceding mortality events. A significant association was found between S. neurona otter deaths at Estero Bay and increased stream flow that occurred 30-60 days prior to mortality events. At this site, the cause of otter mortality following increased river flows was 12 times more likely to be S. neurona infection compared with nonprotozoal causes of death. There were no significant associations between the timing of T. gondii otter deaths and indicators of overland runoff. Our results indicate that the association between overland runoff and otter mortalities is affected by geography as well as parasite type, and highlight the complex mechanisms that influence transmission of terrestrially derived pathogens to marine wildlife. Policy and management practices that aim to mitigate discharges of contaminated overland runoff can aid conservation efforts by reducing pathogen pollution of coastal

  15. Limited Dissolved Phosphorus Runoff Losses from Layered Double Hydroxide and Struvite Fertilizers in a Rainfall Simulation Study.

    PubMed

    Everaert, Maarten; da Silva, Rodrigo C; Degryse, Fien; McLaughlin, Mike J; Smolders, Erik

    2018-03-01

    The enrichment of P in surface waters has been linked to P runoff from agricultural fields amended with fertilizers. Novel slow-release mineral fertilizers, such as struvite and P-exchanged layered double hydroxides (LDHs), have received increasing attention for P recycling from waste streams, and these fertilizers may potentially reduce the risk of runoff losses. Here, a rainfall simulation experiment was performed to evaluate P runoff associated with the application of recycled slow-release fertilizers relative to that of a soluble fertilizer. Monoammonium phosphate (MAP), struvite, and LDH granular fertilizers were broadcasted at equal total P doses on soil packed in trays (5% slope) and covered with perennial ryegrass ( L.). Four rainfall simulation events of 30 min were performed at 1, 5, 15, and 30 d after the fertilizer application. Runoff water from the trays was collected, filtered, and analyzed for dissolved P. For the MAP treatment, P runoff losses were high in the first two rain events and leveled off in later rain events. In total, 42% of the applied P in the MAP treatment was lost due to runoff. In the slow-release fertilizer treatments, P runoff losses were limited to 1.9 (struvite) and 2.4% (LDH) of the applied doses and were more similar over the different rain events. The use of these novel P fertilizer forms could be beneficial in areas with a high risk of surface water eutrophication and a history of intensive fertilization. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Variability in runoff fluxes of dissolved and particulate carbon and nitrogen from two watersheds of different tree species during intense storm events

    NASA Astrophysics Data System (ADS)

    Lee, Mi-Hee; Payeur-Poirier, Jean-Lionel; Park, Ji-Hyung; Matzner, Egbert

    2016-09-01

    Heavy storm events may increase the amount of organic matter in runoff from forested watersheds as well as the relation of dissolved to particulate organic matter. This study evaluated the effects of monsoon storm events on the runoff fluxes and on the composition of dissolved (< 0.45 µm) and particulate (0.7 µm to 1 mm) organic carbon and nitrogen (DOC, DON, POC, PON) in a mixed coniferous/deciduous (mixed watershed) and a deciduous forested watershed (deciduous watershed) in South Korea. During storm events, DOC concentrations in runoff increased with discharge, while DON concentrations remained almost constant. DOC, DON and NO3-N fluxes in runoff increased linearly with discharge pointing to changing flow paths from deeper to upper soil layers at high discharge, whereas nonlinear responses of POC and PON fluxes were observed likely due to the origin of particulate matter from the erosion of mineral soil along the stream benches. The integrated C and N fluxes in runoff over the 2-month study period were in the order of DOC > POC and NO3-N > DON > PON. The integrated DOC fluxes in runoff during the study period were much larger at the deciduous watershed (16 kg C ha-1) than at the mixed watershed (7 kg C ha-1), while the integrated NO3-N fluxes were higher at the mixed watershed (5.2 kg N ha-1) than at the deciduous watershed (2.9 kg N ha-1). The latter suggests a larger N uptake by deciduous trees. Integrated fluxes of POC and PON were similar at both watersheds. The composition of organic matter in soils and runoff indicates that the contribution of near-surface flow to runoff was larger at the deciduous than at the mixed watershed. Our results demonstrate different responses of particulate and dissolved C and N in runoff to storm events as a combined effect of tree species composition and watershed specific flow paths.

  17. Effects of native perennial vegetation buffer strips on dissolved organic carbon in surface runoff from an agricultural landscape

    Treesearch

    Tomorra E. Smith; Randall K. Kolka; Xiaobo Zhou; Matthew J. Helmers; Richard M. Cruse; Mark D. Tomer

    2014-01-01

    Dissolved organic carbon (DOC) constitutes a small yet important part of a watershed's carbon budget because it is mobile and biologically active. Agricultural conservation practices such as native perennial vegetation (NPV) strips will influence carbon cycling of an upland agroecosystem, and could affect how much DOC enters streams in runoff, potentially...

  18. [Runoff Pollution Experiments of Paddy Fields Under Different Irrigation Patterns].

    PubMed

    Zhou, Jing-wen; Su, Bao-lin; Huang, Ning-bo; Guan, Yu-tang; Zhao, Kun

    2016-03-15

    To study runoff and non-point source pollution of paddy fields and to provide a scientific basis for agricultural water management of paddy fields, paddy plots in the Jintan City and the Liyang City were chosen for experiments on non-point source pollution, and flood irrigation and intermittent irrigation patterns were adopted in this research. The surface water level and rainfall were observed during the growing season of paddies, and the runoff amount from paddy plots and loads of total nitrogen (TN) and total phosphorus (TP) were calculated by different methods. The results showed that only five rain events of totally 27 rainfalls and one artificially drainage formed non-point source pollution from flood irrigated paddy plot, which resulted in a TN export coefficient of 49.4 kg · hm⁻² and a TP export coefficient of 1.0 kg · hm⁻². No any runoff event occurred from the paddy plot with intermittent irrigation even in the case of maximum rainfall of 95.1 mm. Runoff from paddy fields was affected by water demands of paddies and irrigation or drainage management, which was directly correlated to surface water level, rainfall amount and the lowest ridge height of outlets. Compared with the flood irrigation, intermittent irrigation could significantly reduce non-point source pollution caused by rainfall or artificial drainage.

  19. Modeling the Effect of Summertime Heating on Urban Runoff Temperature

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Gemechu, A. L.; Norman, J. M.; Roa-Espinosa, A.

    2007-12-01

    Urban impervious surfaces absorb and store thermal energy, particularly during warm summer months. During a rainfall/runoff event, thermal energy is transferred from the impervious surface to the runoff, causing it to become warmer. As this higher temperature runoff enters receiving waters, it can be harmful to coldwater habitat. A simple model has been developed for the net energy flux at the impervious surfaces of urban areas to account for the heat transferred to runoff. Runoff temperature is determined as a function of the physical characteristics of the impervious areas, the weather, and the heat transfer between the moving film of runoff and the heated impervious surfaces that commonly exist in urban areas. Runoff from pervious surfaces was predicted using the Green- Ampt Mein-Larson infiltration excess method. Theoretical results were compared to experimental results obtained from a plot-scale field study conducted at the University of Wisconsin's West Madison Agricultural Research Station. Surface temperatures and runoff temperatures from asphalt and sod plots were measured throughout 15 rainfall simulations under various climatic conditions during the summers of 2004 and 2005. Average asphalt runoff temperatures ranged from 23.2°C to 37.1°C. Predicted asphalt runoff temperatures were in close agreement with measured values for most of the simulations (average RMSE = 4.0°C). Average pervious runoff temperatures ranged from 19.7° to 29.9°C and were closely approximated by the rainfall temperature (RMSE = 2.8°C). Predicted combined asphalt and sod runoff temperatures using a flow-weighted average were in close agreement with observed values (average RMSE = 3.5°C).

  20. Effects of land disturbance on runoff and sediment yield after natural rainfall events in southwestern China.

    PubMed

    Guo, Xiaomeng; Li, Tianyang; He, Binghui; He, Xiaorong; Yao, Yun

    2017-04-01

    Severe soil erosion occurs in southwestern China owing to the large expanses of urbanization and sloping land. This field monitoring study was conducted to record the rainfall events, runoff, and sediment yield in 20-, 40-, and 60-m plots under conditions of artificial disturbance or natural restoration in the purple soil area of southwestern China. The study took place during the rainy season, and the plots were situated on a 15° slope. The results showed that rainstorms and heavy rainstorms generated runoff and sediment yield. Rainfall intensity had a significantly positive power relationship with runoff rate and sediment yield rate in artificially disturbed plots but not in naturally restored plots. Plot length had a significant effect on runoff rate under artificial disturbance but not natural restoration. Within the same land disturbance category, there was no significant effect of plot length on sediment yield rate but there was a significant effect on sediment concentration. Overall, runoff rate, sediment yield rate, and sediment concentration showed remarkable effects of land disturbance across all plot lengths: naturally restored plots had 62.8-77.5% less runoff, 95.1-96.3% less sediment yield, and 63.1-73.5% lower sediment concentration than artificially disturbed plots. The relationship between runoff rate and sediment rate under the different land disturbances could be described by an exponential function. The results not only demonstrate the effectiveness of natural restoration for controlling runoff and sediment yield but also provide useful information for the design of field studies, taking into consideration the complexity of terrestrial systems.

  1. Zeolite Combined with Alum and Polyaluminum Chloride Mixed with Agricultural Slurries Reduces Carbon Losses in Runoff from Grassed Soil Boxes.

    PubMed

    Murnane, J G; Brennan, R B; Fenton, O; Healy, M G

    2016-11-01

    Carbon (C) losses from agricultural soils to surface waters can migrate through water treatment plants and result in the formation of disinfection by-products, which are potentially harmful to human health. This study aimed to quantify total organic carbon (TOC) and total inorganic C losses in runoff after application of dairy slurry, pig slurry, or milk house wash water (MWW) to land and to mitigate these losses through coamendment of the slurries with zeolite (2.36-3.35 mm clinoptilolite) and liquid polyaluminum chloride (PAC) (10% AlO) for dairy and pig slurries or liquid aluminum sulfate (alum) (8% AlO) for MWW. Four treatments under repeated 30-min simulated rainfall events (9.6 mm h) were examined in a laboratory study using grassed soil runoff boxes (0.225 m wide, 1 m long; 10% slope): control soil, unamended slurries, PAC-amended dairy and pig slurries (13.3 and 11.7 kg t, respectively), alum-amended MWW (3.2 kg t), combined zeolite and PAC-amended dairy (160 and 13.3 kg t zeolite and PAC, respectively) and pig slurries (158 and 11.7 kg t zeolite and PAC, respectively), and combined zeolite and alum-amended MWW (72 and 3.2 kg t zeolite and alum, respectively). The unamended and amended slurries were applied at net rates of 31, 34, and 50 t ha for pig and dairy slurries and MWW, respectively. Significant reductions of TOC in runoff compared with unamended slurries were measured for PAC-amended dairy and pig slurries (52 and 56%, respectively) but not for alum-amended MWW. Dual zeolite and alum-amended MWW significantly reduced TOC in runoff compared with alum amendment only. We conclude that use of PAC-amended dairy and pig slurries and dual zeolite and alum-amended MWW, although effective, may not be economically viable to reduce TOC losses from organic slurries given the relatively low amounts of TOC measured in runoff from unamended slurries compared with the amounts applied. Copyright © by the American Society of Agronomy, Crop Science Society of

  2. Assessment of initial soil moisture conditions for event-based rainfall-runoff modelling

    NASA Astrophysics Data System (ADS)

    Tramblay, Yves; Bouvier, Christophe; Martin, Claude; Didon-Lescot, Jean-François; Todorovik, Dragana; Domergue, Jean-Marc

    2010-06-01

    Flash floods are the most destructive natural hazards that occur in the Mediterranean region. Rainfall-runoff models can be very useful for flash flood forecasting and prediction. Event-based models are very popular for operational purposes, but there is a need to reduce the uncertainties related to the initial moisture conditions estimation prior to a flood event. This paper aims to compare several soil moisture indicators: local Time Domain Reflectometry (TDR) measurements of soil moisture, modelled soil moisture through the Interaction-Sol-Biosphère-Atmosphère (ISBA) component of the SIM model (Météo-France), antecedent precipitation and base flow. A modelling approach based on the Soil Conservation Service-Curve Number method (SCS-CN) is used to simulate the flood events in a small headwater catchment in the Cevennes region (France). The model involves two parameters: one for the runoff production, S, and one for the routing component, K. The S parameter can be interpreted as the maximal water retention capacity, and acts as the initial condition of the model, depending on the antecedent moisture conditions. The model was calibrated from a 20-flood sample, and led to a median Nash value of 0.9. The local TDR measurements in the deepest layers of soil (80-140 cm) were found to be the best predictors for the S parameter. TDR measurements averaged over the whole soil profile, outputs of the SIM model, and the logarithm of base flow also proved to be good predictors, whereas antecedent precipitations were found to be less efficient. The good correlations observed between the TDR predictors and the S calibrated values indicate that monitoring soil moisture could help setting the initial conditions for simplified event-based models in small basins.

  3. Soft Water Level Sensors for Characterizing the Hydrological Behaviour of Agricultural Catchments

    PubMed Central

    Crabit, Armand; Colin, François; Bailly, Jean Stéphane; Ayroles, Hervé; Garnier, François

    2011-01-01

    An innovative soft water level sensor is proposed to characterize the hydrological behaviour of agricultural catchments by measuring rainfall and stream flows. This sensor works as a capacitor coupled with a capacitance to frequency converter and measures water level at an adjustable time step acquisition. It was designed to be handy, minimally invasive and optimized in terms of energy consumption and low-cost fabrication so as to multiply its use on several catchments under natural conditions. It was used as a stage recorder to measure water level dynamics in a channel during a runoff event and as a rain gauge to measure rainfall amount and intensity. Based on the Manning equation, a method allowed estimation of water discharge with a given uncertainty and hence runoff volume at an event or annual scale. The sensor was tested under controlled conditions in the laboratory and under real conditions in the field. Comparisons of the sensor to reference devices (tipping bucket rain gauge, hydrostatic pressure transmitter limnimeter, Venturi channels…) showed accurate results: rainfall intensities and dynamic responses were accurately reproduced and discharges were estimated with an uncertainty usually acceptable in hydrology. Hence, it was used to monitor eleven small agricultural catchments located in the Mediterranean region. Both catchment reactivity and water budget have been calculated. Dynamic response of the catchments has been studied at the event scale through the rising time determination and at the annual scale by calculating the frequency of occurrence of runoff events. It provided significant insight into catchment hydrological behaviour which could be useful for agricultural management perspectives involving pollutant transport, flooding event and global water balance. PMID:22163868

  4. Origins and transport of aquatic dioxins in the Japanese watershed: soil contamination, land use, and soil runoff events.

    PubMed

    Kanematsu, Masakazu; Shimizu, Yoshihisa; Sato, Keisuke; Kim, Suejin; Suzuki, Tasuma; Park, Baeksoo; Saino, Reiko; Nakamura, Masafumi

    2009-06-15

    Significant dioxins accumulations in Japanese forests and paddy fields have been observed, and surface soil runoff caused by rainfall and irrigation (i.e., soil puddling in paddy fields) results in dioxins input into the aquatic environment. An extensive investigation into the origins and transport of aquatic dioxins in the Yasu watershed, Japan was conducted considering surface soil contamination level, land use, and type of soil runoff event (i.e., irrigation runoff [IR], rainfall runoff [RR], and base flow [BF]). Combined use of the chemically activated luciferase expression (CALUX) assay together with high-resolution gas chromatography and high-resolution mass spectrometry (HRGC/HRMS) efficiently enabled this study, so that origins, transport, and dynamic movement of aquatic dioxins in the watershed were revealed. The particulate organic carbon normalized particulate-dioxins WHO-toxic equivalent (TEQ) concentration predicted by the CALUX assay (Spar) was found to be a convenient molecular marker to indicate origins of aquatic dioxins and clearly reflect surface soil contamination level, land use, and soil runoff events. Using experimental results and theoretical modeling, the annual loading amount of dioxins at the middle reach of the river was estimated to be 0.458 mg WHO-TEQ in 2004. More than 96.6% of the annual loading amount was attributed to RR and derived almost evenly from forest and paddy fields at the study location. Because the annual loading amount at the middle reach is less than 0.5% of the total dioxins accumulated in the upper basin, dioxins runoff from the Japanese watershed will continue. This study shows that the combined use of the bioassay with HRGC/HRMS can provide new insights into dioxins transport and fate in the environment.

  5. A dimensionless approach for the runoff peak assessment: effects of the rainfall event structure

    NASA Astrophysics Data System (ADS)

    Gnecco, Ilaria; Palla, Anna; La Barbera, Paolo

    2018-02-01

    The present paper proposes a dimensionless analytical framework to investigate the impact of the rainfall event structure on the hydrograph peak. To this end a methodology to describe the rainfall event structure is proposed based on the similarity with the depth-duration-frequency (DDF) curves. The rainfall input consists of a constant hyetograph where all the possible outcomes in the sample space of the rainfall structures can be condensed. Soil abstractions are modelled using the Soil Conservation Service method and the instantaneous unit hydrograph theory is undertaken to determine the dimensionless form of the hydrograph; the two-parameter gamma distribution is selected to test the proposed methodology. The dimensionless approach is introduced in order to implement the analytical framework to any study case (i.e. natural catchment) for which the model assumptions are valid (i.e. linear causative and time-invariant system). A set of analytical expressions are derived in the case of a constant-intensity hyetograph to assess the maximum runoff peak with respect to a given rainfall event structure irrespective of the specific catchment (such as the return period associated with the reference rainfall event). Looking at the results, the curve of the maximum values of the runoff peak reveals a local minimum point corresponding to the design hyetograph derived according to the statistical DDF curve. A specific catchment application is discussed in order to point out the dimensionless procedure implications and to provide some numerical examples of the rainfall structures with respect to observed rainfall events; finally their effects on the hydrograph peak are examined.

  6. Effect of Spatial Heterogeneity of Runoff Generation Mechanisms on the Scaling Behavior of Event Runoff Responses in a Natural River Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongyi; Sivapalan, Murugesu

    2011-05-26

    This paper investigates the effects of spatial heterogeneity of runoff generation processes on the scaling behavior of event runoff responses in a natural catchment, the Illinois River Basin near Tahlequah in Oklahoma. A previous study in this basin had revealed a systematic spatial trend in the relative dominance of different runoff generation mechanisms, with the fraction of total runoff generation due to the subsurface stormflow mechanism shown to increase in the downstream direction, while surface runoff generation by saturation excess showed a corresponding decrease. These trends were attributable to corresponding systematic trends in landscape properties, namely, saturated hydraulic conductivity ofmore » soils and topographic slope. Considering the differences in the timing of hillslope responses between the different runoff generation mechanisms, this paper then explores their impacts on the runoff routing responses, including how they change with increasing spatial scale. For this purpose we utilize a distributed, physically based hydrological model, with a fully hydraulic stream network routing component. The model is used to generate instantaneous response functions (IRF) for nested catchments of a range of sizes along the river network, as well as quantitative measures of their shape, e.g., peak and time-to-peak. In order to decipher and separate the effects of landscape heterogeneity from those due to basin geomorphology and hydrologic regime, the model simulations are carried out for three hypothetical cases that make assumptions about regarding landscape properties (uniform, a systematic trend, and heterogeneity plus the trend), repeating these simulations under wet and dry antecedent conditions. The simulations produced expected (consistent with previous theoretical studies) and also somewhat surprising results. For example, the power-law relationship between peak of the IRF and drainage area is shown to be flatter under wet conditions than under

  7. Quantifying variable rainfall intensity events on runoff and sediment losses

    USDA-ARS?s Scientific Manuscript database

    Coastal Plain soils in Georgia are susceptible to runoff, sediment, and chemical losses from short duration-high intensity, runoff producing storms at critical times during the growing season. We quantified runoff and sediment losses from a Tifton loamy sand managed under conventional- (CT) and stri...

  8. Numerical modeling of overland flow due to rainfall-runoff

    USDA-ARS?s Scientific Manuscript database

    Runoff is a basic hydrologic process that can be influenced by management activities in agricultural watersheds. Better description of runoff patterns through modeling will help to understand and predict watershed sediment transport and water quality. Normally, runoff is studied with kinematic wave ...

  9. Runoff of pharmaceuticals and personal care products following application of dewatered municipal biosolids to an agricultural field.

    PubMed

    Sabourin, Lyne; Beck, Andrew; Duenk, Peter W; Kleywegt, Sonya; Lapen, David R; Li, Hongxia; Metcalfe, Chris D; Payne, Michael; Topp, Edward

    2009-08-01

    Municipal biosolids are a useful source of nutrients for crop production, and commonly used in agriculture. In this field study, we applied dewatered municipal biosolids at a commercial rate using broadcast application followed by incorporation. Precipitation was simulated at 1, 3, 7, 21 and 34 days following the application on 2 m(2) microplots to evaluate surface runoff of various pharmaceuticals and personal care products (PPCPs), namely atenolol, carbamazepine, cotinine, caffeine, gemfibrozil, naproxen, ibuprofen, acetaminophen, sulfamethoxazole, triclosan and triclocarban. There was little temporal coherence in the detection of PPCPs in runoff, various compounds being detected maximally on days 1, 3, 7 or 36. Maximum concentrations in runoff ranged from below detection limit (gemfibrozil) to 109.7 ng L(-1) (triclosan). Expressing the total mass exported as a percentage of that applied, some analytes revealed little transport potential (<1% exported; triclocarban, triclosan, sulfamethoxazole, ibuprofen, naproxen and gemfibrozil) whereas others were readily exported (>1% exported; acetaminophen, carbamazepine, caffeine, cotinine, atenolol). Those compounds with little transport potential had log K(ow) values of 3.18 or greater, whereas those that were readily mobilized had K(ow) values of 2.45 or less. Maximal concentrations of all analytes were below toxic concentrations using a variety of endpoints available in the literature. In summary, this study has quantified the transport potential in surface runoff of PPCPs from land receiving biosolids, identified that log K(ow) may be a determinant of runoff transport potential of these analytes, and found maximal concentrations of all chemicals tested to be below toxic concentrations using a variety of endpoints.

  10. Estimation of Surface Runoff in the Jucar River Basin from Rainfall Data and SMOS Soil Moisture

    NASA Astrophysics Data System (ADS)

    Garcia Leal, Julio A.; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Gonzalez Robles, Maura; Herrera Daza, Eddy; Khodayar, Samiro; Lopez-Baeza, Ernesto

    2013-04-01

    Surface runoff is the water that flows after soil is infiltrated to full capacity and excess water from rain, meltwater, or other sources flows over the land. When the soil is saturated and the depression storage filled, and rain continues to fall, the rainfall will immediately produce surface runoff. The Soil Conservation Service Curve Number (SCS-CN) method is widely used for determining the approximate direct runoff volume for a given rainfall event in a particular area. The advantage of the method is its simplicity and widespread inclusion in existing computer models. It was originally developed by the US Department of Agriculture, Soil Conservation Service, and documented in detail in the National Engineering Handbook, Sect. 4: Hydrology (NEH-4) (USDA-SCS, 1985). Although the SCS-CN method was originally developed in the United States and mainly for the evaluation of storm runoff in small agricultural watersheds, it soon evolved well beyond its original objective and was adopted for various land uses and became an integral part of more complex, long-term, simulation models. The basic assumption of the SCS-CN method is that, for a single storm, the ratio of actual soil retention after runoff begins to potential maximum retention is equal to the ratio of direct runoff to available rainfall. This relationship, after algebraic manipulation and inclusion of simplifying assumptions, results in the following equation given in USDA-SCS (1985): (P--0,2S)2 Q = (P + 0,8S) where Q is the average runoff (mm), P the effective precipitation (mm) and S is potential maximum retention (mm) after the rainfall event. The study has been applied to the Jucar River Basin area, East of Spain. A selection of recent significant rainfall events has been made corresponding to the periods around 22nd November, 2011 and 28-29 September and 10 October, 2012, from Jucar River Basin Authority rain gauge data. Potential maximum retention values for each point have been assumed as the first

  11. Evaluation of an Annual Community-Focused Agricultural Literacy Event

    ERIC Educational Resources Information Center

    Sandlin, M'Randa R.; Perez, Kauahi

    2017-01-01

    Agricultural literacy programs are effective pathways to informally teach the public about agriculture through stakeholder (attendee and exhibitor) interaction. Such programs are generally evaluated using attendee feedback but fail to include exhibitors' experience. The purpose of this study was to evaluate a local community agricultural event by…

  12. Native prairie filter strips reduce runoff from hillslopes under annual row-crop systems in Iowa, USA

    NASA Astrophysics Data System (ADS)

    Hernandez-Santana, V.; Zhou, X.; Helmers, M. J.; Asbjornsen, H.; Kolka, R.; Tomer, M.

    2013-01-01

    SummaryIntensively managed annual cropping systems have produced high crop yields but have often produced significant ecosystem services alteration, in particular hydrologic regulation loss. Reconversion of annual agricultural systems to perennial vegetation can lead to hydrologic function restoration, but its effect is still not well understood. Therefore, our objective was to assess the effects of strategic introduction of different amounts and location of native prairie vegetation (NPV) within agricultural landscapes on hydrological regulation. The study was conducted in Iowa (USA), and consisted of a fully balanced, replicated, incomplete block design whereby 12 zero-order ephemeral flow watersheds received four treatments consisting of varying proportions (0%, 10%, and 20%) of prairie vegetation located in different watershed positions (footslope vs. contour strips). Runoff volume and rate were measured from 2008 to 2010 (April-October) with an H-Flume installed in each catchment, and automated ISCO samplers. Over the entire study period, we observed a total of 129 runoff events with an average runoff volume reduction of 37% based on the three treatments with NPV compared to watersheds with row crops. We observed a progressively greater reduction across the 3 years of the study as the perennial strips became established with the greatest differences among treatments occurring in 2010. The differences among the watersheds were attributed mainly to NPV amount and position, with the 10% NPV at footslope treatment having the greatest runoff reduction probably because the portion of NPV filter strip that actually contacted watershed runoff was greater with the 10% NPV at footslope. We observed greater reductions in runoff in spring and fall likely because perennial prairie plants were active and crops were absent or not fully established. High antecedent soil moisture sometimes led to little benefit of the NPV treatments but in general the NPV treatments were

  13. The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont

    USGS Publications Warehouse

    Shanley, J.B.; Chalmers, A.

    1999-01-01

    Soil frost depth has been monitored at the Sleepers River Research Watershed in northeastern Vermont since 1984. Soil frost develops every winter, particularly in open fields, but its depth varies from year to year in inverse relation to snow depth. During the 15 years of record at a benchmark mid-elevation open site, the annual maximum frost depth varied from 70 to 390 mm. We empirically tested the hypothesis that frozen soil prevents infiltration and recharge, thereby causing an increased runoff ratio (streamflow/(rain + snowmelt)) during the snowmelt hydrograph rise and a decreased runoff ratio during snowmelt recession. The hypothesis was not supported at the 111 km2 W-5 catchment; there was no significant correlation of the runoff ratio with the seasonal maximum frost depth for either the pre-peak or post-peak period. In an analysis of four events, however, the presence of frost promoted a large and somewhat quicker response to rainfall relative to the no-frost condition, although snow cover caused a much greater time-to-peak regardless of frost status. For six years of flow and frost depth measured at the 59 ha agricultural basin W-2, the hypothesis appeared to be supported. The enhancement of runoff due to soil frost is evident on small plots and in extreme events, such as rain on frozen snow-free soil. In the northeastern USA and eastern Canada, the effect is often masked in larger catchments by several confounding factors, including storage of meltwater in the snowpack, variability in snowmelt timing due to elevational and aspect differences, interspersed forested land where frost may be absent, and the timing of soil thawing relative to the runoff peak.Soil frost depth has been monitored at the Sleepers River Research Watershed in northeastern Vermont since 1984. Soil frost develops every winter, particularly in open fields, but its depth varies greatly from year to year in inverse relation to snow depth. During the 15 years of record at a benchmark mid

  14. Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution.

    PubMed

    Frey, S K; Gottschall, N; Wilkes, G; Grégoire, D S; Topp, E; Pintar, K D M; Sunohara, M; Marti, R; Lapen, D R

    2015-01-01

    When surface water levels decline, exposed streambed sediments can be mobilized and washed into the water course when subjected to erosive rainfall. In this study, rainfall simulations were conducted over exposed sediments along stream banks at four distinct locations in an agriculturally dominated river basin with the objective of quantifying the potential for contaminant loading from these often overlooked runoff source areas. At each location, simulations were performed at three different sites. Nitrogen, phosphorus, sediment, fecal indicator bacteria, pathogenic bacteria, and microbial source tracking (MST) markers were examined in both prerainfall sediments and rainfall-induced runoff water. Runoff generation and sediment mobilization occurred quickly (10-150 s) after rainfall initiation. Temporal trends in runoff concentrations were highly variable within and between locations. Total runoff event loads were considered large for many pollutants considered. For instance, the maximum observed total phosphorus runoff load was on the order of 1.5 kg ha. Results also demonstrate that runoff from exposed sediments can be a source of pathogenic bacteria. spp. and spp. were present in runoff from one and three locations, respectively. Ruminant MST markers were also present in runoff from two locations, one of which hosted pasturing cattle with stream access. Overall, this study demonstrated that rainfall-induced runoff from exposed streambed sediments can be an important source of surface water pollution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Spatial variations of storm runoff pollution and their correlation with land-use in a rapidly urbanizing catchment in China.

    PubMed

    Qin, Hua-Peng; Khu, Soon-Thiam; Yu, Xiang-Ying

    2010-09-15

    The composition of land use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as a study area, and temporary monitoring sites were set at the downstream of its 6 sub-catchments to synchronously measure rainfall, runoff and water quality during 4 storm events in 2007 and 2009. Due to relatively low frequency monitoring, the IHACRES and exponential pollutant wash-off simulation models are used to interpolate the measured data to compensate for data insufficiency. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants in each sub-catchment during the storm events, and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land use; however, they have different trends in heavy storm events, which correlate with not only the residential land use, but also agricultural and bare land use. And some pairs of pollutants (such as COD/BOD, NH(3)-N/TN) might have the similar source because they have strong or moderate positive spatial correlation. Moreover, the first flush intensity (FF50) varies with impervious land areas and different interception ratio of initial storm runoff volume should be adopted in different sub-catchments. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Effects of agricultural runoff on native amphibians in the Lower Fraser River Valley, British Columbia, Canada.

    PubMed

    de, SollaShaneR; Pettit, Karen E; Bishop, Christine A; Cheng, Kimberly M; Elliott, John E

    2002-02-01

    Hatching success, deformity rates, and survivorship of northern red-legged frogs (Rana aurora) and northwestern salamanders (Ambystoma gracile) were assessed at three agricultural and three reference sites in the Sumas Prairie, British Columbia, Canada. In 1997 and 1998, eggs of both species and eggs of R. aurora, respectively, were placed in Nytex mesh cages (Irwindale, CA, USA) in roadside ditches at each site. Concurrently in 1997, eggs of R. aurora were reared in the laboratory but were exposed to water samples from each of the study sites. Hatching success was significantly lower at all agricultural sites compared to the reference sites for both species. However, no differences were observed in hatching success among sites for eggs of R. aurora reared in the laboratory. Water chemistry differed among all sites, but the largest differences were between reference and agricultural sites. Ammonia (maximum of 1.27 mg/L), total phosphate (maximum of 8.14 mg/L), and biological oxygen demand (maximum of 79.00 mg/L) were high at some of the agricultural sites during the development period. Results suggest that agricultural runoff may contribute to lower reproductive success and ultimately to reduced population viability of amphibian populations in the Lower Fraser Valley (BC, Canada).

  17. Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event

    NASA Astrophysics Data System (ADS)

    van Soelen, Elsbeth E.; Twitchett, Richard J.; Kürschner, Wolfram M.

    2018-04-01

    The late Permian biotic crisis had a major impact on marine and terrestrial environments. Rising CO2 levels following Siberian Trap volcanic activity were likely responsible for expanding marine anoxia and elevated water temperatures. This study focuses on one of the stratigraphically most expanded Permian-Triassic records known, from Jameson Land, East Greenland. High-resolution sampling allows for a detailed reconstruction of the changing environmental conditions during the extinction event and the development of anoxic water conditions. Since very little is known about how salinity was affected during the extinction event, we especially focus on the aquatic palynomorphs and infer changes in salinity from changes in the assemblage and morphology. The start of the extinction event, here defined by a peak in spore : pollen, indicating disturbance and vegetation destruction in the terrestrial environment, postdates a negative excursion in the total organic carbon, but predates the development of anoxia in the basin. Based on the newest estimations for sedimentation rates, the marine and terrestrial ecosystem collapse took between 1.6 and 8 kyr, a much shorter interval than previously estimated. The palynofacies and palynomorph records show that the environmental changes can be explained by enhanced run-off and increased primary productivity and water column stratification. A lowering in salinity is supported by changes in the acritarch morphology. The length of the processes of the acritarchs becomes shorter during the extinction event and we propose that these changes are evidence for a reduction in salinity in the shallow marine setting of the study site. This inference is supported by changes in acritarch distribution, which suggest a change in palaeoenvironment from open marine conditions before the start of the extinction event to more nearshore conditions during and after the crisis. In a period of sea-level rise, such a reduction in salinity can only be

  18. Spatio-temporal patterns in land use and management affecting surface runoff response of agricultural catchments - a review

    NASA Astrophysics Data System (ADS)

    Fiener, P.; Auerswald, K.; van Oost, K.

    2009-04-01

    In many landscapes, land use creates a complex pattern in addition to the patterns resulting from soil, topography and rain. Despite the static layout of fields, a spatio-temporally highly variable situation regarding the surface runoff and erosion processes results from the asynchronous seasonal variation associated with different land uses. While the behaviour of individual land-uses and their seasonal variation is analyzed in many studies, the spatio-temporal interaction related to this pattern is rarely studied despite its crucial influence on hydrological and geomorphic response of catchments. The difficulty in studying such interactions mainly results from the fact that it is impossible to set up a replicated experiment on the landscape scale. The purpose of this review is to present the advances made thus far in quantifying the effects of patchiness of land use and management on surface runoff response in agricultural catchments. We will focus on the effects of spatio-temporal patterns in land use patches on hydraulic connectivity between patches and within catchments. This will include the temporal patterns in land management affecting infiltration, surface roughness and hence runoff concentration within single fields or land use patches insofar as these effects must be known to evaluate the combined effect of patch behaviour in space and time on catchment connectivity and surface runoff. Surface runoff effects of patchiness and connectivity between patches or within a catchment, can either be addressed by modelling studies or by comprehensive catchment field measurements, e.g. paired-watershed experiments or landscape scale studies on different scales. This limits our review to studies at the scale of small catchments < 10 km², where the time constant of the network (i.e. travel time through it) is smaller than the infiltration phase. Despite this limitation, these small catchments are important as they constitute 2/3 of the total surface of large water

  19. Modeling of highway stormwater runoff.

    PubMed

    Kim, Lee-Hyung; Kayhanian, Masoud; Zoh, Kyung-Duk; Stenstrom, Michael K

    2005-09-15

    Highways are stormwater intensive landuses since they are impervious and have high pollutant mass emissions from vehicular activity. Vehicle emissions include different pollutants such as heavy metals, oil and grease, particulates from sources such as fuels, brake pad wear and tire wear, and litter. To understand the magnitude and nature of the stormwater emissions, a 3-year study was conducted to quantify stormwater pollutant concentrations, mass emission rates, and the first flush of pollutants. Eight highway sites were monitored over 3 years for a large suite of pollutants. The monitoring protocol emphasized detecting the first flush and quantifying the event mean concentration. Grab and flow-weighted composite samples, rainfall, and runoff data were collected. A new runoff model with four parameters was developed that to describe the first flush of pollutants for a variety of rainfall and runoff conditions. The model was applied to more than 40 events for 8 pollutants, and the parameters were correlated to storm and site conditions, such as total runoff, antecedent dry days, and runoff coefficient. Improved definitions of first flush criteria are also presented.

  20. Measurement and modeling of diclosulam runoff under the influence of simulated severe rainfall.

    PubMed

    van Wesenbeeck, I J; Peacock, A L; Havens, P L

    2001-01-01

    A runoff study was conducted near Tifton, GA to measure the losses of water, sediment, and diclosulam (N-(2,6-dichlorophenyl)-5-ethoxy-7-fluoro-[1,2,4]triazolo-[1,5c]-pyrimidine- 2-sulfonamide), a new broadleaf herbicide, under a 50-mm-in-3-h simulated rainfall event on three separate 0.05-ha plots. Results of a runoff study were used to validate the Pesticide Root Zone Model (PRZM, v. 3.12) using field-measured soil, chemical, and weather inputs. The model-predicted edge-of-field diclosulam loading was within 1% of the average observed diclosulam runoff from the field study; however, partitioning between phases was not as well predicted. The model was subsequently used with worst-case agricultural practice inputs and a 41-yr weather record from Dublin, GA to simulate edge-of-field runoff losses for the two most prevalent soils (Tifton and Bibb) in the southeastern U.S. peanut (Arachis hypogaea L.) market for 328 simulation years, and showed that the 90th percentile runoff amounts, expressed as percent of applied diclosulam, were 1.8, 0.6, and 5.2% for the runoff study plots and Tifton and Bibb soils, respectively. The runoff study and modeling indicated that more than 97% of the total diclosulam runoff was transported off the field by water, with < 3% associated with the sediment. Diclosulam losses due to runoff can be further reduced by lower application rates, tillage and crop residue management practices that reduce edge-of-field runoff, and conservation practices such as vegetated filter strips.

  1. Climate change impacts on hillslope runoff on the northern Great Plains, 1962-2013

    NASA Astrophysics Data System (ADS)

    Coles, A. E.; McConkey, B. G.; McDonnell, J. J.

    2017-07-01

    On the Great Plains of North America, water resources are being threatened by climatic shifts. However, a lack of hillslope-scale climate-runoff observations is limiting our ability to understand these impacts. Here, we present a 52-year (1962-2013) dataset (precipitation, temperature, snow cover, soil water content, and runoff) from three 5 ha hillslopes on the seasonally-frozen northern Great Plains. In this region, snowmelt-runoff drives c. 80% of annual runoff and is potentially vulnerable to warming temperatures and changes in precipitation amount and phase. We assessed trends in these climatological and hydrological variables using time series analysis. We found that spring snowmelt-runoff has decreased (on average by 59%) in response to a reduction in winter snowfall (by 18%), but that rainfall-runoff has shown no significant response to a 51% increase in rainfall or shifts to more multi-day rain events. In summer, unfrozen, deep, high-infiltrability soils act as a 'shock absorber' to rainfall, buffering the long-term runoff response to rainfall. Meanwhile, during winter and spring freshet, frozen ground limits soil infiltrability and results in runoff responses that more closely mirror the snowfall and snowmelt trends. These findings are counter to climate-runoff relationships observed at the catchment scale on the northern Great Plains where land drainage alterations dominate. At the hillslope scale, decreasing snowfall, snowmelt-runoff, and spring soil water content is causing agricultural productivity to be increasingly dependent on growing season precipitation, and will likely accentuate the impact of droughts.

  2. Experimental study on soluble chemical transfer to surface runoff from soil.

    PubMed

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei

    2016-10-01

    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  3. Continental-Scale Estimates of Runoff Using Future Climate ...

    EPA Pesticide Factsheets

    Recent runoff events have had serious repercussions to both natural ecosystems and human infrastructure. Understanding how shifts in storm event intensities are expected to change runoff responses are valuable for local, regional, and landscape planning. To address this challenge, relative changes in runoff using predicted future climate conditions were estimated over different biophysical areas for the CONterminous U.S. (CONUS). Runoff was estimated using the Curve Number (CN) developed by the USDA Soil Conservation Service (USDA, 1986). A seamless gridded dataset representing a CN for existing land use/land cover (LULC) across the CONUS was used along with two different storm event grids created specifically for this effort. The two storm event grids represent a 2- and a 100-year, 24-hour storm event under current climate conditions. The storm event grids were generated using a compilation of county-scale Texas USGS Intensity-Duration-Frequency (IDF) data (provided by William Asquith, USGS, Lubbock, Texas), and NOAA Atlas-2 and NOAA Atlas-14 gridded data sets. Future CN runoff was predicted using extreme storm events grids created using a method based on Kao and Ganguly (2011) where precipitation extremes reflect changes in saturated water vapor pressure of the atmosphere in response to temperature changes. The Clausius-Clapeyron relationship establishes that the total water vapor mass of fully saturated air increases with increasing temperature, leading to

  4. Evaluating the placement and performance of nature based measures for managing flood runoff in intensively farmed landscapes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Quinn, Paul; Hewett, Caspar; Stutter, Marc

    2017-04-01

    Over the past decade economic losses from fluvial floods have greatly increased and it is becoming less viable to use traditional measures for managing flooding solely. This has given rise to increasing interest in alternative, nature based solutions (NBS) for reducing flood risk that aim to manage runoff at the catchment source and deliver multiple benefits. In many cases these measures need to work with current agricultural practices. Intensive agriculture often results in increases in local runoff rates, water quality issues, soil erosion/loss and local flooding problems. However, there is potential for agriculture to play a part in reducing flood risk. This requires knowledge on the effectiveness of NBS at varying scales and tools to communicate the risk of runoff associated with farming. This paper assesses the placement, management and effectiveness of a selection of nature-based measures in the rural landscape. Measures which disconnect overland flow pathways and improve soil infiltration are discussed. Case study examples are presented from the UK where a large number of nature-based measures have been constructed as part of flood protection schemes in catchment scales varying from 50 ha to 25 km2. Practical tools to help locate measures in agricultural landscapes are highlighted including the Floods and Agriculture Risk Matrix (FARM), an interactive communication/visualization tool and FARMPLOT, a GIS mapping tool. These have been used to promote such measures, by showing how and where temporary ponded areas can be located to reduce flood and erosion risk whilst minimising disruption to farming practices. In most cases land managers prefer small ( 100-1000m3) temporary ponding areas which fill during moderate to large storm events since they incur minimal loss of land. They also provide greater resillience to multi-day storm events, as they are designed to drain over 1-2 days and therefore allow for storage capacity for proceeding events. However, the

  5. Characterizing dry deposition of mercury in urban runoff

    USGS Publications Warehouse

    Fulkerson, M.; Nnadi, F.N.; Chasar, L.S.

    2007-01-01

    Stormwater runoff from urban surfaces often contains elevated levels of toxic metals. When discharged directly into water bodies, these pollutants degrade water quality and impact aquatic life and human health. In this study, the composition of impervious surface runoff and associated rainfall was investigated for several storm events at an urban site in Orlando, Florida. Total mercury in runoff consisted of 58% particulate and 42% filtered forms. Concentration comparisons at the start and end of runoff events indicate that about 85% of particulate total mercury and 93% of particulate methylmercury were removed from the surface before runoff ended. Filtered mercury concentrations showed less than 50% reduction of both total and methylmercury from first flush to final flush. Direct comparison between rainfall and runoff at this urban site indicates dry deposition accounted for 22% of total inorganic mercury in runoff. ?? 2007 Springer Science+Business Media B.V.

  6. Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge.

    PubMed

    Withers, P J; Clay, S D; Breeze, V G

    2001-01-01

    Phosphorus (P) transfer in surface runoff from field plots receiving either no P, triplesuperphoshate (TSP), liquid cattle manure (LCS), liquid anaerobically digested sludge (LDS), or dewatered sludge cake (DSC) was compared over a 2-yr period. Dissolved inorganic P concentrations in runoff increased from 0.1 to 0.2 mg L(-1) on control and sludge-treated plots to 3.8 and 6.5 mg L(-1) following application of LCS and TSP, respectively, to a cereal crop in spring. When incorporated into the soil in autumn, runoff dissolved P concentrations were typically < 0.5 mg L(-1) across all plots, and particulate P remained the dominant P form. When surface-applied in autumn to a consolidated seedbed, direct loss of LCS and LDS increased both runoff volume and P transfers, but release of dissolved P occurred only from LCS. The largest P concentrations (>70 mg L(-1)) were recorded following TSP application without any increase in runoff volume, while application of bulky DSC significantly reduced total P transfers by 70% compared with the control due to a reduced runoff volume. Treatment effects in each monitoring period were most pronounced in the first runoff event. Differences in the release of P from the different P sources were related to the amounts of P extracted by either water or sodium bicarbonate in the order TSP > LCS > LDS > DSC. The results suggest there is a lower risk of P transfer in land runoff following application of sludge compared with other agricultural P amendments at similar P rates.

  7. Transport of plutonium in snowmelt run-off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purtymun, W.D.; Peters, R.; Maes, M.N.

    1990-07-01

    Plutonium in treated low-level radioactive effluents released into intermittent streams is bound by ion exchange or adsorption to bed sediments in the stream channel. These sediments are subject to transport with summer and spring snowmelt run-off. A study was made of the transport of plutonium during seven spring run-off events in Los Alamos and Pueblo canyons from the Laboratory boundary to Otowi on the Rio Grande. The melting of the snowpack during these years resulted in run-off that was large enough to reach the eastern edge of the Laboratory. Of these seven run-off events recorded at the Laboratory boundary, onlymore » five had sufficient flow to reach the Rio Grande. The volume of the five events that reached the river ranged from 5 {times} 10{sup 3} m{sup 3} to 104 {times} 10{sup 3} m{sup 3}. The five run-off events carried 119 {times} 10{sup 3} kg of suspended sediments and 1073 {times} 10{sup 3} kg of bed sediments, and transported 598 {mu}Ci of plutonium to the river. Of the 598 {mu}Ci of plutonium, 3% was transported in solution, 57% with suspended sediments, and 40% with bed sediments. 13 refs., 3 figs., 6 tabs.« less

  8. Agriculturization in the Argentinean Northern Humid Pampas: the Impact on Soil Structure and Runoff

    NASA Astrophysics Data System (ADS)

    Sasal, M. C.; Léonard, J.; Andriulo, A.; Wilson, M. G.

    2012-04-01

    platy structure increased during the first 15 years of NT, and then the extension of platy structure tended to stabilize and even to decrease after 20 to 25 years. The development of platy soil structure was negatively related to the ISI (R2=0.57) and runoff increased as the proportion of platy structure increased and the proportion of granular structure decreased (R2=0.85). We concluded that high soybean frequency in cropping systems under NT favors the extension of platy soil structure and increases runoff. More than 70% of the agricultural area of the northern Humid Pampas region is currently covered by soybean cultivation, mostly as a single annual crop (ISI=0.38). Our results thus suggest that promoting management practices such as the expansion of wheat/soybean double crop (ISI=0.83) could limit soil structure degradation and reduce runoff and the associated environmental risks.

  9. Transport of cyazofamid and kresoxim methyl in runoff at the plot and catchment scales

    NASA Astrophysics Data System (ADS)

    Lefrancq, Marie; Joaquín García Verdú, Antonio; Maillard, Elodie; Imfeld, Gwenaël; Payraudeau, Sylvain

    2013-04-01

    Surface runoff and erosion during the course of rainfall events represent major processes of pesticides transport from agricultural land to aquatic ecosystem. In general, field and catchment studies on pesticide transfer are carried out separately. A study at both scales may enable to improve the understanding of scale effects on processes involved in pesticides transport and to give clues on the source areas within an agricultural catchment. In this study, the transport in runoff of two widely used fungicides, i.e. kresoxim methyl (KM) and cyazofamid (CY) was assessed in a 43 ha vineyard catchment and the relative contribution of the total fungicides export from one representative plot was evaluated. During an entire period of fungicide application, from May to August 2011, the discharge and loads of dissolved and particle-laden KM and CY were monitored at the plot and catchment scales. The results showed larger export coefficient of KM and CY from catchment (0.064 and 0.041‰ for KM and CY respectively) than from the studied plot (0.009 and 0.023 ‰ for KM and CY respectively). It suggests that the plot margins especially the road network contributed as well to the fungicide loads. This result underlines the impact of fungicide drift on non-target areas. Furthermore, a larger rainfall threshold is necessary at the plot scale to trigger runoff and mobilise pesticides than on the road network. At the plot scale, a rapid dissipation of the both fungicides in the top soil was observed. It highlights that the risky period encompasses the first rainfall events triggering runoff after the applications. At both scales, KM and CY were not detected in suspended solids (i.e. > 0.7 µm). However their partitioning in runoff water differed. 64.1 and 91.8% of the KM load was detected in the dissolved phase (i.e. < 0.22 µm) at the plot and catchment scales respectively, whereas 98.7 and 100% of the CY load was detected in the particulate phase (i.e. between 0.22 and 0.7 µm

  10. Nutrient Mitigation Efficiency in Agricultural Drainage Ditches: An Influence of Landscape Management.

    PubMed

    Iseyemi, Oluwayinka O; Farris, Jerry L; Moore, Matthew T; Choi, Seo-Eun

    2016-06-01

    Drainage systems are integral parts of agricultural landscapes and have the ability to intercept nutrient loading from runoff to surface water. This study investigated nutrient removal efficiency within replicated experimental agricultural drainage ditches during a simulated summer runoff event. Study objectives were to examine the influence of routine mowing of vegetated ditches on nutrient mitigation and to assess spatial transformation of nutrients along ditch length. Both mowed and unmowed ditch treatments decreased NO3 (-)-N by 79 % and 94 % and PO4 (3-) by 95 % and 98 %, respectively, with no significant difference in reduction capacities between the two treatments. This suggests occasional ditch mowing as a management practice would not undermine nutrient mitigation capacity of vegetated drainage ditches.

  11. Using the Sacramento soil moisture accounting model to provide short-term forecasts of surface runoff for daily decision making in nutrient management

    USDA-ARS?s Scientific Manuscript database

    Managing the timing of fertilizer and manure application is critical to protecting water quality in agricultural watersheds. When fertilizers and manures are applied at inopportune times (e.g., just prior to a rainfall event that produces surface runoff) the risk of surface water contamination is un...

  12. Monitoring stream sediment loads in response to agriculture in Prince Edward Island, Canada.

    PubMed

    Alberto, Ashley; St-Hilaire, Andre; Courtenay, Simon C; van den Heuvel, Michael R

    2016-07-01

    Increased agricultural land use leads to accelerated erosion and deposition of fine sediment in surface water. Monitoring of suspended sediment yields has proven challenging due to the spatial and temporal variability of sediment loading. Reliable sediment yield calculations depend on accurate monitoring of these highly episodic sediment loading events. This study aims to quantify precipitation-induced loading of suspended sediments on Prince Edward Island, Canada. Turbidity is considered to be a reasonably accurate proxy for suspended sediment data. In this study, turbidity was used to monitor suspended sediment concentration (SSC) and was measured for 2 years (December 2012-2014) in three subwatersheds with varying degrees of agricultural land use ranging from 10 to 69 %. Comparison of three turbidity meter calibration methods, two using suspended streambed sediment and one using automated sampling during rainfall events, revealed that the use of SSC samples constructed from streambed sediment was not an accurate replacement for water column sampling during rainfall events for calibration. Different particle size distributions in the three rivers produced significant impacts on the calibration methods demonstrating the need for river-specific calibration. Rainfall-induced sediment loading was significantly greater in the most agriculturally impacted site only when the load per rainfall event was corrected for runoff volume (total flow minus baseflow), flow increase intensity (the slope between the start of a runoff event and the peak of the hydrograph), and season. Monitoring turbidity, in combination with sediment modeling, may offer the best option for management purposes.

  13. Intra-event variability of Escherichia coli and total suspended solids in urban stormwater runoff.

    PubMed

    McCarthy, D T; Hathaway, J M; Hunt, W F; Deletic, A

    2012-12-15

    Sediment levels are important for environmental health risk assessments of surface water bodies, while faecal pollution can introduce significant public health risks for users of these systems. Urban stormwater is one of the largest sources of contaminants to surface waters, yet the fate and transport of these contaminants (especially those microbiological) have received little attention in the literature. Stormwater runoff from five urbanized catchments were monitored for pathogen indicator bacteria and total suspended solids in two developed countries. Multiple discrete samples were collected during each storm event, allowing an analysis of intra-event characteristics such as initial concentration, peak concentration, maximum rate of change, and relative confidence interval. The data suggest that a catchment's area influences pollutant characteristics, as larger catchments have more complex stormwater infrastructure and more variable pollutant sources. The variability of total suspended solids for many characteristics was similar to Escherichia coli, indicating that the variability of E. coli may not be substantially higher than that of other pollutants as initially speculated. Further, variations in E. coli appeared to be more commonly correlated to antecedent climate, while total suspended solids were more highly correlated to rainfall/runoff characteristics. This emphasizes the importance of climate on microbial persistence and die off in urban systems. Discrete intra-event concentrations of total suspended solids and, to a lesser extent E. coli, were correlated to flow, velocity, and rainfall intensity (adjusted by time of concentrations). Concentration changes were found to be best described by adjusted rainfall intensity, as shown by other researchers. This study has resulted in an increased understanding of the magnitude of intra-event variations of total suspended solids and E. coli and what physical and climatic parameters influence these variations

  14. Reduction of solids and nutrient loss from agricultural land by tailwater recovery systems

    USGS Publications Warehouse

    Omer, A.R.; Miranda, Leandro E.; Moore, M. T.; Krutz, L. J.; Prince Czarnecki, J. M.; Kröger, R.; Baker, B. H.; Hogue, J.; Allen, P. J.

    2018-01-01

    Best management practices are being implemented throughout the Lower Mississippi River Alluvial Valley with the aim of alleviating pressures placed on downstream aquatic systems by sediment and nutrient losses from agricultural land; however, research evaluating the performance of tailwater recovery (TWR) systems, an increasingly important practice, is limited. This study evaluated the ability of TWR systems to retain sediment and nutrients draining from agricultural landscapes. Composite flow-based samples were collected during flow events (precipitation or irrigation) over a two-year period in six TWR systems. Performance was evaluated by comparing concentrations and loads in water entering TWR systems (i.e., runoff or influent) from agricultural fields to water overflow exiting TWR systems (effluent). Tailwater recovery systems did not reduce concentrations of solids and nutrients, but did reduce loads of solids, phosphorus (P), and nitrogen (N) by 43%, 32%, and 44%, respectively. Annual mean load reductions were 1,142 kg solids, 0.7 kg of P, and 3.8 kg of N. Performance of TWR systems was influenced by effluent volume, system fullness, time since the previous event, and capacity of the TWR system. Mechanistically, TWR systems retain runoff on the agricultural landscape, thereby reducing the amount of sediment and nutrients entering downstream waterbodies. System performance can be improved through manipulation of influential parameters.

  15. Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots

    NASA Astrophysics Data System (ADS)

    Lal, Mohan; Mishra, S. K.; Pandey, Ashish; Pandey, R. P.; Meena, P. K.; Chaudhary, Anubhav; Jha, Ranjit Kumar; Shreevastava, Ajit Kumar; Kumar, Yogendra

    2017-01-01

    The Soil Conservation Service curve number (SCS-CN) method, also known as the Natural Resources Conservation Service curve number (NRCS-CN) method, is popular for computing the volume of direct surface runoff for a given rainfall event. The performance of the SCS-CN method, based on large rainfall (P) and runoff (Q) datasets of United States watersheds, is evaluated using a large dataset of natural storm events from 27 agricultural plots in India. On the whole, the CN estimates from the National Engineering Handbook (chapter 4) tables do not match those derived from the observed P and Q datasets. As a result, the runoff prediction using former CNs was poor for the data of 22 (out of 24) plots. However, the match was little better for higher CN values, consistent with the general notion that the existing SCS-CN method performs better for high rainfall-runoff (high CN) events. Infiltration capacity (fc) was the main explanatory variable for runoff (or CN) production in study plots as it exhibited the expected inverse relationship between CN and fc. The plot-data optimization yielded initial abstraction coefficient (λ) values from 0 to 0.659 for the ordered dataset and 0 to 0.208 for the natural dataset (with 0 as the most frequent value). Mean and median λ values were, respectively, 0.030 and 0 for the natural rainfall-runoff dataset and 0.108 and 0 for the ordered rainfall-runoff dataset. Runoff estimation was very sensitive to λ and it improved consistently as λ changed from 0.2 to 0.03.

  16. Simulation of torrential rain as a means for assessment of surface runoff coefficients and calculation of recurrent design events in alpine catchments

    NASA Astrophysics Data System (ADS)

    Markart, Gerhard; Kohl, Bernhard; Sotier, Bernadette; Klebinder, Klaus; Schauer, Thomas; Bunza, Günther

    2010-05-01

    Simulation of heavy rain is an established method for studying infiltration characteristics, runoff and erosion behaviour in alpine catchments. Accordingly for characterization and differentiation of various runoff producing areas in alpine catchments transportable spray irrigation installations for large plots have been developed at the BFW, Department of Natural Hazards and Alpine Timberline, in Innsbruck, Austria. One installation has been designed for assessment of surface runoff coefficients under convective torrential rain with applicable precipitation intensities between 30 and 120 mm*h-1 and a plot size between 50 and 100 m2. The second device is used for simulation of persistent rain events (rain intensity about 10 mm*h-1, plot size: 400-1200 m2). Very reasonable results have been achieved during the comparison with spray irrigations from other institutions (e.g. Bavarian Environmental Agency in Munich) in the field. Rain simulations at BFW are mostly combined with comprehensive additional investigations on land-use, vegetation cover, soil physical characteristics, soil humidity, hydrogeology and other features of the test-sites. This allows proper interpretation of the achieved runoff data. At the moment results from more than 280 rain simulations are available from about 25 catchments / regions of the Eastern Alps at the BFW. Results show that the surface runoff coefficient, when runoff is constant at the test site (φconst) increases only slightly between rain intensities from 30 to 120 mm*h-1 (increment is 6%). Therefore φconst shall be used for assessment of runoff behaviour of runoff contributing areas, because it is less dependent form system conditions than φtot. BFW-data have been consolidated with results of the LfU (Bavarian Environmental Agency in Munich) in a data base and formed the basis for the development of a simple code of practice for assessment of surface runoff coefficients in torrential rain. The manual is freely available under

  17. Effectiveness of Conservation Measures in Reducing Runoff and Soil Loss Under Different Magnitude-Frequency Storms at Plot and Catchment Scales in the Semi-arid Agricultural Landscape.

    PubMed

    Zhu, T X

    2016-03-01

    In this study, multi-year stormflow data collected at both catchment and plot scales on an event basis were used to evaluate the efficiency of conservation. At the catchment scale, soil loss from YDG, an agricultural catchment with no conservation measures, was compared with that from CZG, an agricultural catchment with an implementation of a range of conservation measures. With an increase of storm recurrence intervals in the order of <1, 1-2, 2-5, 5-10, 10-20, and >20 years, the mean event sediment yield was 639, 1721, 5779, 15191, 19627, and 47924 t/km(2) in YDG, and was 244, 767, 3077, 4679, 8388, and 15868 t/km(2) in CZG, which represented a reduction effectiveness of 61.8, 55.4, 46.7, 69.2, 57.2, and 66.8 %, respectively. Storm events with recurrence intervals greater than 2 years contributed about two-thirds of the total runoff and sediment in both YDG and CZG catchments. At the plot scale, soil loss from one cultivated slopeland was compared with that from five conservation plots. The mean event soil loss was 1622 t/km(2) on the cultivated slopeland, in comparison to 27.7 t/km(2) on the woodland plot, 213 t/km(2) on the grassland plot, 467 t/km(2) on the alfalfa plot, 236 t/km(2) on the terraceland plot, and 642 t/km(2) on the earthbank plot. Soil loss per unit area from all the plots was significantly less than that from the catchments for storms of all categories of recurrence intervals.

  18. Antibiotic losses in leaching and surface runoff from manure-amended agricultural land.

    PubMed

    Dolliver, Holly; Gupta, Satish

    2008-01-01

    A 3-yr field study quantified leaching and runoff losses of antibiotics from land application of liquid hog (chlortetracycline and tylosin) and solid beef (chlortetracycline, monensin, and tylosin) manures under chisel plowing and no-tillage systems. The study was conducted in southwestern Wisconsin, a karst area with steep, shallow, macroporous soils. Relative mass losses of chlortetracycline, monensin, and tylosin were <5% of the total amount applied with manure. Chlortetracycline was only detected in runoff, whereas monensin and tylosin were detected in leachate and runoff. Highest concentrations of monensin and tylosin in the leachate were 40.9 and 1.2 microg L(-1), respectively. Highest chlortetracycline, monensin, and tylosin concentrations in runoff were 0.5, 57.5, and 6.0 microg L(-1), respectively. For all three antibiotics, >90% of detections and 99% of losses occurred during the non-growing season due to fall manure application and slow degradation of antibiotics at cold temperatures. During years of high snowmelt, runoff accounted for nearly 100% of antibiotic losses, whereas during years of minimal snowmelt, runoff accounted for approximately 40% of antibiotic losses. Antibiotic losses were generally higher from the no-tillage compared with chisel plow treatment due to greater water percolation as a result of macroporosity and greater runoff due to lack of surface roughness in the no-tillage plots during the non-growing season. The results from this study suggest that small quantities of dissolved antibiotics could potentially reach surface and ground waters in the Upper Midwestern USA from manure-amended shallow macroporous soils underlain with fractured bedrock.

  19. Attachment of Escherichia coli and enterococci to particles in runoff.

    PubMed

    Soupir, Michelle L; Mostaghimi, Saied; Dillaha, Theo

    2010-01-01

    Association of Escherichia coli and enterococci with particulates present in runoff from erodible soils has important implications for modeling the fate and transport of bacteria from agricultural sources and in the selection of management practices to reduce bacterial movement to surface waters. Three soils with different textures were collected from the Ap horizon (silty loam, silty clay loam, and loamy fine sand), placed in portable box plots, treated with standard cowpats, and placed under a rainfall simulator. Rainfall was applied to the plots until saturation-excess flow occurred for 30 min, and samples were collected 10, 20, and 30 min after initiation of the runoff event. The attachment of E. coli and enterococci to particles present in runoff was determined by a screen filtration and centrifugation procedure. Percentage of E. coli and enterococci attached to particulates in runoff ranged from 28 to 49%, with few statistically significant differences in attachment among the three soils. Similar partitioning release patterns were observed between E. coli and enterococci from the silty loam (r = 0.57) and silty clay loam soils (r = 0.60). At least 60% of all attached E. coli and enterococci were associated particles within an 8- to 62-microm particle size category. The results indicate that the majority of fecal bacteria attach to and are transported with manure colloids in sediment-laden flow regardless of the soil texture.

  20. Frequency analysis of urban runoff quality in an urbanizing catchment of Shenzhen, China

    NASA Astrophysics Data System (ADS)

    Qin, Huapeng; Tan, Xiaolong; Fu, Guangtao; Zhang, Yingying; Huang, Yuefei

    2013-07-01

    This paper investigates the frequency distribution of urban runoff quality indicators using a long-term continuous simulation approach and evaluates the impacts of proposed runoff control schemes on runoff quality in an urbanizing catchment in Shenzhen, China. Four different indicators are considered to provide a comprehensive assessment of the potential impacts: total runoff depth, event pollutant load, Event Mean Concentration, and peak concentration during a rainfall event. The results obtained indicate that urban runoff quantity and quality in the catchment have significant variations in rainfall events and a very high rate of non-compliance with surface water quality regulations. Three runoff control schemes with the capacity to intercept an initial runoff depth of 5 mm, 10 mm, and 15 mm are evaluated, respectively, and diminishing marginal benefits are found with increasing interception levels in terms of water quality improvement. The effects of seasonal variation in rainfall events are investigated to provide a better understanding of the performance of the runoff control schemes. The pre-flood season has higher risk of poor water quality than other seasons after runoff control. This study demonstrates that frequency analysis of urban runoff quantity and quality provides a probabilistic evaluation of pollution control measures, and thus helps frame a risk-based decision making for urban runoff quality management in an urbanizing catchment.

  1. Modeling runoff and erosion risk in a~small steep cultivated watershed using different data sources: from on-site measurements to farmers' perceptions

    NASA Astrophysics Data System (ADS)

    Auvet, B.; Lidon, B.; Kartiwa, B.; Le Bissonnais, Y.; Poussin, J.-C.

    2015-09-01

    This paper presents an approach to model runoff and erosion risk in a context of data scarcity, whereas the majority of available models require large quantities of physical data that are frequently not accessible. To overcome this problem, our approach uses different sources of data, particularly on agricultural practices (tillage and land cover) and farmers' perceptions of runoff and erosion. The model was developed on a small (5 ha) cultivated watershed characterized by extreme conditions (slopes of up to 55 %, extreme rainfall events) on the Merapi volcano in Indonesia. Runoff was modelled using two versions of STREAM. First, a lumped version was used to determine the global parameters of the watershed. Second, a distributed version used three parameters for the production of runoff (slope, land cover and roughness), a precise DEM, and the position of waterways for runoff distribution. This information was derived from field observations and interviews with farmers. Both surface runoff models accurately reproduced runoff at the outlet. However, the distributed model (Nash-Sutcliffe = 0.94) was more accurate than the adjusted lumped model (N-S = 0.85), especially for the smallest and biggest runoff events, and produced accurate spatial distribution of runoff production and concentration. Different types of erosion processes (landslides, linear inter-ridge erosion, linear erosion in main waterways) were modelled as a combination of a hazard map (the spatial distribution of runoff/infiltration volume provided by the distributed model), and a susceptibility map combining slope, land cover and tillage, derived from in situ observations and interviews with farmers. Each erosion risk map gives a spatial representation of the different erosion processes including risk intensities and frequencies that were validated by the farmers and by in situ observations. Maps of erosion risk confirmed the impact of the concentration of runoff, the high susceptibility of long steep

  2. Do upslope impervious surfaces impact the run-on/runoff relationship?

    USDA-ARS?s Scientific Manuscript database

    Development of watersheds previously managed for agricultural uses for commercial and residential uses results in the replacement of pervious soil surfaces with impervious surfaces. Characteristics of runoff generated on new upslope impervious surfaces may differ from runoff generated on the predeve...

  3. Spatially distributed storm runoff modeling using remote sensing and geographic information systems

    NASA Astrophysics Data System (ADS)

    Melesse, Assefa Mekonnen

    Advances in scientific knowledge and new techniques of remote sensing permit a better understanding of the physical land features governing hydrologic processes, and make possible efficient, large-scale hydrologic modeling. The need for land-cover and hydrologic response change detection at a larger scale and at times of the year when hydrologic studies are critical makes satellite imagery the most cost effective, efficient and reliable source of data. The use of a Geographic Information System (GIS) to store, manipulate and visualize these data, and ultimately to estimate runoff from watersheds, has gained increasing attention in recent years. In this work, remotely-sensed data and GIS tools were used to estimate the changes in land-cover, and to estimate runoff response, for three watersheds (Etonia, Econlockhatchee, and S-65A sub-basins) in Florida. Land-use information from Digital Orthophoto Quarter Quadrangles (DOQQ), Landsat Thematic Mapper (TM), and Enhanced Thematic Mapper Plus (ETM+) were analyzed for the years 1973, 1984, 1990, 1995, and 2000. Spatial distribution of land-cover was assessed over time. The corresponding infiltration excess runoff response of the study areas due to these changes was estimated using the United States Department of Agriculture, Natural Resources Conservation Service Curve Number (USDA-NRCS-CN) method. A Digital Elevation Model (DEM)-GIS technique was developed to predict stream response to runoff events based on the travel time from each grid cell to the watershed outlet. The method was tested on a representative watershed (Simms Creek) in the Etonia sub-basin. Simulated and observed runoff volume and hydrographs were compared for 17 storm events. Isolated storms, with volumes of not less than 12.75 mm (0.5 inch) were selected. This is the minimum amount of rainfall volume recommended for the NRCS-CN method. Results show that the model predicts the runoff response of the study area with an average efficiency of 57

  4. Transport of three veterinary antimicrobials from feedlot pens via simulated rainfall runoff.

    PubMed

    Sura, Srinivas; Degenhardt, Dani; Cessna, Allan J; Larney, Francis J; Olson, Andrew F; McAllister, Tim A

    2015-07-15

    Veterinary antimicrobials are introduced to wider environments by manure application to agricultural fields or through leaching or runoff from manure storage areas (feedlots, stockpiles, windrows, lagoons). Detected in manure, manure-treated soils, and surface and ground water near intensive cattle feeding operations, there is a concern that environmental contamination by these chemicals may promote the development of antimicrobial resistance in bacteria. Surface runoff and leaching appear to be major transport pathways by which veterinary antimicrobials eventually contaminate surface and ground water, respectively. A study was conducted to investigate the transport of three veterinary antimicrobials (chlortetracycline, sulfamethazine, tylosin), commonly used in beef cattle production, in simulated rainfall runoff from feedlot pens. Mean concentrations of veterinary antimicrobials were 1.4 to 3.5 times higher in surface material from bedding vs. non-bedding pen areas. Runoff rates and volumetric runoff coefficients were similar across all treatments but both were significantly higher from non-bedding (0.53Lmin(-1); 0.27) than bedding areas (0.40Lmin(-1); 0.19). In keeping with concentrations in pen surface material, mean concentrations of veterinary antimicrobials were 1.4 to 2.5 times higher in runoff generated from bedding vs. non-bedding pen areas. Water solubility and sorption coefficient of antimicrobials played a role in their transport in runoff. Estimated amounts of chlortetracycline, sulfamethazine, and tylosin that could potentially be transported to the feedlot catch basin during a one in 100-year precipitation event were 1.3 to 3.6ghead(-1), 1.9ghead(-1), and 0.2ghead(-1), respectively. This study demonstrates the magnitude of veterinary antimicrobial transport in feedlot pen runoff and supports the necessity of catch basins for runoff containment within feedlots. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  5. [Effect of antecedent dry weather period on urban storm runoff pollution load].

    PubMed

    Li, Li-qing; Yin, Cheng-qing; Kong, Ling-li; He, Qing-ci

    2007-10-01

    Twelve storm events were surveyed at Shilipu catchment in Wuhan City through three-year monitoring regime. The flow discharges, total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in runoff were measured to study the mechanism of urban stormwater runoff pollution. The relationship between the event pollution load and the antecedent dry weather period was identified to discuss the influence of the urban surface sanitation management, operation of sewer pipe maintenance and rainfall characteristics on the urban stormwater runoff pollution. It was found that the antecedent dry weather period and runoff amount were the important determining factors in the generation of urban stormwater runoff pollution. The event pollution load was positively correlated to the antecedent dry weather period between two rainfall events (R2 = 0.95, p < 0.01). It was the most important hydrological factor influencing the events pollution loads. The best regression equation to estimate pollution load for storm events was developed based on the antecedent dry weather period and runoff depth. Source control including improving urban street sweeping activities and operation of sewer pipe maintenance should be made to reduce the amount of available pollutant over the dry days. It is important alternative to control urban stormwater runoff pollution for Hanyang District.

  6. Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama

    USGS Publications Warehouse

    Ogden, Fred L.; Crouch, Trey D.; Stallard, Robert F.; Hall, Jefferson S.

    2013-01-01

    A paired catchment methodology was used with more than 3 years of data to test whether forests increase base flow in the dry season, despite reduced annual runoff caused by evapotranspiration (the “sponge-effect hypothesis”), and whether forests reduce maximum runoff rates and totals during storms. The three study catchments were: a 142.3 ha old secondary forest, a 175.6 ha mosaic of mixed age forest, pasture, and subsistence agriculture, and a 35.9 ha actively grazed pasture subcatchment of the mosaic catchment. The two larger catchments are adjacent, with similar morphology, soils, underlying geology, and rainfall. Annual water balances, peak runoff rates, runoff efficiencies, and dry season recessions show significant differences. Dry season runoff from the forested catchment receded more slowly than from the mosaic and pasture catchments. The runoff rate from the forest catchment was 1–50% greater than that from the similarly sized mosaic catchment at the end of the dry season. This observation supports the sponge-effect hypothesis. The pasture and mosaic catchment median runoff efficiencies were 2.7 and 1.8 times that of the forest catchment, respectively, and increased with total storm rainfall. Peak runoff rates from the pasture and mosaic catchments were 1.7 and 1.4 times those of the forest catchment, respectively. The forest catchment produced 35% less total runoff and smaller peak runoff rates during the flood of record in the Panama Canal Watershed. Flood peak reduction and increased streamflows through dry periods are important benefits relevant to watershed management, payment for ecosystem services, water-quality management, reservoir sedimentation, and fresh water security in the Panama Canal watershed and similar tropical landscapes.

  7. Precipitation-runoff relations and water-quality characteristics at edge-of-field stations, Discovery Farms and Pioneer Farm, Wisconsin, 2003-8

    USGS Publications Warehouse

    Stuntebeck, Todd D.; Komiskey, Matthew J.; Peppler, Marie C.; Owens, David W.; Frame, Dennis R.

    2011-01-01

    between January and the end of June. Event mean concentrations of suspended sediment in runoff during unfrozen-ground periods were significantly higher (p2= 0.92), indicating that the sources of nitrogen and phosphorus in runoff were likely similar. Analysis of runoff, concentration, and yield data on annual, monthly, and seasonal time scales, when combined with precipitation, soil moisture, soil temperature, and on-farm field-activity information, revealed conditions in which runoff was most likely. The analysis also revealed the effects that field conditions and the timing of field-management activities-most notably, manure applications and tillage-had on the quantity and quality of surface runoff from agricultural fields.

  8. The role of irrigation runoff and winter rainfall on dissolved organic carbon loads in an agricultural watershed

    USGS Publications Warehouse

    Oh, Neung-Hwan; Pellerin, Brian A.; Bachand, Philip A.M.; Hernes, Peter J.; Bachand, Sandra M.; Ohara, Noriaki; Kavvas, M. Levent; Bergamaschi, Brian A.; Horwath, William R.

    2013-01-01

    We investigated the role of land use/land cover and agriculture practices on stream dissolved organic carbon (DOC) dynamics in the Willow Slough watershed (WSW) from 2006 to 2008. The 415 km2watershed in the northern Central Valley, California is covered by 31% of native vegetation and the remaining 69% of agricultural fields (primarily alfalfa, tomatoes, and rice). Stream discharge and weekly DOC concentrations were measured at eight nested subwatersheds to estimate the DOC loads and yields (loads/area) using the USGS developed stream load estimation model, LOADEST. Stream DOC concentrations peaked at 18.9 mg L−1 during summer irrigation in the subwatershed with the highest percentage of agricultural land use, demonstrating the strong influence of agricultural activities on summer DOC dynamics. These high concentrations contributed to DOC yields increasing up to 1.29 g m−2 during the 6 month period of intensive agricultural activity. The high DOC yields from the most agricultural subwatershed during the summer irrigation period was similar throughout the study, suggesting that summer DOC loads from irrigation runoff would not change significantly in the absence of major changes in crops or irrigation practices. In contrast, annual DOC yields varied from 0.89 to 1.68 g m−2 yr−1 for the most agricultural watershed due to differences in winter precipitation. This suggests that variability in the annual DOC yields will be largely determined by the winter precipitation, which can vary significantly from year to year. Changes in precipitation patterns and intensities as well as agricultural practices have potential to considerably alter the DOC dynamics.

  9. 29 CFR 1206.1 - Run-off elections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false Run-off elections. 1206.1 Section 1206.1 Labor Regulations... LABOR ACT § 1206.1 Run-off elections. (a) If in an election among any craft or class no organization or individual receives a majority of the legal votes cast, or in the event of a tie vote, a second or run-off...

  10. 29 CFR 1206.1 - Run-off elections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Run-off elections. 1206.1 Section 1206.1 Labor Regulations... LABOR ACT § 1206.1 Run-off elections. (a) If in an election among any craft or class no organization or individual receives a majority of the legal votes cast, or in the event of a tie vote, a second or run-off...

  11. Comparison of sediment and nutrient export and runoff characteristics from watersheds with centralized versus distributed stormwater management

    USGS Publications Warehouse

    Hopkins, Kristina G.; Loperfido, J.V.; Craig, Laura S.; Noe, Gregory; Hogan, Dianna

    2017-01-01

    Stormwater control measures (SCMs) are used to retain stormwater and pollutants. SCMs have traditionally been installed in a centralized manner using detention to mitigate peak flows. Recently, distributed SCM networks that treat runoff near the source have been increasingly utilized. The aim of this study was to evaluate differences among watersheds that vary in SCM arrangement by assessing differences in baseflow nutrient (NOx-N and PO4−) concentrations and fluxes, stormflow export of suspended sediments and particulate phosphorus (PP), and runoff characteristics. A paired watershed approach was used to compare export between 2004 and 2016 from one forested watershed (For-MD), one suburban watershed with centralized SCMs (Cent-MD), and one suburban watershed with distributed SCMs (Dist-MD). Results indicated baseflow nitrate (NOx-N) concentrations typically exceeded 1 mg-N/L in all watersheds and were highest in Dist-MD. Over the last 10 years in Dist-MD, nitrate concentrations in both stream baseflow and in a groundwater well declined as land use shifted from agriculture to suburban. Baseflow nitrate export temporarily increased during the construction phase of SCM development in Dist-MD. This temporary pulse of nitrate may be attributed to the conversion of sediment control facilities to SCMs and increased subsurface flushing as infiltration SCMs came on line. During storm flow, Dist-MD tended to have less runoff and lower maximum specific discharge than Cent-MD for small events (<1.3 cm), but runoff responses became increasingly similar to Cent-MD with increasing precipitation (>1.3 cm). Mass export estimated during paired storm events indicated Dist-MD exported 30% less sediment and 31% more PP than Cent-MD. For large precipitation events, export of sediment and PP was similar among all three watersheds. Results suggest that distributed SCMs can reduce runoff and sediment loads during small rain events compared to centralized SCMs, but these differences

  12. Comparison of sediment and nutrient export and runoff characteristics from watersheds with centralized versus distributed stormwater management.

    PubMed

    Hopkins, Kristina G; Loperfido, J V; Craig, Laura S; Noe, Gregory B; Hogan, Dianna M

    2017-12-01

    Stormwater control measures (SCMs) are used to retain stormwater and pollutants. SCMs have traditionally been installed in a centralized manner using detention to mitigate peak flows. Recently, distributed SCM networks that treat runoff near the source have been increasingly utilized. The aim of this study was to evaluate differences among watersheds that vary in SCM arrangement by assessing differences in baseflow nutrient (NO x -N and PO 4 - ) concentrations and fluxes, stormflow export of suspended sediments and particulate phosphorus (PP), and runoff characteristics. A paired watershed approach was used to compare export between 2004 and 2016 from one forested watershed (For-MD), one suburban watershed with centralized SCMs (Cent-MD), and one suburban watershed with distributed SCMs (Dist-MD). Results indicated baseflow nitrate (NO x -N) concentrations typically exceeded 1 mg-N/L in all watersheds and were highest in Dist-MD. Over the last 10 years in Dist-MD, nitrate concentrations in both stream baseflow and in a groundwater well declined as land use shifted from agriculture to suburban. Baseflow nitrate export temporarily increased during the construction phase of SCM development in Dist-MD. This temporary pulse of nitrate may be attributed to the conversion of sediment control facilities to SCMs and increased subsurface flushing as infiltration SCMs came on line. During storm flow, Dist-MD tended to have less runoff and lower maximum specific discharge than Cent-MD for small events (<1.3 cm), but runoff responses became increasingly similar to Cent-MD with increasing precipitation (>1.3 cm). Mass export estimated during paired storm events indicated Dist-MD exported 30% less sediment and 31% more PP than Cent-MD. For large precipitation events, export of sediment and PP was similar among all three watersheds. Results suggest that distributed SCMs can reduce runoff and sediment loads during small rain events compared to centralized SCMs, but these

  13. Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed land use and urban stormwater runoff.

    PubMed

    Paule-Mercado, M A; Ventura, J S; Memon, S A; Jahng, D; Kang, J-H; Lee, C-H

    2016-04-15

    While the urban runoff are increasingly being studied as a source of fecal indicator bacteria (FIB), less is known about the occurrence of FIB in watershed with mixed land use and ongoing land use and land cover (LULC) change. In this study, Escherichia coli (EC) and fecal streptococcus (FS) were monitored from 2012 to 2013 in agricultural, mixed and urban LULC and analyzed according to the most probable number (MPN). Pearson correlation was used to determine the relationship between FIB and environmental parameters (physicochemical and hydrometeorological). Multiple linear regressions (MLR) were used to identify the significant parameters that affect the FIB concentrations and to predict the response of FIB in LULC change. Overall, the FIB concentrations were higher in urban LULC (EC=3.33-7.39; FS=3.30-7.36log10MPN/100mL) possibly because of runoff from commercial market and 100% impervious cover (IC). Also, during early-summer season; this reflects a greater persistence and growth rate of FIB in a warmer environment. During intra-event, however, the FIB concentrations varied according to site condition. Anthropogenic activities and IC influenced the correlation between the FIB concentrations and environmental parameters. Stormwater temperature (TEMP), turbidity, and TSS positively correlated with the FIB concentrations (p>0.01), since IC increased, implying an accumulation of bacterial sources in urban activities. TEMP, BOD5, turbidity, TSS, and antecedent dry days (ADD) were the most significant explanatory variables for FIB as determined in MLR, possibly because they promoted the FIB growth and survival. The model confirmed the FIB concentrations: EC (R(2)=0.71-0.85; NSE=0.72-0.86) and FS (R(2)=0.65-0.83; NSE=0.66-0.84) are predicted to increase due to urbanization. Therefore, these findings will help in stormwater monitoring strategies, designing the best management practice for FIB removal and as input data for stormwater models. Copyright © 2016 Elsevier B

  14. Highway runoff quality in Ireland.

    PubMed

    Berhanu Desta, Mesfin; Bruen, Michael; Higgins, Neil; Johnston, Paul

    2007-04-01

    Highway runoff has been identified as a significant source of contaminants that impact on the receiving aquatic environment. Several studies have been completed documenting the characteristics of highway runoff and its implication to the receiving water in the UK and elsewhere. However, very little information is available for Ireland. The objective of this study was to determine the quality of highway runoff from major Irish roads under the current road drainage design and maintenance practice. Four sites were selected from the M4 and the M7 motorways outside Dublin. Automatic samplers and continuous monitoring devices were deployed to sample and monitor the runoff quality and quantity. More than 42 storm events were sampled and analysed for the heavy metals Cd, Cu, Pb, and Zn, 16 US EPA specified PAHs, volatile organic compounds including MTBE, and a number of conventional pollutants. All samples were analysed based on the Standard Methods. Significant quantities of solids and heavy metals were detected at all sites. PAHs were not detected very often, but when detected the values were different from quantities observed in UK highways. The heavy metal concentrations were strongly related to the total suspended solids concentrations, which has a useful implication for runoff management strategies. No strong relationship was discovered between pollutant concentrations and event characteristics such as rainfall intensity, antecedent dry days (ADD), or rainfall depth (volume). This study has demonstrated that runoff from Irish motorways was not any cleaner than in the UK although the traffic volume at the monitored sites was relatively smaller. This calls for a site specific investigation of highway runoff quality before adopting a given management strategy.

  15. Key factors affecting urban runoff pollution under cold climatic conditions

    NASA Astrophysics Data System (ADS)

    Valtanen, Marjo; Sillanpää, Nora; Setälä, Heikki

    2015-10-01

    Urban runoff contains various pollutants and has the potential of deteriorating the quality of aquatic ecosystems. In this study our objective is to shed light on the factors that control the runoff water quality in urbanized catchments. The effects of runoff event characteristics, land use type and catchment imperviousness on event mass loads (EML) and event mean concentrations (EMC) were studied during warm and cold periods in three study catchments (6.1, 6.5 and 12.6 ha in size) in the city of Lahti, Finland. Runoff and rainfall were measured continuously for two years at each catchment. Runoff samples were taken for total nutrients (tot-P and tot-N), total suspended solids (TSS), heavy metals (Zn, Cr, Al, Co, Ni, Cu, Pb, Mn) and total organic carbon (TOC). Stepwise multiple linear regression analysis (SMLR) was used to identify general relationships between the following variables: event water quality, runoff event characteristics and catchment characteristics. In general, the studied variables explained 50-90% of the EMLs but only 30-60% of the EMCs, with runoff duration having an important role in most of the SMLR models. Mean runoff intensity or peak flow was also often included in the runoff quality models. Yet, the importance (being the first, second or third best) and role (negative or positive impact) of the explanatory variables varied between the cold and warm period. Land use type often explained cold period concentrations, but imperviousness alone explained EMCs weakly. As for EMLs, the influence of imperviousness and/or land use was season and pollutant dependent. The study suggests that pollutant loads can be - throughout the year - adequately predicted by runoff characteristics given that seasonal differences are taken into account. Although pollutant concentrations were sensitive to variation in seasonal and catchment conditions as well, the accurate estimation of EMCs would require a more complete set of explanatory factors than used in this

  16. ArcCN-Runoff: An ArcGIS tool for generating curve number and runoff maps

    USGS Publications Warehouse

    Zhan, X.; Huang, M.-L.

    2004-01-01

    The development and the application of ArcCN-Runoff tool, an extension of ESRI@ ArcGIS software, are reported. This tool can be applied to determine curve numbers and to calculate runoff or infiltration for a rainfall event in a watershed. Implementation of GIS techniques such as dissolving, intersecting, and a curve-number reference table improve efficiency. Technical processing time may be reduced from days, if not weeks, to hours for producing spatially varied curve number and runoff maps. An application example for a watershed in Lyon County and Osage County, Kansas, USA, is presented. ?? 2004 Elsevier Ltd. All rights reserved.

  17. Extreme Weather Events and Impacts on Vector-borne Diseases and Agriculture

    USDA-ARS?s Scientific Manuscript database

    Extreme weather events during the period 2010-2012 impacted agriculture and vector-borne disease throughout the world. We evaluated specific weather events with satellite remotely sensed environmental data and evaluated crop production and diseases associated with these events. Significant droughts ...

  18. Distributions of typical contaminant species in urban short-term storm runoff and their fates during rain events: a case of Xiamen City.

    PubMed

    Wei, Qunshan; Zhu, Gefu; Wu, Peng; Cui, Li; Zhang, Kaisong; Zhou, Jingjing; Zhang, Wenru

    2010-01-01

    The pollutants in urban storm runoff, which lead to an non-point source contamination of water environment around cities, are of great concerns. The distributions of typical contaminants and the variations of their species in short term storm runoff from different land surfaces in Xiamen City were investigated. The concentrations of various contaminants, including organic matter, nutrients (i.e., N and P) and heavy metals, were significantly higher in parking lot and road runoff than those in roof and lawn runoff. The early runoff samples from traffic road and parking lot contained much high total nitrogen (TN 6-19 mg/L) and total phosphorus (TP 1-3 mg/L). A large proportion (around 60%) of TN existed as total dissolved nitrogen (TDN) species in most runoff. The percentage of TDN and the percentage of total dissolved phosphorus remained relatively stable during the rain events and did not decrease as dramatically as TN and TP. In addition, only parking lot and road runoff were contaminated by heavy metals, and both Pb (25-120 microg/L) and Zn (0.1-1.2 mg/L) were major heavy metals contaminating both runoff. Soluble Pb and Zn were predominantly existed as labile complex species (50%-99%), which may be adsorbed onto the surfaces of suspended particles and could be easily released out when pH decreased. This would have the great impact to the environment.

  19. A model for phosphorus transformation and runoff loss for surface-applied manures.

    PubMed

    Vadas, P A; Gburek, W J; Sharpley, A N; Kleinman, P J A; Moore, P A; Cabrera, M L; Harmel, R D

    2007-01-01

    Agricultural P transport in runoff is an environmental concern. An important source of P runoff is surface-applied, unincorporated manures, but computer models used to assess P transport do not adequately simulate P release and transport from surface manures. We developed a model to address this limitation. The model operates on a daily basis and simulates manure application to the soil surface, letting 60% of manure P infiltrate into soil if manure slurry with less than 15% solids is applied. The model divides manure P into four pools, water-extractable inorganic and organic P, and stable inorganic and organic P. The model simulates manure dry matter decomposition, and manure stable P transformation to water-extractable P. Manure dry matter and P are assimilated into soil to simulate bioturbation. Water-extractable P is leached from manure when it rains, and a portion of leached P can be transferred to surface runoff. Eighty percent of manure P leached into soil by rain remains in the top 2 cm, while 20% leaches deeper. This 2-cm soil layer contributes P to runoff via desorption. We used data from field studies in Texas, Pennsylvania, Georgia, and Arkansas to build and validate the model. Validation results show the model accurately predicted cumulative P loads in runoff, reflecting successful simulation of the dynamics of manure dry matter, manure and soil P pools, and storm-event runoff P concentrations. Predicted runoff P concentrations were significantly related to (r2=0.57) but slightly less than measured concentrations. Our model thus represents an important modification for field or watershed scale models that assess P loss from manured soils.

  20. Deciphering storm-event runoff behavior in a coastal plain watershed using chemical and physical hydrograph separation techniques

    Treesearch

    Timothy Callahan; Austin E. Morrison

    2016-01-01

    Interpreting storm-event runoff in coastal plain watersheds is challenging because of the space- and time-variable nature of different sources that contribute to stream flow. These flow vectors and the magnitude of water flux is dependent on the pre-storm soil moisture (as estimated from depth to water table) in the lower coastal plain (LCP) region.

  1. Satellite-derived land covers for runoff estimation using SCS-CN method in Chen-You-Lan Watershed, Taiwan

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Yan; Lin, Chao-Yuan

    2017-04-01

    The Soil Conservation Service Curve Number (SCS-CN) method, which was originally developed by the USDA Natural Resources Conservation Service, is widely used to estimate direct runoff volume from rainfall. The runoff Curve Number (CN) parameter is based on the hydrologic soil group and land use factors. In Taiwan, the national land use maps were interpreted from aerial photos in 1995 and 2008. Rapid updating of post-disaster land use map is limited due to the high cost of production, so the classification of satellite images is the alternative method to obtain the land use map. In this study, Normalized Difference Vegetation Index (NDVI) in Chen-You-Lan Watershed was derived from dry and wet season of Landsat imageries during 2003 - 2008. Land covers were interpreted from mean value and standard deviation of NDVI and were categorized into 4 groups i.e. forest, grassland, agriculture and bare land. Then, the runoff volume of typhoon events during 2005 - 2009 were estimated using SCS-CN method and verified with the measured runoff data. The result showed that the model efficiency coefficient is 90.77%. Therefore, estimating runoff by using the land cover map classified from satellite images is practicable.

  2. [Distribution form of nutrients in roof runoff].

    PubMed

    Wang, Biao; Li, Tian; Meng, Ying-Ying; Ren, Zhong-Jia; Cao, Bing-Yin

    2008-11-01

    6 rainfall-runoff events were examined from a concrete roof by a traffic artery in Shanghai to characterize the particle-bound and dissolved nutrients in roof runoff and to get more knowledge about roof runoff pollutants and lay the theoretic foundation for the selection of roof runoff purification method. Results indicated that event mean concentration (EMC) of TN ranges between 4.208 mg/L and 8.427 mg/L compared to 0.078-0.185 mg/L for TP. DN and PP are respectively the primary forms of TN and TP. During the runoff, the number ratio of small particles is gradually increased. The dynamic behavior of TP is similar to TSS, but the TN-TSS relationship in the course of runoff is not obvious. The increase of both PN/TSS and the number ration of small particles showed that nitrogen (microgramme per gram particle weight) attached to small particles is more than large particles. Regression analysis between TSS and TP & PP of samples in the early 10 min of runoff results in a high R2, but the relationship between TSS and TP & PP of samples in the entire runoff is not as close as the early 10 min, which reflects that the phosphorus quantity attached to the particle changes from the perspective of the entire course of runoff. First flush of TP is stronger than TN because the load discharge of dissolved nutrients is more stable than particle nutrients. In addition, more nitrogen absorbed by the unit mass small particles to a certain degree weakens the first flush of TN.

  3. Contribution of hydrological data to the understanding of the spatio-temporal dynamics of F-specific RNA bacteriophages in river water during rainfall-runoff events.

    PubMed

    Fauvel, Blandine; Cauchie, Henry-Michel; Gantzer, Christophe; Ogorzaly, Leslie

    2016-05-01

    Heavy rainfall events were previously reported to bring large amounts of microorganisms in surface water, including viruses. However, little information is available on the origin and transport of viral particles in water during such rain events. In this study, an integrative approach combining microbiological and hydrological measurements was investigated to appreciate the dynamics and origins of F-specific RNA bacteriophage fluxes during two distinct rainfall-runoff events. A high frequency sampling (automatic sampler) was set up to monitor the F-specific RNA bacteriophages fluxes at a fine temporal scale during the whole course of the rainfall-runoff events. A total of 276 rainfall-runoff samples were collected and analysed using both infectivity and RT-qPCR assays. The results highlight an increase of 2.5 log10 and 1.8 log10 of infectious F-specific RNA bacteriophage fluxes in parallel of an increase of the water flow levels for both events. Faecal pollution was characterised as being mainly from anthropic origin with a significant flux of phage particles belonging to the genogroup II. At the temporal scale, two successive distinct waves of phage pollution were established and identified through the hydrological measurements. The first arrival of phages in the water column was likely to be linked to the resuspension of riverbed sediments that was responsible for a high input of genogroup II. Surface runoff contributed further to the second input of phages, and more particularly of genogroup I. In addition, an important contribution of infectious phage particles has been highlighted. These findings imply the existence of a close relationship between the risk for human health and the viral contamination of flood water. Copyright © 2016 Luxembourg institute of Science and Technology. Published by Elsevier Ltd.. All rights reserved.

  4. Beyond the SCS curve number: A new stochastic spatial runoff approach

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S., Jr.; Parolari, A.; McDonnell, J.; Porporato, A. M.

    2015-12-01

    The Soil Conservation Service curve number (SCS-CN) method is the standard approach in practice for predicting a storm event runoff response. It is popular because its low parametric complexity and ease of use. However, the SCS-CN method does not describe the spatial variability of runoff and is restricted to certain geographic regions and land use types. Here we present a general theory for extending the SCS-CN method. Our new theory accommodates different event based models derived from alternative rainfall-runoff mechanisms or distributions of watershed variables, which are the basis of different semi-distributed models such as VIC, PDM, and TOPMODEL. We introduce a parsimonious but flexible description where runoff is initiated by a pure threshold, i.e., saturation excess, that is complemented by fill and spill runoff behavior from areas of partial saturation. To facilitate event based runoff prediction, we derive simple equations for the fraction of the runoff source areas, the probability density function (PDF) describing runoff variability, and the corresponding average runoff value (a runoff curve analogous to the SCS-CN). The benefit of the theory is that it unites the SCS-CN method, VIC, PDM, and TOPMODEL as the same model type but with different assumptions for the spatial distribution of variables and the runoff mechanism. The new multiple runoff mechanism description for the SCS-CN enables runoff prediction in geographic regions and site runoff types previously misrepresented by the traditional SCS-CN method. In addition, we show that the VIC, PDM, and TOPMODEL runoff curves may be more suitable than the SCS-CN for different conditions. Lastly, we explore predictions of sediment and nutrient transport by applying the PDF describing runoff variability within our new framework.

  5. Stormwater runoff drives viral community composition changes in inland freshwaters.

    PubMed

    Williamson, Kurt E; Harris, Jamie V; Green, Jasmin C; Rahman, Faraz; Chambers, Randolph M

    2014-01-01

    Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities.

  6. Stormwater runoff drives viral community composition changes in inland freshwaters

    PubMed Central

    Williamson, Kurt E.; Harris, Jamie V.; Green, Jasmin C.; Rahman, Faraz; Chambers, Randolph M.

    2014-01-01

    Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities. PMID:24672520

  7. A framework for managing runoff and pollution in the rural landscape using a Catchment Systems Engineering approach.

    PubMed

    Wilkinson, M E; Quinn, P F; Barber, N J; Jonczyk, J

    2014-01-15

    Intense farming plays a key role in increasing local scale runoff and erosion rates, resulting in water quality issues and flooding problems. There is potential for agricultural management to become a major part of improved strategies for controlling runoff. Here, a Catchment Systems Engineering (CSE) approach has been explored to solve the above problem. CSE is an interventionist approach to altering the catchment scale runoff regime through the manipulation of hydrological flow pathways throughout the catchment. By targeting hydrological flow pathways at source, such as overland flow, field drain and ditch function, a significant component of the runoff generation can be managed in turn reducing soil nutrient losses. The Belford catchment (5.7 km(2)) is a catchment scale study for which a CSE approach has been used to tackle a number of environmental issues. A variety of Runoff Attenuation Features (RAFs) have been implemented throughout the catchment to address diffuse pollution and flooding issues. The RAFs include bunds disconnecting flow pathways, diversion structures in ditches to spill and store high flows, large wood debris structure within the channel, and riparian zone management. Here a framework for applying a CSE approach to the catchment is shown in a step by step guide to implementing mitigation measures in the Belford Burn catchment. The framework is based around engagement with catchment stakeholders and uses evidence arising from field science. Using the framework, the flooding issue has been addressed at the catchment scale by altering the runoff regime. Initial findings suggest that RAFs have functioned as designed to reduce/attenuate runoff locally. However, evidence suggested that some RAFs needed modification and new RAFs be created to address diffuse pollution issues during storm events. Initial findings from these modified RAFs are showing improvements in sediment trapping capacities and reductions in phosphorus, nitrate and suspended

  8. Surface-water-quality assessment of the upper Illinois River Basin in Illinois, Indiana, and Wisconsin; data on agricultural organic compounds, nutrients, and sediment in water, 1988-90

    USGS Publications Warehouse

    Sullivan, D.J.; Terrio, P.J.

    1994-01-01

    This report describes the sampling design and methods and presents data collected to determine the distribution of agricultural organic compounds, nutrients, and sediment in selected areas of the upper Illinois River Basin as part of the National Water-Quality Assessment program. Four stations in small watersheds (two urban, two agricultural) were sampled in 1988 and 1989. Seventeen stations in an agricultural subbasin were sampled in 1990. Samples were collected before, during, and after runoff events from late spring to midsummer to determine concentrations of agricultural organic compounds in surface waters resulting from storm runoff, as well as background concentrations. Over 200 water samples were analyzed for agricultural organic compound, nutrient, and suspended-sediment concentrations. The agricultural organic compounds included triazine and chlorophenoxy-acid herbicides, and organo-phosphorus insecticides.

  9. Temporal analyses of Salmonellae in a headwater spring ecosystem reveals the effects of precipitation and runoff events.

    PubMed

    Gaertner, James P; Garres, Tiffany; Becker, Jesse C; Jimenez, Maria L; Forstner, Michael R J; Hahn, Dittmar

    2009-03-01

    Sediments and water from the spring and slough arm of Spring Lake, the pristine headwaters of the San Marcos River, Texas, were analyzed for Salmonellae by culture and molecular techniques before and after three major precipitation events, each with intermediate dry periods. Polymerase chain reaction (PCR)-assisted analyses of enrichment cultures detected Salmonellae in samples after all three precipitation events, but failed to detect them immediately prior to the rainfall events. Detection among individual locations differed with respect to the precipitation event analyzed, and strains isolated were highly variable with respect to serovars. These results demonstrate that rainwater associated effects, most likely surface runoff, provide an avenue for short-term pollution of aquatic systems with Salmonellae that do not, however, appear to establish for the long-term in water nor sediments.

  10. Characterizations of the first flush in storm water runoff from an urban roadway.

    PubMed

    Lee, B C; Matsui, S; Shimizu, Y; Matsuda, T

    2005-07-01

    Storm water runoff from urban roadways contains anthropogenic pollutants, which are mainly generated from traffic-related activities. The purpose of this study was to evaluate the characteristics of pollutants from the roadway runoff as well as first flush effects. Storm water runoff was sampled during five storm events from the experimental site in Otsu, Shiga, Japan. From the hydrographs and pollutographs for the roadway runoff, the concentration of pollutants increased with increasing runoff flow in the low flow rate event, but did not significantly increase in the high flow rate event. Moreover, according to the analysis of cumulative pollutant mass versus runoff volume curves from five storm events, the first 50% of the runoff volume transported 62% of TOC and Mo, 60% of SS, 59% of Fe, Mn and Cu, 58% of Ni, 57% of Cd and Pb, 56% of Al, 55% of Zn, and 54% of Cr, as the mean values. The first 30% and 80% of the runoff volume also transported 34-43% mass of the pollutants and 82-88% mass of the pollutants, respectively. This study for storm water runoff may also provide useful information to correctly design treatment facilities, such as detention tanks and ponds, filtration and adsorption systems.

  11. A novel fractionation approach for water constituents - distribution of storm event metals.

    PubMed

    McKenzie, Erica R; Young, Thomas M

    2013-05-01

    A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg km(-2)) were observed to be as follows: highway > urban > agricultural storm event ∼ natural > agricultural irrigation. Notably, ∼10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter.

  12. Urbanisation impacts on storm runoff along a rural-urban gradient

    NASA Astrophysics Data System (ADS)

    Miller, James David; Hess, Tim

    2017-09-01

    Urbanisation alters the hydrological response of catchments to storm events and spatial measures of urban extent and imperviousness are routinely used in hydrological modelling and attribution of runoff response to land use changes. This study evaluates whether a measure of catchment urban extent can account for differences in runoff generation from storm events along an rural-urban gradient. We employed a high-resolution monitoring network across 8 catchments in the south of the UK - ranging from predominantly rural to heavily urbanised - over a four year period, and from this selected 336 storm events. Hydrological response was compared using volume- and scaled time-based hydrograph metrics within a statistical framework that considered the effect of antecedent soil moisture. Clear differences were found between rural and urban catchments, however above a certain threshold of urban extent runoff volume was relatively unaffected by changes and runoff response times were highly variable between catchments due to additional hydraulic controls. Results indicate a spatial measure of urbanisation can generally explain differences in the hydrological response between rural and urban catchments but is insufficient to explain differences between urban catchments along an urban gradient. Antecedent soil moisture alters the volume and timing of runoff generated in catchments with large rural areas, but was not found to affect the runoff response where developed areas are much greater. The results of this study suggest some generalised relationships between urbanisation and storm runoff are not represented in observed storm events and point to limitations in using a simplified representations of the urban environment for attribution of storm runoff in small urban catchments. The study points to the need for enhanced hydrologically relevant catchment descriptors specific to small urban catchments and more focused research on the role of urban soils and soil moisture in storm

  13. Effects of Cadastral Boundaries in Agricultural Land on Runoff Generation

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Tripathi, S.

    2011-12-01

    The Gangetic Plain is among the most fertile and highly cultivated regions of the world. It supports a large agrarian population that is rapidly growing since the Green Revolution of 1960s. With increasing population, the average farm size is decreasing. Consequently, the density of cadastral boundaries, which are used for separating individual farm holdings, is increasing. The cadastral boundaries in the Gangetic Plains are typically 25 to 30 cm high and 30 to 60 cm wide. These boundaries segment the flat topography of the region, creating small artificial water storages, the effect of which on the hydrology of the region is not extensively investigated. The objective of this research is to develop a laboratory scale physical model for understanding the effect of cadastral boundaries and resulting artificial storages on runoff generation. Experiments were performed in a hydrological apparatus equipped for simulating rainfall-runoff processes under control conditions. The experiments were carried out for watersheds with no cadastral boundaries, and with cadastral boundaries of varying dimensions and densities. Changes in the observed runoff were used to develop a mathematical model for explaining and predicting the impact of cadastral boundaries on the hydrology of the Gangetic Plains.

  14. Aged Manures as Sources of Pathogens in Agricultural Runoff

    EPA Science Inventory

    Overland runoff from fields with applied manure may carry a variety of chemical and microbial contaminants that compromise water quality and increase the human health risk of exposure to pathogenic microorganisms. A series of rainfall simulation experiments were designed and impl...

  15. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions.

    PubMed

    Nsenga Kumwimba, Mathieu; Meng, Fangang; Iseyemi, Oluwayinka; Moore, Matthew T; Zhu, Bo; Tao, Wang; Liang, Tang Jia; Ilunga, Lunda

    2018-10-15

    Domestic wastewater and agricultural runoff are increasingly viewed as major threats to both aquatic and terrestrial ecosystems due to the introduction of non-point source inorganic (e.g., nitrogen, phosphorus and metals) and organic (e.g., pesticides and pharmaceutical residues) pollutants. With rapid economic growth and social change in rural regions, it is important to examine the treatment systems in rural and remote areas for high efficiency, low running costs, and minimal maintenance in order to minimize its influence on water bodies and biodiversity. Recently, the use of vegetated drainage ditches (VDDs) has been employed in treatment of domestic sewage and agricultural runoff, but information on the performance of VDDs for treating these pollutants with various new management practices is still not sufficiently summarized. This paper aims to outline and review current knowledge related to the use of VDDs in mitigating these pollutants from domestic sewage and agricultural runoff. Literature analysis has suggested that further research should be carried out to improve ditch characteristics and management strategies inside ditches in order to ensure their effectiveness. Firstly, the reported major ditch characteristics with the most effect on pollutant removal processes (e.g., plant species, weirs, biofilms, and substrates selection) were summarized. The second focus concerns the function of ditch characteristics in VDDs for pollutant removal and identification of possible removal mechanisms involved. Thirdly, we examined factors to consider for establishing appropriate management strategies within ditches and how these could influence the whole ditch design process. The current review promotes areas where future research is needed and highlights clear and sufficient evidence regarding performance and application of this overlooked ditch system to reduce pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. The Characteristics of Extreme Erosion Events in a Small Mountainous Watershed

    PubMed Central

    Fang, Nu-Fang; Shi, Zhi-Hua; Yue, Ben-Jiang; Wang, Ling

    2013-01-01

    A large amount of soil loss is caused by a small number of extreme events that are mainly responsible for the time compression of geomorphic processes. The aim of this study was to analyze suspended sediment transport during extreme erosion events in a mountainous watershed. Field measurements were conducted in Wangjiaqiao, a small agricultural watershed (16.7 km2) in the Three Gorges Area (TGA) of China. Continuous records were used to analyze suspended sediment transport regimes and assess the sediment loads of 205 rainfall–runoff events during a period of 16 hydrological years (1989–2004). Extreme events were defined as the largest events, ranked in order of their absolute magnitude (representing the 95th percentile). Ten extreme erosion events from 205 erosion events, representing 83.8% of the total suspended sediment load, were selected for study. The results of canonical discriminant analysis indicated that extreme erosion events are characterized by high maximum flood-suspended sediment concentrations, high runoff coefficients, and high flood peak discharge, which could possibly be explained by the transport of deposited sediment within the stream bed during previous events or bank collapses. PMID:24146898

  17. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    PubMed Central

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444

  18. Characterization of urban runoff pollution between dissolved and particulate phases.

    PubMed

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.

  19. Runoff as a factor in USLE/RUSLE technology

    NASA Astrophysics Data System (ADS)

    Kinnell, Peter

    2014-05-01

    Modelling erosion for prediction purposes started with the development of the Universal Soil Loss Equation the focus of which was the prediction of long term (~20) average annul soil loss from field sized areas. That purpose has been maintained in the subsequent revision RUSLE, the most widely used erosion prediction model in the world. The lack of ability to predict short term soil loss saw the development of so-called process based models like WEPP and EUROSEM which focussed on predicting event erosion but failed to improve the prediction of long term erosion where the RUSLE worked well. One of the features of erosion recognised in the so-called process based modes is the fact that runoff is a primary factor in rainfall erosion and some modifications of USLE/RUSLE model have been proposed have included runoff as in independent factor in determining event erosivity. However, these models have ignored fundamental mathematical rules. The USLE-M which replaces the EI30 index by the product of the runoff ratio and EI30 was developed from the concept that soil loss is the product of runoff and sediment concentration and operates in a way that obeys the mathematical rules upon which the USLE/RUSLE model was based. In accounts for event soil loss better that the EI30 index where runoff values are known or predicted adequately. RUSLE2 now includes a capacity to model runoff driven erosion.

  20. Characterizing Storm Event Dynamics of a Forested Watershed in the Lower Atlantic Coastal Plain, South Carolina USA

    NASA Astrophysics Data System (ADS)

    Latorre Torres, I. B.; Amatya, D. M.; Callahan, T. J.; Levine, N. S.

    2007-12-01

    Hydrology research in the Southeast U.S. has primarily focused on upland mountainous areas; however, much less is known about hydrological processes in Lower Coastal Plain (LCP) watersheds. Such watersheds are difficult to characterize due to shallow water table conditions, low topographic gradient, complex surface- subsurface water interaction, and lack of detailed soil information. Although opportunities to conduct long term monitoring in relatively undeveloped watersheds are often limited, stream flow and rainfall in the Turkey Creek watershed (third-order watershed, about 7200 ha in the Francis Marion National Forest near Charleston, SC) have been monitored since 1964. In this study, event runoff-rainfall ratios have been determined for 51 storm events using historical data from 1964-1973. One of our objectives was to characterize relationships between seasonal event rainfall and storm outflow in this watershed. To this end, observed storm event data were compared with values predicted by established hydrological methods such as the Soil Conservation Service runoff curve number (SCS-CN) and the rational method integrated within a Geographical Information System (GIS), to estimate total event runoff and peak discharge, respectively. Available 1:15000 scale aerial images were digitized to obtain land uses, which were used with the SCS soil hydrologic groups to obtain the runoff coefficients (C) for the rational method and the CN values for the SCS-CN method. These methods are being tested with historical storm event responses in the Turkey Creek watershed scale, and then will be used to predict event runoff in Quinby Creek, an ungauged third-order watershed (8700 ha) adjacent to Turkey Creek. Successful testing with refinement of parameters in the rational method and SCS-CN method, both designed for small urban and agricultural dominated watersheds, may allow widespread application of these methods for studying the event rainfall-runoff dynamics for similar

  1. Combination of geochemical and hydrobiological tracers for the analysis of runoff generating processes in a lowland catchment

    NASA Astrophysics Data System (ADS)

    Faber, Claas; Wu, Naicheng; Ulrich, Uta; Fohrer, Nicola

    2015-04-01

    Since lowlands are characterised by flat topography and low hydraulic gradients, groundwater inflow has a large influence to streamflow generation in such catchments. In catchments with intense agricultural land use, artificial drainages are often another major contributor to streamflow. They shorten the soil passage and thus change the matter retention potential as well as runoff dynamics of a catchment. Contribution of surface runoff to streamflow is usually less important in volume. However, due to high concentrations of agrochemicals, surface runoff can constitute an important entry pathway into water bodies, especially if strong precipitation events coincide with fertilizer or pesticide application. The DFG funded project "Separating surface runoff from tile drainage flow in agricultural lowland catchments based on diatoms to improve modelled runoff components and phosphorous transport" investigates prevalent processes in this context in a 50 km² lowland catchment (Kielstau, Schleswig-Holstein, Germany) with the goal of improving existing models. End Member Mixing Analysis (EMMA) is used in the project to determine the relative importance of groundwater, tile drainage and surface runoff to streamflow at daily time steps. It became apparent that geochemical tracers are suitable for distinguishing surface runoff, but are weak for the separation of tile drainage and groundwater influence. We attribute this to the strong and complex interaction between soil water and shallow groundwater tables in the catchment. Recent studies (e.g. Pfister et al. 2011, Tauro et al. 2013) show the potential of diatoms as indicators for hydrological processes. Since we found diatoms to be suitable for the separation of tile drainage and stream samples (Wu et al., unpublished data) in our catchment, we are able to include diatom derived indices (e.g. density, species moisture indices, diversity indices) as traces in EMMA. Our results show that the inclusion of diatom data in the

  2. A novel fractionation approach for water constituents – distribution of storm event metals

    PubMed Central

    McKenzie, Erica R.; Young, Thomas M.

    2014-01-01

    A novel fractionation method, based on both particle size and settling characteristics, was employed to examine metal distributions among five fractions. In-stream and stormwater runoff samples were collected from four land use types: highway, urban, agricultural (storm event and irrigation), and natural. Highway samples contained the highest dissolved concentrations for most metals, and freshwater ambient water quality criteria were exceeded for Cd, Cu, Pb, and Zn in the first storm of the water year. Anthropogenic sources were indicated for Cu, Zn, Cd, and Pb in highway and urban samples, and total metal loadings (mg/km2) were observed to be as follows: highway > urban > agricultural storm event ~ natural > agricultural irrigation. Notably, ~10-fold higher suspended solids concentration was observed in the agricultural storm event sample, and suspended solids-associated metals were correspondingly elevated. Distribution coefficients revealed the following affinities: Zn, Ni, Cd, and Pb to large dense particles; and Cu, Zn, Cr, Ni, and Pb to colloidal organic matter. PMID:23535891

  3. Phosphorus transport pathways to streams in tile-drained agricultural watersheds.

    PubMed

    Gentry, L E; David, M B; Royer, T V; Mitchell, C A; Starks, K M

    2007-01-01

    Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L(-1), and seven water year by watershed combinations exceeded 0.2 mg L(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.

  4. Impact of runoff water from an experimental agricultural field applied with Vertimec® 18EC (abamectin) on the survival, growth and gill morphology of zebrafish juveniles.

    PubMed

    Novelli, Andréa; Vieira, Bruna Horvath; Braun, Andréa Simone; Mendes, Lucas Bueno; Daam, Michiel Adriaan; Espíndola, Evaldo Luiz Gaeta

    2016-02-01

    Edge-of-field waterbodies in tropical agroecosystems have been reported to be especially prone to pesticide contamination through runoff resulting from intensive irrigation practices and tropical rainfall. In the present study, the effects of runoff from an experimental agricultural field applied with Vertimec(®) 18EC (active ingredient: abamectin) on zebrafish were evaluated. To this end, the experimental field was applied with the Vertimec(®) 18EC dose recommended for strawberry crop in Brazil, whereas another field was treated with water only to serve as control. No effects of runoff water from either plot were recorded on survival. Water from the treated field led to increased growth and gill alterations. In general, these alterations were of the first and second degree, including proliferation of cells between the secondary lamellae, dilation at the lamellar apex, detachment of the respiratory epithelium and aneurism. These results confirm the high toxic potential of Vertimec(®) 18EC and provide evidence that environmental risks are likely to occur in areas subject to runoff containing this pesticide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Management of microbial contamination in storm runoff from California coastal dairy pastures.

    PubMed

    Lewis, David J; Atwill, Edward R; Lennox, Michael S; Pereira, Maria D G; Miller, Woutrina A; Conrad, Patricia A; Tate, Kenneth W

    2010-01-01

    A survey of storm runoff fecal coliform bacteria (FCB) from working farm and ranch pastures is presented in conjunction with a survey of FCB in manure management systems (MMS). The cross-sectional survey of pasture runoff was conducted on 34 pastures on five different dairies over 2 yr under varying conditions of precipitation, slope, manure management, and use of conservation practices such as vegetative filter strips. The MMS cross-sectional survey consisted of samples collected during 1 yr on nine different dairies from six loafing barns, nine primary lagoons, 12 secondary lagoons, and six irrigation sample points. Pasture runoff samples were additionally analyzed for Cryptosporidium sp. and Giardia duodenalis, whereby detectable concentrations occurred sporadically at higher FCB concentrations resulting in poor correlations with FCB. Prevalence of both parasites was lower relative to high-use areas studied simultaneously on these same farms. Application of manure to pastures more than 2 wk in advance of storm-associated runoff was related to a > or =80% reduction in FCB concentration and load compared to applications within 2 wk before a runoff event. For every 10 m of buffer length, a 24% reduction in FCB concentration was documented. A one-half (75%), one (90%), and two (99%) log10 reduction in manure FCB concentration was observed for manure holding times in MMS of approximately 20, 66, and 133 d, respectively. These results suggest that there are several management and conservation practices for working farms that may result in reduced FCB fluxes from agricultural operations.

  6. Improving runoff risk estimates: Formulating runoff as a bivariate process using the SCS curve number method

    NASA Astrophysics Data System (ADS)

    Shaw, Stephen B.; Walter, M. Todd

    2009-03-01

    The Soil Conservation Service curve number (SCS-CN) method is widely used to predict storm runoff for hydraulic design purposes, such as sizing culverts and detention basins. As traditionally used, the probability of calculated runoff is equated to the probability of the causative rainfall event, an assumption that fails to account for the influence of variations in soil moisture on runoff generation. We propose a modification to the SCS-CN method that explicitly incorporates rainfall return periods and the frequency of different soil moisture states to quantify storm runoff risks. Soil moisture status is assumed to be correlated to stream base flow. Fundamentally, this approach treats runoff as the outcome of a bivariate process instead of dictating a 1:1 relationship between causative rainfall and resulting runoff volumes. Using data from the Fall Creek watershed in western New York and the headwaters of the French Broad River in the mountains of North Carolina, we show that our modified SCS-CN method improves frequency discharge predictions in medium-sized watersheds in the eastern United States in comparison to the traditional application of the method.

  7. [Research on evaluation of water quality of Beijing urban stormwater runoff].

    PubMed

    Hou, Pei-Qiang; Ren, Yu-Fen; Wang, Xiao-Ke; Ouyang, Zhi-Yun; Zhou, Xiao-Ping

    2012-01-01

    The natural rainwater and stormwater runoff samples from three underlying surfaces (rooftop, campus road and ring road) were sampled and analyzed from July to October, 2010 in Beijing. Eight rainfall events were collected totally and thirteen water quality parameters were measured in each event. Grey relationship analysis and principal component analysis were applied to assess composite water quality and identify the main pollution sources of stormwater runoff. The results show that the composite water quality of ring road runoff is mostly polluted, and then is rooftop runoff, campus road runoff and rainwater, respectively. The composite water quality of ring road runoff is inferior to V class of surface water, while rooftop runoff, campus road runoff and rainwater are in II class of surface water. The mean concentration of TN and NH4(+)-N in rainwater and runoff is 5.49-11.75 mg x L(-1) and 2.90-5.67 mg x L(-1), respectively, indicating that rainwater and runoff are polluted by nitrogen (N). Two potential pollution sources are identified in ring road runoff: (1) P, SS and organic pollutant are possibly related to debris which is from vehicle tyre and material of ring road; (2) N and dissolved metal have relations with automobile exhaust emissions and bulk deposition.

  8. Rainfall-runoff modelling of the Okavango River catchment to assess impacts of land use change on runoff and downstream ecosystems

    NASA Astrophysics Data System (ADS)

    Milzow, Christian; Bauer-Gottwein, Peter

    2010-05-01

    The competition between human water use and ecosystem water use is one of the major challenges for water resources management at the global scale. We analyse the situation for the Okavango River basin of southern Africa. The Okavango River is representative for many large rivers throughout the developing world in that it is ungauged and poorly studied. The Okavango basin - spanning over Angola, Namibia and Botswana - represents a multi-objective problem in an international setting. Economic benefits of agricultural development and conservation of ecosystem services call for opposed actions. A semi-distributed rainfall-runoff model of the Okavango catchment is set up using the Soil and Water Assessment Tool (SWAT). The model is sufficiently physically based to simulate the impact on runoff of extent of agricultural use, crop types and management practices. Precipitation and temperature inputs are taken from datasets covering large parts of the globe. The methodology can thus easily be applied for other ungauged catchments. For temperature we use the ERA-Interim reanalysis product of the European Centre for Medium-Range Weather Forecasts and for precipitation the Famine Early Warning Systems Network data (FEWS-Net). Tropical Rainfall Measurement Mission (TRMM) data resulted in poor model performance compared to the FEWS-Net data. Presently, the upstream catchment in Angola is largely pristine and agriculture is basically restricted to dry land subsistence farming. But economic growth in Angola is likely to result in agricultural development and consequent impacts on catchment runoff. Land use scenarios that are simulated include large scale irrigated agriculture with water extractions from the river and the shallow aquifer. Climate change impacts are also studied and compared to land use change impacts. The downstream part of the basin consists of the large Okavango Wetlands, which are a biodiversity hotspot of global importance and, through tourism, an important

  9. Transport mechanisms of soil-bound mercury in the erosion process during rainfall-runoff events.

    PubMed

    Zheng, Yi; Luo, Xiaolin; Zhang, Wei; Wu, Xin; Zhang, Juan; Han, Feng

    2016-08-01

    Soil contamination by mercury (Hg) is a global environmental issue. In watersheds with a significant soil Hg storage, soil erosion during rainfall-runoff events can result in nonpoint source (NPS) Hg pollution and therefore, can extend its environmental risk from soils to aquatic ecosystems. Nonetheless, transport mechanisms of soil-bound Hg in the erosion process have not been explored directly, and how different fractions of soil organic matter (SOM) impact transport is not fully understood. This study investigated transport mechanisms based on rainfall-runoff simulation experiments. The experiments simulated high-intensity and long-duration rainfall conditions, which can produce significant soil erosion and NPS pollution. The enrichment ratio (ER) of total mercury (THg) was the key variable in exploring the mechanisms. The main study findings include the following: First, the ER-sediment flux relationship for Hg depends on soil composition, and no uniform ER-sediment flux function exists for different soils. Second, depending on soil composition, significantly more Hg could be released from a less polluted soil in the early stage of large rainfall events. Third, the heavy fraction of SOM (i.e., the remnant organic matter coating on mineral particles) has a dominant influence on the enrichment behavior and transport mechanisms of Hg, while clay mineral content exhibits a significant, but indirect, influence. The study results imply that it is critical to quantify the SOM composition in addition to total organic carbon (TOC) for different soils in the watershed to adequately model the NPS pollution of Hg and spatially prioritize management actions in a heterogeneous watershed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. 17β-estradiol in runoff as affected by various poultry litter application strategies.

    PubMed

    Delaune, P B; Moore, P A

    2013-02-01

    Steroidal hormones, which are excreted by all mammalian species, have received increasing attention in recent years due to potential environmental implications. The objective of this study was to evaluate 17β-estradiol concentrations in runoff water from plots receiving poultry litter applications using various management strategies. Treatments included the effects of 1) aluminum sulfate (alum) application rates to poultry litter; 2) time until the first runoff event occurs after poultry litter application; 3) poultry litter application rate; 4) fertilizer type; and 5) litter from birds fed modified diets. Rainfall simulators were used to cause continuous runoff from fertilized plots. Runoff samples were collected and analyzed for 17β-estradiol concentrations. Results showed that increasing alum additions to poultry litter decreased 17β-estradiol concentrations in runoff water. A significant exponential decline in 17β-estradiol runoff was also observed with increasing time until the first runoff event after litter application. Concentrations of 17β-estradiol in runoff water increased with increasing litter application rate and remained above background concentrations after three runoff events at higher application rates. Management practices such as diet modification and selection of fertilizer type were also shown to affect 17β-estradiol concentrations in runoff water. Although results from these experiments typically represented a worst case scenario since runoff events generally occurred immediately after litter application, the contaminant loss from pastures fertilized with poultry litter can be expected to be much lower than continual estradiol loadings observed from waste water treatment plants. Management practices such as alum amendment and application timing can significantly reduce the risk of 17β-estradiol losses in the environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Surface roughness and runoff

    NASA Astrophysics Data System (ADS)

    Szabó, Judit Alexandra; Szabó, Boglárka; Centeri, Csaba; Józsa, Sándor; Szalai, Zoltán; Jakab, Gergely

    2017-04-01

    Soil surface conditions changes dynamically during a precipitation event. The changes involve compaction, aggregate detachment and of course transportation by runoff or drop erosion. Those processes together have an effect on the transport process of the soil particles and aggregates, and influences the roughness of the soil surface as well. How does surface roughness have an effect on the aggregate and particle size distribution of the sediment? How does the sediment connectivity change from precipitation event to precipitation event? Beside the previous questions on of the main aim of the present research is to apply rainfall simulators for the built-up of a complex approach, rather than to concentrate only on one of two factors. Hence four types of sample were collected during the simulation experiment sequences: 1) photos were taken about the surface before and after the rain, in order to build digital surface models; 2) all the runoff and eroded sediment was collected; 3) soil loss due to drop erosion was also sampled separately; and 4) undisturbed crust samples were collected for thin section analyses. Though the runoff ratio was smaller than what, the preliminary results suggest that the sediment connectivity covered bigger area on crusty surface, than on a rough one. These ambiguous data may be connected to the soil crust development. J. A. Szabó wish to acknowledge the support of NTP-NFTÖ-16-0203. G. Jakab wish to acknowledge the support of János Bolyai Fellowship.

  12. Runoff production from intercrater plains on Mars

    NASA Astrophysics Data System (ADS)

    Irwin, R. P., III; Matsubara, Y.; Cawley, J. C.

    2016-12-01

    Ancient fluvial paleochannels and paleolakes constrain the hydrology of a wetter epoch in the early history of Mars. The cross-sectional dimensions of fluvial channels scale with discharge, watershed topography is generally well preserved, and adjustments can be made for gravity. These factors have supported conservative estimates of runoff production during event floods more than 3.5 billion years ago. Assuming weak channel banks, such that discharge is low per unit channel width, event floods in smaller watersheds had estimated runoff production of 1 cm/day. Highland surfaces generated runoff inefficiently, such that channel width increases with only the 0.3 power of watershed area. Inefficient runoff production on Mars is also suggested by new landscape evolution modeling. In long-term simulations that accurately reproduce the present landscape, forming and degrading all of the Middle and Late Noachian impact craters in selected study areas, inefficient runoff production is needed to degrade craters without intensely dissecting intercrater surfaces. The model shows that discharge generally cannot increase at more than the 0.3 power of watershed area. Paleolakes provide useful constraints on paleohydrology over intermediate timescales of years to millennia. Most local highland basins were never integrated into regional drainage systems, but some have both a contributing valley network and an outlet valley, indicating that they overflowed. Paleolake overflows require a medium-term water supply that exceeds losses to evaporation. Reasonable evaporation of 0.1 to 1 m/yr and watersheds that are mostly >10 times the area of overflowed paleolakes suggest runoff production of <0.1 m per year. Event floods were both moderate and rare during peak fluvial conditions on Mars. Over the bulk of the Middle and Late Noachian Epochs, the loss of small craters, scarp retreat, and basin infilling suggest less intense fluvial activity along with weathering, impact gardening, and

  13. Agricultural Runoff: New Research Trends

    USDA-ARS?s Scientific Manuscript database

    There is public concern worldwide about the impact of agriculture on the environment and the migration of agrochemicals from their target to nearby terrestrial and aquatic ecosystems and sometimes to the atmosphere and other times to the groundwater. To achieve the highest yields, farmers use many a...

  14. Using insurance data to learn more about damages to buildings caused by surface runoff

    NASA Astrophysics Data System (ADS)

    Bernet, Daniel; Roethlisberger, Veronika; Prasuhn, Volker; Weingartner, Rolf

    2015-04-01

    In Switzerland, almost forty percent of total insurance loss due to natural hazards in the last two decades was caused by flooding. Those flood damages occurred not only within known inundation zones of water courses. Practitioners expect that roughly half of all flood damages lie outside of known inundation zones. In urban areas such damages may simply be caused by drainage system overload for instance. However, as several case studies show, natural and agricultural land play a major role in surface runoff formation leading to damages in rural and peri-urban areas. Although many damages are caused by surface runoff, the whole process chain including surface runoff formation, propagation through the landscape and damages to buildings is not well understood. Therefore, within the framework of a project, we focus our research on this relevant process. As such flash flood events have a very short response time and occur rather diffusely in the landscape, this process is very difficult to observe directly. Therefore indirect data sources with the potential to indicate spatial and temporal distributions of the process have to be used. For that matter, post-flood damage data may be a profitable source. Namely, insurance companies' damage claim records could provide a good picture about the spatial and temporal distributions of damages caused by surface runoff and, thus, about the process itself. In our research we analyze insurance data records of flood damage claims systematically to infer main drivers and influencing factors of surface runoff causing damages to buildings. To demonstrate the potential and drawbacks of using data from insurance companies in relation to damages caused by surface runoff, a case study is presented. A well-documented event with data from a public as well as a private insurance company is selected. The case study focuses on the differences of the datasets as well as the associated problems and advantages respectively. Furthermore, the

  15. Diazinon and chlorpyrifos loads in precipitation and urban and agricultural storm runoff during January and February 2001 in the San Joaquin River basin, California

    USGS Publications Warehouse

    Zamora, Celia; Kratzer, Charles R.; Majewski, Michael S.; Knifong, Donna L.

    2003-01-01

    The application of diazinon and chlorpyrifos on dormant orchards in 2001 in the San Joaquin River Basin was 24 percent less and 3.2 times more than applications in 2000, respectively. A total of 16 sites were sampled during January and February 2001 storm events: 7 river sites, 8 precipitation sites, and 1 urban storm drain. The seven river sites were sampled weekly during nonstorm periods and more frequently during storm runoff from a total of four storms. The monitoring of storm runoff at a city storm drain in Modesto, California, occurred simultaneously with the collection of precipitation samples from eight sites during a January 2001 storm event. The highest concentrations of diazinon occurred during the storm periods for all 16 sites, and the highest concentrations of chlorpyrifos occurred during weekly nonstorm sampling for the river sites and during the January storm period for the urban storm drain and precipitation sites. A total of 60 samples (41 from river sites, 10 from precipitation sites, and 9 from the storm drain site) had diazinon concentrations greater than 0.08 ?g/L, the concentration being considered by the California Department of Fish and Game as its criterion maximum concentration for the protection of aquatic habitats. A total of 18 samples (2 from river sites, 9 from precipitation sites, and 7 from the storm drain site) exceeded the equivalent California Department of Fish and Game guideline of 0.02 ?g/L for chlorpyrifos. The total diazinon load in the San Joaquin River near Vernalis during January and February 2001 was 23.8 pounds active ingredient; of this amount, 16.9 pounds active ingredient were transported by four storms, 1.06 pounds active ingredient were transported by nonstorm events, and 5.82 pounds active ingredient were considered to be baseline loads. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2001 was 2.17 pounds active ingredient; of this amount, 0.702 pound active

  16. The Monitoring Erosion of Agricultural Land and spatial database of erosion events

    NASA Astrophysics Data System (ADS)

    Kapicka, Jiri; Zizala, Daniel

    2013-04-01

    In 2011 originated in The Czech Republic The Monitoring Erosion of Agricultural Land as joint project of State Land Office (SLO) and Research Institute for Soil and Water Conservation (RISWC). The aim of the project is collecting and record keeping information about erosion events on agricultural land and their evaluation. The main idea is a creation of a spatial database that will be source of data and information for evaluation and modeling erosion process, for proposal of preventive measures and measures to reduce negative impacts of erosion events. A subject of monitoring is the manifestations of water erosion, wind erosion and slope deformation in which cause damaged agriculture land. A website, available on http://me.vumop.cz, is used as a tool for keeping and browsing information about monitored events. SLO employees carry out record keeping. RISWC is specialist institute in the Monitoring Erosion of Agricultural Land that performs keeping the spatial database, running the website, managing the record keeping of events, analysis the cause of origins events and statistical evaluations of keeping events and proposed measures. Records are inserted into the database using the user interface of the website which has map server as a component. Website is based on database technology PostgreSQL with superstructure PostGIS and MapServer UMN. Each record is in the database spatial localized by a drawing and it contains description information about character of event (data, situation description etc.) then there are recorded information about land cover and about grown crops. A part of database is photodocumentation which is taken in field reconnaissance which is performed within two days after notify of event. Another part of database are information about precipitations from accessible precipitation gauges. Website allows to do simple spatial analysis as are area calculation, slope calculation, percentage representation of GAEC etc.. Database structure was designed

  17. Ice sheet runoff and Dansgaard-Oeschger Cycles

    NASA Astrophysics Data System (ADS)

    Hewitt, Ian; Wolff, Eric; Fowler, Andrew; Clark, Chris; Evatt, Geoff; Johnson, Helen; Munday, David; Rickaby, Ros; Stokes, Chris

    2016-04-01

    Many northern hemisphere climate records, particularly those from around the North Atlantic, show a series of rapid climate changes that recurred on centennial to millennial timescales throughout most of the last glacial period. These Dansgaard-Oeschger (D-O) sequences are observed most prominently in Greenland ice cores, although they have a global signature, including an out of phase Antarctic signal. They consist of warming jumps of order 10°C, occurring in typically 40 years, followed generally by a slow cooling (Greenland Interstadial, GI) lasting between a few centuries and a few millennia, and then a final rapid temperature drop into a cold Greenland Stadial (GS) that lasts for a similar period. Most explanations for D-O events call on changes in Atlantic meridional overturning circulation strength, and the majority of such explanations use changes in freshwater delivery from ice sheets as a trigger. Many have relied on large inputs of freshwater from singular events (such as lake outbursts or iceberg armadas) to push the AMOC into its cold state. However the evidence for such events at the right time in each cycle is sparse. Here we investigate mechanisms that would arise from a change in the rate of ice sheet runoff, which would be a natural feedback from each rapid warming or cooling event. Recent work has suggested that AMOC is most easily disrupted by freshwater delivered through the Arctic. We investigate whether the proposed AMOC changes could have occurred as part of a natural oscillation, in which runoff from the Laurentide ice sheet into the Arctic is controlled by temperature around the North Atlantic. The Arctic buffers the salinity changes, but under warm conditions, high runoff eventually leads to water entering the North Atlantic with low enough salinity to switch AMOC into its weaker state. Under the colder conditions now prevailing, the Arctic is starved of runoff, and the salinity rises until a further switch occurs. Contrary to many

  18. Uncertainties in stormwater runoff data collection from a small urban catchment, Southeast China.

    PubMed

    Huang, Jinliang; Tu, Zhenshun; Du, Pengfei; Lin, Jie; Li, Qingsheng

    2010-01-01

    Monitoring data are often used to identify stormwater runoff characteristics and in stormwater runoff modelling without consideration of their inherent uncertainties. Integrated with discrete sample analysis and error propagation analysis, this study attempted to quantify the uncertainties of discrete chemical oxygen demand (COD), total suspended solids (TSS) concentration, stormwater flowrate, stormwater event volumes, COD event mean concentration (EMC), and COD event loads in terms of flow measurement, sample collection, storage and laboratory analysis. The results showed that the uncertainties due to sample collection, storage and laboratory analysis of COD from stormwater runoff are 13.99%, 19.48% and 12.28%. Meanwhile, flow measurement uncertainty was 12.82%, and the sample collection uncertainty of TSS from stormwater runoff was 31.63%. Based on the law of propagation of uncertainties, the uncertainties regarding event flow volume, COD EMC and COD event loads were quantified as 7.03%, 10.26% and 18.47%.

  19. The Treatment Train approach to reducing non-point source pollution from agriculture

    NASA Astrophysics Data System (ADS)

    Barber, N.; Reaney, S. M.; Barker, P. A.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Snell, M. A.; Surridge, B.; Quinn, P. F.

    2016-12-01

    An experimental approach has been applied to an agricultural catchment in NW England, where non-point pollution adversely affects freshwater ecology. The aim of the work (as part of the River Eden Demonstration Test Catchment project) is to develop techniques to manage agricultural runoff whilst maintaining food production. The approach used is the Treatment Train (TT), which applies multiple connected mitigation options that control nutrient and fine sediment pollution at source, and address polluted runoff pathways at increasing spatial scale. The principal agricultural practices in the study sub-catchment (1.5 km2) are dairy and stock production. Farm yards can act as significant pollution sources by housing large numbers of animals; these areas are addressed initially with infrastructure improvements e.g. clean/dirty water separation and upgraded waste storage. In-stream high resolution monitoring of hydrology and water quality parameters showed high-discharge events to account for the majority of pollutant exports ( 80% total phosphorus; 95% fine sediment), and primary transfer routes to be surface and shallow sub-surface flow pathways, including drains. To manage these pathways and reduce hydrological connectivity, a series of mitigation features were constructed to intercept and temporarily store runoff. Farm tracks, field drains, first order ditches and overland flow pathways were all targeted. The efficacy of the mitigation features has been monitored at event and annual scale, using inflow-outflow sampling and sediment/nutrient accumulation measurements, respectively. Data presented here show varied but positive results in terms of reducing acute and chronic sediment and nutrient losses. An aerial fly-through of the catchment is used to demonstrate how the TT has been applied to a fully-functioning agricultural landscape. The elevated perspective provides a better understanding of the spatial arrangement of mitigation features, and how they can be

  20. Simulation and assessment of urbanization impacts on runoff metrics: insights from landuse changes

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Xia, Jun; Yu, Jingjie; Randall, Mark; Zhang, Yichi; Zhao, Tongtiegang; Pan, Xingyao; Zhai, Xiaoyan; Shao, Quanxi

    2018-05-01

    Urbanization-induced landuse changes alter runoff regimes in complex ways. In this study, a detailed investigation of the urbanization impacts on runoff regimes is provided by using multiple runoff metrics and with consideration of landuse dynamics. A catchment hydrological model is modified by coupling a simplified flow routing module of the urban drainage system and landuse dynamics to improve long-term urban runoff simulations. Moreover, multivariate statistical approach is adopted to mine the spatial variations of runoff metrics so as to further identify critical impact factors of landuse changes. The Qing River catchment as a peri-urban catchment in the Beijing metropolitan area is selected as our study region. Results show that: (1) the dryland agriculture is decreased from 13.9% to 1.5% of the total catchment area in the years 2000-2015, while the percentages of impervious surface, forest and grass are increased from 63.5% to 72.4%, 13.5% to 16.6% and 5.1% to 6.5%, respectively. The most dramatic landuse changes occur in the middle and downstream regions; (2) The combined landuse changes do not alter the average flow metrics obviously at the catchment outlet, but slightly increase the high flow metrics, particularly the extreme high flows; (3) The impacts on runoff metrics in the sub-catchments are more obvious than those at the catchment outlet. For the average flow metrics, the most impacted metric is the runoff depth in the dry season (October ∼ May) with a relative change from -10.9% to 11.6%, and the critical impact factors are the impervious surface and grass. For the high flow metrics, the extreme high flow depth is increased most significantly with a relative change from -0.6% to 10.5%, and the critical impact factors are the impervious surface and dryland agriculture; (4) The runoff depth metrics in the sub-catchments are increased because of the landuse changes from dryland agriculture to impervious surface, but are decreased because of the

  1. Storm flow dynamics and loads of fecal bacteria associated with ponds in southern piedmont and coastal plain watersheds with animal agriculture

    USDA-ARS?s Scientific Manuscript database

    Storm events that increase hydrologic flow rates can disturb sediments and produce overland runoff in watersheds with animal agriculture, and, thus, can increase surface water concentrations of fecal bacteria and risk to public health. We tested the hypothesis that strategically placed ponds in wate...

  2. Transport and fate of microbial pathogens in agricultural settings

    USGS Publications Warehouse

    Bradford, Scott A.; Morales, Veronica L.; Zhang, Wei; Harvey, Ronald W.; Packman, Aaron I.; Mohanram, Arvind; Welty, Claire

    2013-01-01

    An understanding of the transport and survival of microbial pathogens (pathogens hereafter) in agricultural settings is needed to assess the risk of pathogen contamination to water and food resources, and to develop control strategies and treatment options. However, many knowledge gaps still remain in predicting the fate and transport of pathogens in runoff water, and then through the shallow vadose zone and groundwater. A number of transport pathways, processes, factors, and mathematical models often are needed to describe pathogen fate in agricultural settings. The level of complexity is dramatically enhanced by soil heterogeneity, as well as by temporal variability in temperature, water inputs, and pathogen sources. There is substantial variability in pathogen migration pathways, leading to changes in the dominant processes that control pathogen transport over different spatial and temporal scales. For example, intense rainfall events can generate runoff and preferential flow that can rapidly transport pathogens. Pathogens that survive for extended periods of time have a greatly enhanced probability of remaining viable when subjected to such rapid-transport events. Conversely, in dry seasons, pathogen transport depends more strongly on retention at diverse environmental surfaces controlled by a multitude of coupled physical, chemical, and microbiological factors. These interactions are incompletely characterized, leading to a lack of consensus on the proper mathematical framework to model pathogen transport even at the column scale. In addition, little is known about how to quantify transport and survival parameters at the scale of agricultural fields or watersheds. This review summarizes current conceptual and quantitative models for pathogen transport and fate in agricultural settings over a wide range of spatial and temporal scales. The authors also discuss the benefits that can be realized by improved modeling, and potential treatments to mitigate the risk

  3. Runoff simulation sensitivity to remotely sensed initial soil water content

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Schmugge, T. J.; Jackson, T. J.; Unkrich, C. L.; Keefer, T. O.; Parry, R.; Bach, L. B.; Amer, S. A.

    1994-05-01

    A variety of aircraft remotely sensed and conventional ground-based measurements of volumetric soil water content (SW) were made over two subwatersheds (4.4 and 631 ha) of the U.S. Department of Agriculture's Agricultural Research Service Walnut Gulch experimental watershed during the 1990 monsoon season. Spatially distributed soil water contents estimated remotely from the NASA push broom microwave radiometer (PBMR), an Institute of Radioengineering and Electronics (IRE) multifrequency radiometer, and three ground-based point methods were used to define prestorm initial SW for a distributed rainfall-runoff model (KINEROS; Woolhiser et al., 1990) at a small catchment scale (4.4 ha). At a medium catchment scale (631 ha or 6.31 km2) spatially distributed PBMR SW data were aggregated via stream order reduction. The impacts of the various spatial averages of SW on runoff simulations are discussed and are compared to runoff simulations using SW estimates derived from a simple daily water balance model. It was found that at the small catchment scale the SW data obtained from any of the measurement methods could be used to obtain reasonable runoff predictions. At the medium catchment scale, a basin-wide remotely sensed average of initial water content was sufficient for runoff simulations. This has important implications for the possible use of satellite-based microwave soil moisture data to define prestorm SW because the low spatial resolutions of such sensors may not seriously impact runoff simulations under the conditions examined. However, at both the small and medium basin scale, adequate resources must be devoted to proper definition of the input rainfall to achieve reasonable runoff simulations.

  4. Assessment of suspended solids concentration in highway runoff and its treatment implication.

    PubMed

    Hallberg, M; Renman, G

    2006-09-01

    It is understood that the major pollution from storm water is related to the content of particulate matter. One treatment practice is based on the first flush, i.e. detention of the initial part of the runoff that is considered to contain the highest concentrations of pollutants. This study has evaluated the concentration of total suspended solids in 30 consecutive runoff events during the winter season for an area of 6.7 hectares. A six-lane highway (E4) that has an annual average daily traffic load of 120,000 dominates the area and road de-icing salt (NaCl) and studded tires were in regular use during the studied period. The effluent standard for wastewater of 60 mg TSS per litre applied in EU was used to assess the treatment requirement of storm water. In only two of the events the event mean concentration was below 60 mg 1(-1). In four runoff events a partial event mean concentration below 60 mg 1(-1) was found, in 26 %, 12 %, 11 %, and 2 % respectively of the runoff volume. This would suggest that a capture of the initial part of the runoff for subsequent treatment is less applicable in this type of urban watershed.

  5. An assessment of the potential toxicity of runoff from an urban roadscape during rain events.

    PubMed

    Waara, Sylvia; Färm, Carina

    2008-05-01

    The potential negative impact of urban storm water on aquatic freshwater ecosystems has been demonstrated in various studies with different types of biological methods. There are a number of factors that influence the amount and bioavailability of contaminants in storm water even if it is derived from an area with a fairly homogenous land use such as a roadscape where a variation in toxicity during rain events might be expected. There are only a few previous investigations on the toxicity of highway runoff and they have not explored these issues extensively. The main objective of this study is therefore to characterize the potential toxicity of highway runoff during several rain events before it enters a detention pond in Västerås, Sweden, using laboratory bioassays with test organisms representing various functional groups in an aquatic ecosystem. The results are to be used for developing a monitoring program, including biological methods. The storm water was sampled before the entrance to a detention pond, which receives run-off from a highway with approximately 20,000 vehicles a day. The drainage area, including the roadscape and vegetated areas, is 4.3 ha in size. Samples for toxicity tests were taken with an automatic sampler or manually during storm events. In total, the potential toxicity of 65 samples representing 15 different storm events was determined. The toxicity was assessed with 4 different test organisms; Vibrio fischeri using the Microtox comparison test, Daphnia magna using Daphtoxkit-F agna, Thamnocephalus platyurus using the ThamnotoxkitF and Lemna minor, duckweed using SS 028313. Of the 65 samples, 58 samples were tested with DaphniatoxkitF agna, 57 samples with the Microtox comparison test, 48 samples with ThamnotoxkitF and 20 samples with Lemna minor, duckweed. None of the storm water samples were toxic. No toxicity was detected with the Lemna minor test, but in 5 of the 23 samples tested in comparison to the control a growth stimulation of

  6. Hydrologic conditions and water quality in an agricultural area in Kleberg and Nueces Counties, Texas, 1996-98

    USGS Publications Warehouse

    Ockerman, Darwin J.; Petri, Brian L.

    2001-01-01

    During 1996?98, rainfall and runoff were monitored on a 49,680-acre agricultural watershed in Kleberg and Nueces Counties in South Texas. Nineteen rainfall samples were analyzed for selected nutrients, and runoff samples from 29 storms were analyzed for major ions, nutrients, and pesticides. Loads of nutrients in rainfall and loads of nutrients and pesticides in runoff were computed. For a 40,540-acre part of the watershed (lower study area), constituent loads entering the watershed in rainfall, in runoff from the upper study area, and from agricultural chemical applications to the lower study area were compared with runoff loads exiting the lower study area. Total rainfall for 1996?98 averaged 25.86 inches per year, which is less than the long-term annual average rainfall of 29.80 inches for the area. Rainfall and runoff during 1996?98 were typical of historical patterns, with periods of below average rainfall and runoff interspersed with extreme events. Five individual storms accounted for about 38 percent of the total rainfall and 94 percent of the total runoff. During the 3-year study, the total nitrogen runoff yield from the lower study area was 1.3 pounds per acre per year, compared with 49 pounds per acre per year applied as fertilizer and 3.1 pounds per acre per year from rainfall. While almost all of the fertilizer and rainfall nitrogen was ammonia and nitrate, most of the nitrogen in runoff was particulate organic nitrogen, associated with crop residue. Total nitrogen exiting the lower study area in surface-water runoff was about 2.5 percent of the nitrogen inputs (fertilizer and rainfall nitrogen). Annual deposition of total nitrogen entering the lower study area in rainfall exceeded net yields of total nitrogen exiting the watershed in runoff because most of the rainfall does not contribute to runoff. During the study, the total phosphorus runoff yield from the lower study area was 0.48 pound per acre per year compared with 4.2 pounds per acre per year

  7. Keeping soil in the field - runoff and erosion management in asparagus crops

    NASA Astrophysics Data System (ADS)

    Niziolomski, Joanna; Simmons, Robert; Rickson, Jane; Hann, Mike

    2016-04-01

    Row crop production (including potatoes, onions, carrots, asparagus, bulbs and lettuce) is regarded as one of the most erosive agricultural cropping systems. This is a result of the many practices involved that increase erosion risk including: fine seedbed preparation, a typically short growing season where adequate ground cover protects the soil, permanent bare soil areas between crops, and often intensive harvesting methods that can damage soil structure and result in soil compaction. Sustained exposure of bare soil coupled with onsite compaction on slightly sloping land results in soil and water issues in asparagus production. Asparagus production is a growing British industry covering > 2000 ha and is worth approximately £30 million yr-1. However, no tried and tested erosion control measurements currently exist to manage associated problems. Research has recently been undertaken investigating the effectiveness of erosion control measures suitable for asparagus production systems. These consisted of surface applied wheat straw mulch and shallow soil disturbance (< 350 mm) using several tine configurations: a currently adopted winged tine, a narrow with two shallow leading tines, and a modified para-plough. These treatments were tested individually and in combination (straw mulch with each shallow soil disturbance tine configuration) using triplicated field plots situated on a working asparagus farm in Herefordshire, UK. Testing was conducted between May and November 2013. Rainfall-event based runoff and erosion measurements were taken including; runoff volume, runoff rate and total soil loss. Runoff and soil erosion was observed from all treatments. However, the surface application of straw mulch alone out performed each shallow soil disturbance practice. This suggests that runoff and erosion from asparagus production can be reduced using the simple surface application of straw.

  8. Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms.

    PubMed

    Ramos, M C; Quinton, J N; Tyrrel, S F

    2006-01-01

    The large quantities of slurry and manure that are produced annually in many areas in which cattle are raised could be an important source of organic matter and nutrients for agriculture. However, the benefits of waste recycling may be partially offset by the risk of water pollution associated with runoff from the fields to which slurry or manure has been applied. In this paper, the effects of cattle manure application on soil erosion rates and runoff and on surface water pollution by faecal coliforms are analysed. Rainfall simulations at a rate of 70 mm h(-1) were conducted in a sandy loam soil packed into soil flumes (2.5m long x 1m wide) at a bulk density of 1400 kg m(-3), with and without cattle slurry manure applied on the surface. For each simulation, sediment and runoff rates were analysed and in those simulations with applied slurry, presumptive faecal coliform (PFC) concentrations in the runoff were evaluated. The application of slurry on the soil surface appeared to have a protective effect on the soils, reducing soil detachment by up to 70% but increasing runoff volume by up to 30%. This practice implies an important source of pollution for surface waters especially if rainfall takes place within a short period after application. The concentrations of micro-organisms (presumptive faecal coliforms (PFCs)) found in water runoff ranged from 1.9 x 10(4) to 1.1 x 10(6) PFC 100mL(-1), depending on the initial concentration in the slurry, and they were particularly high during the first phases of the rainfall event. The result indicates a strong relationship between the faecal coliforms transported by runoff and the organic matter in the sediment.

  9. Characterizing response of total suspended solids and total phosphorus loading to weather and watershed characteristics for rainfall and snowmelt events in agricultural watersheds

    USGS Publications Warehouse

    Danz, Mari E.; Corsi, Steven; Brooks, Wesley R.; Bannerman, Roger T.

    2013-01-01

    Understanding the response of total suspended solids (TSS) and total phosphorus (TP) to influential weather and watershed variables is critical in the development of sediment and nutrient reduction plans. In this study, rainfall and snowmelt event loadings of TSS and TP were analyzed for eight agricultural watersheds in Wisconsin, with areas ranging from 14 to 110 km2 and having four to twelve years of data available. The data showed that a small number of rainfall and snowmelt runoff events accounted for the majority of total event loading. The largest 10% of the loading events for each watershed accounted for 73–97% of the total TSS load and 64–88% of the total TP load. More than half of the total annual TSS load was transported during a single event for each watershed at least one of the monitored years. Rainfall and snowmelt events were both influential contributors of TSS and TP loading. TSS loading contributions were greater from rainfall events at five watersheds, from snowmelt events at two watersheds, and nearly equal at one watershed. The TP loading contributions were greater from rainfall events at three watersheds, from snowmelt events at two watersheds and nearly equal at three watersheds. Stepwise multivariate regression models for TSS and TP event loadings were developed separately for rainfall and snowmelt runoff events for each individual watershed and for all watersheds combined by using a suite of precipitation, melt, temperature, seasonality, and watershed characteristics as predictors. All individual models and the combined model for rainfall events resulted in two common predictors as most influential for TSS and TP. These included rainfall depth and the antecedent baseflow. Using these two predictors alone resulted in an R2 greater than 0.7 in all but three individual models and 0.61 or greater for all individual models. The combined model yielded an R2 of 0.66 for TSS and 0.59 for TP. Neither the individual nor the combined models were

  10. Predicting storm runoff from different land-use classes using a geographical information system-based distributed model

    NASA Astrophysics Data System (ADS)

    Liu, Y. B.; Gebremeskel, S.; de Smedt, F.; Hoffmann, L.; Pfister, L.

    2006-02-01

    A method is presented to evaluate the storm runoff contributions from different land-use class areas within a river basin using the geographical information system-based hydrological model WetSpa. The modelling is based on division of the catchment into a grid mesh. Each cell has a unique response function independent of the functioning of other cells. Summation of the flow responses from the cells with the same land-use type results in the storm runoff contribution from these areas. The model was applied on the Steinsel catchment in the Alzette river basin, Grand Duchy of Luxembourg, with 52 months of meteo-hydrological measurements. The simulation results show that the direct runoff from urban areas is dominant for a flood event compared with runoff from other land-use areas in this catchment, and this tends to increase for small floods and for the dry-season floods, whereas the interflow from forested, pasture and agricultural field areas contributes to recession flow. It is demonstrated that the relative contribution from urban areas decreases with flow coefficient, that cropland relative contribution is nearly constant, and that the relative contribution from grassland and woodland increases with flow coefficient with regard to their percentage of land-use class areas within the study catchment.

  11. Runoff production in a small agricultural catchment in Lao PDR: influence of slope, land-use and observation scale

    NASA Astrophysics Data System (ADS)

    Patin, J.; Ribolzi, O.; Mugler, C.; Valentin, C.; Mouche, E.

    2010-12-01

    After years of traditional slash and burn cultures, the Houay Pano catchment is now under high land pressures due to population resettling and environmental preservation policies. This evolution leads to rapid land-use changes in the uplands, such as fallow time reductions and growing of cash crops as teaks or banana. The catchment is located in the Luang Prabang province, in the north of Lao PDR and was selected in late 1998 as a benchmark site for the Managing Soil Erosion Consortium (MSEC). It is a small (60ha) agricultural catchment representative of the rural mountainous South East Asia : it exhibits steep cultivated slopes (from 2% to more than 110%) under a wet-dry monsoon climate. To understand the partition between runoff and infiltration, data from runoff on 20 plot experiments (1m2) under natural rainfall and with representative slopes and land uses is collected from 2003 to 2009. A simulated rainfall experiment was conducted in 2002 on bare soil plots (1m2) with different antecedent cultures. We investigate the role of crust, slope and land-use on runoff production at different scales. A model accounting for small scale variability is applied to compute the time and space variations of soil infiltrability at the plot scale (1m2) and sub-catchment scale (0.6ha). From the hypothesis of exponentially distributed infiltrabilities at the centimeter scale, we found that infiltration is log-normaly distributed over time for a given land use. The median infiltrability vary from 10mm/h under teak cultures to 150mm/h on plots with fallow. Variations along a year are tribute to many meteorological and human factors.

  12. Fungicides transport in runoff from vineyard plot and catchment: contribution of non-target areas.

    PubMed

    Lefrancq, Marie; Payraudeau, Sylvain; García Verdú, Antonio Joaquín; Maillard, Elodie; Millet, Maurice; Imfeld, Gwenaël

    2014-04-01

    Surface runoff and erosion during the course of rainfall events are major processes of pesticides transport from agricultural land to aquatic ecosystem. These processes are generally evaluated either at the plot or the catchment scale. Here, we compared at both scales the transport and partitioning in runoff water of two widely used fungicides, i.e., kresoxim-methyl (KM) and cyazofamid (CY). The objective was to evaluate the relationship between fungicides runoff from the plot and from the vineyard catchment. The results show that seasonal exports for KM and CY at the catchment were larger than those obtained at the plot. This underlines that non-target areas within the catchment largely contribute to the overall load of runoff-associated fungicides. Estimations show that 85 and 62 % of the loads observed for KM and CY at the catchment outlet cannot be explained by the vineyard plots. However, the partitioning of KM and CY between three fractions, i.e., the suspended solids (>0.7 μm) and two dissolved fractions (i.e., between 0.22 and 0.7 µm and <0.22 µm) in runoff water was similar at both scales. KM was predominantly detected below 0.22 μm, whereas CY was mainly detected in the fraction between 0.22 and 0.7 μm. Although KM and CY have similar physicochemical properties and are expected to behave similarly, our results show that their partitioning between two fractions of the dissolved phase differs largely. It is concluded that combined observations of pesticide runoff at both the catchment and the plot scales enable to evaluate the sources areas of pesticide off-site transport.

  13. Analysis of recurring sinking events of armored tracked vehicles along dirt roads in the agricultural periphery of the Gaza Strip

    NASA Astrophysics Data System (ADS)

    Roskin, Joel

    2013-04-01

    The second (Al-Aqsa) intifada (Arab violent uprising) which erupted across Israel in 2000 eventually led the Israel Defense Forces to deploy armored tracked vehicles (ATVs) (tanks, armored personal carriers, and D-9 bulldozers) within Israel's agricultural periphery of the Gaza Strip, following daily attempts by Arab terrorists and guerillas to penetrate Israel. Combat movement of the ATVs was mainly concentrated to dirt roads, between agricultural fields, wherever possible. As a result of semi-arid Mediterranean (climate) winter rains, annually averaging 250 - 350 mm, it was reported that ATVs often sank in muddy terrain. This study investigated what caused ATVs to sink. The main data collected concerning the types of vehicles that sank related to: land-use characteristics, soil type, and daily rainfall. Interviews with commanders were also conducted for additional details. Between the fall and spring, surveys and weekly / bi-weekly field soil cone penetrometer tests were conducted at ten sites with different pedological and land-use characteristics. The loess soils, especially in agricultural fields, were generally found to be conducive to ATV traffic, even shortly after rainstorms of 10-30 mm. However, following several rainfall events exceeding 10 mm, ATVs and tanks regularly sank into local topographic depressions in the undulating landscape. These consisted of short segments of dirt roads where runoff and suspended sediment collected. After the early rains in late fall, tank ruts fossilize and become conduits of concentrated runoff and fine particles eroded by ATV activity during the summer months. Tank track ruts that formed in mud, compacted the soil, drastically altered drainage patterns by directing significant surface flow, and suspended sediment into these depressions, creating "tank-traps" whose trafficability ranged from "untrafficable" to "trafficable with constraints." This study shows that intense, routine, defensive military activity operated

  14. Quantitative Assessment of Agricultural Runoff and Soil Erosion Using Mathematical Modeling: Applications in the Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Arhonditsis, G.; Giourga, C.; Loumou, A.; Koulouri, M.

    2002-09-01

    Three mathematical models, the runoff curve number equation, the universal soil loss equation, and the mass response functions, were evaluated for predicting nonpoint source nutrient loading from agricultural watersheds of the Mediterranean region. These methodologies were applied to a catchment, the gulf of Gera Basin, that is a typical terrestrial ecosystem of the islands of the Aegean archipelago. The calibration of the model parameters was based on data from experimental plots from which edge-of-field losses of sediment, water runoff, and nutrients were measured. Special emphasis was given to the transport of dissolved and solid-phase nutrients from their sources in the farmers' fields to the outlet of the watershed in order to estimate respective attenuation rates. It was found that nonpoint nutrient loading due to surface losses was high during winter, the contribution being between 50% and 80% of the total annual nutrient losses from the terrestrial ecosystem. The good fit between simulated and experimental data supports the view that these modeling procedures should be considered as reliable and effective methodological tools in Mediterranean areas for evaluating potential control measures, such as management practices for soil and water conservation and changes in land uses, aimed at diminishing soil loss and nutrient delivery to surface waters. Furthermore, the modifications of the general mathematical formulations and the experimental values of the model parameters provided by the study can be used in further application of these methodologies in watersheds with similar characteristics.

  15. Applying the RUSLE and the USLE-M on hillslopes where runoff production during an erosion event is spatially variable

    NASA Astrophysics Data System (ADS)

    Kinnell, P. I. A.

    2014-11-01

    The assumption that runoff is produced uniformly over the eroding area underlies the traditional use of Universal Soil Loss Equation (USLE) and the revised version of it, the RUSLE. However, although the application of the USLE/RUSLE to segments on one dimensional hillslopes and cells on two-dimensional hillslopes is based on the assumption that each segment or cell is spatially uniform, factors such as soil infiltration, and hence runoff production, may vary spatially between segments or cells. Results from equations that focus on taking account of spatially variable runoff when applying the USLE/RUSLE and the USLE-M, the modification of the USLE/RUSLE that replaces the EI30 index by the product of EI30 and the runoff ratio, in hillslopes during erosion events where runoff is not produced uniformly were compared on a hypothetical a 300 m long one-dimensional hillslope with a spatially uniform gradient. Results were produced for situations where all the hillslope was tilled bare fallow and where half of the hillslope was cropped with corn and half was tilled bare fallow. Given that the erosive stress within a segment or cell depends on the volume of surface water flowing through the segment or cell, soil loss can be expected to increase not only with distance from the point where runoff begins but also directly with runoff when it varies about the average for the slope containing the segment or cell. The latter effect was achieved when soil loss was predicted using the USLE-M but not when the USLE/RUSLE slope length factor for a segment using an effective upslope length that varies with the ratio of the upslope runoff coefficient and the runoff coefficient for the slope to the bottom of the segment or cell was used. The USLE-M also predicted deposition to occur in a segment containing corn when an area with tilled bare fallow soil existed immediately upslope of it because the USLE-M models erosion on runoff and soil loss plots as a transport limited system. In a

  16. Highway runoff quality models for the protection of environmentally sensitive areas

    NASA Astrophysics Data System (ADS)

    Trenouth, William R.; Gharabaghi, Bahram

    2016-11-01

    This paper presents novel highway runoff quality models using artificial neural networks (ANN) which take into account site-specific highway traffic and seasonal storm event meteorological factors to predict the event mean concentration (EMC) statistics and mean daily unit area load (MDUAL) statistics of common highway pollutants for the design of roadside ditch treatment systems (RDTS) to protect sensitive receiving environs. A dataset of 940 monitored highway runoff events from fourteen sites located in five countries (Canada, USA, Australia, New Zealand, and China) was compiled and used to develop ANN models for the prediction of highway runoff suspended solids (TSS) seasonal EMC statistical distribution parameters, as well as the MDUAL statistics for four different heavy metal species (Cu, Zn, Cr and Pb). TSS EMCs are needed to estimate the minimum required removal efficiency of the RDTS needed in order to improve highway runoff quality to meet applicable standards and MDUALs are needed to calculate the minimum required capacity of the RDTS to ensure performance longevity.

  17. Rainfall-runoff model parameter estimation and uncertainty evaluation on small plots

    USDA-ARS?s Scientific Manuscript database

    Four seasonal rainfall simulations in 2009 and 2010 were applied to a field containing 36 plots (0.75 × 2 m each), resulting in 144 runoff events. In all simulations, a constant rate of rainfall was applied, then halted 60 minutes after initiation of runoff, with plot-scale monitoring of runoff ever...

  18. Geomorphological characterization of conservation agriculture

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Cecchin, Marco; Prosdocimi, Massimo; Masin, Roberta

    2017-04-01

    Soil water erosion is one of the major threats to soil resources throughout the world. Conventional agriculture has worsened the situation. Therefore, agriculture is facing multiple challenges: it has to produce more food to feed a growing population, and, on the other hand, safeguard natural resources adopting more sustainable production practices. In this perspective, more conservation-minded soil management practices should be taken to achieve an environmental sustainability of crop production. Indeed, conservation agriculture is considered to produce relevant environmental positive outcomes (e.g. reducing runoff and soil erosion, improving soil organic matter content and soil structure, and promoting biological activity). However, as mechanical weed control is limited or absent, in conservation agriculture, dependence on herbicides increases especially in the first years of transition from the conventional system. Consequently, also the risk of herbicide losses via runoff or adsorbed to eroded soil particles could be increased. To better analyse the complexity of soil water erosion and runoff processes in landscapes characterised by conservation agriculture, first, it is necessary to demonstrate if such different practices can significantly affect the surface morphology. Indeed, surface processes such erosion and runoff strongly depend on the shape of the surface. The questions are: are the lands treated with conservation and conventional agriculture different from each other regarding surface morphology? If so, can these differences provide a better understanding of hydrogeomorphic processes as the basis for a better and sustainable land management? To give an answer to these questions, we considered six study areas (three cultivated with no-tillage techniques, three with tillage techniques) in an experimental farm. High-resolution topography, derived from low-cost and fast photogrammetric techniques Structure-from-Motion (SfM), served as the basis to

  19. Nutrients and sediment in frozen-ground runoff from no-till fields receiving liquid-dairy and solid-beef manures

    USGS Publications Warehouse

    Komiskey, Matthew J.; Stuntebeck, Todd D.; Frame, Dennis R.; Madison, Fred W.

    2011-01-01

    Nutrients and sediment in surface runoff from frozen agricultural fields were monitored within three small (16.0 ha [39.5 ac] or less), adjacent basins at a no-till farm in southwest Wisconsin during four winters from 2003 to 2004 through 2006 to 2007. Runoff depths and flow-weighted constituent concentrations were compared to determine the impacts of surface-applied liquid-dairy or solid-beef manure to frozen and/or snow-covered ground. Despite varying the manure type and the rate and timing of applications, runoff depths were not significantly different among basins within each winter period. Sediment losses were low (generally less than 22 kg ha−1 [20 lb ac−1] in any year) and any statistical differences in sediment concentrations among basins were not related to the presence or absence of manure or the amount of runoff. Concentrations and losses of total nitrogen and total phosphorus were significantly increased in basins that had either manure type applied less than one week preceding runoff. These increases occurred despite relatively low application rates. Lower concentrations and losses were measured in basins that had manure applied in fall and early winter and an extended period of time (months) had elapsed before the first runoff event. The highest mean, flow-weighted concentrations of total nitrogen (31.8 mg L−1) and total phosphorus (10.9 mg L−1) occurred in winter 2003 to 2004, when liquid-dairy manure was applied less than one week before runoff. On average, dissolved phosphorus accounted for over 80% of all phosphorus measured in runoff during frozen-ground periods. The data collected as part of this study add to the limited information on the quantity and quality of frozen-ground runoff at field edges, and the results highlight the importance of manure management decisions during frozen-ground periods to minimize nutrients lost in surface runoff.

  20. Nonpoint Source: Agriculture

    EPA Pesticide Factsheets

    Agricultural runoff as a nonpoint source category of pollution. Resouces to learn more a bout conservation practices to reduce water quality impacts from storm water run off and ground water infiltration

  1. [Hydrology and pollution characteristics of urban runoff: Beijing as a sample].

    PubMed

    Dong, Xin; Du, Peng-Fei; Li, Zhi-Yi; Yu, Zheng-Rong; Wang, Rui; Huang, Jin-Liang

    2008-03-01

    The purpose of this study is identification and characterization of hydrological process of urban runoff, as well as concentration variation of pollutants in it. Samples were collected in 4 rainfall events in Beijing from Jun. 2006 to Aug. 2006. Hydrology and pollution of the rainfall-runoff process were analyzed on roof and road. Study results show that the shapes of hydrological curves of runoff, despite for a 5 - 20 min delay and a milder tendency, are similar to rainfall curves. Runoff coefficients of roof are 0.80 - 0.98, while 0.87 - 0.97 of road. Event mean concentrations (EMC) of pollutants are influenced by build-up and wash-off features, which leads to a higher concentration in road runoff than in roof runoff. Major pollutants that excess the water quality standards are COD, TN, and TP. Evident correlations (> 0.1) are found between pollutants. Correlation with particles are higher for COD and SO4(2-) (> 0.5), while lower for nutrients (<0.5). First flush effects (FFE) are found and affected by several factors, such as pollutant variety, types of land covers, and rainfall intensity. FFE are found more intense in SS, more frequently in road runoff, and more difficult to form for COD and nutrients with low rainfall intensity. Therefore, control of first period of runoff would be an effective approach for runoff management in Beijing.

  2. Integrated assessment of climate change impact on surface runoff contamination by pesticides.

    PubMed

    Gagnon, Patrick; Sheedy, Claudia; Rousseau, Alain N; Bourgeois, Gaétan; Chouinard, Gérald

    2016-07-01

    Pesticide transport by surface runoff depends on climate, agricultural practices, topography, soil characteristics, crop type, and pest phenology. To accurately assess the impact of climate change, these factors must be accounted for in a single framework by integrating their interaction and uncertainty. This article presents the development and application of a framework to assess the impact of climate change on pesticide transport by surface runoff in southern Québec (Canada) for the 1981-2040 period. The crop enemies investigated were: weeds for corn (Zea mays); and for apple orchard (Malus pumila), 3 insect pests (codling moth [Cydia pomonella], plum curculio [Conotrachelus nenuphar], and apple maggot [Rhagoletis pomonella]), 2 diseases (apple scab [Venturia inaequalis], and fire blight [Erwinia amylovora]). A total of 23 climate simulations, 19 sites, and 11 active ingredients were considered. The relationship between climate and phenology was accounted for by bioclimatic models of the Computer Centre for Agricultural Pest Forecasting (CIPRA) software. Exported loads of pesticides were evaluated at the edge-of-field scale using the Pesticide Root Zone Model (PRZM), simulating both hydrology and chemical transport. A stochastic model was developed to account for PRZM parameter uncertainty. Results of this study indicate that for the 2011-2040 period, application dates would be advanced from 3 to 7 days on average with respect to the 1981-2010 period. However, the impact of climate change on maximum daily rainfall during the application window is not statistically significant, mainly due to the high variability of extreme rainfall events. Hence, for the studied sites and crop enemies considered, climate change impact on pesticide transported in surface runoff is not statistically significant throughout the 2011-2040 period. Integr Environ Assess Managem 2016;12:559-571. © Her Majesty the Queen in Right of Canada 2015; Published 2015 SETAC. © Her Majesty the

  3. [Cd Runoff Load and Soil Profile Movement After Implementation of Some Typical Contaminated Agricultural Soil Remediation Strategies].

    PubMed

    Liu, Xiao-li; Zeng, Zhao-xia; Tie, Bai-qing; Chen, Qiu-wen; Wei, Xiang-dong

    2016-02-15

    Owing to the strong ability to immobilize and hyperaccumulate some toxic heavy metals in contaminated soils, the biochar, lime and such as hyperaccumulator ramie received increasing interests from crops and environment safety in recent years. Outdoor pot experiment was conducted to compare the impacts of lime and biochar addition in paddy rice treatment, hyperaccumulator ramie and ramie combined with EDTA of plant Phytoremediation methods on soil available Cd dynamics in rainfall runoff and the mobility along soil profile, under both natural acid precipitation and acid soil conditions. The results showed that, biochar addition at a 2% mass ratio application amount significantly increased soil pH, while ramie with EDTA application obviously decreased soil pH compared to ramie monoculture. Within the same rainfall events, water soluble Cd concentration in surface runoff of ramie treatments was significantly higher than those of waterlogged rice treatments, and Cd concentration in runoff was obviously increased after EDTA addition, whereas lime at a 0.3% mass ratio application amount as additive had no obvious impact on soil pH and Cd speciation change, which may be due to the low application amount. During the whole experimental period , water soluble Cd concentration of rainfall runoff in spring was higher than that in summer, showing the same seasonal characteristics in all treatments. Biochar addition could significantly decrease available Cd content in 0-20 cm soil layer and with certain preferable persistency effects, whereas EDTA addition treatment obviously increased available Cd of 0-20 cm soil layer compared to other treatments, and obvious Cd element activation phenomenon in 20-40 cm soil layer was observed after EDTA addition. In conclusion, lime and biochar as environmental and friendly alkaline Cd immobilization materials showed lower environment risk to surface and ground receiving water, but attention should be paid to phytoremediation enhanced with

  4. [Research on stormwater runoff quality of mountain city by source area monitoring].

    PubMed

    Li, Li-Qing; Shan, Bao-Qing; Zhao, Jian-Wei; Guo, Shu-Gang; Gao, Yong

    2012-10-01

    Stormwater runoff samples were collected from 10 source areas in Mountain City, Chongqing, during five rain events in an attempt to investigate the characteristics of runoff quality and influencing factors. The outcomes are expected to offer practical guidance of sources control of urban runoff pollution. The results indicated that the stormwater runoff of Mountain City presented a strong first flush for almost all events and constituents. The runoff quality indices were also influenced by the rainfall intensity. The concentration of TSS, COD, TN and TP decreased as the rainfall intensity increased. The concentrations of COD and TP in stormwater runoff were highly correlated with TSS concentrations. Suspended solid matter were not only the main pollutant of stormwater runoff but also served as the vehicle for transport of organic matter and phosphorus. Organic matter and phosphorus in stormwatrer runoff were mainly bound to particles, whereas nitrogen was predominantly dissolved, with ammonia and nitrate. A significant difference of stormwater runoff quality was observed among the ten monitored source areas. The highest magnitude of urban stormwater runoff pollution was expected in the commercial area and the first trunk road, followed by the minor road, residential area, parking lot and roof. Urban surface function, traffic volume, population density, and street sweeping practice are the main factors determining spatial differentiation of urban surface runoff quality. Commercial area, the first trunk road and residential area with high population density are the critical sources areas of urban stormwater runoff pollution.

  5. Catchment process affecting drinking water quality, including the significance of rainfall events, using factor analysis and event mean concentrations.

    PubMed

    Cinque, Kathy; Jayasuriya, Niranjali

    2010-12-01

    To ensure the protection of drinking water an understanding of the catchment processes which can affect water quality is important as it enables targeted catchment management actions to be implemented. In this study factor analysis (FA) and comparing event mean concentrations (EMCs) with baseline values were techniques used to asses the relationships between water quality parameters and linking those parameters to processes within an agricultural drinking water catchment. FA found that 55% of the variance in the water quality data could be explained by the first factor, which was dominated by parameters usually associated with erosion. Inclusion of pathogenic indicators in an additional FA showed that Enterococcus and Clostridium perfringens (C. perfringens) were also related to the erosion factor. Analysis of the EMCs found that most parameters were significantly higher during periods of rainfall runoff. This study shows that the most dominant processes in an agricultural catchment are surface runoff and erosion. It also shows that it is these processes which mobilise pathogenic indicators and are therefore most likely to influence the transport of pathogens. Catchment management efforts need to focus on reducing the effect of these processes on water quality.

  6. The impact of runoff generation mechanisms on the location of critical source areas

    USGS Publications Warehouse

    Lyon, S.W.; McHale, M.R.; Walter, M.T.; Steenhuis, T.S.

    2006-01-01

    Identifying phosphorus (P) source areas and transport pathways is a key step in decreasing P loading to natural water systems. This study compared the effects of two modeled runoff generation processes - saturation excess and infiltration excess - on total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in 10 catchment streams of a Catskill mountain watershed in southeastern New York. The spatial distribution of runoff from forested land and agricultural land was generated for both runoff processes; results of both distributions were consistent with Soil Conservation Service-Curve Number (SCS-CN) theory. These spatial runoff distributions were then used to simulate stream concentrations of TP and SRP through a simple equation derived from an observed relation between P concentration and land use; empirical results indicate that TP and SRP concentrations increased with increasing percentage of agricultural land. Simulated TP and SRP stream concentrations predicted for the 10 catchments were strongly affected by the assumed runoff mechanism. The modeled TP and SRP concentrations produced by saturation excess distribution averaged 31 percent higher and 42 percent higher, respectively, than those produced by the infiltration excess distribution. Misrepresenting the primary runoff mechanism could not only produce erroneous concentrations, it could fail to correctly locate critical source areas for implementation of best management practices. Thus, identification of the primary runoff mechanism is critical in selection of appropriate models in the mitigation of nonpoint source pollution. Correct representation of runoff processes is also critical in the future development of biogeochemical transport models, especially those that address nutrient fluxes.

  7. Impact of climate change on runoff pollution in urban environments

    NASA Astrophysics Data System (ADS)

    Coutu, S.; Kramer, S.; Barry, D. A.; Roudier, P.

    2012-12-01

    Runoff from urban environments is generally contaminated. These contaminants mostly originate from road traffic and building envelopes. Facade envelopes generate lead, zinc and even biocides, which are used for facade protection. Road traffic produces particles from tires and brakes. The transport of these pollutants to the environment is controlled by rainfall. The interval, duration and intensity of rainfall events are important as the dynamics of the pollutants are often modeled with non-linear buildup/washoff functions. Buildup occurs during dry weather when pollution accumulates, and is subsequently washed-off at the time of the following rainfall, contaminating surface runoff. Climate predictions include modified rainfall distributions, with changes in both number and intensity of events, even if the expected annual rainfall varies little. Consequently, pollutant concentrations in urban runoff driven by buildup/washoff processes will be affected by these changes in rainfall distributions. We investigated to what extent modifications in future rainfall distributions will impact the concentrations of pollutants present in urban surface runoff. The study used the example of Lausanne, Switzerland (temperate climate zone). Three emission scenarios (time horizon 2090), multiple combinations of RCM/GCM and modifications in rain event frequency were used to simulate future rainfall distributions with various characteristics. Simulated rainfall events were used as inputs for four pairs of buildup/washoff models, in order to compare future pollution concentrations in surface runoff. In this way, uncertainty in model structure was also investigated. Future concentrations were estimated to be between ±40% of today's concentrations depending on the season and, importantly, on the choice of the RCM/GCM model. Overall, however, the dominant factor was the uncertainty inherent in buildup/washoff models, which dominated over the uncertainty in future rainfall distributions

  8. Runoff and water-quality characteristics of three Discovery Farms in North Dakota, 2008–16

    USGS Publications Warehouse

    Galloway, Joel M.; Nustad, Rochelle A.

    2017-12-21

    Agricultural producers in North Dakota are aware of concerns about degrading water quality, and many of the producers are interested in implementing conservation practices to reduce the export of nutrients from their farms. Producers often implement conservation practices without knowledge of the water quality of the runoff from their farm or if conservation practices they may implement have any effect on water quality. In response to this lack of information, the U.S. Geological Survey, in cooperation with North Dakota State University Extension Service and in coordination with an advisory group consisting of State agencies, agricultural producers, and commodity groups, implemented a monitoring study as part of a Discovery Farms program in North Dakota in 2007. Three data-collection sites were established at each of three farms near Underwood, Embden, and Dazey, North Dakota. The purpose of this report is to describe runoff and water-quality characteristics using data collected at the three Discovery Farms during 2008–16. Runoff and water-quality data were used to help describe the implications of agricultural conservation practices on runoff and water-quality patterns.Runoff characteristics of monitoring sites at the three farms were determined by measuring flow volume and precipitation. Runoff at the Underwood farm monitoring sites generally was controlled by precipitation in the area, antecedent soil moisture conditions, and, after 2012, possibly by the diversion ditch constructed by the producer. Most of the annual runoff was in March and April each year during spring snowmelt. Runoff characteristics at the Embden farm are complex because of the mix of surface runoff and flow through two separate drainage tile systems. Annual flow volumes for the drainage tiles sites (sites E2 and E3) were several orders of magnitude greater than measured at the surface water site E1. Site E1 generally only had runoff briefly in March and April during spring snowmelt and

  9. Quantifying space-time dynamics of flood event types

    NASA Astrophysics Data System (ADS)

    Viglione, Alberto; Chirico, Giovanni Battista; Komma, Jürgen; Woods, Ross; Borga, Marco; Blöschl, Günter

    2010-11-01

    SummaryA generalised framework of space-time variability in flood response is used to characterise five flood events of different type in the Kamp area in Austria: one long-rain event, two short-rain events, one rain-on-snow event and one snowmelt event. Specifically, the framework quantifies the contributions of the space-time variability of rainfall/snowmelt, runoff coefficient, hillslope and channel routing to the flood runoff volume and the delay and spread of the resulting hydrograph. The results indicate that the components obtained by the framework clearly reflect the individual processes which characterise the event types. For the short-rain events, temporal, spatial and movement components can all be important in runoff generation and routing, which would be expected because of their local nature in time and, particularly, in space. For the long-rain event, the temporal components tend to be more important for runoff generation, because of the more uniform spatial coverage of rainfall, while for routing the spatial distribution of the produced runoff, which is not uniform, is also important. For the rain-on-snow and snowmelt events, the spatio-temporal variability terms typically do not play much role in runoff generation and the spread of the hydrograph is mainly due to the duration of the event. As an outcome of the framework, a dimensionless response number is proposed that represents the joint effect of runoff coefficient and hydrograph peakedness and captures the absolute magnitudes of the observed flood peaks.

  10. Detection and attribution of nitrogen runoff trend in China's croplands.

    PubMed

    Hou, Xikang; Zhan, Xiaoying; Zhou, Feng; Yan, Xiaoyuan; Gu, Baojing; Reis, Stefan; Wu, Yali; Liu, Hongbin; Piao, Shilong; Tang, Yanhong

    2018-03-01

    Reliable detection and attribution of changes in nitrogen (N) runoff from croplands are essential for designing efficient, sustainable N management strategies for future. Despite the recognition that excess N runoff poses a risk of aquatic eutrophication, large-scale, spatially detailed N runoff trends and their drivers remain poorly understood in China. Based on data comprising 535 site-years from 100 sites across China's croplands, we developed a data-driven upscaling model and a new simplified attribution approach to detect and attribute N runoff trends during the period of 1990-2012. Our results show that N runoff has increased by 46% for rice paddy fields and 31% for upland areas since 1990. However, we acknowledge that the upscaling model is subject to large uncertainties (20% and 40% as coefficient of variation of N runoff, respectively). At national scale, increased fertilizer application was identified as the most likely driver of the N runoff trend, while decreased irrigation levels offset to some extent the impact of fertilization increases. In southern China, the increasing trend of upland N runoff can be attributed to the growth in N runoff rates. Our results suggested that increased SOM led to the N runoff rate growth for uplands, but led to a decline for rice paddy fields. In combination, these results imply that improving management approaches for both N fertilizer use and irrigation is urgently required for mitigating agricultural N runoff in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Runoff Response to Rainfall in Small Catchments Burned by the 2015 Valley Fire

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, J. W.; Coe, D. B. R.; Lindsay, D.

    2016-12-01

    Burned areas often produce runoff volumes and peak flows much larger than unburned forests. However, very few studies demonstrate the effect of burn severity on runoff responses, and post-fire data are especially sparse in California. We measured the effects of different degrees of burn severity on rainfall-runoff responses in six small catchments (0.15-0.65 ha) in the Northern Coast Ranges. Weirs and tipping bucket rain gages were installed after the 2015 Valley Fire and prior to any substantial rainfall. In the first wet season (Nov 2015-May 2016), one runoff event was recorded in the catchment with the lowest burn severity (42% bare soil), while 13 runoff events occurred in the catchment with the highest burn severity (68% bare soil). Preliminary results indicate the thirty minute maximum rainfall intensity that generated runoff ranged from 27 mm hr-1 in the lowest severity catchment to only 8.6 mm hr-1 in the highest severity catchment. Peak flow rates for the most intense event (27 mm hr-1), a two-year, 30-min storm, were 1.1 m3 s-1 km-2 in the lowest severity catchment and 17 m3 s-1 km-2 in the highest severity catchment. Longer duration, moderate intensity rain events produced runoff in the highest severity catchments but not the lowest severity catchments. These results are on the high end of the range of post-fire peak flow rates reported in the western US and provide an idea of potential post-fire flood potential to land and emergency management agencies.

  12. Phosphorus and nitrate nitrogen in runoff following fertilizer application to turfgrass.

    PubMed

    Shuman, L M

    2002-01-01

    Intensively managed golf courses are perceived by the public as possibly adding nutrients to surface waters via surface transport. An experiment was designed to determine the transport of nitrate N and phosphate P from simulated golf course fairways of 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers.]. Fertilizer treatments were 10-10-10 granular at three rates and rainfall events were simulated at four intervals after treatment (hours after treatment, HAT). Runoff volume was directly related to simulated rainfall amounts and soil moisture at the time of the event and varied from 24.3 to 43.5% of that added for the 50-mm events and 3.1 to 27.4% for the 25-mm events. The highest concentration and mass of phosphorus in runoff was during the first simulated rainfall event at 4 HAT with a dramatic decrease at 24 HAT and subsequent events. Nitrate N concentrations were low in the runoff water (approximately 0.5 mg L-1) for the first three runoff events and highest (approximately 1-1.5 mg L-1) at 168 HAT due to the time elapsed for conversion of ammonia to nitrate. Nitrate N mass was highest at the 4 and 24 HAT events and stepwise increases with rate were evident at 24 HAT. Total P transported for all events was 15.6 and 13.8% of that added for the two non-zero rates, respectively. Total nitrate N transported was 1.5 and 0.9% of that added for the two rates, respectively. Results indicate that turfgrass management should include applying minimum amounts of irrigation after fertilizer application and avoiding application before intense rain or when soil is very moist.

  13. Hydrological Controls on Nutrient Concentrations and Fluxes in Agricultural Catchments

    NASA Astrophysics Data System (ADS)

    Petry, J.; Soulsby, C.

    2002-12-01

    This investigation into diffuse agricultural pollution and the hydrological controls that exert a strong influence on both nutrient concentrations and fluxes, was conducted in an intensively farmed lowland catchment in north-east Scotland. The study focuses on spatial and seasonal variations in nutrient concentrations and fluxes at the catchment scale, over a 15-month period. The water quality of the 14.5 km2 Newmills Burn catchment has relatively high nutrient levels with mean concentrations of NO3-N and NH3-N at 6.09 mg/l and 0.28 mg/l respectively. Average PO4-P concentrations are 0.06 mg/l. Over short timescales nutrient concentrations and fluxes are greatest during storm events when PO4-P and NH3-N are mobilised by overland flow in riparian areas, where soils have been compacted by livestock or machinery. Delivery of deeper soil water in subsurface storm flow, facilitated by agricultural under-drainage, produces a marked increase in NO3-N (6.9 mg/l) concentrations on the hydrograph recession limb. A more detailed insight into the catchment response to storm events, and in particular the response of the hydrological pathways which provide the main sources of runoff during storm events, was gained by sampling stream water at 2-hourly intervals during 5 events. End Member Mixing Analysis (EMMA) was carried out using event specific end-member chemistries to differentiate three catchment-scale hydrological pathways (overland flow, subsurface storm flow, groundwater flow) on the basis of observed Si and NO3-N concentrations in sampled source waters. Results show that overland flow generally dominates the storm peak and provides the main flow path by which P is transferred to stream channels during storm events, whilst subsurface storm flows usually dominate the storm hydrograph volumetrically and route NO3-rich soil water to the stream. The study shows that altering hydrological pathways in a catchment can have implications for nutrient management. Whilst buffer

  14. Dairy diet phosphorus and rainfall timing effects on runoff phosphorus from land-applied manure.

    PubMed

    Hanrahan, Laura P; Jokela, William E; Knapp, Joanne R

    2009-01-01

    Surface-applied dairy manure can increase P concentrations in runoff, which may contribute to eutrophication of lakes and streams. The amount of dietary P fed to dairy cows (Bos taurus) and the timing of a rain event after manure application may further affect runoff P losses. The objective of this study was to examine dietary P supplementation effects on manure and runoff P concentrations from rain events occurring at different time intervals after manure application. Manure from dairy cows fed an unsupplemented low P diet (LP; 3.6 g P kg(-1)) or a diet supplemented with either an inorganic (HIP; 4.4 g P kg(-1)) or an organic (HOP; 4.6 g P kg(-1)) source was hand-applied onto soil-packed pans at 56 wet Mg ha(-1). Thirty min of runoff was collected from simulated rain events (30 mm h(-1)) 2, 5, or 9 d after manure application. Total P (TP) concentrations in runoff from HIP and HOP diet manure from the 2-d rain were 46 and 31% greater than that of the LP diet. Runoff P concentrations from high P diets were numerically higher than that of the LP diet at 5 and 9 d after application, but differences were significant only for dissolved reactive P (DRP) at 5 d. Large decreases in runoff TP (89%) and DRP (65%) concentrations occurred with delay of rainfall from 2 d until 5 d. The proportion of TP as DRP increased as the time between manure application and runoff increased. Results showed that reducing dietary P and extending the time between manure application and a rain event can significantly reduce concentrations of TP and DRP in runoff.

  15. Synthetic calibration of a Rainfall-Runoff Model

    USGS Publications Warehouse

    Thompson, David B.; Westphal, Jerome A.; ,

    1990-01-01

    A method for synthetically calibrating storm-mode parameters for the U.S. Geological Survey's Precipitation-Runoff Modeling System is described. Synthetic calibration is accomplished by adjusting storm-mode parameters to minimize deviations between the pseudo-probability disributions represented by regional regression equations and actual frequency distributions fitted to model-generated peak discharge and runoff volume. Results of modeling storm hydrographs using synthetic and analytic storm-mode parameters are presented. Comparisons are made between model results from both parameter sets and between model results and observed hydrographs. Although mean storm runoff is reproducible to within about 26 percent of the observed mean storm runoff for five or six parameter sets, runoff from individual storms is subject to large disparities. Predicted storm runoff volume ranged from 2 percent to 217 percent of commensurate observed values. Furthermore, simulation of peak discharges was poor. Predicted peak discharges from individual storm events ranged from 2 percent to 229 percent of commensurate observed values. The model was incapable of satisfactorily executing storm-mode simulations for the study watersheds. This result is not considered a particular fault of the model, but instead is indicative of deficiencies in similar conceptual models.

  16. Wildcat5 for Windows, a rainfall-runoff hydrograph model: user manual and documentation

    Treesearch

    R. H. Hawkins; A. Barreto-Munoz

    2016-01-01

    Wildcat5 for Windows (Wildcat5) is an interactive Windows Excel-based software package designed to assist watershed specialists in analyzing rainfall runoff events to predict peak flow and runoff volumes generated by single-event rainstorms for a variety of watershed soil and vegetation conditions. Model inputs are: (1) rainstorm characteristics, (2) parameters related...

  17. Spectral analysis of temporal non-stationary rainfall-runoff processes

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Min; Yeh, Hund-Der

    2018-04-01

    This study treats the catchment as a block box system with considering the rainfall input and runoff output being a stochastic process. The temporal rainfall-runoff relationship at the catchment scale is described by a convolution integral on a continuous time scale. Using the Fourier-Stieltjes representation approach, a frequency domain solution to the convolution integral is developed to the spectral analysis of runoff processes generated by temporal non-stationary rainfall events. It is shown that the characteristic time scale of rainfall process increases the runoff discharge variability, while the catchment mean travel time constant plays the role in reducing the variability of runoff discharge. Similar to the behavior of groundwater aquifers, catchments act as a low-pass filter in the frequency domain for the rainfall input signal.

  18. The effect of the runoff size on the pesticide concentration in runoff water and in FOCUS streams simulated by PRZM and TOXSWA.

    PubMed

    Adriaanse, Paulien I; Van Leerdam, Robert C; Boesten, Jos J T I

    2017-04-15

    Within the European Union the exposure of aquatic organisms to pesticides is assessed by simulations with the so-called FOCUS Surface Water Scenarios. Runoff plays an important role in these scenarios. As little is known about the effect of runoff size on the exposure, we investigated the effect of runoff size on the concentration in the runoff water and in streams simulated with the PRZM and TOXSWA models for two FOCUS runoff scenarios. For weakly sorbing pesticides (K F,oc <100Lkg -1 ) the pesticide concentration in the runoff water decreased exponentially with increasing daily runoff size. The runoff size hardly affected the pesticide concentration in the runoff water of strongly sorbing pesticides (K F,oc ≥1000Lkg -1 ). For weakly sorbing pesticides the concentration in the FOCUS stream reached a maximum at runoff sizes of about 0.3 to 1mm. The concentration increased rapidly when the runoff size increased from 0 to 0.1mm and gradually decreased when runoff exceeded 1mm. For strongly sorbing pesticides the occurrence of the maximum concentration in the stream is clearly less pronounced and lies approximately between 1 and 20mm runoff. So, this work indicates that preventing small runoff events (e.g. by vegetated buffer strips) reduces exposure concentrations strongly for weakly sorbing pesticides. A simple metamodel was developed for the ratio between the concentrations in the stream and in the runoff water. This model predicted the ratios simulated by TOXSWA very well and it demonstrated that (in addition to runoff size and concentration in runoff) the size of the pesticide-free base flow and pesticide treatment ratio of the catchment determine the stream concentration to a large extent. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Hydrologic conditions and quality of rainfall and storm runoff for two agricultural areas of the Oso Creek Watershed, Nueces County, Texas, 2005-07

    USGS Publications Warehouse

    Ockerman, Darwin J.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and quality of rainfall and storm runoff of two (primarily) agricultural areas (subwatersheds) of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is 5,145 acres. The other area, a subwatershed drained by an unnamed Oso Creek tributary (hereinafter, Oso Creek tributary), is 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during October 2005-September 2007. Fourteen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Nineteen composite runoff samples (10 West Oso Creek, nine Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-two discrete suspended-sediment samples (10 West Oso Creek, 12 Oso Creek tributary) and 13 bacteria samples (eight West Oso Creek, five Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the study subwatersheds. Quantities of fertilizers and pesticides applied in the subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff at both subwatershed outlet sites occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 10.83 inches compared with 7.28 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 2-year study period averaged 2.61 pounds

  20. Quantifying climate change impacts on runoff of zoonotic pathogens from land

    NASA Astrophysics Data System (ADS)

    Sterk, Ankie; de Roda Husman, Ana Maria; Stergiadi, Maria; de Nijs, Ton; Schijven, Jack

    2013-04-01

    Several studies have shown a correlation between rainfall and waterborne disease outbreaks. One of the mechanisms whereby rainfall may cause outbreaks is through an increase in runoff of animal faeces from fields to surface waters. Faeces originating from wildlife, domestic animals or manure-fertilized fields, is considered an important source of zoonotic pathogens to which people may be exposed by water recreation or drinking-water consumption. Climate changes affect runoff because of increasing winter precipitation and more extreme precipitation events, as well as changes in evaporation. Furthermore, drier summers are leading to longer periods of high soil moisture deficits, increasing the hydrophobicity of soil and consequently changing infiltration capacities. A conceptual model is designed to describe the impacts of climate changes on the terrestrial and aquatic ecosystems, which are both directly and indirectly affecting pathogen loads in the environment and subsequent public health risks. One of the major outcomes was the lack of quantitative data and limited qualitative analyses of impacts of climate changes on pathogen runoff. Quantifying the processes by which micro-organisms are transported from fields to waters is important to be able to estimate such impacts to enable targeted implementation of effective intervention measures. A quantitative model using Mathematica software will be developed to estimate concentrations of pathogens originating from overland flow during runoff events. Different input sources will be included by applying different land-use scenarios, including point source faecal pollution from dairy cows and geese and diffuse source pollution by fertilization. Zoonotic pathogens, i.e. Cryptosporidium and Campylobacter, were selected based on transport properties, faecal loads and disease burden. Transport and survival rates of these pathogens are determined including effects of changes in precipitation but also temperature induced

  1. FlowShape: a runoff connectivity index for patched environments, based on shape and orientation of runoff sources

    NASA Astrophysics Data System (ADS)

    Callegaro, Chiara; Malkinson, Dan; Ursino, Nadia; Wittenberg, Lea

    2016-04-01

    The properties of vegetation cover are recognized to be a key factor in determining runoff processes and yield over natural areas. Still, how the actual vegetation spatial distribution affects these processes is not completely understood. In Mediterranean semi-arid regions, patched landscapes are often found, with clumped vegetation, grass or shrubs, surrounded by bare soil patches. These two phases produce a sink-source system for runoff, as precipitation falling over bare areas barely infiltrates and rather flows downslope. In contrast, vegetated patches have high infiltrability and can partially retain the runon water. We hypothesize that, at a relatively small scale, the shape and orientation of bare soil patches with respect to the runoff flow direction is a significant for the connectivity of the runoff flow paths, and consequently for runoff values. We derive an index, FlowShape, which is candidate to be a good proxy for runoff connectivity and thus runoff production in patched environments. FlowShape is an area-weighted average of the geometrical properties of each bare soil patch. Eight experimental plots in northern Israel were monitored during 2 years after a wildfire which occurred in 2006. Runoff was collected and measured - along with rainfall depth - after each rainfall event, at different levels of vegetation cover corresponding to post-fire recovery of vegetation and seasonality. We obtained a good correlation between FlowShape and the runoff coefficient, at two conditions: a minimal percentage of vegetation cover over the plot, and minimal rainfall depth. Our results support the hypothesis that the spatial distribution of the two phases (vegetation and bare soil) in patched landscapes dictates, at least partially, runoff yield. The correlation between the runoff coefficient and FlowShape, which accounts for shape and orientation of soil patches, is higher than the correlation between the runoff coefficient and the bare soil percentage alone

  2. Particle size distribution variance in untreated urban runoff and its implication on treatment selection.

    PubMed

    Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D

    2015-11-15

    Understanding the particle size distribution (PSD) of sediment in urban runoff assists in the selection of appropriate treatment systems for sediment removal as systems vary in their ability to remove sediment across different particle size fractions. Variation in PSD in runoff from individual urban surfaces both during and across multiple rain events is not well understood and it may lead to performance uncertainty in treatment systems. Runoff PSDs in international literature were compiled to provide a comparative summary of PSDs from different urban surfaces. To further assess both intra-event and inter-event PSD variation, untreated runoff was collected from road, concrete roof, copper roof, and galvanized roof surfaces within an urban catchment exposed to the same rainfall conditions and analysed for PSD and total suspended solids (TSS). Road runoff had the highest TSS concentrations, while copper roofs had high initial TSS that reduced to very low levels under steady state conditions. Despite variation in TSS concentrations, the median particle diameter of the TSS was comparable across the surfaces. Intra-event variation was generally not significant, but substantial inter-event variation was observed, particularly for coarser road and concrete roof surfaces. PSD variation for each surface contributed to a wide range in predicted treatment performance and suggests that short-retention treatment devices carry a high performance risk of not being able to achieve adequate TSS removal across all rain events. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A field study to evaluate runoff quality from green roofs.

    PubMed

    Vijayaraghavan, K; Joshi, U M; Balasubramanian, R

    2012-03-15

    Green (vegetated) roofs are emerging as practical strategies to improve the environmental quality of cities. However, the impact of green roofs on the storm water quality remains a topic of concern to city planners and environmental policy makers. This study investigated whether green roofs act as a source or a sink of various metals (Na, K, Ca, Mg, Al, Fe, Cu, Cd, Pb, Zn, Mn, Cr, Ni, Li and Co), inorganic anions (NO3-, NO2-, PO4(3-), SO4(2-), Cl-, F- and Br-) and cation (NH4+). A series of green roof assemblies were constructed. Four different real rain events and several artificial rain events were considered for the study. Results showed that concentrations of most of the chemical components in runoff were highest during the beginning of rain events and subsided in the subsequent rain events. Some of the important components present in the runoff include Na, K, Ca, Mg, Li, Fe, Al, Cu, NO3-, PO4(3-) and SO4(2-). However, the concentration of these chemical components in the roof runoff strongly depends on the nature of substrates used in the green roof and the volume of rain. Based on the USEPA standards for freshwater quality, we conclude that the green roof used in this study is reasonably effective except that the runoff contains significant amounts of NO3- and PO4(3-). Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. [Urban non-point source pollution control by runoff retention and filtration pilot system].

    PubMed

    Bai, Yao; Zuo, Jian-E; Gan, Li-Li; Low, Thong Soon; Miao, Heng-Feng; Ruan, Wen-Quan; Huang, Xia

    2011-09-01

    A runoff retention and filtration pilot system was designed and the long-term purification effect of the runoff was monitored. Runoff pollution characters in 2 typical events and treatment effect of the pilot system were analyzed. The results showed that the runoff was severely polluted. Event mean concentrations (EMCs) of SS, COD, TN and TP in the runoff were 361, 135, 7.88 and 0.62 mg/L respectively. The runoff formed by long rain presented an obvious first flush effect. The first 25% flow contributed more than 50% of the total pollutants loading of SS, TP, DTP and PO4(3-). The pilot system could reduce 100% of the non-point source pollution if the volume of the runoff was less than the retention tank. Otherwise the overflow will be purification by the filtration pilot system and the removal rates of SS, COD, TN, TP, DTP and PO4(3-) reached 97.4% , 61.8%, 22.6%, 85.1%, 72.1%, and 85.2% respectively. The system was stable and the removal rate of SS, COD, TN, and TP were 98.6%, 65.4%, 55.1% and 92.6%. The whole system could effectively remove the non-point source pollution caused by runoff.

  5. Comparison between snowmelt-runoff and rainfall-runoff nonpoint source pollution in a typical urban catchment in Beijing, China.

    PubMed

    Chen, Lei; Zhi, Xiaosha; Shen, Zhenyao; Dai, Ying; Aini, Guzhanuer

    2018-01-01

    As a climate-driven event, nonpoint source (NPS) pollution is caused by rainfall- or snowmelt-runoff processes; however, few studies have compared the characteristics and mechanisms of these two kinds of NPS processes. In this study, three factors relating to urban NPS, including surface dust, snowmelt, and rainfall-runoff processes, were analyzed comprehensively by both field sampling and laboratory experiments. The seasonal variation and leaching characteristics of pollutants in surface dust were explored, and the runoff quality of snowmelt NPS and rainfall NPS were compared. The results indicated that dusts are the main sources of urban NPS and more pollutants are deposited in dust samples during winter and spring. However, pollutants in surface dust showed a low leaching ratio, which indicated most NPS pollutants would be carried as particulate forms. Compared to surface layer, underlying snow contained higher chemical oxygen demand, total suspended solids (TSS), Cu, Fe, Mn, and Pb concentrations, while the event mean concentration of most pollutants in snowmelt tended to be higher in roads. Moreover, the TSS and heavy metal content of snowmelt NPS was always higher than those of rainfall NPS, which indicated the importance of controlling snowmelt pollution for effective water quality management.

  6. Runoff amount and quality as influenced by tillage and fertilizer management choices in a Cecil soil

    USDA-ARS?s Scientific Manuscript database

    Tillage and fertilizer choices and their interactions have varying impacts on levels and qualities of runoff from agricultural fields. We quantified runoff, sediment loss, concentrations and loads of ammonium-nitrogen (NH4-N), nitrate-nitrogen (NO3-N), dissolved reactive phosphorus (PO4-P) and total...

  7. Agriculture and stream water quality: A biological evaluation of erosion control practices

    NASA Astrophysics Data System (ADS)

    Lenat, David R.

    1984-07-01

    Agricultural runoff affects many streams in North Carolina. However, there is is little information about either its effect on stream biota or any potential mitigation by erosion control practices. In this study, benthic macroinvertebrates were sampled in three different geographic areas of North Carolina, comparing control watersheds with well-managed and poorly managed watersheds. Agricultural streams were characterized by lower taxa richness (especially for intolerant groups) and low stability. These effects were most evident at the poorly managed sites. Sedimentation was the apparent major problem, but some changes at agricultural sites implied water quality problems. The groups most intolerant of agricultural runoff were Ephemeroptera, Plecoptera and Trichoptera. Tolerant species were usually filter-feeders or algal grazers, suggesting a modification of the food web by addition of particulate organic matter and nutrients. This study clearly indicates that agricultural runoff can severely impact stream biota. However, this impact can be greatly mitigated by currently recommended erosion control practices.

  8. HMA runoff data

    EPA Pesticide Factsheets

    Excel workbook, First sheet is data dictionary. second sheet is the data representing the abstraction for events with short antecedent dry period (less than 24 hr) This dataset is associated with the following publication:Brown , R., and M. Borst. Evaluating the Accuracy of Common Runoff Estimation Methods for New Impervious Hot-Mix Asphalt. Journal of Sustainable Water in the Built Environment. American Society of Civil Engineers (ASCE), New York, NY, USA, online, (2015).

  9. Factors contributing to unusually low runoff during the period 1962-68 in the Concho River Basin, Texas

    USGS Publications Warehouse

    Sauer, Stanley P.

    1972-01-01

    The analyses of rainfall-intensity and runoff data indicate that the basic cause for the relatively low runoff during the period 1962-68 was the lack of high-intensity, long-duration storms rather than any physical changes or agricultural practices in the watershed

  10. [Total pollution features of urban runoff outlet for urban river].

    PubMed

    Luo, Hong-Bing; Luo, Lin; Huang, Gu; He, Qiang; Liu, Ping

    2009-11-01

    The urban stormwater runoff discharged to urban river, especially to rainfall source river, cannot be ignored. In this study, the Futian River watershed in Shenzhen city in a typical southern city of China is taken as the research object. In order to guide the pollution control for urban river, the eighteen rainfall events were monitored, and the total pollution features of the urban runoff outlet for this urban river were analyzed and discussed by using the process of pollutographs, the identifying to first flush, event mean concentration (EMC), etc. Results show that the concentrations of COD, SS, TN, TP and BOD5 are ten times more than the grade V of the environmental quality standards for surface water during the runoff time; the pollution caused by heavy metals (Cr, Ge, Cu, Hg and As) in runoff at a typical rainfall event is serious; the average and range of pollutant concentration at this runoff outlet in study area are evidently higher than at Shapingba in Chongqing city of China and at Silerwood in Canada, but are lower than at Shilipu in Wuhan city of China. The first flushes of COD, SS, BOD5, especially COD and SS, are evident, but the TN and TP are not. The average EMC of COD, TN, TP and BOD5 are 224.14, 571.15, 5.223, 2.04, 143.5 mg/L, respectively. To some extent, the EMC of COD is about two times of the value of the near cities, Macao and Zhuhai. The EMC of TN and TP are obviously higher than Beijing, Guangzhou and Shanghai. To compared with foreign counties, the EMC of the study area in Shenzhen is obviously much higher than the cities of Korean, USA and Canada. So the total pollution caused by the urban surface runoff in study area is serious and necessary to be treated.

  11. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations.

    PubMed

    Cerdà, A; Keesstra, S D; Rodrigo-Comino, J; Novara, A; Pereira, P; Brevik, E; Giménez-Morera, A; Fernández-Raga, M; Pulido, M; di Prima, S; Jordán, A

    2017-11-01

    Rainfall-induced soil erosion is a major threat, especially in agricultural soils. In the Mediterranean belt, vineyards are affected by high soil loss rates, leading to land degradation. Plantation of new vines is carried out after deep ploughing, use of heavy machinery, wheel traffic, and trampling. Those works result in soil physical properties changes and contribute to enhanced runoff rates and increased soil erosion rates. The objective of this paper is to assess the impact of the plantation of vineyards on soil hydrological and erosional response under low frequency - high magnitude rainfall events, the ones that under the Mediterranean climatic conditions trigger extreme soil erosion rates. We determined time to ponding, Tp; time to runoff, Tr; time to runoff outlet, Tro; runoff rate, and soil loss under simulated rainfall (55 mm h -1 , 1 h) at plot scale (0.25 m 2 ) to characterize the runoff initiation and sediment detachment. In recent vine plantations (<1 year since plantation; R) compared to old ones (>50 years; O). Slope gradient, rock fragment cover, soil surface roughness, bulk density, soil organic matter content, soil water content and plant cover were determined. Plantation of new vineyards largely impacted runoff rates and soil erosion risk at plot scale in the short term. Tp, Tr and Tro were much shorter in R plots. Tr-Tp and Tro-Tr periods were used as connectivity indexes of water flow, and decreased to 77.5 and 33.2% in R plots compared to O plots. Runoff coefficients increased significantly from O (42.94%) to R plots (71.92%) and soil losses were approximately one order of magnitude lower (1.8 and 12.6 Mg ha -1 h -1 for O and R plots respectively). Soil surface roughness and bulk density are two key factors that determine the increase in connectivity of flows and sediments in recently planted vineyards. Our results confirm that plantation of new vineyards strongly contributes to runoff initiation and sediment detachment, and those

  12. What controls the very quick runoff response in the Meuse basin?

    NASA Astrophysics Data System (ADS)

    Bouaziz, Laurène; Hrachowitz, Markus; Schellekens, Jaap; Weerts, Albrecht; Savenije, Hubert

    2017-04-01

    Currently, the hydrological model used in the operational forecasting system of the river Meuse is lumped and does not account for the heterogeneity of the landscape, topography and vegetation. Previous studies have shown the importance of model structure distribution in different hydrological response units (HRUs) to improve model simulations. These HRUs take into account the different dominant runoff generation processes that occur in different parts of the landscape. The conceptualization of a runoff response with a very rapid time scale is essential to model the rapid runoff generated by very high intensity rainfall events. The parameterization of this rapid runoff response in the different sub-catchments of the Meuse is very sensitive due to the non-linearity of this threshold process and to the spatio-temporal variability of high-intensity rain events. In this study, we formulate several hypotheses on what controls the very quick runoff response in the Meuse basin and we try to use additional sources of data to test the a-priori assumptions that we made in the conceptualization of the HRUs in our hydrological model and to facilitate model parameterization. We hypothesize that by using appropriate runoff signatures, we may be able to assess the importance of the threshold response in the different catchments. The selection of specific storm events is useful to split the runoff in different time scales to improve the a-priori estimation of the very rapid runoff parameterization. Linking these differences to topographic and physiographic properties of the catchment like soil texture and land use may help us to explain the difference in observed spatial patterns. Especially the assessment of the fraction of roads and paved areas that cross the different hydrological response units may help to explain the observed spatial patterns. Additionally, we believe that deriving permanent and temporary wet areas using the Modified Normalized Difference Water Index (MNDWI

  13. Beyond the SCS-CN method: A theoretical framework for spatially lumped rainfall-runoff response

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S.; Parolari, A. J.; McDonnell, J. J.; Porporato, A.

    2016-06-01

    Since its introduction in 1954, the Soil Conservation Service curve number (SCS-CN) method has become the standard tool, in practice, for estimating an event-based rainfall-runoff response. However, because of its empirical origins, the SCS-CN method is restricted to certain geographic regions and land use types. Moreover, it does not describe the spatial variability of runoff. To move beyond these limitations, we present a new theoretical framework for spatially lumped, event-based rainfall-runoff modeling. In this framework, we describe the spatially lumped runoff model as a point description of runoff that is upscaled to a watershed area based on probability distributions that are representative of watershed heterogeneities. The framework accommodates different runoff concepts and distributions of heterogeneities, and in doing so, it provides an implicit spatial description of runoff variability. Heterogeneity in storage capacity and soil moisture are the basis for upscaling a point runoff response and linking ecohydrological processes to runoff modeling. For the framework, we consider two different runoff responses for fractions of the watershed area: "prethreshold" and "threshold-excess" runoff. These occur before and after infiltration exceeds a storage capacity threshold. Our application of the framework results in a new model (called SCS-CNx) that extends the SCS-CN method with the prethreshold and threshold-excess runoff mechanisms and an implicit spatial description of runoff. We show proof of concept in four forested watersheds and further that the resulting model may better represent geographic regions and site types that previously have been beyond the scope of the traditional SCS-CN method.

  14. Long-term trends in climate and hydrology in an agricultural, headwater watershed of central Pennsylvania, USA

    USDA-ARS?s Scientific Manuscript database

    Strategies to mitigate agricultural runoff must consider long-term changes in climate. We investigated temperature, precipitation and runoff trends over roughly four decades of monitoring an agricultural watershed in east central Pennsylvania (1968-2012). Temperature data confirmed significant expan...

  15. Hydrologic conditions and water quality of rainfall and storm runoff for two agricultural areas of the Oso Creek watershed, Nueces County, Texas, 2005-08

    USGS Publications Warehouse

    Ockerman, Darwin J.; Fernandez, Carlos J.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and water quality of rainfall and storm runoff of two primarily agricultural subwatersheds of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is about 5,145 acres. The other area, a subwatershed drained by an unnamed tributary to Oso Creek (hereinafter, Oso Creek tributary), is about 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during the study period October 2005-September 2008. Seventeen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Twenty-four composite runoff water-quality samples (12 at West Oso Creek, 12 at Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-six discrete suspended-sediment samples (12 West Oso Creek, 14 Oso Creek tributary) and 17 bacteria samples (10 West Oso Creek, 7 Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the two subwatersheds. Quantities of fertilizers and pesticides applied in the two subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff from the two subwatersheds occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 13.95 inches compared with 9.45 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 3

  16. Coupling rainfall observations and satellite soil moisture for predicting event soil loss in Central Italy

    NASA Astrophysics Data System (ADS)

    Todisco, Francesca; Brocca, Luca; Termite, Loris Francesco; Wagner, Wolfgang

    2015-04-01

    The accuracy of water soil loss prediction depends on the ability of the model to account for effects of the physical phenomena causing the output and the accuracy by which the parameters have been determined. The process based models require considerable effort to obtain appropriate parameter values and their failure to produce better results than achieved using the USLE/RUSLE model, encourages the use of the USLE/RUSLE model in roles of which it was not designed. In particular it is widely used in watershed models even at the event temporal scale. At hillslope scale, spatial variability in soil and vegetation result in spatial variations in soil moisture and consequently in runoff within the area for which soil loss estimation is required, so the modeling approach required to produce those estimates needs to be sensitive to those spatial variations in runoff. Some models include explicit consideration of runoff in determining the erosive stresses but this increases the uncertainty of the prediction due to the difficulty in parameterising the models also because the direct measures of surface runoff are rare. The same remarks are effective also for the USLE/RUSLE models including direct consideration of runoff in the erosivity factor (i.e. USLE-M by Kinnell and Risse, 1998, and USLE-MM by Bagarello et al., 2008). Moreover actually most of the rainfall-runoff models are based on the knowledge of the pre-event soil moisture that is a fundamental variable in the rainfall-runoff transformation. In addiction soil moisture is a readily available datum being possible to have easily direct pre-event measures of soil moisture using in situ sensors or satellite observations at larger spatial scale; it is also possible to derive the antecedent water content with soil moisture simulation models. The attempt made in the study is to use the pre-event soil moisture to account for the spatial variation in runoff within the area for which the soil loss estimates are required. More

  17. Water-quality assessment of stormwater runoff from a heavily used urban highway bridge in Miami, Florida

    USGS Publications Warehouse

    McKenzie, Donald J.; Irwin, G.A.

    1983-01-01

    Runoff from a heavily-traveled, 1.43-acre bridge section of Interstate-95 in Miami, Florida, was comprehensively monitored for both quality and quantity during five selected storms between November 1979 and May 1981. For most water-quality parameters, 6 to 11 samples were collected during each of the 5 runoff events. Concentrations of most parameters in the runoff were quite variable both during individual storm events and among the five storm events; however, the ranges in parameter concentration were about the same magnitude report for numerous other highway and urban drainages. Data were normalized to estimate the average, discharge-weighted parameter loads per storm per acre of bridge surface and results suggested that the most significant factor influencing stormwater loads was parameter concentration. Rainfall intensity and runoff volume, however, influenced rates of loading. The total number of antecedent dry days and traffic volume did not appear to be conspicously related to either runoff concentrations or loads. (USGS)

  18. Managing broiler litter application rate and grazing to decrease watershed runoff losses.

    PubMed

    Sistani, K R; Brink, G E; Oldham, J L

    2008-01-01

    Pasture management and broiler litter application rate are critical factors influencing the magnitude of nutrients being transported by runoff from fields. We investigated the impact of pasture management and broiler litter application rate on nutrient runoff from bermudagrass (Cynodon dactylon) pastures. The experiment was conducted on a Ruston fine sandy loam with a factorial arrangement on 21 large paddocks. Runoff water was collected from natural rainfall events from 2001 to 2003. Runoff water and soil samples were analyzed for nutrients and sediments. Runoff was generally greater (29%) from grazed than hayed pastures regardless of the litter application rate. There was greater inorganic N in the runoff from grazed paddocks when litter rate was based on N rather than P. The mean total P loss per runoff event for all treatments ranged from 7 to 45 g ha(-1) and the grazed treatment with litter applied on N basis had the greatest total P loss. Total dissolved P was the dominant P fraction in the runoff, ranging from 85% to 93% of the total P. The soluble reactive P was greater for treatments with litter applied on N basis regardless of pasture management. Runoff total sediments were greater for N-based litter application compared to those which received litter on P basis. Our results indicate that litter may be applied on N basis if the pasture is hayed and the soil P is low. In contrast, litter rates should be based on a P-basis if pasture is grazed.

  19. [Characteristics of rainfall and runoff in urban drainage based on the SWMM model.

    PubMed

    Xiong, Li Jun; Huang, Fei; Xu, Zu Xin; Li, Huai Zheng; Gong, Ling Ling; Dong, Meng Ke

    2016-11-18

    The characteristics of 235 rainfall and surface runoff events, from 2009 to 2011 in a typical urban drainage area in Shanghai were analyzed by using SWMM model. The results showed that the rainfall events in the region with high occurrence frequency were characterized by small rainfall amount and low intensity. The most probably occurred rainfall had total amount less than 10 mm, or mean intensity less than 5 mm·h -1 ,or peak intensity less than 10 mm·h -1 , accounting for 66.4%, 88.8% and 79.6% of the total rainfall events, respectively. The study was of great significance to apply low-impact development to reduce runoff and non-point source pollution under condition of less rainfall amount or low mean rainfall intensity in the area. The runoff generally increased with the increase of rainfall. The threshold of regional occurring runoff was controlled by not only rainfall amount, but also mean rainfall intensity and rainfall duration. In general, there was no surface runoff when the rainfall amount was less than 2 mm. When the rainfall amount was between 2 to 4 mm and the mean rainfall intensity was below 1.6 mm·h -1 , the runoff was less than 1 mm. When the rainfall exceeded 4 mm and the mean rainfall intensity was larger than 1.6 mm·h -1 , the runoff would occur generally. Based on the results of the SWMM simulation, three regression equations that were applicable to regional runoff amount and rainfall factors were established. The adjustment R 2 of the three equations were greater than 0.97. This indicated that the equations could reflect well the relationship between runoff and rainfall variables. The results provided the basis of calculations to plan low impact development and better reduce overflow pollution in local drainage area. It also could serve as a useful reference for runoff study in similar drainage areas.

  20. Impact of the rainfall pattern on synthetic pesticides and copper runoff from a vineyard catchment

    NASA Astrophysics Data System (ADS)

    Payraudeau, Sylvain; Meite, Fatima; Wiegert, Charline; Imfeld, Gwenaël

    2017-04-01

    Runoff is a major process of pesticide transport from agricultural land to downstream aquatic ecosystems. The impact of rainfall characteristics on the transport of runoff-related pesticide is rarely evaluated at the catchment scale. Here, we evaluate the influence of rainfall pattern on the mobilization of synthetic pesticides and copper fungicides in runoff from a small vineyard catchment, both at the plot and catchment scales. During two vineyard growing seasons in 2015 and 2016 (from March to October), we monitored rainfall, runoff, and concentrations of copper and 20 fungicides and herbicides applied by winegrowers at the Rouffach vineyard catchment (France, Alsace; 42.5 ha). Rainfall data were recorded within the catchment while runoff measurement and flow-proportional water sampling were carried out at the outlet of the plot (1486 m2; 87.5 × 17 m) and the catchment. In total, discharges of the 14 runoff events were continuously monitored between March and October 2015 using bubbler flow modules combined with Venturi channels. Detailed and distributed dataset on pesticide applications were extracted from survey (copper formulations and type of pesticides, amount and application dates). Pools of copper and synthetic pesticides were quantified weekly in the topsoil (0-3 cm) by systematic sampling across the catchment. The concentrations of copper (10 mg.kg-1 dried soil) and synthetic pesticides (close to the quantification limit, i.e. 0.05 µg.L-1) available in the top soil for off-site transport largely differed over time. Between March and October, an accumulation of copper of 10% was observed in the top-soil while pesticide concentration decreased below the quantification limits after a few days or weeks following application, depending of the compounds. The average runoff generated at the plot scale was very low (0.13% ± 0.30). The maximum runoff reached 1.37% during the storm of July 22, 2015. Synthetic pesticides exported by runoff was less than 1‰ of

  1. Stormwater runoff in watersheds: a system for prediciting impacts of development and climate change

    Treesearch

    Ann Blair; Denise Sanger; Susan Lovelace

    2016-01-01

    The Stormwater Runoff Modeling System (SWARM) enhances understanding of impacts of land-use and climate change on stormwater runoff in watersheds. We developed this singleevent system based on US Department of Agriculture, Natural Resources Conservation Service curve number and unit hydrograph methods. We tested SWARM using US Geological Survey discharge and rain data...

  2. Phosphorus runoff losses from subsurface-applied poultry litter on coastal plain soils.

    PubMed

    Kibet, Leonard C; Allen, Arthur L; Kleinman, Peter J A; Feyereisen, Gary W; Church, Clinton; Saporito, Lou S; Way, Thomas R

    2011-01-01

    The application of poultry litter to soils is a water quality concern on the Delmarva Peninsula, as runoff contributes P to the eutrophic Chesapeake Bay. This study compared a new subsurface applicator for poultry litter with conventional surface application and tillage incorporation of litter on a Coastal Plain soil under no-till management. Monolith lysimeters (61 cm by 61 cm by 61 cm) were collected immediately after litter application and subjected to rainfall simulation (61 mm h(-1) 1 h) 15 and 42 d later. In the first rainfall event, subsurface application of litter significantly lowered total P losses in runoff (1.90 kg ha(-1)) compared with surface application (4.78 kg ha(-1)). Losses of P with subsurface application were not significantly different from disked litter or an unamended control. By the second event, total P losses did not differ significantly between surface and subsurface litter treatments but were at least twofold greater than losses from the disked and control treatments. A rising water table in the second event likely mobilized dissolved forms of P in subsurface-applied litter to the soil surface, enriching runoff water with P. Across both events, subsurface application of litter did not significantly decrease cumulative losses of P relative to surface-applied litter, whereas disking the litter into the soil did. Results confirm the short-term reduction of runoff P losses with subsurface litter application observed elsewhere but highlight the modifying effect of soil hydrology on this technology's ability to minimize P loss in runoff.

  3. Adhesion of and to soil in runoff as influenced by polyacrylamide.

    PubMed

    Bech, Tina B; Sbodio, Adrian; Jacobsen, Carsten S; Suslow, Trevor

    2014-11-01

    Polyacrylamide (PAM) is used in agriculture to reduce soil erosion and has been reported to reduce turbidity, nutrients, and pollutants in surface runoff water. The objective of this work was to determine the effect of PAM on the concentration of enteric bacteria in surface runoff by comparing four enteric bacteria representing phenotypically different motility and hydrophobicity from three soils. Results demonstrated that bacterial surface runoff was differentially influenced by the PAM treatment. Polyacrylamide treatment increased surface runoff for adhered and planktonic cells from a clay soil; significantly decreased surface runoff of adhered bacteria, while no difference was observed for planktonic bacteria from the sandy loam; and significantly decreased the surface runoff of planktonic cells, while no difference was observed for adhered bacteria from the clay loam. Comparing strains from a final water sample collected after 48 h showed a greater loss of while serovar Poona was almost not detected. Thus, (i) the PAM efficiency in reducing the concentration of enteric bacteria in surface runoff was influenced by soil type and (ii) variation in the loss of enteric bacteria highlights the importance of strain-specific properties that may not be captured with general fecal indicator bacteria. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Rainfall–runoff model parameter estimation and uncertainty evaluation on small plots

    EPA Science Inventory

    Four seasonal rainfall simulations in 2009 and 2010were applied to a field containing 36 plots (0.75 × 2 m each), resulting in 144 runoff events. In all simulations, a constant rate of rainfall was applied then halted 60min after initiation of runoff, with plot-scale monitoring o...

  5. [Effects of slope gradient on slope runoff and sediment yield under different single rainfall conditions].

    PubMed

    He, Ji-Jun; Cai, Qiang-Guo; Liu, Song-Bo

    2012-05-01

    Based on the field observation data of runoff and sediment yield produced by single rainfall events in runoff plots, this paper analyzed the variation patterns of runoff and sediment yield on the slopes with different gradients under different single rainfall conditions. The differences in the rainfall conditions had little effects on the variation patterns of slope runoff with the gradient. Under the conditions of six different rainfall events in the study area, the variation patterns of slope runoff with the gradient were basically the same, i. e., the runoff increased with increasing gradient, but the increment of the runoff decreased slightly with increasing gradient, which was mainly determined by the infiltration flux of atmospheric precipitation. Rainfall condition played an important role on the slope sediment yield. Generally, there existed a critical slope gradient for slope erosion, but the critical gradient was not a fixed value, which varied with rainfall condition. The critical slope gradient for slope erosion increased with increasing slope gradient. When the critical slope gradient was greater, the variation of slope sediment yield with slope gradient always became larger.

  6. Evaluation of Rainfall-Runoff Models for Mediterranean Subcatchments

    NASA Astrophysics Data System (ADS)

    Cilek, A.; Berberoglu, S.; Donmez, C.

    2016-06-01

    The development and the application of rainfall-runoff models have been a corner-stone of hydrological research for many decades. The amount of rainfall and its intensity and variability control the generation of runoff and the erosional processes operating at different scales. These interactions can be greatly variable in Mediterranean catchments with marked hydrological fluctuations. The aim of the study was to evaluate the performance of rainfall-runoff model, for rainfall-runoff simulation in a Mediterranean subcatchment. The Pan-European Soil Erosion Risk Assessment (PESERA), a simplified hydrological process-based approach, was used in this study to combine hydrological surface runoff factors. In total 128 input layers derived from data set includes; climate, topography, land use, crop type, planting date, and soil characteristics, are required to run the model. Initial ground cover was estimated from the Landsat ETM data provided by ESA. This hydrological model was evaluated in terms of their performance in Goksu River Watershed, Turkey. It is located at the Central Eastern Mediterranean Basin of Turkey. The area is approximately 2000 km2. The landscape is dominated by bare ground, agricultural and forests. The average annual rainfall is 636.4mm. This study has a significant importance to evaluate different model performances in a complex Mediterranean basin. The results provided comprehensive insight including advantages and limitations of modelling approaches in the Mediterranean environment.

  7. First flush of storm runoff pollution from an urban catchment in China.

    PubMed

    Li, Li-Qing; Yin, Cheng-Qing; He, Qing-Ci; Kong, Ling-Li

    2007-01-01

    Storm runoff pollution process was investigated in an urban catchment with an area of 1.3 km2 in Wuhan City of China. The results indicate that the pollutant concentration peaks preceded the flow peaks in all of 8 monitored storm events. The intervals between pollution peak and flow peak were shorter in the rain events with higher intensity in the initial period than those with lower intensity. The fractions of pollution load transported by the first 30% of runoff volume (FF30) were 52.2%-72.1% for total suspended solids (TSS), 53.0%-65.3% for chemical oxygen demand (COD), 40.4%-50.6% for total nitrogen (TN), and 45.8%-63.2% for total phosphorus (TP), respectively. Runoff pollution was positively related to non-raining days before the rainfall. Intercepting the first 30% of runoff volume can remove 62.4% of TSS load, 59.4% of COD load, 46.8% of TN load, and 54.1% of TP load, respectively, according to all the storm events. It is suggested that controlling the first flush is a critical measure in reduction of urban stormwater pollution.

  8. Characterization and first flush analysis in road and roof runoff in Shenyang, China.

    PubMed

    Li, Chunlin; Liu, Miao; Hu, Yuanman; Gong, Jiping; Sun, Fengyun; Xu, Yanyan

    2014-01-01

    As urbanization increases, urban runoff is an increasingly important component of total urban non-point source pollution. In this study, the properties of urban runoff were examined in Shenyang, in northeastern China. Runoff samples from a tiled roof, a concrete roof and a main road were analyzed for key pollutants (total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), Pb, Cd, Cr, Cu, Ni, and Zn). The event mean concentration, site mean concentration, M(V) curves (dimensionless cumulative curve of pollutant load with runoff volume), and mass first flush ratio (MFF30) were used to analyze the characteristics of pollutant discharge and first flush (FF) effect. For all events, the pollutant concentration peaks occurred in the first half-hour after the runoff appeared and preceded the flow peaks. TN is the main pollutant in roof runoff. TSS, TN, TP, Pb, and Cr are the main pollutants in road runoff in Shenyang. There was a significant correlation between TSS and other pollutants except TN in runoff, which illustrated that TSS was an important carrier of organic matter and heavy metals. TN had strong positive correlations with total rainfall (Pearson's r = 0.927), average rainfall (Pearson's r = 0.995), and maximum rainfall intensity (Pearson's r = 0.991). TP had a strong correlation with rainfall intensity (Pearson's r = 0.940). A significant positive correlation between COD and rainfall duration (Pearson's r = 0.902, significance level = 0.05) was found. The order of FF intensity in different surfaces was concrete roof > tile roof > road. Rainfall duration and the length of the antecedent dry period were positively correlated with the FF. TN tended to exhibit strong flush for some events. Heavy metals showed a substantially stronger FF than other pollutant.

  9. Long-term characterization of residential runoff and assessing potential surrogates of fecal indicator organisms.

    PubMed

    Reano, Dane C; Haver, Darren L; Oki, Lorence R; Yates, Marylynn V

    2015-05-01

    Investigations into the microbiological impacts of urban runoff on receiving water bodies, especially during storm conditions, have yielded general paradigms that influence runoff abatement and control management strategies. To determine whether these trends are present in other runoff sources, the physical, chemical, and microbiological components of residential runoff from eight neighborhoods in Northern and Southern California were characterized over the course of five years. Sampling occurred regularly and during storm events, resulting in 833 data sets. Analysis of runoff data assisted in characterizing residential runoff, elucidating differences between dry and storm conditions, and identifying surrogates capable of assessing microbiological quality. Results indicate that although microbial loading increases during storm events similar to urban runoff, annual microbial loading in these study sites principally occurs during dry conditions (24% storm, 76% dry). Generated artificial neural network and multiple linear regression models assessed surrogate performance by accurately predicting Escherichia coli concentrations from validation data sets (R(2) = 0.74 and 0.77, respectively), but required input from other fecal indicator organism (FIO) variables to maintain performance (R(2) = 0.27 and 0.18, respectively, without FIO). This long-term analysis of residential runoff highlights characteristics distinct from urban runoff and establishes necessary variables for determining microbiological quality, thus better informing future management strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Estrogenic activity, estrogens, and calcium in runoff post-layer litter application from rainfall simulated events

    USDA-ARS?s Scientific Manuscript database

    Estrogens in runoff from fields fertilized with animal wastes have been implicated as endocrine disruptors of fish in recipient surface waters. The goal of this study was to measure estrogenic activity in runoff post-application of animal waste with the greatest potential for estrogenic activity - ...

  11. Rainfall-runoff in the Albuquerque, New Mexico, area: Measurements, analyses and comparisons

    USGS Publications Warehouse

    Anderson, C.E.; Ward, T.J.; Kelly, T.; ,

    2005-01-01

    Albuquerque, New Mexico, has experienced significant growth over the last 20 years like many other cities in the Southwestern United States. While the US population grew by 37% between the 1970 and 2000 censuses, the growth for Albuquerque was 83%. More people mean more development and increased problems of managing runoff from urbanizing watersheds. The U.S. Geological Survey (USGS) in cooperation with the Albuquerque Arroyo Metropolitan Flood Control Authority (AMAFCA) and the City of Albuquerque has maintained a rainfall-runoff data collection program since 1976. The data from measured precipitation events can be used to verify hydrologic modeling. In this presentation, data from a representative gaged watershed is analyzed and discussed to set the overall framework for the rainfall-runoff process in the Albuquerque area. Of particular interest are the basic relationships between rainfall and watershed runoff response and an analysis of curve numbers as an indicator of runoff function. In urbanized areas, four land treatment types (natural, irrigated lawns, compacted soil, and impervious) are used to define surface infiltration conditions. Rainfall and runoff gage data are used to compare curve number (CN) and initial abstraction/uniform infiltration (IA/INF) techniques in an Albuquerque watershed. The IA/INF method appears to produce superior results over the CN method for the measured rainfall events.

  12. Compensatory response of fathead minnow larve following a pulsed in-situ exposure to a seasonal agricultural runoff event

    USDA-ARS?s Scientific Manuscript database

    Agriculturally-dominated waterways such as those found throughout the Midwestern United States often experience seasonal pulses of agrichemical contaminants which pose a potential hazard to aquatic organisms at varying life stages. The objective of this study was to characterize the developmental pl...

  13. Transport mechanisms of Silver Nanoparticles by runoff - A Flume Experiment

    NASA Astrophysics Data System (ADS)

    Mahdi Mahdi, Karrar NM; Commelin, Meindert; Peters, Ruud J. B.; Baartman, Jantiene E. M.; Ritsema, Coen; Geissen, Violette

    2017-04-01

    Silver Nanoparticles (AgNPs) are being used in many products as it has unique antimicrobial-biocidal properties. Through leaching, these particles will reach the soil environment which may affect soil organisms and disrupt plants. This work aims to study the potential transport of AgNPs with water and sediment over the soil surface due to soil erosion by water. This was done in a laboratory setting, using a rainfall simulator and flume. Low AgNPs concentration (50 μg.kg-1) was applied to two soil-flumes with slopes of 20% and 10%. The rainfall was applied in four events of 15 min each with the total amount of rainfall was 15mm in each event. After applying the rainfall, different samples were collected; soil clusters, background (BS) and surface sediments (Sf), from the flume surface, and, Runoff sediments (RS) and water (RW) was collected from the outlet. The results showed that AgNPs were detected in all samples collected, however, AgNPs concentration varied according samples type (soil or water), time of collection (for runoff water and sediment) and the slope of the soil flume. Further, the higher AgNPs concentrations were detected in the background soil (BS); as the BS samples have more finer parts (silt and clay). The AgNPs concentration in the runoff sediments increased with subsequent applied rain events. In addition to that, increasing the slope of the flume from 10% to 20% increased the total AgNPs transported with the runoff sediments by a factor 1.5. The study confirms that AgNPs can be transported over the soil surface by both runoff water and sediments due to erosion.

  14. In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of an Fe-oxide-enriched tropical soil.

    PubMed

    Lee, Chia-Hsing; Wang, Chung-Chi; Lin, Huan-Hsuan; Lee, Sang Soo; Tsang, Daniel C W; Jien, Shih-Hao; Ok, Yong Sik

    2018-04-01

    Climate change gives rise to rapid degradation of rural soils in sloping subtropical and tropical areas and might further threaten environmental sustainability. In this study, we conducted an integrated evaluation of the effects of wood biochar (WB) application mixed with a green waste dreg compost (GWC) on runoff quality, soil losses, and agricultural productivity for a highly weathered tropical soil. A conventional agriculture method, in which soils are treated with anionic polyacrylamide (PAM), was also conducted for comparison. The amounts of runoff and soil loss, and nutrient retention were evaluated a year after WB application. Soil fertility was also investigated through a year pot experiment with rape (Brassica campestris L.) cultivation. Our results showed that the WB application not only effectively increased soil pH, soil organic carbon (SOC) and exchangeable K + but also increased the production of rape plants. Significant reduction of runoff and the increases of inorganic nitrogen (IN) and total phosphorus (TP) were found in the WB-treated soil. Compared to the control, the co-application of WB and GWC, particularly for the WB at 4%, decreased runoff by 16.8%, soil loss by 25%, and IN loss (via runoff) by 41.8%. Meanwhile, compared to the control and PAM treatments, the co-application of WB and GWC improved soil acidity and the contents of SOC, IN, TP, and exchangeable K + . The co-application of WB and GWC could be an alternative agricultural strategy to obtain benefits to agricultural productivity and environmental sustainability. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Variability and trends in runoff efficiency in the conterminous United States

    USGS Publications Warehouse

    McCabe, Gregory J.; Wolock, David M.

    2016-01-01

    Variability and trends in water-year runoff efficiency (RE) — computed as the ratio of water-year runoff (streamflow per unit area) to water-year precipitation — in the conterminous United States (CONUS) are examined for the 1951 through 2012 period. Changes in RE are analyzed using runoff and precipitation data aggregated to United States Geological Survey 8-digit hydrologic cataloging units (HUs). Results indicate increases in RE for some regions in the north-central CONUS and large decreases in RE for the south-central CONUS. The increases in RE in the north-central CONUS are explained by trends in climate, whereas the large decreases in RE in the south-central CONUS likely are related to groundwater withdrawals from the Ogallala aquifer to support irrigated agriculture.

  16. A two-stage storage routing model for green roof runoff detention.

    PubMed

    Vesuviano, Gianni; Sonnenwald, Fred; Stovin, Virginia

    2014-01-01

    Green roofs have been adopted in urban drainage systems to control the total quantity and volumetric flow rate of runoff. Modern green roof designs are multi-layered, their main components being vegetation, substrate and, in almost all cases, a separate drainage layer. Most current hydrological models of green roofs combine the modelling of the separate layers into a single process; these models have limited predictive capability for roofs not sharing the same design. An adaptable, generic, two-stage model for a system consisting of a granular substrate over a hard plastic 'egg box'-style drainage layer and fibrous protection mat is presented. The substrate and drainage layer/protection mat are modelled separately by previously verified sub-models. Controlled storm events are applied to a green roof system in a rainfall simulator. The time-series modelled runoff is compared to the monitored runoff for each storm event. The modelled runoff profiles are accurate (mean Rt(2) = 0.971), but further characterization of the substrate component is required for the model to be generically applicable to other roof configurations with different substrate.

  17. Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.

    PubMed

    Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger

    2014-01-01

    This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.

  18. Detecting surface runoff location in a small catchment using distributed and simple observation method

    NASA Astrophysics Data System (ADS)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît

    2015-06-01

    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall

  19. A protocol for conducting rainfall simulation to study soil runoff

    USDA-ARS?s Scientific Manuscript database

    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial ur...

  20. At-grade stabilization structure impact on surface water quality of an agricultural watershed.

    PubMed

    Minks, Kyle R; Ruark, Matthew D; Lowery, Birl; Madison, Fred W; Frame, Dennis; Stuntebeck, Todd D; Komiskey, Matthew J; Kraft, George J

    2015-04-15

    Decades of farming and fertilization of farm land in the unglaciated/Driftless Area (DA) of southwestern Wisconsin have resulted in the build-up of P and to some extent, N, in soils. This build-up, combined with steep topography and upper and lower elevation farming (tiered farming), exacerbates problems associated with runoff and nutrient transport in these landscapes. Use of an at-grade stabilization structure (AGSS) as an additional conservation practice to contour strip cropping and no-tillage, proved to be successful in reducing organic and sediment bound N and P within an agricultural watershed located in the DA. The research site was designed as a paired watershed study, in which monitoring stations were installed on the perennial streams draining both control and treatment watersheds. Linear mixed effects statistics were used to determine significant changes in nutrient concentrations before and after installation of an AGSS. Results indicate a significant reduction in storm event total P (TP) concentrations (P = 0.01) within the agricultural watershed after installation of the AGSS, but not total dissolved P (P = 0.23). This indicates that the reduction in P concentration is that of the particulate form. Storm event organic N concentrations were also significantly reduced (P = 0.03) after the AGSS was installed. We conclude that AGSS was successful in reducing the organic and sediment bound N and P concentrations in runoff waters thus reducing their delivery to nearby surface waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Transport of dissolved trace elements in surface runoff and leachate from a coastal plain soil after poultry litter application

    USDA-ARS?s Scientific Manuscript database

    The application of poultry (Gallus gallus domesticus) litter to agricultural soils may exacerbate losses of trace elements in runoff water, an emerging concern to water quality. We evaluated trace elements (arsenic, cadmium, copper, lead, manganese, mercury, selenium and zinc) in surface runoff and ...

  2. [Effect of DMPP on inorganic nitrogen runoff loss from vegetable soil].

    PubMed

    Yu, Qiao-Gang; Fu, Jian-Rong; Ma, Jun-Wei; Ye, Jing; Ye, Xue-Zhu

    2009-03-15

    The effect of urea with 1% 3,4-dimethyl pyrazole phosphate (DMPP) on inorganic nitrogen runoff loss from agriculture field was determined in an undisturbed vegetable soil by using the simulated artificial rainfall method. The results show that, during the three simulated artificial rainfall period, the ammonium nitrogen content in the runoff water is increased 1.42, 2.82 and 1.95 times with the DMPP application treatment compared to regular urea treatment, respectively. In the urea with DMPP addition treatment, the nitrate nitrogen content is decreased 70.2%, 59.7% and 52.1% in the three simulated artificial rainfall runoff water, respectively. The nitrite nitrogen content is also decreased 98.7%, 90.6% and 85.6% in the three simulated artificial rainfall runoff water, respectively. The nitrate nitrogen and nitrite nitrogen runoff loss are greatly declined with the DMPP addition in the urea. Especially the nitrite nitrogen is in a significant low level and is near to the treatment with no fertilizer application. The inorganic nitrogen runoff loss is declined by 39.0% to 44.8% in the urea with DMPP addition treatment. So DMPP could be used as an effective nitrification inhibitor to control the soil ammonium oxidation, decline the nitrogen runoff loss, lower the nitrogen transformation risk to the waterbody and be beneficial for the ecological environment.

  3. Feedbacks Between Shallow Groundwater Dynamics and Surface Topography on Runoff Generation in Flat Fields

    NASA Astrophysics Data System (ADS)

    Appels, Willemijn M.; Bogaart, Patrick W.; van der Zee, Sjoerd E. A. T. M.

    2017-12-01

    In winter, saturation excess (SE) ponding is observed regularly in temperate lowland regions. Surface runoff dynamics are controlled by small topographical features that are unaccounted for in hydrological models. To better understand storage and routing effects of small-scale topography and their interaction with shallow groundwater under SE conditions, we developed a model of reduced complexity to investigate SE runoff generation, emphasizing feedbacks between shallow groundwater dynamics and mesotopography. The dynamic specific yield affected unsaturated zone water storage, causing rapid switches between negative and positive head and a flatter groundwater mound than predicted by analytical agrohydrological models. Accordingly, saturated areas were larger and local groundwater fluxes smaller than predicted, leading to surface runoff generation. Mesotopographic features routed water over larger distances, providing a feedback mechanism that amplified changes to the shape of the groundwater mound. This in turn enhanced runoff generation, but whether it also resulted in runoff events depended on the geometry and location of the depressions. Whereas conditions favorable to runoff generation may abound during winter, these feedbacks profoundly reduce the predictability of SE runoff: statistically identical rainfall series may result in completely different runoff generation. The model results indicate that waterlogged areas in any given rainfall event are larger than those predicted by current analytical groundwater models used for drainage design. This change in the groundwater mound extent has implications for crop growth and damage assessments.

  4. First flush characteristics of rainfall runoff from a paddy field in the Taihu Lake watershed, China.

    PubMed

    Li, Songmin; Wang, Xiaoling; Qiao, Bin; Li, Jiansheng; Tu, Jiamin

    2017-03-01

    Nonpoint storm runoff remains a major threat to surface water quality in China. As a paddy matures, numerous fertilizers are needed, especially in the rainy seasons; the concentration of nitrogen and phosphorus in rainfall runoff from farmland is much higher than at other times, and this poses a great threat to water bodies and is the main reason for water eutrophication, especially in high concentration drainages. To date, most studies regarding the characteristics of pollutants in rainfall runoff have mainly been concentrated on urban runoff and watershed runoff; therefore, it is particularly important to investigate the characteristics of nitrogen and phosphorus loss in rainfall runoff from paddy fields. To study the characteristics of nitrogen and phosphorus loss and whether the first flush effect exists, continuous monitoring of the rainfall runoff process of six rainfall events was conducted in 2013, of which four rainfall events during storm, high, middle, and low intensity rainfalls were analyzed, and runoff and quality parameters, such as suspended solids (SS), total nitrogen (TN), ammonium nitrogen (NH 4 + -N), nitrate nitrogen (NO 3 - -N), total phosphorus (TP), and phosphate (PO 4 3- -P), were analyzed to determine the relationship between runoff and water quality. The paddy field is located north of Wuxi Lake Basin along the Hejia River upstream in Zhoutie town, Yixing city. An analysis of the load distribution during rainfall runoff was conducted. Event mean concentration (EMC) was used to evaluate the pollution situation of the paddy field's rainfall runoff. A curve of the dimensionless normalized cumulative load (L) vs. normalized cumulative flow (F) (L-F curve), the probability of the mass first flush (MFFn), and the pollutants carried by the initial 25% of runoff (FF 25 ) were used to analyze the first flush effect of the paddy field runoff, and different contaminants show different results: the concentration of nitrogen and phosphorus fluctuate

  5. Determining stressor presence in streams receiving urban and agricultural runoff: development of a benthic in situ toxicity identification evaluation method.

    PubMed

    Custer, Kevin W; Burton, G Allen; Coelho, Ricardo S; Smith, Preston R

    2006-09-01

    Determining toxicity in streams during storm-water runoff can be highly problematic because of the fluctuating exposures of a multitude of stressors and the difficulty of linking these dynamic exposures with biological effects. An underlying problem with assessing storm-water quality is determining if toxicity exists and then which contaminant is causing the toxicity. The goal of this research is to provide an alternative to standard toxicity testing methods by incorporating an in situ toxicity identification evaluation (TIE) approach. A benthic in situ TIE bioassay (BiTIE) was developed for separating key chemical classes of stressors in streams during both low- and high-flow events to help discern between point and nonpoint sources of pollution. This BiTIE method allows for chemical class fractionation through the use of resins, and these resins are relatively specific for removing nonpolar organics (Dowex Optipore), ammonia (zeolite), and polywool (control). Three indigenous aquatic insects, a mayfly (Isonychia spp.), a caddisfly (Hydropsyche spp.), and a water beetle (Psephenus herricki), were placed in BiTIE chambers that were filled with natural substrates. Acute 96-h exposures were conducted at Honey Creek, New Carlisle, Ohio, USA (reference site), and Little Beavercreek, Beavercreek, Ohio, USA (impaired site). At both sites, significant (p < 0.025) stressor responses were observed using multiple species with polywool or no resin (control) treatments exhibiting < 80% survival and resin treatments with >80% survival. The BiTIE method showed stressor-response relationships in both runoff and base flow events during 96-h exposures. The method appears useful for discerning stressors with indigenous species in situ.

  6. An assessment of the effects of cell size on AGNPS modeling of watershed runoff

    USGS Publications Warehouse

    Wu, S.-S.; Usery, E.L.; Finn, M.P.; Bosch, D.D.

    2008-01-01

    This study investigates the changes in simulated watershed runoff from the Agricultural NonPoint Source (AGNPS) pollution model as a function of model input cell size resolution for eight different cell sizes (30 m, 60 m, 120 m, 210 m, 240 m, 480 m, 960 m, and 1920 m) for the Little River Watershed (Georgia, USA). Overland cell runoff (area-weighted cell runoff), total runoff volume, clustering statistics, and hot spot patterns were examined for the different cell sizes and trends identified. Total runoff volumes decreased with increasing cell size. Using data sets of 210-m cell size or smaller in conjunction with a representative watershed boundary allows one to model the runoff volumes within 0.2 percent accuracy. The runoff clustering statistics decrease with increasing cell size; a cell size of 960 m or smaller is necessary to indicate significant high-runoff clustering. Runoff hot spot areas have a decreasing trend with increasing cell size; a cell size of 240 m or smaller is required to detect important hot spots. Conclusions regarding cell size effects on runoff estimation cannot be applied to local watershed areas due to the inconsistent changes of runoff volume with cell size; but, optimal cells sizes for clustering and hot spot analyses are applicable to local watershed areas due to the consistent trends.

  7. Development of a Small-Scale, High Efficiency Bioremediation System for Removing Nitrate from Nursery Runoff Water

    USDA-ARS?s Scientific Manuscript database

    Nitrate concentrations in runoff water from the nursery ranged from 70 to 253 mg NO3-N/L. An estimated 62 to 67% of the nitrate applied during fertigation events left the production site in runoff water. Irrigation losses during these events accounted for 36 to 49% of the amount applied, with flow r...

  8. Denitrification and N20 emissions from Carolina Bays receiving poultry runoff

    USDA-ARS?s Scientific Manuscript database

    On the southeastern Coastal Plain, there are depressional wetlands known as Carolina Bays that may receive runoff from agricultural land. Little is known about denitrification and gas emission within these isolated wetlands. Three forested Carolina Bays were selected to observe denitrification enzym...

  9. Modeling Episodic Surface Runoff in an Arid Environment

    NASA Astrophysics Data System (ADS)

    Waichler, S. R.; Wigmosta, M. S.

    2003-12-01

    Methods were developed for estimating episodic surface runoff in arid eastern Washington, USA. Small (1--10 km2) catchments in this region with mean annual precipitation around 180 mm produce runoff in about half the years, and such events usually occur during winter when a widespread cold snap and possible snow accumulation is followed by warmer temperatures and rainfall. Existence of frozen soil appears to be a key factor, and a moving average of air temperature is an effective predictor of soil temperature. The watershed model DHSVM simulates snow accumulation and ablation reasonably well at a monitoring location, but the same model applied in distributed mode across a 850 km2 basin overpredicts runoff. Inadequate definition of local meteorology appears to limit the accuracy of runoff predictions. However, runoff estimates of sufficient quality to support modeling of long-term groundwater recharge and sediment transport may be found in focusing on recurrence intervals and volumes rather than hydrographs. Usefulness of upland watershed modeling to environmental management of the Hanford Site and an adjacent military reservation will likely improve through sensitivity analysis of basic assumptions about upland water balance.

  10. Export Mechanisms of Persistent Toxic Substances (PTSs) in Urban Land Uses during Rainfall-Runoff Events: Experimental and Modeling Studies

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Luo, X.; Lin, Z.

    2016-12-01

    The urban environment has a variety of Persistent Toxic Substances (PTS), such as Polycyclic Aromatic Hydrocarbons (PAHs) and mercury. Soil in pervious lands and dust deposited on impervious surfaces are two major sinks of PTSs in urbanized areas, which could contribute significant nonpoint source loadings of PTSs to adjacent waterbodies during rainfall-runoff events and therefore jeopardize aquatic ecosystems. However, PTSs have been much less understood regarding their export mechanisms in urban land uses, and efforts to model nonpoint source pollution processes of PTSs have been rare. We designed and performed in-lab rainfall-runoff simulation experiments to investigate transport of PAHs and mercury by runoff from urban soils. Organic petrology analysis (OPA) techniques were introduced to analyze the soil and sediment compositions. Our study revealed the limitation of the classic enrichment theory which attributes enrichment of pollutants in eroded sediment solely to the sediment's particle size distribution and adopts simple relationships between enrichment ratio and sediment flux. We found that carbonaceous materials (CMs) in soil are the direct and major sorbents for PAHs and mercury, and highly different in content, mobility and adsorption capacity for the PTSs. Anthropogenic CMs like black carbon components largely control the transport of soil PAHs, while humic substances have a dominant influence on the transport of soil mercury. A model was further developed to estimate the enrichment ratio of PAHs, which innovatively applies the fugacity concept.We also conducted field studies on export of PAHs by runoff from urban roads. A variable time-step model was developed to simulate the continuous cycles of PAH buildup and washoff on urban roads. The dependence of the pollution level on antecedent weather conditions was investigated and embodied in the model. The applicability of this approach and its value to environmental management was demonstrated by a case

  11. Stormwater runoff pollutant loading distributions and their correlation with rainfall and catchment characteristics in a rapidly industrialized city.

    PubMed

    Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2015-01-01

    Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries.

  12. Stormwater Runoff Pollutant Loading Distributions and Their Correlation with Rainfall and Catchment Characteristics in a Rapidly Industrialized City

    PubMed Central

    Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2015-01-01

    Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries. PMID:25774922

  13. Scale effects on headwater catchment runoff timing, flow sources, and groundwater‐streamflow relations

    USGS Publications Warehouse

    McGlynn, Brian L.; McDonnell, Jeffery J.; Seibert, Jan; Kendall, Carol

    2004-01-01

    The effects of catchment size and landscape organization on runoff generation are poorly understood. Little research has integrated hillslope and riparian runoff investigation across catchments of different sizes to decipher first‐order controls on runoff generation. We investigated the role of catchment sizes on riparian and hillslope dynamics based on hydrometric and tracer data observed at five scales ranging from trenched hillslope sections (55–285 m2) to a 280‐ha catchment at Maimai on the west coast of the South Island, New Zealand. The highly organized landscape is comprised of similar headwater catchments, regular geology, steep highly dissected topography, relatively consistent soil depths, and topographically controlled shallow through flow. We found a strong correlation between riparian zone groundwater levels and runoff for the headwaters, whereas the water tables in the valley bottom of the larger catchments were uncorrelated to runoff for 14 months of record. While there was no clear relationship between catchment size and new water contribution to runoff in the two storms analyzed in detail, lag times of tracer responses increased systematically with catchment size. The combination of hydrometric and tracer data allowed assessment of the runoff contributions from different parts of the landscape. Runoff was generated consistently in headwater riparian zones. This agreed also with the observed variations of tracer (18O and silica) responses for the different catchments. During wetter antecedent conditions or during larger events (>30 mm under dry antecedent conditions) hillslope and valley bottom floodplains did contribute to event runoff directly. We propose that analysis of landscape‐scale organization and the distribution of dominant landscape features provide a structure for investigation of runoff production and solute transport, especially as catchment‐scale increases from headwaters to the mesoscale.

  14. Effects of Soil Moisture Thresholds in Runoff Generation in two nested gauged basins

    NASA Astrophysics Data System (ADS)

    Fiorentino, M.; Gioia, A.; Iacobellis, V.; Manfreda, S.; Margiotta, M. R.; Onorati, B.; Rivelli, A. R.; Sole, A.

    2009-04-01

    Regarding catchment response to intense storm events, while the relevance of antecedent soil moisture conditions is generally recognized, the role and the quantification of runoff thresholds is still uncertain. Among others, Grayson et al. (1997) argue that above a wetness threshold a substantial portion of a small basin acts in unison and contributes to the runoff production. Investigations were conducted through an experimental approach and in particular exploiting the hydrological data monitored on "Fiumarella of Corleto" catchment (Southern Italy). The field instrumentation ensures continuous monitoring of all fundamental hydrological variables: climate forcing, streamflow and soil moisture. The experimental basin is equipped with two water level installations used to measure the hydrological response of the entire basin (with an area of 32 km2) and of a subcatchment of 0.65 km2. The aim of the present research is to better understand the dynamics of soil moisture and the runoff generation during flood events, comparing the data recorded in the transect and the runoff at the two different scales. Particular attention was paid to the influence of the soil moisture content on runoff activation mechanisms. We found that, the threshold value, responsible of runoff activation, is equal or almost to field capacity. In fact, we observed a rapid change in the subcatchment response when the mean soil moisture reaches a value close to the range of variability of the field capacity measured along a monitored transect of the small subcatchment. During dry periods the runoff coefficient is almost zero for each of the events recorded. During wet periods, however, it is rather variable and depends almost only on the total rainfall. Changing from the small scale (0.65 km2) up to the medium scale (represented by the basin of 32 km2) the threshold mechanism in runoff production is less detectable because masked by the increased spatial heterogeneity of the vegetation cover and

  15. Catchment classification by runoff behaviour with self-organizing maps (SOM)

    NASA Astrophysics Data System (ADS)

    Ley, R.; Casper, M. C.; Hellebrand, H.; Merz, R.

    2011-09-01

    Catchments show a wide range of response behaviour, even if they are adjacent. For many purposes it is necessary to characterise and classify them, e.g. for regionalisation, prediction in ungauged catchments, model parameterisation. In this study, we investigate hydrological similarity of catchments with respect to their response behaviour. We analyse more than 8200 event runoff coefficients (ERCs) and flow duration curves of 53 gauged catchments in Rhineland-Palatinate, Germany, for the period from 1993 to 2008, covering a huge variability of weather and runoff conditions. The spatio-temporal variability of event-runoff coefficients and flow duration curves are assumed to represent how different catchments "transform" rainfall into runoff. From the runoff coefficients and flow duration curves we derive 12 signature indices describing various aspects of catchment response behaviour to characterise each catchment. Hydrological similarity of catchments is defined by high similarities of their indices. We identify, analyse and describe hydrologically similar catchments by cluster analysis using Self-Organizing Maps (SOM). As a result of the cluster analysis we get five clusters of similarly behaving catchments where each cluster represents one differentiated class of catchments. As catchment response behaviour is supposed to be dependent on its physiographic and climatic characteristics, we compare groups of catchments clustered by response behaviour with clusters of catchments based on catchment properties. Results show an overlap of 67% between these two pools of clustered catchments which can be improved using the topologic correctness of SOMs.

  16. Catchment classification by runoff behaviour with self-organizing maps (SOM)

    NASA Astrophysics Data System (ADS)

    Ley, R.; Casper, M. C.; Hellebrand, H.; Merz, R.

    2011-03-01

    Catchments show a wide range of response behaviour, even if they are adjacent. For many purposes it is necessary to characterise and classify them, e.g. for regionalisation, prediction in ungauged catchments, model parameterisation. In this study, we investigate hydrological similarity of catchments with respect to their response behaviour. We analyse more than 8200 event runoff coefficients (ERCs) and flow duration curves of 53 gauged catchments in Rhineland-Palatinate, Germany, for the period from 1993 to 2008, covering a huge variability of weather and runoff conditions. The spatio-temporal variability of event-runoff coefficients and flow duration curves are assumed to represent how different catchments "transform" rainfall into runoff. From the runoff coefficients and flow duration curves we derive 12 signature indices describing various aspects of catchment response behaviour to characterise each catchment. Hydrological similarity of catchments is defined by high similarities of their indices. We identify, analyse and describe hydrologically similar catchments by cluster analysis using Self-Organizing Maps (SOM). As a result of the cluster analysis we get five clusters of similarly behaving catchments where each cluster represents one differentiated class of catchments. As catchment response behaviour is supposed to be dependent on its physiographic and climatic characteristics, we compare groups of catchments clustered by response behaviour with clusters of catchments based on catchment properties. Results show an overlap of 67% between these two pools of clustered catchments which can be improved using the topologic correctness of SOMs.

  17. 4 Living roofs in 3 locations: Does configuration affect runoff mitigation?

    NASA Astrophysics Data System (ADS)

    Fassman-Beck, Elizabeth; Voyde, Emily; Simcock, Robyn; Hong, Yit Sing

    2013-05-01

    Four extensive living roofs and three conventional (control) roofs in Auckland, New Zealand have been evaluated over periods of 8 months to over 2 yrs for stormwater runoff mitigation. Up to 56% cumulative retention was measured from living roofs with 50-150 mm depth substrates installed over synthetic drainage layers, and with >80% plant coverage. Variation in cumulative %-retention amongst sites is attributed to different durations of monitoring, rather than actual performance. At all sites, runoff rarely occurred at all from storms with less than 25 mm of precipitation, from the combined effects of substrates designed to maximize moisture storage and because >90% of individual events were less than 25 mm. Living roof runoff depth per event is predicted well by a 2nd order polynomial model (R2 = 0.81), again demonstrating that small storms are well managed. Peak flow per event from the living roofs was 62-90% less than a corresponding conventional roof's runoff. Seasonal retention performance decreased slightly in winter, but was nonetheless substantial, maintaining 66% retention at one site compared to 45-93% in spring-autumn at two sites. Peak flow mitigation did not vary seasonally. During a 4-month period of concurrent monitoring at all sites, varied substrate depth did not influence runoff depth (volume), %-retention, or %-peak flow mitigation compared to a control roof at the same site. The magnitude of peak flow was greater from garden shed-scale living roofs compared to the full-scale living roofs. Two design aspects that could be manipulated to increase peak flow mitigation include lengthening the flow path through the drainage layer to vertical gutters and use of flow-retarding drainage layer materials.

  18. Estimating phosphorus loss in runoff from manure and fertilizer for a phosphorus loss quantification tool.

    PubMed

    Vadas, P A; Good, L W; Moore, P A; Widman, N

    2009-01-01

    Nonpoint-source pollution of fresh waters by P is a concern because it contributes to accelerated eutrophication. Given the state of the science concerning agricultural P transport, a simple tool to quantify annual, field-scale P loss is a realistic goal. We developed new methods to predict annual dissolved P loss in runoff from surface-applied manures and fertilizers and validated the methods with data from 21 published field studies. We incorporated these manure and fertilizer P runoff loss methods into an annual, field-scale P loss quantification tool that estimates dissolved and particulate P loss in runoff from soil, manure, fertilizer, and eroded sediment. We validated the P loss tool using independent data from 28 studies that monitored P loss in runoff from a variety of agricultural land uses for at least 1 yr. Results demonstrated (i) that our new methods to estimate P loss from surface manure and fertilizer are an improvement over methods used in existing Indexes, and (ii) that it was possible to reliably quantify annual dissolved, sediment, and total P loss in runoff using relatively simple methods and readily available inputs. Thus, a P loss quantification tool that does not require greater degrees of complexity or input data than existing P Indexes could accurately predict P loss across a variety of management and fertilization practices, soil types, climates, and geographic locations. However, estimates of runoff and erosion are still needed that are accurate to a level appropriate for the intended use of the quantification tool.

  19. Determination of first flush criteria using dynamic EMCs (event mean concentrations) on highway stormwater runoff.

    PubMed

    Kim, L H; Jeong, S M; Ko, S O

    2007-01-01

    Recently the Ministry of Environment in Korea has developed the total maximum daily load program in accordance with the target pollutant and its concentration goal on four major large rivers. Since the program is largely related to regional development, nonpoint source control is both important and topical. Of the various nonpoint sources, highways are stormwater intensive land uses since they are impervious and have high pollutant mass emissions from vehicular activity. The event mean concentration (EMC) is useful in estimating the loadings to receiving water bodies. However, the EMC does not provide information on the time varying changes in pollutant concentration or mass emissions, which are often important for best management practice development, or understanding shock loads. Therefore, in this study a new concept, the dynamic EMC determination method, will be introduced to clearly verify the relationship between EMC and the first flush effect. Three monitoring sites in Daejeon metropolitan city areas were equipped with an automatic rainfall gauge and a flow meter for accumulating the data such as rainfall and runoff flow. The dynamic EMC method was applied to more than 17 events, and the improved first flush criteria were determined on the ranges of storm duration and accumulated rainfall.

  20. An empirical method for determining average soil infiltration rates and runoff, Powder River structural basin, Wyoming

    USGS Publications Warehouse

    Rankl, James G.

    1982-01-01

    This report describes a method to estimate infiltration rates of soils for use in estimating runoff from small basins. Average rainfall intensity is plotted against storm duration on log-log paper. All rainfall events are designated as having either runoff or nonrunoff. A power-decay-type curve is visually fitted to separate the two types of rainfall events. This separation curve is an incipient-ponding curve and its equation describes infiltration parameters for a soil. For basins with more than one soil complex, only the incipient-ponding curve for the soil complex with the lowest infiltration rate can be defined using the separation technique. Incipient-ponding curves for soils with infiltration rates greater than the lowest curve are defined by ranking the soils according to their relative permeabilities and optimizing the curve position. A comparison of results for six basins produced computed total runoff for all events used ranging from 16.6 percent less to 2.3 percent more than measured total runoff. (USGS)

  1. Design and Construction of an Urban Runoff Research Facility

    PubMed Central

    Wherley, Benjamin G.; White, Richard H.; McInnes, Kevin J.; Fontanier, Charles H.; Thomas, James C.; Aitkenhead-Peterson, Jacqueline A.; Kelly, Steven T.

    2014-01-01

    As the urban population increases, so does the area of irrigated urban landscape. Summer water use in urban areas can be 2-3x winter base line water use due to increased demand for landscape irrigation. Improper irrigation practices and large rainfall events can result in runoff from urban landscapes which has potential to carry nutrients and sediments into local streams and lakes where they may contribute to eutrophication. A 1,000 m2 facility was constructed which consists of 24 individual 33.6 m2 field plots, each equipped for measuring total runoff volumes with time and collection of runoff subsamples at selected intervals for quantification of chemical constituents in the runoff water from simulated urban landscapes. Runoff volumes from the first and second trials had coefficient of variability (CV) values of 38.2 and 28.7%, respectively. CV values for runoff pH, EC, and Na concentration for both trials were all under 10%. Concentrations of DOC, TDN, DON, PO4-P, K+, Mg2+, and Ca2+ had CV values less than 50% in both trials. Overall, the results of testing performed after sod installation at the facility indicated good uniformity between plots for runoff volumes and chemical constituents. The large plot size is sufficient to include much of the natural variability and therefore provides better simulation of urban landscape ecosystems. PMID:25146420

  2. Variability of runoff-based drought conditions in the conterminous United States

    USGS Publications Warehouse

    McCabe, Gregory J.; Wolock, David M.; Austin, Samuel H.

    2017-01-01

    In this study, a monthly water-balance model is used to simulate monthly runoff for 2109 hydrologic units (HUs) in the conterminous United States (CONUS) for water-years 1901 through 2014. The monthly runoff time series for each HU were smoothed with a 3-month moving average, and then the 3-month moving-average runoff values were converted to percentiles. For each HU, a drought was considered to occur when the HU runoff percentile dropped to the 20th percentile or lower. A drought was considered to end when the HU runoff percentile exceeded the 20th percentile. After identifying drought events for each HU, the frequency and length of drought events were examined. Results indicated that (1) the longest mean drought lengths occur in the eastern CONUS and parts of the Rocky Mountain region and the northwestern CONUS, (2) the frequency of drought is highest in the southwestern and central CONUS, and lowest in the eastern CONUS, the Rocky Mountain region, and the northwestern CONUS, (3) droughts have occurred during all months of the year and there does not appear to be a seasonal pattern to drought occurrence, (4) the variability of precipitation appears to have been the principal climatic factor determining drought, and (5) for most of the CONUS, drought frequency appears to have decreased during the 1901 through 2014 period.

  3. [Characteristics of Nitrogen and Phosphorus Losses in Longhong Ravine Basin of Westlake in Rainstorm Runoff].

    PubMed

    Yang, Fan; Jiang, Yi-feng; Wang, Cui-cui; Huang, Xiao-nan; Wu, Zhi-ying; Chen, Lin

    2016-01-15

    In order to understand the non-point source pollution status in Longhong ravine basin of Westlake, the characteristics of nutrient losses in runoff was investigated during three rainstorms in one year. The results showed that long duration rainstorm event generally formed several runoff peaks, and the time of its lag behind the peaks of rain intensity was dependent on the distribution of heavy rainfall. The first flush was related to the antecedent rainfall, and the less rainfall in the earlier period, the more total phosphorus (TP) and ammonia (NH4+ -N) in runoff was washed off. During the recession of runoff, more subsurface runoff would result in a concentration peak of total nitrogen (TN) and nitrogen (NO3- -N) . The event mean concentration (EMC) of runoff nitrogen had a negative correlation with rainfall, rainfall duration, maximum rain intensity and average rain intensity except for antecedent rainfall, whereas the change in TP EMC showed the opposite trend. The transport fluxes of nutrients increased with an elevation in runoffs, and Pearson analysis showed that the transport fluxes of TN and NO3- -N had good correlations with runoff depth. The average transport fluxes of TP, TN, NH4+ -N and NO3- -N were 34.10, 1195.55, 1006.62 and 52.38 g x hm(-2), respectively, and NO3- -N was the main nitrogen form and accounted for 84% of TN.

  4. Rainfall simulation in greenhouse microcosms to assess bacterial-associated runoff from land-applied poultry litter.

    PubMed

    Brooks, John P; Adeli, Ardeshir; Read, John J; McLaughlin, Michael R

    2009-01-01

    Runoff water following a rain event is one possible source of environmental contamination after a manure application. This greenhouse study used a rainfall simulator to determine bacterial-associated runoff from troughs of common bermudagrass [Cynodon dactylon (L.) Pers.] that were treated with P-based, N-based, and N plus lime rates of poultry (Gallus gallus) litter, recommended inorganic fertilizer, and control. Total heterotrophic plate count (HPC) bacteria, total and thermotolerant coliforms, enterococci, staphylococci, Clostridium perfringens, Salmonella, and Campylobacter, as well as antibiotic resistance profiles for the staphylococci and enterococci isolates were all monitored in runoff waters. Analysis following five rainfall events indicated that staphylococci, enterococci, and clostridia levels were related to manure application rate. Runoff release of staphylococci, enterococci, and C. perfringens were approximately 3 to 6 log10 greater in litter vs. control treatment. In addition, traditional indicators such as thermotolerant and total coliforms performed poorly as fecal indicators. Some isolated enterococci demonstrated increased antibiotic resistance to polymixin b and/or select aminoglyocosides, while many staphylococci were susceptible to most antimicrobials tested. Results indicated poultry litter application can lead to microbial runoff following simulated rain events. Future studies should focus on the use of staphylococci, enterococci, and C. perfringens as indicators.

  5. Bivariate Rainfall and Runoff Analysis Using Shannon Entropy Theory

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Zhang, L.

    2012-12-01

    Rainfall-Runoff analysis is the key component for many hydrological and hydraulic designs in which the dependence of rainfall and runoff needs to be studied. It is known that the convenient bivariate distribution are often unable to model the rainfall-runoff variables due to that they either have constraints on the range of the dependence or fixed form for the marginal distributions. Thus, this paper presents an approach to derive the entropy-based joint rainfall-runoff distribution using Shannon entropy theory. The distribution derived can model the full range of dependence and allow different specified marginals. The modeling and estimation can be proceeded as: (i) univariate analysis of marginal distributions which includes two steps, (a) using the nonparametric statistics approach to detect modes and underlying probability density, and (b) fitting the appropriate parametric probability density functions; (ii) define the constraints based on the univariate analysis and the dependence structure; (iii) derive and validate the entropy-based joint distribution. As to validate the method, the rainfall-runoff data are collected from the small agricultural experimental watersheds located in semi-arid region near Riesel (Waco), Texas, maintained by the USDA. The results of unviariate analysis show that the rainfall variables follow the gamma distribution, whereas the runoff variables have mixed structure and follow the mixed-gamma distribution. With this information, the entropy-based joint distribution is derived using the first moments, the first moments of logarithm transformed rainfall and runoff, and the covariance between rainfall and runoff. The results of entropy-based joint distribution indicate: (1) the joint distribution derived successfully preserves the dependence between rainfall and runoff, and (2) the K-S goodness of fit statistical tests confirm the marginal distributions re-derived reveal the underlying univariate probability densities which further

  6. Applying a regional hydrology model to evaluate locations for groundwater replenishment with hillslope runoff under different climate and land use scenarios in an agricultural basin, central coastal California

    NASA Astrophysics Data System (ADS)

    Beganskas, S.; Young, K. S.; Fisher, A. T.; Lozano, S.; Harmon, R. E.; Teo, E. K.

    2017-12-01

    We are applying a regional hydrology model, Precipitation-Runoff Modeling System (PRMS), to evaluate locations for groundwater replenishment with hillslope runoff in the Pajaro Valley Groundwater Basin (PVGB), central coastal California. Stormwater managed aquifer recharge (MAR) projects collect hillslope runoff before it reaches a stream and infiltrate it into underlying aquifers, improving groundwater supply. The PVGB is a developed agricultural basin where groundwater provides >85% of water for irrigation and municipal needs; stormwater-MAR projects are being considered to address chronic overdraft and saltwater intrusion. We are applying PRMS to assess on a subwatershed scale (10-100 ha; 25-250 acres) where adequate runoff is generated to supply stormwater-MAR in coincidence with suitable conditions for infiltration and recharge. Data from active stormwater-MAR projects in the PVGB provide ground truth for model results. We are also examining how basinwide hydrology responds to changing land use and climate, and the potential implications for future water management. To prepare extensive input files for PRMS models, we developed ArcGIS and Python tools to delineate a topographic model grid and incorporate high-resolution soil, vegetation, and other physical data into each grid region; we also developed tools to analyze and visualize model output. Using historic climate records, we generated dry, normal, and wet climate scenarios, defined as having approximately 25th, 50th, and 75th percentile annual rainfall, respectively. We also generated multiple land use scenarios by replacing developed areas with native vegetation. Preliminary results indicate that many parts of the PVGB generate significant runoff and have suitable infiltration/recharge conditions. Reducing basinwide overdraft by 10% would require collecting less than 5% of total hillslope runoff, even during the dry scenario; this demonstrates that stormwater-MAR could be an effective water management

  7. The Cannona Data Base: long-term field data for studies on soil management impact on runoff and erosion processes.

    NASA Astrophysics Data System (ADS)

    Biddoccu, Marcella; Ferraris, Stefano; Opsi, Francesca; Cavallo, Eugenio

    2014-05-01

    Long-term data have been collected by IMAMOTER-CNR from field-scale vineyard plots within the Tenuta Cannona Vine and Wine Experimental Centre of Regione Piemonte, which is located in a valuable vine production area in north-western Italy. Since 2000, runoff and soil erosion monitoring has been carried out under natural rainfall conditions on three parallel field plots (75 m long and 16,5 m wide, slope gradient about 15%) that are conducted with different inter-rows soil management techniques (conventional tillage, reduced tillage, controlled grass cover). Experimental plots are part of a 16-hectars experimental vineyard, managed in according to conventional farming for wine production. Recurrent surveys have been carried out in the runoff plots to investigate spatial and temporal variability of the soil bulk density, soil moisture and penetration resistance. The primary intent of the program was to evaluate the effects of agricultural management practices and tractor traffic on the hydrologic, soil erosion and soil compaction processes in vineyard. The Cannona Data Base (CDB) represents a data collection which is unique in Italy, showing the response of soil to rainfall in terms of runoff and soil erosion over more than a decade. It includes data for more than 200 runoff events and over 70 soil loss events; moreover, periodic measurements for soil physical characteristics are included for the three plots. The CDB can now be accessed via a website supported by the CNR, that is addressed to water and land management researchers and professionals. The CDB is currently used to calibrate a model for runoff and soil erosion prediction in vineyard environment. The CDB website includes a descriptive and informative section, which contains results of over than 10 years of experimental activity, reports and presentations, addressed to enhance the awareness of citizens and stakeholders about land degradation processes and about impacts of different soil management practices

  8. Investigating source water Cryptosporidium concentration, species and infectivity rates during rainfall-runoff in a multi-use catchment.

    PubMed

    Swaffer, Brooke A; Vial, Hayley M; King, Brendon J; Daly, Robert; Frizenschaf, Jacqueline; Monis, Paul T

    2014-12-15

    Protozoan pathogens present a significant human health concern, and prevention of contamination into potable networks remains a key focus for drinking water providers. Here, we monitored the change in Cryptosporidium concentration in source water during high flow events in a multi-use catchment. Furthermore, we investigated the diversity of Cryptosporidium species/genotypes present in the source water, and delivered an oocyst infectivity fraction. There was a positive and significant correlation between Cryptosporidium concentration and flow (ρ = 0.756) and turbidity (ρ = 0.631) for all rainfall-runoff events, despite variable source water pathogen concentrations. Cell culture assays measured oocyst infectivity and suggested an overall source water infectious fraction of 3.1%. No infectious Cryptosporidium parvum or Cryptosporidium hominis were detected, although molecular testing detected C. parvum in 7% of the samples analysed using PCR-based molecular techniques. Twelve Cryptosporidium species/genotypes were identified using molecular techniques, and were reflective of the host animals typically found in remnant vegetation and agricultural areas. The inclusion of molecular approaches to identify Cryptosporidium species and genotypes highlighted the diversity of pathogens in water, which originated from various sources across the catchment. We suggest this mixing of runoff water from a range of landuses containing diverse Cryptosporidium hosts is a key explanation for the often-cited difficulty forming strong pathogen-indicator relationships. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. [Pollution load and the first flush effect of phosphorus in urban runoff of Wenzhou City].

    PubMed

    Zhou, Dong; Chen, Zhen-lou; Bi, Chun-juan

    2012-08-01

    Five typical rainfalls were monitored in two different research areas of Wenzhou municipality. The pH and concentrations of total phosphorus (TP), dissolved phosphorus (DP), particulate phosphorus (PP), total inorganic carbon (TIC), total organic carbon (TOC), total suspended substances (TSS), BOD5 and COD in six different kinds of urban runoff were measured. The results showed that, the concentrations of TP, DP and PP in different kinds of urban runoff of Wenzhou ranged from 0.01 to 4.32 mg x L(-1), ND to 0.88 mg x L(-1) and ND to 4.31 mg x L(-1), respectively. In the early stages of runoff process PP was dominated, while in the later, the proportion of DP in most of the runoff samples would show a rising trend, especially in roof and outlet runoff. Judged by the event mean concentration (EMC) of TP and DP in these five rainfalls, some kinds of urban runoff could cause environmental pressure to the next level receiving water bodies. Meanwhile, the differences among the TP and DP content (maximum, minimum and mean content) in various urban runoffs were significant, and so were the differences among various rainfall events. According to the M (V) curve, the first flush effect of TP in most kinds of urban runoff was common; while the first flush effect of DP was more difficult to occur comparing with TP. Not only the underlying surface types but also many physico-chemical properties of runoff could affect the concentration of TP in urban runoff. All the results also suggested that different best management plans (BMPs) should be selected for various urban runoff types for the treatment of phosphorus pollution, and reducing the concentration of TSS is considered as one of the effective ways to decrease the pollution load of phosphorus in urban runoff.

  10. Soil erosion-runoff relationships: insights from laboratory studies

    NASA Astrophysics Data System (ADS)

    Mamedov, Amrakh; Warrington, David; Levy, Guy

    2016-04-01

    Understanding the processes and mechanisms affecting runoff generation and subsequent soil erosion in semi-arid regions is essential for the development of improved soil and water conservation management practices. Using a drip type laboratory rain simulator, we studied runoff and soil erosion, and the relationships between them, in 60 semi-arid region soils varying in their intrinsic properties (e.g., texture, organic matter) under differing extrinsic conditions (e.g., rain properties, and conditions prevailing in the field soil). Both runoff and soil erosion were significantly affected by the intrinsic soil and rain properties, and soil conditions within agricultural fields or watersheds. The relationship between soil erosion and runoff was stronger when the rain kinetic energy was higher rather than lower, and could be expressed either as a linear or exponential function. Linear functions applied to certain limited cases associated with conditions that enhanced soil structure stability, (e.g., slow wetting, amending with soil stabilizers, minimum tillage in clay soils, and short duration exposure to rain). Exponential functions applied to most of the cases under conditions that tended to harm soil stability (e.g., fast wetting of soils, a wide range of antecedent soil water contents and rain kinetic energies, conventional tillage, following biosolid applications, irrigation with water of poor quality, consecutive rain simulations). The established relationships between runoff and soil erosion contributed to a better understanding of the mechanisms governing overland flow and soil loss, and could assist in (i) further development of soil erosion models and research techniques, and (ii) the design of more suitable management practices for soil and water conservation.

  11. Sensitivity to experimental data of pollutant site mean concentration in stormwater runoff.

    PubMed

    Mourad, M; Bertrand-Krajewski, J L; Chebbo, G

    2005-01-01

    Urban wet weather discharges are known to be a great source of pollutants for receiving waters, which protection requires the estimation of long-term discharged pollutant loads. Pollutant loads can be estimated by multiplying a site mean concentration (SMC) by the total runoff volume during a given period of time. The estimation of the SMC value as a weighted mean value with event runoff volumes as weights is affected by uncertainties due to the variability of event mean concentrations and to the number of events used. This study carried out on 13 catchments gives orders of magnitude of these uncertainties and shows the limitations of usual practices using few measured events. The results obtained show that it is not possible to propose a standard minimal number of events to be measured on any catchment in order to evaluate the SMC value with a given uncertainty.

  12. Outcomes of tibial endovascular intervention in patients with poor pedal runoff.

    PubMed

    Baer-Bositis, Hallie E; Hicks, Taylor D; Haidar, Georges M; Sideman, Matthew J; Pounds, Lori L; Davies, Mark G

    2018-06-01

    Tibial interventions for critical limb ischemia are now commonplace. The aim of this study was to examine the impact of pedal runoff on patient-centered outcomes after tibial endovascular intervention. A database of patients undergoing lower extremity endovascular interventions at a single urban academic medical center between 2006 and 2016 was retrospectively queried. Patients with critical ischemia (Rutherford 5 and 6) were identified. Preintervention angiograms were reviewed in all cases to assess pedal runoff. Each dorsalis pedis, lateral plantar, and medial plantar artery was assigned a score according to the reporting standards of the Society for Vascular Surgery (0, no stenosis >20%; 1, 21%-49% stenosis; 2, 50%-99% stenosis; 2.5, half or less of the vessel length occluded; 3, more than half the vessel length occluded). A foot score (dorsalis pedis + medial plantar + lateral plantar + 1) was calculated for each foot (1-10). Two runoff score groups were identified: good vs poor, <7 and ≥7, respectively. Patient-oriented outcomes of clinical efficacy (absence of recurrent symptoms, maintenance of ambulation, and absence of major amputation), amputation-free survival (survival without major amputation), and freedom from major adverse limb events (above-ankle amputation of the index limb or major reintervention [new bypass graft, jump/interposition graft revision]) were evaluated. There were 1134 patients (56% male; average age, 59 years) who underwent tibial intervention for critical ischemia, with a mean of two vessels treated per patient and a mean pedal runoff score of 6 (47% had a runoff score ≥7). Overall major adverse cardiac events were equivalent at 30 days after the procedure in both groups. At 5 years, vessels with compromised runoff (score ≥7) had significantly lower ulcer healing (25% ± 3% vs 73% ± 4%, mean ± standard error of the mean [SEM]) and a lower 5-year limb salvage rate (45% ± 6% vs 69% ± 4%, mean ± SEM) compared

  13. Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff.

    PubMed

    Toor, Gurpal S; Occhipinti, Marti L; Yang, Yun-Ya; Majcherek, Tammy; Haver, Darren; Oki, Lorence

    2017-01-01

    Sources and mechanisms of nutrient transport in lawn irrigation driven surface runoff are largely unknown. We investigated the transport of nitrogen (N) and phosphorus (P) in lawn irrigation driven surface runoff from a residential neighborhood (28 ha) of 56% impervious and 44% pervious areas. Pervious areas encompassing turfgrass (lawns) in the neighborhood were irrigated with the reclaimed water in common areas during the evening to late night and with the municipal water in homeowner's lawns during the morning. The stormwater outlet pipe draining the residential neighborhood was instrumented with a flow meter and Hach autosampler. Water samples were collected every 1-h and triple composite samples were obtained at 3-h intervals during an intensive sampling period of 1-week. Mean concentrations, over 56 sampling events, of total N (TN) and total P (TP) in surface runoff at the outlet pipe were 10.9±6.34 and 1.3±1.03 mg L-1, respectively. Of TN, the proportion of nitrate-N was 58% and other-N was 42%, whereas of TP, orthophosphate-P was 75% and other-P was 25%. Flow and nutrient (N and P) concentrations were lowest from 6:00 a.m. to noon, which corresponded with the use of municipal water and highest from 6:00 p.m. to midnight, which corresponded with the use of reclaimed water. This data suggests that N and P originating in lawn irrigation driven surface runoff from residential catchments is an important contributor of nutrients in surface waters.

  14. Managing urban runoff in residential neighborhoods: Nitrogen and phosphorus in lawn irrigation driven runoff

    PubMed Central

    Occhipinti, Marti L.; Yang, Yun-Ya; Majcherek, Tammy; Haver, Darren; Oki, Lorence

    2017-01-01

    Sources and mechanisms of nutrient transport in lawn irrigation driven surface runoff are largely unknown. We investigated the transport of nitrogen (N) and phosphorus (P) in lawn irrigation driven surface runoff from a residential neighborhood (28 ha) of 56% impervious and 44% pervious areas. Pervious areas encompassing turfgrass (lawns) in the neighborhood were irrigated with the reclaimed water in common areas during the evening to late night and with the municipal water in homeowner’s lawns during the morning. The stormwater outlet pipe draining the residential neighborhood was instrumented with a flow meter and Hach autosampler. Water samples were collected every 1-h and triple composite samples were obtained at 3-h intervals during an intensive sampling period of 1-week. Mean concentrations, over 56 sampling events, of total N (TN) and total P (TP) in surface runoff at the outlet pipe were 10.9±6.34 and 1.3±1.03 mg L–1, respectively. Of TN, the proportion of nitrate–N was 58% and other–N was 42%, whereas of TP, orthophosphate–P was 75% and other–P was 25%. Flow and nutrient (N and P) concentrations were lowest from 6:00 a.m. to noon, which corresponded with the use of municipal water and highest from 6:00 p.m. to midnight, which corresponded with the use of reclaimed water. This data suggests that N and P originating in lawn irrigation driven surface runoff from residential catchments is an important contributor of nutrients in surface waters. PMID:28604811

  15. Roofing Materials Assessment: Investigation of Five Metals in Runoff from Roofing Materials.

    PubMed

    Winters, Nancy; Granuke, Kyle; McCall, Melissa

    2015-09-01

    To assess the contribution of five toxic metals from new roofing materials to stormwater, runoff was collected from 14 types of roofing materials and controls during 20 rain events and analyzed for metals. Many of the new roofing materials evaluated did not show elevated metals concentrations in the runoff. Runoff from several other roofing materials was significantly higher than the controls for arsenic, copper, and zinc. Notably, treated wood shakes released arsenic and copper, copper roofing released copper, PVC roofing released arsenic, and Zincalume® and EPDM roofing released zinc. For the runoff from some of the roofing materials, metals concentrations decreased significantly over an approximately one-year period of aging. Metals concentrations in runoff were demonstrated to depend on a number of factors, such as roofing materials, age of the materials, and climatic conditions. Thus, application of runoff concentrations from roofing materials to estimate basin-wide releases should be undertaken cautiously.

  16. Measurement of surface water runoff from plots of two different sizes

    NASA Astrophysics Data System (ADS)

    Joel, Abraham; Messing, Ingmar; Seguel, Oscar; Casanova, Manuel

    2002-05-01

    Intensities and amounts of water infiltration and runoff on sloping land are governed by the rainfall pattern and soil hydraulic conductivity, as well as by the microtopography and soil surface conditions. These components are closely interrelated and occur simultaneously, and their particular contribution may change during a rainfall event, or their effects may vary at different field scales. The scale effect on the process of infiltration/runoff was studied under natural field and rainfall conditions for two plot sizes: small plots of 0·25 m2 and large plots of 50 m2. The measurements were carried out in the central region of Chile in a piedmont most recently used as natural pastureland. Three blocks, each having one large plot and five small plots, were established. Cumulative rainfall and runoff quantities were sampled every 5 min. Significant variations in runoff responses to rainfall rates were found for the two plot sizes. On average, large plots yielded only 40% of runoff quantities produced on small plots per unit area. This difference between plot sizes was observed even during periods of continuous runoff.

  17. Simulation of Runoff Changes Caused by Cropland to Forest Conversion in the Upper Yangtze River Region, SW China

    PubMed Central

    Yu, Pengtao; Wang, Yanhui; Coles, Neil; Xiong, Wei; Xu, Lihong

    2015-01-01

    The "Grain for Green Project" is a country-wide ecological program to converse marginal cropland to forest, which has been implemented in China since 2002. To quantify influence of this significant vegetation change, Guansihe Hydrological (GSH) Model, a validated physically-based distributed hydrological model, was applied to simulate runoff responses to land use change in the Guansihe watershed that is located in the upper reaches of the Yangtze River basin in Southwestern China with an area of only 21.1 km2. Runoff responses to two single rainfall events, 90 mm and 206 mm respectively, were simulated for 16 scenarios of cropland to forest conversion. The model simulations indicated that the total runoff generated after conversion to forest was strongly dependent on whether the land was initially used for dry croplands without standing water in fields or constructed (or walled) paddy fields. The simulated total runoff generated from the two rainfall events displayed limited variation for the conversion of dry croplands to forest, while it strongly decreased after paddy fields were converted to forest. The effect of paddy terraces on runoff generation was dependent on the rainfall characteristics and antecedent moisture (or saturation) conditions in the fields. The reduction in simulated runoff generated from intense rainfall events suggested that afforestation and terracing might be effective in managing runoff and had the potential to mitigate flooding in southwestern China. PMID:26192181

  18. Generalised synthesis of space-time variability in flood response: Dynamics of flood event types

    NASA Astrophysics Data System (ADS)

    Viglione, Alberto; Battista Chirico, Giovanni; Komma, Jürgen; Woods, Ross; Borga, Marco; Blöschl, Günter

    2010-05-01

    A analytical framework is used to characterise five flood events of different type in the Kamp area in Austria: one long-rain event, two short-rain events, one rain-on-snow event and one snowmelt event. Specifically, the framework quantifies the contributions of the space-time variability of rainfall/snowmelt, runoff coefficient, hillslope and channel routing to the flood runoff volume and the delay and spread of the resulting hydrograph. The results indicate that the components obtained by the framework clearly reflect the individual processes which characterise the event types. For the short-rain events, temporal, spatial and movement components can all be important in runoff generation and routing, which would be expected because of their local nature in time and, particularly, in space. For the long-rain event, the temporal components tend to be more important for runoff generation, because of the more uniform spatial coverage of rainfall, while for routing the spatial distribution of the produced runoff, which is not uniform, is also important. For the rain-on-snow and snowmelt events, the spatio-temporal variability terms typically do not play much role in runoff generation and the spread of the hydrograph is mainly due to the duration of the event. As an outcome of the framework, a dimensionless response number is proposed that represents the joint effect of runoff coefficient and hydrograph peakedness and captures the absolute magnitudes of the observed flood peaks.

  19. Using diatoms, hydrochemical and stable isotope tracers to infer runoff generation processes

    NASA Astrophysics Data System (ADS)

    Martínez-Carreras, N.; Wetzel, C. E.; Frentress, J.; Hlúbiková, D.; Ector, L.; McDonnell, J. J.; Hoffmann, L.; Pfister, L.

    2012-04-01

    Imaginative techniques are needed to improve our understanding of runoff generation processes. In this context, the hydrological community calls to cut across disciplines looking for new and exciting advances in knowledge. In this study, hydrologists and ecologists have worked together to use not only hydrochemical and stable isotope tracers, but also diatoms to infer runoff generation processes. Diatoms, one of the most common and divers algal group, can be easily transported by flowing water due to their small size (~10-200 μm). They are present in most terrestrial habitats and their diversified species distributions are largely controlled by physico-geographical factors (e.g. light, temperature, pH and moisture). Thus, hydrological systems largely control diatom species community composition and distribution. This study was conducted in the schistose Weierbach catchment (0.45 km2, NW Luxembourg). Its runoff regime is characterised by seasonal variation and a delayed shallow groundwater component originating from a saprolite zone. The catchment was instrumented with piezometers, suction cups, an automatic streamwater sampler, a sequential rainfall sampler, and soil moisture and temperature sensors. Samples collected bi-weekly and during storm runoff events allowed the characterisation of the different end-members. Chemical and isotopic hydrograph separations of stream discharge were used to determine not only the geographic sources of water, but also the fractions of old and new water contributing to streamflow. Diatoms intra-storm variability was also analysed and samples of diatoms from various terrestrial and subaerial substrates (bryophytes, litter and leaves), as well as from aquatic habitats (epilithon, epipelon and drift samples) were regularly collected. Diatoms were then used to constrain assumptions and to confirm or reject the hypothesis of existing surface runoff during rainfall-runoff events and to document the intermittent character of hydrological

  20. [Nitrogen and phosphorus composition in urban runoff from the new development area in Beijing].

    PubMed

    Li, Li-Qing; Lü, Shu-Cong; Zhu, Ren-Xiao; Liu, Ze-Quan; Shan, Bao-Qing

    2012-11-01

    Stormwater runoff samples were collected from two impervious roof and road of the new development area in Beijing, during three rainfall events in an attempt to characterize the urban runoff and determine nitrogen and phosphorus composition. The outcomes are expected to offer the practical guidance in sources control of urban runoff pollution. The results indicated that the stormwater runoff from the studied area presented a strong first flush for all monitored events and constituents. Eighty percent of the total pollutant loads were transported by the first 10 mm flow volume for roof runoff, whereas 80% of the total pollutant loads were discharged by the first 15 mm flow volume for road runoff. Average EMCs of TSS, COD, TN, NH4(+) -N, NO3(-) -N and TP for roof runoff were 50.2 mg x L(-1), 81.7 mg x L(-1), 6.07 mg x L(-1), 2.94 mg x L(-1), 1.05 mg x L(-1), and 0.11 mg x L(-1), respectively. Average EMCs of TSS, COD, TN, NH4(+) -N, NO3(-)-N and TP for road runoff were 539.0 mg x L(-1), 276.4 mg x L(-1), 7.00 mg x L(-1), 1.71 mg x L(-1), 1.51 mg x L(-1), and 0.61 mg x L(-1), respectively. Moreover, for the roof runoff, the particle-bound fraction was 20.8% for COD, 12.3% for TN, and 49.7% for TP. For road runoff, the particle-bound fraction was 68.6% for COD, 20.0% for TN, and 73.6% for TP. Nitrogen in roof runoff was predominantly dissolved (87.7%), with ammonia (57.6%) and nitrate (22.5%). Nitrogen in road runoff was also predominantly dissolved (80.0%), with ammonia (42.1%) and nitrate (35.0%). These findings can assist the development of effective source control strategies to immobilize dissolved and particulate-bound nitrogen/phosphorus in urban stormwater.

  1. Multimodeling Framework for Predicting Water Quality in Fragmented Agriculture-Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Rose, J. B.; Guber, A.; Porter, W. F.; Williams, D.; Tamrakar, S.; Dechen Quinn, A.

    2012-12-01

    Both livestock and wildlife are major contributors of nonpoint pollution of surface water bodies. The interactions among them can substantially increase the chance of contamination especially in fragmented agriculture-forest landscapes, where wildlife (e.g. white tailed deer) can transmit diseases between remote farms. Unfortunately, models currently available for predicting fate and transport of microorganisms in these ecosystems do not account for such interactions. The objectives of this study are to develop and test a multimodeling framework that assesses the risk of microbial contamination of surface water caused by wildlife-livestock interactions in fragmented agriculture-forest ecosystems. The framework consists of a modified Soil Water Assessment Tool (SWAT), KINematic Runoff and EROSion model (KINEROS2) with the add-on module STWIR (Microorganism Transport with Infiltration and Runoff), RAMAS GIS, SIR compartmental model and Quantitative Microbial Risk Assessment model (QMRA). The watershed-scale model SWAT simulates plant biomass growth, wash-off of microorganisms from foliage and soil, overland and in-stream microbial transport, microbial growth, and die-off in foliage and soil. RAMAS GIS model predicts the most probable habitat and subsequent population of white-tailed deer based on land use and crop biomass. KINEROS-STWIR simulates overland transport of microorganisms released from soil, surface applied manure, and fecal deposits during runoff events at high temporal and special resolutions. KINEROS-STWIR and RAMAS GIS provide input for an SIR compartmental model which simulates disease transmission within and between deer groups. This information is used in SWAT model to account for transmission and deposition of pathogens by white tailed deer in stream water, foliage and soil. The QMRA approach extends to microorganisms inactivated in forage and water consumed by deer. Probabilities of deer infections and numbers of infected animals are computed

  2. Runoff of pyrethroid insecticides from concrete surfaces following simulated and natural rainfalls.

    PubMed

    Jiang, Weiying; Haver, Darren; Rust, Michael; Gan, Jay

    2012-03-01

    Intensive residential use of insecticides has resulted in their ubiquitous presence as contaminants in urban surface streams. For pest eradication, urban hard surfaces such as concrete are often directly treated with pesticides, and wind/water can also carry pesticides onto hard surfaces from surrounding areas. This study expanded on previous bench-scale studies by considering pesticide runoff caused by irrigation under dry weather conditions and rain during the wet season, and evaluated the effects of pesticide residence time on concrete, single versus recurring precipitations, precipitation intensity, and concrete surface conditions, on pesticide transferability to runoff water. Runoff from concrete 1 d after pesticide treatment contained high levels of bifenthrin (82 μg/L) and permethrin (5143 μg/L for cis and 5518 μg/L for trans), indicating the importance of preventing water contact on concrete after pesticide treatments. Although the runoff transferability quickly decreased as the pesticide residence time on concrete increased, detectable residues were still found in runoff water after 3 months (89 d) exposure to hot and dry summer conditions. ANOVA analysis showed that precipitation intensities and concrete surface conditions (i.e., acid wash, silicone seal, stamping, and addition of microsilica) did not significantly affect the pesticide transferability to runoff. For concrete slabs subjected to natural rainfalls during the winter wet season, pesticide levels in the runoff decreased as the time interval between pesticide application and the rain event increased. However, bifenthrin and permethrin were still detected at 0.15-0.17 and 0.75-1.15 μg/L in the rain runoff after 7 months (221 d) from the initial treatment. In addition, pesticide concentrations showed no decrease between the two rainfall events, suggesting that concrete surfaces contaminated by pesticides may act as a reservoir for pesticide residues, leading to sustained urban runoff

  3. Exploiting Soil Moisture, Precipitation, and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models

    NASA Astrophysics Data System (ADS)

    Crow, W. T.; Chen, F.; Reichle, R. H.; Xia, Y.; Liu, Q.

    2018-05-01

    Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of land surface models tasked with characterizing the surface water and energy balance. Temporal variability in this partitioning is due, in part, to changes in prestorm soil moisture, which determine soil infiltration capacity and unsaturated storage. Utilizing the National Aeronautics and Space Administration Soil Moisture Active Passive Level-4 soil moisture product in combination with streamflow and precipitation observations, we demonstrate that land surface models (LSMs) generally underestimate the strength of the positive rank correlation between prestorm soil moisture and event runoff coefficients (i.e., the fraction of rainfall accumulation volume converted into stormflow runoff during a storm event). Underestimation is largest for LSMs employing an infiltration-excess approach for stormflow runoff generation. More accurate coupling strength is found in LSMs that explicitly represent subsurface stormflow or saturation-excess runoff generation processes.

  4. Runoff changes have a land cover specific effect on the seasonal fluxes of terminal electron acceptors in the boreal catchments.

    PubMed

    Mattsson, Tuija; Lehtoranta, Jouni; Ekholm, Petri; Palviainen, Marjo; Kortelainen, Pirkko

    2017-12-01

    Climate change influences the volume and seasonal distribution of runoff in the northern regions. Here, we study how the seasonal variation in the runoff affects the concentrations and export of terminal electron acceptors (i.e. TEAs: NO 3 , Mn, Fe and SO 4 ) in different boreal land-cover classes. Also, we make a prediction how the anticipated climate change induced increase in runoff will alter the export of TEAs in boreal catchments. Our results show that there is a strong positive relationship between runoff and the concentration of NO 3 -N, Mn and Fe in agricultural catchments. In peaty catchments, the relationship is poorer and the concentrations of TEAs tend to decrease with increasing runoff. In forested catchments, the correlation between runoff and TEA concentrations was weak. In most catchments, the concentrations of SO 4 decrease with an increase in runoff regardless of the land cover or season. The wet years export much higher amounts of TEAs than the dry years. In southern agricultural catchments, the wet years increased the TEA export for both spring (January-May) and autumn (September-December) periods, while in the peaty and forested catchments in eastern and northern Finland the export only increased in the autumn. Our predictions for the year 2099 indicate that the export of TEAs will increase especially from agricultural but also from forested catchments. Additionally, the predictions show an increase in the export of Fe and SO 4 for all the catchments for the autumn. Thus, the climate induced change in the runoff regime is likely to alter the exported amount of TEAs and the timing of the export downstream. The changes in the amounts and timing in the export of TEAs have a potential to modify the mineralization pathways in the receiving water bodies, with feedbacks in the cycling of C, nutrients and metals in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Surface Runoff of Pesticides from a Clay Loam Field in Sweden.

    PubMed

    Larsbo, Mats; Sandin, Maria; Jarvis, Nick; Etana, Ararso; Kreuger, Jenny

    2016-07-01

    Pesticides stored at or close to the soil surface after field application can be mobilized and transported off the field when surface runoff occurs. The objective of our study was to quantify the potential pesticide losses in surface runoff from a conventionally managed agricultural field in a Swedish climate. This was achieved by measuring surface runoff volumes and concentrations in runoff of six spring-applied pesticides and autumn-applied glyphosate and its metabolite aminomethylphosphonic acid (AMPA). Measurements were performed for 3 yr both during the growing seasons and during intervening winter snowmelt periods on a clay loam field close to Uppsala. During growing seasons, surface runoff was generated on only five occasions during one 25-d period in 2012 when the infiltration capacity of the soil may have been reduced by structural degradation due to large cumulative rainfall amounts after harrowing. Concentrations in surface runoff exceeded Swedish water quality standards in all samples during this growing season for diflufenican and pirimicarb. Surface runoff was generated during three snowmelt periods during the winter of 2012-2013. All of the applied pesticides were found in snowmelt samples despite incorporation of residues by autumn plowing, degradation, and leaching into the soil profile during the period between spraying and sampling. Concentrations of glyphosate ranged from 0.12 to 7.4 μg L, and concentrations of AMPA ranged from 0 to 2.7 μg L. Our results indicate that temporal changes in hydraulic properties during the growing season and when the soil freezes during winter affect pesticide losses through surface runoff. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. The effect of poultry manure application rate and AlCl(3) treatment on bacterial fecal indicators in runoff.

    PubMed

    Brooks, J P; Adeli, A; McLaughlin, M R; Miles, D M

    2012-12-01

    Increasing costs associated with inorganic fertilizer have led to widespread use of broiler litter. Proper land application, typically limiting nutrient loss, is essential to protect surface water. This study was designed to evaluate litter-borne microbial runoff (heterotrophic plate count bacteria, staphylococci, Escherichia coli, enterococci, and Clostridium perfringens) while applying typical nutrient-control methods. Field studies were conducted in which plots with high and low litter rates, inorganic fertilizer, AlCl(3)-treated litter, and controls were rained on five times using a rain generator. Overall, microbial runoff from poultry litter applied plots was consistently greater (2-5 log(10) plot(-1)) than controls. No appreciable effect on microbial runoff was noted from variable litter application rate or AlCl(3) treatments, though rain event, not time, significantly affected runoff load. C. perfringens and staphylococci runoff were consistently associated with poultry litter application, during early rain events, while other indicators were unreliable. Large microbial runoff pulses were observed, ranging from 10(2) to 10(10) CFU plot(-1); however, only a small fraction of litter-borne microbes were recoverable in runoff. This study indicated that microbial runoff from litter-applied plots can be substantial, and that methods intended to reduce nutrient losses do not necessarily reduce microbial runoff.

  7. Estimation of runoff mitigation by morphologically different cover crop root systems

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Loiskandl, Willibald; Kaul, Hans-Peter; Himmelbauer, Margarita; Wei, Wei; Chen, Liding; Bodner, Gernot

    2016-07-01

    Hydrology is a major driver of biogeochemical processes underlying the distinct productivity of different biomes, including agricultural plantations. Understanding factors governing water fluxes in soil is therefore a key target for hydrological management. Our aim was to investigate changes in soil hydraulic conductivity driven by morphologically different root systems of cover crops and their impact on surface runoff. Root systems of twelve cover crop species were characterized and the corresponding hydraulic conductivity was measured by tension infiltrometry. Relations of root traits to Gardner's hydraulic conductivity function were determined and the impact on surface runoff was estimated using HYDRUS 2D. The species differed in both rooting density and root axes thickness, with legumes distinguished by coarser axes. Soil hydraulic conductivity was changed particularly in the plant row where roots are concentrated. Specific root length and median root radius were the best predictors for hydraulic conductivity changes. For an intensive rainfall simulation scenario up to 17% less rainfall was lost by surface runoff in case of the coarsely rooted legumes Melilotus officinalis and Lathyrus sativus, and the densely rooted Linum usitatissimum. Cover crops with coarse root axes and high rooting density enhance soil hydraulic conductivity and effectively reduce surface runoff. An appropriate functional root description can contribute to targeted cover crop selection for efficient runoff mitigation.

  8. Response surface methodology modeling to improve degradation of Chlorpyrifos in agriculture runoff using TiO2 solar photocatalytic in a raceway pond reactor.

    PubMed

    Amiri, Hoda; Nabizadeh, Ramin; Silva Martinez, Susana; Jamaleddin Shahtaheri, Seyed; Yaghmaeian, Kamyar; Badiei, Alireza; Nazmara, Shahrokh; Naddafi, Kazem

    2018-01-01

    This paper deals with the use of a raceway pond reactor (RPR) as an alternative photoreactor for solar photocatalytic applications. Raceway pond reactors are common low-cost reactors which can treat large volumes of water. The experiments were carried out with TiO 2 in the agriculture effluent spiked with Chlorpyrifos (CPF) at circumneutral pH. The Response Surface Methodology (RSM) was used to find the optimum process parameters to maximize CPF oxidation from the mathematical model equations developed in this study using R software. By ANOVA, p-value of lack of fit > 0.05 indicated that, the equation was well-fitted. The theoretical efficiency of CPF removal, under the optimum oxidation conditions with UV solar energy of around 697 ± 5.33 lux, was 84.01%, which is in close agreement with the mean experimental value (80 ± 1.42%) confirming that the response model was suitable for the optimization. As far as the authors know, this is the first study of CPF removal using RPR in agriculture runoff at circumneutral pH. Copyright © 2017. Published by Elsevier Inc.

  9. Stormwater runoff quality in correlation to land use and land cover development in Yongin, South Korea.

    PubMed

    Paule, M A; Memon, S A; Lee, B-Y; Umer, S R; Lee, C-H

    2014-01-01

    Stormwater runoff quality is sensitive to land use and land cover (LULC) change. It is difficult to understand their relationship in predicting the pollution potential and developing watershed management practices to eliminate or reduce the pollution risk. In this study, the relationship between LULC change and stormwater runoff quality in two separate monitoring sites comprising a construction area (Site 1) and mixed land use (Site 2) was analyzed using geographic information system (GIS), event mean concentration (EMC), and correlation analysis. It was detected that bare land area increased, while other land use areas such as agriculture, commercial, forest, grassland, parking lot, residential, and road reduced. Based on the analyses performed, high maximum range and average EMCs were found in Site 2 for most of the water pollutants. Also, urban areas and increased conversion of LULC into bare land corresponded to degradation of stormwater quality. Correlation analysis between LULC and stormwater quality showed the influence of different factors such as farming practices, geographical location, and amount of precipitation, vegetation loss, and anthropogenic activities in monitoring sites. This research found that GIS application was an efficient tool for monthly monitoring, validation and statistical analysis of LULC change in the study area.

  10. Improved indexes for targeting placement of buffers of Hortonian runoff

    Treesearch

    M.G. Dosskey; Z. Qiu; M.J. Helmers; D.E. Eisenhauer

    2011-01-01

    Targeting specific locations within agricultural watersheds for installing vegetative buffers has been advocated as a way to enhance the impact of buffers and buffer programs on stream water quality. Existing models for targeting buffers of Hortonian, or infiltration-excess, runoff are not well developed. The objective was to improve on an existing soil survey–based...

  11. Total pollution effect of urban surface runoff.

    PubMed

    Luo, Hongbing; Luo, Lin; Huang, Gu; Liu, Ping; Li, Jingxian; Hu, Sheng; Wang, Fuxiang; Xu, Rui; Huang, Xiaoxue

    2009-01-01

    For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.

  12. Characterization of rainfall-runoff response and estimation of the effect of wetland restoration on runoff, Heron Lake Basin, southwestern Minnesota, 1991-97

    USGS Publications Warehouse

    Jones, Perry M.; Winterstein, Thomas A.

    2000-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources and the Heron Lake Watershed District, conducted a study to characterize the rainfall-runoff response and to examine the effects of wetland restoration on the rainfall-runoff response within the Heron Lake Basin in southwestern Minnesota. About 93 percent of the land cover in the Heron Lake Basin consists of agricultural lands, consisting almost entirely of row crops, with less than one percent consisting of wetlands. The Hydrological Simulation Program – Fortran (HSPF), Version 10, was calibrated to continuous discharge data and used to characterize rainfall-runoff responses in the Heron Lake Basin between May 1991 and August 1997. Simulation of the Heron Lake Basin was done as a two-step process: (1) simulations of five small subbasins using data from August 1995 through August 1997, and (2) simulations of the two large basins, Jack and Okabena Creek Basins, using data from May 1991 through September 1996. Simulations of the five small subbasins was done to determine basin parameters for the land segments and assess rainfall-runoff response variability in the basin. Simulations of the two larger basins were done to verify the basin parameters and assess rainfall-runoff responses over a larger area and for a longer time period. Best-fit calibrations of the five subbasin simulations indicate that the rainfall-runoff response is uniform throughout the Heron Lake Basin, and 48 percent of the total rainfall for storms becomes direct (surface and interflow) runoff. Rainfall-runoff response variations result from variations in the distribution, intensity, timing, and duration of rainfall; soil moisture; evapotranspiration rates; and the presence of lakes in the basin. In the spring, the amount and distribution of rainfall tends to govern the runoff response. High evapotranspiration rates in the summer result in a depletion of moisture from the soils, substantially

  13. Framework for event-based semidistributed modeling that unifies the SCS-CN method, VIC, PDM, and TOPMODEL

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S.; Parolari, A. J.; McDonnell, J. J.; Porporato, A.

    2016-09-01

    Hydrologists and engineers may choose from a range of semidistributed rainfall-runoff models such as VIC, PDM, and TOPMODEL, all of which predict runoff from a distribution of watershed properties. However, these models are not easily compared to event-based data and are missing ready-to-use analytical expressions that are analogous to the SCS-CN method. The SCS-CN method is an event-based model that describes the runoff response with a rainfall-runoff curve that is a function of the cumulative storm rainfall and antecedent wetness condition. Here we develop an event-based probabilistic storage framework and distill semidistributed models into analytical, event-based expressions for describing the rainfall-runoff response. The event-based versions called VICx, PDMx, and TOPMODELx also are extended with a spatial description of the runoff concept of "prethreshold" and "threshold-excess" runoff, which occur, respectively, before and after infiltration exceeds a storage capacity threshold. For total storm rainfall and antecedent wetness conditions, the resulting ready-to-use analytical expressions define the source areas (fraction of the watershed) that produce runoff by each mechanism. They also define the probability density function (PDF) representing the spatial variability of runoff depths that are cumulative values for the storm duration, and the average unit area runoff, which describes the so-called runoff curve. These new event-based semidistributed models and the traditional SCS-CN method are unified by the same general expression for the runoff curve. Since the general runoff curve may incorporate different model distributions, it may ease the way for relating such distributions to land use, climate, topography, ecology, geology, and other characteristics.

  14. Changing patterns in water toxicity associated with current use pesticides in three California agriculture regions.

    PubMed

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Deng, Xin; Geraci, Jeff; Worcester, Karen; Tjeerdema, Ron S

    2018-03-01

    Regulation of agriculture irrigation water discharges in California, USA, is assessed and controlled by its 9 Regional Water Quality Control Boards under the jurisdiction of the California State Water Resources Control Board. Each Regional Water Board has developed programs to control pesticides in runoff as part of the waste discharge requirements implemented through each region's Irrigated Lands Regulatory Program. The present study assessed how pesticide use patterns differ in the Imperial (Imperial County) and the Salinas and Santa Maria (Monterey County) valleys, which host 3 of California's prime agriculture areas. Surface-water toxicity associated with current use pesticides was monitored at several sites in these areas in 2014 and 2015, and results were linked to changes in pesticide use patterns in these areas. Pesticide use patterns appeared to coincide with differences in the way agriculture programs were implemented by the 2 respective Regional Water Quality Control Boards, and these programs differed in the 2 Water Board Regions. Different pesticide use patterns affected the occurrence of pesticides in agriculture runoff, and this influenced toxicity test results. Greater detection frequency and higher concentrations of the organophosphate pesticide chlorpyrifos were detected in agriculture runoff in Imperial County compared to Monterey County, likely due to more rigorous monitoring requirements for growers using this pesticide in Monterey County. Monterey County agriculture runoff contained toxic concentrations of pyrethroid and neonicotinoid pesticides, which impacted amphipods (Hyalella azteca) and midge larvae (Chironomus dilutus) in toxicity tests. Study results illustrate how monitoring strategies need to evolve as regulatory actions affect change in pesticide use and demonstrate the importance of using toxicity test indicator species appropriate for the suite of contaminants in runoff in order to accurately assess environmental risk. Integr

  15. Impacts of the Conversion of Forest to Arable Land and Long Term Agriculture Practices on the Water Pathways in Southern Brazil

    NASA Astrophysics Data System (ADS)

    Robinet, J.; Minella, J. P. G.; Schlesner, A.; Lücke, A.; Ameijeiras-Marino, Y.; Opfergelt, S.; Vanderborght, J.; Gerard, G.

    2017-12-01

    Changes in runoff pathways affect many environmental processes. Land use change (LUC), and more specifically forest conversion to arable land, is one of the controls of water fluxes at the hillslope or catchment scale. Still, the long term effects of forest conversion and agricultural activities in (sub-) tropical environments have been relatively understudied. Our objective was therefore to study the impact of deforestation and land degradation through agriculture on runoff pathways. We selected two small catchments with contrasting land use (agriculture vs. natural forest) in a subtropical region in the south of Brazil. Stream-, pore-, subsurface- and rainwater were monitored, sampled and analyzed for Dissolve Silicon concentration (DSi) and δ18O isotopic signature. Both forested and agricultural catchments were highly responsive to rainfall event and only 2 runoff components contributed to the stream discharge were identified: baseflow and peak flow components. The δ18O peak flow signal in the agricultural catchment was closely related to the δ18O rainfall signal. In the forested catchment, the δ18O peak flow signal was similar to a seasonally averaged signal. This suggested that most peak flow was derived from current rainfall events in the agricultural catchment, while being derived from a mixed reservoir in the forested one. The DSi of the peak flow was low in both catchments. Hence, the mixing in the forested catchment cannot have taken place in the soil matrix as the soil pore water contained high DSi concentrations. Instead, the mixing must have taken place in a reservoir with a relatively short residence time and isolated, to some extent, from the soil matrix. The dense channel network left by decayed roots in the forest soil above a clay-rich water-impeding B horizon is the most likely candidate and this was confirmed by visual observations. Contributions of other, deeper reservoirs are unlikely given the quick response time of the catchment

  16. Analysis of the runoff generation mechanism for the investigation of the SCS-CN method applicability to a partial area experimental watershed

    NASA Astrophysics Data System (ADS)

    Soulis, K. X.; Valiantzas, J. D.; Dercas, N.; Londra, P. A.

    2009-01-01

    The Soil Conservation Service Curve Number (SCS-CN) method is widely used for predicting direct runoff volume for a given rainfall event. The applicability of the SCS-CN method and the runoff generation mechanism were thoroughly analysed in a Mediterranean experimental watershed in Greece. The region is characterized by a Mediterranean semi-arid climate. A detailed land cover and soil survey using remote sensing and GIS techniques, showed that the watershed is dominated by coarse soils with high hydraulic conductivities, whereas a smaller part is covered with medium textured soils and impervious surfaces. The analysis indicated that the SCS-CN method fails to predict runoff for the storm events studied, and that there is a strong correlation between the CN values obtained from measured runoff and the rainfall depth. The hypothesis that this correlation could be attributed to the existence of an impermeable part in a very permeable watershed was examined in depth, by developing a numerical simulation water flow model for predicting surface runoff generated from each of the three soil types of the watershed. Numerical runs were performed using the HYDRUS-1D code. The results support the validity of this hypothesis for most of the events examined where the linear runoff formula provides better results than the SCS-CN method. The runoff coefficient of this formula can be taken equal to the percentage of the impervious area. However, the linear formula should be applied with caution in case of extreme events with very high rainfall intensities. In this case, the medium textured soils may significantly contribute to the total runoff and the linear formula may significantly underestimate the runoff produced.

  17. Phosphorus runoff from incorporated and surface-applied liquid swine manure and phosphorus fertilizer.

    PubMed

    Daverede, I C; Kravchenko, A N; Hoeft, R G; Nafziger, E D; Bullock, D G; Warren, J J; Gonzini, L C

    2004-01-01

    Excessive fertilization with organic and/or inorganic P amendments to cropland increases the potential risk of P loss to surface waters. The objective of this study was to evaluate the effects of soil test P level, source, and application method of P amendments on P in runoff following soybean [Glycine max (L.) Merr.]. The treatments consisted of two rates of swine (Sus scrofa domestica) liquid manure surface-applied and injected, 54 kg P ha(-1) triple superphosphate (TSP) surface-applied and incorporated, and a control with and without chisel-plowing. Rainfall simulations were conducted one month (1MO) and six months (6MO) after P amendment application for 2 yr. Soil injection of swine manure compared with surface application resulted in runoff P concentration decreases of 93, 82, and 94%, and P load decreases of 99, 94, and 99% for dissolved reactive phosphorus (DRP), total phosphorus (TP), and algal-available phosphorus (AAP), respectively. Incorporation of TSP also reduced P concentration in runoff significantly. Runoff P concentration and load from incorporated amendments did not differ from the control. Factors most strongly related to P in runoff from the incorporated treatments included Bray P1 soil extraction value for DRP concentration, and Bray P1 and sediment content in runoff for AAP and TP concentration and load. Injecting manure and chisel-plowing inorganic fertilizer reduced runoff P losses, decreased runoff volumes, and increased the time to runoff, thus minimizing the potential risk of surface water contamination. After incorporating the P amendments, controlling erosion is the main target to minimize TP losses from agricultural soils.

  18. Dairy heifer manure management, dietary phosphorus, and soil test P effects on runoff phosphorus.

    PubMed

    Jokela, William E; Coblentz, Wayne K; Hoffman, Patrick C

    2012-01-01

    Manure application to cropland can contribute to runoff losses of P and eutrophication of surface waters. We conducted a series of three rainfall simulation experiments to assess the effects of dairy heifer dietary P, manure application method, application rate, and soil test P on runoff P losses from two successive simulated rainfall events. Bedded manure (18-21% solids) from dairy heifers fed diets with or without supplemental P was applied on a silt loam soil packed into 1- by 0.2-m sheet metal pans. Manure was either surface-applied or incorporated (Experiment 1) or surface-applied at two rates (Experiment 2) to supply 26 to 63 kg P ha. Experiment 3 evaluated runoff P from four similar nonmanured soils with average Bray P1-extractable P levels of 11, 29, 51, and 75 mg kg. We measured runoff quantity, total P (TP), dissolved reactive P (DRP), and total and volatile solids in runoff collected for 30 min after runoff initiation from two simulated rain events (70 mm h) 3 or 4 d apart. Manure incorporation reduced TP and DRP concentrations and load by 85 to 90% compared with surface application. Doubling the manure rate increased runoff DRP and TP concentrations an average of 36%. In the same experiment, P diet supplementation increased water-extractable P in manure by 100% and increased runoff DRP concentration threefold. Concentrations of solids, TP, and DRP in runoff from Rain 2 were 25 to 75% lower than from Rain 1 in Experiments 1 and 2. Runoff DRP from nonmanured soils increased quadratically with increasing soil test P. These results show that large reductions in P runoff losses can be achieved by incorporation of manure, avoiding unnecessary diet P supplementation, limiting manure application rate, and managing soils to prevent excessive soil test P levels. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. [Rainfall intensity effects on nutrients transport in surface runoff from farmlands in gentle slope hilly area of Taihu Lake Basin].

    PubMed

    Li, Rui-ling; Zhang, Yong-chun; Liu, Zhuang; Zeng, Yuan; Li, Wei-xin; Zhang, Hong-ling

    2010-05-01

    To investigate the effect of rainfall on agricultural nonpoint source pollution, watershed scale experiments were conducted to study the characteristics of nutrients in surface runoff under different rainfall intensities from farmlands in gentle slope hilly areas around Taihu Lake. Rainfall intensity significantly affected N and P concentrations in runoff. Rainfall intensity was positively related to TP, PO4(3-) -P and NH4+ -N event mean concentrations(EMC). However, this study have found the EMC of TN and NO3- -N to be positively related to rainfall intensity under light rain and negatively related to rainfall intensity under heavy rain. TN and TP site mean amounts (SMA) in runoff were positively related to rainfall intensity and were 1.91, 311.83, 127.65, 731.69 g/hm2 and 0.04, 7.77, 2.99, 32.02 g/hm2 with rainfall applied under light rain, moderate rain, heavy rain and rainstorm respectively. N in runoff was mainly NO3- -N and NH4+ -N and was primarily in dissolved form from Meilin soils. Dissolved P (DP) was the dominant form of TP under light rain, but particulate P (PP) mass loss increased with the increase of rainfall intensity and to be the dominant form when the rainfall intensity reaches rainstorm. Single relationships were used to describe the dependence of TN and TP mass losses in runoff on rainfall, maximum rainfall intensity, average rainfall intensity and rainfall duration respectively. The results showed a significant positive correlation between TN mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01) and also TP mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01).

  20. Hillslope versus riparian zone runoff contributions in headwater catchments: A multi-watershed comparison

    NASA Astrophysics Data System (ADS)

    McGlynn, B. L.; McGlynn, B. L.; McDonnell, J. J.; Hooper, R. P.; Shanley, J. B.; Hjerdt, K. N.; Hjerdt, K. N.

    2001-12-01

    It is often assumed that hillslope and riparian areas constitute the two most important and identifiable landscape units contributing to catchment runoff in upland humid catchments. Nevertheless, the relative amount and timing of hillslope versus riparian contributions to stormflow are poorly understood across different watersheds. We quantified the contributions of hillslopes and riparian zones to stormflow using physical, chemical, and isotopic techniques across 3 diverse ({ ~}15 ha) headwater catchments: a highly responsive steep wet watershed (Maimai, New Zealand), a moderately steep snowmelt dominated watershed (Sleepers, River, VT), and at a highly seasonal relatively low relief watershed (Panola Mt., Georgia). We monitored catchment runoff, internal hydrological response, and isotopic and solute dynamics for discrete riparian and hillslope zones within each catchment. Monitored catchment positions, including hillslope trenches at Maimai and Panola, were used to characterize directly, the hydrologic response and source water signatures for hillslope zones and riparian zones. We also examined the spatial and temporal source components of catchment stormflow using 3-component mass balance hydrograph separation techniques. At Maimai, NZ we found that hillslope runoff comprised 47-55% of total runoff during a 70 mm event. Despite the large amount of subsurface hillslope runoff in total catchment stormflow, riparian and channel zones accounted for 28% out of 29% of the total new water measured catchment runoff. Riparian water dominated the storm hydrograph composition early in the event, although hillslope water reached the catchment outlet soon after hillslope water tables were developed. Preliminary results for Sleepers River, VT and Panola Mountain, GA indicate that the timing and relative proportion of hillslope water in catchment runoff is later and smaller than at Maimai. Our multi-catchment comparison suggests that the ratio of the riparian reservoir to the

  1. Treatment of atrazine in nursery irrigation runoff by a constructed wetland.

    PubMed

    Runes, Heather B; Jenkins, Jeffrey J; Moore, James A; Bottomley, Peter J; Wilson, Bruce D

    2003-02-01

    To investigate the treatment capability of a surface flow wetland at a container nursery near Portland, Oregon, atrazine was introduced during simulated runoff events. Treatment efficiency was evaluated as the percent atrazine recovered (as percent of applied) in the water column at the wetland's outlet. Atrazine treatment efficiency at the outlet of the constructed wetland during a 7-d period ranged from 18-24% in 1998 (experiments 1-3) and 16-17% in 1999 (experiments 4 and 5). Changes in total flow, or frequency and intensity of runoff events did not affect treatment. For experiment 6 in 1999, where the amount, frequency, and duration of runoff events exceeded all other experiments, treatment was compromised. For all experiments, deethylatrazine (DEA) and deisopropylatrazine (DIA) accounted for 13-21% of the initial application. Hydroxyatrazine (HA) was rarely detected in the water. Organic carbon adsorption coefficients (Koc) were determined from batch equilibrium sorption isotherms with wetland sediment, and they decreased in the order of HA > DIA > atrazine > DEA. Static water-sediment column experiments indicated that sorption is an important mechanism for atrazine loss from water passing through the constructed wetland. The results of the MPN assay indicated the existence in the wetland of a low-density population of microorganisms with the potential to mineralize atrazine's ethyl side chain.

  2. Fate and transport of agriculturally applied fungicidal compounds, azoxystrobin and propiconazole.

    PubMed

    Edwards, Paul G; Murphy, Tracye M; Lydy, Michael J

    2016-03-01

    Fungicidal active ingredients azoxystrobin and propiconazole, individually and in combination, have been marketed worldwide in a range of fungicide treatment products for preventative and curative purposes, respectively. Their presence in streams located throughout the midwestern and southeastern United States warrant the need for research into the potential routes of transport of these fungicides in an agricultural field setting. Potential canopy penetration and drift effects of these fungicides during aerial and ground applications were studied in the current project. Canopy penetration was observed for both application types, however drift was associated only with the aerial application of these fungicides. Azoxystrobin and propiconazole persisted in the soil up to 301 d, with peak concentrations occurring approximately 30 d after application. The predominant mode of transport for these compounds was agricultural runoff water, with the majority of the fungicidal active ingredients leaving the target area during the first rain event following application. The timing of application in relation to the first rain event significantly affected the amount of loss that occurred, implying application practices should follow manufacturer recommended guidelines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Stormwater runoff characterized by GIS determined source areas and runoff volumes.

    PubMed

    Liu, Yang; Soonthornnonda, Puripus; Li, Jin; Christensen, Erik R

    2011-02-01

    Runoff coefficients are usually considered in isolation for each drainage area with resulting large uncertainties in the areas and coefficients. Accurate areas and coefficients are obtained here by optimizing runoff coefficients for characteristic Geographic Information Systems (GIS) subareas within each drainage area so that the resulting runoff coefficients of each drainage area are consistent with those obtained from runoff and rainfall volumes. Lack of fit can indicate that the ArcGIS information is inaccurate or more likely, that the drainage area needs adjustment. Results for 18 drainage areas in Milwaukee, WI for 2000-2004 indicate runoff coefficients ranging from 0.123 for a mostly residential area to 0.679 for a freeway-related land, with a standard error of 0.047. Optimized runoff coefficients are necessary input parameters for monitoring, and for the analysis and design of in situ stormwater unit operations and processes for the control of both urban runoff quantity and quality.

  4. Subsurface application of poultry litter and its influence on nutrient losses in runoff water from permanent pastures.

    PubMed

    Watts, D B; Way, T R; Torbert, H A

    2011-01-01

    Environmental pressure to reduce nutrient losses from agricultural fields has increased in recent years. To abate this nutrient loss to the environment, better management practices and new technologies need to be developed. Thus, research was conducted to evaluate if subsurface banding poultry litter (PL) would reduce nitrogen (N) and phosphorus (P) loss in surface water runoff using a four-row prototype implement. Rainfall simulations were conducted to create a 40-min runoff event in an established bermudagrass (Cynodon dactylon L.) pasture on soil types common to the Coastal Plain and Piedmont regions. The Coastal Plain soil type was a Marvyn loamy sand (fine-loamy, kaolinitic, thermic Typic Kanhapludults) and the Piedmont soil type was a Hard Labor loamy sand (fine, kaolinitic, thermic Oxyaquic Kanhapludults). Treatments consisted of surface- and subsurface-applied PL at a rate of 9 Mg ha(-1), surface broadcast-applied commercial fertilizer (CF; urea and triple superphosphate blend) at the equivalent N (330 kg N ha(-1)) and P (315 kg N ha(-1)) content of PL, and a nonfertilized control. The greatest loss for inorganic N, total N, dissolved reactive P (DRP), and total P occurred with the surface broadcast treatments, with CF contributing to the greatest loss. Nutrient losses from the subsurface banded treatment reduced N and P in surface water runoff to levels of the control. Subsurface banding of PL reduced concentrations of inorganic N 91%, total N 90%, DRP 86%, and total P 86% in runoff water compared with surface broadcasted PL. These results show that subsurface band-applied PL can greatly reduce the impact of N and P loss to the environment compared with conventional surface-applied PL and CF practices.

  5. [Analysis of first flush effect of typical underlying surface runoff in Beijing urban city].

    PubMed

    Ren, Yu-Fen; Wang, Xiao-Ke; Ouyang, Zhi-Yun; Hou, Pei-Qiang

    2013-01-01

    Rapid increase of the urban impervious underlying surfaces causes a great increase of urban runoff and the accumulation of pollutants on the roof and road surfaces brings many pollutants into the drainage system with the runoff, and it thus becomes a great threat to the urban water environment. To know the runoff pollution process and to build scientific basis for pollutant control, runoff processes from the roof and road surfaces were monitored and analyzed from 2004 to 2006, and the runoff EMC (Event Mean Concentration) was calculated. It was found that two types of runoff were seriously polluted by COD and TN. The COD and TN of roof runoff exceeded the fifth level of the surface water environmental quality standard (GB 3838-2002) by 3.64 and 4.80 times, respectively, and the COD and TN of road runoff exceeded by 3.73 and 1.07 times, respectively. M (V) curve was used to determine the relation between runoff volume and runoff pollution load. Various degrees of the first flush phenomenon were found for TSS, COD, TN and TP in roof runoff. But this phenomenon occurred only for TSS and TP of the road runoff, and on the whole it was not obvious. Properties of the underlying surfaces, rainfall intensity, and pollutant accumulation are all important factors affecting the roof and road runoff pollutant emission characteristics.

  6. Amending greenroof soil with biochar to affect runoff water quantity and quality.

    PubMed

    Beck, Deborah A; Johnson, Gwynn R; Spolek, Graig A

    2011-01-01

    Numbers of greenroofs in urban areas continue to grow internationally; so designing greenroof soil to reduce the amount of nutrients in the stormwater runoff from these roofs is becoming essential. This study evaluated changes in extensive greenroof water discharge quality and quantity after adding biochar, a soil amendment promoted for its ability to retain nutrients in soils and increase soil fertility. Prototype greenroof trays with and without biochar were planted with sedum or ryegrass, with barren soil trays used as controls. The greenroof trays were subjected to two sequential 7.4cm/h rainfall events using a rain simulator. Runoff from the rain events was collected and evaluated. Trays containing 7% biochar showed increased water retention and significant decreases in discharge of total nitrogen, total phosphorus, nitrate, phosphate, and organic carbon. The addition of biochar to greenroof soil improves both runoff water quality and retention. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Characterization of Stormwater Runoff from a Light Rail Transit Area.

    PubMed

    Sajjad, Raja Umer; Kim, Kyoung Jin; Memon, Sheeraz; Sukhbaatar, Chinzorig; Paule, Ma Cristina; Lee, Bum-Yeon; Lee, Chang-Hee

    2015-09-01

    The monitoring of stormwater runoff from Light Rail Transit (LRT) facilities is insufficient in many regions around the world. In this study, runoff quality and quantity were monitored during operational and non-operational LRT phases during 2010-2013. The event mean concentration (EMC) of pollutants showed little statistical variability during both phases. The antecedent dry day (ADD) showed a strong to moderate positive correlation with most pollutant EMCs during the non-operational phase. The existence and magnitude of the first flush from LRT runoff was found to be similar to those from other transportation land uses. The comparison of LRT runoff data with an adjacent road bridge site showed that the pollutant EMC and unit load were 2 to 9 times higher from the road bridge. It was suggested that LRT automated operation and the elevated track makes this transportation mode a viable option for the management of non-point source pollution.

  8. Evaluating the Capability of Grass Swale for the Rainfall Runoff Reduction from an Urban Parking Lot, Seoul, Korea.

    PubMed

    Shafique, Muhammad; Kim, Reeho; Kyung-Ho, Kwon

    2018-03-16

    This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas.

  9. Evaluating the Capability of Grass Swale for the Rainfall Runoff Reduction from an Urban Parking Lot, Seoul, Korea

    PubMed Central

    Shafique, Muhammad; Kim, Reeho; Kyung-Ho, Kwon

    2018-01-01

    This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas. PMID:29547567

  10. [Research on spatial differentiation of urban stormwater runoff quality by source area monitoring].

    PubMed

    Li, Li-Qing; Zhu, Ren-Xiao; Guo, Shu-Gang; Yin, Cheng-Qing

    2010-12-01

    Runoff samples were collected from 14 source areas in Hanyang district during four rain events in an attempt to investigate the spatial differentiation and influencing factors of urban stormwater runoff quality. The outcomes are expected to offer practical guidance in sources control of urban runoff pollution. The results revealed that particle-bound proportion of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in stormwater runoff were 58% +/- 17%, 65% +/- 13% and 92% +/- 6%, respectively. The fractions of ammonia, nitrate and dissolved organic nitrogen were homogeneous in dissolved nitrogen composition. Urban surface function, traffic volume, land use, population density, and street sweeping practice are the main factors determining spatial differentiation of urban surface runoff quality. The highest magnitude of urban stormwater runoff pollution was expected in the old urban residential area, followed by general residential with restaurants, commercial and transport area, new developments and green land. In addition, the magnitude of road stormwater runoff pollution is positively correlated to traffic volume, in the following order: the first trunk road > the second trunk road > minor road. Street sweeping and critical source areas controls should be implemented to mitigate the adverse effects of urban stormwater runoff on receive waters.

  11. Climate Change and Runoff Statistics: a Process Study for the Rhine Basin using a coupled Climate-Runoff Model

    NASA Astrophysics Data System (ADS)

    Kleinn, J.; Frei, C.; Gurtz, J.; Vidale, P. L.; Schär, C.

    2003-04-01

    The consequences of extreme runoff and extreme water levels are within the most important weather induced natural hazards. The question about the impact of a global climate change on the runoff regime, especially on the frequency of floods, is of utmost importance. In winter-time, two possible climate effects could influence the runoff statistis of large Central European rivers: the shift from snowfall to rain as a consequence of higher temperatures and the increase of heavy precipitation events due to an intensification of the hydrological cycle. The combined effect on the runoff statistics is examined in this study for the river Rhine. To this end, sensitivity experiments with a model chain including a regional climate model and a distributed runoff model are presented. The experiments are based on an idealized surrogate climate change scenario which stipulates a uniform increase in temperature by 2 Kelvin and an increase in atmospheric specific humidity by 15% (resulting from unchanged relative humidity) in the forcing fields for the regional climate model. The regional climate model CHRM is based on the mesoscale weather prediction model HRM of the German Weather Service (DWD) and has been adapted for climate simulations. The model is being used in a nested mode with horizontal resolutions of 56 km and 14 km. The boundary conditions are taken from the original ECMWF reanalysis and from a modified version representing the surrogate scenario. The distributed runoff model (WaSiM) is used at a horizontal resolution of 1 km for the whole Rhine basin down to Cologne. The coupling of the models is provided by a downscaling of the climate model fields (precipitaion, temperature, radiation, humidity, and wind) to the resolution of the distributed runoff model. The simulations cover the period of September 1987 to January 1994 with a special emphasis on the five winter seasons 1989/90 until 1993/94, each from November until January. A detailed validation of the control

  12. Transport and solubility of Hetero-disperse dry deposition particulate matter subject to urban source area rainfall-runoff processes

    NASA Astrophysics Data System (ADS)

    Ying, G.; Sansalone, J.

    2010-03-01

    SummaryWith respect to hydrologic processes, the impervious pavement interface significantly alters relationships between rainfall and runoff. Commensurate with alteration of hydrologic processes the pavement also facilitates transport and solubility of dry deposition particulate matter (PM) in runoff. This study examines dry depositional flux rates, granulometric modification by runoff transport, as well as generation of total dissolved solids (TDS), alkalinity and conductivity in source area runoff resulting from PM solubility. PM is collected from a paved source area transportation corridor (I-10) in Baton Rouge, Louisiana encompassing 17 dry deposition and 8 runoff events. The mass-based granulometric particle size distribution (PSD) is measured and modeled through a cumulative gamma function, while PM surface area distributions across the PSD follow a log-normal distribution. Dry deposition flux rates are modeled as separate first-order exponential functions of previous dry hours (PDH) for PM and suspended, settleable and sediment fractions. When trans-located from dry deposition into runoff, PSDs are modified, with a d50m decreasing from 331 to 14 μm after transport and 60 min of settling. Solubility experiments as a function of pH, contact time and particle size using source area rainfall generate constitutive models to reproduce pH, alkalinity, TDS and alkalinity for historical events. Equilibrium pH, alkalinity and TDS are strongly influenced by particle size and contact times. The constitutive leaching models are combined with measured PSDs from a series of rainfall-runoff events to demonstrate that the model results replicate alkalinity and TDS in runoff from the subject watershed. Results illustrate the granulometry of dry deposition PM, modification of PSDs along the drainage pathway, and the role of PM solubility for generation of TDS, alkalinity and conductivity in urban source area rainfall-runoff.

  13. High spatial-temporal resolution and integrated surface and subsurface precipitation-runoff modelling for a small stormwater catchment

    NASA Astrophysics Data System (ADS)

    Hailegeorgis, Teklu T.; Alfredsen, Knut

    2018-02-01

    Reliable runoff estimation is important for design of water infrastructure and flood risk management in urban catchments. We developed a spatially distributed Precipitation-Runoff (P-R) model that explicitly represents the land cover information, performs integrated modelling of surface and subsurface components of the urban precipitation water cycle and flow routing. We conducted parameter calibration and validation for a small (21.255 ha) stormwater catchment in Trondheim City during Summer-Autumn events and season, and snow-influenced Winter-Spring seasons at high spatial and temporal resolutions of respectively 5 m × 5 m grid size and 2 min. The calibration resulted in good performance measures (Nash-Sutcliffe efficiency, NSE = 0.65-0.94) and acceptable validation NSE for the seasonal and snow-influenced periods. The infiltration excess surface runoff dominates the peak flows while the contribution of subsurface flow to the sewer pipes also augments the peak flows. Based on the total volumes of simulated flow in sewer pipes (Qsim) and precipitation (P) during the calibration periods, the Qsim/P ranges from 21.44% for an event to 56.50% for the Winter-Spring season, which are in close agreement with the observed volumes (Qobs/P). The lowest percentage of precipitation volume that is transformed to the total simulated runoff in the catchment (QT) is 79.77%. Computation of evapotranspiration (ET) indicated that the ET/P is less than 3% for the events and snow-influenced seasons while it is about 18% for the Summer-Autumn season. The subsurface flow contribution to the sewer pipes are markedly higher than the total surface runoff volume for some events and the Summer-Autumn season. The peakiest flow rates correspond to the Winter-Spring season. Therefore, urban runoff simulation for design and management purposes should include two-way interactions between the subsurface runoff and flow in sewer pipes, and snow-influenced seasons. The developed urban P-R model is

  14. Using aquatic vegetation to remediate nitrate, ammonium, and soluble reactive phosphorus in simulated runoff

    USDA-ARS?s Scientific Manuscript database

    Within the agriculturally-intensive Mississippi River Basin of the United States, significant conservation efforts have focused on management practices that reduce nutrient runoff into receiving aquatic ecosystems. Only a small fraction of those efforts have focused on phytoremediation techniques. ...

  15. Runoff process in the Miyake-jima Island after Eruption in 2000

    NASA Astrophysics Data System (ADS)

    Tagata, Satoshi; Itoh, Takahiro; Miyamoto, Kuniaki; Ishizuka, Tadanori

    2014-05-01

    Hydrological environment in a basin can be changed completely due to volcanic eruption. Huge volume of tephra was yielded due to eruptions in 2000 in the Miyake-jima Island, Japan. Hydrological monitoring was conducted at four observation sites with several hundred m2 in a basin. Those were decided by the distribution of thickness and the grain size of the tephra. Rainfall intensity was measured by a tipping bucket type raingauge and flow discharge was calculated by the over flow depth in a flow gauging weir in the monitoring. However, the runoff rate did not relate to the grain size of tephra and the thickness of tephra deposition, according to measured data of rainfall intensity and runoff discharge. Supposing that if total runoff in one rainfall event is equal to the summation of rainfall over a threshold, the value of the threshold must be the loss rainfall intensity, the value of the threshold corresponds to the infiltration for the rainfall intensity. The relationships between loss rainfall intensity and the antecedent precipitation are calculated using measured rainfall and runoff data in every rainfall event, focusing on that the antecedent precipitation before occurrence of surface runoff approximately corresponds to the water contents under the slope surface. In present study, the results obtained through data analyses are summarized as follows: (1) There are some values for the threshold values, and the loss rainfall intensity approaches to some constant value if the value of the antecedent precipitation increases. The constant value corresponds to the saturated infiltration. (2) The loss rainfall intensity must be vertical unsaturated infiltration, and observed data for water runoff can express that the runoff is given by the excess rainfall intensity more than the loss rainfall intensity. (3) There are two antecedent times for rainfall with several hours and several days, and the saturation ratio before antecedent time at four observation sites can be

  16. Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed

    NASA Astrophysics Data System (ADS)

    Soulis, K. X.; Valiantzas, J. D.; Dercas, N.; Londra, P. A.

    2009-05-01

    The Soil Conservation Service Curve Number (SCS-CN) method is widely used for predicting direct runoff volume for a given rainfall event. The applicability of the SCS-CN method and the direct runoff generation mechanism were thoroughly analysed in a Mediterranean experimental watershed in Greece. The region is characterized by a Mediterranean semi-arid climate. A detailed land cover and soil survey using remote sensing and GIS techniques, showed that the watershed is dominated by coarse soils with high hydraulic conductivities, whereas a smaller part is covered with medium textured soils and impervious surfaces. The analysis indicated that the SCS-CN method fails to predict runoff for the storm events studied, and that there is a strong correlation between the CN values obtained from measured runoff and the rainfall depth. The hypothesis that this correlation could be attributed to the existence of an impermeable part in a very permeable watershed was examined in depth, by developing a numerical simulation water flow model for predicting surface runoff generated from each of the three soil types of the watershed. Numerical runs were performed using the HYDRUS-1D code. The results support the validity of this hypothesis for most of the events examined where the linear runoff formula provides better results than the SCS-CN method. The runoff coefficient of this formula can be taken equal to the percentage of the impervious area. However, the linear formula should be applied with caution in case of extreme events with very high rainfall intensities. In this case, the medium textured soils may significantly contribute to the total runoff and the linear formula may significantly underestimate the runoff produced.

  17. Natural flood risk management in flashy headwater catchments: managing runoff peaks, timing, water quality and sediment regimes

    NASA Astrophysics Data System (ADS)

    Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Kenyon, Wendy; Nicholson, Alex; Quinn, Paul; Stutter, Marc; Watson, Helen

    2013-04-01

    Over the past decade many European catchments have experienced an unusually high number of flood events. A large number of these events are the result of intense rainfall in small headwater catchments which are dominated by surface runoff generation, resulting in flash flooding of local communities. Soil erosion and related water quality issues, among others, are typically associated with such rapid runoff generation. The hazard of flooding is increasing owing to impacts of changing climatic patterns (including more intense summer storms), intensification of agriculture within rural catchments and continued pressure to build on floodplains. Concurrently, the cost of constructing and maintaining traditional flood defences in small communities outweigh the potential benefits. Hence, there is a growing interest in more cost effective natural approaches that also have multipurpose benefits in terms of sediment, water quality, and habitat creation. Many catchments in Europe are intensively farmed and there is great potential for agriculture to be part of the solution to flood risk management. Natural flood management (NFM) is the alteration, restoration or use of landscape features with the aim of reducing flood risk by slowing down, storing (and filtering) rapid surface runoff. NFM includes measures such as temporarily storing water in ponds/wetlands, increasing soil infiltration, planting trees on floodplains and within catchments, re-meandering and wood placements in streams/ditches. In this presentation we highlight case studies from densely instrumented research sites across the UK (which could be typical of many European catchments) where NFM measures have been installed in small scale flashy catchments. The presentation will give an overview of the function of these measures in these catchments and how other multiple benefits are being accrued. Study catchments include the headwater catchments of the Bowmont (3 to 8 km2) and Belford Burn (6 km2) catchments. These

  18. Development and validation of a runoff and erosion model for lowland drained catchments

    NASA Astrophysics Data System (ADS)

    Grangeon, Thomas; Cerdan, Olivier; Vandromme, Rosalie; Landemaine, Valentin; Manière, Louis; Salvador-Blanes, Sébastien; Foucher, Anthony; Evrard, Olivier

    2017-04-01

    Modelling water and sediment transfer in lowland catchments is complex as both hortonian and saturation excess-flow occur in these environments. Moreover, their dynamics was complexified by the installation of tile drainage networks or stream redesign. To the best of our knowledge, few models are able to simulate saturation runoff as well as hortonian runoff in tile-drained catchments. Most of the time, they are used for small scale applications due to their high degree of complexity. In this context, a model of intermediate complexity was developed to simulate the hydrological and erosion processes at the catchment scale in lowland environments. This GIS-based, spatially distributed and lumped model at the event scale uses a theoretical hydrograph to approximate within-event temporal variations. It comprises two layers used to represent surface and subsurface transfers. Observations of soil surface characteristics (i.e. vegetation density, soil crusting and roughness) were used to document spatial variations of physical soil characteristics (e.g. infiltration capacity). Flow was routed depending on the local slope, using LIDAR elevation data. Both the diffuse and the gully erosion are explicitly described. The model ability to simulate water and sediment dynamics at the catchment scale was evaluated using the monitoring of a selection of flood events in a small, extensively cultivated catchment (the Louroux catchment, Loire River basin, central France; 25 km2). In this catchment, five monitoring stations were equipped with water level sensors, turbidity probes, and automatic samplers. Discharge and suspended sediment concentration were deduced from field measurements. One station was installed at the outlet of a tile drain and was used to parameterize fluxes supplied by the drainage network. The selected floods were representative of various rainfall and soil surface conditions (e.g. low-intensity rainfall occurring on saturated soils as well as intense rainfall

  19. Characterization of runoff from various urban catchments at different spatial scales in Beijing, China.

    PubMed

    Zhang, W; Che, W; Liu, D K; Gan, Y P; Lv, F F

    2012-01-01

    In order to investigate the characterization of runoff in storm sewer from various urban catchments, three monitoring systems at different spatial scales have been installed separately. They have been held since July 2010 in urban area of Beijing (China). The monitoring data revealed that chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), and NH(3)-N values significantly exceed the Class V surface water quality standard developed by Ministry of Environmental Protection of the People's Republic of China (MEP). A surface solids buildup and wash off model for small watershed was adopted to analyze and discuss the process of a runoff pollutant discharge. More than a half of pollutant parameters presented a good fit to the model. However, a slightly worse-fit to the wash off model appeared in less than half of the data. Due to the influence of sewer sediments, sewer system characteristics, catchment characteristics, and other reasons, first flush was seldom observed in storm sewer runoff from these three survey areas. Meanwhile, the correlation between TSS and any other pollutant was analyzed according to cumulative load of pollutants in runoff events. An event mean concentrations (EMCs) approach was adopted to quantify the pollution of runoff. EMCs of various pollutants in storm sewer runoff between different rainfall events were slightly higher than the typical values observed in similar areas at home and abroad, according to other studies reported in literature. Based on quantitative analysis, it can be concluded that urban non-point source pollution is recognized as the major causes of quality deterioration in the receiving water bodies. This is after the point source pollution has been controlled substantially in Beijing. An integrated strategy, which combines centralized and decentralized control, along with the conditions of meteorology, hydrology, urban planning, existing drainage system, etc., will be an

  20. Toxicity of urban highway runoff with respect to storm duration.

    PubMed

    Kayhanian, M; Stransky, C; Bay, S; Lau, S-L; Stenstrom, M K

    2008-01-25

    The toxicity of stormwater runoff during various time-based stages was measured in both grab and composite samples collected from three highly urbanized highway sites in Los Angeles, California between 2002 and 2005. Stormwater runoff samples were tested for toxicity using three freshwater species (the water flea Ceriodaphnia dubia, the fathead minnow Pimephales promelas, and the green algae Pseudokirchneriella subcapitatum) and two marine species (the purple sea urchin Strongylocentrotus purpuratus, and the luminescent bacteria Photobacterium phosphoreum using Microtox. Toxicity results varied substantially throughout the storm events for both freshwater and marine species toxicity tests. In general, however, the first few samples were found to be more toxic compared with those collected during later stages of each storm event. In most cases, more than 40% of the toxicity was associated with the first 20% of discharged runoff volume. Furthermore, on average, 90% of the toxicity was observed during the first 30% of storm duration. Toxicity identification evaluation results found copper and zinc to be the primary cause of toxicity in about 90% of the samples evaluated with these procedures. Surfactants were also found to be the cause of toxicity in less than 10% of the samples.

  1. Quantification of turfgrass buffer performance in reducing transport of pesticides in surface runoff

    USDA-ARS?s Scientific Manuscript database

    Pesticides are used to control pests in managed biological system such as agricultural crops and golf course turf. Off-site transport of pesticides with runoff and their potential to adversely affect non-target aquatic organisms has inspired the evaluation of management practices to minimize pestic...

  2. Nutrient, metal and microbial loss in surface runoff following treated sludge and dairy cattle slurry application to an Irish grassland soil.

    PubMed

    Peyton, D P; Healy, M G; Fleming, G T A; Grant, J; Wall, D; Morrison, L; Cormican, M; Fenton, O

    2016-01-15

    Treated municipal sewage sludge ("biosolids") and dairy cattle slurry (DCS) may be applied to agricultural land as an organic fertiliser. This study investigates losses of nutrients in runoff water (nitrogen (N) and phosphorus (P)), metals (copper (Cu), nickel (Ni), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr)), and microbial indicators of pollution (total and faecal coliforms) arising from the land application of four types of treated biosolids and DCS to field micro-plots at three time intervals (24, 48, 360 h) after application. Losses from biosolids-amended plots or DCS-amended plots followed a general trend of highest losses occurring during the first rainfall event and reduced losses in the subsequent events. However, with the exception of total and faecal coliforms and some metals (Ni, Cu), the greatest losses were from the DCS-amended plots. For example, average losses over the three rainfall events for dissolved reactive phosphorus and ammonium-nitrogen from DCS-amended plots were 5 and 11.2 mg L(-1), respectively, which were in excess of the losses from the biosolids plots. When compared with slurry treatments, for the parameters monitored biosolids generally do not pose a greater risk in terms of losses along the runoff pathway. This finding has important policy implications, as it shows that concern related to the reuse of biosolids as a soil fertiliser, mainly related to contaminant losses upon land application, may be unfounded. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Temperature dynamics of stormwater runoff in Australia and the USA.

    PubMed

    Hathaway, J M; Winston, R J; Brown, R A; Hunt, W F; McCarthy, D T

    2016-07-15

    Thermal pollution of surface waters by urban stormwater runoff is an often overlooked by-product of urbanization. Elevated stream temperatures due to an influx of stormwater runoff can be detrimental to stream biota, in particular for cold water systems. However, few studies have examined temperature trends throughout storm events to determine how these thermal inputs are temporally distributed. In this study, six diverse catchments in two continents are evaluated for thermal dynamics. Summary statistics from the data showed larger catchments have lower maximum runoff temperatures, minimum runoff temperatures, and temperature variability. This reinforces the understanding that subsurface drainage infrastructure in urban catchments acts to moderate runoff temperatures. The catchments were also evaluated for the presence of a thermal first flush using two methodologies. Results showed the lack of a first flush under traditional assessment methodologies across all six catchments, supporting the results from a limited number of studies in literature. However, the time to peak temperature was not always coincident with the time to peak flow, highlighting the variability of thermal load over time. When a new first flush methodology was applied, significant differences in temperature were noted with increasing runoff depth for five of the six sites. This study is the first to identify a runoff temperature first flush, and highlights the need to carefully consider the appropriate methodology for such analyses. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Runoff projection under climate change over Yarlung Zangbo River, Southwest China

    NASA Astrophysics Data System (ADS)

    Xuan, Weidong; Xu, Yue-Ping

    2017-04-01

    The Yarlung Zangbo River is located in southwest of China, one of the major source of "Asian water tower". The river has great hydropower potential and provides vital water resource for local and downstream agricultural production and livestock husbandry. Compared to its drainage area, gauge observation is sometimes not enough for good hydrological modeling in order to project future runoff. In this study, we employ a semi-distributed hydrologic model SWAT to simulate hydrological process of the river with rainfall observation and TRMM 3B4V7 respectively and the hydrological model performance is evaluated based on not only total runoff but snowmelt, precipitation and groundwater components. Firstly, calibration and validation of the hydrological model are executed to find behavioral parameter sets for both gauge observation and TRMM data respectively. Then, behavioral parameter sets with diverse efficiency coefficient (NS) values are selected and corresponding runoff components are analyzed. Robust parameter sets are further employed in SWAT coupled with CMIP5 GCMs to project future runoff. The final results show that precipitation is the dominating contributor nearly all year around, while snowmelt and groundwater are important in the summer and winter alternatively. Also sufficient robust parameter sets help reduce uncertainty in hydrological modeling. Finally, future possible runoff changes will have major consequences for water and flood security.

  5. Career Development Event Participation and Professional Development Needs of Kansas Agricultural Education Teachers

    ERIC Educational Resources Information Center

    Harris, Clark R.

    2008-01-01

    Past studies have shown that agricultural education teachers perceive a need for professional development in Career Development Events (CDEs) preparation, but they did not identify the individual CDEs where training was needed. This study examined the CDEs that Kansas schools were participating in at the district and state levels and the CDEs…

  6. Spatial heterogeneity of mobilization processes and input pathways of herbicides into a brook in a small agricultural catchment

    NASA Astrophysics Data System (ADS)

    Doppler, Tobias; Lück, Alfred; Popow, Gabriel; Strahm, Ivo; Winiger, Luca; Gaj, Marcel; Singer, Heinz; Stamm, Christian

    2010-05-01

    Soil applied herbicides can be transported from their point of application (agricultural field) to surface waters during rain events. There they can have harmful effects on aquatic species. Since the spatial distribution of mobilization and transport processes is very heterogeneous, the contributions of different fields to the total load in a surface water body may differ considerably. The localization of especially critical areas (contributing areas) can help to efficiently minimize herbicide inputs to surface waters. An agricultural field becomes a contributing area when three conditions are met: 1) herbicides are applied, 2) herbicides are mobilized on the field and 3) the mobilized herbicides are transported rapidly to the surface water. In spring 2009, a controlled herbicide application was performed on corn fields in a small (ca 1 km2) catchment with intensive crop production in the Swiss plateau. Subsequently water samples were taken at different locations in the catchment with a high temporal resolution during rain events. We observed both saturation excess and hortonian overland flow during the field campaign. Both can be important mobilization processes depending on the intensity and quantity of the rain. This can lead to different contributing areas during different types of rain events. We will show data on the spatial distribution of herbicide loads during different types of rain events. Also the connectivity of the fields with the brook is spatially heterogeneous. Most of the fields are disconnected from the brook by internal sinks in the catchment, which prevents surface runoff from entering the brook directly. Surface runoff from these disconnected areas can only enter the brook rapidly via macropore-flow into tile drains beneath the internal sinks or via direct shortcuts to the drainage system (maintenance manholes, farmyard or road drains). We will show spatially distributed data on herbicide concentration in purely subsurface systems which shows

  7. Uncertainty based modeling of rainfall-runoff: Combined differential evolution adaptive Metropolis (DREAM) and K-means clustering

    NASA Astrophysics Data System (ADS)

    Zahmatkesh, Zahra; Karamouz, Mohammad; Nazif, Sara

    2015-09-01

    Simulation of rainfall-runoff process in urban areas is of great importance considering the consequences and damages of extreme runoff events and floods. The first issue in flood hazard analysis is rainfall simulation. Large scale climate signals have been proved to be effective in rainfall simulation and prediction. In this study, an integrated scheme is developed for rainfall-runoff modeling considering different sources of uncertainty. This scheme includes three main steps of rainfall forecasting, rainfall-runoff simulation and future runoff prediction. In the first step, data driven models are developed and used to forecast rainfall using large scale climate signals as rainfall predictors. Due to high effect of different sources of uncertainty on the output of hydrologic models, in the second step uncertainty associated with input data, model parameters and model structure is incorporated in rainfall-runoff modeling and simulation. Three rainfall-runoff simulation models are developed for consideration of model conceptual (structural) uncertainty in real time runoff forecasting. To analyze the uncertainty of the model structure, streamflows generated by alternative rainfall-runoff models are combined, through developing a weighting method based on K-means clustering. Model parameters and input uncertainty are investigated using an adaptive Markov Chain Monte Carlo method. Finally, calibrated rainfall-runoff models are driven using the forecasted rainfall to predict future runoff for the watershed. The proposed scheme is employed in the case study of the Bronx River watershed, New York City. Results of uncertainty analysis of rainfall-runoff modeling reveal that simultaneous estimation of model parameters and input uncertainty significantly changes the probability distribution of the model parameters. It is also observed that by combining the outputs of the hydrological models using the proposed clustering scheme, the accuracy of runoff simulation in the

  8. Erosion processes by water in agricultural landscapes: a low-cost methodology for post-event analyses

    NASA Astrophysics Data System (ADS)

    Prosdocimi, Massimo; Calligaro, Simone; Sofia, Giulia; Tarolli, Paolo

    2015-04-01

    Throughout the world, agricultural landscapes assume a great importance, especially for supplying food and a livelihood. Among the land degradation phenomena, erosion processes caused by water are those that may most affect the benefits provided by agricultural lands and endanger people who work and live there. In particular, erosion processes that affect the banks of agricultural channels may cause the bank failure and represent, in this way, a severe threat to floodplain inhabitants and agricultural crops. Similarly, rills and gullies are critical soil erosion processes as well, because they bear upon the productivity of a farm and represent a cost that growers have to deal with. To estimate quantitatively soil losses due to bank erosion and rills processes, area based measurements of surface changes are necessary but, sometimes, they may be difficult to realize. In fact, surface changes due to short-term events have to be represented with fine resolution and their monitoring may entail too much money and time. The main objective of this work is to show the effectiveness of a user-friendly and low-cost technique that may even rely on smart-phones, for the post-event analyses of i) bank erosion affecting agricultural channels, and ii) rill processes occurring on an agricultural plot. Two case studies were selected and located in the Veneto floodplain (northeast Italy) and Marche countryside (central Italy), respectively. The work is based on high-resolution topographic data obtained by the emerging, low-cost photogrammetric method named Structure-from-Motion (SfM). Extensive photosets of the case studies were obtained using both standalone reflex digital cameras and smart-phone built-in cameras. Digital Terrain Models (DTMs) derived from SfM revealed to be effective to estimate quantitatively erosion volumes and, in the case of the bank eroded, deposited materials as well. SfM applied to pictures taken by smartphones is useful for the analysis of the topography

  9. Impact of Grassed Waterways and Compost Filter Socks on the Quality of Surface Runoff from Corn Fields

    USDA-ARS?s Scientific Manuscript database

    Surface runoff from cropland frequently has high concentrations of nutrients and herbicides, particularly in the first few events after application. Grassed waterways can control erosion while transmitting this runoff offsite, but are generally ineffective in removing dissolved agrochemicals. In thi...

  10. Isotopic separation of snowmelt runoff during an artificial rain-on-snow event

    NASA Astrophysics Data System (ADS)

    Juras, Roman; Pavlasek, Jirka; Šanda, Martin; Jankovec, Jakub; Linda, Miloslav

    2013-04-01

    Rain-on-snow events are common phenomenon in the climate conditions of central Europe, mainly during the spring snowmelt period. These events can cause serious floods in areas with seasonal snow. The snowpack hit by rain is able to store a fraction of rain water, but runoff caused by additional snowmelt also increases. Assessment of the rainwater ratio contributing to the outflow from the snowpack is therefore critical for discharge modelling. A rainfall simulator and water enriched by deuterium were used for the study of rainwater behaviour during an artificial rain-on-snow event. An area of 1 m2 of the snow sample, which was 1.2 m deep, consisting of ripped coarse-grained snow, was sprayed during the experiment with deuterium enriched water. The outflow from the snowpack was measured and samples of outflow water were collected. The isotopic content of deuterium was further analyzed from these samples by means of laser spectroscopy for the purpose of hydrograph separation. The concentration of deuterium in snow before and after the experiment was also investigated. The deuterium enriched water above the natural concentration of deuterium in snowpack was detected in the outflow in 7th minute from start of spraying, but the significant increase of deuterium concentration in outflow was observed in 19th minute. The isotopic hydrograph separation estimated, that deuterium enriched rainwater became the major part (> 50% volumetric) of the outflow in 28th minute. The culmination of the outflow (1.23 l min-1) as well as deuterium enriched rainwater fraction (63.5%) in it occurred in 63th minute, i.e. right after the end of spraying. In total, 72.7 l of deuterium enriched water was sprayed on the snowpack in 62 minutes. Total volume of outflow (after 12.3 hours) water was 97.4 l, which contained 48.3 l of deuterium enriched water (i.e. 49.6 %) and 49.1 l (50.4 %) of the melted snowpack. The volume of 24.4 l of deuterium enriched spray-water was stored in the snowpack. The

  11. Best Management Practices for sediment control in a Mediterranean agricultural watershed

    NASA Astrophysics Data System (ADS)

    Abdelwahab, Ossama M. M.; Bingner, Ronald L.; Milillo, Fabio; Gentile, Francesco

    2015-04-01

    ) utilizing a crop rotation of wheat and forage crops (Abdelwahab et al., 2014). Further evaluations include scenarios with additional improvements in the input data, in particular better reflecting the management operations within model input parameters used to represent the current conditions applied in the watershed, and the study of the efficiency of the model in predicting runoff and sediment loads at a monthly and annual scale using un-calibrated parameters. The effect of riparian buffers as a natural trap that reduce runoff and increase the in-situ sediment deposition are also investigated. Acknowledgements This work is carried out in the framework of the Italian Research Project of Relevant Interest (PRIN2010-2011), prot. 20104ALME4, "National network for monitoring, modeling, and sustainable management of erosion processes in agricultural land and hilly-mountainous area" National Coordinator prof. Mario Lenzi (University of Padova). References Gentile F., Bisantino T., Corbino R., Milillo F., Romano G., Trisorio Liuzzi G. (2010) Monitoring and analysis of suspended sediment transport dynamics in the Carapelle torrent (southern Italy). Catena 80, 1-8, doi:10.1016/j.catena.2009.08.004. Bisantino T., Bingner R., Chouaib W., Gentile F., Trisorio Liuzzi G. (2013) Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size Mediterranean watershed using the AnnAGNPS model. Land Degradation & Development, wileyonlinelibrary.com, doi: 10.1002/ldr.2213. Abdelwahab O.M.M., Bingner R.L., Milillo F., Gentile F. (2014) Effectiveness of alternative management scenarios on the sediment load in a Mediterranean agricultural watershed. Journal of Agricultural Engineering, vol. XLV:430, 125-136, doi: 10.4081/jae.2014.430.

  12. Cost of areal reduction of gulf hypoxia through agricultural practice

    USDA-ARS?s Scientific Manuscript database

    A major share of the area of hypoxic growth in the Northern Gulf of Mexico has been attributed to nutrient run-off from agricultural fields, but no estimate is available for the cost of reducing Gulf hypoxic area using agricultural conservation practices. We apply the Soil and Water Assessment Tool ...

  13. Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field.

    PubMed

    Chrétien, François; Giroux, Isabelle; Thériault, Georges; Gagnon, Patrick; Corriveau, Julie

    2017-05-01

    With their application as seed coatings, the use of neonicotinoid insecticides increased dramatically during the last decade. They are now frequently detected in aquatic ecosystems at concentrations susceptible to harm aquatic invertebrates at individual and population levels. This study intent was to document surface runoff and subsurface tile drain losses of two common neonicotinoids (thiamethoxam and clothianidin) compared to those of companion herbicides (atrazine, glyphosate, S-metolachlor and mesotrione) at the edge of a 22.5-ha field under a corn-soybean rotation. A total of 14 surface runoff and tile drain discharge events were sampled over two years. Events and annual unit mass losses were computed using flow-weighted concentrations and total surface runoff and tile drain flow volumes. Detection frequencies close to 100% in edge-of-field surface runoff and tile drain water samples were observed for thiamethoxam and clothianidin even though only thiamethoxam had been applied in the first year. In 2014, thiamethoxam median concentrations in surface runoff and tile drain samples were respectively 0.46 and 0.16 μg/L, while respective maximum concentrations of 2.20 and 0.44 μg/L were measured in surface runoff and tile drain samples during the first post-seeding storm event. For clothianidin, median concentrations in surface runoff and tile drain samples were 0.02 and 0.01, μg/L, and respective maximum concentrations were 0.07 μg/L and 0.05 μg/L. Surface runoff and tile drain discharge were key transport mechanisms with similar contributions of 53 and 47% of measured mass losses, respectively. Even if thiamethoxam was applied at a relatively low rate and had a low mass exportation value (0.3%), the relative toxicity was one to two orders of magnitude higher than those of the other chemicals applied in 2014 and 2015. Companion herbicides, except glyphosate in tile drains, exceeded their water quality guideline during one sampling campaign after

  14. Simulating pesticide transport in urbanized catchments: a new spatially-distributed dynamic pesticide runoff model

    NASA Astrophysics Data System (ADS)

    Tang, Ting; Seuntjens, Piet; van Griensven, Ann; Bronders, Jan

    2016-04-01

    Urban areas can significantly contribute to pesticide contamination in surface water. However, pesticide behaviours in urban areas, particularly on hard surfaces, are far less studied than those in agricultural areas. Pesticide application on hard surfaces (e.g. roadsides and walkways) is of particular concern due to the high imperviousness and therefore high pesticide runoff potential. Experimental studies have shown that pesticide behaviours on and interactions with hard surfaces are important factors controlling the pesticide runoff potential, and therefore the magnitude and timing of peak concentrations in surface water. We conceptualized pesticide behaviours on hard surfaces and incorporated the conceptualization into a new pesticide runoff model. The pesticide runoff model was implemented in a catchment hydrological model WetSpa-Python (Water and Energy Transfer between Soil, Plants and Atmosphere, Python version). The conceptualization for pesticide processes on hard surfaces accounts for the differences in pesticide behaviour on different hard surfaces. Four parameters are used to describe the partitioning and wash-off of each pesticide on hard surfaces. We tested the conceptualization using experimental dataset for five pesticides on two types of hard surfaces, namely concrete and asphalt. The conceptualization gave good performance in accounting for the wash-off pattern for the modelled pesticides and surfaces, according to quantitative evaluations using the Nash-Sutcliffe efficiency and percent bias. The resulting pesticide runoff model WetSpa-PST (WetSpa for PeSTicides) can simulate pesticides and their metabolites at the catchment scale. Overall, it includes four groups of pesticide processes, namely pesticide application, pesticide interception by plant foliage, pesticide processes on land surfaces (including partitioning, degradation and wash-off on hard surface; partitioning, dissipation, infiltration and runoff in soil) and pesticide processes in

  15. A field evaluation of subsurface and surface runoff. II. Runoff processes

    USGS Publications Warehouse

    Pilgrim, D.H.; Huff, D.D.; Steele, T.D.

    1978-01-01

    Combined use of radioisotope tracer, flow rate, specific conductance and suspended-sediment measurements on a large field plot near Stanford, California, has provided more detailed information on surface and subsurface storm runoff processes than would be possible from any single approach used in isolation. Although the plot was surficially uniform, the runoff processes were shown to be grossly nonuniform, both spatially over the plot, and laterally and vertically within the soil. The three types of processes that have been suggested as sources of storm runoff (Horton-type surface runoff, saturated overland flow, and rapid subsurface throughflow) all occurred on the plot. The nonuniformity of the processes supports the partial- and variable-source area concepts. Subsurface storm runoff occurred in a saturated layer above the subsoil horizon, and short travel times resulted from flow through macropores rather than the soil matrix. Consideration of these observations would be necessary for physically realistic modeling of the storm runoff process. ?? 1978.

  16. Variation in PAH patterns in road runoff.

    PubMed

    Aryal, Rupak; Furumai, Hiroaki; Nakajima, Fumiyuki; Beecham, Simon

    2013-01-01

    Twelve particle-bound polycyclic aromatic hydrocarbons (PAHs) were measured in the first flush regime of road runoff during nine events in Winterthur in Switzerland. The total PAH contents ranged from 17 to 62 μg/g. The PAH patterns measured at different time intervals during the first flush periods were very similar within each event irrespective of variation in suspended solids (SS) concentration within the first flush regime. However, the PAH patterns were different from event to event. This indicates that the environment plays an important role in PAH accumulation in SS. A toxicity identification evaluation approach using a toxicity equivalency factor (TEF) was applied to compare toxicities in the different events. The TEFs were found to be between 8 and 33 μg TEQ g(-1) (TEQ: toxic equivalent concentration). In some cases, two events having similar total PAH contents showed two fold toxicity differences.

  17. Identifying Runoff Generation Mechanisms and Its Controlling Parameters in the Lesser Himalayan Hillslopes

    NASA Astrophysics Data System (ADS)

    Nanda, A.; Sen, S.

    2017-12-01

    The Himalayas, being one of the youngest and tectonically active mountains, are highly unstable and prone to natural disaster. Thus, a typical grassland (GS) of 14.42 % gradient and a mixture of fallow and forested (FF) hillslope of 23.73 % gradient are selected in an experimental watershed of the Lesser Himalayas to understand the hillslope hydrology. This work mainly focuses on analysing the influence of spatial and temporal dynamics of soil moisture on hillslope response and on identifying the dominant runoff generation mechanisms in different landuse conditions. Further, we characterize the different hydrologic conditions under which either the rainfall rate, antecedent moisture condition (AMC), or both have a significant impact on hillslope runoff. The rainfall, runoff and soil moisture data are being collected since monsoon June 2017 and five significant rainfall event results have been presented here. However, the paper will be presented with complete 2017 monsoon rainfall-runoff analyses. At FF hillslope, the rainfall of 18.47 mm and 133.14 mm occurred in 1 hr 9 min and 6 hr 24 min durations which resulted in runoff coefficient of 0.39 % and 6 %, respectively for an approximately AMC of 160 mm. Similarly, for GA hillslope, the observed runoff coefficients were 0.094 % and 1.2 % for 31.68 mm and 123.77 mm rainfall occurred in 1 hr and 6 hr 24 min duration, respectively with an AMC value of 230 mm. In an another event, the low AMC (182 mm) of GA hillslope resulted in runoff coefficient of 0.602 % for 64.68 mm rainfall occurred in 6 hr. For same AMC, the rainfall characteristics played a critical role to govern the hillslope runoff. Besides that, it was observed that the less surface resistance and higher gradient of FF hillslope generated more runoff than GA hillslope which indicates the role of topography and vegetation on hillslope runoff. During high and low rainfall magnitude, the soil moisture sensors located at lower parts of FF hillslope showed quick

  18. Attribution analysis of runoff decline in a semiarid region of the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Li, Binquan; Liang, Zhongmin; Zhang, Jianyun; Wang, Guoqing; Zhao, Weimin; Zhang, Hongyue; Wang, Jun; Hu, Yiming

    2018-01-01

    Climate variability and human activities are two main contributing attributions for runoff changes in the Yellow River, China. In the loess hilly-gully regions of the middle Yellow River, water shortage has been a serious problem, and this results in large-scale constructions of soil and water conservation (SWC) measures in the past decades in order to retain water for agricultural irrigation and industrial production. This disturbed the natural runoff characteristics. In this paper, we focused on a typical loess hilly-gully region (Wudinghe and Luhe River basins) and investigated the effects of SWC measures and climate variability on runoff during the period of 1961-2013, while the SWC measures were the main representative of human activities in this region. The nonparametric Mann-Kendall test was used to analyze the changes of annual precipitation, air temperature, potential evapotranspiration (PET), and runoff. The analysis revealed the decrease in precipitation, significant rise in temperature, and remarkable runoff reduction with a rate of more than 0.4 mm per year. It was found that runoff capacity in this region also decreased. Using the change point detection methods, the abrupt change point of annual runoff series was found at 1970, and thus, the study period was divided into the baseline period (1961-1970) and changed period (1971-2013). A conceptual framework based on four statistical runoff methods was used for attribution analysis of runoff decline in the Wudinghe and Luhe River basins (-37.3 and -56.4%, respectively). Results showed that runoff reduction can be explained by 85.2-90.3% (83.3-85.7%) with the SWC measures in the Wudinghe (Luhe) River basin while the remaining proportions were caused by climate variability. The findings suggested that the large-scale SWC measures demonstrated a dominant influence on runoff decline, and the change of precipitation extreme was also a promoting factor of the upward trending of SWC measures' contribution to

  19. The assessment of land use change impact on watersheds runoff using SWAT: case study of Urmia Lake in Iran

    NASA Astrophysics Data System (ADS)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein

    2015-04-01

    Lake Urmia, long counted among the world's largest saltwater lakes, contains only 5% of the amount of water it did just 20 years ago. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. It has been believed that land use changes in Lake Urmia basin is one of the most important factors in shrinkage of Urmia Lake in recent decades. Transforming the traditional agricultural practices (i.e., wheat) to the more water consuming practices (i.e., apple orchards) is one of the most important reasons increased agricultural water consumption in the watershed. In this study we assessed the effect of the land use changes of watershed in hydrological runoff processing in the Nazloo chai watershed, one of the most important river basins of the Urmia Lake basin. Actually the rapid and at the same time unreasonable transformations of land use in farm lands of Urmia lake sub basins, extremely has been raised the amount of blue water (surface or groundwater) consumption in watershed which leads to dramatic decrement of watershed runoff amounts. One of the most unfavorable consequences of land use change was changing the blue and green (rainwater insofar as it does not become runoff) water usage patterns in watershed, in addition to water use increment. The soil and water assessment tool (SWAT), one of the most important and reliable models which was used to model the rainfall runoff, has been used in current study. The land use maps were extracted from Landsat images archives for the most severe turning points in respect of land use change in the recent 30 years. After calibrating the model, several land use patterns of historical data were used in the model to produce the runoff. The results showed the strong relation between land use change and runoff reduction in the Lake Urmia basin.

  20. Phosphorus loads from different urban storm runoff sources in southern China: a case study in Wenzhou City.

    PubMed

    Zhou, Dong; Bi, Chun-Juan; Chen, Zhen-Lou; Yu, Zhong-Jie; Wang, Jun; Han, Jing-Chao

    2013-11-01

    Storm runoff from six types of underlying surface area during five rainfall events in two urban study areas of Wenzhou City, China was investigated to measure phosphorus (P) concentrations and discharge rates. The average event mean concentrations (EMCs) of total phosphorus (TP), total dissolved phosphorus (TDP), and particulate phosphorus (PP) ranged from 0.02 to 2.5 mg · L(-1), 0.01 to 0.48 mg · L(-1), and 0.02 to 2.43 mg · L(-1), respectively. PP was generally the dominant component of TP in storm runoff, while the major form of P varied over time, especially in roof runoff, where TDP made up the largest portion in the latter stages of runoff events. Both TP and PP concentrations were positively correlated with pH, total suspended solids (TSS), and biochemical oxygen demand (BOD)/chemical oxygen demand (COD) concentrations (p<0.01), while TDP was positively correlated with BOD/COD only (p<0.01). In addition, the EMCs of TP and PP were negatively correlated with maximum rainfall intensity (p<0.05), while the EMCs of TDP positively correlated with the antecedent dry weather period (p<0.05). The annual TP emission fluxes from the two study areas were 367.33 and 237.85 kg, respectively. Underlying surface type determined the TP and PP loadings in storm runoff, but regional environmental conditions affected the export of TDP more significantly. Our results indicate that the removal of particles from storm runoff could be an effective measure to attenuate P loadings to receiving water bodies.

  1. High frequency monitoring of pesticides in runoff water from a vineyard: ecotoxicological and hysteresis pattern analysis

    NASA Astrophysics Data System (ADS)

    Lefrancq, Marie; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Landry, David; Payraudeau, Sylvain

    2017-04-01

    Rainfall-induced peaks in pesticide concentrations can occur rapidly; therefore, low frequency sampling may largely underestimate maximum pesticide concentrations and fluxes. Detailed storm-based sampling of pesticide concentrations in runoff water to better predict pesticide sources, transport pathways and toxicity within the headwater catchments is actually lacking. High frequency monitoring (2 min) of dissolved concentrations and loads for seven pesticides (Dimetomorph, Fluopicolide, Glyphosate, Iprovalicarb, Tebuconazole, Tetraconazole and Triadimenol) and one degradation product (AMPA) were assessed for 20 runoff events from 2009 to 2012 at the outlet of a vineyard catchment in the Layon catchment in France. The pesticide concentrations reached 387 µg/L. All of the runoff events exceeded the mandated acceptable concentrations of 0.1 µg/L for each pesticide (European directive 2013/39/EC). High resolution sampling used to detect the peak pesticide levels revealed that Toxic Units (TU) for algae, invertebrates and fish often exceeded the European Uniform principles (25%). The instantaneous and average (time or discharge-weighted) concentrations indicated an up to 30- or 4-fold underestimation of the TU obtained when measuring the maximum concentrations, respectively, highlighting the important role of the sampling methods for assessing peak exposure. High resolution sampling combined with concentration-discharge hysteresis analyses revealed that clockwise responses were predominant (52%), indicating that Hortonian runoff is the prevailing surface runoff trigger mechanism in the study catchment. The hysteresis patterns for suspended solids and pesticides were highly dynamic and storm- and chemical-dependent. Intense rainfall events induced stronger C-Q hysteresis (magnitude). This study provides new insights into the complexity of pesticide dynamics in runoff water and highlights the ability of hysteresis analysis to improve the understanding of pesticide

  2. Spatial and temporal variability in the R-5 infiltration data set: Déjà vu and rainfall-runoff simulations

    NASA Astrophysics Data System (ADS)

    Loague, Keith; Kyriakidis, Phaedon C.

    1997-12-01

    This paper is a continuation of the event-based rainfall-runoff model evaluation study reported by Loague and Freeze [1985[. Here we reevaluate the performance of a quasi-physically based rainfall-runoff model for three large events from the well-known R-5 catchment. Five different statistical criteria are used to quantitatively judge model performance. Temporal variability in the large R-5 infiltration data set [Loague and Gander, 1990] is filtered by working in terms of permeability. The transformed data set is reanalyzed via geostatistical methods to model the spatial distribution of permeability across the R-5 catchment. We present new estimates of the spatial distribution of infiltration that are in turn used in our rainfall-runoff simulations with the Horton rainfall-runoff model. The new rainfall-runoff simulations, complicated by reinfiltration impacts at the smaller scales of characterization, indicate that the near-surface hydrologic response of the R-5 catchment is most probably dominated by a combination of the Horton and Dunne overland flow mechanisms.

  3. Evaluation of nutrient loads from a mountain forest including storm runoff loads.

    PubMed

    Kunimatsu, T; Otomori, T; Osaka, K; Hamabata, E; Komai, Y

    2006-01-01

    Water quality and flow rates at a weir installed on the end of Aburahi-S Experimental Watershed (3.34 ha) were measured once a week from 2001 to 2003 and in appropriate intervals from 30 min to 6 h during five storm runoff events caused by each rainfall from 8 mm to 417 mm. The average annual loads of total nitrogen (TN) and total phosphorus (TP) were calculated to be 19.0 and 0.339 kg ha(-1) y(-1) from the periodical data by using the integration interval-loads method (ILM), which did not properly account for storm runoff loads. Three types of L(Q) equations (L = aQ(b)) were derived from correlations between loading rates L and flow rates Q obtained from the periodic observation and from storm runoff observation. L(Q) equation method (LQM), which was derived from the storm runoff observation and allowed for the hysteresis of discharge of materials, gave 9.68 and 0.159 kg ha(-1) y(-1), respectively, by substitution of the sequential hourly data of flow rates. L(R) equation (L = c(R - r)d) was derived from the correlations between the loads and the effective rainfall depth (R - r) measured during the storm runoff events, and L(R) equation method (LRM) calculated 9.83 +/- 1.68 and 0.175 +/- 0.0761 kg ha(-1) y(-1), respectively, by using the rainfall data for the past 16 years. The atmospheric input-fluxes of TN and TP were 16.5 and 0.791 kg ha(-1) y(-1).

  4. Response of turf and quality of water runoff to manure and fertilizer.

    PubMed

    Gaudreau, J E; Vietor, D M; White, R H; Provin, T L; Munster, C L

    2002-01-01

    Manure applications can benefit turfgrass production and unused nutrients in manure residues can be exported through sod harvests. Yet, nutrients near the soil surface could be transported in surface runoff. Our research objective was to evaluate responses of bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon] turf and volumes and P and N concentrations of surface runoff after fertilizer or composted manure applications. Three replications of five treatments were established on a Boonville fine sandy loam (fine, smectitic, thermic Vertic Albaqualf) that was excavated to create an 8.5% slope. Manure rates of 50 and 100 kg P ha(-1) at the start of two monitoring periods were compared with P fertilizer rates of 25 and 50 kg ha(-1) and an unfertilized control. Compared with initial soil tests, nitrate concentrations decreased and P concentrations increased after two manure or fertilizer applications and eight rain events over the two monitoring periods. The fertilizer sources of P and N produced 19% more dry weight and 21% larger N concentrations in grass clippings than manure sources. Yet, runoff volumes were similar between manure and fertilizer sources of P. Dissolved P concentration (30 mg L(-1)) in runoff during a rain event 3 d after application of 50 kg P ha(-1) was five times greater for fertilizer than for manure P. Observations during both monitoring periods indicated that total P and N losses in runoff were no greater for composted manure than for fertilizer sources of P at relatively large P rates on a steep slope of turfgrass.

  5. Phosphorus fertilizer and grazing management effects on phosphorus in runoff from dairy pastures.

    PubMed

    Dougherty, Warwick J; Nicholls, Paul J; Milham, Paul J; Havilah, Euie J; Lawrie, Roy A

    2008-01-01

    Fertilizer phosphorus (P) and grazing-related factors can influence runoff P concentrations from grazed pastures. To investigate these effects, we monitored the concentrations of P in surface runoff from grazed dairy pasture plots (50 x 25 m) treated with four fertilizer P rates (0, 20, 40, and 80 kg ha(-1) yr(-1)) for 3.5 yr at Camden, New South Wales. Total P concentrations in runoff were high (0.86-11.13 mg L(-1)) even from the control plot (average 1.94 mg L(-1)). Phosphorus fertilizer significantly (P < 0.001) increased runoff P concentrations (average runoff P concentrations from the P(20), P(40), and P(80) treatments were 2.78, 3.32, and 5.57 mg L(-1), respectively). However, the magnitude of the effect of P fertilizer varied between runoff events (P < 0.01). Further analysis revealed the combined effects on runoff P concentration of P rate, P rate x number of applications (P < 0.001), P rate x time since fertilizer (P < 0.001), dung P (P < 0.001), time since grazing (P < 0.05), and pasture biomass (P < 0.001). A conceptual model of the sources of P in runoff comprising three components is proposed to explain the mobilization of P in runoff and to identify strategies to reduce runoff P concentrations. Our data suggest that the principal strategy for minimizing runoff P concentrations from grazed dairy pastures should be the maintenance of soil P at or near the agronomic optimum by the use of appropriate rates of P fertilizer.

  6. Rainfall Runoff Modelling for Cedar Creek using HEC-HMS model

    NASA Astrophysics Data System (ADS)

    Pathak, P.; Kalra, A.

    2015-12-01

    Rainfall-runoff modelling studies are carried out for the purpose of basin and river management. Different models have been effectively used to examine relationships between rainfall and runoff. Cedar Creek Watershed Basin, the largest tributary of St. Josephs River, located in northeastern Indiana, was selected as a study area. The HEC-HMS model developed by US Army Corps of Engineers was used for the hydrological modelling. The national elevation and national hydrography data was obtained from United States Geological Survey National Map Viewer and the SSURGO soil data was obtained from United States Department of Agriculture. The watershed received hypothetical uniform rainfall for a duration of 13 hours. The Soil Conservation Service Curve Number and Unit Hydrograph methods were used for simulating surface runoff. The simulation provided hydrological details about the quantity and variability of runoff in the watershed. The runoff for different curve numbers was computed for the same basin and rainfall, and it was found that outflow peaked at an earlier time with a higher value for higher curve numbers than for smaller curve numbers. It was also noticed that the impact on outflow values nearly doubled with an increase of curve number of 10 for each subbasin in the watershed. The results from the current analysis may aid water managers in effectively managing the water resources within the basin. 1 Graduate Student, Department of Civil and Environmental Engineering, Southern Illinois University Carbondale, Carbondale, Illinois, 62901-6603 2 Development Review Division, Clark County Public Works, 500 S. Grand Central Parkway, Las Vegas, NV 89155, USA

  7. Rainfall simulations to study the types of groundcover on surface runoff and soil erosion in Champagne vineyards in France

    NASA Astrophysics Data System (ADS)

    Xavier, Morvan; Christophe, Naisse; Issa Oumarou, Malam; Jean-François, Desprats; Anne, Combaud; Olivier, Cerdan

    2015-04-01

    In the literature, grass cover is often considered to be one of the best methods of limiting runoff in the vineyards; But results can vary, especially when the plot area is <2 m². However, in any study to our knowledge, the way grass cover is structured in the inter-row is taken into account to explain the variability of runoff and soil loss. The objective of this study, conducted in Champagne vineyards in France, was to quantify the influence of the cultivation practices in the inter-rows of vines and determine the influence of the density of the grass cover in the wheel tracks on the surface runoff and soil erosion in experimental plots of 0.25 m2 under simulated rainfall. Three types of ground cover were studied. In the bark-and-vine-prunings plots, the runoff coefficient ranged from 1.3 to 4.0% and soil losses were <1 g/m²/h. In the bare soil plot, the highest runoff coefficient of the study was found (80.0%) and soil losses reached 7.4 g/m²/h. In the grass cover plots, the runoff coefficient and amount of eroded soil were highly variable: the runoff coefficients ranged from 0.4 to 77.0%, and soil losses were between less than 1 and 13.4 g/m²/h. Soil type, soil moisture, slope and agricultural practices did not account for the variability. In fact, the density of grass cover in the wheel tracks explained a portion of this variability. The lack of grass in the centre of the inter-row allowed for a preferential flow and created an erosion line in the wheel tracks where the soil was compacted. This study showed that grass cover in a vineyard was not necessarily sufficient to reduce surface runoff and prevent soil erosion. To be effective, the grass cover must be dense enough in the wheel tracks of agricultural machinery to avoid runoff coefficients close to those achieved with bare soil.

  8. Why can postwildfire runoff and erosion vary from negligible to extreme?

    NASA Astrophysics Data System (ADS)

    Noske, P.; Nyman, P.; Lane, P. N. J.; Van der Sant, R.; Sheridan, G. J.

    2016-12-01

    Soil surface properties vary with aridity, as does runoff and erosion after wildfire. Here we draw on studies conducted in different upland eucalypt forests of Victoria Australia, to compare and contrast the hydrological effects of wildfire. The study central to this presentation was conducted in two small (0.2-0.3 ha) dry forested headwater catchments burned during the 2009 Black Saturday wildfire. Surface runoff ratios during rainfall events approached 0.45 in the first year postwildfire. High runoff ratios in these dry forests were attributed to wildfire-induced soil water repellency and inherently low hydraulic conductivity. Average annual sediment yields peaked at 10 t ha-1 during the first year before declining dramatically to background levels, suggesting high-magnitude erosion processes may become limited by sediment availability on hillslopes. Surface runoff and erosion differed substantially between the equatorial and polar-facing catchments; this was most likely due to higher rates of infiltration and surface roughness on polar-facing slopes. Data collected from a plot scale study from 5 different burned forest locations of differing aridity produced a range of runoff ratios that support the findings of the central study. Additional data from burned catchments supporting wetter forests are also presented to further illustrate the contrast in rates of runoff and recovery from a different forest type. Results show that rates of postwildfire erosion and runoff in eucalypt forests in south-east Australia are highly variable. Large differences in erosion and runoff occur with relatively small changes in aridity.

  9. Agricultural policy environmental eXtender model simulation of climate change impacts on runoff from a small no-till watershed

    USDA-ARS?s Scientific Manuscript database

    Long-term hydrologic data sets are required to quantify the impacts of management, and climate on runoff at the field scale where management practices are applied. This study was conducted to evaluate the impacts of long-term management and climate on runoff from a small watershed managed with no-ti...

  10. Functional approach to exploring climatic and landscape controls of runoff generation: 1. Behavioral constraints on runoff volume

    NASA Astrophysics Data System (ADS)

    Li, Hong-Yi; Sivapalan, Murugesu; Tian, Fuqiang; Harman, Ciaran

    2014-12-01

    Inspired by the Dunne diagram, the climatic and landscape controls on the partitioning of annual runoff into its various components (Hortonian and Dunne overland flow and subsurface stormflow) are assessed quantitatively, from a purely theoretical perspective. A simple distributed hydrologic model has been built sufficient to simulate the effects of different combinations of climate, soil, and topography on the runoff generation processes. The model is driven by a sequence of simple hypothetical precipitation events, for a large combination of climate and landscape properties, and hydrologic responses at the catchment scale are obtained through aggregation of grid-scale responses. It is found, first, that the water balance responses, including relative contributions of different runoff generation mechanisms, could be related to a small set of dimensionless similarity parameters. These capture the competition between the wetting, drying, storage, and drainage functions underlying the catchment responses, and in this way, provide a quantitative approximation of the conceptual Dunne diagram. Second, only a subset of all hypothetical catchment/climate combinations is found to be "behavioral," in terms of falling sufficiently close to the Budyko curve, describing mean annual runoff as a function of climate aridity. Furthermore, these behavioral combinations are mostly consistent with the qualitative picture presented in the Dunne diagram, indicating clearly the commonality between the Budyko curve and the Dunne diagram. These analyses also suggest clear interrelationships amongst the "behavioral" climate, soil, and topography parameter combinations, implying these catchment properties may be constrained to be codependent in order to satisfy the Budyko curve.

  11. Estimating subcatchment runoff coefficients using weather radar and a downstream runoff sensor.

    PubMed

    Ahm, Malte; Thorndahl, Søren; Rasmussen, Michael R; Bassø, Lene

    2013-01-01

    This paper presents a method for estimating runoff coefficients of urban drainage subcatchments based on a combination of high resolution weather radar data and flow measurements from a downstream runoff sensor. By utilising the spatial variability of the precipitation it is possible to estimate the runoff coefficients of the separate subcatchments. The method is demonstrated through a case study of an urban drainage catchment (678 ha) located in the city of Aarhus, Denmark. The study has proven that it is possible to use corresponding measurements of the relative rainfall distribution over the catchment and downstream runoff measurements to identify the runoff coefficients at subcatchment level.

  12. [Off-line control of runoff pollution by filtering ditch-pond system in urban tourist areas].

    PubMed

    Chen, Qing-Feng; Shan, Bao-Qing; Yin, Cheng-Qing; Hu, Cheng-Xiao

    2007-10-01

    An off-line filtering ditch-pond system for controlling storm runoff pollution in urban tourist areas was developed, which could retain the first flush effectively, resulting in the decrease of pollutant concentration and suspended solid average grain size, and the improvement of pollutant retention in runoff. This system could be an effective treatment system for storm runoff pollution, particularly for the scarcity of available land use in urban areas. In 2005, the yearly retention rates of TSS, COD, TN and TP were 86.4%, 85.5%, 83.9% and 82.9%, and during a storm event on June 26, the retention rates of runoff volume, TSS, COD, TN and TP were 67.9%, 97.0%, 89.2%, 94.9% and 96.2%, respectively. This system could also retain most of the suspended solids in runoff.

  13. Transport of agricultural contaminants through karst soil

    USDA-ARS?s Scientific Manuscript database

    Karst landscapes are common in many agricultural regions in the US. Well-developed karst landscapes are characterized by shallow soils, sinkholes, sinking streams, underground conduits, and springs. In these landscapes surface runoff is minimal and most recharge enters the subsurface relatively quic...

  14. Phosphorus removal from Everglades agricultural area runoff by submerged aquatic vegetation/limerock treatment technology: an overview of research.

    PubMed

    Gu, B; DeBusk, T A; Dierberg, F E; Chimney, M J; Pietro, K C; Aziz, T

    2001-01-01

    The 1994 Everglades Forever Act mandates the South Florida Water Management District and the Florida Department of Environmental Protection to evaluate a series of advanced treatment technologies to reduce total phosphorus (TP) in Everglades Agricultural Area runoff to a threshold target level. A submerged aquatic vegetation/limerock (SAV/LR) treatment system is one of the technologies selected for evaluation. The research program consists of two phases. Phase I examined the efficiency of SAV/LR treatment system for TP removal at the mesocosm scale. Preliminary results demonstrate that this technology is capable of reducing effluent TP to as low as 10 microg/L under constant flows. The SAV component removes the majority of the influent soluble reactive P, while the limerock component removes a portion of the particulate P. Phase II is a multi-scale project (i.e., microcosms, mesocosms, test cells and full-size wetlands). Experiments and field investigations using various environmental scenarios are designed to (1) identify key P removal processes; (2) provide management and operational criteria for basin-scale implementation; and (3) provide scientific data for a standardized comparison of performance among advanced treatment technologies.

  15. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review.

    PubMed

    Vymazal, Jan; Březinová, Tereza

    2015-02-01

    Pesticides are used in modern agriculture to increase crop yields, but they may pose a serious threat to aquatic ecosystems. Pesticides may enter water bodies through diffuse and point sources, but diffuse sources are probably the most important. Among diffuse pollution, surface runoff and erosion, leaching and drainage represent the major pathways. The most commonly used mitigation techniques to prevent pesticide input into water bodies include edge-of-field and riparian buffer strips, vegetated ditches and constructed wetlands. The first attempts to use wetland macrophytes for pesticide removal were carried out as early as the 1970s, but only in the last decade have constructed wetlands for pesticide mitigation become widespread. The paper summarizes 47 studies in which removal of 87 pesticides was monitored. The survey revealed that constructed wetlands with free water surface are the most commonly used type. Also, it has been identified that removal of pesticides is highly variable. The results of the survey revealed that the highest pesticide removal was achieved for pesticides of the organochlorine, strobilurin/strobin, organosphosphate and pyrethroid groups while the lowest removals were observed for pesticides of the triazinone, aryloxyalkanoic acid and urea groups. The removal of pesticides generally increases with increasing value of KOC but the relationship is not strong. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. What is needed to understand feedback mechanisms from agricultural and climate changes that can alter the hydrological system and the transport of sediments and agricultural chemicals?

    NASA Astrophysics Data System (ADS)

    Coupe, Richard; Payraudeau, Sylvain; Babcsányi, Izabella; Imfeld, Gwenaël

    2015-04-01

    Modern agriculture activities are constantly changing as producers try to produce a crop, keep their soils fertile, control pests, and prevent contamination of air and water resources. Because most of the world's arable land is already in production we must become more efficient if we are to feed and clothe the world's growing population as well as do this in a sustainable manner; leaving a legacy of fertile soil and clean water resources for our descendants. The objective of this paper is to demonstrate the importance of historical datasets and of developing new strategies to understand the effects of changing agricultural systems on the environment. Scientists who study agriculture and its effects on water must constantly adapt their strategies and evaluate how changing agricultural activities impact the environment. As well as understand from historical datasets on hydrology and agriculture how a changing climate or agricultural activity such as a change in tillage method might impact the processes that determine the movement of agricultural chemicals off of the target site. The 42.7 ha Hohrain (Rouffach, Alsace, France) vineyard experimental catchment offers several examples of how scientists have used historical data from this catchment to understand how the transport of agricultural chemicals may change due to a changing climate as well as how new strategies are developed for understanding the transport of agricultural chemicals. Runoff is a major process of pesticide transport from agricultural land to downstream aquatic ecosystems. The impact of rainfall characteristics on the transport of runoff-related pesticides is crucial to understanding how to prevent or minimize their movement now, but also in understanding how climate change might affect runoff. If we understand how rainfall characteristics affect the transport of pesticides, we can use climate change models to predict how those characteristics might change in the future and be better prepared for

  17. Modeling the temporal variability of zinc concentrations in zinc roof runoff-experimental study and uncertainty analysis.

    PubMed

    Sage, Jérémie; El Oreibi, Elissar; Saad, Mohamed; Gromaire, Marie-Christine

    2016-08-01

    This study investigates the temporal variability of zinc concentrations from zinc roof runoff. The influence of rainfall characteristics and dry period duration is evaluated by combining laboratory experiment on small zinc sheets and in situ measurements under real weather conditions from a 1.6-m(2) zinc panel. A reformulation of a commonly used conceptual runoff quality model is introduced and its ability to simulate the evolution of zinc concentrations is evaluated. A systematic and sharp decrease from initially high to relatively low and stable zinc concentrations after 0.5 to 2 mm of rainfall is observed for both experiments, suggesting that highly soluble corrosion products are removed at early stages of runoff. A moderate dependence between antecedent dry period duration and the magnitude of zinc concentrations at the beginning of a rain event is evidenced. Contrariwise, results indicate that concentrations are not significantly influenced by rainfall intensities. Simulated rainfall experiment nonetheless suggests that a slight effect of rainfall intensities may be expected after the initial decrease of concentrations. Finally, this study shows that relatively simple conceptual runoff quality models may be adopted to simulate the variability of zinc concentrations during a rain event and from a rain event to another.

  18. Discussion about initial runoff and volume capture ratio of annual rainfall.

    PubMed

    Zhang, Kun; Che, Wu; Zhang, Wei; Zhao, Yang

    2016-10-01

    In recent years, runoff pollution from urban areas has become a major concern all over the world. But there exists a worldwide confusion about how much stormwater should be captured for the purpose of runoff pollution control. Furthermore, the construction cost and pollution control efficiency are closely linked with the size of stormwater facilities, which is then related to the first flush (FF) phenomenon and volume capture ratio of annual rainfall (VCRa). Based on this background, analysis of the random and changeable characteristics of the occurrence of FF was carried out first, which was proved to vary with catchment characteristics and pollutant types. Secondly, the distribution of design rainfall depth toward 85% VCRa in China and its causes have been analyzed. Thirdly, the relationship between initial runoff and VCRa has been studied at both conceptual and numerical levels, and the change rule of VCRa along with design rainfall depth in different regions has been studied. The limitation of initial runoff has been illustrated from the perspective of runoff characteristics of single rainfall events in the first part, and from the perspective of regional differences in the two subsequent parts.

  19. Work More? The 8.2 kaBP Abrupt Climate Change Event and the Origins of Irrigation Agriculture and Surplus Agro-Production in Mesopotamia

    NASA Astrophysics Data System (ADS)

    Weiss, H.

    2003-12-01

    The West Asian archaeological record is of sufficient transparency and resolution to permit observation of the social responses to the major Holocene abrupt climate change events at 8.2, 5.2 and 4.2 kaBP. The 8.2kaBP abrupt climate change event in West Asia was a three hundred year aridification and cooling episode. During this period rain-fed agriculture, established for over a millennium in northern Mesopotamia, suddenly collapsed. Irrigation agriculture, pastoral nomadism, or migration were the only subsistence alternatives for populations previously supported by cereal dry-farming. Irrigation agriculture was not, however, possible along the northern alluvial plains of the Tigris and Euphrates Rivers, where incised riverbeds were several meters below plain level. Exploitable plain-level levees were only accessible in southern-most alluvial plain, at the head of the present-day Persian Gulf. The archaeological data from this region documents the first irrigation agriculture settlement of the plain during the 8.2 kaBP event. Irrigation agriculture provides about twice the yield of dry-farming in Mesopotamia, but at considerable labor costs relative to dry-farming. With irrigation agriculture surplus production was now available for deployment. But why work more? The 8.2 kaBP event provided the natural force for Mesopotamian irrigation agriculture and surplus production that were essential for the earliest class-formation and urban life.

  20. Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications.

    PubMed

    Sun, Zhandong; Lotz, Tom; Chang, Ni-Bin

    2017-12-15

    Effects of land use development on runoff patterns are salient at a hydrological response unit scale. However, quantitative analysis at the watershed scale is still a challenge due to the complex spatial heterogeneity of the upstream and downstream hydrological relationships and the inherent structure of drainage systems. This study aims to use the well-calibrated Soil and Water Assessment Tool (SWAT) to assess the response of hydrological processes under different land use scenarios in a large lake watershed (Lake Dongting) in the middle Yangtze River basin in China. Based on possible land use changes, scale-dependent land use scenarios were developed and parameters embedded in SWAT were calibrated and validated for hydrological systems analysis. This approach leads to the simulation of the land use change impacts on the hydrological cycle. Results indicated that evapotranspiration, surface runoff, groundwater flow, and water yield were affected by the land use change scenarios in different magnitudes. Overall, changes of land use and land cover have significant impacts on runoff patterns at the watershed scale in terms of both the total water yield (i.e., groundwater flow, surface runoff, and interflow, minus transmission losses) and the spatial distribution of runoff. The changes in runoff distribution were resulted in opposite impacts within the two land use scenarios including forest and agriculture. Water yield has a decrease of 1.8 percent in the forest-prone landscape scenario and an increase of 4.2 percent in the agriculture-rich scenario during the simulated period. Surface runoff was the most affected component in the hydrological cycle. Whereas surface runoff as part of water yield has a decrease of 8.2 percent in the forest- prone landscape scenario, there is an increase of 8.6 percent in the agriculture-rich landscape scenario. Different runoff patterns associated with each land use scenario imply the potential effect on flood or drought mitigation

  1. Impact of Roadway Stormwater Runoff on Microbial Contamination in the Receiving Stream.

    PubMed

    Wyckoff, Kristen N; Chen, Si; Steinman, Andrew J; He, Qiang

    2017-09-01

    Stormwater runoff from roadways has increasingly become a regulatory concern for water pollution control. Recent work has suggested roadway stormwater runoff as a potential source of microbial pollutants. The objective of this study was to determine the impact of roadway runoff on the microbiological quality of receiving streams. Microbiological quality of roadway stormwater runoff and the receiving stream was monitored during storm events with both cultivation-dependent fecal bacteria enumeration and cultivation-independent high-throughput sequencing techniques. Enumeration of total coliforms as a measure of fecal microbial pollution found consistently lower total coliform counts in roadway runoff than those in the stream water, suggesting that roadway runoff was not a major contributor of microbial pollutants to the receiving stream. Further characterization of the microbial community in the stormwater samples by 16S ribosomal RNA gene-based high-throughput amplicon sequencing revealed significant differences in the microbial composition of stormwater runoff from the roadways and the receiving stream. The differences in microbial composition between the roadway runoff and stream water demonstrate that roadway runoff did not appear to have a major influence on the stream in terms of microbiological quality. Thus, results from both fecal bacteria enumeration and high-throughput amplicon sequencing techniques were consistent that roadway stormwater runoff was not the primary contributor of microbial loading to the stream. Further studies of additional watersheds with distinct characteristics are needed to validate these findings. Understanding gained in this study could support the development of more effective strategies for stormwater management in sensitive watersheds. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Pesticide runoff from energy crops: A threat to aquatic invertebrates?

    PubMed

    Bunzel, Katja; Schäfer, Ralf B; Thrän, Daniela; Kattwinkel, Mira

    2015-12-15

    The European Union aims to reach a 10% share of biofuels in the transport sector by 2020. The major burden is most likely to fall on already established annual energy crops such as rapeseed and cereals for the production of biodiesel and bioethanol, respectively. Annual energy crops are typically cultivated in intensive agricultural production systems, which require the application of pesticides. Agricultural pesticides can have adverse effects on aquatic invertebrates in adjacent streams. We assessed the relative ecological risk to aquatic invertebrates associated with the chemical pest management from six energy crops (maize, potato, sugar beet, winter barley, winter rapeseed, and winter wheat) as well as from mixed cultivation scenarios. The pesticide exposure related to energy crops and cultivation scenarios was estimated as surface runoff for 253 small stream sites in Central Germany using a GIS-based runoff potential model. The ecological risk for aquatic invertebrates, an important organism group for the functioning of stream ecosystems, was assessed using acute toxicity data (48-h LC50 values) of the crustacean Daphnia magna. We calculated the Ecological Risk from potential Pesticide Runoff (ERPR) for all three main groups of pesticides (herbicides, fungicides, and insecticides). Our findings suggest that the crops potato, sugar beet, and rapeseed pose a higher ecological risk to aquatic invertebrates than maize, barley, and wheat. As maize had by far the lowest ERPR values, from the perspective of pesticide pollution, its cultivation as substrate for the production of the gaseous biofuel biomethane may be preferable compared to the production of, for example, biodiesel from rapeseed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Nutrient concentrations in leachate and runoff from dairy cattle lots with different surface materials

    USDA-ARS?s Scientific Manuscript database

    Nitrogen (N) and phosphorus (P) loss from agriculture persists as a water quality issue, and outdoor cattle lots can have a high loss potential. We monitored hydrology and nutrient concentrations in leachate and runoff from dairy heifer lots constructed with three surface materials (soil, sand, bark...

  4. The Impact of Long-Term Climate Change on Nitrogen Runoff at the Watershed Scale.

    NASA Astrophysics Data System (ADS)

    Dorley, J.; Duffy, C.; Arenas Amado, A.

    2017-12-01

    The impact of agricultural runoff is a major concern for water quality of mid-western streams. This concern is largely due to excessive use of agricultural fertilizer, a major source of nutrients in many Midwestern watersheds. In order to improve water quality in these watersheds, understanding the long-term trends in nutrient concentration and discharge is an important water quality problem. This study attempts to analyze the role of long-term temperature and precipitation on nitrate runoff in an agriculturally dominated watershed in Iowa. The approach attempts to establish the concentration-discharge (C-Q) signature for the watershed using time series analysis, frequency analysis and model simulation. The climate data is from the Intergovernmental Panel on Climate Change (IPCC), model GFDL-CM3 (Geophysical Fluid Dynamic Laboratory Coupled Model 3). The historical water quality data was made available by the IIHR-Hydroscience & Engineering at the University of Iowa for the clear creek watershed (CCW). The CCW is located in east-central Iowa. The CCW is representative of many Midwestern watersheds with humid-continental climate with predominantly agricultural land use. The study shows how long-term climate changes in temperature and precipitation affects the C-Q dynamics and how a relatively simple approach to data analysis and model projections can be applied to best management practices at the site.

  5. Nitrogen Runoff Losses during Warm-Season Turfgrass Sod Establishment.

    PubMed

    Wherley, Benjamin G; Aitkenhead-Peterson, Jacqueline A; Stanley, Nina C; Thomas, James C; Fontanier, Charles H; White, Richard H; Dwyer, Phil

    2015-07-01

    Concern exists over the potential loss of nitrogen (N) and phosphorus (P) in runoff from newly established and fertilized lawns. Nutrient losses can be higher from turf when shoot density and surface cover are low and root systems are not fully developed. This study was conducted to evaluate fertilizer source and timing effects on nutrient losses from newly sodded lawns of St. Augustinegrass [ (Walt.) Kuntze]. For each study, 12 33.6-m plots were established on an undisturbed Alfisol having a 3.7% slope. Each plot was equipped with a runoff collection system, instrumentation for runoff flow rate measurement, and automated samplers. A 28-d establishment study was initiated on 8 Aug. 2012 and repeated on 9 Sept. 2012. Treatments included unfertilized plots, fertilized plots receiving 4.88 g N m as urea 6 d after planting, fertilized plots receiving 4.88 g N m as sulfur-coated urea 6 d after planting, and fertilized plots receiving 4.88 g N m as urea 19 d after planting. Runoff events were created by irrigating with 17 mm of water over 27 min. Runoff water samples were collected after every 37.8 L and analyzed for NO-N, NH-N, dissolved organic N (DON), and PO-P. Increases of approximately 2 to 4 mg L NO-N and 8 to 12 mg L PO-P occurred in runoff 1 d after fertilization, which returned to background levels within 7 d. Total fertilizer N lost to runoff was 0.6 to 4.2% of that applied. Delaying fertilizer application until 19 d after planting provided no reduction in nutrient loss compared with a similar application 6 d after planting. Approximately 33% of the N lost in runoff was as DON. This large amount of DON suggests significant N loss from decomposing organic matter may occur during sod establishment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Impacts of the active layer on runoff in an upland permafrost basin, northern Tibetan Plateau

    PubMed Central

    Zhang, Tingjun; Guo, Hong; Hu, Yuantao; Shang, Jianguo; Zhang, Yulan

    2018-01-01

    The paucity of studies on permafrost runoff generation processes, especially in mountain permafrost, constrains the understanding of permafrost hydrology and prediction of hydrological responses to permafrost degradation. This study investigated runoff generation processes, in addition to the contribution of summer thaw depth, soil temperature, soil moisture, and precipitation to streamflow in a small upland permafrost basin in the northern Tibetan Plateau. Results indicated that the thawing period and the duration of the zero-curtain were longer in permafrost of the northern Tibetan Plateau than in the Arctic. Limited snowmelt delayed the initiation of surface runoff in the peat permafrost in the study area. The runoff displayed intermittent generation, with the duration of most runoff events lasting less than 24 h. Precipitation without runoff generation was generally correlated with lower soil moisture conditions. Combined analysis suggested runoff generation in this region was controlled by soil temperature, thaw depth, precipitation frequency and amount, and antecedent soil moisture. This study serves as an important baseline to evaluate future environmental changes on the Tibetan Plateau. PMID:29470510

  7. Impacts of the active layer on runoff in an upland permafrost basin, northern Tibetan Plateau.

    PubMed

    Gao, Tanguang; Zhang, Tingjun; Guo, Hong; Hu, Yuantao; Shang, Jianguo; Zhang, Yulan

    2018-01-01

    The paucity of studies on permafrost runoff generation processes, especially in mountain permafrost, constrains the understanding of permafrost hydrology and prediction of hydrological responses to permafrost degradation. This study investigated runoff generation processes, in addition to the contribution of summer thaw depth, soil temperature, soil moisture, and precipitation to streamflow in a small upland permafrost basin in the northern Tibetan Plateau. Results indicated that the thawing period and the duration of the zero-curtain were longer in permafrost of the northern Tibetan Plateau than in the Arctic. Limited snowmelt delayed the initiation of surface runoff in the peat permafrost in the study area. The runoff displayed intermittent generation, with the duration of most runoff events lasting less than 24 h. Precipitation without runoff generation was generally correlated with lower soil moisture conditions. Combined analysis suggested runoff generation in this region was controlled by soil temperature, thaw depth, precipitation frequency and amount, and antecedent soil moisture. This study serves as an important baseline to evaluate future environmental changes on the Tibetan Plateau.

  8. Application of gypsum to control P runoff from poultry litter fertilization of pasture

    USDA-ARS?s Scientific Manuscript database

    This paper will discuss the utilization of gypsum (CaSO4 .2H2O) to reduce P losses from surface runoff when poultry litter is used as a fertilizer source in agriculture. Utilization of poultry litter as a fertilizer source is common in regions with intense poultry production. While poultry litter ...

  9. Simulation of water available for runoff in clearcut forest openings during rain-on-snow events in the western Cascade Range of Oregon and Washington

    USGS Publications Warehouse

    van Heeswijk, Marijke; Kimball, J.S.; Marks, Danny

    1996-01-01

    Rain-on-snow events are common on mountain slopes within the transient-snow zone of the Pacific Northwest. These events make more water available for runoff than does precipitation alone by melting the snowpack and by adding a small amount of condensate to the snowpack. In forest openings (such as those resulting from clearcut logging), the amount of snow that accumulates and the turbulent- energy input to the snowpack are greater than below forest stands. Both factors are believed to contribute to a greater amount of water available for runoff during rain-on-snow events in forest openings than forest stands. Because increased water available for runoff may lead to increased downstream flooding and erosion, knowledge of the amount of snowmelt that can occur during rain on snow and the processes that control snowmelt in forest openings is useful when making land-use decisions. Snow accumulation and melt were simulated for clearcut conditions only, using an enery- balance approach that accounts for the most important energy and mass exchanges between a snowpack and its environment. Meteorological measurements provided the input for the simulations. Snow accumulation and melt were not simulated in forest stands because interception of precipitation processes are too complex to simulate with a numerical model without making simplifying assumptions. Such a model, however, would need to be extensively tested against representative observations, which were not available for this study. Snowmelt simulated during three rain-on-snow events (measured in a previous study in a clearcut in the transient-snow zone of the H.J. Andrews Experimental Forest in Oregon) demonstrated that melt generation is most sensitive to turbulent- energy exchanges between the air and the snowpack surface. As a result, the most important climate variable that controls snowmelt is wind speed. Air temperature, however, is a significant variable also. The wind speeds were light, with a maximum of 3

  10. Evaluation of the precipitation-runoff modeling system, Beaver Creek basin, Kentucky

    USGS Publications Warehouse

    Bower, D.E.

    1985-01-01

    The Precipitation Runoff Modeling System (PRMS) was evaluated with data from Cane branch and Helton Branch in the Beaver Creek basin of Kentucky. Because of previous studies, 10.6 years of record were available to establish a data base for the basin including 60 storms for Cane Branch and 50 storms for Helton Branch. The model was calibrated initially using data from the 1956-58 water years. Runoff predicted by the model was 94.7% of the observed runoff at Cane Branch (mined area) and 96.9% at Helton Branch (unmined area). After the model and data base were modified, the model was refitted to the 1956-58 data for Helton Branch. It then predicted 98.6% of the runoff for the 10.6-year period. The model parameters from Helton Branch were then used to simulate the Cane Branch runoff and discharge. The model predicted 102.6% of the observed runoff at Cane Branch for the 10.6 years. The simulations produced reasonable storm volumes and peak discharges. Sensitivity analysis of model parameters indicated the parameters associated with soil moisture are the most sensitive. The model was used to predict sediment concentration and daily sediment load for selected storm periods. The sediment computations indicated the model can be used to predict sediment concentrations during storm events. (USGS)

  11. Modelling the impact of retention-detention units on sewer surcharge and peak and annual runoff reduction.

    PubMed

    Locatelli, Luca; Gabriel, Søren; Mark, Ole; Mikkelsen, Peter Steen; Arnbjerg-Nielsen, Karsten; Taylor, Heidi; Bockhorn, Britta; Larsen, Hauge; Kjølby, Morten Just; Blicher, Anne Steensen; Binning, Philip John

    2015-01-01

    Stormwater management using water sensitive urban design is expected to be part of future drainage systems. This paper aims to model the combination of local retention units, such as soakaways, with subsurface detention units. Soakaways are employed to reduce (by storage and infiltration) peak and volume stormwater runoff; however, large retention volumes are required for a significant peak reduction. Peak runoff can therefore be handled by combining detention units with soakaways. This paper models the impact of retrofitting retention-detention units for an existing urbanized catchment in Denmark. The impact of retrofitting a retention-detention unit of 3.3 m³/100 m² (volume/impervious area) was simulated for a small catchment in Copenhagen using MIKE URBAN. The retention-detention unit was shown to prevent flooding from the sewer for a 10-year rainfall event. Statistical analysis of continuous simulations covering 22 years showed that annual stormwater runoff was reduced by 68-87%, and that the retention volume was on average 53% full at the beginning of rain events. The effect of different retention-detention volume combinations was simulated, and results showed that allocating 20-40% of a soakaway volume to detention would significantly increase peak runoff reduction with a small reduction in the annual runoff.

  12. Using aquatic vegetation to remediate nitrate, ammonium, and soluble reactive phosphorus in simulated runoff.

    PubMed

    Moore, M T; Locke, M A; Kröger, R

    2016-10-01

    Within the agriculturally-intensive Mississippi River Basin of the United States, significant conservation efforts have focused on management practices that reduce nutrient runoff into receiving aquatic ecosystems. Only a small fraction of those efforts have focused on phytoremediation techniques. Each of six different aquatic macrophytes were planted, in monoculture, in three replicate mesocosms (1.2 m × 0.15 m × 0.65 m). Three additional unvegetated mesocosms served as controls for a total number of 21 mesocosms. Over two years, mesocosms were amended once each summer with sodium nitrate, ammonium sulfate, and potassium phosphate dibasic to represent nitrogen and phosphorus in agricultural runoff. System retention was calculated using a simple aqueous mass balance approach. Ammonium retention in both years differed greatly, as Panicum hemitomon and Echinodorus cordifolius retentions were significantly greater than controls in the first year, while only Myriophyllum aquaticum and Typha latifolia were significantly greater than controls in the second year. Greater soluble reactive phosphorus retention was observed in T. latifolia compared to controls in both years. Several other significant differences were observed in either the first or second year, but not both years. In the first year's exposure, P. hemitomon was significantly more efficient than the control, Saururus cernuus, and T. latifolia for overall percent nitrate decrease. Results of this novel study highlight inherent variability within and among species for nutrient specific uptake and the temporal variations of species for nutrient retention. By examining this natural variability, scientists may design phytoremediation systems with greater impact on improving agricultural runoff water quality. Published by Elsevier Ltd.

  13. A simple model for farmland nitrogen loss to surface runoff with raindrop driven process

    NASA Astrophysics Data System (ADS)

    Tong, J.; Li, J.

    2016-12-01

    It has been widely recognized that surface runoff from the agricultural fields is an important source of non-point source pollution (NPSP). Moreover, as the agricultural country with the largest nitrogen fertilizer production, import and consumption in the world, our nation should pay greater attention to the over-application and inefficient use of nitrogen (N) fertilizer, which may cause severe pollution both in surface water and groundwater. To figure out the transfer mechanism between the soil solution and surface runoff, lots of laboratory test were conducted and related models were established in this study. But little of them was carried out in field scale since a part of variables are hard to control and some uncontrollable natural factors including rainfall intensity, temperature, wind speeds, soil spatial heterogeneity etc., may affect the field experimental results. Despite that, field tests can better reflect the mechanism of soil chemical loss to surface runoff than laboratory experiments, and the latter tend to oversimplify the environmental conditions. Therefore, a physically based, nitrogen transport model was developed and tested with so called semi-field experiments (i.e., artificial rainfall instead of natural rainfall was applied in the test). Our model integrated both raindrop driven process and diffusion effect along with the simplified nitrogen chain reactions. The established model was solved numerically through the modified Hydrus-1d source code, and the model simulations closely agree with the experimental data. Furthermore, our model indicates that the depth of the exchange layer and raindrop induced water transfer rate are two important parameters, and they have different impacts on the simulation results. The study results can provide references for preventing and controlling agricultural NPSP.

  14. Rainfall and runoff Intensity-Duration-Frequency Curves for Washington State considering the change and uncertainty of observed and anticipated extreme rainfall and snow events

    NASA Astrophysics Data System (ADS)

    Demissie, Y. K.; Mortuza, M. R.; Li, H. Y.

    2015-12-01

    The observed and anticipated increasing trends in extreme storm magnitude and frequency, as well as the associated flooding risk in the Pacific Northwest highlighted the need for revising and updating the local intensity-duration-frequency (IDF) curves, which are commonly used for designing critical water infrastructure. In Washington State, much of the drainage system installed in the last several decades uses IDF curves that are outdated by as much as half a century, making the system inadequate and vulnerable for flooding as seen more frequently in recent years. In this study, we have developed new and forward looking rainfall and runoff IDF curves for each county in Washington State using recently observed and projected precipitation data. Regional frequency analysis coupled with Bayesian uncertainty quantification and model averaging methods were used to developed and update the rainfall IDF curves, which were then used in watershed and snow models to develop the runoff IDF curves that explicitly account for effects of snow and drainage characteristic into the IDF curves and related designs. The resulted rainfall and runoff IDF curves provide more reliable, forward looking, and spatially resolved characteristics of storm events that can assist local decision makers and engineers to thoroughly review and/or update the current design standards for urban and rural storm water management infrastructure in order to reduce the potential ramifications of increasing severe storms and resulting floods on existing and planned storm drainage and flood management systems in the state.

  15. Freezing and drying effects on potential plant contributions to phosphorus in runoff.

    PubMed

    Roberson, Tiffany; Bundy, Larry G; Andraski, Todd W

    2007-01-01

    Phosphorus (P) in runoff from landscapes can promote eutrophication of natural waters. Soluble P released from plant material can contribute significant amounts of P to runoff particularly after plant freezing or drying. This study was conducted to evaluate P losses from alfalfa or grass after freezing or drying as potential contributors to runoff P. Alfalfa (Medicago sativa L.) and grass (principally, Agropyron repens L.) plant samples were subjected to freezing and drying treatments to determine P release. Simulated rainfall runoff and natural runoff from established alfalfa fields and a grass waterway were collected to study P contributions from plant tissue to runoff. The effects of freezing and drying on P released from plant tissue were simulated by a herbicide treatment in selected experiments. Soluble reactive P (SP) extracted from alfalfa and grass samples was markedly increased by freezing or drying. In general, SP extracted from plant samples increased in the order fresh < frozen < frozen/thawed < dried, and averaged 1, 8, 14, and 26% of total P in alfalfa, respectively. Soluble reactive P extracted from alfalfa after freezing or drying increased with increasing soil test P (r(2) = 0.64 to 0.68), suggesting that excessive soil P levels increased the risk of plant P contributions to runoff losses. In simulated rainfall studies, paraquat (1,1'-dimethyl-4, 4''-bipyridinium ion) treatment of alfalfa increased P losses in runoff, and results suggested that this treatment simulated the effects of drying on plant P loss. In contrast to the simulated rainfall results, natural runoff studies over 2 yr did not show higher runoff P losses that could be attributed to P from alfalfa. Actual P losses likely depend on the timing and extent of plant freezing and drying and of precipitation events after freezing.

  16. Mulch effects on runoff and sediment production at the hillslope scale in the High Park Fire, Colorado

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Kampf, S. K.; Wagenbrenner, J. W.; MacDonald, L. H.; Gleason, H.

    2015-12-01

    The 2012 High Park Fire (HPF) burned 330 km2 of Front Range forests surrounding the Cache la Poudre River just upstream of the municipal water supply intakes for the cities of Fort Collins and Greeley. From 2012-2014, millions of dollars were spent on mulch treatments to stabilize burned soils and protect water supplies. The objective of this research is to evaluate how runoff and sediment production vary with precipitation (P) on two unmulched and two mulched hillslopes of the HPF during the 2014 summer thunderstorm season. The four hillslopes are moderate to severely burned zero-order catchments 0.2-0.4 ha in area. Sediment fences were installed at the base of each hillslope to collect bedload sediment; each fence was fitted with a V-notch weir and a series of flow splitters to collect proportional samples of runoff and suspended sediment. Runoff and sediment were captured during 3-7 events for the unmulched sites and 1-9 events for the mulched sites; some P events that produced bedload sediment did not produce measurable runoff. The 30-minute maximum P intensity thresholds for runoff and sediment production were lower for unmulched (10 mm hr-1) than mulched hillslopes (16 mm hr-1). Runoff ratios were similar for the unmulched (0.01-0.10) and mulched sites (0.00-0.08), but total sediment yield (bedload + suspended load; Mg ha-1) for the unmulched sites was up to three times greater (0.02-1.54) than the mulched sites (0.01-0.50. The ratio of suspended sediment to bedload was similar for the unmulched (0.24-1.97) and mulched sites (0.16-2.52). The results of this research suggest that (1) bedload sediment measurements under-represent hillslope sediment production, and (2) mulching may reduce sediment production in zero-order catchments, but the magnitude of the mulch effect varies by catchment and by rain event.

  17. Parking Lot Runoff Quality and Treatment Efficiency of a Stormwater-Filtration Device, Madison, Wisconsin, 2005-07

    USGS Publications Warehouse

    Horwatich, Judy A.; Bannerman, Roger T.

    2010-01-01

    To evaluate the treatment efficiency of a stormwater-filtration device (SFD) for potential use at Wisconsin Department of Transportation (WisDOT) park-and-ride facilities, a SFD was installed at an employee parking lot in downtown Madison, Wisconsin. This type of parking lot was chosen for the test site because the constituent concentrations and particle-size distributions (PSDs) were expected to be similar to those of a typical park-and-ride lot operated by WisDOT. The objective of this particular installation was to reduce loads of total suspended solids (TSS) in stormwater runoff to Lake Monona. This study also was designed to provide a range of treatment efficiencies expected for a SFD. Samples from the inlet and outlet were analyzed for 33 organic and inorganic constituents, including 18 polycyclic aromatic hydrocarbons (PAHs). Samples were also analyzed for physical properties, including PSD. Water-quality samples were collected for 51 runoff events from November 2005 to August 2007. Samples from all runoff events were analyzed for concentrations of suspended sediment (SS). Samples from 31 runoff events were analyzed for 15 constituents, samples from 15 runoff events were analyzed for PAHs, and samples from 36 events were analyzed for PSD. The treatment efficiency of the SFD was calculated using the summation of loads (SOL) and the efficiency ratio methods. Constituents for which the concentrations and (or) loads were decreased by the SFD include TSS, SS, volatile suspended solids, total phosphorous (TP), total copper, total zinc, and PAHs. The efficiency ratios for these constituents are 45, 37, 38, 55, 22, 5, and 46 percent, respectively. The SOLs for these constituents are 32, 37, 28, 36, 23, 8, and 48 percent, respectively. The SOL for chloride was -21 and the efficiency ratio was -18. Six chemical constituents or properties-dissolved phosphorus, chemical oxygen demand, dissolved zinc, total dissolved solids, dissolved chemical oxygen demand, and

  18. Design and Management Criteria for Fish, Amphibian, and Reptile Communities Within Created Agricultural Wetlands

    USDA-ARS?s Scientific Manuscript database

    Design and management criteria for created agricultural wetlands in the midwestern United States typically focus on maximizing the ability to process agricultural runoff. Ecological benefits for fish, amphibian, and reptiles are often secondary considerations. One example of this water quality focu...

  19. Spatial and temporal patterns of pesticide concentrations in streamflow, drainage and runoff in a small Swedish agricultural catchment.

    PubMed

    Sandin, Maria; Piikki, Kristin; Jarvis, Nicholas; Larsbo, Mats; Bishop, Kevin; Kreuger, Jenny

    2018-01-01

    A better understanding of the dominant source areas and transport pathways of pesticide losses to surface water is needed for targeting mitigation efforts in a more cost-effective way. To this end, we monitored pesticides in surface water in an agricultural catchment typical of one of the main crop production regions in Sweden. Three small sub-catchments (88-242ha) were selected for water sampling based on a high-resolution digital soil map developed from proximal sensing methods and soil sampling; one sub-catchment had a high proportion of clay soils, another was dominated by coarse sandy soils while the third comprised a mix of soil types. Samples were collected from the stream, from field drains discharging into the stream and from within-field surface runoff during spring and early summer in three consecutive years. These samples were analyzed by LC-MS/MS for 99 compounds, including most of the polar and semi-polar pesticides frequently used in Swedish agriculture. Information on pesticide applications (products, doses and timing) was obtained from annual interviews with the farmers. There were clear and consistent differences in pesticide occurrence in the stream between the three sub-catchments, with both the numbers of detected compounds and concentrations being the largest in the area with a high proportion of clay soils and with very few detections in the sandy sub-catchment. Macropore flow to drains was most likely the dominant loss pathway in the studied area. Many of the compounds that were detected in drainage and stream water samples had not been applied for several years. This suggests that despite the predominant role of fast flow pathways in determining losses to the stream, long-term storage along the transport pathways also occurs, presumably in subsoil horizons where degradation is slow. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Surface Runoff Threshold Responses to Rainfall Intensity, Scale, and Land Use Type, Change and Disturbance

    NASA Astrophysics Data System (ADS)

    Bhaskar, A.; Kampf, S. K.; Green, T. R.; Wilson, C.; Wagenbrenner, J.; Erksine, R. H.

    2017-12-01

    The dominance of infiltration-excess (Hortonian) overland flow can be determined by how well a rainfall intensity threshold predicts streamflow response. Areas in which we would expect infiltration-excess overland flow to dominate include urban, bedrock, desert pavement, and lands disturbed by vegetation removal (e.g., after a fire burn or fallow agricultural lands). Using a transferable method of identifying the existence of thresholds, we compare the following sites to investigate their hydrologic responses to 60-minute rainfall intensities: desert pavement sites in Arizona (Walnut Gulch and Yuma Proving Ground), post-fire sites in a forested, mountainous burn area in north-central Colorado (High Park Fire), an area of northeastern Colorado Plains that has transitioned from dryland agriculture to conservation reserve (Drake Farm), and watersheds in suburban Baltimore, Maryland which range from less than 5% to over 50% impervious surface cover. We observed that at desert sites, the necessary threshold of rainfall intensity to produce flow increased with watershed size. In burned watersheds, watershed size did not have a clear effect on rainfall thresholds, but thresholds increased with time after burning, with streamflow no longer exhibiting clear threshold responses after the third year post-fire. At the agricultural site, the frequency of runoff events decreased during the transition from cultivated crops to mixed perennial native grasses. In an area where the natural land cover (forested) would be not dominated by infiltration-excess overland flow, urbanization greatly lowered the rainfall thresholds needed for hydrologic response. This work contributes to building a predictive framework for identifying what naturally-occurring landscapes are dominated by infiltration-excess overland flow, and how land use change could shift the dominance of infiltration-excess overland flow. Characterizing the driving mechanism for streamflow generation will allow better

  1. Application of two direct runoff prediction methods in Puerto Rico

    USGS Publications Warehouse

    Sepulveda, N.

    1997-01-01

    Two methods for predicting direct runoff from rainfall data were applied to several basins and the resulting hydrographs compared to measured values. The first method uses a geomorphology-based unit hydrograph to predict direct runoff through its convolution with the excess rainfall hyetograph. The second method shows how the resulting hydraulic routing flow equation from a kinematic wave approximation is solved using a spectral method based on the matrix representation of the spatial derivative with Chebyshev collocation and a fourth-order Runge-Kutta time discretization scheme. The calibrated Green-Ampt (GA) infiltration parameters are obtained by minimizing the sum, over several rainfall events, of absolute differences between the total excess rainfall volume computed from the GA equations and the total direct runoff volume computed from a hydrograph separation technique. The improvement made in predicting direct runoff using a geomorphology-based unit hydrograph with the ephemeral and perennial stream network instead of the strictly perennial stream network is negligible. The hydraulic routing scheme presented here is highly accurate in predicting the magnitude and time of the hydrograph peak although the much faster unit hydrograph method also yields reasonable results.

  2. Multi-catchment rainfall-runoff simulation for extreme flood estimation

    NASA Astrophysics Data System (ADS)

    Paquet, Emmanuel

    2017-04-01

    The SCHADEX method (Paquet et al., 2013) is a reference method in France for the estimation of extreme flood for dam design. The method is based on a semi-continuous rainfall-runoff simulation process: hundreds of different rainy events, randomly drawn up to extreme values, are simulated independently in the hydrological conditions of each day when a rainy event has been actually observed. This allows generating an exhaustive set of crossings between precipitation and soil saturation hazards, and to build a complete distribution of flood discharges up to extreme quantiles. The hydrological model used within SCHADEX, the MORDOR model (Garçon, 1996), is a lumped model, which implies that hydrological processes, e.g. rainfall and soil saturation, are supposed to be homogeneous throughout the catchment. Snow processes are nevertheless represented in relation with altitude. This hypothesis of homogeneity is questionable especially as the size of the catchment increases, or in areas of highly contrasted climatology (like mountainous areas). Conversely, modeling the catchment with a fully distributed approach would cause different problems, in particular distributing the rainfall-runoff model parameters trough space, and within the SCHADEX stochastic framework, generating extreme rain fields with credible spatio-temporal features. An intermediate solution is presented here. It provides a better representation of the hydro-climatic diversity of the studied catchment (especially regarding flood processes) while keeping the SCHADEX simulation framework. It consists in dividing the catchment in several, more homogeneous sub-catchments. Rainfall-runoff models are parameterized individually for each of them, using local discharge data if available. A first SCHADEX simulation is done at the global scale, which allows assigning a probability to each simulated event, mainly based on the global areal rainfall drawn for the event (see Paquet el al., 2013 for details). Then the

  3. Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison.

    PubMed

    Udawatta, Ranjith P; Krstansky, J John; Henderson, Gray S; Garrett, Harold E

    2002-01-01

    A paired watershed study consisting of agroforestry (trees plus grass buffer strips), contour strips (grass buffer strips), and control treatments with a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation was used to examine treatment effects on runoff, sediment, and nutrient losses. During the (1991-1997) calibration and subsequent three-year treatment periods, runoff was measured in 0.91- and 1.37-m H-flumes with bubbler flow meters. Composite samples were analyzed for sediment, total phosphorus (TP), total nitrogen (TN), nitrate, and ammonium. Calibration equations developed to predict runoff, sediment, and nutrients losses explained 66 to 97% of the variability between treatment watersheds. The contour strip and agroforestry treatments reduced runoff by 10 and 1% during the treatment period. In both treatments, most runoff reductions occurred in the second and third years after treatment establishment. The contour strip treatment reduced erosion by 19% in 1999, while erosion in the agroforestry treatment exceeded the predicted loss. Treatments reduced TP loss by 8 and 17% on contour strip and agroforestry watersheds. Treatments did not result in reductions in TN during the first two years of the treatment period. The contour strip and agroforestry treatments reduced TN loss by 21 and 20%, respectively, during a large precipitation event in the third year. During the third year of treatments, nitrate N loss was reduced 24 and 37% by contour strip and agroforestry treatments. Contour strip and agroforestry management practices effectively reduced nonpoint-source pollution in runoff from a corn-soybean rotation in the clay pan soils of northeastern Missouri.

  4. Accounting for temporal variation in soil hydrological properties when simulating surface runoff on tilled plots

    NASA Astrophysics Data System (ADS)

    Chahinian, Nanée; Moussa, Roger; Andrieux, Patrick; Voltz, Marc

    2006-07-01

    Tillage operations are known to greatly influence local overland flow, infiltration and depressional storage by altering soil hydraulic properties and soil surface roughness. The calibration of runoff models for tilled fields is not identical to that of untilled fields, as it has to take into consideration the temporal variability of parameters due to the transient nature of surface crusts. In this paper, we seek the application of a rainfall-runoff model and the development of a calibration methodology to take into account the impact of tillage on overland flow simulation at the scale of a tilled plot (3240 m 2) located in southern France. The selected model couples the (Morel-Seytoux, H.J., 1978. Derivation of equations for variable rainfall infiltration. Water Resources Research. 14(4), 561-568). Infiltration equation to a transfer function based on the diffusive wave equation. The parameters to be calibrated are the hydraulic conductivity at natural saturation Ks, the surface detention Sd and the lag time ω. A two-step calibration procedure is presented. First, eleven rainfall-runoff events are calibrated individually and the variability of the calibrated parameters are analysed. The individually calibrated Ks values decrease monotonously according to the total amount of rainfall since tillage. No clear relationship is observed between the two parameters Sd and ω, and the date of tillage. However, the lag time ω increases inversely with the peakflow of the events. Fairly good agreement is observed between the simulated and measured hydrographs of the calibration set. Simple mathematical laws describing the evolution of Ks and ω are selected, while Sd is considered constant. The second step involves the collective calibration of the law of evolution of each parameter on the whole calibration set. This procedure is calibrated on 11 events and validated on ten runoff inducing and four non-runoff inducing rainfall events. The suggested calibration methodology

  5. Assessing biological effects from highway-runoff constituents

    USGS Publications Warehouse

    Buckler, Denny R.; Granato, Gregory E.

    1999-01-01

    Increased emphasis on evaluation of nonpoint-source pollution has intensified the need for techniques that can be used to discern the toxicological effects of complex chemical mixtures. In response, the use of biological assessment techniques is receiving increased regulatory emphasis. When applied with documented habitat assessment and chemical analysis, these techniques can increase our understanding of the influence of environmental contaminants on the biological integrity and ecological function of aquatic communities.The contaminants of greatest potential concern in highway runoff are those that arise from highway construction, maintenance, and use. The major contaminants of interest are deicers; nutrients; metals; petroleum-related organic compounds, such as polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, and xylene (BTEX), and methyl tert -butyl ether (MTBE); sediment washed off the road surface; and agricultural chemicals used in highway maintenance. Hundreds, if not thousands, of biological endpoints (measurable responses of living organisms) may be either directly or associatively affected by contaminant exposure. Measurable effects can occur throughout ecosystem processes across the wide range of biological complexity, ranging from responses at the biochemical level to the community level. The challenge to the environmental scientist is to develop an understanding of the relationship of effects at various levels of biological organization in order to determine whether a causal relationship exists between chemical exposure and substantial ecological impairment. This report provides a brief history of the evolution of biological assessment techniques, a description of the major classes of contaminants that are of particular interest in highway runoff, an overview of representative biological assessment techniques, and a discussion of data-quality considerations. Published reports with a focus on the effects of highway runoff on the

  6. Colloidal mobilization of arsenic from mining-affected soils by surface runoff.

    PubMed

    Gomez-Gonzalez, Miguel Angel; Voegelin, Andreas; Garcia-Guinea, Javier; Bolea, Eduardo; Laborda, Francisco; Garrido, Fernando

    2016-02-01

    Scorodite-rich wastes left as a legacy of mining and smelting operations pose a threat to environmental health. Colloids formed by the weathering of processing wastes may control the release of arsenic (As) into surface waters. At a former mine site in Madrid (Spain), we investigated the mobilization of colloidal As by surface runoff from weathered processing wastes and from sediments in the bed of a draining creek and a downstream sedimentation-pond. Colloids mobilized by surface runoff during simulated rain events were characterized for their composition, structure and mode of As uptake using asymmetric flow field-flow fractionation coupled to inductively plasma mass spectrometry (AF4-ICP-MS) and X-ray absorption spectroscopy (XAS) at the As and Fe K-edges. Colloidal scorodite mobilized in surface runoff from the waste pile is acting as a mobile As carrier. In surface runoff from the river bed and the sedimentation pond, ferrihydrite was identified as the dominant As-bearing colloidal phase. The results from this study suggest that mobilization of As-bearing colloids by surface runoff may play an important role in the dispersion of As from metallurgical wastes deposited above ground and needs to be considered in risk assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Tillage system and time post-liquid dairy manure: Effects on runoff, sediment and nutrients losses

    USDA-ARS?s Scientific Manuscript database

    Liquid manure applied in agricultural lands improves soil quality. However, incorrect management of manure may cause environmental problems due to sediments and nutrients losses associated to runoff. The aims of this work were to: (i) evaluate the time effect of post-liquid dairy manure (LDM) applic...

  8. Effect of vegetal cover on runoff and soil erosion under light intensity events. Rainfall simulation over USLE plots.

    PubMed

    Marques, María José; Bienes, Ramón; Jiménez, Luis; Pérez-Rodríguez, Raquel

    2007-05-25

    The erosive power of frequent light rainfalls is studied in this paper. Field experiments of simulated rainfall (Intensity, 21 mm h(-1) and kinetic energy, 13.5 J m(-2) mm(-1)) were conducted over 8 bounded USLE plots (80 m(2) each) with a slope of 10%. In 4 plots the soil was almost bare (<4% vegetation cover); the other 4 plots had almost full cover with natural vegetation in one year. Runoff and sediment yield was recorded. The results revealed the efficiency of vegetation cover reducing runoff and sediments. Runoff and sediments were negligible in covered plots. Therefore, in bare plots, although sediment yield was generally low, averaging 74+/-43 kg ha(-1), the mean of runoff achieved a coefficient of 35%, this magnitude has to be taken into consideration in this region verging on aridity. Rains around 13.5 J m(-2) mm(-1) of kinetic energy are quite frequent in the study area (34% of recorded rains en 12 years). If we would consider the usual lower limits from the literature, we would be ignoring an important percent of natural rainfall episodes.

  9. APEX simulation of runoff and total phosphorous for three adjacent row-crop watersheds with claypan soils

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Policy Environmental Extender (APEX) model can simulate crop yields, runoff, and the transport of sediment and nutrients in small watersheds that have combinations of farm level landscapes, cropping systems and/or management practices. The objectives of the study were to parameteri...

  10. Mixing rare earth elements with manures to control phosphorus loss in runoff and track manure fate

    USDA-ARS?s Scientific Manuscript database

    Concern over the enrichment of agricultural runoff with phosphorus (P) from land applied livestock manures has prompted the development of manure amendments that minimize P solubility. We evaluated the effect of mixing two rare earth chlorides, lanthanum chloride and ytterbium chloride, with poultr...

  11. Evaluation of statistical distributions to analyze the pollution of Cd and Pb in urban runoff.

    PubMed

    Toranjian, Amin; Marofi, Safar

    2017-05-01

    Heavy metal pollution in urban runoff causes severe environmental damage. Identification of these pollutants and their statistical analysis is necessary to provide management guidelines. In this study, 45 continuous probability distribution functions were selected to fit the Cd and Pb data in the runoff events of an urban area during October 2014-May 2015. The sampling was conducted from the outlet of the city basin during seven precipitation events. For evaluation and ranking of the functions, we used the goodness of fit Kolmogorov-Smirnov and Anderson-Darling tests. The results of Cd analysis showed that Hyperbolic Secant, Wakeby and Log-Pearson 3 are suitable for frequency analysis of the event mean concentration (EMC), the instantaneous concentration series (ICS) and instantaneous concentration of each event (ICEE), respectively. In addition, the LP3, Wakeby and Generalized Extreme Value functions were chosen for the EMC, ICS and ICEE related to Pb contamination.

  12. Pollution characteristics of surface runoff under different restoration types in manganese tailing wasteland.

    PubMed

    Wang, Jun; Cheng, Qingyu; Xue, Shengguo; Rajendran, Manikandan; Wu, Chuan; Liao, Jiaxin

    2018-04-01

    A great deal of manganese and associated heavy metals (such as Ni, Cu, Zn, Cd, Pb, etc.) was produced in manganese mining, smelting, and other processes and weathering and leaching of waste slag, which entered rainwater runoff by different means under the action of rainfall runoff. It caused heavy metal pollution in water environment to surrounding areas, and then environmental and human health risks were becoming increasingly serious. In the Xiangtan manganese mine, we studied the characteristics of nutritional pollutants and heavy metals by using the method of bounded runoff plots on the manganese tailing wasteland after carrying out some site treatments using three different approaches, such as (1) exposed tailings, the control treatment (ET), (2) external-soil amelioration and colonization of Cynodon dactylon (Linn.) Pers. turf (EC), and (3) external-soil amelioration and seedling seeding propagation of Cynodon dactylon (Linn.) Pers. (ES). The research showed that the maximum runoff occurred in 20,140,712 rainfall events, and the basic law of runoff was EC area > ET area > ES area in the same rainfall event. The concentration of total suspended solids (TSS) and chemical oxygen demand (COD) of three ecological restoration areas adopted the following rule: ET area > EC area > ES area. Nitrogen (N) existed mainly in the form of water soluble while phosphorus (P) was particulate. The highest concentrations of total nitrogen (TN) and total phosphorus (TP) were 11.57 ± 2.99 mg/L in the EC area and 1.42 ± 0.56 mg/L in the ET area, respectively. Cr, Ni, Pb, Zn, Mn, and Cu in surface runoff from three restoration types all exceeded the class V level of the environmental quality standard for surface water except Cu in EC and ES areas. Pollution levels of heavy metals in surface runoff from three restoration areas are shown as follows: ET area > EC area > ES area. There was a significant positive correlation between TSS and runoff, COD, and TP. And this

  13. High frequency monitoring of pesticides in runoff water to improve understanding of their transport and environmental impacts.

    PubMed

    Lefrancq, Marie; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Landry, David; Payraudeau, Sylvain

    2017-06-01

    Rainfall-induced peaks in pesticide concentrations can occur rapidly. Low frequency sampling may therefore largely underestimate maximum pesticide concentrations and fluxes. Detailed storm-based sampling of pesticide concentrations in runoff water to better predict pesticide sources, transport pathways and toxicity within the headwater catchments is lacking. High frequency monitoring (2min) of seven pesticides (Dimetomorph, Fluopicolide, Glyphosate, Iprovalicarb, Tebuconazole, Tetraconazole and Triadimenol) and one degradation product (AMPA) were assessed for 20 runoff events from 2009 to 2012 at the outlet of a vineyard catchment in the Layon catchment in France. The maximum pesticide concentrations were 387μgL -1 . Samples from all of the runoff events exceeded the legal limit of 0.1μgL -1 for at least one pesticide (European directive 2013/39/EC). High resolution sampling used to detect the peak pesticide levels revealed that Toxic Units (TU) for algae, invertebrates and fish often exceeded the European Uniform principles (25%). The point and average (time or discharge-weighted) concentrations indicated up to a 30- or 4-fold underestimation of the TU obtained when measuring the maximum concentrations, respectively. This highlights the important role of sampling methods for assessing peak exposure. High resolution sampling combined with concentration-discharge hysteresis analyses revealed that clockwise responses were predominant (52%), indicating that Hortonian runoff is the prevailing surface runoff trigger mechanism in the study catchment. The hysteresis patterns for suspended solids and pesticides were highly dynamic and storm- and chemical-dependent. Intense rainfall events induced stronger C-Q hysteresis (magnitude). This study provides new insights into the complexity of pesticide dynamics in runoff water and highlights the ability of hysteresis analysis to improve understanding of pesticide supply and transport. Copyright © 2017 Elsevier B.V. All

  14. Fertiliser management effects on dissolved inorganic nitrogen in runoff from Australian sugarcane farms.

    PubMed

    Fraser, Grant; Rohde, Ken; Silburn, Mark

    2017-08-01

    Dissolved inorganic nitrogen (DIN) movement from Australian sugarcane farms is believed to be a major cause of crown-of-thorns starfish outbreaks which have reduced the Great Barrier Reef coral cover by ~21% (1985-2012). We develop a daily model of DIN concentration in runoff based on >200 field monitored runoff events. Runoff DIN concentrations were related to nitrogen fertiliser application rates and decreased after application with time and cumulative rainfall. Runoff after liquid fertiliser applications had higher initial DIN concentrations, though these concentrations diminished more rapidly in comparison to granular fertiliser applications. The model was validated using an independent field dataset and provided reasonable estimates of runoff DIN concentrations based on a number of modelling efficiency score results. The runoff DIN concentration model was combined with a water balance cropping model to investigate temporal aspects of sugarcane fertiliser management. Nitrogen fertiliser application in December (start of wet season) had the highest risk of DIN movement, and this was further exacerbated in years with a climate forecast for 'wet' seasonal conditions. The potential utility of a climate forecasting system to predict forthcoming wet months and hence DIN loss risk is demonstrated. Earlier fertiliser application or reducing fertiliser application rates in seasons with a wet climate forecast may markedly reduce runoff DIN loads; however, it is recommended that these findings be tested at a broader scale.

  15. Cross-Regional Assessment Of Coupling And Variability In Precipitation-Runoff Relationships

    NASA Astrophysics Data System (ADS)

    Carey, S. K.; Tetzlaff, D.; Soulsby, C.; Buttle, J. M.; Laudon, H.; McDonnell, J. J.; McGuire, K. J.; Seibert, J.; Shanley, J. B.

    2011-12-01

    The higher mid-latitudes of the northern hemisphere are particularly sensitive to change due to the important role the zero-degree isotherm plays in the phase of precipitation and intermediate storage as snow. An international inter-catchment comparison program North-Watch seeks to improve our understanding of the sensitivity of northern catchments to change by examining their hydrological and biogeochemical variability and response. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). For this study, 8 catchments with 10 continuous years of daily precipitation and runoff data were selected to assess the seasonal coupling of rainfall and runoff and the memory effect of runoff events on the hydrograph at different time scales. To assess the coupling and synchroneity of precipitation, continuous wavelet transforms and wavelet coherence were used. Wavelet spectra identified the relative importance of both annual versus seasonal flows while wavelet coherence was applied to identify over different time scales along the 10-year window how well precipitation and runoff were coupled. For example, while on a given day, precipitation may be closely coupled to runoff, a wet year may not necessarily be a high runoff year in catchments with large storage. Assessing different averaging periods in the variation of daily flows highlights the importance of seasonality in runoff response and the relative influence of rain versus snowmelt on flow magnitude and variability. Wet catchments with limited seasonal precipitation variability (Strontian, Girnock) have precipitation signals more closely coupled with runoff, whereas dryer catchments dominated by snow (Wolf Creek, Krycklan) have strongly coupling only during freshet. Most catchments with highly seasonal precipitation show strong intermittent coupling during their wet season. At

  16. Stoichiometric determination of nitrate fate in agricultural ecosystems during rainfall events.

    PubMed

    Xu, Zuxin; Wang, Yiyao; Li, Huaizheng

    2015-01-01

    Ecologists have found a close relationship between the concentrations of nitrate (NO3-) and dissolved organic carbon (DOC) in ecosystems. However, it is difficult to determine the NO3- fate exactly because of the low coefficient in the constructed relationship. In the present paper, a negative power-function equation (r(2) = 0.87) was developed by using 411 NO3- data points and DOC:NO3- ratios from several agricultural ecosystems during different rainfall events. Our analysis of the stoichiometric method reveals several observations. First, the NO3- concentration demonstrated the largest changes when the DOC:NO3- ratio increased from 1 to 10. Second, the biodegradability of DOC was an important factor in controlling the NO3- concentration of agricultural ecosystems. Third, sediment was important not only as a denitrification site, but also as a major source of DOC for the overlying water. Fourth, a high DOC concentration was able to maintain a low NO3- concentration in the groundwater. In conclusion, this new stoichiometric method can be used for the accurate estimation and analysis of NO3- concentrations in ecosystems.

  17. Simulation of quantity and quality of storm runoff for urban catchments in Fresno, California

    USGS Publications Warehouse

    Guay, J.R.; Smith, P.E.

    1988-01-01

    Rainfall-runoff models were developed for a multiple-dwelling residential catchment (2 applications), a single-dwelling residential catchment, and a commercial catchment in Fresno, California, using the U.S. Geological Survey Distributed Routing Rainfall-Runoff Model (DR3M-II). A runoff-quality model also was developed at the commercial catchment using the Survey 's Multiple-Event Urban Runoff Quality model (DR3M-qual). The purpose of this study was: (1) to demonstrate the capabilites of the two models for use in designing storm drains, estimating the frequency of storm runoff loads, and evaluating the effectiveness of street sweeping on an urban drainage catchment; and (2) to determine the simulation accuracies of these models. Simulation errors of the two models were summarized as the median absolute deviation in percent (mad) between measured and simulated values. Calibration and verification mad errors for runoff volumes and peak discharges ranged from 14 to 20%. The estimated annual storm-runoff loads, in pounds/acre of effective impervious area, that could occur once every hundred years at the commercial catchment was 95 for dissolved solids, 1.6 for the dissolved nitrite plus nitrate, 0.31 for total recoverable lead, and 120 for suspended sediment. Calibration and verification mad errors for the above constituents ranged from 11 to 54%. (USGS)

  18. Transport of suspended sediment and organic carbon during storm events in a large agricultural catchment, southwest France.

    NASA Astrophysics Data System (ADS)

    Chantha, Oeurng; Sabine, Sauvage; David, Baqué; Alexandra, Coynel; Eric, Maneux; Henri, Etcheber; José-Miguel, Sánchez-Pérez

    2010-05-01

    Intensive agriculture has led to environmental degradation through soil erosion and carbon loss transferred from agricultural land to the stream networks. Suspended sediment transport from the agricultural catchment to the watercourses is responsible for aquatic habitat degradation, reservoir sedimentation, and for transporting sediment associated pollutants (pesticides, nutrient, heavy metals and other toxic substances). Consequently, the temporal transport of suspended sediment (SS), dissolved and particulate organic carbon (DOC and POC) was investigated during 18 months from January 2008 to June 2009 within a large agricultural catchment in southwest France. This study is based on an extensive dataset with high temporal resolution using manual and automatic sampling, especially during 15 flood events. Two main objectives aim at: (i) studying temporal transport in suspended sediment (SS), DOC and POC with factors explaining their dynamics and (ii) analysing the relationships between discharge, SSC, DOC and POC during flood events. The study demonstrates there is a strong variability of SS, POC and DOC during flood events. The SS transport during different seasonal floods varied by event from 513 to 41 750 t; POC transport varied from 12 to 748 t and DOC transport varied from 9 to 218 t. The specific yield of the catchment represents 76 t km-2 y-1 of sediment, 1.8 t km-2 y-1 of POC and 0.7 t km-2 y-1 of DOC, respectively. The POC associated with sediment transport from the catchment accounted for ~2.5% of the total sediment load. Flood duration and flood magnitude are key factors in determining the sediment and organic carbon transport. Statistical analyses revealed strong correlations between total precipitation, flood discharge, total water yield with suspended sediment and organic transport. The relationships of SSC, POC and DOC versus discharge over temporal flood events resulted in different hysteresis patterns which were used to suggest those dissolved and

  19. Pesticide transport with runoff from creeping bentgrass turf: Relationship of pesticide properties to mass transport.

    PubMed

    Rice, Pamela J; Horgan, Brian P; Rittenhouse, Jennifer L

    2010-06-01

    The off-site transport of pesticides with runoff is both an agronomic and environmental concern, resulting from reduced control of target pests in the area of application and contamination of surrounding ecosystems. Experiments were designed to measure the quantity of pesticides in runoff from creeping bentgrass (Agrostis palustris) turf managed as golf course fairway to gain a better understanding of factors that influence chemical availability and mass transport. Less than 1 to 23% of applied chloropyrifos, flutolanil, mecoprop-p (MCPP), dimethylamine salt of 2,4-dichlorophenoxyacetic acid (2,4-D), or dicamba was measured in edge-of-plot runoff when commercially available pesticide formulations were applied at label rates 23 +/- 9 h prior to simulated precipitation (62 +/- 13 mm). Time differential between hollow tine core cultivation and runoff did not significantly influence runoff volumes or the percentage of applied chemicals transported in the runoff. With the exception of chlorpyrifos, all chemicals of interest were detected in the initial runoff samples and throughout the runoff events. Chemographs of the five pesticides followed trends in agreement with mobility classifications associated with their soil organic carbon partition coefficient (K(OC).) Data collected from the present study provides information on the transport of chemicals with runoff from turf, which can be used in model simulations to predict nonpoint source pollution potentials and estimate ecological risks. Copyright 2010 SETAC.

  20. Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA.

    PubMed

    Brezonik, Patrick L; Stadelmann, Teresa H

    2002-04-01

    Urban nonpoint source pollution is a significant contributor to water quality degradation. Watershed planners need to be able to estimate nonpoint source loads to lakes and streams if they are to plan effective management strategies. To meet this need for the twin cities metropolitan area, a large database of urban and suburban runoff data was compiled. Stormwater runoff loads and concentrations of 10 common constituents (six N and P forms, TSS, VSS, COD, Pb) were characterized, and effects of season and land use were analyzed. Relationships between runoff variables and storm and watershed characteristics were examined. The best regression equation to predict runoff volume for rain events was based on rainfall amount, drainage area, and percent impervious area (R2 = 0.78). Median event-mean concentrations (EMCs) tended to be higher in snowmelt runoff than in rainfall runoff, and significant seasonal differences were found in yields (kg/ha) and EMCs for most constituents. Simple correlations between explanatory variables and stormwater loads and EMCs were weak. Rainfall amount and intensity and drainage area were the most important variables in multiple linear regression models to predict event loads, but uncertainty was high in models developed with the pooled data set. The most accurate models for EMCs generally were found when sites were grouped according to common land use and size.

  1. Climate change and water availability for vulnerable agriculture

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2017-04-01

    Climatic projections for the Mediterranean basin indicate that the area will suffer a decrease in water resources due to climate change. The key climatic trends identified for the Mediterranean region are continuous temperature increase, further drying with precipitation decrease and the accentuation of climate extremes, such as droughts, heat waves and/or forest fires, which are expected to have a profound effect on agriculture. Indeed, the impact of climate variability on agricultural production is important at local, regional, national, as well as global scales. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage patterns. Changes in total seasonal precipitation or in its pattern of variability are both important. Similarly, with higher temperatures, the water-holding capacity of the atmosphere and evaporation into the atmosphere increase, and this favors increased climate variability, with more intense precipitation and more droughts. As a result, crop yields are affected by variations in climatic factors, such as air temperature and precipitation, and the frequency and severity of the above mentioned extreme events. The aim of this work is to briefly present the main effects of climate change and variability on water resources with respect to water availability for vulnerable agriculture, namely in the Mediterranean region. Results of undertaken studies in Greece on precipitation patterns and drought assessment using historical data records are presented. Based on precipitation frequency analysis, evidence of precipitation reductions is shown. Drought is assessed through an agricultural drought index, namely the Vegetation Health Index (VHI), in Thessaly, a drought-prone region in central Greece. The results justify the importance of water availability for vulnerable agriculture and the need for drought monitoring in the Mediterranean basin as part of

  2. Phytotoxic substances in runoff from forested catchment areas

    NASA Astrophysics Data System (ADS)

    Grimvall, Anders; Bengtsson, Maj-Britt; Borén, Hans; Wahlström, Dan

    Runoff from different catchment areas in southern Sweden was tested in a root bioassay based on solution cultures of cucumber seedlings. Water samples from agricultural catchment areas produced no signs at all or only weak signs of inhibited root growth, whereas several water samples from catchment areas dominated by mires or coniferous forests produced visible root injuries. The most severe root injuries (very short roots, discolouration, swelling of root tips and lack of root hairs) were caused by samples from a catchment area without local emissions and dominated by old stands of spruce. Fractionation by ultrafiltration showed that the phytotoxic effect of these samples could be attributed to organic matter with a nominal molecular-weight exceeding 1000 or to substances associated with organic macromolecules. Experiments aimed at concentrating phytotoxic compounds from surface water indicated that the observed growth inhibition was caused by strongly hydrophilic substances. Previous reports on phytotoxic, organic substances of natural origin have emphasized interaction between plants growing close together. The presence of phytotoxic substances in runoff indicates that there is also a large-scale dispersion of such compounds.

  3. Seasonal herbicide monitoring in soil, runoff and sediments of an olive orchard under conventional tillage

    NASA Astrophysics Data System (ADS)

    Calderón, Maria Jesus; de Luna, Elena; Gómez, José Alfonso; Cornejo, Juan; Hermosín, M. Carmen

    2015-04-01

    Several pollution episodes in surface and groundwaters with pesticides have occurred in areas where olive crops are established. For that reason, it is necessary to know the evolution of some pesticides in olive trees plantation depending on their seasonal application. This is especially important when conventional tillage is used. A monitoring of two herbicides (terbuthylazine and oxyfluorfen)in the first cm of soil and, in runoff and sediment yield was carried out after several rainfall events. The rainfall occurred during the study was higher in winter than in spring giving rise more runoff in winter. However, no differences in sediment yields were observed between spring and winter. Terbuthylazine depletion from soil is associated to the first important rainfall events in both seasons (41 mm in spring and 30 mm in winter). At the end of the experiment, no terbuthylazine soil residues were recovered in winter whereas 15% of terbuthylazine applied remained in spring. Oxyfluorfen showed a character more persistent than terbuthylazine remaining 48% of the applied at the end of the experiment due to its low water solubility. Higher percentage from the applied of terbuthylazine was recovered in runoff in winter (0.55%) than in spring (0.17%). Nevertheless, no differences in terbuthylazine sediments yields between both seasons were observed. That is in agreement with the values of runoff and sediment yields accumulated in tanks in both seasons. Due to the low water solubility of oxyfluorfen very low amount of this herbicide was recovered in runoff. Whereas, in sediment yields the 39.5% of the total applied was recovered. These data show that the dissipation of terbuthylazine from soil is closely related with leaching processes and in less extent with runoff. However, oxyfluorfen dissipation is more affected by runoff processes since this herbicide is co-transported in sediment yields. Keywords: olive crop, pesticide, runoff, sediments, surface water, groundwater

  4. Dracaena marginata biofilter: design of growth substrate and treatment of stormwater runoff.

    PubMed

    Vijayaraghavan, K; Praveen, R S

    2016-01-01

    The purpose of this research was to investigate the efficiency of Dracaena marginata planted biofilters to decontaminate urban runoff. A new biofilter growth substrate was prepared using low-cost and locally available materials such as red soil, fine sand, perlite, vermiculite, coco-peat and Sargassum biomass. The performance of biofilter substrate was compared with local garden soil based on physical and water quality parameters. Preliminary analyses indicated that biofilter substrate exhibited desirable characteristics such as low bulk density (1140 kg/m(3)), high water holding capacity (59.6%), air-filled porosity (7.82%) and hydraulic conductivity (965 mm/h). Four different biofilter assemblies, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). Results from un-spiked artificial rain events suggested that concentrations of most of the chemical components in effluent were highest at the beginning of rain events and thereafter subsided during the subsequent rain events. Biofilter growth substrate showed superior potential over garden soil to retain metal ions such as Al, Fe, Cu, Cr, Ni, Zn, Cd and Pb during metal-spiked rain events. Significant differences were also observed between non-vegetated and vegetated biofilter assemblies in runoff quality, with the latter producing better results.

  5. Land cover controls on summer discharge and runoff solution chemistry of semi-arid urban catchments

    NASA Astrophysics Data System (ADS)

    Gallo, Erika L.; Brooks, Paul D.; Lohse, Kathleen A.; McLain, Jean E. T.

    2013-04-01

    SummaryRecharge of urban runoff to groundwater as a stormwater management practice has gained importance in semi-arid regions where water resources are scarce and urban centers are growing. Despite this trend, the importance of land cover in controlling semi-arid catchment runoff quantity and quality remains unclear. Here we address the question: How do land cover characteristics control the amount and quality of storm runoff in semi-arid urban catchments? We monitored summertime runoff quantity and quality from five catchments dominated by distinct urban land uses: low, medium, and high density residential, mixed use, and commercial. Increasing urban land cover increased runoff duration and the likelihood that a rainfall event would result in runoff, but did not increase the time to peak discharge of episodic runoff. The effect of urban land cover on hydrologic responses was tightly coupled to the magnitude of rainfall. At distinct rainfall thresholds, roads, percent impervious cover and the stormwater drainage network controlled runoff frequency, runoff depth and runoff ratios. Contrary to initial expectations, runoff quality did not vary in repose to impervious cover or land use. We identified four major mechanisms controlling runoff quality: (1) variable solute sourcing due to land use heterogeneity and above ground catchment connectivity; (2) the spatial extent of pervious and biogeochemically active areas; (3) the efficiency of overland flow and runoff mobilization; and (4) solute flushing and dilution. Our study highlights the importance of the stormwater drainage systems characteristics in controlling urban runoff quantity and quality; and suggests that enhanced wetting and in-stream processes may control solute sourcing and retention. Finally, we suggest that the characteristics of the stormwater drainage system should be integrated into stormwater management approaches.

  6. Rainfall intensity and phosphorus source effects on phosphorus transport in surface runoff from soil trays.

    PubMed

    Shigaki, Francirose; Sharpley, Andrew; Prochnow, Luis Ignacio

    2007-02-01

    Phosphorus runoff from agricultural fields amended with mineral fertilizers and manures has been linked to freshwater eutrophication. A rainfall simulation study was conducted to evaluate the effects of different rainfall intensities and P sources differing in water soluble P (WSP) concentration on P transport in runoff from soil trays packed with a Berks loam and grassed with annual ryegrass (Lolium multiflorum Lam.). Triple superphosphate (TSP; 79% WSP), low-grade super single phosphate (LGSSP; 50% WSP), North Carolina rock phosphate (NCRP; 0.5% WSP) and swine manure (SM; 70% WSP), were broadcast (100 kg total P ha-1) and rainfall applied at 25, 50 and 75 mm h-1 1, 7, 21, and 56 days after P source application. The concentration of dissolved reactive (DRP), particulate (PP), and total P (TP) was significantly (P<0.01) greater in runoff with a rainfall intensity of 75 than 25 mm h-1 for all P sources. Further, runoff DRP increased as P source WSP increased, with runoff from a 50 mm h-1 rain 1 day after source application having a DRP concentration of 0.25 mg L-1 for NCRP and 28.21 mg L-1 for TSP. In contrast, the proportion of runoff TP as PP was greater with low (39% PP for NCRP) than high WSP sources (4% PP for TSP) averaged for all rainfall intensities. The increased PP transport is attributed to the detachment and transport of undissolved P source particles during runoff. These results show that P source water solubility and rainfall intensity can influence P transport in runoff, which is important in evaluating the long-term risks of P source application on P transport in surface runoff.

  7. Climatic and land-use driven change of runoff throughout Sweden

    NASA Astrophysics Data System (ADS)

    Worman, A. L. E.; Riml, J.; Lindstrom, G.

    2015-12-01

    Changes in runoff can be caused by climatic variations, land-use changes and water regulation. In this paper we propose a separation of the power spectral response of runoff in watersheds in terms of the product of the power spectra of precipitation and the impulse response function for the watershed. This allows a formal separation of the spectral response in climatic factors - the precipitation - from those of land-use change and regulation - the impulse response function. The latter function characterizes the surface water-groundwater interaction, stream network topology and open channel hydraulics. Based on daily data of digitalized hydro-climatological data from 1961, we constructed synthetic, but calibrated data of runoff from 1001 watersheds in Sweden. From spectral analysis of the data we found periodic fluctuations occurring on time scales of about a decade and a bi-annual peak. These multi-annual fluctuations could be statistically linked through the coherence spectra to climatic indices like the NAO, PDO, geostrophic wind velocity and sun spot numbers on common periods of 3,6 and 7,6 years. Such long-term fluctuations in runoff are not significantly affected by the land-use or regulation other than indirectly through impact on local hydro-climate. Based on a spectral separation of precipitation and impulse response function of the watersheds, we found that the intra-annual variation in runoff was primarily affected by the land-use change in 79 unregulated catchments with up to century-long time series of measured daily discharge. There is a statistically significant increasing slope of the catchments impulse response function for 63 of the 79 catchments and this suggest a significant hydrological effect of land-use practice in agriculture, urbanisation and forestry.

  8. People of the Corn: Teachings in Hopi Traditional Agriculture, Spirituality, and Sustainability

    ERIC Educational Resources Information Center

    Wall, Dennis; Masayesva, Virgil

    2004-01-01

    This article describes aspects of a unique relationship between an ancient agricultural practice and the culture that it sustains. Hopi agriculture, known as "dry farming" because it relies strictly on precipitation and runoff water (along with hard work and prayer), has kept the Hopi culture intact for nearly a thousand years. But aside from the…

  9. Pollutant loads of surface runoff in Wuhan City Zoo, an urban tourist area.

    PubMed

    Zhao, Jian-wei; Shan, Bao-qing; Yin, Cheng-qing

    2007-01-01

    The pollutant loads of surface runoff in an urban tourist area have been investigated for two years in the Wuhan City Zoo, China. Eight sampling sites, including two woodlands, three animal yards, two roofs and one road, were selected for sampling and study. The results indicate that pollutants ranked in a predictable order of decreasing load (e.g. animal yard > roof > woodland > road), with animal yards acting as the key pollution source in the zoo. Pollutants were transported mainly by particulate form in runoff. Particulate nitrogen and particulate phosphorous accounted on average for 61%, 78% of total pollutant, respectively, over 13 monitored rainfall events. These results indicate the treatment practices should be implemented to improve particulate nutrient removal. Analysis of the M(V) curve indicate that no first flush effect existed in the surface runoff from pervious areas (e.g. woodland, animal ground yard), whereas a first flush effect was evident in runoff from impervious surfaces (e.g. animal cement yard, roof, road).

  10. Calculation of intercepted runoff depth based on stormwater quality and environmental capacity of receiving waters for initial stormwater pollution management.

    PubMed

    Peng, Hai-Qin; Liu, Yan; Gao, Xue-Long; Wang, Hong-Wu; Chen, Yi; Cai, Hui-Yi

    2017-11-01

    While point source pollutions have gradually been controlled in recent years, the non-point source pollution problem has become increasingly prominent. The receiving waters are frequently polluted by the initial stormwater from the separate stormwater system and the wastewater from sewage pipes through stormwater pipes. Consequently, calculating the intercepted runoff depth has become a problem that must be resolved immediately for initial stormwater pollution management. The accurate calculation of intercepted runoff depth provides a solid foundation for selecting the appropriate size of intercepting facilities in drainage and interception projects. This study establishes a separate stormwater system for the Yishan Building watershed of Fuzhou City using the InfoWorks Integrated Catchment Management (InfoWorks ICM), which can predict the stormwater flow velocity and the flow of discharge outlet after each rainfall. The intercepted runoff depth is calculated from the stormwater quality and environmental capacity of the receiving waters. The average intercepted runoff depth from six rainfall events is calculated as 4.1 mm based on stormwater quality. The average intercepted runoff depth from six rainfall events is calculated as 4.4 mm based on the environmental capacity of the receiving waters. The intercepted runoff depth differs when calculated from various aspects. The selection of the intercepted runoff depth depends on the goal of water quality control, the self-purification capacity of the water bodies, and other factors of the region.

  11. A meta-analysis of pesticide loss in runoff under conventional tillage and no-till management.

    PubMed

    Elias, Daniel; Wang, Lixin; Jacinthe, Pierre-Andre

    2018-01-12

    Global agricultural intensification has led to increased pesticide use (37-fold from 1960 to 2005) and soil erosion (14% since 2000). Conservation tillage, including no-till (NT), has been proposed as an alternative to conventional plow till (PT) to mitigate soil erosion, but past studies have reported mixed results on the effect of conservation tillage on pesticide loss. To explore the underlying factors of these differences, a meta-analysis was conducted using published data on pesticide concentration and load in agricultural runoff from NT and PT fields. Peer-reviewed articles (1985-2016) were compiled to build a database for analysis. Contrary to expectations, results showed greater concentration of atrazine, cyanazine, dicamba, and simazine in runoff from NT than PT fields. Further, we observed greater load of dicamba and metribuzin, but reduced load of alachlor from NT fields. Overall, the concentration and the load of pesticides were greater in runoff from NT fields, especially pesticides with high solubility and low affinity for solids. Thus, NT farming affects soil properties that control pesticide retention and interactions with soils, and ultimately their mobility in the environment. Future research is needed for a more complete understanding of pesticide-soil interactions in NT systems. This research could inform the selection of pesticides by farmers and improve the predictive power of pesticide transport models.

  12. Predicting runoff of suspended solids and particulate phosphorus for selected Louisiana soils using simple soil tests.

    PubMed

    Udeigwe, Theophilus K; Wang, Jim J; Zhang, Hailin

    2007-01-01

    This study was conducted to evaluate the relationships among total suspended solids (TSS) and particulate phosphorus (PP) in runoff and selected soil properties. Nine Louisiana soils were subjected to simulated rainfall events, and runoff collected and analyzed for various parameters. A highly significant relationship existed between runoff TSS and runoff turbidity. Both runoff TSS and turbidity were also significantly related to runoff PP, which on average accounted for more than 98% of total P (TP) in the runoff. Runoff TSS was closely and positively related to soil clay content in an exponential fashion (y=0.10e0.01x, R2=0.91, P<0.001) while it was inversely related to soil electrical conductivity (EC) (y=0.02 x(-3.95), R2=0.70, P<0.01). A newly-devised laboratory test, termed "soil suspension turbidity" (SST) which measures turbidity in a 1:200 soil/water suspension, exhibited highly significant linear relationships with runoff TSS (y=0.06x-4.38, R2=0.82, P<0.001) and PP (y=0.04x+2.68, R2=0.85, P<0.001). In addition, SST alone yielded similar R2 value to that of combining soil clay content and EC in a multiple regression, suggesting that SST was able to account for the integrated effect of clay content and electrolytic background on runoff TSS. The SST test could be used for assessment and management of sediment and particulate nutrient losses in surface runoff.

  13. Variations in Field-Scale Nitrogen and Phosphorus Concentrations in Runoff as a Function of Land-Use Practice

    DTIC Science & Technology

    2004-09-01

    for agricultural land-use practices that promoted P subsidies to the soils. In particular, Reddy et al. (1978) found that manure amendments...highest from this land-use practice versus the other land uses. Woodlots did not receive agricultural N subsidies in the form of manure or fertilizer...L. G., Andraski, T. W., and Powell, J. M. (2001) “Management practice effects on phosphorus losses in runoff on corn production systems,” J

  14. Impact of animal waste application on runoff water quality in field experimental plots.

    PubMed

    Hill, Dagne D; Owens, William E; Tchoounwou, Paul B

    2005-08-01

    Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this research was to determine the effect of animal waste application on biological (fecal coliform, Enterobacter spp. and Escherichia coli) and physical/chemical (temperature, pH, nitrate nitrogen, ammonia nitrogen, phosphate, copper, zinc, and sulfate) characteristics of runoff water in experimental plots. The effects of the application of animal waste have been evaluated by utilizing experimental plots and simulated rainfall events. Samples of runoff water were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols. An analysis of temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [1]. In the experimental plots, less time was required in the tilled broiler litter plots for the measured chemicals to decrease below the initial pre-treatment levels. A decrease of over 50% was noted between the first and second rainfall events for sulfate levels. This decrease was seen after only four simulated rainfall events in tilled broiler litter plots whereas broiler litter plots required eight simulated rainfall events to show this same type of reduction. A reverse trend was seen in the broiler litter plots and the tilled broiler plots for potassium. Bacteria numbers

  15. Investigation of denitrifying microbe communities within an agricultural drainage system fitted with low-grade weirs

    USDA-ARS?s Scientific Manuscript database

    Enhancing wetland characteristics in agricultural drainage ditches with the use of low-grade weirs, has been identified as a potential best management practice (BMP) to mitigate nutrient runoff from agriculture landscapes. This study examined microbe community abundance and diversity involved in den...

  16. Repeated compost application effects on phosphorus runoff in the Virginia Piedmont.

    PubMed

    Spargo, John T; Evanylo, Gregory K; Alley, Marcus M

    2006-01-01

    Increasing amounts of animal and municipal wastes are being composted before land application to improve handling and spreading characteristics, and to reduce odor and disease incidence. Repeated applications of composted biosolids and manure to cropland may increase the risk for P enrichment of agricultural runoff. We conducted field research in 2003 and 2004 on a Fauquier silty clay loam (Ultic Hapludalfs) to compare the effects of annual (since 1999) applications of composted and uncomposted organic residuals on P runoff characteristics. Biosolids compost (BSC), poultry litter-yard waste compost (PLC), and uncomposted poultry litter (PL) were applied based on estimated plant-available N. A commercial fertilizer treatment (CF) and an unamended control treatment (CTL) were also included. Corn (Zea mays L.) and a cereal rye (Secale cereal L.) cover crop were planted each year. We applied simulated rainfall in fall 2004 and analyzed runoff for dissolved reactive P (DRP), total dissolved P (TDP), total P (TP), total organic C (TOC), and total suspended solids (TSS). End of season soil samples were analyzed for Mehlich-3 P (M3P), EPA 3050 P (3050P), water soluble P (WSP), degree of P saturation (DPS), soil C, and bulk density. Compost treatments significantly increased soil C, decreased bulk density, and increased M3P, 3050P, WSP, and DPS. The concentration of DRP, TDP, and TP in runoff was highest in compost treatments, but the mass of DRP and TDP was not different among treatments because infiltration was higher and runoff lower in compost-amended soil. Improved soil physical properties associated with poultry litter-yard waste compost application decreased loss of TP and TSS.

  17. [Output characteristics of rainfall runoff phosphorus pollution from a typical small watershed in Yimeng mountainous area].

    PubMed

    Yu, Xing-xiu; Li, Zhen-wei; Liu, Qian-jin; Jing, Guang-hua

    2012-08-01

    Relationships between phosphorus pollutant concentrations and precipitation-runoff were analyzed by monitoring pollutant losses at outlets of the Menglianggu watershed in 2010. A typical small watershed was selected to examine the runoff and quality parameters such as total phosphorus (TP), particle phosphorus (PP), dissolve phosphorus (DP) and dissolve inorganic phosphorus (DIP) in rainfall-runoff of 10 rainfall events. Precipitation was above 2 mm for all the 10 rainfall events. The results showed that the peak of phosphorus concentrations occurred before the peak of water flows, whereas change processes of the phosphorus fluxes were consistent with that of the water flows and the phosphorus flux also have a strong linear relationship with the water flows. The minimums of the phosphorus concentrations in every 10 natural rainfall events have small differences with each other, but the maximum and EMCs of the phosphorus concentrations have significant differences with each rainfall event. This was mainly influenced by the precipitation, maximum rainfall intensity and mean rainfall intensity (EMCs) and was less influenced by rainfall duration. DP and TP were mainly composed of DIP and PP, respectively. There were no significant correlations between DIP/DP dynamic changes and rainfall characteristics, whereas significant correlations between PP/TP dynamic changes and maximum rainfall intensity were detected. The production of DIP, DP, AND TP were mainly influenced by the direct runoff (DR) and base flow (BF). The EMCs of DIP, DP, TP and the variations of DIP/DP were all found to have significant polynomial relationships with DR/TR., but the dynamic changes of PP/ TP and the EMCS of PP were less influenced by the DR/TR.

  18. WEPP and ANN models for simulating soil loss and runoff in a semi-arid Mediterranean region.

    PubMed

    Albaradeyia, Issa; Hani, Azzedine; Shahrour, Isam

    2011-09-01

    This paper presents the use of both the Water Erosion Prediction Project (WEPP) and the artificial neural network (ANN) for the prediction of runoff and soil loss in the central highland mountainous of the Palestinian territories. Analyses show that the soil erosion is highly dependent on both the rainfall depth and the rainfall event duration rather than on the rainfall intensity as mostly mentioned in the literature. The results obtained from the WEPP model for the soil loss and runoff disagree with the field data. The WEPP underestimates both the runoff and soil loss. Analyses conducted with the ANN agree well with the observation. In addition, the global network models developed using the data of all the land use type show a relatively unbiased estimation for both runoff and soil loss. The study showed that the ANN model could be used as a management tool for predicting runoff and soil loss.

  19. A glacier runoff extension to the Precipitation Runoff Modeling System

    Treesearch

    A. E. Van Beusekom; R. J. Viger

    2016-01-01

    A module to simulate glacier runoff, PRMSglacier, was added to PRMS (Precipitation Runoff Modeling System), a distributed-parameter, physical-process hydrological simulation code. The extension does not require extensive on-glacier measurements or computational expense but still relies on physical principles over empirical relations as much as is feasible while...

  20. Irrigated Agriculture in Morocco: An Agent-Based Model of Adaptation and Decision Making Amid Increasingly Frequent Drought Events

    NASA Astrophysics Data System (ADS)

    Norton, M.

    2015-12-01

    In the past 100 years, Morocco has undertaken a heavy investment in developing water infrastructure that has led to a dramatic expansion of irrigated agriculture. Irrigated agriculture is the primary user of water in many arid countries, often accounting for 80-90% of total water usage. Irrigation is adopted by farmers not only because it leads to increased production, but also because it improves resilience to an uncertain climate. However, the Mediterranean region as a whole has also seen an increase in the frequency and severity of drought events. These droughts have had a dramatic impact on farmer livelihoods and have led to a number of coping strategies, including the adoption or disadoption of irrigation. In this study, we use a record of the annual extent of irrigated agriculture in Morocco to model the effect of drought on the extent of irrigated agriculture. Using an agent-based socioeconomic model, we seek to answer the following questions: 1) Do farmers expand irrigated agriculture in response to droughts? 2) Do drought events entail the removal of perennial crops like orchards? 3) Can we detect the retreat of irrigated agriculture in the more fragile watersheds of Morocco? Understanding the determinants of irrigated crop expansion and contractions will help us understand how agro-ecological systems transition from 20th century paradigms of expansion of water supply to a 21st century paradigm of water use efficiency. The answers will become important as countries learn how to manage water in new climate regimes characterized by less reliable and available precipitation.

  1. Uncertainty in monitoring E. coli concentrations in streams and stormwater runoff

    NASA Astrophysics Data System (ADS)

    Harmel, R. D.; Hathaway, J. M.; Wagner, K. L.; Wolfe, J. E.; Karthikeyan, R.; Francesconi, W.; McCarthy, D. T.

    2016-03-01

    Microbial contamination of surface waters, a substantial public health concern throughout the world, is typically identified by fecal indicator bacteria such as Escherichia coli. Thus, monitoring E. coli concentrations is critical to evaluate current conditions, determine restoration effectiveness, and inform model development and calibration. An often overlooked component of these monitoring and modeling activities is understanding the inherent random and systematic uncertainty present in measured data. In this research, a review and subsequent analysis was performed to identify, document, and analyze measurement uncertainty of E. coli data collected in stream flow and stormwater runoff as individual discrete samples or throughout a single runoff event. Data on the uncertainty contributed by sample collection, sample preservation/storage, and laboratory analysis in measured E. coli concentrations were compiled and analyzed, and differences in sampling method and data quality scenarios were compared. The analysis showed that: (1) manual integrated sampling produced the lowest random and systematic uncertainty in individual samples, but automated sampling typically produced the lowest uncertainty when sampling throughout runoff events; (2) sample collection procedures often contributed the highest amount of uncertainty, although laboratory analysis introduced substantial random uncertainty and preservation/storage introduced substantial systematic uncertainty under some scenarios; and (3) the uncertainty in measured E. coli concentrations was greater than that of sediment and nutrients, but the difference was not as great as may be assumed. This comprehensive analysis of uncertainty in E. coli concentrations measured in streamflow and runoff should provide valuable insight for designing E. coli monitoring projects, reducing uncertainty in quality assurance efforts, regulatory and policy decision making, and fate and transport modeling.

  2. Water-Quality Assessment of Southern Florida - Wastewater Discharges and Runoff

    USGS Publications Warehouse

    Marella, Richard L.

    1998-01-01

    Nearly 800 million gallons per day of treated wastewater was discharged in the Southern Florida National Water-Quality Assessment (NAWQA) study unit in 1990, most to the Atlantic Ocean (44 percent) and to deep, saline aquifers (25 percent). About 9 percent was discharged to fresh surface waters and about 22 percent to shallow ground water, of which septic tanks accounted for 9 percent. Runoff from agricultural and urban lands, though not directly measured, is a large source of wastewater in southern Florida.

  3. Effect of rainfall timing and tillage on the transport of steroid hormones in runoff from manure amended row crop fields.

    PubMed

    Biswas, Sagor; Kranz, William L; Shapiro, Charles A; Snow, Daniel D; Bartelt-Hunt, Shannon L; Mamo, Mitiku; Tarkalson, David D; Zhang, Tian C; Shelton, David P; van Donk, Simon J; Mader, Terry L

    2017-02-15

    Runoff generated from livestock manure amended row crop fields is one of the major pathways of hormone transport to the aquatic environment. The study determined the effects of manure handling, tillage methods, and rainfall timing on the occurrence and transport of steroid hormones in runoff from the row crop field. Stockpiled and composted manure from hormone treated and untreated animals were applied to test plots and subjected to two rainfall simulation events 30days apart. During the two rainfall simulation events, detection of any steroid hormone or metabolites was identified in 8-86% of runoff samples from any tillage and manure treatment. The most commonly detected hormones were 17β-estradiol, estrone, estriol, testosterone, and α-zearalenol at concentrations ranging up to 100-200ngL -1 . Considering the maximum detected concentrations in runoff, no more than 10% of the applied hormone can be transported through the dissolved phase of runoff. Results from the study indicate that hormones can persist in soils receiving livestock manure over an extended period of time and the dissolved phase of hormone in runoff is not the preferred pathway of transport from the manure applied fields irrespective of tillage treatments and timing of rainfall. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Sustainable oil and grease removal from synthetic stormwater runoff using bench-scale bioretention studies.

    PubMed

    Hong, Eunyoung; Seagren, Eric A; Davis, Allen P

    2006-02-01

    One of the principal components of the contaminant load in urban stormwater runoff is oil and grease (O&G) pollution, resulting from vehicle emissions. A mulch layer was used as a contaminant trap to remove O&G (dissolved and particulate-associated naphthalene, dissolved toluene, and dissolved motor oil hydrocarbons) from a synthetic runoff during a bench-scale infiltration study. Approximately 80 to 95% removal of all contaminants from synthetic runoff was found via sorption and filtration. Subsequently, approximately 90% of the sorbed naphthalene, toluene, oil, and particulate-associated naphthalene was biodegraded within approximately 3, 4, 8, and 2 days after the event, respectively, based on decreases in contaminant concentrations coupled with increases of microbial populations. These results indicate the effectiveness and sustainability of placing a thin layer of mulch on the surface of a bioretention facility for reducing O&G pollution from urban stormwater runoff.

  5. Urban rainwater runoff quantity and quality - A potential endogenous resource in cities?

    PubMed

    Angrill, Sara; Petit-Boix, Anna; Morales-Pinzón, Tito; Josa, Alejandro; Rieradevall, Joan; Gabarrell, Xavier

    2017-03-15

    Rainwater harvesting might help to achieve self-sufficiency, but it must comply with health standards. We studied the runoff quantity and quality harvested from seven urban surfaces in a university campus in Barcelona according to their use (pedestrian or motorized mobility) and materials (concrete, asphalt and slabs). An experimental rainwater harvesting system was used to collect the runoff resulting from a set of rainfall events. We estimated the runoff coefficient and initial abstraction of each surface and analyzed the physicochemical and microbiological properties, and hydrocarbon and metal content of the samples. Rainfall intensity, surface material and state of conservation were essential parameters. Because of low rainfall intensity and surface degradation, the runoff coefficient was variable, with a minimum of 0.41. Concrete had the best quality, whereas weathering and particulate matter deposition led to worse quality in asphalt areas. Physicochemical runoff quality was outstanding when compared to superficial and underground water. Microorganisms were identified in the samples (>1 CFU/100 mL) and treatment is required to meet human consumption standards. Motorized traffic mostly affects the presence of metals such as zinc (31.7 μg/L). In the future, sustainable mobility patterns might result in improved rainwater quality standards. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Regional rainfall-runoff relations for simulation of streamflow for watersheds in Du Page County, Illinois

    USGS Publications Warehouse

    Duncker, James J.; Melching, Charles S.

    1998-01-01

    Rainfall and streamflow data collected from July 1986 through September 1993 were utilized to calibrate and verify a continuous-simulation rainfall-runoff model for three watersheds (11.8--18.0 square miles in area) in Du Page County. Classification of land cover into three categories of pervious (grassland, forest/wetland, and agricultural land) and one category of impervious subareas was sufficient to accurately simulate the rainfall-runoff relations for the three watersheds. Regional parameter sets were obtained by calibrating jointly all parameters except fraction of ground-water inflow that goes to inactive ground water (DEEPFR), interflow recession constant (IRC), and infiltration (INFILT) for runoff from all three watersheds. DEEPFR and IRC varied among the watersheds because of physical differences among the watersheds. Two values of INFILT were obtained: one representing the rainfall-runoff process on the silty and clayey soils on the uplands and lake plains that characterize Sawmill Creek, St. Joseph Creek, and eastern Du Page County; and one representing the rainfall-runoff process on the silty soils on uplands that characterize Kress Creek and parts of western Du Page County. Regional rainfall-runoff relations, defined through joint calibration of the rainfall-runoff model and verified for independent periods, presented in this report, allow estimation of runoff for watersheds in Du Page County with an error in the total water balance less than 4.0 percent; an average absolute error in the annual-flow estimates of 17.1 percent with the error rarely exceeding 25 percent for annual flows; and correlation coefficients and coefficients of model-fit efficiency for monthly flows of at least 87 and 76 percent, respectively. Close reproduction of the runoff-volume duration curves was obtained. A frequency analysis of storm-runoff volume indicates a tendency of the model to undersimulate large storms, which may result from underestimation of the amount of

  7. Detection of dominant runoff generation processes in flood frequency analysis

    NASA Astrophysics Data System (ADS)

    Iacobellis, Vito; Fiorentino, Mauro; Gioia, Andrea; Manfreda, Salvatore

    2010-05-01

    The investigation on hydrologic similarity represents one of the most exciting challenges faced by hydrologists in the last few years, in order to reduce uncertainty on flood prediction in ungauged basins (e.g., IAHS Decade on Predictions in Ungauged Basins (PUB) - Sivapalan et al., 2003). In perspective, the identification of dominant runoff generation mechanisms may provide a strategy for catchment classification and identification hydrologically omogeneous regions. In this context, we exploited the framework of theoretically derived flood probability distributions, in order to interpret the physical behavior of real basins. Recent developments on theoretically derived distributions have highlighted that in a given basin different runoff processes may coexistence and modify or affect the shape of flood distributions. The identification of dominant runoff generation mechanisms represents a key signatures of flood distributions providing an insight in hydrologic similarity. Iacobellis and Fiorentino (2000) introduced a novel distribution of flood peak annual maxima, the "IF" distribution, which exploited the variable source area concept, coupled with a runoff threshold having scaling properties. More recently, Gioia et al (2008) introduced the Two Component-IF (TCIF) distribution, generalizing the IF distribution, based on two different threshold mechanisms, associated respectively to ordinary and extraordinary events. Indeed, ordinary floods are mostly due to rainfall events exceeding a threshold infiltration rate in a small source area, while the so-called outlier events, often responsible of the high skewness of flood distributions, are triggered by severe rainfalls exceeding a threshold storage in a large portion of the basin. Within this scheme, we focused on the application of both models (IF and TCIF) over a considerable number of catchments belonging to different regions of Southern Italy. In particular, we stressed, as a case of strong general interest in

  8. Large-Scale Simulation of the Effects of Climate Change on Runoff Erosion Following Extreme Wildfire Events Authors: Gould, Adam, Warren, Barber, Wagenbrenner, Robichaud, Wang, Cherkauer

    NASA Astrophysics Data System (ADS)

    Gould, G.; Adam, J. C.; Barber, M. E.; Wagenbrenner, J. W.; Robichaud, P. R.; Wang, L.; Cherkauer, K. A.

    2012-12-01

    -fire characteristics, such as vegetative cover, interrill and rill erodibility factors, and saturated hydraulic conductivity. Evaluation of runoff erosion at experimental sites, observed by the U.S. Forest Service, involved using Disturbed WEPP which showed reasonable first post-fire year annual erosion predictions. We evaluated VIC-WEPP by comparing sediment observations downstream of the SRB with simulated yields for both pre and post-fire conditions. Generation of maps showing erosion over the SRB for each of the scenarios show specific areas within the SRB to be high, moderate, or low runoff-induced post-fire erosion regions. Our methodology will enable forest managers in the region to incorporate the impacts of changes in meteorological events on runoff erosion into their strategic management plans.

  9. Coral Skeletons Provide Historical Evidence of Phosphorus Runoff on the Great Barrier Reef

    PubMed Central

    Mallela, Jennie; Lewis, Stephen E.; Croke, Barry

    2013-01-01

    Recently, the inshore reefs of the Great Barrier Reef have declined rapidly because of deteriorating water quality. Increased catchment runoff is one potential culprit. The impacts of land-use on coral growth and reef health however are largely circumstantial due to limited long-term data on water quality and reef health. Here we use a 60 year coral core record to show that phosphorus contained in the skeletons (P/Ca) of long-lived, near-shore Porites corals on the Great Barrier Reef correlates with annual records of fertiliser application and particulate phosphorus loads in the adjacent catchment. Skeletal P/Ca also correlates with Ba/Ca, a proxy for fluvial sediment loading, again linking near-shore phosphorus records with river runoff. Coral core records suggest that phosphorus levels increased 8 fold between 1949 and 2008 with the greatest levels coinciding with periods of high fertiliser-phosphorus use. Periods of high P/Ca correspond with intense agricultural activity and increased fertiliser application in the river catchment following agricultural expansion and replanting after cyclone damage. Our results demonstrate how coral P/Ca records can be used to assess terrestrial nutrient loading of vulnerable near-shore reefs. PMID:24086606

  10. Projected changes to rain-on-snow events over North America

    NASA Astrophysics Data System (ADS)

    Jeong, Dae Il; Sushama, Laxmi

    2016-04-01

    Rain-on-snow (ROS) events have significant impacts on cold region ecosystems and water-related natural hazards, and therefore it is very important to assess how this hydro-meteorological phenomenon will evolve in a changing climate. This study evaluates the changes in ROS characteristics (i.e., frequency, amounts, and runoff) for the future 2041-2070 period with respect to the current 1976-2005 period over North America using six simulations, based on two Canadian RCMs, driven by two driving GCMs for RCP4.5 and 8.5 emission pathways. Projected changes to extreme runoff caused by the changes of the ROS characteristics are also evaluated. All simulations suggest general increases in ROS days in late autumn, winter, and early spring periods for most Canadian regions and northwestern USA for the future period, due to an increase in rain days in a warmer climate. Increases in the future ROS amounts are projected mainly due to an increase in ROS days, although increases in precipitation intensity also contributes to the future increases. Future ROS runoff is expected to increase more than future ROS amounts during snowmelt months as ROS events usually enhance runoff, given the land state and asociated reduced soil infiltration rate and also due to the faster snowmelt rate occuring during these events. The simulations also show that ROS events usually lead to extreme runoff over most of Canada and north-western and -central USA in the January-May snowmelt months for the current period and these show no significant changes in the future climate. However, the future ROS to total runoff ratio will significantly decrease for western and eastern Canada as well as north-western USA for these months, due to an overall increase of the fraction of direct snowmelt and rainfall generated runoff in a warmer climate. These results indicate the difficulties of flood risk and water resource managements in the future, particularly in Canada and north-western and -central USA, requiring

  11. Surface runoff and nitrogen (N) loss in a bamboo (Phyllostachys pubescens) forest under different fertilization regimes.

    PubMed

    Zhang, Qichun; Shamsi, Imran Haider; Wang, Jinwen; Song, Qiujin; Xue, Qiaoyun; Yu, Yan; Lin, Xianyong; Hussain, Sayed

    2013-07-01

    Nitrogen (N) losses from agricultural fields have been extensively studied. In contrast, surface runoff and N losses have rarely been considered for bamboo forests that are widespread in regions such as southern China. The thriving of bamboo industries has led to increasing fertilizer use in bamboo forests. In this study, we evaluated surface runoff and N losses in runoff following different fertilization treatments under field conditions in a bamboo (Phyllostachys pubescens) forest in the catchment of Lake Taihu in Jiangsu, China. Under three different fertilization regimes, i.e., control, site-specific nutrient management (SSNM), and farmer's fertilization practice (FFP), the water runoff rate amounted to 356, 361, and 342 m(3) ha(-1) and accounted for 1.91, 1.98, and 1.85% of the water input, respectively, from June 2009 to May 2010. The total N losses via surface runoff ranged from 1.2 to 1.8 kg ha(-1). Compared with FFP, the SSNM treatment reduced total nitrogen (TN) and dissolved nitrogen (DN) losses by 31 and 34%, respectively. The results also showed that variations in N losses depended mainly on runoff fluxes, not N concentrations. Runoff samples collected from all treatments throughout the year showed TN concentrations greater than 0.35 mg L(-1), with the mean TN concentration in the runoff from the FFP treatment reaching 8.97 mg L(-1). The loss of NO3(-)-N was greater than the loss of NH4(+)-N. The total loss of dissolved organic nitrogen (DON) reached 23-41% of the corresponding DN. Therefore, DON is likely the main N species in runoff from bamboo forests and should be emphasized in the assessment and management of N losses in bamboo forest.

  12. Characterization and source identification of pollutants in runoff from a mixed land use watershed using ordination analyses.

    PubMed

    Lee, Dong Hoon; Kim, Jin Hwi; Mendoza, Joseph A; Lee, Chang Hee; Kang, Joo-Hyon

    2016-05-01

    While identification of critical pollutant sources is the key initial step for cost-effective runoff management, it is challenging due to the highly uncertain nature of runoff pollution, especially during a storm event. To identify critical sources and their quantitative contributions to runoff pollution (especially focusing on phosphorous), two ordination methods were used in this study: principal component analysis (PCA) and positive matrix factorization (PMF). For the ordination analyses, we used runoff quality data for 14 storm events, including data for phosphorus, 11 heavy metal species, and eight ionic species measured at the outlets of subcatchments with different land use compositions in a mixed land use watershed. Five factors as sources of runoff pollutants were identified by PCA: agrochemicals, groundwater, native soils, domestic sewage, and urban sources (building materials and automotive activities). PMF identified similar factors to those identified by PCA, with more detailed source mechanisms for groundwater (i.e., nitrate leaching and cation exchange) and urban sources (vehicle components/motor oils/building materials and vehicle exhausts), confirming the sources identified by PCA. PMF was further used to quantify contributions of the identified sources to the water quality. Based on the results, agrochemicals and automotive activities were the two dominant and ubiquitous phosphorus sources (39-61 and 16-47 %, respectively) in the study area, regardless of land use types.

  13. Phosphorus Losses from Agricultural Watersheds in the Mississippi Delta

    EPA Science Inventory

    High phosphorus (P) loss from agricultural fields has been an environmental concern because of potential water quality problems in streams and lakes. To better understand the process of P loss, rainfall, surface runoff, sediment, ortho-P and total P (TP) were measured (1996 to 2...

  14. Multifunctional Agriculture: Conducting an Ecosystem Service Assessment for an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Wacha, K.; Papanicolaou, T.; Wilson, C. G.

    2012-12-01

    To meet the food production demands on a finite area of land for an exponentially growing, global population, intensive agricultural management practices are being used. The implications of this these practices lead to soil degradation, loss of biodiversity, increased greenhouse gas emissions, and decreased water quality depending on the level of conservation practices implemented in a watershed. To offset these negative environmental effects, ecosystem services should be analyzed for possible economic valuation to provide incentives for good land stewardship. In this study a Multifunctional Agriculture (MFA) evaluation in a representative agricultural watershed in Iowa was performed by assessing the ecosystem services of water quality, crop/grain production, carbon sequestration, reduction in carbon dioxide emissions and biodiversity for representative land covers (e.g., corn-soybean rotation, alfalfa, oats, and Conservation Reserve Program, or CRP). The services were analyzed using a geo-spatial platform that simulated carbon dynamics with the biogeochemical model, CENTURY, as well as soil erosion/deposition and surface runoff with the Water Erosion Prediction Project (WEPP). Economic values given to the various services were based on current grain prices, water treatment costs, and hypothetical carbon storage credits. Results showed that crop/grain production for the corn-soybean rotations provided the largest service for the study site, followed by alfalfa. CRP provided the largest decrease in surface water runoff and CO2 emissions, while alfalfa provided the largest form of plant species diversity. The largest sequestration of carbon came from the corn-soybean rotation due to large amounts dead plant material being incorporated into the soil through tillage. Overall the MFA assessment can provide a framework for payment of ecosystem services supplied by agroecosystems which promote more sustainable land management practices.

  15. Stormwater Runoff and Water Quality Modeling in Urban Maryland

    NASA Astrophysics Data System (ADS)

    Wang, J.; Forman, B. A.; Natarajan, P.; Davis, A.

    2015-12-01

    Urbanization significantly affects storm water runoff through the creation of new impervious surfaces such as highways, parking lots, and rooftops. Such changes can adversely impact the downstream receiving water bodies in terms of physical, chemical, and biological conditions. In order to mitigate the effects of urbanization on downstream water bodies, stormwater control measures (SCMs) have been widely used (e.g., infiltration basins, bioswales). A suite of observations from an infiltration basin installed adjacent to a highway in urban Maryland was used to evaluate stormwater runoff attenuation and pollutant removal rates at the well-instrumented SCM study site. In this study, the Storm Water Management Model (SWMM) was used to simulate the performance of the SCM. An automatic, split-sample calibration framework was developed to improve SWMM performance efficiency. The results indicate SWMM can accurately reproduce the hydraulic response of the SCM (in terms of reproducing measured inflow and outflow) during synoptic scale storm events lasting more than one day, but is less accurate during storm events lasting only a few hours. Similar results were found for a suite of modeled (and observed) water quality constituents, including suspended sediment, metals, N, P, and chloride.

  16. Desert agricultural terrace systems at EBA Jawa (Jordan) - Layout, water availability and efficiency

    NASA Astrophysics Data System (ADS)

    Meister, Julia; Krause, Jan; Müller-Neuhof, Bernd; Portillo, Marta; Reimann, Tony; Schütt, Brigitta

    2016-04-01

    Located in the arid basalt desert of northeastern Jordan, the Early Bronze Age (EBA) settlement of Jawa is by far the largest and best preserved archaeological EBA site in the region. Recent surveys in the close vicinity revealed well-preserved remains of three abandoned agricultural terrace systems. In the presented study these archaeological features are documented by detailed mapping and the analysis of the sediment records in a multi-proxy approach. To study the chronology of the terrace systems optically stimulated luminescence (OSL) is used. In order to evaluate the efficiency of the water management techniques and its impact on harvest yields, a crop simulation model (CropSyst) under today's climatic conditions is applied, simulating crop yields with and without (runoff) irrigation. In order to do so, a runoff time series for each agricultural terrace system and its catchment is generated, applying the SCS runoff curve number method (CN) based on rainfall and soil data. Covering a total area of 38 ha, irrigated terrace agriculture was practiced on slopes, small plateaus, and valleys in the close vicinity of Jawa. Floodwater from nearby wadis or runoff from adjacent slopes was collected and diverted via surface canals. The terraced fields were arranged in cascades, allowing effective water exploitation through a system of risers, canals and spillways. The examined terrace profiles show similar stratigraphic sequences of mixed unstratified fine sediments that are composed of small-scale relocated sediments with local origin. The accumulation of these fines is associated with the construction of agricultural terraces, forcing infiltration and storage of the water within the terraces. Two OSL ages of terrace fills indicate that the construction of these terrace systems started as early as 5300 ± 300 a, which fits well to the beginning of the occupation phase of Jawa at around 3.500 calBC, thus making them to the oldest examples of its kind in the Middle East

  17. Comparison of Hydrologic and Water-Quality Characteristics of Two Native Tallgrass Prairie Streams with Agricultural Streams in Missouri and Kansas

    USGS Publications Warehouse

    Heimann, David C.

    2009-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, to analyze and compare hydrologic and water-quality characteristics of tallgrass prairie and agricultural basins located within the historical distribution of tallgrass prairie in Missouri and Kansas. Streamflow and water-quality data from two remnant, tallgrass prairie basins (East Drywood Creek at Prairie State Park, Missouri, and Kings Creek near Manhattan, Kansas) were compared to similar data from agricultural basins in Missouri and Kansas. Prairie streams, especially Kings Creek in eastern Kansas, received a higher percentage of base flow and a lower percentage of direct runoff than similar-sized agricultural streams in the region. A larger contribution of direct runoff from the agricultural streams made them much flashier than prairie streams. During 22 years of record, the Kings Creek base-flow component averaged 66 percent of total flow, but base flow was only 16 to 26 percent of flows at agricultural sites of various record periods. The large base-flow component likely is the result of greater infiltration of precipitation in prairie soils and the resulting greater contribution of groundwater to streamflow. The 1- and 3-day annual maximum flows were significantly greater at three agricultural sites than at Kings Creek. The effects of flashier agricultural streams on native aquatic biota are unknown, but may be an important factor in the sustainability of some native aquatic species. There were no significant differences in the distribution of dissolved-oxygen concentrations at prairie and agricultural sites, and some samples from most sites fell below the 5 milligrams per liter Missouri and Kansas standard for the protection of aquatic life. More than 10 percent of samples from the East Drywood Creek prairie stream were less than this standard. These data indicate low dissolved-oxygen concentrations during summer low

  18. Transport of trace metals in runoff from soil and pond ash feedlot surfaces

    USGS Publications Warehouse

    Vogel, J.R.; Gilley, J.E.; Cottrell, G.L.; Woodbury, B.L.; Berry, E.D.; Eigenbert, R.A.

    2011-01-01

    The use of pond ash (fly ash that has been placed in evaporative ponds for storage and subsequently dewatered) for feedlot surfaces provides a drier environment for livestock and furnishes economic benefits. However, pond ash is known to have high concentrations of trace elements, and the runoff water-quality effects of feedlot surfaces amended with pond ash are not well defined. For this study, two experimental units (plots) were established in eight feedlot pens. Four of the pens contained unamended soil surfaces, and the remaining four pens had pond-ash amended surfaces. Before each test, unconsolidated surface material was removed from four of the plots for each of the amendment treatments, resulting in eight unamended plots and eight pond-ash amended plots. Concentrations for 23 trace elements were measured in cattle feedlot surface material and in the runoff water from three simulated rainfall events. Trace element concentrations in surface material and runoff did not differ between surface consolidation treatments. Amending the feedlot surface material with pond ash resulted in a significant increase in concentration for 14 of the 17 trace elements. Runoff concentrations for 21 trace elements were affected by pond-ash amendment. Sixteen of 21 trace element concentrations that differed significantly were greater in runoff from unamended soil surfaces. Concentrations in runoff were significantly correlated with concentrations in feedlot surface material for boron, manganese, molybdenum, selenium, and uranium.

  19. RUNON a hitherto little noticed factor - Field experiments comparing RUNOFF/RUNON processes

    NASA Astrophysics Data System (ADS)

    Kohl, Bernhard; Achleitner, Stefan; Lumassegger, Simon

    2017-04-01

    When ponded water moves downslope as overland flow, an important process called runon manifests itself, but is often ignored in rainfall-runoff studies (Nahar et al. 2004) linking infiltration exclusively to rainfall. Runon effects on infiltration have not yet or only scarcely been evaluated (e.g. Zheng et al. 2000). Runoff-runon occurs when spatially variable infiltration capacities result in runoff generated in one location potentially infiltrating further downslope in an area with higher infiltration capacity (Jones et al. 2013). Numerous studies report inverse relationships between unit area volumes of overland flow and plot lengths (Jones et al. 2016). This is an indication that the effects of rainfall and runon often become blurred. We use a coupled hydrological/2D hydrodynamic model to simulate surface runoff and pluvial flooding including the associated infiltration process. In frame of the research project SAFFER-CC (sensitivity assessment of critical condition for local flash floods - evaluating the recurrence under climate change) the influence of land use and soil conservation on pluvial flash flood modeling is assessed. Field experiments are carried out with a portable irrigation spray installation at different locations with a plot size 5m width and 10m length. The test plots were subjected first to a rainfall with constant intensity of 100 mm/h for one hour. Consecutively a super intense, one hour mid accentuated rainfall hydrograph was applied after 30 minutes at the same plots, ranging from 50 mm/h to 200 mm/h for 1hour. Finally, runon was simulated by upstream feeding of the test plots using two different inflow intensities. The irrigation test showed expected differences of runoff coefficients depending on the various agricultural management. However, these runoff coefficients change with the applied process (rainfall or runon). While a decrease was observed on a plot with a closed litter layer, runoff coefficient from runon increases on poor

  20. Estimation and comparision of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope

    NASA Astrophysics Data System (ADS)

    Deshmukh, Dhananjay Suresh; Chaube, Umesh Chandra; Ekube Hailu, Ambaye; Aberra Gudeta, Dida; Tegene Kassa, Melaku

    2013-06-01

    The CN represents runoff potential is estimated using three different methods for three watersheds namely Barureva, Sher and Umar watershed located in Narmada basin. Among three watersheds, Sher watershed has gauging site for the runoff measurements. The CN computed from the observed rainfall-runoff events is termed as CN(PQ), land use and land cover (LULC) is termed as CN(LU) and the CN based on land slope is termed as SACN2. The estimated annual CN(PQ) varies from 69 to 87 over the 26 years data period with median 74 and average 75. The range of CN(PQ) from 70 to 79 are most significant values and these truly represent the AMC II condition for the Sher watershed. The annual CN(LU) was computed for all three watersheds using GIS and the years are 1973, 1989 and 2000. Satellite imagery of MSS, TM and ETM+ sensors are available for these years and obtained from the Global Land Cover Facility Data Center of Maryland University USA. The computed CN(LU) values show rising trend with the time and this trend is attributed to expansion of agriculture area in all watersheds. The predicted values of CN(LU) with time (year) can be used to predict runoff potential under the effect of change in LULC. Comparison of CN(LU) and CN(PQ) values shows close agreement and it also validates the classification of LULC. The estimation of slope adjusted SA-CN2 shows the significant difference over conventional CN for the hilly forest lands. For the micro watershed planning, SCS-CN method should be modified to incorporate the effect of change in land use and land cover along with effect of land slope.

  1. Runoff and Solute Mobilisation in a Semi-arid Headwater Catchment

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Khan, S.; Crosbie, R.; Helliwell, S.; Michalk, D.

    2006-12-01

    Runoff and solute transport processes contributing to stream flow were determined in a small headwater catchment in the eastern Murray-Darling Basin of Australia using hydrometric and tracer methods. Stream flow and electrical conductivity were monitored from two gauges draining a portion of upper catchment area (UCA), and a saline scalded area respectively. Results show that the bulk of catchment solute export, occurs via a small saline scald (< 2% of catchment area) where solutes are concentrated in the near surface zone (0-40 cm). Non-scalded areas of the catchment are likely to provide the bulk of catchment runoff, although the scalded area is a higher contributor on an areal basis. Runoff from the non-scalded area is about two orders of magnitude lower in electrical conductivity than the scalded area. This study shows that the scalded zone and non-scalded parts of the catchment can be managed separately since they are effectively de-coupled except over long time scales, and produce runoff of contrasting quality. Such differences are "averaged out" by investigations that operate at larger scales, illustrating that observations need to be conducted at a range of scales. EMMA modelling using six solutes shows that "event" or "new" water dominated the stream hydrograph from the scald. This information together with hydrometric data and soil physical properties indicate that saturated overland flow is the main form of runoff generation in both the scalded area and the UCA. Saturated areas make up a small proportion of the catchment, but are responsible for production of all run off in conditions experienced throughout the experimental period. The process of saturation and runoff bears some similarities to the VSA concept (Hewlett and Hibbert 1967).

  2. Comparison of WEPP and APEX runoff and erosion prediction at field scale in Goodwater Creek Experimental Watershed

    USDA-ARS?s Scientific Manuscript database

    The Water Erosion Prediction Project (WEPP) and the Agricultural Policy/Environmental eXtender (APEX) are process-based models that can predict spatial and temporal distributions of erosion for hillslopes and watersheds. This study applies the WEPP model to predict runoff and erosion for a 35-ha fie...

  3. Uncertainty in measuring runoff from small watersheds using instrumented outlet-pond

    USDA-ARS?s Scientific Manuscript database

    This study quantified the uncertainty associated with event runoff quantity monitored at watershed outlet ponds. Inflow and outflow depth data were collected from 2004 to 2011 at seven instrumented monitoring stations at the outlet of watersheds ranging in size from 35.2 to 159.5 ha on the USDA-ARS ...

  4. Runoff characteristics of California streams

    USGS Publications Warehouse

    Rantz, S.E.

    1972-01-01

    California streams exhibit a wide range of runoff characteristics that are related to the climatologic, topographic, and geologic characteristics of the basins they drain. The annual volume of runoff of a stream, expressed in inches, may be large or small, and daily discharge rates may be highly variable or relatively steady. The bulk of the annual runoff may be storm runoff, or snowmelt runoff, or a combination of both. The streamflow may be ephemeral, intermittent, or perennial; if perennial, base flow may be well sustained or poorly sustained. In this report the various runoff characteristics are identified by numerical index values. They are shown to be related generally to mean annual precipitation, altitude, latitude, and location with respect to the 11 geomorphic provinces in the California Region. With respect to mean annual precipitation on the watershed, streamflow is generally (1) ephemeral if the mean annual precipitation is less than 10 inches, (2) intermittent if the mean annual precipitation is between 10 and 40 inches, and (3) perennial if the mean annual precipitation is more than 40 inches. Departures from those generalizations are associated with (a) the areal variation of such geologic factors as the infiltration and storage capacities of the rocks underlying the watersheds, and (b) the areal variation of evapotranspiration loss as influenced by varying conditions of climate, soil, vegetal cover, and geologic structure. Latitude and altitude determine the proportion of the winter precipitation that will be stored for subsequent runoff in the late spring and summer. In general, if a watershed has at least 30 percent of its area above the normal altitude of the snowline on April 1, it will have significant snowmelt runoff. Snowmelt runoff in California is said to be significant if at least 30 percent of the annual runoff occurs during the 4 months, April through July. Storm runoff is said to be predominant if at least 65 percent of the annual

  5. An urban runoff model designed to inform stormwater management decisions.

    PubMed

    Beck, Nicole G; Conley, Gary; Kanner, Lisa; Mathias, Margaret

    2017-05-15

    We present an urban runoff model designed for stormwater managers to quantify runoff reduction benefits of mitigation actions that has lower input data and user expertise requirements than most commonly used models. The stormwater tool to estimate load reductions (TELR) employs a semi-distributed approach, where landscape characteristics and process representation are spatially-lumped within urban catchments on the order of 100 acres (40 ha). Hydrologic computations use a set of metrics that describe a 30-year rainfall distribution, combined with well-tested algorithms for rainfall-runoff transformation and routing to generate average annual runoff estimates for each catchment. User inputs include the locations and specifications for a range of structural best management practice (BMP) types. The model was tested in a set of urban catchments within the Lake Tahoe Basin of California, USA, where modeled annual flows matched that of the observed flows within 18% relative error for 5 of the 6 catchments and had good regional performance for a suite of performance metrics. Comparisons with continuous simulation models showed an average of 3% difference from TELR predicted runoff for a range of hypothetical urban catchments. The model usually identified the dominant BMP outflow components within 5% relative error of event-based measured flow data and simulated the correct proportionality between outflow components. TELR has been implemented as a web-based platform for use by municipal stormwater managers to inform prioritization, report program benefits and meet regulatory reporting requirements (www.swtelr.com). Copyright © 2017. Published by Elsevier Ltd.

  6. Impervious surfaces and sewer pipe effects on stormwater runoff temperature

    NASA Astrophysics Data System (ADS)

    Sabouri, F.; Gharabaghi, B.; Mahboubi, A. A.; McBean, E. A.

    2013-10-01

    The warming effect of the impervious surfaces in urban catchment areas and the cooling effect of underground storm sewer pipes on stormwater runoff temperature are assessed. Four urban residential catchment areas in the Cities of Guelph and Kitchener, Ontario, Canada were evaluated using a combination of runoff monitoring and modelling. The stormwater level and water temperature were monitored at 10 min interval at the inlet of the stormwater management ponds for three summers 2009, 2010 and 2011. The warming effect of the ponds is also studied, however discussed in detail in a separate paper. An artificial neural network (ANN) model for stormwater temperature was trained and validated using monitoring data. Stormwater runoff temperature was most sensitive to event mean temperature of the rainfall (EMTR) with a normalized sensitivity coefficient (Sn) of 1.257. Subsequent levels of sensitivity corresponded to the longest sewer pipe length (LPL), maximum rainfall intensity (MI), percent impervious cover (IMP), rainfall depth (R), initial asphalt temperature (AspT), pipe network density (PND), and rainfall duration (D), respectively. Percent impervious cover of the catchment area (IMP) was the key parameter that represented the warming effect of the paved surfaces; sensitivity analysis showed IMP increase from 20% to 50% resulted in runoff temperature increase by 3 °C. The longest storm sewer pipe length (LPL) and the storm sewer pipe network density (PND) are the two key parameters that control the cooling effect of the underground sewer system; sensitivity analysis showed LPL increase from 345 to 966 m, resulted in runoff temperature drop by 2.5 °C.

  7. Characterization of storm runoff from selected South Carolina Department of Transportation maintenance yards

    USGS Publications Warehouse

    Conlon, Kevin J.; Reinhart, Peter J.

    2012-01-01

    The objective of this project is to collect sufficient stormwater water-quality and flow data to document the type, concentration, and event load of selected constituents transported from South Carolina Department of Transportation (SCDOT) maintenance yards by stormwater runoff.

  8. Effect of liquid swine manure rate, incorporation, and timing of rainfall on phosphorus loss with surface runoff.

    PubMed

    Allen, Brett L; Mallarino, Antonio P

    2008-01-01

    Excessive manure phosphorus (P) application increases risk of P loss from fields. This study assessed total runoff P (TPR), bioavailable P (BAP), and dissolved reactive P (DRP) concentrations and loads in surface runoff after liquid swine (Sus scrofa domesticus) manure application with or without incorporation into soil and different timing of rainfall. Four replicated manure P treatments were applied in 2002 and in 2003 to two Iowa soils testing low in P managed with corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotations. Total P applied each time was 0 to 80 kg P ha(-1) at one site and 0 to 108 kg P ha(-1) at the other. Simulated rainfall was applied within 24 h of P application or after 10 to 16 d and 5 to 6 mo. Nonincorporated manure P increased DRP, BAP, and TPR concentrations and loads linearly or exponentially for 24-h and 10- to 16-d runoff events. On average for the 24-h events, DRP, BAP, and TPR concentrations were 5.4, 4.7, and 2.2 times higher, respectively, for nonincorporated manure than for incorporated manure; P loads were 3.8, 7.7, and 3.6 times higher; and DRP and BAP concentrations were 54% of TPR for nonincorporated manure and 22 to 25% for incorporated manure. A 10- to 16-d rainfall delay resulted in DRP, BAP, and TPR concentrations that were 3.1, 2.7, and 1.1 times lower, respectively, than for 24-h events across all nonincorporated P rates, sites, and years, whereas runoff P loads were 3.8, 3.6, and 1.6 times lower, respectively. A 5- to 6-mo simulated rainfall delay reduced runoff P to levels similar to control plots. Incorporating swine manure when the probability of immediate rainfall is high reduces the risk of P loss in surface runoff; however, this benefit sharply decreases with time.

  9. Sediment yield and runoff frequency of small drainage basins in the Mojave Desert, U.S.A

    USGS Publications Warehouse

    Griffiths, P.G.; Hereford, R.; Webb, R.H.

    2006-01-01

    Sediment yield from small arid basins, particularly in the Mojave Desert, is largely unknown owing to the ephemeral nature of these fluvial systems and long recurrence interval of flow events. We examined 27 reservoirs in the northern and eastern Mojave Desert that trapped sediment from small (< 1 km2) drainage basins on alluvial fans over the past 100 yr, calculated annual sediment yield, and estimated the average recurrence interval (RI) of sediment-depositing flow events. These reservoirs formed where railbeds crossed and blocked channels, causing sediment to be trapped and stored upslope. Deposits are temporally constrained by the date of railway construction (1906-1910), the presence of 137Cs in the reservoir profile (post-1952 sediment), and either 1993, when some basins breached during regional flooding, or 2000-2001, when stratigraphic analyses were performed. Reservoir deposits are well stratified at most sites and have distinct fining-upward couplets indicative of discrete episodes of sediment-bearing runoff. Average RI of runoff events for these basins ranges from 2.6 to 7.3 yr and reflects the incidence of either intense or prolonged rainfall; more than half the runoff events occurred before 1963. A period of above-normal precipitation, from 1905 to 1941, may have increased runoff frequency in these basins. Mean sediment yield (9 to 48 tons km-2 yr-1) is an order of magnitude smaller than sediment yields calculated elsewhere and may be limited by reduced storm intensity, the presence of desert pavement, and shallow gradient of fan surfaces. Sediment yield decreases as drainage area increases, a trend typical of much larger drainage basins where sediment-transport processes constrain sediment yield. Coarse substrate and low-angle slopes of these alluvial fan surfaces likely limit sediment transport capacity through transmission losses and channel storage. ?? 2005 Elsevier B.V. All rights reserved.

  10. Efficiency of source control systems for reducing runoff pollutant loads: feedback on experimental catchments within Paris conurbation.

    PubMed

    Bressy, Adèle; Gromaire, Marie-Christine; Lorgeoux, Catherine; Saad, Mohamed; Leroy, Florent; Chebbo, Ghassan

    2014-06-15

    Three catchments, equipped with sustainable urban drainage systems (SUDS: vegetated roof, underground pipeline or tank, swale, grassed detention pond) for peak flow mitigation, have been compared to a reference catchment drained by a conventional separate sewer system in terms of hydraulic behaviour and discharged contaminant fluxes (organic matter, organic micropollutants, metals). A runoff and contaminant emission model has been developed in order to overcome land use differences. It has been demonstrated that the presence of peak flow control systems induces flow attenuation even for frequent rain events and reduces water discharges at a rate of about 50% depending on the site characteristics. This research has also demonstrated that this type of SUDS contributes to a significant reduction of runoff pollutant discharges, by 20%-80%. This level of reduction varies depending on the considered contaminant and on the design of the drainage system but is mostly correlated with the decrease in runoff volume. It could be improved if the design of these SUDS focused not only on the control of exceptional events but also targeted more explicitly the interception of frequent rain events. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. CONSTRUCTED WETLANDS IN SUPPORT OF RIPARIAN RESTORATION: WATER QUALITY BENEFITS AND HABITAT RESTORATION IN DELAWARE AGRICULTURAL AREAS

    EPA Science Inventory

    Surface water runoff from agricultural landscapes is one of the major sources of water quality impairment in the United States. With the advent of buffer strips and conservation minded tilling practices the agricultural community has made significant reductions in overland runof...

  12. Temporal pattern of toxicity in runoff from the Tijuana River Watershed.

    PubMed

    Gersberg, Richard M; Daft, Daniel; Yorkey, Darryl

    2004-02-01

    Samples were collected from the Tijuana River under both dry weather (baseflow) conditions and during wet weather, and tested for toxicity using Ceriodaphnia dubia tests. Toxicity of waters in the Tijuana River was generally low under baseflow conditions, but increased markedly during high flow runoff events. In order to determine the temporal pattern of toxicity during individual rain events, sequential grab samples were collected using an autosampler at 5-7 h intervals after the start of the rain event, and tested for acute toxicity. In all cases, peak toxicity values (ranging from 2.8 to 5.8TU) for each storm occurred within the first 1-2 h of initiation of the rain event, and were statistically higher (using the 95% CL) for each of the pre-storm base flow values. However, there was no statistically significant correlation (p<0.05) between flow rate and toxicity when all storm data was pooled. Additionally, we used toxicity identification evaluation (TIE) procedures to attempt to identify the classes of chemicals that account for this early storm toxicity. Solid phase extraction was the only treatment that showed consistent and significant (P<0.05) removal of toxicity. These TIEs, conducted on the most toxic sample of the river's flow during runoff events, suggest that non-polar organics may be responsible for such toxicity. The temporal pattern of toxicity, both during a given storm event and seasonally, indicates that wash-off from the watershed by rainfall may deplete the supply of toxicity available for wash-off in subsequent events, so that a clearly consistent relationship between flow and toxicity was not evident.

  13. Design and initial evaluation of a portable in situ runoff and sediment monitoring device

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Cruse, Richard M.; Chen, Qiang; Li, Hao; Song, Chunyu; Zhang, Xingyi

    2014-11-01

    An inexpensive portable runoff and sediment monitoring device (RSMD) requiring no external electric power was developed for measuring water runoff and associated sediment loss from field plots ranging from 0.005 to 0.1 ha. The device consists of runoff gauge, sediment mixing and sectional subsampling assemblies. The runoff hydrograph is determined using a calibrated tipping bucket. The sediment mixing assembly minimizes fluid splash while mixing the runoff water/sediment mixture prior to subsampling this material. Automatic flow-proportional sampling utilizes mechanical power supplied by the tipping bucket action, with power transmitted to the sample collection assembly via the tipping bucket pivot bar. Runoff is well-mixed and subdivided twice before subsamples are collected for analysis. The resolution of this device for a 100 m2 plot is 0.025 mm of runoff; the device is able to capture maximum flow rates up to 82 mm h-1 in a plot of the same dimension. Calibration results indicated the maximum error is 2.1% for estimating flow rate and less than 10% for sediment concentration in most of the flow range. The RSMD was assessed by measuring field runoff and soil loss from different tillage and slope treatments for a single natural rainfall event. Results were in close agreement with those in published literature, giving additional evidence that this device is performing acceptably well. The RSMD is uniquely adapted for a wide range of field sites, especially for those without electric power, making it a useful tool for studying soil management strategies.

  14. Abrupt shift in the observed runoff from the southwestern Greenland ice sheet

    PubMed Central

    Ahlstrøm, Andreas P.; Petersen, Dorthe; Langen, Peter L.; Citterio, Michele; Box, Jason E.

    2017-01-01

    The recent decades of accelerating mass loss of the Greenland ice sheet have arisen from an increase in both surface meltwater runoff and ice flow discharge from tidewater glaciers. Despite the role of the Greenland ice sheet as the dominant individual cryospheric contributor to sea level rise in recent decades, no observational record of its mass loss spans the 30-year period needed to assess its climatological state. We present for the first time a 40-year (1975–2014) time series of observed meltwater discharge from a >6500-km2 catchment of the southwestern Greenland ice sheet. We find that an abrupt 80% increase in runoff occurring between the 1976–2002 and 2003–2014 periods is due to a shift in atmospheric circulation, with meridional exchange events occurring more frequently over Greenland, establishing the first observation-based connection between ice sheet runoff and climate change. PMID:29242827

  15. Lateral, Vertical, and Longitudinal Source Area Connectivity Drive Runoff and Carbon Export Across Watershed Scales

    NASA Astrophysics Data System (ADS)

    Zimmer, Margaret A.; McGlynn, Brian L.

    2018-03-01

    Watersheds are three-dimensional hydrologic systems where the longitudinal expansion/contraction of stream networks, vertical connection/disconnection between shallow and deep groundwater systems, and lateral connectivity of these water sources to streams mediate runoff production and nutrient export. The connectivity of runoff source areas during both baseflow and stormflow conditions and their combined influence on biogeochemical fluxes remain poorly understood. Here we focused on a set of 3.3 and 48.4 ha nested watersheds (North Carolina, USA). These watersheds comprise ephemeral and intermittent runoff-producing headwaters and perennial runoff-producing lowlands. Within these landscape elements, we characterized the timing and magnitude of precipitation, runoff, and runoff-generating flow paths. The active surface drainage network (ASDN) reflected connectivity to, and contributions from, source areas that differed under baseflow and stormflow conditions. The baseflow-associated ASDN expanded and contracted seasonally, driven by the rise and fall of the seasonal water table. Superimposed on this were event-activated source area contributions driven by connectivity to surficial and shallow subsurface flow paths. Frequently activated shallow flow paths also caused increased in-stream dissolved organic carbon (DOC) concentrations with increases in runoff across both watershed scales. The spread and variability within this DOC-runoff relationship was driven by a seasonal depletion of DOC from continual shallow subsurface flow path activation and subsequent replenishment from autumn litterfall. Our findings suggest that hydrobiogeochemical signals at larger watershed outlets can be driven by the expansion, contraction, and connection of lateral, longitudinal, and vertical source areas with distinct runoff generation processes.

  16. 5 CFR 2422.28 - Runoff elections.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Runoff elections. 2422.28 Section 2422.28... FEDERAL LABOR RELATIONS AUTHORITY REPRESENTATION PROCEEDINGS § 2422.28 Runoff elections. (a) When a runoff may be held. A runoff election is required in an election involving at least three (3) choices, one of...

  17. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania; effects of pipe-outlet terracing on quantity and quality of surface runoff and ground water in a small carbonate-rock basin near Churchtown, Pennsylvania, 1983-89

    USGS Publications Warehouse

    Lietman, P.L.; Gustafson-Minnich, L. C.; Hall, D.W.

    1997-01-01

    Terracing effects on surface-runoff and ground- water quantity and quality were investigated by the U.S. Geological Survey, in cooperation with Pennsylvania Department of Environmental Resources, during 1983-89 at a 23.1-acre agricultural site in Lancaster County, Pa., as part of the 1982 Rural Clean Water Program. The site, underlain by carbonate rock, was primarily corn and alfalfa fields; the median slope was 6 percent.Normal precipitation is about 42 inches per year. Average annual runoff was 11 percent and ground- water recharge was 37 percent of precipitation.Runoff quantity, suspended-sediment, and nutrient data, ground-water level and nutrient data, and precipitation-quantity data were collected for 21 months prior to, and 58 months after, pipe-outlet terrace construction. Data were analyzed by use of graphical, regression, covariate, cluster, Mann- Whitney Rank Sum test, and double-mass curvetechniques. Terracing changed runoff characteristics. Storm characteristics were similar throughout the study period. However, after terracing, storms producing less than 0.4 inch of precipitation rarely produced runoff. Total-storm discharge as a function of precipitation did not change significantly throughout the range of runoff-producing storms after terracing. Multiple-discharge peaks on hydrographs before terracing did not occur after terracing when hydrographs reflected the stepwisedraining of each terrace through the pipe outlet. After an initial 2-year period of terrace stabilization, suspended-sediment yield in runoff decreased significantly as a function of runoff. This result was expected because terracing decreased runoff energy, and because terrace ponding allowed time for sediment redeposition. Nitrate plus nitrite yields increased proportionally throughout the range of runoff during the post-terracing period relative to the pre- terracing period. After terracing, a combination of increased soil contact time and increased nitrification caused by wetter

  18. High Severity Wildfire Effect On Rainfall Infiltration And Runoff: A Cellular Automata Based Simulation

    NASA Astrophysics Data System (ADS)

    Vergara-Blanco, J. E.; Leboeuf-Pasquier, J.; Benavides-Solorio, J. D. D.

    2017-12-01

    A simulation software that reproduces rainfall infiltration and runoff for a storm event in a particular forest area is presented. A cellular automaton is utilized to represent space and time. On the time scale, the simulation is composed by a sequence of discrete time steps. On the space scale, the simulation is composed of forest surface cells. The software takes into consideration rain intensity and length, individual forest cell soil absorption capacity evolution, and surface angle of inclination. The software is developed with the C++ programming language. The simulation is executed on a 100 ha area within La Primavera Forest in Jalisco, Mexico. Real soil texture for unburned terrain and high severity wildfire affected terrain is employed to recreate the specific infiltration profile. Historical rainfall data of a 92 minute event is used. The Horton infiltration equation is utilized for infiltration capacity calculation. A Digital Elevation Model (DEM) is employed to reproduce the surface topography. The DEM is displayed with a 3D mesh graph where individual surface cells can be observed. The plot colouring renders water content development at the cell level throughout the storm event. The simulation shows that the cumulative infiltration and runoff which take place at the surface cell level depend on the specific storm intensity, fluctuation and length, overall terrain topography, cell slope, and soil texture. Rainfall cumulative infiltration for unburned and high severity wildfire terrain are compared: unburned terrain exhibits a significantly higher amount of rainfall infiltration.It is concluded that a cellular automaton can be utilized with a C++ program to reproduce rainfall infiltration and runoff under diverse soil texture, topographic and rainfall conditions in a forest setting. This simulation is geared for an optimization program to pinpoint the locations of a series of forest land remediation efforts to support reforestation or to minimize runoff.

  19. Evaluation of agricultural best-management practices in the Conestoga River headwaters, Pennsylvania : characterization of surface-runoff and ground-water quantity and quality in a small carbonate basin near Churchtown, Pennsylvania, prior to terracing and implementation of nutrient management : water-quality study of the Conestoga River headwaters, Pennsylvania

    USGS Publications Warehouse

    Leitman, Patricia L.; Hall, D.W.; Langland, M.J.; Chichester, D.C.; Ward, J.R.

    1996-01-01

    Surface-runoff and ground-water quantity and quality of a 22.1-acre field site were characterized from January 1983 through September 1984, before implementation of terracing and nutrient-management practices. The site, underlain by carbonate rock, was cropland used primarily for the production of corn and alfalfa. Average annual application of nutrients to the 14.4 acres of cornfields was 410 pounds of nitrogen and 110 pounds of phosphorus. About three times more nutrients were applied during the 1984 water year than during the 1983 water year. During the investigation, 714,000 cubic feet of runoff transported 244 tons of suspended sediment, 300 pounds of nitrogen, and 170 pounds of phosphorus during the 1984 water year. Runoff from storms on frozen ground produced the highest loads of nitrogen. Regression analyses indicate that runoff rates and quantities were controlled by precipitation intensities of quantities and the amount of crop cover, and that mean concentrations of nitrogen for runoff events increased with increased surface-nitrogen applications made prior to runoff. Ground-water levels responded quickly to recharge, with peaks occurring several hours to a day after precipitation. Median concentrations of dissolved nitrate in ground water ranged from 9.2 to 13 milligrams per liter as nitrogen. A lag time of 1 to 3 months was observed between the time that nitrogen was applied to the land surface and local maximums in nitrate concentrations were detected in ground water unaffected by recharge events. About 3 million cubic feet of ground water and an associated 2,200 pounds of nitrate-nitrogen discharged from the site during the study period. For the study period, 42 percent of the precipitation recharged to ground water, 10 percent became runoff, and 48 percent evapotranspired. Inputs of nitrogen to the study area were estimated to be 93 percent from manure, 5 percent from commercial fertilizer, and 2 percent from precipitation. Nitrogen outputs from the

  20. [Research of the Stormwater Runoff and Pollution Characteristics in Rural Area of Yuhang District, Hangzhou].

    PubMed

    Duan, Sheng-hui; Zhao, Yu; Shan, Bao-qing; Tang, Wen-zhong; Zhang, Wen-qiang; Zhang, Shu-zhen; Lang, Chao

    2015-10-01

    In order to investigate the pollution characteristics of stormwater runoff in the southern developed rural region, the runoff samples were collected from four different underlying surfaces during three storm events in Caoqiao and Pujia Tou, which are two typical villages and are located in Yuhang District of Hangzhou. The content of nutrition (nitrogen and phosphorus) and heavy metals (Mn, Cu, Zn, Ni, Cr, Cd, As, Pb) in the simples were analyzed, and the difference of EMC ( event mean concentration) and pollution load of the contaminants in the runoff on different underlying surfaces were compared. The results showed that the EMC of TSS, COD, NH4(+)-N, TP and TN were 16.19, 21.01, 0.74, 1.39 and 2.39 mg x L(-1) in the Caoqiao, respectively; as to Pujia Tou, they were 3.10, 15.69, 0.90, 0.78 and 3.58 mg x L(-1), respectively. The content of heavy metals was all lower than the national surface water quality of two type water in the runoff. Compared with the quality standards for surface water, the EMC of TP was 9 times and 3. 5 times higher and TN was 1. 8 times and 1. 2 times higher in two areas. Besides, the pollution loads of TSS and COD were the highest in farmland.