Sample records for agriculturally important plants

  1. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production.

    PubMed

    Pérez-Montaño, F; Alías-Villegas, C; Bellogín, R A; del Cerro, P; Espuny, M R; Jiménez-Guerrero, I; López-Baena, F J; Ollero, F J; Cubo, T

    2014-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Agriculturally important microbial biofilms: Present status and future prospects.

    PubMed

    Velmourougane, Kulandaivelu; Prasanna, Radha; Saxena, Anil Kumar

    2017-07-01

    Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity

    PubMed Central

    Köberl, Martina; Erlacher, Armin; Ramadan, Elshahat M.; El-Arabi, Tarek F.; Müller, Henry; Bragina, Anastasia; Berg, Gabriele

    2015-01-01

    Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization–confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity. PMID:26705571

  4. Comparisons of diazotrophic communities in native and agricultural desert ecosystems reveal plants as important drivers in diversity.

    PubMed

    Köberl, Martina; Erlacher, Armin; Ramadan, Elshahat M; El-Arabi, Tarek F; Müller, Henry; Bragina, Anastasia; Berg, Gabriele

    2016-02-01

    Diazotrophs provide the only biological source of fixed atmospheric nitrogen in the biosphere. Although they are the key player for plant-available nitrogen, less is known about their diversity and potential importance in arid ecosystems. We investigated the nitrogenase gene diversity in native and agricultural desert soil as well as within root-associated microbiota of medicinal plants grown in Egypt through the combination of nifH-specific qPCR, fingerprints, amplicon pyrosequencing and fluorescence in situ hybridization-confocal laser scanning microscopy. Although the diazotrophic microbiota were characterized by generally high abundances and diversity, statistically significant differences were found between both soils, the different microhabitats, and between the investigated plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn.). We observed a considerable community shift from desert to agriculturally used soil that demonstrated a higher abundance and diversity in the agro-ecosystem. The endorhiza was characterized by lower abundances and only a subset of species when compared to the rhizosphere. While the microbiomes of the Asteraceae were similar and dominated by potential root-nodulating rhizobia acquired primarily from soil, the perennial S. distichum generally formed associations with free-living nitrogen fixers. These results underline the importance of diazotrophs in desert ecosystems and additionally identify plants as important drivers in functional gene pool diversity. © FEMS 2015.

  5. 7 CFR 319.8-20 - Importations by the Department of Agriculture.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Importations by the Department of Agriculture. 319.8-20 Section 319.8-20 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Foreign Cotton and...

  6. 7 CFR 319.8-20 - Importations by the Department of Agriculture.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Importations by the Department of Agriculture. 319.8-20 Section 319.8-20 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Foreign Cotton and...

  7. 7 CFR 319.8-20 - Importations by the Department of Agriculture.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Importations by the Department of Agriculture. 319.8-20 Section 319.8-20 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Foreign Cotton and...

  8. 7 CFR 319.8-20 - Importations by the Department of Agriculture.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Importations by the Department of Agriculture. 319.8-20 Section 319.8-20 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Foreign Cotton and...

  9. 78 FR 41866 - Restructuring of Regulations on the Importation of Plants for Planting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service 7 CFR Parts 319 and 340 [Docket No. APHIS-2008-0011] RIN 0579-AD75 Restructuring of Regulations on the Importation of Plants for Planting AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Proposed rule; reopening of...

  10. The importance of bees in natural and agricultural ecosystems

    Treesearch

    Paul Rhoades

    2013-01-01

    As the world’s most important group of pollinators, bees are a crucial part of agricultural production and natural ecosystem function. Bees and the pollination they provide are relevant to the nursery industry because of their role in the performance of seed increase plots as well as the importance of pollination in supporting persistent plant communities in restored...

  11. 78 FR 23209 - Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2011-0072] Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of Addition of Taxa of Plants for Planting To List of Taxa Whose Importation Is Not Authorized Pending Pest Risk...

  12. Alaska Plant Materials Center | Division of Agriculture

    Science.gov Websites

    Alaska Plant Materials Center Serving Alaska's needs in the production of native plants and traditional Division of Agriculture Grants Alaska Agriculture Statistics Annual Overview Invasive Plants Invasive Plants Program Invasives News Plant Profiles Canada thistle Elodea European Bird Cherry Giant hogweed

  13. 76 FR 66033 - Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2011-0072] Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of Availability of Data Sheets for Taxa of Plants for Planting That Are Quarantine Pests or Hosts of Quarantine...

  14. Milk Processing Plant Employee. Agricultural Cooperative Training. Vocational Agriculture.

    ERIC Educational Resources Information Center

    Blaschke, Nolan; Page, Foy

    This course of study is designed for the vocational agricultural student enrolled in an agricultural cooperative part-time training program in the area of milk processing occupations. The course consists of 11 units, each with 4 to 13 individual topics that milk processing plant employees should know. Subjects covered by the units are the…

  15. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review.

    PubMed

    Vejan, Pravin; Abdullah, Rosazlin; Khadiran, Tumirah; Ismail, Salmah; Nasrulhaq Boyce, Amru

    2016-04-29

    Plant growth promoting rhizobacteria (PGPR) shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism) of the PGPR for plant growth and the role of the PGPR as biofertilizer-thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.

  16. Plant biotechnology patents: applications in agriculture and medicine.

    PubMed

    Hefferon, Kathleen

    2010-06-01

    Recent advances in agricultural biotechnology have enabled the field of plant biology to move forward in great leaps and bounds. In particular, recent breakthroughs in molecular biology, plant genomics and crop science have brought about a paradigm shift of thought regarding the manner by which plants can be utilized both in agriculture and in medicine. Besides the more well known improvements in agronomic traits of crops such as disease resistance and drought tolerance, plants can now be associated with topics as diverse as biofuel production, phytoremediation, the improvement of nutritional qualities in edible plants, the identification of compounds for medicinal purposes in plants and the use of plants as therapeutic protein production platforms. This diversification of plant science has been accompanied by the great abundance of new patents issued in these fields and, as many of these inventions approach commercial realization, the subsequent increase in agriculturally-based industries. While this review chapter is written primarily for plant scientists who have great interest in the new directions being taken with respect to applications in agricultural biotechnology, those in other disciplines, such as medical researchers, environmental scientists and engineers, may find significant value in reading this article as well. The review attempts to provide an overview of the most recent patents issued for plant biotechnology with respect to both agriculture and medicine. The chapter concludes with the proposal that the combined driving forces of climate change, as well as the ever increasing needs for clean energy and food security will play a pivotal role in leading the direction for applied plant biotechnology research in the future.

  17. Not all GMOs are crop plants: non-plant GMO applications in agriculture.

    PubMed

    Hokanson, K E; Dawson, W O; Handler, A M; Schetelig, M F; St Leger, R J

    2014-12-01

    Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.

  18. 7 CFR 301.11 - Notice of quarantine; prohibition on the interstate movement of certain imported plants and plant...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Notice of quarantine; prohibition on the interstate... DOMESTIC QUARANTINE NOTICES Imported Plants and Plant Parts § 301.11 Notice of quarantine; prohibition on... and establishment of foreign plant pests and diseases. (b) Under this quarantine notice, whenever any...

  19. 7 CFR 301.11 - Notice of quarantine; prohibition on the interstate movement of certain imported plants and plant...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Notice of quarantine; prohibition on the interstate... DOMESTIC QUARANTINE NOTICES Imported Plants and Plant Parts § 301.11 Notice of quarantine; prohibition on... and establishment of foreign plant pests and diseases. (b) Under this quarantine notice, whenever any...

  20. 7 CFR 301.11 - Notice of quarantine; prohibition on the interstate movement of certain imported plants and plant...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Notice of quarantine; prohibition on the interstate... DOMESTIC QUARANTINE NOTICES Imported Plants and Plant Parts § 301.11 Notice of quarantine; prohibition on... and establishment of foreign plant pests and diseases. (b) Under this quarantine notice, whenever any...

  1. 7 CFR 301.11 - Notice of quarantine; prohibition on the interstate movement of certain imported plants and plant...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Notice of quarantine; prohibition on the interstate... DOMESTIC QUARANTINE NOTICES Imported Plants and Plant Parts § 301.11 Notice of quarantine; prohibition on... and establishment of foreign plant pests and diseases. (b) Under this quarantine notice, whenever any...

  2. 7 CFR 301.11 - Notice of quarantine; prohibition on the interstate movement of certain imported plants and plant...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Notice of quarantine; prohibition on the interstate... DOMESTIC QUARANTINE NOTICES Imported Plants and Plant Parts § 301.11 Notice of quarantine; prohibition on... and establishment of foreign plant pests and diseases. (b) Under this quarantine notice, whenever any...

  3. Commercial Pesticides Applicator Manual: Agriculture - Plant.

    ERIC Educational Resources Information Center

    Fitzwater, W. D.; And Others

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the agriculture-plant pest control category. The text discusses identification and control of insects, diseases, nematodes, and weeds of agricultural crops. Proper use of application equipment and safety…

  4. 7 CFR 319.37-2a - Taxa of regulated plants for planting whose importation is not authorized pending pest risk...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... authorized pending pest risk analysis while the information presented by commenters is analyzed and... importation is not authorized pending pest risk analysis. 319.37-2a Section 319.37-2a Agriculture Regulations... plants for planting whose importation is not authorized pending pest risk analysis. (a) Determination by...

  5. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology.

    PubMed

    Holaskova, Edita; Galuszka, Petr; Frebort, Ivo; Oz, M Tufan

    2015-11-01

    Antimicrobial peptides (AMPs) are vital components of the innate immune system of nearly all living organisms. They generally act in the first line of defense against various pathogenic bacteria, parasites, enveloped viruses and fungi. These low molecular mass peptides are considered prospective therapeutic agents due to their broad-spectrum rapid activity, low cytotoxicity to mammalian cells and unique mode of action which hinders emergence of pathogen resistance. In addition to medical use, AMPs can also be employed for development of innovative approaches for plant protection in agriculture. Conferred disease resistance by AMPs might help us surmount losses in yield, quality and safety of agricultural products due to plant pathogens. Heterologous expression in plant-based systems, also called plant molecular farming, offers cost-effective large-scale production which is regarded as one of the most important factors for clinical or agricultural use of AMPs. This review presents various types of AMPs as well as plant-based platforms ranging from cell suspensions to whole plants employed for peptide production. Although AMP production in plants holds great promises for medicine and agriculture, specific technical limitations regarding product yield, function and stability still remain. Additionally, establishment of particular stable expression systems employing plants or plant tissues generally requires extended time scale for platform development compared to certain other heterologous systems. Therefore, fast and promising tools for evaluation of plant-based expression strategies and assessment of function and stability of the heterologously produced AMPs are critical for molecular farming and plant protection. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. 7 CFR 305.31 - Irradiation treatment of imported regulated articles for certain plant pests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Irradiation treatment of imported regulated articles... TREATMENTS Irradiation Treatments § 305.31 Irradiation treatment of imported regulated articles for certain plant pests. (a) Approved doses. Irradiation at the following doses for the specified plant pests...

  7. Linking agricultural practices, mycorrhizal fungi, and traits mediating plant-insect interactions.

    PubMed

    Barber, Nicholas A; Kiers, E Toby; Theis, Nina; Hazzard, Ruth V; Adler, Lynn S

    2013-10-01

    Agricultural management has profound effects on soil communities. Activities such as fertilizer inputs can modify the composition of arbuscular mycorrhizal fungi (AMF) communities, which form important symbioses with the roots of most crop plants. Intensive conventional agricultural management may select for less mutualistic AMF with reduced benefits to host plants compared to organic management, but these differences are poorly understood. AMF are generally evaluated based on their direct growth effects on plants. However, mycorrhizal colonization also may alter plant traits such as tissue nutrients, defensive chemistry, or floral traits, which mediate important plant-insect interactions like herbivory and pollination. To determine the effect of AMF from different farming practices on plant performance and traits that putatively mediate species interactions, we performed a greenhouse study by inoculating Cucumis sativus (cucumber, Cucurbitaceae) with AMF from conventional farms, organic farms, and a commercial AMF inoculum. We measured growth and a suite of plant traits hypothesized to be important predictors of herbivore resistance and pollinator attraction. Several leaf and root traits and flower production were significantly affected by AMF inoculum. Both conventional and organic AMF reduced leaf P content but increased Na content compared to control and commercial AMF. Leaf defenses were unaffected by AMF treatments, but conventional AMF increased root cucurbitacin C, the primary defensive chemical of C. sativus, compared to organic AMF. These effects may have important consequences for herbivore preference and population dynamics. AMF from both organic and conventional farms decreased flower production relative to commercial and control treatments, which may reduce pollinator attraction and plant reproduction. AMF from both farm types also reduced seed germination, but effects on plant growth were limited. Our results suggest that studies only considering AMF

  8. Plant-parasitic nematodes in Hawaiian agriculture

    USDA-ARS?s Scientific Manuscript database

    Hawaii’s diverse and mild climate allows for the cultivation of many crops. The introduction of each crop plant brought along its associated nematode pests. These plant-parasitic nematodes became established and are now endemic to the islands. Plantation agriculture determined the major nematode ...

  9. Historical agriculture alters the effects of fire on understory plant beta diversity.

    PubMed

    Mattingly, W Brett; Orrock, John L; Collins, Cathy D; Brudvig, Lars A; Damschen, Ellen I; Veldman, Joseph W; Walker, Joan L

    2015-02-01

    Land-use legacies are known to shape the diversity and distribution of plant communities, but we lack an understanding of whether historical land use influences community responses to contemporary disturbances. Because human-modified landscapes often bear a history of multiple land-use activities, this contingency can challenge our understanding of land-use impacts on plant diversity. We address this contingency by evaluating how beta diversity (the spatial variability of species composition), an important component of regional biodiversity, is shaped by interactions between historical agriculture and prescribed fire, two prominent disturbances that are often coincident in terrestrial ecosystems. At three study locations spanning 450 km in the southeastern United States, we surveyed longleaf pine woodland understory plant communities across 232 remnant and post-agricultural sites with differing prescribed fire regimes. Our results demonstrate that agricultural legacies are a strong predictor of beta diversity, but the direction of this land-use effect differed among the three study locations. Further, although beta diversity increased with prescribed fire frequency at each study location, this effect was influenced by agricultural land-use history, such that positive fire effects were only documented among sites that lacked a history of agriculture at two of our three study locations. Our study not only highlights the role of historical agriculture in shaping beta diversity in a fire-maintained ecosystem but also illustrates how this effect can be contingent upon fire regime and geographic location. We suggest that interactions among historical and contemporary land-use activities may help to explain dissimilarities in plant communities among sites in human-dominated landscapes.

  10. Assessing elements of an extended evolutionary synthesis for plant domestication and agricultural origin research

    PubMed Central

    Piperno, Dolores R.

    2017-01-01

    The development of agricultural societies, one of the most transformative events in human and ecological history, was made possible by plant and animal domestication. Plant domestication began 12,000–10,000 y ago in a number of major world areas, including the New World tropics, Southwest Asia, and China, during a period of profound global environmental perturbations as the Pleistocene epoch ended and transitioned into the Holocene. Domestication is at its heart an evolutionary process, and for many prehistorians evolutionary theory has been foundational in investigating agricultural origins. Similarly, geneticists working largely with modern crops and their living wild progenitors have documented some of the mechanisms that underwrote phenotypic transformations from wild to domesticated species. Ever-improving analytic methods for retrieval of empirical data from archaeological sites, together with advances in genetic, genomic, epigenetic, and experimental research on living crop plants and wild progenitors, suggest that three fields of study currently little applied to plant domestication processes may be necessary to understand these transformations across a range of species important in early prehistoric agriculture. These fields are phenotypic (developmental) plasticity, niche construction theory, and epigenetics with transgenerational epigenetic inheritance. All are central in a controversy about whether an Extended Evolutionary Synthesis is needed to reconceptualize how evolutionary change occurs. An exploration of their present and potential utility in domestication study shows that all three fields have considerable promise in elucidating important issues in plant domestication and in agricultural origin and dispersal research and should be increasingly applied to these issues. PMID:28576881

  11. 7 CFR 319.37 - Prohibitions and restrictions on importation; disposal of articles refused importation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Prohibitions and restrictions on importation; disposal of articles refused importation. 319.37 Section 319.37 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Nursery Stock, Plants, Root...

  12. 7 CFR 319.37 - Prohibitions and restrictions on importation; disposal of articles refused importation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Prohibitions and restrictions on importation; disposal of articles refused importation. 319.37 Section 319.37 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Nursery Stock, Plants, Root...

  13. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health.

    PubMed

    Köberl, Martina; Schmidt, Ruth; Ramadan, Elshahat M; Bauer, Rudolf; Berg, Gabriele

    2013-12-20

    Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants' flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.

  14. PlantGI: a database for searching gene indices in agricultural plants developed at NIAB, Korea

    PubMed Central

    Kim, Chang Kug; Choi, Ji Weon; Park, DongSuk; Kang, Man Jung; Seol, Young-Joo; Hyun, Do Yoon; Hahn, Jang Ho

    2008-01-01

    The Plant Gene Index (PlantGI) database is developed as a web-based search system with search capabilities for keywords to provide information on gene indices specifically for agricultural plants. The database contains specific Gene Index information for ten agricultural species, namely, rice, Chinese cabbage, wheat, maize, soybean, barley, mushroom, Arabidopsis, hot pepper and tomato. PlantGI differs from other Gene Index databases in being specific to agricultural plant species and thus complements services from similar other developments. The database includes options for interactive mining of EST CONTIGS and assembled EST data for user specific keyword queries. The current version of PlantGI contains a total of 34,000 EST CONTIGS data for rice (8488 records), wheat (8560 records), maize (4570 records), soybean (3726 records), barley (3417 records), Chinese cabbage (3602 records), tomato (1236 records), hot pepper (998 records), mushroom (130 records) and Arabidopsis (8 records). Availability The database is available for free at http://www.niab.go.kr/nabic/. PMID:18685722

  15. Plant genetics, sustainable agriculture and global food security.

    PubMed

    Ronald, Pamela

    2011-05-01

    The United States and the world face serious societal challenges in the areas of food, environment, energy, and health. Historically, advances in plant genetics have provided new knowledge and technologies needed to address these challenges. Plant genetics remains a key component of global food security, peace, and prosperity for the foreseeable future. Millions of lives depend upon the extent to which crop genetic improvement can keep pace with the growing global population, changing climate, and shrinking environmental resources. While there is still much to be learned about the biology of plant-environment interactions, the fundamental technologies of plant genetic improvement, including crop genetic engineering, are in place, and are expected to play crucial roles in meeting the chronic demands of global food security. However, genetically improved seed is only part of the solution. Such seed must be integrated into ecologically based farming systems and evaluated in light of their environmental, economic, and social impacts-the three pillars of sustainable agriculture. In this review, I describe some lessons learned, over the last decade, of how genetically engineered crops have been integrated into agricultural practices around the world and discuss their current and future contribution to sustainable agricultural systems.

  16. Plant-Soil Feedback: Bridging Natural and Agricultural Sciences.

    PubMed

    Mariotte, Pierre; Mehrabi, Zia; Bezemer, T Martijn; De Deyn, Gerlinde B; Kulmatiski, Andrew; Drigo, Barbara; Veen, G F Ciska; van der Heijden, Marcel G A; Kardol, Paul

    2018-02-01

    In agricultural and natural systems researchers have demonstrated large effects of plant-soil feedback (PSF) on plant growth. However, the concepts and approaches used in these two types of systems have developed, for the most part, independently. Here, we present a conceptual framework that integrates knowledge and approaches from these two contrasting systems. We use this integrated framework to demonstrate (i) how knowledge from complex natural systems can be used to increase agricultural resource-use efficiency and productivity and (ii) how research in agricultural systems can be used to test hypotheses and approaches developed in natural systems. Using this framework, we discuss avenues for new research toward an ecologically sustainable and climate-smart future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes

    NASA Astrophysics Data System (ADS)

    Wemheuer, Franziska; Kaiser, Kristin; Karlovsky, Petr; Daniel, Rolf; Vidal, Stefan; Wemheuer, Bernd

    2017-01-01

    Endophytic bacteria are critical for plant growth and health. However, compositional and functional responses of bacterial endophyte communities towards agricultural practices are still poorly understood. Hence, we analyzed the influence of fertilizer application and mowing frequency on bacterial endophytes in three agriculturally important grass species. For this purpose, we examined bacterial endophytic communities in aerial plant parts of Dactylis glomerata L., Festuca rubra L., and Lolium perenne L. by pyrotag sequencing of bacterial 16S rRNA genes over two consecutive years. Although management regimes influenced endophyte communities, observed responses were grass species-specific. This might be attributed to several bacteria specifically associated with a single grass species. We further predicted functional profiles from obtained 16S rRNA data. These profiles revealed that predicted abundances of genes involved in plant growth promotion or nitrogen metabolism differed between grass species and between management regimes. Moreover, structural and functional community patterns showed no correlation to each other indicating that plant species-specific selection of endophytes is driven by functional rather than phylogenetic traits. The unique combination of 16S rRNA data and functional profiles provided a holistic picture of compositional and functional responses of bacterial endophytes in agricultural relevant grass species towards management practices.

  18. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health

    PubMed Central

    Köberl, Martina; Schmidt, Ruth; Ramadan, Elshahat M.; Bauer, Rudolf; Berg, Gabriele

    2013-01-01

    Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants’ flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome. PMID:24391634

  19. Determinants and impacts of public agricultural research in Japan: Product level evidence on agricultural Kosetsushi

    NASA Astrophysics Data System (ADS)

    Fukugawa, Nobuya

    2017-12-01

    The public sector is an important source of agricultural research as the agricultural sector in many countries consists of a number of individual farmers who have difficulty in bearing the cost of research and development. Public institutes for testing and research called Kosetsushi help agriculture and manufacturing improve labor productivity through technology transfer activities, whereby constituting an important component of regional innovation systems in Japan. This study establishes panel data of agricultural Kosetsushi and examines whether their research activities are responsive to local needs and which type of research effort is conducive to the promotion of agricultural product innovations. Estimation results reveal variations across plants in the impacts of agricultural clusters on research on the plant conducted by Kosetsushi located in the cluster. A positive impact is observed only for vegetable while negative or statistically insignificant relationships are found for rice, fruit, and flower. The impact of research on plant breeding on agricultural product innovations also varies across plants. Policy implications of the major findings are discussed.

  20. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks.

    PubMed

    Rudi, Gabrielle; Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute

  1. Plant Hormesis Management with Biostimulants of Biotic Origin in Agriculture.

    PubMed

    Vargas-Hernandez, Marcela; Macias-Bobadilla, Israel; Guevara-Gonzalez, Ramon G; Romero-Gomez, Sergio de J; Rico-Garcia, Enrique; Ocampo-Velazquez, Rosalia V; Alvarez-Arquieta, Luz de L; Torres-Pacheco, Irineo

    2017-01-01

    Over time plants developed complex mechanisms in order to adapt themselves to the environment. Plant innate immunity is one of the most important mechanisms for the environmental adaptation. A myriad of secondary metabolites with nutraceutical features are produced by the plant immune system in order to get adaptation to new environments that provoke stress (stressors). Hormesis is a phenomenon by which a stressor (i.e., toxins, herbicides, etc.) stimulates the cellular stress response, including secondary metabolites production, in order to help organisms to establish adaptive responses. Hormetins of biotic origin (i.e., biostimulants or biological control compounds), in certain doses might enhance plant performance, however, in excessive doses they are commonly deleterious. Biostimulants or biological control compounds of biotic origin are called "elicitors" that have widely been studied as inducers of plant tolerance to biotic and abiotic stresses. The plant response toward elicitors is reminiscent of hormetic responses toward toxins in several organisms. Thus, controlled management of hormetic responses in plants using these types of compounds is expected to be an important tool to increase nutraceutical quality of plant food and trying to minimize negative effects on yields. The aim of this review is to analyze the potential for agriculture that the use of biostimulants and biological control compounds of biotic origin could have in the management of the plant hormesis. The use of homolog DNA as biostimulant or biological control compound in crop production is also discussed.

  2. Plant Hormesis Management with Biostimulants of Biotic Origin in Agriculture

    PubMed Central

    Vargas-Hernandez, Marcela; Macias-Bobadilla, Israel; Guevara-Gonzalez, Ramon G.; Romero-Gomez, Sergio de J.; Rico-Garcia, Enrique; Ocampo-Velazquez, Rosalia V.; Alvarez-Arquieta, Luz de L.; Torres-Pacheco, Irineo

    2017-01-01

    Over time plants developed complex mechanisms in order to adapt themselves to the environment. Plant innate immunity is one of the most important mechanisms for the environmental adaptation. A myriad of secondary metabolites with nutraceutical features are produced by the plant immune system in order to get adaptation to new environments that provoke stress (stressors). Hormesis is a phenomenon by which a stressor (i.e., toxins, herbicides, etc.) stimulates the cellular stress response, including secondary metabolites production, in order to help organisms to establish adaptive responses. Hormetins of biotic origin (i.e., biostimulants or biological control compounds), in certain doses might enhance plant performance, however, in excessive doses they are commonly deleterious. Biostimulants or biological control compounds of biotic origin are called “elicitors” that have widely been studied as inducers of plant tolerance to biotic and abiotic stresses. The plant response toward elicitors is reminiscent of hormetic responses toward toxins in several organisms. Thus, controlled management of hormetic responses in plants using these types of compounds is expected to be an important tool to increase nutraceutical quality of plant food and trying to minimize negative effects on yields. The aim of this review is to analyze the potential for agriculture that the use of biostimulants and biological control compounds of biotic origin could have in the management of the plant hormesis. The use of homolog DNA as biostimulant or biological control compound in crop production is also discussed. PMID:29081787

  3. Agricultural Plant Pest Control. Manual 93.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides for the agricultural plant pest control category. The text discusses the insect pests including caterpillars, beetles, and soil inhabiting insects; diseases and nematodes; and weeds. Consideration is given…

  4. The integrated web service and genome database for agricultural plants with biotechnology information.

    PubMed

    Kim, Changkug; Park, Dongsuk; Seol, Youngjoo; Hahn, Jangho

    2011-01-01

    The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage.

  5. The integrated web service and genome database for agricultural plants with biotechnology information

    PubMed Central

    Kim, ChangKug; Park, DongSuk; Seol, YoungJoo; Hahn, JangHo

    2011-01-01

    The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage. PMID:21887015

  6. Socioeconomic Impacts of Agricultural Processing Plants.

    ERIC Educational Resources Information Center

    Leistritz, F. Larry; Sell, Randall S.

    2001-01-01

    Studies in four North Dakota communities that had suffered economic and population decline in the 1980s examined the economic and community impacts of new agricultural processing plants in the late 1990s, including effects on residents' incomes, total and school-age population, needs for day care and community services, housing needs, public…

  7. The angiosperm phloem sieve tube system: a role in mediating traits important to modern agriculture.

    PubMed

    Ham, Byung-Kook; Lucas, William J

    2014-04-01

    The plant vascular system serves a vital function by distributing water, nutrients and hormones essential for growth and development to the various organs of the plant. In this review, attention is focused on the role played by the phloem as the conduit for delivery of both photosynthate and information macromolecules, especially from the context of its mediation in traits that are important to modern agriculture. Resource allocation of sugars and amino acids, by the phloem, to specific sink tissues is of importance to crop yield and global food security. Current findings are discussed in the context of a hierarchical control network that operates to integrate resource allocation to competing sinks. The role of plasmodesmata that connect companion cells to neighbouring sieve elements and phloem parenchyma cells is evaluated in terms of their function as valves, connecting the sieve tube pressure manifold system to the various plant tissues. Recent studies have also revealed that plasmodesmata and the phloem sieve tube system function cooperatively to mediate the long-distance delivery of proteins and a diverse array of RNA species. Delivery of these information macromolecules is discussed in terms of their roles in control over the vegetative-to-floral transition, tuberization in potato, stress-related signalling involving miRNAs, and genetic reprogramming through the delivery of 24-nucleotide small RNAs that function in transcriptional gene silencing in recipient sink organs. Finally, we discuss important future research areas that could contribute to developing agricultural crops with engineered performance characteristics for enhance yield potential.

  8. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks

    PubMed Central

    Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute

  9. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture.

    PubMed

    Gouda, Sushanto; Kerry, Rout George; Das, Gitishree; Paramithiotis, Spiros; Shin, Han-Seung; Patra, Jayanta Kumar

    2018-01-01

    The progression of life in all forms is not only dependent on agricultural and food security but also on the soil characteristics. The dynamic nature of soil is a direct manifestation of soil microbes, bio-mineralization, and synergistic co-evolution with plants. With the increase in world's population the demand for agriculture yield has increased tremendously and thereby leading to large scale production of chemical fertilizers. Since the use of fertilizers and pesticides in the agricultural fields have caused degradation of soil quality and fertility, thus the expansion of agricultural land with fertile soil is near impossible, hence researchers and scientists have sifted their attention for a safer and productive means of agricultural practices. Plant growth promoting rhizobacteria (PGPR) has been functioning as a co-evolution between plants and microbes showing antagonistic and synergistic interactions with microorganisms and the soil. Microbial revitalization using plant growth promoters had been achieved through direct and indirect approaches like bio-fertilization, invigorating root growth, rhizoremediation, disease resistance etc. Although, there are a wide variety of PGPR and its allies, their role and usages for sustainable agriculture remains controversial and restricted. There is also variability in the performance of PGPR that may be due to various environmental factors that might affect their growth and proliferation in the plants. These gaps and limitations can be addressed through use of modern approaches and techniques such as nano-encapsulation and micro-encapsulation along with exploring multidisciplinary research that combines applications in biotechnology, nanotechnology, agro biotechnology, chemical engineering and material science and bringing together different ecological and functional biological approaches to provide new formulations and opportunities with immense potential. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Plant growth modelling and applications: the increasing importance of plant architecture in growth models.

    PubMed

    Fourcaud, Thierry; Zhang, Xiaopeng; Stokes, Alexia; Lambers, Hans; Körner, Christian

    2008-05-01

    Modelling plant growth allows us to test hypotheses and carry out virtual experiments concerning plant growth processes that could otherwise take years in field conditions. The visualization of growth simulations allows us to see directly and vividly the outcome of a given model and provides us with an instructive tool useful for agronomists and foresters, as well as for teaching. Functional-structural (FS) plant growth models are nowadays particularly important for integrating biological processes with environmental conditions in 3-D virtual plants, and provide the basis for more advanced research in plant sciences. In this viewpoint paper, we ask the following questions. Are we modelling the correct processes that drive plant growth, and is growth driven mostly by sink or source activity? In current models, is the importance of soil resources (nutrients, water, temperature and their interaction with meristematic activity) considered adequately? Do classic models account for architectural adjustment as well as integrating the fundamental principles of development? Whilst answering these questions with the available data in the literature, we put forward the opinion that plant architecture and sink activity must be pushed to the centre of plant growth models. In natural conditions, sinks will more often drive growth than source activity, because sink activity is often controlled by finite soil resources or developmental constraints. PMA06: This viewpoint paper also serves as an introduction to this Special Issue devoted to plant growth modelling, which includes new research covering areas stretching from cell growth to biomechanics. All papers were presented at the Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA06), held in Beijing, China, from 13-17 November, 2006. Although a large number of papers are devoted to FS models of agricultural and forest crop species, physiological and genetic processes have

  11. An intellectual property sharing initiative in agricultural biotechnology: development of broadly accessible technologies for plant transformation.

    PubMed

    Chi-Ham, Cecilia L; Boettiger, Sara; Figueroa-Balderas, Rosa; Bird, Sara; Geoola, Josef N; Zamora, Pablo; Alandete-Saez, Monica; Bennett, Alan B

    2012-06-01

    The Public Intellectual Property Resource for Agriculture (PIPRA) was founded in 2004 by the Rockefeller Foundation in response to concerns that public investments in agricultural biotechnology benefiting developing countries were facing delays, high transaction costs and lack of access to important technologies due to intellectual property right (IPR) issues. From its inception, PIPRA has worked broadly to support a wide range of research in the public sector, in specialty and minor acreage crops as well as crops important to food security in developing countries. In this paper, we review PIPRA's work, discussing the failures, successes, and lessons learned during its years of operation. To address public sector's limited freedom-to-operate, or legal access to third-party rights, in the area of plant transformation, we describe PIPRA's patent 'pool' approach to develop open-access technologies for plant transformation which consolidate patent and tangible property rights in marker-free vector systems. The plant transformation system has been licensed and deployed for both commercial and humanitarian applications in the United States (US) and Africa, respectively. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  12. Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops.

    PubMed

    Khatodia, Surender; Bhatotia, Kirti; Tuteja, Narendra

    2017-05-04

    Clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR associated nuclease 9 (Cas9) system of targeted genome editing has already revolutionized the plant science research. This is a RNA guided programmable endonuclease based system composed of 2 components, the Cas9 nuclease and an engineered guide RNA targeting any DNA sequence of the form N20-NGG for novel genome editing applications. The CRISPR/Cas9 technology of targeted genome editing has been recently applied for imparting virus resistance in plants. The robustness, wide adaptability, and easy engineering of this system has proved its potential as an antiviral tool for plants. Novel DNA free genome editing by using the preassembled Cas9/gRNA ribonucleoprotein complex for development of virus resistance in any plant species have been prospected for the future. Also, in this review we have discussed the reports of CRISPR/Cas9 mediated virus resistance strategy against geminiviruses by targeting the viral genome and transgene free strategy against RNA viruses by targeting the host plant factors. In conclusion, CRISPR/Cas9 technology will provide a more durable and broad spectrum viral resistance in agriculturally important crops which will eventually lead to public acceptance and commercialization in the near future.

  13. The Importance of Agriculture Science Course Sequencing in High Schools: A View from Collegiate Agriculture Students

    ERIC Educational Resources Information Center

    Wheelus, Robin P.

    2009-01-01

    The objective of this study was to investigate the importance of Agriculture Science course sequencing in high schools, as a preparatory factor for students enrolled in collegiate agriculture classes. With the variety of courses listed in the Texas Essential Knowledge and Skills (TEKS) for Agriculture Science, it has been possible for counselors,…

  14. Agricultural By-Products Turned into Important Materials with Adsorptive Properties

    USDA-ARS?s Scientific Manuscript database

    This presentation will summarize the use of agricultural by-products (e.g., animal manure and plant waste) as starting materials to adsorb environmental contaminants such as mercury from air, ammonia from air, metal ions from water, and chlorinated organics from water. The results show that the mat...

  15. Effects of microcystin-LR and cylindrospermopsin on plant-soil systems: A review of their relevance for agricultural plant quality and public health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machado, J.; Campos, A.

    Toxic cyanobacterial blooms are recognized as an emerging environmental threat worldwide. Although microcystin-LR is the most frequently documented cyanotoxin, studies on cylindrospermopsin have been increasing due to the invasive nature of cylindrospermopsin-producing cyanobacteria. The number of studies regarding the effects of cyanotoxins on agricultural plants has increased in recent years, and it has been suggested that the presence of microcystin-LR and cylindrospermopsin in irrigation water may cause toxic effects in edible plants. The uptake of these cyanotoxins by agricultural plants has been shown to induce morphological and physiological changes that lead to a potential loss of productivity. There is alsomore » evidence that edible terrestrial plants can bioaccumulate cyanotoxins in their tissues in a concentration dependent-manner. Moreover, the number of consecutive cycles of watering and planting in addition to the potential persistence of microcystin-LR and cylindrospermopsin in the environment are likely to result in groundwater contamination. The use of cyanotoxin-contaminated water for agricultural purposes may therefore represent a threat to both food security and food safety. However, the deleterious effects of cyanotoxins on agricultural plants and public health seem to be dependent on the concentrations studied, which in most cases are non-environmentally relevant. Interestingly, at ecologically relevant concentrations, the productivity and nutritional quality of some agricultural plants seem not to be impaired and may even be enhanced. However, studies assessing if the potential tolerance of agricultural plants to these concentrations can result in cyanotoxin and allergen accumulation in the edible tissues are lacking. This review combines the most current information available regarding this topic with a realistic assessment of the impact of cyanobacterial toxins on agricultural plants, groundwater quality and public health. - Highlights

  16. A comparison of the herbicide tolerances of rare and common plants in an agricultural landscape.

    PubMed

    Egan, J Franklin; Graham, Ian M; Mortensen, David A

    2014-03-01

    Declining plant biodiversity in agroecosystems has often been attributed to escalating use of chemical herbicides, but other changes in farming systems, including the clearing of seminatural habitat fragments, confound the influence of herbicides. The present study introduces a new approach to evaluate the impacts of herbicide pollution on plant communities at landscape or regional scales. If herbicides are in fact a key factor shaping agricultural plant diversity, one would expect to see the signal of past herbicide impacts in the current plant community composition of an intensively farmed region, with common, successful species more tolerant to widely used herbicides than rare or declining species. Data from an extensive field survey of plant diversity in Lancaster County, Pennsylvania, USA, were compared with herbicide bioassay experiments in a greenhouse to test the hypothesis that common species possess higher herbicide tolerances than rare species. Five congeneric pairs of rare and common species were treated with 3 commonly used herbicide modes of action in bioassay experiments, and few significant differences were found in the tolerances of rare species relative to common species. These preliminary results suggest that other factors beyond herbicide exposure may be more important in shaping the distribution and abundance of plant species diversity across an agricultural landscape. © 2014 SETAC.

  17. Biodiversity of Aspergillus species in some important agricultural products.

    PubMed

    Perrone, G; Susca, A; Cozzi, G; Ehrlich, K; Varga, J; Frisvad, J C; Meijer, M; Noonim, P; Mahakarnchanakul, W; Samson, R A

    2007-01-01

    The genus Aspergillus is one of the most important filamentous fungal genera. Aspergillus species are used in the fermentation industry, but they are also responsible of various plant and food secondary rot, with the consequence of possible accumulation of mycotoxins. The aflatoxin producing A. flavus and A. parasiticus, and ochratoxinogenic A. niger, A. ochraceus and A. carbonarius species are frequently encountered in agricultural products. Studies on the biodiversity of toxigenic Aspergillus species is useful to clarify molecular, ecological and biochemical characteristics of the different species in relation to their different adaptation to environmental and geographical conditions, and to their potential toxigenicity. Here we analyzed the biodiversity of ochratoxin producing species occurring on two important crops: grapes and coffee, and the genetic diversity of A. flavus populations occurring in agricultural fields. Altogether nine different black Aspergillus species can be found on grapes which are often difficult to identify with classical methods. The polyphasic approach used in our studies led to the identification of three new species occurring on grapes: A. brasiliensis, A. ibericus, and A. uvarum. Similar studies on the Aspergillus species occurring on coffee beans have evidenced in the last five years that A. carbonarius is an important source of ochratoxin A in coffee. Four new species within the black aspergilli were also identified in coffee beans: A. sclerotioniger, A. lacticoffeatus, A. sclerotiicarbonarius, and A. aculeatinus. The genetic diversity within A. flavus populations has been widely studied in relation to their potential aflatoxigenicity and morphological variants L- and S-strains. Within A. flavus and other Aspergillus species capable of aflatoxin production, considerable diversity is found. We summarise the main recent achievements in the diversity of the aflatoxin gene cluster in A. flavus populations, A. parasiticus and the non

  18. Genetic Engineering of Plants. Agricultural Research Opportunities and Policy Concerns.

    ERIC Educational Resources Information Center

    Roberts, Leslie

    Plant scientists and science policymakers from government, private companies, and universities met at a convocation on the genetic engineering of plants. During the convocation, researchers described some of the ways genetic engineering may be used to address agricultural problems. Policymakers delineated and debated changes in research funding…

  19. The responding relationship between plants and environment is the essential principle for agricultural sustainable development on the globe.

    PubMed

    Zhou, Yi; Shao, Hong-Bo

    2008-04-01

    The mutual-responding relationship between plants and environment is involved in all life processes, which are the essential bases for different types of sustainable development on the globe, particularly the critical basis for agricultural sustainable development. How to regulate the above relationship between plants and the corresponding environment (in particular soil environment) is the key problem to modern sustainable agriculture development under global climate change, which is one of the hot topics in the field of plant biology. Detailed dissection of this responding relationship is also important for conducting global eco-environmental restoration and construction. Although powerful methodology and dataset related to genomics, post-genomics, and metabolomics have provided some insights into this relationship, crop physiological measures are also critical for crop full performance in field. With the increase of tested plants (including model plants) and development of integrated molecular biology, a complete understanding of the relationship at different scales under biotic and abiotic stresses will be accelerated. In the current paper, we will cover some important aspects in combination with the recent work from our laboratory and related advances reflected by international academic journals, as follows: plant physiological function performance under natural condition, plant gene regulatory network system under abiotic stresses, gene regulatory network system and drought resistance improvement, summary of the related work from our laboratory, conclusions, and acknowledgement.

  20. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity

    PubMed Central

    2014-01-01

    Current soil management strategies are mainly dependent on inorganic chemical-based fertilizers, which caused a serious threat to human health and environment. The exploitation of beneficial microbes as a biofertilizer has become paramount importance in agriculture sector for their potential role in food safety and sustainable crop production. The eco-friendly approaches inspire a wide range of application of plant growth promoting rhizobacteria (PGPRs), endo- and ectomycorrhizal fungi, cyanobacteria and many other useful microscopic organisms led to improved nutrient uptake, plant growth and plant tolerance to abiotic and biotic stress. The present review highlighted biofertilizers mediated crops functional traits such as plant growth and productivity, nutrient profile, plant defense and protection with special emphasis to its function to trigger various growth- and defense-related genes in signaling network of cellular pathways to cause cellular response and thereby crop improvement. The knowledge gained from the literature appraised herein will help us to understand the physiological bases of biofertlizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. PMID:24885352

  1. Creating an agricultural world order: regional plant protection problems and international phytopathology, 1878-1939.

    PubMed

    Castonguay, Stéphane

    2010-01-01

    Beginning in 1878 with the International Phylloxera Convention of Berne, international conventions have sought to relieve national agricultural industries from two specific burdens. First, by defining phytosanitary practices to be enforced by national plant protection services, these conventions attempted to prevent the introduction of plant diseases and pests into national territories from which they were previously absent. Second, by standardizing these practices - especially through the design of a unique certificate of inspection - the conventions attempted to eliminate barriers such as quarantines affection international agricultural trade. The succession of phytopathological conventions seemed to epitomize the coalescence of an international community against agricultural pests. What actually coalesced was bio-geopolitics wherein plant pathologists and economic entomologists from North America and the British Empire questioned the so-called internationality of the environmental and economic specificities of continental European agriculture, embodied in "international" conventions. Although an international phenomenon, the dissemination of agricultural pests provided opportunities for cooperation on a strictly regional albeit transnational basis that pitted bio-geopolitical spaces against each other. This article retraces the formation of these spaces by analyzing the deliberations of committees and congresses that gathered to define an international agricultural order based on the means to prevent the spread of plant diseases and pests.

  2. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe.

    PubMed

    Hass, Annika L; Kormann, Urs G; Tscharntke, Teja; Clough, Yann; Baillod, Aliette Bosem; Sirami, Clélia; Fahrig, Lenore; Martin, Jean-Louis; Baudry, Jacques; Bertrand, Colette; Bosch, Jordi; Brotons, Lluís; Burel, Françoise; Georges, Romain; Giralt, David; Marcos-García, María Á; Ricarte, Antonio; Siriwardena, Gavin; Batáry, Péter

    2018-02-14

    Agricultural intensification is one of the main causes for the current biodiversity crisis. While reversing habitat loss on agricultural land is challenging, increasing the farmland configurational heterogeneity (higher field border density) and farmland compositional heterogeneity (higher crop diversity) has been proposed to counteract some habitat loss. Here, we tested whether increased farmland configurational and compositional heterogeneity promote wild pollinators and plant reproduction in 229 landscapes located in four major western European agricultural regions. High-field border density consistently increased wild bee abundance and seed set of radish ( Raphanus sativus ), probably through enhanced connectivity. In particular, we demonstrate the importance of crop-crop borders for pollinator movement as an additional experiment showed higher transfer of a pollen analogue along crop-crop borders than across fields or along semi-natural crop borders. By contrast, high crop diversity reduced bee abundance, probably due to an increase of crop types with particularly intensive management. This highlights the importance of crop identity when higher crop diversity is promoted. Our results show that small-scale agricultural systems can boost pollinators and plant reproduction. Agri-environmental policies should therefore aim to halt and reverse the current trend of increasing field sizes and to reduce the amount of crop types with particularly intensive management. © 2018 The Author(s).

  3. Virtual water flows and water-footprint of agricultural crop production, import and export: A case study for Israel.

    PubMed

    Shtull-Trauring, E; Bernstein, N

    2018-05-01

    Agriculture is the largest global consumer of freshwater. As the volume of international trade continues to rise, so does the understanding that trade of water-intensive crops from areas with high precipitation, to arid regions can help mitigate water scarcity, highlighting the importance of crop water accounting. Virtual-Water, or Water-Footprint [WF] of agricultural crops, is a powerful indicator for assessing the extent of water use by plants, contamination of water bodies by agricultural practices and trade between countries, which underlies any international trade of crops. Most available studies of virtual-water flows by import/export of agricultural commodities were based on global databases, which are considered to be of limited accuracy. The present study analyzes the WF of crop production, import, and export on a country level, using Israel as a case study, comparing data from two high-resolution local databases and two global datasets. Results for local datasets demonstrate a WF of ~1200Million Cubic Meters [MCM]/year) for total crop production, ~1000MCM/year for import and ~250MCM/year for export. Fruits and vegetables comprise ~80% of Export WF (~200MCM/year), ~50% of crop production and only ~20% of the imports. Economic Water Productivity [EWP] ($/m 3 ) for fruits and vegetables is 1.5 higher compared to other crops. Moreover, the results based on local and global datasets varied significantly, demonstrating the importance of developing high-resolution local datasets based on local crop coefficients. Performing high resolution WF analysis can help in developing agricultural policies that include support for low WF/high EWP and limit high WF/low EWP crop export, where water availability is limited. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fire frequency, agricultural history and the multivariate control of pine savanna understorey plant diversity

    Treesearch

    Joseph W. Veldman; Lars A. Brudvig; Ellen I. Damschen; John L. Orrock; W. Brett Mattingly; Joan L. Walker

    2014-01-01

    Question: Human-altered disturbance regimes and agricultural land uses are broadly associated with reduced plant species diversity in terrestrial ecosystems. In this study, we seek to understand how fire frequency and agricultural land-use history influence savanna understorey plant diversity through complex relationships (i.e. indirect effects) among multiple...

  5. Potential Applications of Polyamines in Agriculture and Plant Biotechnology.

    PubMed

    Tiburcio, Antonio F; Alcázar, Rubén

    2018-01-01

    The polyamines putrescine, spermidine and spermine have been implicated in a myriad of biological functions in many organisms. Research done during the last decades has accumulated a large body of evidence demonstrating that polyamines are key modulators of plant growth and development. Different experimental approaches have been employed including the measurement of endogenous polyamine levels and the activities of polyamine metabolic enzymes, the study of the effects resulting from exogenous polyamine applications and chemical or genetic manipulation of endogenous polyamine titers. This chapter reviews the role of PAs in seed germination, root development, plant architecture, in vitro plant regeneration, flowering and plant senescence. Evidence presented here indicates that polyamines should be regarded as plant growth regulators with potential applications in agriculture and plant biotechnology.

  6. Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture.

    PubMed

    Kenney, Eric; Eleftherianos, Ioannis

    2016-01-01

    Plant-parasitic nematodes are responsible for substantial damages within the agriculture industry every year, which is a challenge that has thus far gone largely unimpeded. Chemical nematicides have been employed with varying degrees of success, but their implementation can be cumbersome, and furthermore they could potentially be neutralising an otherwise positive effect from the entomopathogenic nematodes that coexist with plant-parasitic nematodes in soil environments and provide protection for plants against insect pests. Recent research has explored the potential of employing entomopathogenic nematodes to protect plants from plant-parasitic nematodes, while providing their standard degree of protection against insects. The interactions involved are highly complex, due to both the three-organism system and the assortment of variables present in a soil environment, but a strong collection of evidence has accumulated regarding the suppressive capacity of certain entomopathogenic nematodes and their mutualistic bacteria, in the context of limiting the infectivity of plant-parasitic nematodes. Specific factors produced by certain entomopathogenic nematode complexes during the process of insect infection appear to have a selectively nematicidal, or at least repellant, effect on plant-parasitic nematodes. Using this information, an opportunity has formed to adapt this relationship to large-scale, field conditions and potentially relieve the agricultural industry of one of its most substantial burdens. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  7. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy

    PubMed Central

    Cheng, Fang; Cheng, Zhihui

    2015-01-01

    Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant

  8. Association of N2-fixing cyanobacteria and plants: towards novel symbioses of agricultural importance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhai, Jeff

    2001-06-25

    Some nitrogen-fixing cyanobacteria are able to form symbioses with a wide variety of plants. Nostoc 2S9B is unusual in its ability to infect the roots of wheat, raising the prospect of a productive association with an important crop plant. The goal of the project was to lay the groundwork for the use of novel associations between Nostoc and crops of agronomic importance, thereby reducing our reliance on nitrogenous fertilizer. Nostoc 2S9B was found to enter roots through mechanical damage of roots and reside primarily in intercellular spaces. The strain could also be incorporated into wheat calli grown in tissue culture.more » In both cases, the rate of nitrogen fixation by the cyanobacterium was higher than that of the same strain grown with no plant present. Artificial nodules induced by the action of hormone 2,4D were readily infected by Nostoc 2S9B, and the cyanobacteria within such nodules fixed nitrogen under fully aerobic conditions. The nitrogen fixed was shown to be incorporated into the growing wheat seedlings. Nostoc thus differs from other bacteria in its ability to fix nitrogen in para-nodules without need for artificially microaerobic conditions. It would be useful to introduce foreign DNA into Nostoc 2S9B in order to make defined mutations to understand the genetic basis of its ability to infect wheat and to create strains that might facilitate the study of the infection process. Transfer of DNA into the cyanobacterium appears to be limited by the presence of four restriction enzymes, with recognition sequences the same as BamHI, BglI, BsaHI, and Tth111I. Genes encoding methyltransferases that protect DNA against these four enzymes have been cloned into helper plasmids to allow transfer of DNA from E. coli to Nostoc 2S9B.« less

  9. How to Tell How Important Agriculture Is to Your State.

    ERIC Educational Resources Information Center

    Schluter, Gerald; Edmondson, William

    1986-01-01

    Emphasizes agriculture's economic importance and lists the top 10 states according to 4 possible criteria for determining economic dependence on agriculture: number of food and fiber system jobs, number of farmworkers, proportion of food and fiber system jobs, and proportion of farmworkers to total food and fiber system jobs. (JHZ)

  10. DNA barcodes for bio-surveillance: regulated and economically important arthropod plant pests.

    PubMed

    Ashfaq, Muhammad; Hebert, Paul D N

    2016-11-01

    Many of the arthropod species that are important pests of agriculture and forestry are impossible to discriminate morphologically throughout all of their life stages. Some cannot be differentiated at any life stage. Over the past decade, DNA barcoding has gained increasing adoption as a tool to both identify known species and to reveal cryptic taxa. Although there has not been a focused effort to develop a barcode library for them, reference sequences are now available for 77% of the 409 species of arthropods documented on major pest databases. Aside from developing the reference library needed to guide specimen identifications, past barcode studies have revealed that a significant fraction of arthropod pests are a complex of allied taxa. Because of their importance as pests and disease vectors impacting global agriculture and forestry, DNA barcode results on these arthropods have significant implications for quarantine detection, regulation, and management. The current review discusses these implications in light of the presence of cryptic species in plant pests exposed by DNA barcoding.

  11. Nanoparticle-plant interaction: Implications in energy, environment, and agriculture.

    PubMed

    Rai, Prabhat Kumar; Kumar, Vanish; Lee, SangSoo; Raza, Nadeem; Kim, Ki-Hyun; Ok, Yong Sik; Tsang, Daniel C W

    2018-06-14

    In the recent techno-scientific revolution, nanotechnology has gained popularity at a rapid pace in different sectors and disciplines, specifically environmental, sensing, bioenergy, and agricultural systems. Controlled, easy, economical, and safe synthesis of nanomaterials is desired for the development of new-age nanotechnology. In general, nanomaterial synthesis techniques, such as chemical synthesis, are not completely safe or environmentally friendly due to harmful chemicals used or to toxic by-products produced. Moreover, a few nanomaterials are present as by-product during washing process, which may accumulate in water, air, and soil system to pose serious threats to plants, animals, and microbes. In contrast, using plants for nanomaterial (especially nanoparticle) synthesis has proven to be environmentally safe and economical. The role of plants as a source of nanoparticles is also likely to expand the number of options for sustainable green renewable energy, especially in biorefineries. Despite several advantages of nanotechnology, the nano-revolution has aroused concerns in terms of the fate of nanoparticles in the environment because of the potential health impacts caused by nanotoxicity upon their release. In the present panoramic review, we discuss the possibility that a multitudinous array of nanoparticles may find applications convergent with human welfare based on the synthesis of diverse nanoparticles from plants and their extracts. The significance of plant-nanoparticle interactions has been elucidated further for nanoparticle synthesis, applications of nanoparticles, and the disadvantages of using plants for synthesizing nanoparticles. Finally, we discuss future prospects of plant-nanoparticle interactions in relation to the environment, energy, and agriculture with implications in nanotechnology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Ultrasonic Sensing of Plant Water Needs for Agriculture

    PubMed Central

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  13. Ultrasonic Sensing of Plant Water Needs for Agriculture.

    PubMed

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-07-14

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1-1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400-900 kHz and 200-400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained.

  14. A novel model for estimating organic chemical bioconcentration in agricultural plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, H.; Mackay, D.; Di Guardo, A.

    1995-12-31

    There is increasing recognition that much human and wildlife exposure to organic contaminants can be traced through the food chain to bioconcentration in vegetation. For risk assessment, there is a need for an accurate model to predict organic chemical concentrations in plants. Existing models range from relatively simple correlations of concentrations using octanol-water or octanol-air partition coefficients, to complex models involving extensive physiological data. To satisfy the need for a relatively accurate model of intermediate complexity, a novel approach has been devised to predict organic chemical concentrations in agricultural plants as a function of soil and air concentrations, without themore » need for extensive plant physiological data. The plant is treated as three compartments, namely, leaves, roots and stems (including fruit and seeds). Data readily available from the literature, including chemical properties, volume, density and composition of each compartment; metabolic and growth rate of plant; and readily obtainable environmental conditions at the site are required as input. Results calculated from the model are compared with observed and experimentally-determined concentrations. It is suggested that the model, which includes a physiological database for agricultural plants, gives acceptably accurate predictions of chemical partitioning between plants, air and soil.« less

  15. Economic importance of bats in agriculture

    USGS Publications Warehouse

    Boyles, Justin G.; Cryan, Paul M.; McCracken, Gary F.; Kunz, Thomas H.

    2011-01-01

    White-nose syndrome (WNS) and the increased development of wind-power facilities are threatening populations of insectivorous bats in North America. Bats are voracious predators of nocturnal insects, including many crop and forest pests. We present here analyses suggesting that loss of bats in North America could lead to agricultural losses estimated at more than $3.7 billion/year. Urgent efforts are needed to educate the public and policy-makers about the ecological and economic importance of insectivorous bats and to provide practical conservation solutions.

  16. Revising and Updating the Plant Science Components of the Connecticut Vocational Agriculture Curriculum.

    ERIC Educational Resources Information Center

    Connecticut Univ., Storrs. Dept. of Educational Leadership.

    This curriculum guide provides the plant science components of the vocational agriculture curriculum for Regional Vocational Agriculture Centers. The curriculum is divided into exploratory units for students in the 9th and 10th grades and specialized units for students in grades 11 and 12. The five exploratory units are: agricultural pest control;…

  17. Sago-Type Palms Were an Important Plant Food Prior to Rice in Southern Subtropical China

    PubMed Central

    Yang, Xiaoyan; Barton, Huw J.; Wan, Zhiwei; Li, Quan; Ma, Zhikun; Li, Mingqi; Zhang, Dan; Wei, Jun

    2013-01-01

    Poor preservation of plant macroremains in the acid soils of southern subtropical China has hampered understanding of prehistoric diets in the region and of the spread of domesticated rice southwards from the Yangtze River region. According to records in ancient books and archaeological discoveries from historical sites, it is presumed that roots and tubers were the staple plant foods in this region before rice agriculture was widely practiced. But no direct evidences provided to test the hypothesis. Here we present evidence from starch and phytolith analyses of samples obtained during systematic excavations at the site of Xincun on the southern coast of China, demonstrating that during 3,350–2,470 aBC humans exploited sago palms, bananas, freshwater roots and tubers, fern roots, acorns, Job's-tears as well as wild rice. A dominance of starches and phytoliths from palms suggest that the sago-type palms were an important plant food prior to the rice in south subtropical China. We also believe that because of their reliance on a wide range of starch-rich plant foods, the transition towards labour intensive rice agriculture was a slow process. PMID:23667584

  18. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants.

    PubMed

    Zalabák, David; Pospíšilová, Hana; Šmehilová, Mária; Mrízová, Katarína; Frébort, Ivo; Galuszka, Petr

    2013-01-01

    Cytokinins (CKs) are ubiquitous phytohormones that participate in development, morphogenesis and many physiological processes throughout plant kingdom. In higher plants, mutants and transgenic cells and tissues with altered activity of CK metabolic enzymes or perception machinery, have highlighted their crucial involvement in different agriculturally important traits, such as productivity, increased tolerance to various stresses and overall plant morphology. Furthermore, recent precise metabolomic analyses have elucidated the specific occurrence and distinct functions of different CK types in various plant species. Thus, smooth manipulation of active CK levels in a spatial and temporal way could be a very potent tool for plant biotechnology in the future. This review summarises recent advances in cytokinin research ranging from transgenic alteration of CK biosynthetic, degradation and glucosylation activities and CK perception to detailed elucidation of molecular processes, in which CKs work as a trigger in model plants. The first attempts to improve the quality of crop plants, focused on cereals are discussed, together with proposed mechanism of action of the responses involved. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown.

    PubMed

    Sharma, Bhavisha; Sarkar, Abhijit; Singh, Pooja; Singh, Rajeev Pratap

    2017-06-01

    Environmental and economic implications linked with the proper ecofriendly disposal of modern day wastes, has made it essential to come up with alternative waste management practices that reduce the environmental pressures resulting from unwise disposal of such wastes. Urban wastes like biosolids are loaded with essential plant nutrients. In this view, agricultural use of biosolids would enable recycling of these nutrients and could be a sustainable approach towards management of this hugely generated waste. Therefore biosolids i.e. sewage sludge can serve as an important resource for agricultural utilization. Biosolids are characterized by the occurrence of beneficial plant nutrients (essential elements and micro and macronutrients) which can make help them to work as an effective soil amendment, thereby minimizing the reliance on chemical fertilizers. However, biosolids might contain toxic heavy metals that may limit its usage in the cropland. Heavy metals at higher concentration than the permissible limits may lead to food chain contamination and have fatal consequences. Biosolids amendment in soil can improve physical and nutrient property of soil depending on the quantity and portion of the mixture. Hence, biosolids can be a promising soil ameliorating supplement to increase plant productivity, reduce bioavailability of heavy metals and also lead to effective waste management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Interactions Among Plants, Insects, and Microbes: Elucidation of Inter-Organismal Chemical Communications in Agricultural Ecology.

    PubMed

    Beck, John J; Alborn, Hans; Block, Anna; Christensen, Shawn A; Hunter, Charles T; Rering, Caitlin C; Seidl-Adams, Irmgard; Stuhl, Charles; Torto, Baldwyn; Tumlinson, James H

    2018-06-12

    The last two decades have witnessed a sustained increase in the study of plant-emitted volatiles and their role in plant-insect, plant-microbe and plant-plant interactions. While each of these binary systems involves complex chemical and biochemical processes between two organisms, the progression of increasing complexity of a ternary system (i.e., plant-insect-microbe), and the study of a ternary system requires non-trivial planning. This planning can include: an experimental design that factors in potential overarching ecological interactions regarding the binary or ternary system; correctly identifying and understanding unexpected observations that may occur during the experiment; and, thorough interpretation of the resultant data. This challenge of planning, performing and interpreting a plant's defensive response to multiple biotic stressors will be even greater when abiotic stressors (i.e., temperature or water) are factored into the system. To fully understand the system, we need to not only continue to investigate and understand the volatile profiles, but also include and understand the biochemistry of the plant's response to these stressors. In this paper, we provide examples and discuss interaction considerations with respect to how readers and future authors of the Journal of Agricultural and Food Chemistry can contribute their expertise toward the extraction and interpretation of chemical information exchanged between agricultural commodities and their associated pests. This holistic, multidisciplinary and thoughtful approach to interactions of plants, insects, and microbes, and the resultant response of the plants, can lead to a better understanding of agricultural ecology, in turn leading to practical and viable solutions to agricultural problems.

  1. Are agricultural and natural sources of bio-products important for modern regenerative medicine? A review.

    PubMed

    Nowacki, Maciej; Nowacka, Katarzyna; Kloskowski, Tomasz; Pokrywczyńska, Marta; Tyloch, Dominik; Rasmus, Marta; Warda, Karolina; Drewa, Tomasz

    2017-05-11

    [b] Abstract Introduction and objectives[/b]. As tissue engineering and regenerative medicine have continued to evolve within the field of biomedicine, the fundamental importance of bio-products has become increasingly apparent. This true not only in cases where they are derived directly from the natural environment, but also when animals and plants are specially bred and cultivated for their production. [b]Objective.[/b] The study aims to present and assess the global influence and importance of selected bio-products in current regenerative medicine via a broad review of the existing literature. In particular, attention is paid to the matrices, substances and grafts created from plants and animals which could potentially be used in experimental and clinical regeneration, or in reconstructive procedures. [b]Summary.[/b] Evolving trends in agriculture are likely to play a key role in the future development of a number of systemic and local medical procedures within tissue engineering and regenerative medicine. This is in addition to the use of bio-products derived from the natural environment which are found to deliver positive results in the treatment of prospective patients.

  2. A Cross-Sectional Analysis of the Importance of Agricultural Mechanics Skills Taught

    ERIC Educational Resources Information Center

    Rasty, John R.; Anderson, Ryan G.

    2014-01-01

    In 1994, Laird conducted a study using secondary agricultural education teachers across the United States to determine the depth agricultural mechanics skills were being taught at the time, and how important those skills would be in 2004. The researchers conducted a follow up study in 2016, using secondary agricultural education teachers in Iowa…

  3. [Effects of agricultural practices on community structure of arbuscular mycorrhizal fungi in agricultural ecosystem: a review].

    PubMed

    Sheng, Ping-Ping; Li, Min; Liu, Run-Jin

    2011-06-01

    Arbuscular mycorrhizal (AM) fungi are rich in diversity in agricultural ecosystem, playing a vital role based on their unique community structure. Host plants and environmental factors have important effects on AM fungal community structure, so do the agricultural practices which deserve to pay attention to. This paper summarized the research advances in the effects of agricultural practices such as irrigation, fertilization, crop rotation, intercropping, tillage, and pesticide application on AM fungal community structure, analyzed the related possible mechanisms, discussed the possible ways in improving AM fungal community structure in agricultural ecosystem, and put forward a set of countermeasures, i.e., improving fertilization system and related integrated techniques, increasing plant diversity in agricultural ecosystem, and inoculating AM fungi, to enhance the AM fungal diversity in agricultural ecosystem. The existing problems in current agricultural practices and further research directions were also proposed.

  4. 9 CFR 98.13 - Import permit.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... exists only if accompanied by import permits issued by the Animal and Plant Health Inspection Service (APHIS). (b) An application for the import permits must be submitted to the Animal and Plant Health...

  5. 9 CFR 98.13 - Import permit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... exists only if accompanied by import permits issued by the Animal and Plant Health Inspection Service (APHIS). (b) An application for the import permits must be submitted to the Animal and Plant Health...

  6. Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control.

    PubMed

    Montesinos, Emilio; Bardají, Eduard

    2008-07-01

    There is a need of antimicrobial compounds in agriculture for plant-disease control, with low toxicity and reduced negative environmental impact. Antimicrobial peptides are produced by living organisms and offer strong possibilities in agriculture because new compounds can be developed based on natural structures with improved properties of activity, specificity, biodegradability, and toxicity. Design of new molecules has been achieved using combinatorial-chemistry procedures coupled to high-throughput screening systems and data processing with design-of-experiments (DOE) methodology to obtain QSAR equation models and optimized compounds. Upon selection of best candidates with low cytotoxicity and moderate stability to protease digestion, anti-infective activity has been evaluated in plant-pathogen model systems. Suitable compounds have been submitted to acute toxicity testing in higher organisms and exhibited a low toxicity profile in a mouse model. Large-scale production can be achieved by solution organic or chemoenzymatic procedures in the case of very small peptides, but, in many cases, production can be performed by biotechnological methods using genetically modified microorganisms (fermentation) or transgenic crops (plant biofactories).

  7. Insect-plant-pathogen interactions as shaped by future climate: effects on biology, distribution, and implications for agriculture.

    PubMed

    Trębicki, Piotr; Dáder, Beatriz; Vassiliadis, Simone; Fereres, Alberto

    2017-12-01

    Carbon dioxide (CO 2 ) is the main anthropogenic gas which has drastically increased since the industrial revolution, and current concentrations are projected to double by the end of this century. As a consequence, elevated CO 2 is expected to alter the earths' climate, increase global temperatures and change weather patterns. This is likely to have both direct and indirect impacts on plants, insect pests, plant pathogens and their distribution, and is therefore problematic for the security of future food production. This review summarizes the latest findings and highlights current knowledge gaps regarding the influence of climate change on insect, plant and pathogen interactions with an emphasis on agriculture and food production. Direct effects of climate change, including increased CO 2 concentration, temperature, patterns of rainfall and severe weather events that impact insects (namely vectors of plant pathogens) are discussed. Elevated CO 2 and temperature, together with plant pathogen infection, can considerably change plant biochemistry and therefore plant defense responses. This can have substantial consequences on insect fecundity, feeding rates, survival, population size, and dispersal. Generally, changes in host plant quality due to elevated CO 2 (e.g., carbon to nitrogen ratios in C3 plants) negatively affect insect pests. However, compensatory feeding, increased population size and distribution have also been reported for some agricultural insect pests. This underlines the importance of additional research on more targeted, individual insect-plant scenarios at specific locations to fully understand the impact of a changing climate on insect-plant-pathogen interactions. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  8. Role of transgenic plants in agriculture and biopharming.

    PubMed

    Ahmad, Parvaiz; Ashraf, Muhammad; Younis, Muhammad; Hu, Xiangyang; Kumar, Ashwani; Akram, Nudrat Aisha; Al-Qurainy, F

    2012-01-01

    At present, environmental degradation and the consistently growing population are two main problems on the planet earth. Fulfilling the needs of this growing population is quite difficult from the limited arable land available on the globe. Although there are legal, social and political barriers to the utilization of biotechnology, advances in this field have substantially improved agriculture and human life to a great extent. One of the vital tools of biotechnology is genetic engineering (GE) which is used to modify plants, animals and microorganisms according to desired needs. In fact, genetic engineering facilitates the transfer of desired characteristics into other plants which is not possible through conventional plant breeding. A variety of crops have been engineered for enhanced resistance to a multitude of stresses such as herbicides, insecticides, viruses and a combination of biotic and abiotic stresses in different crops including rice, mustard, maize, potato, tomato, etc. Apart from the use of GE in agriculture, it is being extensively employed to modify the plants for enhanced production of vaccines, hormones, etc. Vaccines against certain diseases are certainly available in the market, but most of them are very costly. Developing countries cannot afford the disease control through such cost-intensive vaccines. Alternatively, efforts are being made to produce edible vaccines which are cheap and have many advantages over the commercialized vaccines. Transgenic plants generated for this purpose are capable of expressing recombinant proteins including viral and bacterial antigens and antibodies. Common food plants like banana, tomato, rice, carrot, etc. have been used to produce vaccines against certain diseases like hepatitis B, cholera, HIV, etc. Thus, the up- and down-regulation of desired genes which are used for the modification of plants have a marked role in the improvement of genetic crops. In this review, we have comprehensively discussed the role

  9. How the Quantity of Agricultural Mechanics Training Received at the Secondary Level Impact Teacher Perceived Importance of Agricultural Mechanics Skills

    ERIC Educational Resources Information Center

    Rasty, John; Anderson, Ryan G.; Paulsen, Thomas H.

    2017-01-01

    Preservice teacher candidates in agricultural education have expressed concerns with teaching agricultural mechanics content yet the number of required courses in agricultural mechanics has dwindled. To determine the root of current teachers' perceptions, it is important to look at the developmental experiences that have led to those perceptions.…

  10. The importance of agricultural lands for Himalayan birds in winter.

    PubMed

    Elsen, Paul R; Kalyanaraman, Ramnarayan; Ramesh, Krishnamurthy; Wilcove, David S

    2017-04-01

    The impacts of land-use change on biodiversity in the Himalayas are poorly known, notwithstanding widespread deforestation and agricultural intensification in this highly biodiverse region. Although intact primary forests harbor many Himalayan birds during breeding, a large number of bird species use agricultural lands during winter. We assessed how Himalayan bird species richness, abundance, and composition during winter are affected by forest loss stemming from agriculture and grazing. Bird surveys along 12 elevational transects within primary forest, low-intensity agriculture, mixed subsistence agriculture, and intensively grazed pastures in winter revealed that bird species richness and abundance were greatest in low-intensity and mixed agriculture, intermediate in grazed pastures, and lowest in primary forest at both local and landscape scales; over twice as many species and individuals were recorded in low-intensity agriculture than in primary forest. Bird communities in primary forests were distinct from those in all other land-use classes, but only 4 species were unique to primary forests. Low-, medium-, and high-intensity agriculture harbored 32 unique species. Of the species observed in primary forest, 80% had equal or greater abundance in low-intensity agricultural lands, underscoring the value of these lands in retaining diverse community assemblages at high densities in winter. Among disturbed landscapes, bird species richness and abundance declined as land-use intensity increased, especially in high-intensity pastures. Our results suggest that agricultural landscapes are important for most Himalayan bird species in winter. But agricultural intensification-especially increased grazing-will likely result in biodiversity losses. Given that forest reserves alone may inadequately conserve Himalayan birds in winter, comprehensive conservation strategies in the region must go beyond protecting intact primary forests and ensure that low-intensity agricultural

  11. Monitoring of full-scale hydrodynamic cavitation pretreatment in agricultural biogas plant.

    PubMed

    Garuti, Mirco; Langone, Michela; Fabbri, Claudio; Piccinini, Sergio

    2018-01-01

    The implementation of hydrodynamic cavitation (HC) pretreatment for enhancing the methane potential from agricultural biomasses was evaluated in a full scale agricultural biogas plant, with molasses and corn meal as a supplementary energy source. HC batch tests were run to investigate the influence on methane production, particle size and viscosity of specific energy input. 470kJ/kgTS was chosen for the full-scale implementation. Nearly 6-months of operational data showed that the HC pretreatment maximized the specific methane production of about 10%, allowing the biogas plant to get out of the fluctuating markets of supplementary energy sources and to reduce the methane emissions. HC influenced viscosity and particle size of digestate, contributing to reduce the energy demand for mixing, heating and pumping. In the light of the obtained results the HC process appears to be an attractive and energetically promising alternative to other pretreatments for the degradation of biomasses in biogas plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Combined hydrogen and carbon isotopes of plant waxes as an indicator of drought impacts on ancient Maya agriculture

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Hodell, D. A.; Curtis, J. H.

    2012-12-01

    There is increasing evidence suggesting that a series of droughts in the Yucatan Peninsula coincided with the Terminal Classic decline of the Classic Maya civilization (ca. 1250 to 1000 years BP). However, there is little evidence directly linking climatic change and changes in human activities in this region. In this study we combine plant-wax δD, δ13C, and Δ14C analyses in two lake sediment cores from southeastern Mexico and northern Guatemala to develop coupled records of hydroclimate variability and human-driven vegetation change. Plant-wax specific Δ14C ages indicate a large input of pre-aged plant waxes into lake sediment. Comparison of plant-wax δD records with other regional hydroclimate proxy records suggest that plant-wax ages are evenly distributed around plant-wax radiocarbon ages, and that applying an age model based on plant-wax radiocarbon ages is appropriate for these lake sediments. We evaluate how differences in plant-wax age distributions influence stable isotope records to assess the age uncertainty associated with records of climate and vegetation change derived from plant-wax stable isotopes. In this low-elevation tropical environment plant-wax δ13C is largely controlled by the relative abundance of C3 and C4 plants. The ancient Maya practiced widespread maize (C4) agriculture and strongly influenced regional C3-C4 vegetation dynamics. Under natural conditions C4 plant coverage and plant-wax δ13C would tend to co-vary positively since C4 plants are well adapted for dry conditions. Under ancient Maya land-use, however, this relationship is likely to be decoupled, since drought would have disrupted C4 agriculture. Combined analysis of plant-wax δD and δ13C from both lakes indicates increasingly divergent trends following ca. 3500 years BP, around the onset of widespread ancient Maya agriculture. After this time high plant-wax δD values tend to correspond with low plant-wax δ13C values and vice versa. This pattern is consistent with

  13. Agriculture on Mars: Soils for Plant Growth

    NASA Technical Reports Server (NTRS)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  14. Population growth rate of dry bulb mite, Aceria tulipae (Keifer) (Acariformes: Eriophyidae) on agriculturally important plants and implications on taxonomic status

    USDA-ARS?s Scientific Manuscript database

    Dry bulb mite (DBM), Aceria tulipae, is an economically important mite with a worldwide distribution and a broad host range. As a generalist, it is the most important eriophyoid mite attacking bulbous plants such as garlic, onion, and tulip. To date, DBM has been recorded on host plants belonging to...

  15. The Value of Native Plants and Local Production in an Era of Global Agriculture

    PubMed Central

    Shelef, Oren; Weisberg, Peter J.; Provenza, Frederick D.

    2017-01-01

    For addressing potential food shortages, a fundamental tradeoff exists between investing more resources to increasing productivity of existing crops, as opposed to increasing crop diversity by incorporating more species. We explore ways to use local plants as food resources and the potential to promote food diversity and agricultural resilience. We discuss how use of local plants and the practice of local agriculture can contribute to ongoing adaptability in times of global change. Most food crops are now produced, transported, and consumed long distances from their homelands of origin. At the same time, research and practices are directed primarily at improving the productivity of a small number of existing crops that form the cornerstone of a global food economy, rather than to increasing crop diversity. The result is a loss of agro-biodiversity, leading to a food industry that is more susceptible to abiotic and biotic stressors, and more at risk of catastrophic losses. Humans cultivate only about 150 of an estimated 30,000 edible plant species worldwide, with only 30 plant species comprising the vast majority of our diets. To some extent, these practices explain the food disparity among human populations, where nearly 1 billion people suffer insufficient nutrition and 2 billion people are obese or overweight. Commercial uses of new crops and wild plants of local origin have the potential to diversify global food production and better enable local adaptation to the diverse environments humans inhabit. We discuss the advantages, obstacles, and risks of using local plants. We also describe a case study—the missed opportunity to produce pine nuts commercially in the Western United States. We discuss the potential consequences of using local pine nuts rather than importing them overseas. Finally, we provide a list of edible native plants, and synthesize the state of research concerning the potential and challenges in using them for food production. The goal of our

  16. The Value of Native Plants and Local Production in an Era of Global Agriculture.

    PubMed

    Shelef, Oren; Weisberg, Peter J; Provenza, Frederick D

    2017-01-01

    For addressing potential food shortages, a fundamental tradeoff exists between investing more resources to increasing productivity of existing crops, as opposed to increasing crop diversity by incorporating more species. We explore ways to use local plants as food resources and the potential to promote food diversity and agricultural resilience. We discuss how use of local plants and the practice of local agriculture can contribute to ongoing adaptability in times of global change. Most food crops are now produced, transported, and consumed long distances from their homelands of origin. At the same time, research and practices are directed primarily at improving the productivity of a small number of existing crops that form the cornerstone of a global food economy, rather than to increasing crop diversity. The result is a loss of agro-biodiversity, leading to a food industry that is more susceptible to abiotic and biotic stressors, and more at risk of catastrophic losses. Humans cultivate only about 150 of an estimated 30,000 edible plant species worldwide, with only 30 plant species comprising the vast majority of our diets. To some extent, these practices explain the food disparity among human populations, where nearly 1 billion people suffer insufficient nutrition and 2 billion people are obese or overweight. Commercial uses of new crops and wild plants of local origin have the potential to diversify global food production and better enable local adaptation to the diverse environments humans inhabit. We discuss the advantages, obstacles, and risks of using local plants. We also describe a case study-the missed opportunity to produce pine nuts commercially in the Western United States. We discuss the potential consequences of using local pine nuts rather than importing them overseas. Finally, we provide a list of edible native plants, and synthesize the state of research concerning the potential and challenges in using them for food production. The goal of our

  17. Perceptions of Vocational Agriculture Instructors Regarding Knowledge and Importance of Including Selected Agricultural Mechanics Units in the Vocational Agriculture Program.

    ERIC Educational Resources Information Center

    Heimgartner, Dale C.; Foster, Richard M.

    1981-01-01

    A survey of teachers in five northwestern states revealed that respondents in all states rated the units of arc welding and oxyacetylene welding as the most important units to be included in secondary vocational agriculture programs. (LRA)

  18. Changing techniques in crop plant classification: molecularization at the National Institute of Agricultural Botany during the 1980s.

    PubMed

    Holmes, Matthew

    2017-04-01

    Modern methods of analysing biological materials, including protein and DNA sequencing, are increasingly the objects of historical study. Yet twentieth-century taxonomic techniques have been overlooked in one of their most important contexts: agricultural botany. This paper addresses this omission by harnessing unexamined archival material from the National Institute of Agricultural Botany (NIAB), a British plant science organization. During the 1980s the NIAB carried out three overlapping research programmes in crop identification and analysis: electrophoresis, near infrared spectroscopy (NIRS) and machine vision systems. For each of these three programmes, contemporary economic, statutory and scientific factors behind their uptake by the NIAB are discussed. This approach reveals significant links between taxonomic practice at the NIAB and historical questions around agricultural research, intellectual property and scientific values. Such links are of further importance given that the techniques developed by researchers at the NIAB during the 1980s remain part of crop classification guidelines issued by international bodies today.

  19. 19 CFR 12.10 - Regulations and orders of the Department of Agriculture.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Agriculture. 12.10 Section 12.10 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND... Regulations and orders of the Department of Agriculture. The importation into the United States of plants and plant products is subject to regulations and orders of the Department of Agriculture restricting or...

  20. 19 CFR 12.10 - Regulations and orders of the Department of Agriculture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Agriculture. 12.10 Section 12.10 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND... Regulations and orders of the Department of Agriculture. The importation into the United States of plants and plant products is subject to regulations and orders of the Department of Agriculture restricting or...

  1. 19 CFR 12.10 - Regulations and orders of the Department of Agriculture.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Agriculture. 12.10 Section 12.10 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND... Regulations and orders of the Department of Agriculture. The importation into the United States of plants and plant products is subject to regulations and orders of the Department of Agriculture restricting or...

  2. 19 CFR 12.10 - Regulations and orders of the Department of Agriculture.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Agriculture. 12.10 Section 12.10 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND... Regulations and orders of the Department of Agriculture. The importation into the United States of plants and plant products is subject to regulations and orders of the Department of Agriculture restricting or...

  3. 19 CFR 12.10 - Regulations and orders of the Department of Agriculture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Agriculture. 12.10 Section 12.10 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND... Regulations and orders of the Department of Agriculture. The importation into the United States of plants and plant products is subject to regulations and orders of the Department of Agriculture restricting or...

  4. 78 FR 9851 - Importation of Plants for Planting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... phytosanitary certificate of inspection, to make it consistent with the definition provided in ``Subpart--Fruits... inspection is, generally, greater for plants for planting than it is for fruits and vegetables, and often... the importation of seed of certain fruits, vegetables, and herbs into the United States. Section 361.2...

  5. THE USE OF CHEMICALS AS PLANT REGULATORS. AGRICULTURAL CHEMICALS TECHNOLOGY, NUMBER 8.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center for Vocational and Technical Education.

    ONE OF A SERIES DESIGNED TO ASSIST TEACHERS IN PREPARING POST-SECONDARY STUDENTS FOR AGRICULTURAL CHEMICAL OCCUPATIONS, THIS MODULE IS SPECIFICALLY CONCERNED WITH CHEMICALS AS PLANT REGULATORS. IT WAS DEVELOPED BY A NATIONAL TASK FORCE ON THE BASIS OF DATA FROM STATE STUDIES. SECTIONS INCLUDE -- (1) CHEMICALS AS MODIFIERS OF PLANT GROWTH, (2)…

  6. Fabrication Of Biogenic Silver Nanoparticles Using Agricultural Crop Plant Leaf Extracts

    NASA Astrophysics Data System (ADS)

    Rajani, P.; SriSindhura, K.; Prasad, T. N. V. K. V.; Hussain, O. M.; Sudhakar, P.; Latha, P.; Balakrishna, M.; Kambala, V.; Reddy, K. Raja

    2010-10-01

    Nanoparticles are being viewed as fundamental building blocks of nanotechnology. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Use of agricultural crop plant extracts for synthesis of metal nanoparticles would add a new dimension to the agricultural sector in the utilization of crop waste. Silver has long been recognized as having an inhibitory effect towards many bacterial strains and microorganisms commonly present in medical and industrial processes. Four pulse crop plants and three cereal crop plants (Vigna radiata, Arachis hypogaea, Cyamopsis tetragonolobus, Zea mays, Pennisetum glaucum, Sorghum vulgare) were used and compared for their extra cellular synthesis of metallic silver nanoparticles. Stable silver nanoparticles were formed by treating aqueous solution of AgNO3 with the plant leaf extracts as reducing agent at temperatures 50 °C-95 °C. UV-Visible spectroscopy was utilized to monitor the formation of silver nanoparticles. XRD analysis of formed silver nanoparticles revealed face centered cubic structure with (111), (200), (220) and (311) planes. SEM and EDAX analysis confirm the size of the formed silver nanoparticles to be in the range of 50-200 nm. Our proposed work offers a enviro-friendly method for biogenic silver nanoparticles production. This could provide a faster synthesis rate comparable to those of chemical methods and potentially be used in areas such as cosmetics, food and medical applications.

  7. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.

    PubMed

    Shao, Hong-Bo; Chu, Li-Ye; Jaleel, C Abdul; Manivannan, P; Panneerselvam, R; Shao, Ming-An

    2009-01-01

    Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil-water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil-plant water relationships and soil-water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of

  8. 76 FR 31171 - Importation of Plants for Planting; Establishing a Category of Plants for Planting Not Authorized...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ...We are amending the regulations to establish a new category of regulated articles in the regulations governing the importation of nursery stock, also known as plants for planting. This category will list taxa of plants for planting whose importation is not authorized pending pest risk analysis. If scientific evidence indicates that a taxon of plants for planting is a quarantine pest or a host of a quarantine pest, we will publish a notice that will announce our determination that the taxon is a quarantine pest or a host of a quarantine pest, cite the scientific evidence we considered in making this determination, and give the public an opportunity to comment on our determination. If we receive no comments that change our determination, the taxon will subsequently be added to the new category. We will allow any person to petition for a pest risk analysis to be conducted to consider whether to remove a taxon that has been added to the new category. After the pest risk analysis is completed, we will remove the taxon from the category and allow its importation subject to general requirements, allow its importation subject to specific restrictions, or prohibit its importation. We will consider applications for permits to import small quantities of germplasm from taxa whose importation is not authorized pending pest risk analysis, for experimental or scientific purposes under controlled conditions. This new category will allow us to take prompt action on evidence that the importation of a taxon of plants for planting poses a risk while continuing to allow for public participation in the process.

  9. Evaluation of site preparation and planting stock on nuttall oak and cherrybark oak growth on a former agriculture area

    Treesearch

    Andrew B. Self; Andrew W. Ezell; Andrew J. Londo; John D. Hodges; Derek K. Alkire

    2012-01-01

    Oaks are an important component of the southern landscape, and are planted on thousands of acres across the region annually. Federal cost share programs, such as the Wetland Reserve Program (WRP), have increased public interest in afforestation of retired agricultural sites in the Lower Mississippi Alluvial Valley. Acorns, bare root, containerized, and potted seedlings...

  10. Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments.

    PubMed

    Le, Trong Dieu Hien; Scharmüller, Andreas; Kattwinkel, Mira; Kühne, Ralph; Schüürmann, Gerrit; Schäfer, Ralf B

    2017-11-01

    Pesticide residues are frequently found in water bodies and may threaten freshwater ecosystems and biodiversity. In addition to runoff or leaching from treated agricultural fields, pesticides may enter streams via effluents from wastewater treatment plants (WWTPs). We compared the pesticide toxicity in terms of log maximum Toxic Unit (log mTU) of sampling sites in small agricultural streams of Germany with and without WWTPs in the upstream catchments. We found an approximately half log unit higher pesticide toxicity for sampling sites with WWTPs (p < 0.001). Compared to fungicides and insecticides, herbicides contributed most to the total pesticide toxicity in streams with WWTPs. A few compounds (diuron, terbuthylazin, isoproturon, terbutryn and Metazachlor) dominated the herbicide toxicity. Pesticide toxicity was not correlated with upstream distance to WWTP (Spearman's rank correlation, rho = - 0.11, p > 0.05) suggesting that other context variables are more important to explain WWTP-driven pesticide toxicity. Our results suggest that WWTPs contribute to pesticide toxicity in German streams. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Toward Martian agriculture: responses of plants to hypobaria

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.; Barta, Daniel J.; Wheeler, Raymond M.

    2002-01-01

    The recent surge of interest in human missions to Mars has also generated considerable interest in the responses of plants to hypobaria (reduced atmospheric pressure), particularly among those in the advanced life support community. Potential for in situ resource utilization, challenges in meeting engineering constraints for mass and energy, the prospect of using lightweight plant growth structures on Mars, and the minimal literature on plant responses to low pressure all suggest much needed research in this area. However, the limited literature on hypobaria combined with previous findings on plant responses to atmospheric composition and established principles of mass transfer of gases suggest that some plants will be capable of tolerating and growing at pressures below 20 kPa; and for other species, perhaps as low as 5-10 kPa. In addition, normal and perhaps enhanced growth of many plants will likely occur at reduced partial pressures of oxygen (e.g., 5 kPa). Growth of plants at such low and partial pressures indicates the feasibility of cultivating plants in lightweight, transparent "greenhouses" on the surface of Mars or in other extraterrestrial or extreme environment locations. There are numerous, accessible terrestrial analogs for moderately low pressure ranges, but not for very low and extremely low atmospheric pressures. Research pertaining to very low pressures has been historically restricted to the use of vacuum chambers. Future research prospects, approaches, and priorities for plant growth experiments at low pressure are considered and discussed as they apply to prospects for Martian agriculture.

  12. Selected historic agricultural data important to environmental quality in the United States

    USGS Publications Warehouse

    Grey, Katia M.; Capel, Paul D.; Baker, Nancy T.; Thelin, Gail P.

    2012-01-01

    This report and the accompanying tables summarize some of the important changes in American agriculture in the form of a timeline and a compilation of selected annual time-series data that can be broadly related to environmental quality. Although these changes have been beneficial for increasing agricultural production, some of them have resulted in environmental concerns. The agriculture timeline is divided into four categories (1) crop and animal changes, (2) mechanical changes, (3) biological and chemical changes, and (4) regulatory and societal changes. The timeline attempts to compile events that have had a lasting impact on agriculture in the United States. The events and data presented in this report may help to improve the connections between agricultural activist and environmental concerns.

  13. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science.

    PubMed

    Tan, Dun-Xian; Hardeland, Rudiger; Manchester, Lucien C; Korkmaz, Ahmet; Ma, Shuran; Rosales-Corral, Sergio; Reiter, Russel J

    2012-01-01

    The presence of melatonin in plants is universal. Evidence has confirmed that a major portion of the melatonin is synthesized by plants themselves even though a homologue of the classic arylalkylamine N-acetyltransferase (AANAT) has not been identified as yet in plants. Thus, the serotonin N-acetylating enzyme in plants may differ greatly from the animal AANAT with regard to sequence and structure. This would imply multiple evolutionary origins of enzymes with these catalytic properties. A primary function of melatonin in plants is to serve as the first line of defence against internal and environmental oxidative stressors. The much higher melatonin levels in plants compared with those found in animals are thought to be a compensatory response by plants which lack means of mobility, unlike animals, as a means of coping with harsh environments. Importantly, remarkably high melatonin concentrations have been measured in popular beverages (coffee, tea, wine, and beer) and crops (corn, rice, wheat, barley, and oats). Billions of people worldwide consume these products daily. The beneficial effects of melatonin on human health derived from the consumption of these products must be considered. Evidence also indicates that melatonin has an ability to increase the production of crops. The mechanisms may involve the roles of melatonin in preservation of chlorophyll, promotion of photosynthesis, and stimulation of root development. Transgenic plants with enhanced melatonin content could probably lead to breakthroughs to increase crop production in agriculture and to improve the general health of humans.

  14. Importance and Capability of Teaching Agricultural Mechanics as Perceived by Secondary Agricultural Educators

    ERIC Educational Resources Information Center

    Shultz, Matthew J.; Anderson, Ryan G.; Shultz, Alyx M.; Paulsen, Thomas H.

    2014-01-01

    Agricultural mechanics instruction is a long-standing and significant part of secondary agricultural education. Similar to the broader agricultural industry, agricultural mechanics instruction is in a constant state of dynamic change. Educators must be proactive to ensure agricultural mechanics curriculum retains its relevance within this changing…

  15. The plant breeding industry after pure line theory: Lessons from the National Institute of Agricultural Botany.

    PubMed

    Berry, Dominic

    2014-06-01

    In the early twentieth century, Wilhelm Johannsen proposed his pure line theory and the genotype/phenotype distinction, work that is prized as one of the most important founding contributions to genetics and Mendelian plant breeding. Most historians have already concluded that pure line theory did not change breeding practices directly. Instead, breeding became more orderly as a consequence of pure line theory, which structured breeding programmes and eliminated external heritable influences. This incremental change then explains how and why the large multi-national seed companies that we know today were created; pure lines invited standardisation and economies of scale that the latter were designed to exploit. Rather than focus on breeding practice, this paper examines the plant varietal market itself. It focusses upon work conducted by the National Institute of Agricultural Botany (NIAB) during the interwar years, and in doing so demonstrates that, on the contrary, the pure line was actually only partially accepted by the industry. Moreover, claims that contradicted the logic of the pure line were not merely tolerated by the agricultural geneticists affiliated with NIAB, but were acknowledged and legitimised by them. The history of how and why the plant breeding industry was transformed remains to be written. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Parasitic plants in agriculture: Chemical ecology of germination and host-plant location as targets for sustainable control: A review

    Treesearch

    Justin B. Runyon; John F. Tooker; Mark C. Mescher; Consuelo M. De Moraes

    2009-01-01

    Parasitic plants are among the most problematic pests of agricultural crops worldwide. Effective means of control are generally lacking, in part because of the close physiological connection between the established parasite and host plant hindering efficient control using traditional methods. Seed germination and host location are critical early-growth stages that...

  17. Plants & Crops | National Agricultural Library

    Science.gov Websites

    Skip to main content Home National Agricultural Library United States Department of Agriculture Ag , tables, graphs), Agricultural Products html Useful to Usable: Developing usable climate science for climatology, crop modeling, agronomy, cyber-technology, agricultural economics, sociology, Extension and

  18. 7 CFR 355.21 - Marking and mailing requirements for plants imported, exported, or reexported by mail. 5

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ENDANGERED SPECIES REGULATIONS CONCERNING TERRESTRIAL PLANTS Inspections and Related Provisions § 355.21 Marking and...) Genus and species, and quantity of each (if a hybrid, genus of each parent, and quantity of each hybrid...

  19. 7 CFR 355.21 - Marking and mailing requirements for plants imported, exported, or reexported by mail. 5

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ENDANGERED SPECIES REGULATIONS CONCERNING TERRESTRIAL PLANTS Inspections and Related Provisions § 355.21 Marking and...) Genus and species, and quantity of each (if a hybrid, genus of each parent, and quantity of each hybrid...

  20. 7 CFR 355.21 - Marking and mailing requirements for plants imported, exported, or reexported by mail. 5

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ENDANGERED SPECIES REGULATIONS CONCERNING TERRESTRIAL PLANTS Inspections and Related Provisions § 355.21 Marking and...) Genus and species, and quantity of each (if a hybrid, genus of each parent, and quantity of each hybrid...

  1. 7 CFR 355.21 - Marking and mailing requirements for plants imported, exported, or reexported by mail. 5

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ENDANGERED SPECIES REGULATIONS CONCERNING TERRESTRIAL PLANTS Inspections and Related Provisions § 355.21 Marking and...) Genus and species, and quantity of each (if a hybrid, genus of each parent, and quantity of each hybrid...

  2. 7 CFR 355.21 - Marking and mailing requirements for plants imported, exported, or reexported by mail. 5

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ENDANGERED SPECIES REGULATIONS CONCERNING TERRESTRIAL PLANTS Inspections and Related Provisions § 355.21 Marking and...) Genus and species, and quantity of each (if a hybrid, genus of each parent, and quantity of each hybrid...

  3. Pesticides residues and metals in plant products from agricultural area of Belgrade, Serbia.

    PubMed

    Ethorđević, Tijana; Ethurović, Rada

    2012-03-01

    The objective of study was to assess the levels of selected metals and pesticides in plant products from agricultural area of Belgrade, Serbia in order to indicate their possible sources and risks of contamination and to evaluate their sanitary probity and safety. The concentrations of cadmium, copper, iron, manganese, nickel, lead and zinc were below limits established by national and international regulations (maximum found concentrations were 0.028, 1.91, 11.16, 1.77, 0.605, 0.073 and 1.76 mg kg(-1) respectively). Only residue of one of examined pesticides was found in amount below MRL (bifenthrin 2.46 μg kg(-1)) in only one of analysed samples, while others were below detection limits. Obtained results indicate that crops from examined agricultural areas are unpolluted by contaminants used for plant protection and nutrition, indicating good agricultural practice regarding pesticides and fertilizer usage as well as moderate industrial production within examined areas.

  4. Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils.

    PubMed

    Sharaff, Murali; Kamat, Shalmali; Archana, G

    2017-04-01

    Agricultural sites irrigated for long term with water polluted by industrial effluents containing heavy metals might adversely affect the soil microbial communities and crop yield. Hence it is important to study rhizobacterial communities and their metal tolerance in such affected agricultural fields to restore soil fertility and ecosystem. Present work deals with the study of rhizobacterial communities from plants grown in copper (Cu) contaminated agricultural fields along the industrial zone of Gujarat, India and are compared with communities from a Cu mine site. Microbial communities from rhizosphere soil samples varied in the magnitude of their Cu tolerance index indicating differences in long term pollution effects. Culture dependent denaturing gradient gel electrophoresis (CD-DGGE) of bacterial communities revealed the diverse composition at the sampling sites and a reduced total diversity due to Cu toxicity. Analysis of 16S rRNA gene diversity of Cu tolerant rhizobacteria revealed the predominance of Enterobacter spp. and Pseudomonas spp. under Cu stress conditions. Cu tolerant bacterial isolates that were able to promote growth of mung bean plants in vitro under Cu stress were obtained from these samples. Cu tolerant rhizobacterium P36 identified as Enterobacter sp. exhibited multiple plant growth promoting traits and significantly alleviated Cu toxicity to mung bean plants by reducing the accumulation of Cu in plant roots and promoted the plant growth in CuSO 4 amended soils. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Caesium-137 soil-to-plant transfer for representative agricultural crops of monocotyledonous and dicotyledonous plants in post-Chernobyl steppe landscape

    NASA Astrophysics Data System (ADS)

    Paramonova, Tatiana; Komissarova, Olga; Turykin, Leonid; Kuzmenkova, Natalia; Belyaev, Vladimir

    2016-04-01

    The accident at the Chernobyl nuclear power plant in 1986 had a large-scale action on more than 2.3 million hectares agricultural lands in Russia. The area of radioactively contaminated chernozems of semi-arid steppe zone with initial levels of Cs-137 185-555 kBq/m2 in Tula region received the name "Plavsky radioactive hotspot". Nowadays, after the first half-life period of Cs-137 arable chernozems of the region are still polluted with 3-6-fold excess above the radioactive safety standard (126-228 kBq/m2). Therefore, qualitative and quantitative characteristics of Cs-137 soil-to-plant transfer are currently a central problem for land use on the territory. The purpose of the present study was revealing the biological features of Cs-137 root uptake from contaminated arable chernozems by different agricultural crops. The components of a grass mixture growing at the central part of Plavsky radioactive hotspot with typical dicotyledonous and monocotyledonous plants - galega (Galega orientalis, Fabaceae family) and bromegrass (Bromus inermis, Gramineae family) respectively - were selected for the investigation, that was conducted during the period of harvesting in 2015. An important point was that the other factors influenced on Cs-137 soil-to-plant transfer - the level of soil pollution, soil properties, climatic conditions, vegetative phase, etc. - were equal. So, biological features of Cs-137 root uptake could be estimated the most credible manner. As a whole, general discrimination of Cs-137 root uptake was clearly shown for both agricultural crops. Whereas Cs-137 activity in rhizosphere 30-cm layer of arable chernozem was 371±74 Bq/kg (140±32 kBq/m2), Cs-137 activities in plant biomass were one-two orders of magnitude less, and transfer factor (TF) values (the ratio of the Cs-137 activities in vegetation and in soil) not exceeded 0.11. At the same time bioavailability of Cs-137 for bromegrass was significantly higher than for galega: TFs in total biomass of the

  6. Importance of impacts scenarios for the adaptation of agriculture to climate change

    NASA Astrophysics Data System (ADS)

    Zullo, J.; Macedo, C.; Pinto, H. S.; Assad, E. D.; Koga Vicente, A.

    2012-12-01

    The great possibility that the climate is already changing, and the most drastic way possible, increases the challenge of agricultural engineering, especially in environmentally vulnerable areas and in regions where agriculture has a high economic and social importance. Knowledge of potential impacts that may be caused by changes in water and thermal regimes in coming decades is increasingly strategic, as they allow the development of techniques to adapt agriculture to climate change and therefore minimizes the risk of undesirable impacts, for example, in food and nutritional security. Thus, the main objective of this paper is to describe a way to generate impacts scenarios caused by anomalies of precipitation and temperature in the definition of climate risk zoning of an agricultural crop very important in the tropics, such as the sugar cane, especially in central-southern Brazil, which is one of its main world producers. A key point here is the choice of the climate model to be used, considering that 23 different models were used in the fourth IPCC report published in 2007. The number and range of available models requires the definition of criteria for choosing the most suitable for the preparation of the impacts scenarios. One way proposed and used in this work is based on the definition of two groups of models according to 27 technical attributes of them. The clustering of 23 models in two groups, with a model representing each group (UKMO_HadCM3 and MIROC3.2_medres), assists the generation and comparison of impacts scenarios, making them more representative and useful. Another important aspect in the generation of impacts scenarios is the estimate of the relative importance of the anomalies of precipitation and temperature, which are the most commonly used. To assess the relative importance of the anomalies are generated scenarios considering an anomaly at a time and both together. The impacts scenarios for a high emission of greenhouse gases (A2), from 2010

  7. Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale.

    PubMed

    Bernardo, Pauline; Charles-Dominique, Tristan; Barakat, Mohamed; Ortet, Philippe; Fernandez, Emmanuel; Filloux, Denis; Hartnady, Penelope; Rebelo, Tony A; Cousins, Stephen R; Mesleard, François; Cohez, Damien; Yavercovski, Nicole; Varsani, Arvind; Harkins, Gordon W; Peterschmitt, Michel; Malmstrom, Carolyn M; Martin, Darren P; Roumagnac, Philippe

    2018-01-01

    Disease emergence events regularly result from human activities such as agriculture, which frequently brings large populations of genetically uniform hosts into contact with potential pathogens. Although viruses cause nearly 50% of emerging plant diseases, there is little systematic information about virus distribution across agro-ecological interfaces and large gaps in understanding of virus diversity in nature. Here we applied a novel landscape-scale geometagenomics approach to examine relationships between agricultural land use and distributions of plant-associated viruses in two Mediterranean-climate biodiversity hotspots (Western Cape region of South Africa and Rhône river delta region of France). In total, we analysed 1725 geo-referenced plant samples collected over two years from 4.5 × 4.5 km 2 grids spanning farmlands and adjacent uncultivated vegetation. We found substantial virus prevalence (25.8-35.7%) in all ecosystems, but prevalence and identified family-level virus diversity were greatest in cultivated areas, with some virus families displaying strong agricultural associations. Our survey revealed 94 previously unknown virus species, primarily from uncultivated plants. This is the first effort to systematically evaluate plant-associated viromes across broad agro-ecological interfaces. Our findings indicate that agriculture substantially influences plant virus distributions and highlight the extent of current ignorance about the diversity and roles of viruses in nature.

  8. Assessment of Variable Planting Date as an Agricultural Adaptation to Climate Variability in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Rivera, A.; Gunda, T.; Hornberger, G. M.

    2016-12-01

    Agriculture accounts for approximately 70% of global freshwater withdrawals. Changes in precipitation patterns due to climate change as well as increasing demands for water necessitate an increased understanding of the water-­food intersection, notably at a local scale to inform farmer adaptations to improve water productivity, i.e., to get more food with less water. Local assessments of water-food security are particularly important for nations with self-sufficiency policies, which prioritize in-country production of certain resources. An ideal case study is the small island nation of Sri Lanka, which has a self-sufficiency policy for its staple food of rice. Because rice is a water-intensive crop, assessment of irrigation water requirements (IWRs) and the associated changes over time is especially important. Previous studies on IWRs of rice in Sri Lanka have failed to consider the Yala (dry) season, when water is scarcest.The goal of this study is to characterize the role that a human decision, setting the planting date, can play in buffering declines in rice yield against changes in precipitation patterns. Using four meteorological stations in the main rice-growing zones in Sri Lanka, we explore (1) general changes in IWRs over time during the Yala season and (2) the impact of the rice planting date. We use both historical data from meteorological stations as well as future projections from regional climate models. Our results indicate that gains can be achieved using a variable planting date relative to a fixed date, in accordance with a similar conclusion for the Maha (wet) season. This local scale assessment of Sri Lanka IWRs will contribute to the growing global literature on the impacts of water scarcity on agriculture and the role that one adaptation measure can play in mitigating deleterious impacts.

  9. MPIC: a mitochondrial protein import components database for plant and non-plant species.

    PubMed

    Murcha, Monika W; Narsai, Reena; Devenish, James; Kubiszewski-Jakubiak, Szymon; Whelan, James

    2015-01-01

    In the 2 billion years since the endosymbiotic event that gave rise to mitochondria, variations in mitochondrial protein import have evolved across different species. With the genomes of an increasing number of plant species sequenced, it is possible to gain novel insights into mitochondrial protein import pathways. We have generated the Mitochondrial Protein Import Components (MPIC) Database (DB; http://www.plantenergy.uwa.edu.au/applications/mpic) providing searchable information on the protein import apparatus of plant and non-plant mitochondria. An in silico analysis was carried out, comparing the mitochondrial protein import apparatus from 24 species representing various lineages from Saccharomyces cerevisiae (yeast) and algae to Homo sapiens (human) and higher plants, including Arabidopsis thaliana (Arabidopsis), Oryza sativa (rice) and other more recently sequenced plant species. Each of these species was extensively searched and manually assembled for analysis in the MPIC DB. The database presents an interactive diagram in a user-friendly manner, allowing users to select their import component of interest. The MPIC DB presents an extensive resource facilitating detailed investigation of the mitochondrial protein import machinery and allowing patterns of conservation and divergence to be recognized that would otherwise have been missed. To demonstrate the usefulness of the MPIC DB, we present a comparative analysis of the mitochondrial protein import machinery in plants and non-plant species, revealing plant-specific features that have evolved. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Relationship between humanity and plant natural resources – in the context of food and agriculture

    USDA-ARS?s Scientific Manuscript database

    Agriculture, the domestication, culture, and management of plants and animals, has led to profound social changes in human evolution and development; it can be considered as the basis for civilization. Roughly 12,000 years ago agriculture appeared independently in several parts of the world. A natur...

  11. 9 CFR 93.912 - Import permits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... CONVEYANCE AND SHIPPING CONTAINERS Aquatic Animal Species General Provisions for Vhs-Regulated Fish Species... and Plant Health Inspection Service, Veterinary Services, National Center for Import and Export, 4700...

  12. 9 CFR 93.912 - Import permits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... CONVEYANCE AND SHIPPING CONTAINERS Aquatic Animal Species General Provisions for Vhs-Regulated Fish Species... and Plant Health Inspection Service, Veterinary Services, National Center for Import and Export, 4700...

  13. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives.

    PubMed

    Govindaraj, M; Vetriventhan, M; Srinivasan, M

    2015-01-01

    The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable

  14. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives

    PubMed Central

    Govindaraj, M.; Vetriventhan, M.; Srinivasan, M.

    2015-01-01

    The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable

  15. Current challenges and future perspectives of plant and agricultural biotechnology.

    PubMed

    Moshelion, Menachem; Altman, Arie

    2015-06-01

    Advances in understanding plant biology, novel genetic resources, genome modification, and omics technologies generate new solutions for food security and novel biomaterials production under changing environmental conditions. New gene and germplasm candidates that are anticipated to lead to improved crop yields and other plant traits under stress have to pass long development phases based on trial and error using large-scale field evaluation. Therefore, quantitative, objective, and automated screening methods combined with decision-making algorithms are likely to have many advantages, enabling rapid screening of the most promising crop lines at an early stage followed by final mandatory field experiments. The combination of novel molecular tools, screening technologies, and economic evaluation should become the main goal of the plant biotechnological revolution in agriculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Eavesdropping on plant-insect-microbe chemical communications in agricultural ecology: a virtual issue on semiochemicals

    USDA-ARS?s Scientific Manuscript database

    Studies of plant-insect interactions, and more recently the interactions among plants, insects, and microbes, have revealed that volatiles often facilitate insect movement, aggregation, and host location by herbivores, predators and parasitoids, all of which could be used to help protect agriculture...

  17. United States Department of Agriculture-Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes.

    PubMed

    Meyer, Susan L F

    2003-01-01

    Restrictions on the use of conventional nematicides have increased the need for new methods of managing plant-parasitic nematodes. Consequently, nematode-antagonistic microbes, and active compounds produced by such organisms, are being explored as potential additions to management practices. Programs in this area at the USDA Agricultural Research Service investigate applied biocontrol agents, naturally occurring beneficial soil microbes and natural compounds. Specific research topics include use of plant growth-promoting rhizobacteria and cultural practices for management of root-knot and ring nematodes, determination of management strategies that enhance activity of naturally occurring Pasteuria species (bacterial obligate parasites of nematodes), studies on interactions between biocontrol bacteria and bacterial-feeding nematodes, and screening of microbes for compounds active against plant-parasitic nematodes. Some studies involve biocontrol agents that are active against nematodes and soil-borne plant-pathogenic fungi, or combinations of beneficial bacteria and fungi, to manage a spectrum of plant diseases or to increase efficacy over a broader range of environmental conditions. Effective methods or agents identified in the research programs are investigated as additions to existing management systems for plant-parasitic nematodes.

  18. Apoplastic interactions between plants and plant root intruders.

    PubMed

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  19. Apoplastic interactions between plants and plant root intruders

    PubMed Central

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant–parasite interactions. PMID:26322059

  20. Framing the Future with Bacteriophages in Agriculture

    PubMed Central

    Svircev, Antonet; Roach, Dwayne; Castle, Alan

    2018-01-01

    The ability of agriculture to continually provide food to a growing world population is of crucial importance. Bacterial diseases of plants and animals have continually reduced production since the advent of crop cultivation and animal husbandry practices. Antibiotics have been used extensively to mitigate these losses. The rise of antimicrobial resistant (AMR) bacteria, however, together with consumers’ calls for antibiotic-free products, presents problems that threaten sustainable agriculture. Bacteriophages (phages) are proposed as bacterial population control alternatives to antibiotics. Their unique properties make them highly promising but challenging antimicrobials. The use of phages in agriculture also presents a number of unique challenges. This mini-review summarizes recent development and perspectives of phages used as antimicrobial agents in plant and animal agriculture at the farm level. The main pathogens and their adjoining phage therapies are discussed. PMID:29693561

  1. Degradation changes in plant root cell wall structural molecules during extended decomposition of important agricultural crop and forage species

    USDA-ARS?s Scientific Manuscript database

    Little is known about the changes in the cell wall structural molecules lignin, cellulose and hemicellulose as plant roots decompose, despite their importance in the formation of soil organic matter. The objectives of this study were to quantify changes in root composition during 270 d incubations o...

  2. Using microbial community interactions within plant microbiomes to advance an evergreen agricultural revolution

    USDA-ARS?s Scientific Manuscript database

    Innovative plant breeding and technology transfer fostered the Green Revolution, which transformed agriculture worldwide by increasing grain yields in developing countries. The Green Revolution temporarily alleviated world hunger, but also reduced biodiversity, nutrient cycling, and carbon sequestr...

  3. Agricultural use of municipal wastewater treatment plant ...

    EPA Pesticide Factsheets

    Agricultural use of municipal wastewater treatment plant sewage sludge as a source of per- and polyfluoroalkyl substance (PFAS) contamination in the environment The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  4. Stress adaptations in a Plant Growth Promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils.

    PubMed

    Paul, Diby; Nair, Sudha

    2008-10-01

    The costs associated with soil salinity are potentially enormous and the effects of salinity may impact heavily on agriculture, biodiversity and the environment. As the saline areas under agriculture are increasing every year across the globe, it is of much public concern. Agricultural crops and soil microorganisms are affected with salinity. As Plant Growth Promoting Rhizobacteria (PGPR) have been reported to be contributing to the plant health, the osmotolerance mechanisms of these PGPRs are of importance. Pseudomonas fluorescens MSP-393 is a proven biocontrol agent for many of the crops grown in saline soils of coastal ecosystem. Studies revealed that the root colonization potential of the strain was not hampered with higher salinity in soil. As a means of salt tolerance, the strain de novo -synthesized, the osmolytes, Ala, Gly, Glu, Ser, Thr, and Asp in their cytosol. To understand the mechanism of salt tolerance, the proteome analysis of the bacteria was carried out employing 2D gel electrophoresis and MALDI-TOF. Peptide mass fingerprinting and in silico investigation revealed the up regulation of many of salt regulated proteins. It could be ascertained that the osmotolerance mechanisms of MSP-393 viz. de novo synthesis of osmolytes and over production of salt stress proteins effectively nullified the detrimental effects of high osmolarity. MSP-393 could serve as a suitable bioinoculant for crops grown in saline soils. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Transportation of part supply improvement in agricultural machinery assembly plant

    NASA Astrophysics Data System (ADS)

    Saysaman, Anusit; Chutima, Parames

    2018-02-01

    This research focused on the problem caused by the transportation of part supply in agricultural machinery assembly plant in Thailand, which is one of the processes that are critical to the whole production process. If poorly managed, it will affect transportation of part supply, the emergence of sink cost, quality problems, and the ability to respond to the needs of the customers in time. Since the competition in the agricultural machinery market is more intense, the efficiency of part transportation process has to be improved. In this study, the process of transporting parts of the plant was studied and it was found that the efficiency of the process of transporting parts from the sub assembly line to its main assembly line was 83%. The approach to the performance improvement is done by using the Lean tool to limit wastes based on the ECRS principle and applying pull production system by changing the transportation method to operate as milkrun for transportation of parts to synchronize with the part demands of the main assembly line. After the transportation of parts from sub-assembly line to the main assembly line was improved, the efficiency raised to 98% and transportation process cost was saved to 540,000 Baht per year.

  6. Mating vibrational signal transmission through and between plants of an agricultural pest, the Glassy-Winged Sharpshooter

    USDA-ARS?s Scientific Manuscript database

    The agricultural pest, glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, relies primarily on successful vibrational communication across its home plant. Males and females engage in a vibrational duet to identify correct species, attractiveness of mate, and location on the plant. The signal...

  7. [Effect of agricultural application of municipal sewage sludge on plant-soil system: A review].

    PubMed

    Liu, Meng Jiao; Xia, Shao Pan; Wang, Jun; Ma, Qing Xu; Wang, Zhong Qiang; Wu, Liang Huan

    2017-12-01

    Currently, reasonable disposal of municipal sewage sludge is one of the important issues in the field of resources and environmental science. Sludge is rich in large amounts of organic matter and available nutrients, promoting soil fertility, soil physical structure and biological properties. However, sludge contains a variety of heavy metals, organic contaminants and other hazardous substance, especially heavy metals, which are the bottlenecks of agricultural application of sludge. To improve the sewage sludge utilization efficiency and decrease the effect on soil, this essay made a summary on domestic and foreign studies on plant-soil interaction ecosystem with sewage sludge to provide a theoretical basis and scientific guidance for advancing sewage sludge utilization efficiency.

  8. Geologic research in support of sustainable agriculture

    USGS Publications Warehouse

    Gough, L.P.; Herring, J.R.

    1993-01-01

    The importance and role of the geosciences in studies of sustainable agriculture include such traditional research areas as, agromineral resource assessments, the mapping and classification of soils and soil amendments, and the evaluation of landscapes for their vulnerability to physical and chemical degradation. Less traditional areas of study, that are increasing in societal importance because of environmental concerns and research into sustainable systems in general, include regional geochemical studies of plant and animal trace element deficiencies and toxicities, broad-scale water quality investigations, agricultural chemicals and the hydrogeologic interface, and minimally processed and ion-exchange agrominerals. We discuss the importance and future of phosphate in the US and world based on human population growth, projected agromineral demands in general, and the unavailability of new, high-quality agricultural lands. We also present examples of studies that relate geochemistry and the hydrogeologic characteristics of a region to the bioavailability and cycling of trace elements important to sustainable agricultural systems. ?? 1993.

  9. Plant growth-promoting bacteria as inoculants in agricultural soils

    PubMed Central

    de Souza, Rocheli; Ambrosini, Adriana; Passaglia, Luciane M.P.

    2015-01-01

    Abstract Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria. PMID:26537605

  10. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture.

    PubMed

    Pérez-García, Alejandro; Romero, Diego; de Vicente, Antonio

    2011-04-01

    The increasing demand for a steady, healthy food supply requires an efficient control of the major pests and plant diseases. Current management practices are based largely on the application of synthetic pesticides. The excessive use of agrochemicals has caused serious environmental and health problems. Therefore, there is a growing demand for new and safer methods to replace or at least supplement the existing control strategies. Biological control, that is, the use of natural antagonists to combat pests or plant diseases has emerged as a promising alternative to chemical pesticides. The Bacilli offer a number of advantages for their application in agricultural biotechnology. Several Bacillus-based products have been marketed as microbial pesticides, fungicides or fertilisers. Bacillus-based biopesticides are widely used in conventional agriculture, by contrast, implementation of Bacillus-based biofungicides and biofertilizers is still a pending issue. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Medicinally important aromatic plants with radioprotective activity

    PubMed Central

    Samarth, Ravindra M; Samarth, Meenakshi; Matsumoto, Yoshihisa

    2017-01-01

    Aromatic plants are often used as natural medicines because of their remedial and inherent pharmacological properties. Looking into natural resources, particularly products of plant origin, has become an exciting area of research in drug discovery and development. Aromatic plants are mainly exploited for essential oil extraction for applications in industries, for example, in cosmetics, flavoring and fragrance, spices, pesticides, repellents and herbal beverages. Although several medicinal plants have been studied to treat various conventional ailments only a handful studies are available on aromatic plants, especially for radioprotection. Many plant extracts have been reported to contain antioxidants that scavenge free radicals produced due to radiation exposure, thus imparting radioprotective efficacy. The present review focuses on a subset of medicinally important aromatic plants with radioprotective activity. PMID:29134131

  12. Does extensive agriculture influence the concentration of trace elements in the aquatic plant Veronica anagallis-aquatica?

    PubMed

    Kroflič, Ana; Germ, Mateja; Golob, Aleksandra; Stibilj, Vekoslava

    2018-04-15

    The present study describes the influence of extensive agriculture on the concentrations of As, Cr, Cu, Cd, Se, Pb and Zn in sediments and in the aquatic plant Veronica anagallis-aquatica. The investigation, spanning 4 years, was conducted on three watercourses in Slovenia (Pšata, Lipsenjščica and Žerovniščica) flowing through agricultural areas. The different sampling sites were chosen on the basis of the presence of different activities in these regions: dairy farming, stock raising and extensive agriculture. The concentrations of the selected elements in sediments and V. anagallis-aquatica were below the literature background values. The distribution of the selected elements among different plant parts (roots, stems and leaves) were also investigated. The majority of the studied elements, with the exception of Zn and Cu, were accumulated mainly in root tissues. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis.

    PubMed

    Villamar, Cristina Alejandra; Rivera, Diego; Aguayo, Mauricio

    2016-04-01

    The aim of this study was to establish sustainably feasible areas for the implementation of anaerobic co-digestion plants for agricultural wastes (cattle/swine slurries and cereal crop wastes). The methodology was based on the use of geographic information systems (GIS), the analytic hierarchy process (AHP) and map algebra generated from hedges related to environmental, social and economic constraints. The GIS model obtained was applied to a region of Chile (Bío Bío Region) as a case study showing the energy potential (205 MW-h) of agricultural wastes (swine/cattle manures and cereal crop wastes) and thereby assessing its energy contribution (3.5%) at country level (Chile). From this model, it was possible to spatially identify the influence of each factor (environmental, economic and social) when defining suitable areas for the siting of anaerobic co-digestion plants. In conclusion, GIS-based models establish appropriate areas for the location of anaerobic co-digestion plants in the revaluation of agricultural waste from the production of energy through biogas production. © The Author(s) 2016.

  14. Assessing health in agriculture--towards a common research framework for soils, plants, animals, humans and ecosystems.

    PubMed

    Vieweger, Anja; Döring, Thomas F

    2015-02-01

    In agriculture and food systems, health-related research includes a vast diversity of topics. Nutritional, toxicological, pharmacological, epidemiological, behavioural, sociological, economic and political methods are used to study health in the five domains of soils, plants, livestock, humans and ecosystems. An idea developed in the early founding days of organic agriculture stated that the health of all domains is one and indivisible. Here we show that recent research reveals the existence and complex nature of such health links among domains. However, studies of health aspects in agriculture are often separated by disciplinary boundaries. This restrains the understanding of health in agricultural systems. Therefore we explore the opportunities and limitations of bringing perspectives together from the different domains. We review current approaches to define and assess health in agricultural contexts, comparing the state of the art of commonly used approaches and bringing together the presently disconnected debates in soil science, plant science, veterinary science and human medicine. Based on a qualitative literature analysis, we suggest that many health criteria fall into two paradigms: (1) the Growth Paradigm, where terms are primarily oriented towards continued growth; (2) the Boundary Paradigm, where terms focus on maintaining or coming back to a status quo, recognising system boundaries. Scientific health assessments in agricultural and food systems need to be explicit in terms of their position on the continuum between Growth Paradigm and Boundary Paradigm. Finally, we identify areas and concepts for a future direction of health assessment and research in agricultural and food systems. © 2014 Society of Chemical Industry.

  15. Biology: An Important Agricultural Engineering Mechanism

    ERIC Educational Resources Information Center

    Henderson, S. M.

    1974-01-01

    Describes the field of bioengineering with particular emphasis on agricultural engineering, and presents the results of a survey of schools that combine biology and engineering in their curricula. (JR)

  16. Importance of energy balance in agriculture.

    NASA Astrophysics Data System (ADS)

    Meco, R.; Moreno, M. M.; Lacasta, C.; Tarquis, A. M.; Moreno, C.

    2012-04-01

    Since the beginning, man has tried to control nature and the environment, and the use of energy, mainly from non-renewable sources providing the necessary power for that. The consequences of this long fight against nature has reached a critical state of unprecedented worldwide environmental degradation, as evidenced by the increasing erosion of fertile lands, the deforestation processes, the pollution of water, air and land by agrochemicals, the loss of plant and animal species, the progressive deterioration of the ozone layer and signs of global warming. This is exacerbated by the increasing population growth, implying a steady increase in consumption, and consequently, in the use of energy. Unfortunately, all these claims are resulting in serious economic and environmental problems worldwide. Because the economic and environmental future of the countries is interrelated, it becomes necessary to adopt sustainable development models based on the use of renewable and clean energies, the search for alternative resources and the use of productive systems more efficient from an energy standpoint, always with a reduction of greenhouse gas emissions. In relation to the agricultural sector, the question we ask is: how long can we keep the current energy-intensive agricultural techniques in developed countries? To analyze this aspect, energy balance is a very helpful tool because can lead to more efficient, sustainable and environment-friendly production systems for each agro-climatic region. This requires the identification of all the inputs and the outputs involved and their conversion to energy values by means of corresponding energy coefficients or equivalents (International Federation of Institutes for Advanced Studies). Energy inputs (EI) can be divided in direct (energy directly used in farms as fuel, machines, fertilizers, seeds, herbicides, human labor, etc.) and indirect (energy not consumed in the farm but in the elaboration, manufacturing or manipulation of

  17. Conservation biogeography of the Cerrado's wild edible plants under climate change: Linking biotic stability with agricultural expansion.

    PubMed

    de Oliveira, Guilherme; Lima-Ribeiro, Matheus Souza; Terribile, Levi Carina; Dobrovolski, Ricardo; Telles, Mariana Pires de Campos; Diniz-Filho, José Alexandre Felizola

    2015-06-01

    REMISE OF THE STUDY: Wild edible plants (WEPs) have an important cultural and economic role in human population worldwide. Human impacts are quickly converting natural habitats in agricultural, cattle ranch, and urbanized lands, putting native species on peril of risk of extinction, including some WEPs. Moreover, global climate changes also can pose another threat to species persistency. Here, we established conservation priorities for the Cerrado, a neotropical region in South America with high levels of plant endemism and vulnerability, aiming to assure long-term persistency of 16 most important WEPs. We evaluated these conservation priorities using a conservation biogeography framework using ecological patterns and process at a biogeographical scale to deal with species conservation features. We built ecological niche models for 16 WEPs from Cerrado in the neotropics using climate models for preindustrial, past (Last Glacial Maximum) and future (year 2080) time periods to establish climatically stable areas through time, finding refugias for these WEPs. We used a spatial prioritization algorithm based on the spatial pattern of irreplaceability across the neotropics, aiming to ensure the persistence of at least 25% of range size in climatically stable areas for each WEP, using agricultural models as constraints. The Southeast Cerrado was the most biotically stable and irreplaceable region for the WEPs compared with other areas across the neotropics. Our findings strongly suggest that the Southeast Cerrado should be considered a conservation priority, with new protected areas to be sustainably managed and restored, to guarantee the supply of cultural and ecosystem services provided from the Cerrado's WEPs. © 2015 Botanical Society of America, Inc.

  18. Important Poisonous Plants in Tibetan Ethnomedicine

    PubMed Central

    Ma, Lijuan; Gu, Ronghui; Tang, Li; Chen, Ze-E; Di, Rong; Long, Chunlin

    2015-01-01

    Tibetan ethnomedicine is famous worldwide, both for its high effectiveness and unique cultural background. Many poisonous plants have been widely used to treat disorders in the Tibetan medicinal system. In the present review article, some representative poisonous plant species are introduced in terms of their significance in traditional Tibetan medicinal practices. They are Aconitum pendulum, Strychnos nux-vomica, Datura stramonium and Anisodus tanguticus, for which the toxic chemical constituents, bioactivities and pharmacological functions are reviewed herein. The most important toxins include aconitine, strychnine, scopolamine, and anisodamine. These toxic plants are still currently in use for pain-reduction and other purposes by Tibetan healers after processing. PMID:25594733

  19. Agricultural waste from the tequila industry as substrate for the production of commercially important enzymes.

    PubMed

    Huitron, C; Perez, R; Sanchez, A E; Lappe, P; Rocha Zavaleta, L

    2008-01-01

    Approximately 1 million tons of Agave tequilana plants are processed annually by the Mexican Tequila industry generating vast amounts of agricultural waste. The aim of this study was to investigate the potential use of Agave tequilana waste as substrate for the production of commercially important enzymes. Two strains of Aspergillus niger (CH-A-2010 and CH-A-2016), isolated from agave fields, were found to grow and propagate in submerged cultures using Agave tequilana waste as substrate. Isolates showed simultaneous extracellular inulinase, xylanase, pectinase, and cellulase activities. Aspergillus CH-A-2010 showed the highest production of inulinase activity (1.48 U/ml), whereas Aspergillus niger CH-A-2016 produced the highest xylanase (1.52 U/ml) and endo-pectinase (2.7U/ml) activities. In both cases production of enzyme activities was significantly higher on Agave tequilana waste than that observed on lemon peel and specific polymeric carbohydrates. Enzymatic hydrolysis of raw A. tequilana stems and leaves, by enzymes secreted by the isolates yielded maximum concentrations of reducing sugars of 28.2 g/l, and 9.9 g/l respectively. In conclusion, Agave tequilana waste can be utilized as substrate for the production of important biotechnological enzymes.

  20. Design And Control Of Agricultural Robot For Tomato Plants Treatment And Harvesting

    NASA Astrophysics Data System (ADS)

    Sembiring, Arnes; Budiman, Arif; Lestari, Yuyun D.

    2017-12-01

    Although Indonesia is one of the biggest agricultural country in the world, implementation of robotic technology, otomation and efficiency enhancement in agriculture process hasn’t extensive yet. This research proposed a low cost agricultural robot architecture. The robot could help farmer to survey their farm area, treat the tomato plants and harvest the ripe tomatoes. Communication between farmer and robot was facilitated by wireless line using radio wave to reach wide area (120m radius). The radio wave was combinated with Bluetooth to simplify the communication between robot and farmer’s Android smartphone. The robot was equipped with a camera, so the farmers could survey the farm situation through 7 inch monitor display real time. The farmers controlled the robot and arm movement through an user interface in Android smartphone. The user interface contains control icons that allow farmers to control the robot movement (formard, reverse, turn right and turn left) and cut the spotty leaves or harvest the ripe tomatoes.

  1. Agricultural anaerobic digestion power plants in Ireland and Germany: policy and practice.

    PubMed

    Auer, Agathe; Vande Burgt, Nathan H; Abram, Florence; Barry, Gerald; Fenton, Owen; Markey, Bryan K; Nolan, Stephen; Richards, Karl; Bolton, Declan; De Waal, Theo; Gordon, Stephen V; O'Flaherty, Vincent; Whyte, Paul; Zintl, Annetta

    2017-02-01

    The process of anaerobic digestion (AD) is valued as a carbon-neutral energy source, while simultaneously treating organic waste, making it safer for disposal or use as a fertilizer on agricultural land. The AD process in many European nations, such as Germany, has grown from use of small, localized digesters to the operation of large-scale treatment facilities, which contribute significantly to national renewable energy quotas. However, these large AD plants are costly to run and demand intensive farming of energy crops for feedstock. Current policy in Germany has transitioned to support funding for smaller digesters, while also limiting the use of energy crops. AD within Ireland, as a new technology, is affected by ambiguous governmental policies concerning waste and energy. A clear governmental strategy supporting on-site AD processing of agricultural waste will significantly reduce Ireland's carbon footprint, improve the safety and bioavailability of agricultural waste, and provide an indigenous renewable energy source. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Agriculture: Climate

    EPA Pesticide Factsheets

    Climate change affects agricultural producers because agriculture and fisheries depend on specific climate conditions. Temperature changes can cause crop planting dates to shift. Droughts and floods due to climate change may hinder farming practices.

  3. Biofertilizers: a potential approach for sustainable agriculture development.

    PubMed

    Mahanty, Trishna; Bhattacharjee, Surajit; Goswami, Madhurankhi; Bhattacharyya, Purnita; Das, Bannhi; Ghosh, Abhrajyoti; Tribedi, Prosun

    2017-02-01

    The worldwide increase in human population raises a big threat to the food security of each people as the land for agriculture is limited and even getting reduced with time. Therefore, it is essential that agricultural productivity should be enhanced significantly within the next few decades to meet the large demand of food by emerging population. Not to mention, too much dependence on chemical fertilizers for more crop productions inevitably damages both environmental ecology and human health with great severity. Exploitation of microbes as biofertilizers is considered to some extent an alternative to chemical fertilizers in agricultural sector due to their extensive potentiality in enhancing crop production and food safety. It has been observed that some microorganisms including plant growth promoting bacteria, fungi, Cyanobacteria, etc. have showed biofertilizer-like activities in the agricultural sector. Extensive works on biofertilizers have revealed their capability of providing required nutrients to the crop in sufficient amounts that resulted in the enhancement of crop yield. The present review elucidates various mechanisms that have been exerted by biofertilizers in order to promote plant growth and also provides protection against different plant pathogens. The aim of this review is to discuss the important roles and applications of biofertilizers in different sectors including agriculture, bioremediation, and ecology.

  4. Agriculture and Bioactives: Achieving Both Crop Yield and Phytochemicals

    PubMed Central

    García-Mier, Lina; Guevara-González, Ramón G.; Mondragón-Olguín, Víctor M.; Verduzco-Cuellar, Beatriz del Rocío; Torres-Pacheco, Irineo

    2013-01-01

    Plants are fundamental elements of the human diet, either as direct sources of nutrients or indirectly as feed for animals. During the past few years, the main goal of agriculture has been to increase yield in order to provide the food that is needed by a growing world population. As important as yield, but commonly forgotten in conventional agriculture, is to keep and, if it is possible, to increase the phytochemical content due to their health implications. Nowadays, it is necessary to go beyond this, reconciling yield and phytochemicals that, at first glance, might seem in conflict. This can be accomplished through reviewing food requirements, plant consumption with health implications, and farming methods. The aim of this work is to show how both yield and phytochemicals converge into a new vision of agricultural management in a framework of integrated agricultural practices. PMID:23429238

  5. 7 CFR 319.24-1 - Applications for permits for importation of corn.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Applications for permits for importation of corn. 319... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Corn Diseases Regulations Governing Entry of Indian Corn Or Maize § 319.24-1 Applications for permits for importation of...

  6. 7 CFR 319.24-1 - Applications for permits for importation of corn.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Applications for permits for importation of corn. 319... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Corn Diseases Regulations Governing Entry of Indian Corn Or Maize § 319.24-1 Applications for permits for importation of...

  7. Planted and natural tree seedling survival and density in three floodplain restorations on abandoned agricultural fields

    Treesearch

    Allen E. Plocher

    2003-01-01

    In three floodplain forest restorations, established in abandoned agricultural fields in Illinois, permanent plots were sampled for 3 years to determine survivorship and density of planted tree seedlings, and species composition and density of natural regeneration. Planted tree survivorship decreased over time at all sites and after 3 years ranged from 32 to 61 percent...

  8. The importance of comprehensive agricultural education in land-grant institutions: a historical perspective.

    PubMed

    Grant, P M; Field, T G; Green, R D; Rollin, B E

    2000-06-01

    Any thorough examination of the present and future of agricultural education must certainly begin with a look into its past. Since the creation of the United States, many leading American philosophers have viewed a strong agrarian culture as the bedrock of American vigor. These same philosophers repeatedly noted the significance of comprehensive agricultural education to a nation rich in agricultural wealth. The signing of the Agricultural Colleges Act legitimized the concept of formal education in the agricultural sciences and provided funding for such education. The Act, which came to be known as the Morrill Act, after one of its primary authors, stressed the importance of comprehensive education. In fact, the inclusion of liberal studies was specifically mentioned in the Morrill Act and was defended repeatedly by Morrill himself. Comprehensive education prevented graduating technically trained students who were lacking in the basic outcomes of education--critical, comprehensive problem solving, cohesive thought, and effective communication. However, throughout history, the demands of a growing population coupled with rapid advancements in scientific knowledge led to a gradual move away from comprehensive education in agricultural sciences toward increasing specialization, resulting in more narrowly trained students. Today's agricultural students are technically well versed but often lack the skill and knowledge required for cohesive thought and critical problem solving. Addressing the multitude of challenges facing leaders in the future of agriculture requires much more than technical skill. These challenges require quick, yet careful thinkers and communicators who can respond to changing market structure and consumer demand in a dynamic way. Students who are a product of a conscious move toward amalgamation of burgeoning scientific knowledge and technical prowess with an integrative education emphasizing relationships between disciplines would better serve

  9. 7 CFR 302.2 - Movement of plants and plant products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Movement of plants and plant products. 302.2 Section 302.2 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DISTRICT OF COLUMBIA; MOVEMENT OF PLANTS AND PLANT PRODUCTS...

  10. 7 CFR 302.2 - Movement of plants and plant products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of plants and plant products. 302.2 Section 302.2 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DISTRICT OF COLUMBIA; MOVEMENT OF PLANTS AND PLANT PRODUCTS...

  11. 7 CFR 302.2 - Movement of plants and plant products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Movement of plants and plant products. 302.2 Section 302.2 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DISTRICT OF COLUMBIA; MOVEMENT OF PLANTS AND PLANT PRODUCTS...

  12. 7 CFR 302.2 - Movement of plants and plant products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Movement of plants and plant products. 302.2 Section 302.2 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DISTRICT OF COLUMBIA; MOVEMENT OF PLANTS AND PLANT PRODUCTS...

  13. 7 CFR 302.2 - Movement of plants and plant products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Movement of plants and plant products. 302.2 Section 302.2 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DISTRICT OF COLUMBIA; MOVEMENT OF PLANTS AND PLANT PRODUCTS...

  14. Development of agriculture biotechnology in Pakistan.

    PubMed

    Zafar, Yusuf

    2007-01-01

    Agriculture plays an important role in the national economy of Pakistan, where most of the rapidly increasing population resides in rural areas and depends on agriculture for subsistence. Biotechnology has considerable potential for promoting the efficiency of crop improvement, food production, and poverty reduction. Use of modern biotechnology started in Pakistan since 1985. Currently, there are 29 biotech centers/institutes in the country. However, few centers have appropriate physical facilities and trained manpower to develop genetically modified (GM) crops. Most of the activities have been on rice and cotton, which are among the top 5 crops of Pakistan. Biotic (virus/bacterial/insect) and abiotic (salt) resistant and quality (male sterility) genes have already been incorporated in some crop plants. Despite acquiring capacity to produce transgenic plants, no GM crops, either produced locally or imported, have been released in the country. Pakistan is signatory to the World Trade Organization, Convention on Biological Diversity, and Cartagena protocols. Several legislations under the Agreement on Trade-Related Aspects of Intellectual Property Rights have been promulgated in the country. National Biosafety Guidelines have been promulgated in April 2005. The Plant Breeders Rights Act, Amendment in Seed Act-1976, and Geographical Indication for Goods are still passing through discussion, evaluation, and analysis phases. Meanwhile, an illegal GM crop (cotton) has already sneaked into farmer's field. Concerted and coordinated efforts are needed among various ministries for implementation of regulation and capacity building for import/export and local handling of GM crops. Pakistan could easily benefit from the experience of Asian countries, especially China and India, where conditions are similar and the agriculture sector is almost like that of Pakistan. Thus, the exchange of information and experiences is important among these nations.

  15. Pesticide Applicator Certification Training, Manual No. 1a: Agricultural Pest Control. a. Plant.

    ERIC Educational Resources Information Center

    Allen, W. A.; And Others

    This manual provides information needed to meet the minimum standards for certification as an applicator of pesticides in the agricultural plant pest control category. Adapted for the State of Virginia, the text discusses: (1) the basics of insecticides; (2) insect pests; (3) selection and calibration of applicator equipment; and (4) the proper…

  16. How To Produce and Characterize Transgenic Plants.

    ERIC Educational Resources Information Center

    Savka, Michael A.; Wang, Shu-Yi; Wilson, Mark

    2002-01-01

    Explains the process of establishing transgenic plants which is a very important tool in plant biology and modern agriculture. Produces transgenic plants with the ability to synthesize opines. (Contains 17 references.) (YDS)

  17. Presence and transcriptional activity of anaerobic fungi in agricultural biogas plants.

    PubMed

    Dollhofer, Veronika; Callaghan, Tony M; Griffith, Gareth W; Lebuhn, Michael; Bauer, Johann

    2017-07-01

    Bioaugmentation with anaerobic fungi (AF) is promising for improved biogas generation from lignocelluloses-rich substrates. However, before implementing AF into biogas processes it is necessary to investigate their natural occurrence, community structure and transcriptional activity in agricultural biogas plants. Thus, AF were detected with three specific PCR based methods: (i) Copies of their 18S genes were found in 7 of 10 biogas plants. (ii) Transcripts of a GH5 endoglucanase gene were present at low level in two digesters, indicating transcriptional cellulolytic activity of AF. (iii) Phylogeny of the AF-community was inferred with the 28S gene. A new Piromyces species was isolated from a PCR-positive digester. Evidence for AF was only found in biogas plants operated with high proportions of animal feces. Thus, AF were most likely transferred into digesters with animal derived substrates. Additionally, high process temperatures in combination with long retention times seemed to impede AF survival and activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Modeling the rejection probability in plant imports.

    PubMed

    Surkov, I V; van der Werf, W; van Kooten, O; Lansink, A G J M Oude

    2008-06-01

    Phytosanitary inspection of imported plants and flowers is a major means for preventing pest invasions through international trade, but in a majority of countries availability of resources prevents inspection of all imports. Prediction of the likelihood of pest infestation in imported shipments could help maximize the efficiency of inspection by targeting inspection on shipments with the highest likelihood of infestation. This paper applies a multinomial logistic (MNL) regression model to data on import inspections of ornamental plant commodities in the Netherlands from 1998 to 2001 to investigate whether it is possible to predict the probability that a shipment will be (i) accepted for import, (ii) rejected for import because of detected pests, or (iii) rejected due to other reasons. Four models were estimated: (i) an all-species model, including all plant imports (136,251 shipments) in the data set, (ii) a four-species model, including records on the four ornamental commodities that accounted for 28.9% of inspected and 49.5% of rejected shipments, and two models for single commodities with large import volumes and percentages of rejections, (iii) Dianthus (16.9% of inspected and 46.3% of rejected shipments), and (iv) Chrysanthemum (6.9 and 8.6%, respectively). All models were highly significant (P < 0.001). The models for Dianthus and Chrysanthemum and for the set of four ornamental commodities showed a better fit to data than the model for all ornamental commodities. Variables that characterized the imported shipment's region of origin, the shipment's size, the company that imported the shipment, and season and year of import, were significant in most of the estimated models. The combined results of this study suggest that the MNL model can be a useful tool for modeling the probability of rejecting imported commodities even with a small set of explanatory variables. The MNL model can be helpful in better targeting of resources for import inspection. The

  19. Antimicrobial Resistance in Agriculture

    PubMed Central

    Thanner, Sophie; Drissner, David

    2016-01-01

    ABSTRACT In this article, the current knowledge and knowledge gaps in the emergence and spread of antimicrobial resistance (AMR) in livestock and plants and importance in terms of animal and human health are discussed. Some recommendations are provided for generation of the data required in order to develop risk assessments for AMR within agriculture and for risks through the food chain to animals and humans. PMID:27094336

  20. Maine Agricultural Foods. Project SEED.

    ERIC Educational Resources Information Center

    Beaulieu, Peter; Ossenfort, Pat

    This paper describes an activity-based program that teaches students in grades 4-12 about the importance of Maine agriculture in their lives. Specifically, the goal is to increase student awareness of how the foods they eat are planted, harvested, and processed. The emphasis is on crops grown in Maine such as potatoes, broccoli, peas, blueberries,…

  1. Fungal biology and agriculture: revisiting the field

    USGS Publications Warehouse

    Yarden, O.; Ebbole, D.J.; Freeman, S.; Rodriguez, R.J.; Dickman, M. B.

    2003-01-01

    Plant pathology has made significant progress over the years, a process that involved overcoming a variety of conceptual and technological hurdles. Descriptive mycology and the advent of chemical plant-disease management have been followed by biochemical and physiological studies of fungi and their hosts. The later establishment of biochemical genetics along with the introduction of DNA-mediated transformation have set the stage for dissection of gene function and advances in our understanding of fungal cell biology and plant-fungus interactions. Currently, with the advent of high-throughput technologies, we have the capacity to acquire vast data sets that have direct relevance to the numerous subdisciplines within fungal biology and pathology. These data provide unique opportunities for basic research and for engineering solutions to important agricultural problems. However, we also are faced with the challenge of data organization and mining to analyze the relationships between fungal and plant genomes and to elucidate the physiological function of pertinent DNA sequences. We present our perspective of fungal biology and agriculture, including administrative and political challenges to plant protection research.

  2. Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects

    USDA-ARS?s Scientific Manuscript database

    Plant growth-promoting rhizobacteria (PGPR) have garnered interest in agriculture due to their ability to influence the growth and production of host plants. ATP-binding cassette (ABC) transporters play important roles in plant-microbe interactions by modulating plant root exudation. The present stu...

  3. 78 FR 41908 - Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... Pending Pest Risk Analysis; Notice of Availability of Data Sheets for Taxa of Plants for Planting That Are... planting whose importation is not authorized pending pest risk analysis. This action will allow interested... our lists of plants for planting whose importation is not authorized pending pest risk analysis...

  4. What you can do to help improve regulation of the plants for planting pathway

    Treesearch

    2008-01-01

    The current rules for plants for planting are being revised. The United States Department of Agriculture-Animal and Plant Health Inspection Service (USDA-APHIS) has already provided several opportunities for public input into the new rules, and more opportunities will be coming soon. Considering the importance most plant health scientists attach to this issue, it is...

  5. 7 CFR 319.74-3 - Importations for experimental or similar purposes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Cut Flowers § 319.74-3 Importations for experimental or similar purposes. Cut flowers may be imported for experimental...

  6. Nematode-borne plant viruses

    USDA-ARS?s Scientific Manuscript database

    There are 30 plant-parasitic nematode species that are known to transmit 14 plant viruses. Nematode-transmitted viruses affect a range of agriculturally important crops including grape, cherry, potato, and tomato. The nematodes that transmit viruses are found in two families, Longidoridae and Tric...

  7. Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato)

    PubMed Central

    2013-01-01

    Background Research to understand and control microbiological risks associated with the consumption of fresh fruits and vegetables has examined many environments in the farm to fork continuum. An important data gap however, that remains poorly studied is the baseline description of microflora that may be associated with plant anatomy either endemically or in response to environmental pressures. Specific anatomical niches of plants may contribute to persistence of human pathogens in agricultural environments in ways we have yet to describe. Tomatoes have been implicated in outbreaks of Salmonella at least 17 times during the years spanning 1990 to 2010. Our research seeks to provide a baseline description of the tomato microbiome and possibly identify whether or not there is something distinctive about tomatoes or their growing ecology that contributes to persistence of Salmonella in this important food crop. Results DNA was recovered from washes of epiphytic surfaces of tomato anatomical organs; leaves, stems, roots, flowers and fruits of Solanum lycopersicum (BHN602), grown at a site in close proximity to commercial farms previously implicated in tomato-Salmonella outbreaks. DNA was amplified for targeted 16S and 18S rRNA genes and sheared for shotgun metagenomic sequencing. Amplicons and metagenomes were used to describe “native” bacterial microflora for diverse anatomical parts of Virginia-grown tomatoes. Conclusions Distinct groupings of microbial communities were associated with different tomato plant organs and a gradient of compositional similarity could be correlated to the distance of a given plant part from the soil. Unique bacterial phylotypes (at 95% identity) were associated with fruits and flowers of tomato plants. These include Microvirga, Pseudomonas, Sphingomonas, Brachybacterium, Rhizobiales, Paracocccus, Chryseomonas and Microbacterium. The most frequently observed bacterial taxa across aerial plant regions were Pseudomonas and Xanthomonas

  8. Organic farming benefits local plant diversity in vineyard farms located in intensive agricultural landscapes.

    PubMed

    Nascimbene, Juri; Marini, Lorenzo; Paoletti, Maurizio G

    2012-05-01

    The majority of research on organic farming has considered arable and grassland farming systems in Central and Northern Europe, whilst only a few studies have been carried out in Mediterranean agro-systems, such as vineyards, despite their economic importance. The main aim of the study was to test whether organic farming enhances local plant species richness in both crop and non-crop areas of vineyard farms located in intensive conventional landscapes. Nine conventional and nine organic farms were selected in an intensively cultivated region (i.e. no gradient in landscape composition) in northern Italy. In each farm, vascular plants were sampled in one vineyard and in two non-crop linear habitats, grass strips and hedgerows, adjacent to vineyards and therefore potentially influenced by farming. We used linear mixed models to test the effect of farming, and species longevity (annual vs. perennial) separately for the three habitat types. In our intensive agricultural landscapes organic farming promoted local plant species richness in vineyard fields, and grassland strips while we found no effect for linear hedgerows. Differences in species richness were not associated to differences in species composition, indicating that similar plant communities were hosted in vineyard farms independently of the management type. This negative effect of conventional farming was probably due to the use of herbicides, while mechanical operations and mowing regime did not differ between organic and conventional farms. In grassland strips, and only marginally in vineyards, we found that the positive effect of organic farming was more pronounced for perennial than annual species.

  9. Association of N 2-fixing Cyanobacteria and Plants: Towards Novel Symbioses of Agricultural Importance. Final report, 1 April 1996 to 31 May 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gantar, Miroslav

    1999-03-01

    The goal of this project is to characterize an association that takes place between the roots of wheat and the nitrogen-fixing cyanobacterium Nostoc 2S9. By understanding how the association takes place and the extent to which it permits the growth of the plant without exogenous nitrogenous fertilizer, it may prove possible to increase the benefits of the association and to extend them to other plants of agrinomic importance.

  10. Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture.

    PubMed

    Qin, Yuan; Druzhinina, Irina S; Pan, Xueyu; Yuan, Zhilin

    2016-11-15

    Soil salinization adversely affects plant growth and has become one of the major limiting factors for crop productivity worldwide. The conventional approach, breeding salt-tolerant plant cultivars, has often failed to efficiently alleviate the situation. In contrast, the use of a diverse array of microorganisms harbored by plants has attracted increasing attention because of the remarkable beneficial effects of microorganisms on plants. Multiple advanced '-omics' technologies have enabled us to gain insights into the structure and function of plant-associated microbes. In this review, we first focus on microbe-mediated plant salt tolerance, in particular on the physiological and molecular mechanisms underlying root-microbe symbiosis. Unfortunately, when introducing such microbes as single strains to soils, they are often ineffective in improving plant growth and stress tolerance, largely due to competition with native soil microbial communities and limited colonization efficiency. Rapid progress in rhizosphere microbiome research has revived the belief that plants may benefit more from association with interacting, diverse microbial communities (microbiome) than from individual members in a community. Understanding how a microbiome assembles in the continuous compartments (endosphere, rhizoplane, and rhizosphere) will assist in predicting a subset of core or minimal microbiome and thus facilitate synthetic re-construction of microbial communities and their functional complementarity and synergistic effects. These developments will open a new avenue for capitalizing on the cultivable microbiome to strengthen plant salt tolerance and thus to refine agricultural practices and production under saline conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Agricultural Mechanics Unit for Plant Science Core Curriculum. Volume 15, Number 4. Instructor's Guide.

    ERIC Educational Resources Information Center

    Linhardt, Richard E.; Hunter, Bill

    This instructor's guide is intended for use in teaching the agricultural mechanics unit of a plant science core curriculum. Covered in the individual units of the guide are the following topics: arc welding (following safety procedures, controlling distortion, selecting and caring for electrodes, identifying the material to be welded, and welding…

  12. Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape

    PubMed Central

    Bowles, Timothy M.; Hollander, Allan D.; Steenwerth, Kerri; Jackson, Louise E.

    2015-01-01

    How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid. PMID:26121264

  13. Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape.

    PubMed

    Bowles, Timothy M; Hollander, Allan D; Steenwerth, Kerri; Jackson, Louise E

    2015-01-01

    How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid.

  14. Climate change and the origins of agriculture: A global perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, R.

    1995-12-31

    Most students of the agricultural origins problem have rejected the thesis that climate change was in important causal variable. For example, it is often emphasized that agriculture began at different times in different areas, and that climate change could not therefore have been a significant factor. It is also suggested that climate change at the end of the last glacial could not have been important, because similar changes in climate occurred at the end of the penultimate glaciation without any cultural response. The primary purpose of this paper is to demonstrate that these objections are invalid, and are based onmore » a misunderstanding of: (1) the nature of late-Pleistocene/early-Holocene climate changes; and (2) the ecological context of early agriculture. Alternatively, it is proposed that the more or less synchronous development of agricultural in several widely separated areas of the globe is best seen as an indirect response to changes in climate during the Pleistocene/Holocene transitions. Three common denominators characterize the early centers of agricultural and collectively point to climate changes as a primary factor: (1) all are located in areas that today are characterized by strongly seasonal rainfall regimes; (2) the initial domestication of plants occurred independently at within a very short period of time during and immediately following the Pleistocene/Holocene transition; and (3) the early plant domesticates were either annuals or geophytes, autecologically adapted to seasonality of moisture supply. The implication is that increased seasonality during the Pleistocene/Holocene transition brought about changes in wild plant and animal populations that in turn led to domestication and agriculture.« less

  15. Agriculture: Land Use

    EPA Pesticide Factsheets

    Land Use and agriculture. Information about land use restrictions and incentive programs.Agricultural operations sometimes involve activities regulated by laws designed to protect water supplies, threatened or endangered plants and animals, or wetlands.

  16. Benefits to world agriculture through remote sensing

    NASA Technical Reports Server (NTRS)

    Buffalano, A. C.; Kochanowski, P.

    1976-01-01

    Remote sensing of agricultural land permits crop classification and mensuration which can lead to improved forecasts of production. This technique is particularly important for nations which do not already have an accurate agricultural reporting system. Better forecasts have important economic effects. International grain traders can make better decisions about when to store, buy, and sell. Farmers can make better planting decisions by taking advantage of production estimates for areas out of phase with their own agricultural calendar. World economic benefits will accrue to both buyers and sellers because of increased food supply and price stabilization. This paper reviews the econometric models used to establish this scenario and estimates the dollar value of benefits for world wheat as 200 million dollars annually for the United States and 300 to 400 million dollars annually for the rest of the world.

  17. 78 FR 79636 - Restructuring of Regulations on the Importation of Plants for Planting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ...We are reopening the comment period for our proposed rule that would restructure the regulations governing the importation of plants for planting. We are requesting comments on our proposed framework for integrated pest risk management measures for plants for planting. We are especially interested in: The differences commenters perceive between International Standard for Phytosanitary Measures No. 36 and the North American Plant Protection Organization's Regional Standard for Phytosanitary Measures No. 24, and reasons to prefer one over the other as a basis for such measures; and how to address the risk posed when plant brokers purchase and move plants for planting after they leave their place of production and before they are exported to the United States. This action will allow interested persons additional time to prepare and submit comments on these topics.

  18. Endophytic actinobacteria of medicinal plants: diversity and bioactivity.

    PubMed

    Golinska, Patrycja; Wypij, Magdalena; Agarkar, Gauravi; Rathod, Dnyaneshwar; Dahm, Hanna; Rai, Mahendra

    2015-08-01

    Endophytes are the microorganisms that exist inside the plant tissues without having any negative impact on the host plant. Medicinal plants constitute the huge diversity of endophytic actinobacteria of economical importance. These microbes have huge potential to synthesis of numerous novel compounds that can be exploited in pharmaceutical, agricultural and other industries. It is of prime importance to focus the present research on practical utilization of this microbial group in order to find out the solutions to the problems related to health, environment and agriculture. An extensive characterization of diverse population of endophytic actinobacteria associated with medicinal plants can provide a greater insight into the plant-endophyte interactions and evolution of mutualism. In the present review, we have discussed the diversity of endophytic actinobacteria of from medicinal plants their multiple bioactivities.

  19. 19 CFR 12.31 - Plant pests.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U... SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a... Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine Programs of that...

  20. 19 CFR 12.31 - Plant pests.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U... SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a... Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine Programs of that...

  1. 19 CFR 12.31 - Plant pests.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U... SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a... Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine Programs of that...

  2. Headwater fish population responses to planting grass filter strips adjacent to channelized agricultural headwater streams

    USDA-ARS?s Scientific Manuscript database

    Grass filter strips are a widely used conservation practice in the Midwestern United States for reducing nutrient, pesticide, and sediment inputs into agricultural streams. Only a limited amount of information is available on the ecological effects of planting grass filter strips adjacent to channe...

  3. Nitrification in agricultural soils: impact, actors and mitigation.

    PubMed

    Beeckman, Fabian; Motte, Hans; Beeckman, Tom

    2018-04-01

    Nitrogen is one of the most important nutrients for plant growth and hence heavily applied in agricultural systems via fertilization. Nitrification, that is, the conversion of ammonium via nitrite to nitrate by soil microorganisms, however, leads to nitrate leaching and gaseous nitrous oxide production and as such to an up to 50% loss of nitrogen availability for the plant. Nitrate leaching also results in eutrophication of groundwater, drinking water and recreational waters, toxic algal blooms and biodiversity loss, while nitrous oxide is a greenhouse gas with a global warming potential 300× greater than carbon dioxide. Logically, inhibition of nitrification is an important strategy used in agriculture to reduce nitrogen losses, and contributes to a more environmental-friendly practice. However, recently identified and crucial players in nitrification, that is, ammonia-oxidizing archaea and comammox bacteria, seem to be under-investigated in this respect. In this review, we give an update on the different pathways in ammonia oxidation, the relevance for agriculture and the interaction with nitrification inhibitors. As such, we hope to pinpoint possible strategies to optimize the efficiency of nitrification inhibition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Selected Landscape Plants. Slide Script.

    ERIC Educational Resources Information Center

    McCann, Kevin

    This slide script, part of a series of slide scripts designed for use in vocational agriculture classes, deals with commercially important woody ornamental landscape plants. Included in the script are narrations for use with a total of 253 slides illustrating 92 different plants. Several slides are used to illustrate each plant: besides a view of…

  5. The roles and values of wild foods in agricultural systems

    PubMed Central

    Bharucha, Zareen; Pretty, Jules

    2010-01-01

    Almost every ecosystem has been amended so that plants and animals can be used as food, fibre, fodder, medicines, traps and weapons. Historically, wild plants and animals were sole dietary components for hunter–gatherer and forager cultures. Today, they remain key to many agricultural communities. The mean use of wild foods by agricultural and forager communities in 22 countries of Asia and Africa (36 studies) is 90–100 species per location. Aggregate country estimates can reach 300–800 species (e.g. India, Ethiopia, Kenya). The mean use of wild species is 120 per community for indigenous communities in both industrialized and developing countries. Many of these wild foods are actively managed, suggesting there is a false dichotomy around ideas of the agricultural and the wild: hunter–gatherers and foragers farm and manage their environments, and cultivators use many wild plants and animals. Yet, provision of and access to these sources of food may be declining as natural habitats come under increasing pressure from development, conservation-exclusions and agricultural expansion. Despite their value, wild foods are excluded from official statistics on economic values of natural resources. It is clear that wild plants and animals continue to form a significant proportion of the global food basket, and while a variety of social and ecological drivers are acting to reduce wild food use, their importance may be set to grow as pressures on agricultural productivity increase. PMID:20713393

  6. Hyperspectral imagery for mapping crop yield for precision agriculture

    USDA-ARS?s Scientific Manuscript database

    Crop yield is perhaps the most important piece of information for crop management in precision agriculture. It integrates the effects of various spatial variables such as soil properties, topographic attributes, tillage, plant population, fertilization, irrigation, and pest infestations. A yield map...

  7. Dielectric spectroscopic studies on the water hyacinth plant collected from agriculture drainage.

    PubMed

    Mahani, Ragab; Atia, Fatma; Al Neklawy, Mohammed M; Fahem, Amin

    2016-06-05

    The present paper aims to investigate the sensitivity of dielectric spectroscopy to changes in concentrations of pollutants (heavy metals and metal oxides) uptake by the water hyacinth plant collected from agriculture wastewater drainage. The measurements were carried out on the dried root and shoot plant parts before and after subjecting to different microwave heating powers for different times. Dielectric properties of the untreated root were investigated at temperature range (30-90°C). X-ray fluorescence spectroscopy (XRF) results showed that the concentration of metals and metals oxides are higher in plant root than in plant shoot. Accordingly, the obtained dielectric properties were found to depend on the applied electric field frequency, magnitude of heating power as well as concentrations of pollutants. Analysis of experimental data represented by the imaginary part of the dielectric modulus M″ (ω) revealed to the presence of three different relaxation processes. The lower frequency relaxation process was associated to charge carriers conduction whereas those appeared at higher frequencies were associated to different types of interfacial polarization. The plant ability for removing heavy metals and metal oxides from the aquatic environments would be enhanced upon subjecting to microwave heating power with 400 W for 30 min. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The Role of Different Agricultural Plant Species in Air Pollution

    NASA Astrophysics Data System (ADS)

    Fiala, P.; Miller, D.; Shivers, S.; Pusede, S.; Roberts, D. A.

    2017-12-01

    The goal of this research project is to use remote sensing data to study the relationship between different plant species and the pollutants in the air. It is known that chemical reactions within plants serve as both sources and sinks for different types of Volatile Organic Compounds. However, the species-specific relationships have not been well studied. Through the better characterization of this relationship, certain aspects of air pollution may be more effectively managed. For this project, I used Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and trace gas measurements from instruments on board the NASA DC-8 to assess the relationship between different plant species and the pollutants in the air. I used measurements primarily from the agricultural land surrounding Bakersfield, CA. I created a map of the crop species in this area using Multiple Endmember Spectral Mixture Analysis (MESMA) on the AVIRIS imagery, and matched this to trace gas measurements taken on the DC-8. I used a Hysplit matrix trajectory to account for the air transport over the vegetation and up to contact with the plane. Finally, I identified correlations between the plant types and the concentration of the pollutants. The results showed that there were significant relationships between specific species and pollutants, with lemons and grapes contributing to enhanced pollution, and tree nuts reducing pollution. Specifically, almonds produced significantly lower levels of O3 , NO, and NO2. Lemons and grapes had high O3 levels, and lemons had high levels of isoprene. In total, these data show that it may be possible to mitigate airborne pollution via selective planting; however, the overall environmental effects are much more complicated and must be analyzed further.

  9. Effects of meteorological droughts on agricultural water resources in southern China

    NASA Astrophysics Data System (ADS)

    Lu, Houquan; Wu, Yihua; Li, Yijun; Liu, Yongqiang

    2017-05-01

    With the global warming, frequencies of drought are rising in the humid area of southern China. In this study, the effects of meteorological drought on the agricultural water resource based on the agricultural water resource carrying capacity (AWRCC) in southern China were investigated. The entire study area was divided into three regions based on the distributions of climate and agriculture. The concept of the maximum available water resources for crops was used to calculate AWRCC. Meanwhile, an agricultural drought intensity index (ADI), which was suitable for rice planting areas, was proposed based on the difference between crop water requirements and precipitation. The actual drought area and crop yield in drought years from 1961 to 2010 were analyzed. The results showed that ADI and AWRCC were significantly correlated with the actual drought occurrence area and food yield in the study area, which indicated ADI and AWRCC could be used in drought-related studies. The effects of seasonal droughts on AWRCC strongly depended on both the crop growth season and planting structure. The influence of meteorological drought on agricultural water resources was pronounced in regions with abundant water resources, especially in Southwest China, which was the most vulnerable to droughts. In Southwest China, which has dry and wet seasons, reducing the planting area of dry season crops and rice could improve AWRCC during drought years. Likewise, reducing the planting area of double-season rice could improve AWRCC during drought years in regions with a double-season rice cropping system. Our findings highlight the importance of adjusting the proportions of crop planting to improve the utilization efficiency of agricultural water resources and alleviate drought hazards in some humid areas.

  10. Looking at the big picture: The importance of landbase interactions among forests, agriculture, and climate mitigation policies

    Treesearch

    Rhonda Mazza; Alig Ralph

    2010-01-01

    Land use change is a key part of global change. Deforestation, urban sprawl, agriculture, and other human influences have substantially altered natural ecosystems and fragmented the global landscape. Slowing down deforestation and afforesting environmentally sensitive agricultural land are important steps for mitigating climate change. Because no policy operates in a...

  11. Mycorrhizae and their potential use in the agricultural and forestry industries.

    PubMed

    Peterson, R L; Piché, Y; Plenchette, C

    1984-01-01

    Mycorrhizal fungi associated with plant roots increase the absorption of nutrients, particularly phosphorus, and thus enhance the growth of crop plants and trees. Vesicular-arbuscular mycorrhizae (VAM) occur in approximately 90% of all vascular plants including most of the important agricultural species, whereas ectomycorrhizae are found in most of the economically important tree species of the temperate regions of the world, and in some tropical trees. These symbiotic associations are, therefore, important in crop and biomass production. For this reason they are receiving considerable attention in agriculture and forestry. Currently, VAM are utilized in fumigated soils, greenhouse crops, and in the reclamation of disturbed sites. Ectomycorrhizae are employed in the establishment of trees in nurseries, in reforestation programs, and in the production of containerized seedlings. Production of VAM and ectomycorrhiza inoculum for large scale projects is now feasible but many basic questions related to persistence of these fungi in field situations, competition with other microorganisms, and particularly the most efficient fungi to use for particular hosts remain largely unanswered.

  12. Recognising Differences in Weed and Crop Species Recognition Skills of Agriculture Students

    ERIC Educational Resources Information Center

    Burrows, Geoffrey E.

    2012-01-01

    Students in an agricultural science degree were surveyed to assess their ability to recognise plants of agricultural importance. The survey consisted of high quality images of 25 species. Students were surveyed at the start of their studies in first year, and at various times during their second year of studies. At the start of their studies…

  13. Farmers' perception of the role of some wild plants for the predatory coccinellidae (Adalia bipunctata L and Coccinella septempunctata L) in developing refugia in the agricultural field

    NASA Astrophysics Data System (ADS)

    Yanuwiadi, Bagyo

    2017-11-01

    The decreases in plant and animal diversity in intensive agricultural practice have been caused by the application of new and very broad-spectrum pesticides. This situation motivated some researchers to observe the attractiveness of wild plants for some predatory Coccinellids. This was done with a view to improving the agricultural ecosystem. Previous research results showed that Blumea sp. (L), Tagetes erecta L. and Bidens pilosa L. could attract predatory Coccinellidae: Adalia bipunctata L. and Coccinella septempunctata L. But, unfortunately, there were no research results showing how farmers accepted those related new improved strategies for controlling pests. The research was conducted to analyze what they felt about introducing the function of wild plants for attracting beneficial arthropods. To this end, 60 farmers were selected purposively as respondents in the south of Malang and interviewed in depth with the main question focusing on their knowledge of the general function of wild plants in agriculture. Then, more specifically, they were asked about the role of wild plants in the agricultural field for attracting these beneficial arthropods. Their answers were grouped into the following categories: they don't know, they know a little, they know enough, they know a lot about the general function of wild plants in general and more specifically as attractants for some beneficial arthropods. The results showed that the majority of farmers know only a little about the function of wild plants in general. None of the farmers realized that wild plants can be used as ground-covering plants. Most of them knew only about the use of wild plants for cattle feed. The majority of them did not know that some of the wild plants that can be found in their agricultural fields can be used as attractants in looking for beneficial arthropods. Farmers, as the frontier in the agricultural field, must become knowledgeable about the specific use of the wild plants in their fields

  14. Connecticut Vocational Agriculture Curriculum.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Bureau of Vocational Services.

    Designed for use in the Connecticut Regional Vocational Agriculture Centers, this curriculum provides exploratory and specialization units for four major areas of agriculture. These are Agriculture Mechanics, Animal Science, Natural Resources, and Plant Science. The exploratory units are required for grades 9 and 10, while the specialization units…

  15. Shaping Pedagogical Content Knowledge for Experienced Agriculture Teachers in the Plant Sciences: A Grounded Theory

    ERIC Educational Resources Information Center

    Rice, Amber H.; Kitchel, Tracy

    2017-01-01

    This grounded theory study explored the pedagogical content knowledge (PCK) of experienced agriculture teachers in the plant sciences. The most emergent phenomenon to surface from the data was the influence of beliefs on participants' PCK. This central phenomenon became the cornerstone for the model of what was shaping experienced agriculture…

  16. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban farming

    USDA-ARS?s Scientific Manuscript database

    Greenhouse cultivation has evolved from simple covered rows of open-fields crops to highly sophisticated controlled environment agriculture (CEA) facilities that projected the image of plant factories for urban farming. The advances and improvements in CEA have promoted the scientific solutions for ...

  17. Remote Sensing of plant functional types: Relative importance of biochemical and structural plant traits

    NASA Astrophysics Data System (ADS)

    Kattenborn, Teja; Schmidtlein, Sebastian

    2017-04-01

    Monitoring ecosystems is a key priority in order to understand vegetation patterns, underlying resource cycles and changes their off. Driven by biotic and abiotic factors, plant species within an ecosystem are likely to share similar structural, physiological or phenological traits and can therefore be grouped into plant functional types (PFT). It can be assumed that plants which share similar traits also share similar optical characteristics. Therefore optical remote sensing was identified as a valuable tool for differentiating PFT. Although several authors list structural and biochemical plant traits which are important for differentiating PFT using hyperspectral remote sensing, there is no quantitative or qualitative information on the relative importance of these traits. Thus, little is known about the explicit role of plant traits for an optical discrimination of PFT. One of the main reasons for this is that various optical traits affect the same wavelength regions and it is therefore difficult to isolate the discriminative power of a single trait. A way to determine the effect of single plant traits on the optical reflectance of plant canopies is given by radiative transfer models. The most established radiative transfer model is PROSAIL, which incorporates biochemical and structural plant traits, such as pigment contents or leaf area index. In the present study 25 grassland species of different PFT were cultivated and traits relevant for PROSAIL were measured for the entire vegetation season of 2016. The information content of each trait for differentiating PFTs was determined by applying a Multi-response Permutation Procedure on the actual traits, as well as on simulated canopy spectra derived from PROSAIL. According to our results some traits, especially biochemical traits, show a weaker separability of PFT on a spectral level than compared to the actual trait measurements. Overall structural traits (leaf angle and leaf area index) are more important for

  18. Microgravity as a research tool to improve US agriculture

    NASA Astrophysics Data System (ADS)

    Bula, R. J.; Stankovic, Bratislav

    2000-01-01

    Crop production and utilization are undergoing significant modifications and improvements that emanate from adaptation of recently developed plant biotechnologies. Several innovative technologies will impact US agriculture in the next century. One of these is the transfer of desirable genes from organisms to economically important crop species in a way that cannot be accomplished with traditional plant breeding techniques. Such plant genetic engineering offers opportunities to improve crop species for a number of characteristics as well as use as source materials for specific medical and industrial applications. Although plant genetic engineering is having an impact on development of new crop cultivars, several major constraints limit the application of this technology to selected crop species and genotypes. Consequently, gene transfer systems that overcome these constraints would greatly enhance development of new crop materials. If results of a recent gene transfer experiment conducted in microgravity during a Space Shuttle mission are confirmed, and with the availability of the International Space Station as a permanent space facility, commercial plant transformation activity in microgravity could become a new research tool to improve US agriculture. .

  19. Educational Plant Survey. The University of Florida Institute of Food and Agricultural Sciences on Campus--Alachua County. April 4-5, 1994.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee.

    This report presents the results of a systematic study and evaluation of the existing educational plants of the University of Florida's Institute of Food and Agricultural Sciences (IFAS), along with a determination of future plant needs. Section 1 contains an introduction to the educational plant survey, including statutory foundations, procedural…

  20. 76 FR 65165 - Importation of Plants for Planting; Risk-Based Sampling and Inspection Approach and Propagative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ...] Importation of Plants for Planting; Risk-Based Sampling and Inspection Approach and Propagative Monitoring and... advising the public of our decision to implement a risk-based sampling approach for the inspection of... risk-based sampling and inspection approach will allow us to target high-risk plants for planting for...

  1. 9 CFR 93.217 - Import permit and declaration for poultry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... poultry. 93.217 Section 93.217 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN ANIMAL, BIRD, AND POULTRY PRODUCTS...

  2. 9 CFR 93.214 - Import permit and declaration for poultry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... poultry. 93.214 Section 93.214 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN ANIMAL, BIRD, AND POULTRY PRODUCTS...

  3. Plants that attack plants: molecular elucidation of plant parasitism.

    PubMed

    Yoshida, Satoko; Shirasu, Ken

    2012-12-01

    Obligate parasitic plants in the family Orobanchaceae, such as Striga and Orobanche (including Phelipanche) spp., parasitize important crops and cause severe agricultural damage. Recent molecular studies have begun to reveal how these parasites have adapted to hosts in a parasitic lifecycle. The parasites detect nearby host roots and germinate by a mechanism that seems to have evolved from a conserved germination system found in non-parasites. The development of a specialized infecting organ called a haustorium is a unique feature of plant parasites and is triggered by host compounds and redox signals. Newly developed genomic and genetic resources will facilitate more rapid progress toward a molecular understanding of plant parasitism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. When virulence originates from non-agricultural hosts: new insights into plant breeding.

    PubMed

    Leroy, Thibault; Le Cam, Bruno; Lemaire, Christophe

    2014-10-01

    Monogenic plant resistance breakdown is a model for testing evolution in action in pathogens. As a rule, plant pathologists argue that virulence - the allele that allows pathogens to overcome resistance - is due to a new mutation at the avirulence locus within the native/endemic population that infects susceptible crops. In this article, we develop an alternative and neglected scenario where a given virulence pre-exists in a non-agricultural host and might be accidentally released or introduced on the matching resistant cultivar in the field. The main difference between the two scenarios is the divergence time expected between the avirulent and the virulent populations. As a consequence, population genetic approaches such as genome scans and Approximate Bayesian Computation methods allow explicit testing of the two scenarios by timing the divergence. This review then explores the fundamental implications of this alternative scenario for plant breeding, including the invasion of virulence or the evolution of more aggressive hybrids, and proposes concrete solutions to achieve a sustainable resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Plant ID. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on plant identification. Presented first are a series of questions and answers designed to convey general information about the scientific classification of plants. The following topics are among those discussed: main types of plants; categories of vascular plants; gymnosperms and…

  6. 78 FR 9577 - Importation of Horses From Contagious Equine Metritis-Affected Countries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... conduct regular training of testing officials and make unscheduled visits to animal import centers... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service 9 CFR Part 93 [Docket No... AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Final rule. SUMMARY: We are adopting as...

  7. Complexities of nitrogen isotope biogeochemistry in plant-soil systems: implications for the study of ancient agricultural and animal management practices

    PubMed Central

    Szpak, Paul

    2014-01-01

    Nitrogen isotopic studies have the potential to shed light on the structure of ancient ecosystems, agropastoral regimes, and human-environment interactions. Until relatively recently, however, little attention was paid to the complexities of nitrogen transformations in ancient plant-soil systems and their potential impact on plant and animal tissue nitrogen isotopic compositions. This paper discusses the importance of understanding nitrogen dynamics in ancient contexts, and highlights several key areas of archaeology where a more detailed understanding of these processes may enable us to answer some fundamental questions. This paper explores two larger themes that are prominent in archaeological studies using stable nitrogen isotope analysis: (1) agricultural practices (use of animal fertilizers, burning of vegetation or shifting cultivation, and tillage) and (2) animal domestication and husbandry (grazing intensity/stocking rate and the foddering of domestic animals with cultigens). The paucity of plant material in ancient deposits necessitates that these issues are addressed primarily through the isotopic analysis of skeletal material rather than the plants themselves, but the interpretation of these data hinges on a thorough understanding of the underlying biogeochemical processes in plant-soil systems. Building on studies conducted in modern ecosystems and under controlled conditions, these processes are reviewed, and their relevance discussed for ancient contexts. PMID:25002865

  8. Emissions of carbon dioxide and methane from fields fertilized with digestate from an agricultural biogas plant

    NASA Astrophysics Data System (ADS)

    Czubaszek, Robert; Wysocka-Czubaszek, Agnieszka

    2018-01-01

    Digestate from biogas plants can play important role in agriculture by providing nutrients, improving soil structure and reducing the use of mineral fertilizers. Still, less is known about greenhouse gas emissions from soil during and after digestate application. The aim of the study was to estimate the emissions of carbon dioxide (CO2) and methane (CH4) from a field which was fertilized with digestate. The gas fluxes were measured with the eddy covariance system. Each day, the eddy covariance system was installed in various places of the field, depending on the dominant wind direction, so that each time the results were obtained from an area where the digestate was distributed. The results showed the relatively low impact of the studied gases emissions on total greenhouse gas emissions from agriculture. Maximum values of the CO2 and CH4 fluxes, 79.62 and 3.049 µmol s-1 m-2, respectively, were observed during digestate spreading on the surface of the field. On the same day, the digestate was mixed with the topsoil layer using a disc harrow. This resulted in increased CO2 emissions the following day. Intense mineralization of digestate, observed after fertilization may not give the expected effects in terms of protection and enrichment of soil organic matter.

  9. 78 FR 24666 - Updates to the List of Plant Inspection Stations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... plant material imported for plant breeding and research programs. The Plant Germplasm Inspection Station... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service 7 CFR Part 319 [Docket No. APHIS-2012-0099] Updates to the List of Plant Inspection Stations AGENCY: Animal and Plant Health...

  10. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils.

    PubMed

    Adamo, Paola; Iavazzo, Pietro; Albanese, Stefano; Agrelli, Diana; De Vivo, Benedetto; Lima, Annamaria

    2014-12-01

    Soil pollution in agricultural lands poses a serious threat to food safety, and suggests the need for consolidated methods providing advisory indications for soil management and crop production. In this work, the three-step extraction procedure developed by the EU Measurement and Testing Programme and two soil-to-plant transfer factors (relative to total and bioavailable concentration of elements in soil) were applied on polluted agricultural soils from southern Italy to obtain information on the retention mechanisms of metals in soils and on their level of translocation to edible vegetables. The study was carried out in the Sarno river plain of Campania, an area affected by severe environmental degradation potentially impacting the health of those consuming locally produced vegetables. Soil samples were collected in 36 locations along the two main rivers flowing into the plain. In 11 sites, lettuce plants were collected at the normal stage of consumption. According to Italian environmental law governing residential soils, and on the basis of soil background reference values for the study area, we found diffuse pollution by Be, Sn and Tl, of geogenic origin, Cr and Cu from anthropogenic sources such as tanneries and intensive agriculture, and more limited pollution by Pb, Zn and V. It was found that metals polluting soils as a result of human activities were mainly associated to residual, oxidizable and reducible phases, relatively immobile and only potentially bioavailable to plants. By contrast, the essential elements Zn and Cu showed a tendency to become more readily mobile and bioavailable as their total content in soil increased and were more easily transported to the edible parts of lettuce than other pollutants. According to our results, current soil pollution in the studied area does not affect the proportion of metals taken up by lettuce plants and there is a limited health risk incurred. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Influence of biochar aged in acidic soil on ecosystem engineers and two tropical agricultural plants.

    PubMed

    Anyanwu, Ihuoma N; Alo, Moses N; Onyekwere, Amos M; Crosse, John D; Nworie, Okoro; Chamba, Emmanuel B

    2018-05-30

    Biochar amendment to soil is predicted globally as a means to enhance soil health. Alongside the beneficial result on soil nutrient availability and retention, biochar is presumed to increase soil macro / microbiota composition and improve plant growth. However, evidence for such an effect remains elusive in many tropical agricultural soils. The influence of biochar aged in soil was assessed on soil microbiota, macrobiota (Eudrilus eugeniae), seedling emergence and early plant growth of Oryza sativa and Solanum lycopersicum in tropical agricultural soil, over a 90 d biochar-soil contact time. Results showed negative impacts of increased loading of biochar on the survival and growth of E. eugeniae. LC 50 and EC 50 values ranged from 34.8% to 86.8% and 0.9-23.7% dry biochar kg -1 soil, over time. The growth of the exposed earthworms was strongly reduced (R 2 = -0.866, p < 0.05). Biochar significantly increased microbiota abundance relative to the control soil (p < 0.001). However, fungal population was reduced by biochar addition. Biochar application threshold of 10% and 5% was observed for (O. sativa) and (S. lycopersicum), respectively. Furthermore, the addition of biochar to soil resulted in increased aboveground (shoot) biomass (p < 0.01). However, the data revealed that biochar did not increase the belowground (root) biomass of the plant species during the 90 d biochar-soil contact time. The shoot-to-root-biomass increase indicates a direct toxic influence of biochar on plant roots. This reveals that nutrient availability is not the only mechanism involved in biota-biochar interactions. Detailed studies on specific biota-plant-responses to biochars between tropical, temperate and boreal environments are needed to resolve the large variations and mechanisms behind these effects. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Nitrate is an important nitrogen source for Arctic tundra plants.

    PubMed

    Liu, Xue-Yan; Koba, Keisuke; Koyama, Lina A; Hobbie, Sarah E; Weiss, Marissa S; Inagaki, Yoshiyuki; Shaver, Gaius R; Giblin, Anne E; Hobara, Satoru; Nadelhoffer, Knute J; Sommerkorn, Martin; Rastetter, Edward B; Kling, George W; Laundre, James A; Yano, Yuriko; Makabe, Akiko; Yano, Midori; Liu, Cong-Qiang

    2018-03-27

    Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO 3 - ) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO 3 - concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO 3 - that is typically below detection limits. Here we reexamine NO 3 - use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO 3 - Soil-derived NO 3 - was detected in tundra plant tissues, and tundra plants took up soil NO 3 - at comparable rates to plants from relatively NO 3 - -rich ecosystems in other biomes. Nitrate assimilation determined by 15 N enrichments of leaf NO 3 - relative to soil NO 3 - accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO 3 - availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO 3 - availability in tundra soils is crucial for predicting C storage in tundra. Copyright © 2018 the Author(s). Published by PNAS.

  13. From the tumor-inducing principle to plant biotechnology and its importance for society.

    PubMed

    Angenon, Geert; Van Lijsebettens, Mieke; Van Montagu, Marc

    2013-01-01

    This dialogue was held between the Guest Editors of the Special Issue on "Plant Transgenesis" of the Int. J. Dev. Biol. and Marc Van Montagu. Research in the group of Marc Van Montagu and Jeff Schell in the 1970s was essential to reveal how the phytopathogenic bacterium Agrobacterium tumefaciens transfers DNA to host plants to cause crown gall disease. Knowledge of the molecular mechanism underlying gene transfer, subsequently led to the development of plant transgene technology, an indispensable tool in fundamental plant research and plant improvement. In the early 1980s, Marc Van Montagu founded a start-up company, Plant Genetic Systems, which successfully developed insect-resistant plants, herbicide-tolerant plants and a hybrid seed production system based on nuclear male sterility. Even before the first transgenic plant had been produced, Marc Van Montagu realized that the less developed countries might benefit most from plant biotechnology and throughout his subsequent career, this remained a focus of his efforts. After becoming emeritus professor, he founded the Institute of Plant Biotechnology Outreach (IPBO), which aims to raise awareness of the major role that plant biotechnology can play in sustainable agricultural systems, especially in less developed countries. Marc Van Montagu has been honored with many prizes and awards, the most recent being the prestigious World Food Prize 2013. In this paper, we look to the past and present of plant biotechnology and to the promises this technology holds for the future, on the basis of the personal perspective of Marc Van Montagu.

  14. Plant immunity: towards an integrated view of plant-pathogen interactions.

    PubMed

    Dodds, Peter N; Rathjen, John P

    2010-08-01

    Plants are engaged in a continuous co-evolutionary struggle for dominance with their pathogens. The outcomes of these interactions are of particular importance to human activities, as they can have dramatic effects on agricultural systems. The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant-pathogen interaction from the perspective of both organisms. Plants have an amazing capacity to recognize pathogens through strategies involving both conserved and variable pathogen elicitors, and pathogens manipulate the defence response through secretion of virulence effector molecules. These insights suggest novel biotechnological approaches to crop protection.

  15. 76 FR 44572 - Plants for Planting Whose Importation Is Not Authorized Pending Pest Risk Analysis; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... available to the public for review and comment. DATES: We will consider all comments that we receive on or... Development, PPD, APHIS, Station 3A-03.8, 4700 River Road Unit 118, Riverdale, MD 20737- 1238. The data sheets... importation of plants for planting (including living plants, plant parts, seeds, and plant cuttings) to...

  16. Mycorrhizal fungal establishment in agricultural soils: factors determining inoculation success.

    PubMed

    Verbruggen, Erik; van der Heijden, Marcel G A; Rillig, Matthias C; Kiers, E Toby

    2013-03-01

    Soil biota provide a number of key ecological services to natural and agricultural ecosystems. Increasingly, inoculation of soils with beneficial soil biota is being considered as a tool to enhance plant productivity and sustainability of agricultural ecosystems. However, one important bottleneck is the establishment of viable microbial populations that can persist over multiple seasons. Here, we explore the factors responsible for establishment of the beneficial soil fungi, arbuscular mycorrhizal fungi (AMF), which can enhance the yield of a wide range of agricultural crops. We evaluate field application potential and discuss ecological and evolutionary factors responsible for application success. We identify three factors that determine inoculation success and AM fungal persistence in soils: species compatibility (can the introduced species thrive under the imposed circumstances?); field carrying capacity (the habitat niche available to AMF); and priority effects (the influence of timing and competition on the establishment of alternative stable communities). We explore how these factors can be employed for establishment and persistence of AMF. We address the importance of inoculum choice, plant choice, management practices and timing of inoculation for the successful manipulation of the resulting AMF community.

  17. The importance of plant-soil interactions for N mineralisation in different soil types

    NASA Astrophysics Data System (ADS)

    Murphy, Conor; Paterson, Eric; Baggs, Elizabeth; Morley, Nicholas; Wall, David; Schulte, Rogier

    2013-04-01

    The last hundred years has seen major advancements in our knowledge of nitrogen mineralisation in soil, but key drivers and controls remain poorly understood. Due to an increase in the global population there is a higher demand on food production. To accommodate this demand agriculture has increased its use of N based fertilizers, but these pose risks for water quality and GHG emissions as N can be lost through nitrate leaching, ammonia volatilization, and denitrification processes (Velthof, et al., 2009). Therefore, understanding the underlying processes that determine the soils ability to supply N to the plant is vital for effective optimisation of N-fertilisation with crop demand. Carbon rich compounds exuded from plant roots to the rhizosphere, which are utilized by the microbial biomass and support activities including nutrient transformations, may be a key unaccounted for driver of N mineralisation. The main aim of this study was to study the impact of root exudates on turnover of C and N in soil, as mediated by the microbial community. Two soil types, known to contrast in N-mineralisation capacity, were used to determine relationships between C inputs, organic matter mineralisation (priming effects) and N fluxes. 15N and 13C stable isotope approaches were used to quantify the importance of rhizosphere processes on C and N mineralisation. Gross nitrogen mineralisation was measured using 15N pool dilution. Total soil CO2 efflux was measured and 13C isotope partitioning was applied to quantify SOM turnover and microbial biomass respiration. Also, 13C was traced through the microbial biomass (chloroform fumigation) to separate pool-substitution effects (apparent priming) from altered microbial utilisation of soil organic matter (real priming effects). Addition of labile carbon resulted in an increase in N-mineralisation from soil organic matter in both soils. Concurrent with this there was an increase in microbial biomass size, indicating that labile C elicited

  18. 7 CFR 322.2 - General requirements for interstate movement and importation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND... areas is prohibited. (b) Importation. In order to prevent the introduction into the United States of bee diseases and parasites, and undesirable species and subspecies of honeybees: (1) You may import bees...

  19. 7 CFR 322.2 - General requirements for interstate movement and importation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND... areas is prohibited. (b) Importation. In order to prevent the introduction into the United States of bee diseases and parasites, and undesirable species and subspecies of honeybees: (1) You may import bees...

  20. 7 CFR 322.2 - General requirements for interstate movement and importation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND... areas is prohibited. (b) Importation. In order to prevent the introduction into the United States of bee diseases and parasites, and undesirable species and subspecies of honeybees: (1) You may import bees...

  1. 7 CFR 322.2 - General requirements for interstate movement and importation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND... areas is prohibited. (b) Importation. In order to prevent the introduction into the United States of bee diseases and parasites, and undesirable species and subspecies of honeybees: (1) You may import bees...

  2. 7 CFR 322.2 - General requirements for interstate movement and importation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND... areas is prohibited. (b) Importation. In order to prevent the introduction into the United States of bee diseases and parasites, and undesirable species and subspecies of honeybees: (1) You may import bees...

  3. 9 CFR 93.203 - Ports designated for the importation of poultry.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of poultry. 93.203 Section 93.203 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS IMPORTATION OF CERTAIN ANIMALS, BIRDS, FISH, AND POULTRY, AND CERTAIN ANIMAL, BIRD, AND POULTRY...

  4. One plant, two plants, three plants, four: does soil carbon respond to diversifying by one plant more? (Invited)

    NASA Astrophysics Data System (ADS)

    Grandy, S.

    2013-12-01

    Plant diversity is known to strongly influence aboveground ecosystem functions, but our understanding of its effects on belowground carbon (C) cycling has not kept pace. We know in broad terms that the belowground implications of reducing plant diversity include changes in soil nutrient cycling and biological communities, but remain uncertain about the specific links between plant diversity, soil microbial communities, and soil C cycling. Our knowledge gap is especially wide in agricultural systems, which comprise ~50% of the contiguous U.S. and differ from non-managed systems because diversity: (1) occurs primarily over time (i.e. crop rotations) rather than in space (i.e. inter-cropping); (2) exists as one of multiple management factors that potentially regulates soil C dynamics; and (3) is almost always low, with the addition or subtraction of a single plant species often representing a substantial change in diversity. I have been addressing the uncertain relationships between agricultural plant diversity and soil C cycling with a multi-tiered approach that includes a global meta-analysis, site-specific field manipulations, and intensive laboratory analyses. The meta-analysis using 122 studies shows that compared to single-crop monocultures, rotations increased soil microbial biomass C by 20.7% and microbial biomass N by 26.1% as well as total soil C and N. In a complimentary field study at the W.K. Kellogg Biological Station LTER Cropping Biodiversity Gradient Experiment we examined microbial communities, C cycling processes, and trace gas emissions in five rotation sequences varying in complexity from continuous corn monoculture to a five crop three-year rotation. Finding striking differences between monocultures and systems with more complex plant communities, these results confirm our meta-analysis, and highlight the strong effects of diversifying plant communities in agricultural systems. A complimentary lab study examining decomposition processes in

  5. Methylotrophic bacteria in sustainable agriculture.

    PubMed

    Kumar, Manish; Tomar, Rajesh Singh; Lade, Harshad; Paul, Diby

    2016-07-01

    Excessive use of chemical fertilizers to increase production from available land has resulted in deterioration of soil quality. To prevent further soil deterioration, the use of methylotrophic bacteria that have the ability to colonize different habitats, including soil, sediment, water, and both epiphytes and endophytes as host plants, has been suggested for sustainable agriculture. Methylotrophic bacteria are known to play a significant role in the biogeochemical cycle in soil ecosystems, ultimately fortifying plants and sustaining agriculture. Methylotrophs also improve air quality by using volatile organic compounds such as dichloromethane, formaldehyde, methanol, and formic acid. Additionally, methylotrophs are involved in phosphorous, nitrogen, and carbon cycling and can help reduce global warming. In this review, different aspects of the interaction between methylotrophs and host plants are discussed, including the role of methylotrophs in phosphorus acquisition, nitrogen fixation, phytohormone production, iron chelation, and plant growth promotion, and co-inoculation of these bacteria as biofertilizers for viable agriculture practices.

  6. Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries:Economic Plants and their Diseases, Pests and Weeds.

    USDA-ARS?s Scientific Manuscript database

    The AgroAtlas is a comprehensive on-line bilingual reference on the geographic distribution of economic plants, their diseases, pests and weeds, and environmental factors that influence agricultural production through out the Former Soviet Union. Online users can read about and examine maps and ima...

  7. Azolla--a model organism for plant genomic studies.

    PubMed

    Qiu, Yin-Long; Yu, Jun

    2003-02-01

    The aquatic ferns of the genus Azolla are nitrogen-fixing plants that have great potentials in agricultural production and environmental conservation. Azolla in many aspects is qualified to serve as a model organism for genomic studies because of its importance in agriculture, its unique position in plant evolution, its symbiotic relationship with the N2-fixing cyanobacterium, Anabaena azollae, and its moderate-sized genome. The goals of this genome project are not only to understand the biology of the Azolla genome to promote its applications in biological research and agriculture practice but also to gain critical insights about evolution of plant genomes. Together with the strategic and technical improvement as well as cost reduction of DNA sequencing, the deciphering of their genetic code is imminent.

  8. Nitrate is an important nitrogen source for Arctic tundra plants

    PubMed Central

    Liu, Xue-Yan; Koyama, Lina A.; Weiss, Marissa S.; Inagaki, Yoshiyuki; Shaver, Gaius R.; Giblin, Anne E.; Hobara, Satoru; Nadelhoffer, Knute J.; Sommerkorn, Martin; Rastetter, Edward B.; Kling, George W.; Laundre, James A.; Yano, Yuriko; Makabe, Akiko; Yano, Midori; Liu, Cong-Qiang

    2018-01-01

    Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO3−) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO3− concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO3− that is typically below detection limits. Here we reexamine NO3− use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO3−. Soil-derived NO3− was detected in tundra plant tissues, and tundra plants took up soil NO3− at comparable rates to plants from relatively NO3−-rich ecosystems in other biomes. Nitrate assimilation determined by 15N enrichments of leaf NO3− relative to soil NO3− accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO3− availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO3− availability in tundra soils is crucial for predicting C storage in tundra. PMID:29540568

  9. Recent trends/challenges in irrigated agriculture-Why is irrigation important in a discussion of agricultural migration?

    USDA-ARS?s Scientific Manuscript database

    United States agriculture contributes 16% of the $9 trillion gross domestic product, 8% of U.S. exports, and 17% of employment while providing food to all citizens, despite the fact that only 2% of the U.S. workforces is on farms. Agricultural productivity has grown by 240% since 1948, while agricul...

  10. 7 CFR 319.73-2 - Products prohibited importation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Coffee § 319.73-2 Products prohibited importation. (a) To prevent the spread of the coffee berry borer Hypothenemus hampei (Ferrari) and... of this subpart: (1) Unroasted coffee; (2) Coffee plants and leaves; and (3) Empty sacks previously...

  11. Establishing Longleaf Pine Seedlings on Agricultural Fields and Pastures

    Treesearch

    Mark J. Hainds

    2004-01-01

    Acres planted to longleaf pine (Pinus palustris) increased annually through the 1990s until 2000 with peak plantings exceeding 110 million seedlings annually. Many of these longleaf seedlings were planted on agricultural crop fields and pastures. Agricultural areas have unique characteristics that can make them more challenging to successfully plant...

  12. Redefining Agricultural Residues as Bioenergy Feedstocks

    PubMed Central

    Caicedo, Marlon; Barros, Jaime; Ordás, Bernardo

    2016-01-01

    The use of plant biomass is a sustainable alternative to the reduction of CO2 emissions. Agricultural residues are interesting bioenergy feedstocks because they do not compete with food and add extra value to the crop, which might help to manage these residues in many regions. Breeding crops for dual production of food and bioenergy has been reported previously, but the ideal plant features are different when lignocellulosic residues are burnt for heat or electricity, or fermented for biofuel production. Stover moisture is one of the most important traits in the management of agricultural waste for bioenergy production which can be modified by genetic improvement. A delayed leaf senescence or the stay-green characteristic contributes to higher grain and biomass yield in standard, low nutrient, and drought-prone environments. In addition, the stay-green trait could be favorable for the development of dual purpose varieties because this trait could be associated with a reduction in biomass losses and lodging. On the other hand, the stay-green trait could be detrimental for the management of agricultural waste if it is associated with higher stover moisture at harvest, although this hypothesis has been insufficiently tested. In this paper, a review of traits relevant to the development of dual purpose varieties is presented with particular emphasis on stover moisture and stay-green, because less attention has been paid to these important traits in the literature. The possibility of developing new varieties for combined production is discussed from a breeding perspective. PMID:28773750

  13. 78 FR 26316 - Plants for Planting Whose Importation is Not Authorized Pending Pest Risk Analysis; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... pests. We are making these data sheets available to the public for review and comment. DATES: We will...-2012-0076, Regulatory Analysis and Development, PPD, APHIS, Station 3A-03.8, 4700 River Road Unit 118... prohibits or restricts the importation of plants for planting (including living plants, plant parts, seeds...

  14. Estimating the Seasonal Importance of Precipitation to Plant Source Water over Time and Space with Water Isotopes

    NASA Astrophysics Data System (ADS)

    Nelson, D. B.; Kahmen, A.

    2017-12-01

    The stable isotopic composition of hydrogen and oxygen are physical properties of water molecules that can carry information on their sources or transport histories. This provides a useful tool for assessing the importance of rainfall at different times of the year for plant growth, provided that rainwater values vary over time and that waters do not partially evaporate after deposition. We tested the viability of this approach using data from samples collected at nineteen sites throughout Europe at monthly intervals over two consecutive growing seasons in 2014 and 2015. We compared isotope measurements of plant xylem water with soil water from multiple depths, and measured and modeled precipitation isotope values. Paired analyses of oxygen and hydrogen isotope values were used to screen out a limited number of water samples that were influenced by evaporation, with the majority of all water samples indicating meteoric sources. The isotopic composition of soil and xylem waters varied over the course of an individual growing season, with many trending towards more enriched values, suggesting integration of the plant-relevant water pool at a timescale shorter than the annual mean. We then quantified how soil water residence times varied at each site by calculating the interval between measured xylem water and the most recently preceding match in modeled precipitation isotope values. Results suggest a generally increasing interval between rainfall and plant uptake throughout each year, with source water corresponding to dates in the spring, likely reflecting a combination of spring rain, and mixing with winter and summer precipitation. The seasonally evolving spatial distribution of source water-precipitation lag values was then modeled as a function of location and climatology to develop continental-scale predictions. This spatial portrait of the average date for filling the plant source water pool provides insights on the seasonal importance of rainfall for plant

  15. Comparison of six methods for the recovery of PCR-compatible microbial DNA from an agricultural biogas plant.

    PubMed

    Stagnati, L; Soffritti, G; Lanubile, A; Busconi, M

    2017-05-01

    Six different commercial methods were compared to evaluate their efficiency in recovering high quantity/quality PCR compatible microbial DNA from an agricultural biogas plant. Within the last two decades, biogas plants have been developed to produce energy from organic wastes and from devoted biomass. The complex biotransformations are performed by a diverse consortium of microorganisms that is an important reserve of genes and enzymatic activities with a huge range of applications in various commercial fields. In this respect, the ability to isolate DNA from a complex matrix is of high importance. Important parameters of the recovered DNA are good yield, purity, and quality. The methods examined showed considerable differences about quantity and quality of the recovered DNA and, usually, it was observed that a higher amount was accompanied by more degradation. DNA purity was determined by its PCR amplificability. Only two methods were able to provide DNA pure enough to be directly amplified. For the rest of the methods, a few intermediate steps such as dilution and/or the addition of polyvinylpyrrolidone were necessary to remove the inhibitors present and to amplify the DNA. Real-time PCR analysis evidenced that, as expected, prokaryotic DNA was much more abundant than eukaryotic DNA, but some methods were more suited to recovering prokaryotic or eukaryotic DNA. The digestion analysis of ribosomal DNA amplicons confirmed the influence of the methods on the final output, allowing the recovery of only a fraction of the present species as determined by sequencing a small prokaryotic and eukaryotic ribosomal library.

  16. Applications of color machine vision in the agricultural and food industries

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Ludas, Laszlo I.; Morgan, Mark T.; Krutz, Gary W.; Precetti, Cyrille J.

    1999-01-01

    Color is an important factor in Agricultural and the Food Industry. Agricultural or prepared food products are often grade by producers and consumers using color parameters. Color is used to estimate maturity, sort produce for defects, but also perform genetic screenings or make an aesthetic judgement. The task of sorting produce following a color scale is very complex, requires special illumination and training. Also, this task cannot be performed for long durations without fatigue and loss of accuracy. This paper describes a machine vision system designed to perform color classification in real-time. Applications for sorting a variety of agricultural products are included: e.g. seeds, meat, baked goods, plant and wood.FIrst the theory of color classification of agricultural and biological materials is introduced. Then, some tools for classifier development are presented. Finally, the implementation of the algorithm on real-time image processing hardware and example applications for industry is described. This paper also presented an image analysis algorithm and a prototype machine vision system which was developed for industry. This system will automatically locate the surface of some plants using digital camera and predict information such as size, potential value and type of this plant. The algorithm developed will be feasible for real-time identification in an industrial environment.

  17. Biodiversity of important toxigenic fungi that threaten food safety

    USDA-ARS?s Scientific Manuscript database

    Phenotypic and metabolic plasticity of toxigenic fungi that threaten food safety allows these microorganisms to colonize a broad range of agriculturally important crops and to adapt to a range of environmental conditions. In addition, trans-global transportation and trade of plant products significa...

  18. Development of a novel myconanomining approach for the recovery of agriculturally important elements from jarosite waste.

    PubMed

    Bedi, Ankita; Singh, Braj Raj; Deshmukh, Sunil K; Aggarwal, Nisha; Barrow, Colin J; Adholeya, Alok

    2018-05-01

    In this study, an ecofriendly and economically viable waste management approach have been attempted towards the biosynthesis of agriculturally important nanoparticles from jarosite waste. Aspergillus terreus strain J4 isolated from jarosite (waste from Debari Zinc Smelter, Udaipur, India), showed good leaching efficiency along with nanoparticles (NPs) formation under ambient conditions. Fourier-transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM) confirmed the formation of NPs. Energy dispersive X-ray spectroscopy (EDX analysis) showed strong signals for zinc, iron, calcium and magnesium, with these materials being leached out. TEM analysis and high resolution transmission electron microscopy (HRTEM) showed semi-quasi spherical particles having average size of 10-50nm. Thus, a novel biomethodology was developed using fungal cell-free extract for bioleaching and subsequently nanoconversion of the waste materials into nanostructured form. These biosynthesized nanoparticles were tested for their efficacy on seed emergence activity of wheat (Triticum aestivum) seeds and showed enhanced growth at concentration of 20ppm. These nanomaterials are expected to enhance plant growth properties and being targeted as additives in soil fertility and crop productivity enhancement. Copyright © 2017. Published by Elsevier B.V.

  19. A review of commercially important African medicinal plants.

    PubMed

    Van Wyk, B-E

    2015-12-24

    Data on the relative importance and research status of commercially relevant African medicinal plants are needed for developing new research strategies in order to stimulate much-needed ethnopharmacological research and to promote the commercialization of African plants. To present an illustrated bird's eye view and comparative analysis of the relative popularity and importance of commercialized African medicinal plants. A comparison is made between the general popularity and commercial importance of the species (as indicated by their footprint on the World Wide Web) and their scientific popularity and importance (as indicated by the number of research publications). The inventory and review is strongly focussed to cover all or most of the medicinal plant raw materials in the international trade that are exported from African countries, with less emphasis on those that are regularly traded on local and regional markets within Africa. The review is based on literature data, Scopus and Google searches, commercial information and the author's own experience and observations. More than 5400 plant species are used in traditional medicine in Africa, of which less than 10% have been commercially developed to some extent. Africa is home to more than 80 valuable commercial species that are regularly traded on international markets, including phytomedicines (e.g. Harpagophytum procumbens and Pelargonium sidoides), functional foods (e.g. Adansonia digitata and Hibiscus sabdariffa) and sources of pure chemical entities (e.g. caffeine from Coffea arabica and yohimbine from Pausinystalia johimbe). According to the Scopus results, about 60% of all recent publications on African medicinal plants appeared in the last decade, with an average of 280 papers (28 per year) for 85 prominent species of international trade. The most popular African species for research (number of publications in brackets) were: Ricinus communis (5187), Aloe vera (2832), Catharanthus roseus (2653), Sesamum

  20. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation.

    PubMed

    Chiumenti, Alessandro; da Borso, Francesco; Limina, Sonia

    2018-01-01

    For years, anaerobic digestion processes have been implemented for the management of organic wastes, agricultural residues, and animal manure. Wet anaerobic digestion still represents the most common technology, while dry fermentation, dedicated to the treatment of solid inputs (TS>20%) can be considered as an emerging technology, not in terms of technological maturity, but of diffusion. The first agricultural dry anaerobic digestion plant constructed in Italy was monitored from the start-up, for over a year. The plant was fed with manure and agricultural products, such as corn silage, triticale, ryegrass, alfalfa, and straw. Three Combined Heat and Power units, for a total installed power of 910kW e , converted biogas into thermal and electric energy. The monitoring included the determination of quality and quantity of input feedstocks, of digestate (including recirculation rate), of leachate, biogas quality (CH 4 , CO 2 , H 2 S), biogas yield, energy production, labor requirement for loading, and unloading operations. The results of the monitoring were compared to performance data obtained in several full scale wet digestion plants. The dry fermentation plant revealed a start-up phase that lasted several months, during which the average power resulted in 641kW e (70.4% of nominal power), and the last period the power resulted in 788kW e (86.6% of installed power). Improving the balance of the input, the dry fermentation process demonstrated biogas yields similar to wet anaerobic digestion, congruent to the energy potential of the biomasses used in the process. Furthermore, the operation of the plant required significant man labor, mainly related to loading and unloading of the anaerobic cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Assessing the agricultural costs of climate change: Combining results from crop and economic models

    NASA Astrophysics Data System (ADS)

    Howitt, R. E.

    2016-12-01

    Any perturbation to a resource system used by humans elicits both technical and behavioral changes. For agricultural production, economic criteria and their associated models are usually good predictors of human behavior in agricultural production. Estimation of the agricultural costs of climate change requires careful downscaling of global climate models to the level of agricultural regions. Plant growth models for the dominant crops are required to accurately show the full range of trade-offs and adaptation mechanisms needed to minimize the cost of climate change. Faced with the shifts in the fundamental resource base of agriculture, human behavior can either exacerbate or offset the impact of climate change on agriculture. In addition, agriculture can be an important source of increased carbon sequestration. However the effectiveness and timing of this sequestration depends on agricultural practices and farmer behavior. Plant growth models and economic models have been shown to interact in two broad fashions. First there is the direct embedding of a parametric representation plant growth simulations in the economic model production function. A second and more general approach is to have plant growth and crop process models interact with economic models as they are simulated. The development of more general wrapper programs that transfer information between models rapidly and efficiently will encourage this approach. However, this method does introduce complications in terms of matching up disparate scales both in time and space between models. Another characteristic behavioral response of agricultural production is the distinction between the intensive margin which considers the quantity of resource, for example fertilizer, used for a given crop, and the extensive margin of adjustment that measures how farmers will adjust their crop proportions in response to climate change. Ideally economic models will measure the response to both these margins of adjustment

  2. 7 CFR 355.20 - Marketing and notification requirements for plants imported, exported, or reexported by means...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF AGRICULTURE ENDANGERED SPECIES REGULATIONS CONCERNING TERRESTRIAL PLANTS Inspections and Related... Convention or determined by the U.S. Department of the Interior to be endangered or threatened or similar in appearance to endangered or threatened species are required to be accompanied by documentation at the time of...

  3. 7 CFR 355.20 - Marketing and notification requirements for plants imported, exported, or reexported by means...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF AGRICULTURE ENDANGERED SPECIES REGULATIONS CONCERNING TERRESTRIAL PLANTS Inspections and Related... Convention or determined by the U.S. Department of the Interior to be endangered or threatened or similar in appearance to endangered or threatened species are required to be accompanied by documentation at the time of...

  4. 7 CFR 355.20 - Marketing and notification requirements for plants imported, exported, or reexported by means...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF AGRICULTURE ENDANGERED SPECIES REGULATIONS CONCERNING TERRESTRIAL PLANTS Inspections and Related... Convention or determined by the U.S. Department of the Interior to be endangered or threatened or similar in appearance to endangered or threatened species are required to be accompanied by documentation at the time of...

  5. 7 CFR 355.20 - Marketing and notification requirements for plants imported, exported, or reexported by means...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF AGRICULTURE ENDANGERED SPECIES REGULATIONS CONCERNING TERRESTRIAL PLANTS Inspections and Related... Convention or determined by the U.S. Department of the Interior to be endangered or threatened or similar in appearance to endangered or threatened species are required to be accompanied by documentation at the time of...

  6. 7 CFR 355.20 - Marketing and notification requirements for plants imported, exported, or reexported by means...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF AGRICULTURE ENDANGERED SPECIES REGULATIONS CONCERNING TERRESTRIAL PLANTS Inspections and Related... Convention or determined by the U.S. Department of the Interior to be endangered or threatened or similar in appearance to endangered or threatened species are required to be accompanied by documentation at the time of...

  7. Statistical analysis on the factors affecting agricultural landowners’ willingness to enroll in a tree planting program

    Treesearch

    Taeyoung Kim; Christian Langpap

    2015-01-01

    This report provides a statistical analysis of the data collected from two survey regions of the United States, the Pacific Northwest and the Southeast. The survey asked about individual agricultural landowners’ characteristics, characteristics of their land, and the landowners’ willingness to enroll in a tree planting program under incentive payments for carbon...

  8. 75 FR 77612 - Plant Variety Protection Board; Reestablishment of the Plant Variety Protection Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ... technology, plant breeding, and variety development, public and private research and development institutions... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service [Document No. AMS-ST-10-0052] Plant Variety Protection Board; Reestablishment of the Plant Variety Protection Board AGENCY: Agricultural...

  9. A review on plant importance, biotechnological aspects, and cultivation challenges of jojoba plant.

    PubMed

    Al-Obaidi, Jameel R; Halabi, Mohammed Farouq; AlKhalifah, Nasser S; Asanar, Shanavaskhan; Al-Soqeer, Abdulrahman A; Attia, M F

    2017-08-24

    Jojoba is considered a promising oil crop and is cultivated for diverse purposes in many countries. The jojoba seed produces unique high-quality oil with a wide range of applications such as medical and industrial-related products. The plant also has potential value in combatting desertification and land degradation in dry and semi-dry areas. Although the plant is known for its high-temperature and high-salinity tolerance growth ability, issues such as its male-biased ratio, relatively late flowering and seed production time hamper the cultivation of this plant. The development of efficient biotechnological platforms for better cultivation and an improved production cycle is a necessity for farmers cultivating the plant. In the last 20 years, many efforts have been made for in vitro cultivation of jojoba by applying different molecular biology techniques. However, there is a lot of work to be done in order to reach satisfactory results that help to overcome cultivation problems. This review presents a historical overview, the medical and industrial importance of the jojoba plant, agronomy aspects and nutrient requirements for the plant's cultivation, and the role of recent biotechnology and molecular biology findings in jojoba research.

  10. REXPO: A catchment model designed to understand and simulate the loss dynamics of plant protection products and biocides from agricultural and urban areas

    NASA Astrophysics Data System (ADS)

    Wittmer, I. K.; Bader, H.-P.; Scheidegger, R.; Stamm, C.

    2016-02-01

    During rain events, biocides and plant protection products are transported from agricultural fields but also from urban sources to surface waters. Originally designed to be biologically active, these compounds may harm organisms in aquatic ecosystems. Although several models allow either urban or agricultural storm events to be predicted, only few combine these two sources, and none of them include biocide losses from building envelopes. This study therefore aims to develop a model designed to predict water and substance flows from urban and agricultural sources to surface waters. We developed a model based on physical principles for water percolation and substance flow including micro- (also called matrix-) and macropore-flows for the agricultural areas together with a model representing sources, sewer systems and a wastewater treatment plant for urban areas. In a second step, the combined model was applied to a catchment where an extensive field study had been conducted. The modelled and measured discharge and compound results corresponded reasonably well in terms of quantity and dynamics. The total cumulative discharge was only slightly lower than the total measured discharge (factor 0.94). The total modelled losses of the agriculturally used herbicide atrazine were slightly lower (∼25%) than the measured losses when the soil pore water distribution coefficient (describing the partition between soil particles and pore water) (Kd) was kept constant and slightly higher if it was increased with time. The modelled urban losses of diuron from facades were within a factor of three with respect to the measured values. The results highlighted the change in importance of the flow components during a rain event from urban sources during the most intensive rain period towards agricultural ones over a prolonged time period. Applications to two other catchments, one neighbouring and one on another continent showed that the model can be applied using site specific data for

  11. 76 FR 81468 - Notice of Decision to Authorize the Importation of Shredded Lettuce From Egypt Into the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2011-0078... United States AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice. SUMMARY: We are... introducing or disseminating plant pests or noxious weeds via the importation of fresh shredded lettuce from...

  12. Agriculture Cluster Brief. Vocational Education in Oregon.

    ERIC Educational Resources Information Center

    Galbraith, Gordon

    This guide sets forth minimum approval criteria for vocational agriculture cluster programs in Oregon. The agriculture cluster program includes instruction in six areas: animal science, soil science, plant science, agricultural economics, agriculture mechanics, and leadership development. The information in the guide is intended for use by…

  13. Agricultural recycling of treatment-plant sludge: a case study for a vegetable-processing factory.

    PubMed

    Dolgen, Deniz; Alpaslan, M Necdet; Delen, Nafiz

    2007-08-01

    The present study evaluated the possibility of using the sludge produced by a vegetable-processing factory in agriculture. The sludge was amended with a soil mixture (i.e., a mixture of sand, soil, and manure) and was applied at 0, 165, 330, 495 and 660 t/ha to promote the growth of cucumbers. The effects of various sludge loadings on plant growth were assessed by counting plants and leaves, measuring stem lengths, and weighing the green parts and roots of the plants. We also compared heavy metal uptake by the plants for sludge loadings of 330, 495, and 660 t/ha with various recommended standards for vegetables. Our results showed that plant growth patterns were influenced to some extent by the sludge loadings. In general, the number of leaves, stem length, and dry weight of green parts exhibited a pronounced positive growth response compared with an unfertilized control, and root growth showed a lesser but still significant response at sludge loadings of 165 and 330 t/ha. The sludge application caused no significant increase in heavy metal concentrations in the leaves, though zinc (Zn) and iron (Fe) were found at elevated concentrations. However, despite the Zn and Fe accumulation, we observed no toxicity symptoms in the plants. This may be a result of cucumber's tolerance of high metal levels.

  14. Tracking Movement of Plant Carbon Through Soil to Water by Lignin Phenol Stable Carbon Isotope Composition in a Small Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Crooker, K.; Filley, T.; Six, J.; Frey, J.

    2005-12-01

    Few studies integrate land cover, soil physical structure, and aquatic physical fractions when investigating the fate of agricultural carbon in watersheds. In crop systems that involve rotations of soy (a C3 plant) and corn (a C4 plant) the large intrinsic differences in stable carbon isotope values and lignin plus cutin chemistry enable tracking of plant carbon movement from soil fractions to DOM and overland flow during precipitation events. In a small (~3Km2) agricultural basin in central Indiana, we studied plant carbon dynamics in a soy/corn agricultural rotation (2004-2005) to determine the relative inputs of these two plants to soil fractions and the resultant contributions to dissolved, colloidal, and particulate organic matter when mobilized. Using bulk isotope values the fraction of carbon derived from corn in macroaggregates (>250 micron), microaggregates (53-250 mm), and silts plus clays (<53 mm) ranged from 39, 49, to 42%, respectively. Unlike bulk analyses, compound specific isotope analysis of lignin in the soil fractions revealed a wide range of relative inputs among the monomers with cinnamyl phenols being almost exclusively (~ 93%) derived from corn. Syringyl phenols ranged from 75-56% corn and vanillyl phenols ranged from 37-40% corn carbon. The relative input among the fractions mirrors closely the comparative plant chemistry abundances between soy and corn. During export of DOM from the land to the stream the relative abundance of plant source varied with discharge (0.05-1.8 m3/sec) as increases in flow increased the relative export of corn-derived C from the fields. Over the full range of flows lignin phenols varied from 0.05 to 82% corn-derived with the greatest relative corn input for cinnamyl and syringyl carbon. The trend with stream discharge indicates a progressive movement of particulate corn residues with overland flow. Ongoing studies look to resolve contributions of algae, bacteria and terrestrial plants to soil fractions and their

  15. PRODUCTION OF PLANT GROWTH PROMOTING SUBSTANCES IN BACTERIAL ISOLATES FROM THE SEAGRASS RHIZOSPHERE

    EPA Science Inventory

    Plants and rhizosphere bacteria have evolved chemical signals that enable their mutual growth. These relationships have been well investigated with agriculturally important plants, but not in seagrasses, which are important to the stability of estuaries. Seagrasses are rooted in ...

  16. Assessing the Impact of a Semester-Long Course in Agricultural Mechanics on Pre-Service Agricultural Education Teachers' Importance, Confidence, and Knowledge of Welding

    ERIC Educational Resources Information Center

    Leiby, Brian L.; Robinson, J. Shane; Key, James P.

    2013-01-01

    This study sought to assess the perceptions of Oklahoma pre-service agricultural education teachers regarding the importance of identified welding skills standards and their confidence to teach them, based on a semester-long course on metals and welding. This study also sought to determine pre-service teachers' knowledge of welding prior to and at…

  17. 7 CFR 319.8-17 - Importation for exportation, and importation for transportation and exportation; storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN..., Eire, Finland, France, Germany, Great Britain (United Kingdom), Iceland, Liechtenstein, Luxembourg...

  18. Experience gained in France on heat recovery from nuclear plants for agriculture and pisciculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balligand, P.; Le Gouellec, P.; Dumont, M.

    1978-04-01

    Since 1972, the Commissariat a l'Energie Atomique, Electricite de France, and the French Ministry of Agriculture have jointly examined the possibility of using thermal wastes from nuclear power plants for the benefit of agricultural production. A new process to heat greenhouses with water at 303 K using a double-wall plastic mulching laid directly on the soil has been successfully used for a few years on several hectares. When necessary, heat pumps are utilized. Very good results have been obtained for tomatoes, cucumbers, flowers, and strawberries, etc. Outdoor soil heating with buried pipes has been tested in Cadarache near an experimentalmore » pressurized water reactor for market garden crops and forestry. Gains in precocity and yield have been excellent, especially for asparagus, strawberries, and potatoes. Growing of eels has been four times faster in warm water over one year.« less

  19. Plant synthetic biology.

    PubMed

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. 76 FR 44890 - Notice of Decision To Authorize the Importation of Garlic From the European Union and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2011-0015... AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice. SUMMARY: We are advising the... introducing or disseminating plant pests or noxious weeds via the importation of garlic from the European...

  1. 76 FR 15279 - Importation of Garlic From the European Union and Other Countries Into the Continental United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2011-0015...: Animal and Plant Health Inspection Service, USDA. ACTION: Notice. SUMMARY: We are advising the public... introducing or disseminating plant pests or noxious weeds via the importation of garlic from these countries...

  2. Residual susceptibility of the red imported fire ant (Hymenoptera: Formicidae) to four agricultural insecticides.

    PubMed

    Seagraves, Michael P; McPherson, Robert M

    2003-06-01

    The red imported fire ant, Solenopsis invicta Buren, is an abundant predator in cropping systems throughout its range. It has been documented to be an important predator of numerous crop pests, as well as being an agricultural pest itself. Information on the impact of insecticides on natural enemies such as fire ants is necessary for the integration of biological and chemical control tactics in an effective pest management program. Therefore, a residual vial bioassay was developed to determine the concentration-mortality responses of S. invicta workers to four commonly used insecticides: acephate, chlorpyrifos, methomyl and lambda-cyhalothrin. Fire ant workers showed a mortality response to serial dilutions to all four chemicals. Methomyl (LC50 0.04 microg/vial, fiducial limits 0.03-0.06) was the most toxic, followed by chlorpyrifos (LC50 0.11 microg/vial, fiducial limits 0.07-0.17) and acephate (LC50 0.76 microg/vial, fiducial limits 0.50-1.04). Of the chemicals assayed, it took a much higher concentration of lambda-cyhalothrin (LC50 2.30 microg/vial, fiducial limits 1.57-3.59) to kill 50% of the workers compared with the other three chemicals. The results of this study demonstrate the wide range in responses of fire ants to four insecticides that are labeled and commonly used on numerous agricultural crops throughout the United States. These results further suggest the possibility of using a discriminating dose of lambda-cyhalothrin to control the target pest species while conserving fire ants in the agricultural systems in which their predatory behavior is beneficial to the integrated pest management program.

  3. Lab to farm: applying research on plant genetics and genomics to crop improvement.

    PubMed

    Ronald, Pamela C

    2014-06-01

    Over the last 300 years, plant science research has provided important knowledge and technologies for advancing the sustainability of agriculture. In this Essay, I describe how basic research advances have been translated into crop improvement, explore some lessons learned, and discuss the potential for current and future contribution of plant genetic improvement technologies to continue to enhance food security and agricultural sustainability.

  4. 7 CFR 1126.4 - Plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Plant. 1126.4 Section 1126.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1126.4 Plant. See § 1000.4. ...

  5. 7 CFR 1007.4 - Plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Plant. 1007.4 Section 1007.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Definitions § 1007.4 Plant. See § 1000.4. ...

  6. 7 CFR 1005.4 - Plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Plant. 1005.4 Section 1005.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1005.4 Plant. See § 1000.4. ...

  7. 7 CFR 1005.4 - Plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Plant. 1005.4 Section 1005.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1005.4 Plant. See § 1000.4. ...

  8. 7 CFR 1006.4 - Plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Plant. 1006.4 Section 1006.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Definitions § 1006.4 Plant. See § 1000.4. ...

  9. 7 CFR 1131.4 - Plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Plant. 1131.4 Section 1131.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Definitions § 1131.4 Plant. See § 1000.4. ...

  10. 7 CFR 1006.4 - Plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Plant. 1006.4 Section 1006.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1006.4 Plant. See § 1000.4. ...

  11. 7 CFR 1007.4 - Plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Plant. 1007.4 Section 1007.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1007.4 Plant. See § 1000.4. ...

  12. 7 CFR 1032.4 - Plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Plant. 1032.4 Section 1032.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Definitions § 1032.4 Plant. See § 1000.4. ...

  13. 7 CFR 1006.4 - Plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Plant. 1006.4 Section 1006.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1006.4 Plant. See § 1000.4. ...

  14. 7 CFR 1126.4 - Plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Plant. 1126.4 Section 1126.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1126.4 Plant. See § 1000.4. ...

  15. 7 CFR 1032.4 - Plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Plant. 1032.4 Section 1032.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1032.4 Plant. See § 1000.4. ...

  16. 7 CFR 1033.4 - Plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Plant. 1033.4 Section 1033.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Definitions § 1033.4 Plant. See § 1000.4. ...

  17. 7 CFR 1033.4 - Plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Plant. 1033.4 Section 1033.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1033.4 Plant. See § 1000.4. ...

  18. 7 CFR 1131.4 - Plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Plant. 1131.4 Section 1131.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Definitions § 1131.4 Plant. See § 1000.4. ...

  19. 7 CFR 1126.4 - Plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Plant. 1126.4 Section 1126.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1126.4 Plant. See § 1000.4. ...

  20. 7 CFR 1007.4 - Plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Plant. 1007.4 Section 1007.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1007.4 Plant. See § 1000.4. ...

  1. 7 CFR 1126.4 - Plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Plant. 1126.4 Section 1126.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Definitions § 1126.4 Plant. See § 1000.4. ...

  2. 7 CFR 1005.4 - Plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Plant. 1005.4 Section 1005.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Definitions § 1005.4 Plant. See § 1000.4. ...

  3. 7 CFR 1131.4 - Plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Plant. 1131.4 Section 1131.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1131.4 Plant. See § 1000.4. ...

  4. 7 CFR 1131.4 - Plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Plant. 1131.4 Section 1131.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1131.4 Plant. See § 1000.4. ...

  5. 7 CFR 1005.4 - Plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Plant. 1005.4 Section 1005.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Definitions § 1005.4 Plant. See § 1000.4. ...

  6. 7 CFR 1126.4 - Plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Plant. 1126.4 Section 1126.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Definitions § 1126.4 Plant. See § 1000.4. ...

  7. 7 CFR 1007.4 - Plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Plant. 1007.4 Section 1007.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Definitions § 1007.4 Plant. See § 1000.4. ...

  8. 7 CFR 1005.4 - Plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Plant. 1005.4 Section 1005.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1005.4 Plant. See § 1000.4. ...

  9. 7 CFR 1033.4 - Plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Plant. 1033.4 Section 1033.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1033.4 Plant. See § 1000.4. ...

  10. 7 CFR 1007.4 - Plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Plant. 1007.4 Section 1007.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1007.4 Plant. See § 1000.4. ...

  11. 7 CFR 1032.4 - Plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Plant. 1032.4 Section 1032.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Definitions § 1032.4 Plant. See § 1000.4. ...

  12. 7 CFR 1032.4 - Plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Plant. 1032.4 Section 1032.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1032.4 Plant. See § 1000.4. ...

  13. 7 CFR 1033.4 - Plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Plant. 1033.4 Section 1033.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1033.4 Plant. See § 1000.4. ...

  14. 7 CFR 1033.4 - Plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Plant. 1033.4 Section 1033.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Definitions § 1033.4 Plant. See § 1000.4. ...

  15. 7 CFR 1006.4 - Plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Plant. 1006.4 Section 1006.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Definitions § 1006.4 Plant. See § 1000.4. ...

  16. 7 CFR 1032.4 - Plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Plant. 1032.4 Section 1032.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1032.4 Plant. See § 1000.4. ...

  17. 7 CFR 1006.4 - Plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Plant. 1006.4 Section 1006.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1006.4 Plant. See § 1000.4. ...

  18. 7 CFR 1131.4 - Plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Plant. 1131.4 Section 1131.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Definitions § 1131.4 Plant. See § 1000.4. ...

  19. Live plant imports: the major pathway for forest insect and pathogen invasions of the US

    Treesearch

    Andrew M. Liebhold; Eckehard G. Brockerhoff; Lynn J. Garrett; Jennifer L. Parke

    2012-01-01

    Trade in live plants has been recognized worldwide as an important invasion pathway for non-native plant pests. Such pests can have severe economic and ecological consequences. Nearly 70% of damaging forest insects and pathogens established in the US between 1860 and 2006 most likely entered on imported live plants. The current regulation of plant imports is outdated...

  20. Potential assessment of establishing a renewable energy plant in a rural agricultural area.

    PubMed

    Su, Ming-Chien; Kao, Nien-Hsin; Huang, Wen-Jar

    2012-06-01

    An evaluation of the green energy potential generated from biogas and solar power, using agricultural manure waste and a photovoltaic (PV) system, was conducted in a large geographical area of a rural county with low population density and low pollution. The studied area, Shoufeng Township in Hualien County, is located in eastern Taiwan, where a large amount of manure waste is generated from pig farms that are scattered throughout the county. The objective of the study is to assess the possibility of establishing an integrated manure waste treatment plant by using the generated biogas incorporated with the PV system to produce renewable energy and then feed it back to the incorporated farms. A filed investigation, geographic information system (GIS) application, empirical equations development, and RETScreen modeling were conducted in the study. The results indicate that Shoufeng Township has the highest priority in setting up an integrated treatment and renewable energy plant by using GIS mapping within a 10-km radius of the transportation range. Two scenarios were plotted in assessing the renewable energy plant and the estimated electricity generation, plus the greenhouse gas (GHG) reduction was evaluated. Under the current governmental green energy scheme and from a long-term perspective, the assessment shows great potential in establishing the plant, especially in reducing environmental pollution problems, waste treatment, and developing suitable renewable energy.

  1. 9 CFR 93.911 - Ports designated for the importation of live VHS-regulated fish species.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS... ANIMAL, BIRD, AND POULTRY PRODUCTS; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Aquatic...

  2. The importance of an alternative for sustainability of agriculture around the periphery of the Amazon rainforest.

    PubMed

    Moura, Emanoel G; Sena, Virley G L; Corrêa, Mariana S; Aguiar, Alana das C F

    2013-04-01

    The unsustainable use of the soil of the deforested area at the Amazonian border is one of the greatest threats to the rainforest, because it is the predominant cause of shifting cultivation in the region. The sustainable management of soils with low natural fertility is a major challenge for smallholder agriculture in the humid tropics. In the periphery of Brazilian Amazonia, agricultural practices that are recommended for the Brazilian savannah, such as saturating soils with soluble nutrients do not ensure the sustainability of agroecosystems. Improvements in the tilled topsoil cannot be maintained if deterioration of the porous soil structure is not prevented and nutrient losses in the root zone are not curtailed. The information gleaned from experiments affirms that in the management of humid tropical agrosystems, the processes resulting from the interaction between climatic factors and indicators of soil quality must be taken into consideration. It must be remembered that these interactions manifest themselves in ways that cannot be predicted from the paradigm established in the other region like the southeast of Brazil, which is based only on improving the chemical indicators of soil quality. The physical indicators play important role in the sustainable management of the agrosystems of the region and for these reasons must be considered. Therefore, alley cropping is a potential substitute for slash and burn agriculture in the humid tropics with both environmental and agronomic advantages, due to its ability to produce a large amount of residues on the soil surface and its effect on the increase of economic crop productivity in the long term. The article presents some promising patents on the importance of an alternative for sustainability of agriculture.

  3. 7 CFR 1124.4 - Plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Plant. 1124.4 Section 1124.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Handling Definitions § 1124.4 Plant. See § 1000.4. ...

  4. 7 CFR 1124.4 - Plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Plant. 1124.4 Section 1124.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Handling Definitions § 1124.4 Plant. See § 1000.4. ...

  5. 7 CFR 1030.4 - Plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Plant. 1030.4 Section 1030.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Handling Definitions § 1030.4 Plant. See § 1000.4. ...

  6. 7 CFR 1124.4 - Plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Plant. 1124.4 Section 1124.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Handling Definitions § 1124.4 Plant. See § 1000.4. ...

  7. 7 CFR 1030.4 - Plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Plant. 1030.4 Section 1030.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Handling Definitions § 1030.4 Plant. See § 1000.4. ...

  8. 7 CFR 1030.4 - Plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Plant. 1030.4 Section 1030.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND... Handling Definitions § 1030.4 Plant. See § 1000.4. ...

  9. 7 CFR 1124.4 - Plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Plant. 1124.4 Section 1124.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Handling Definitions § 1124.4 Plant. See § 1000.4. ...

  10. 7 CFR 1030.4 - Plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Plant. 1030.4 Section 1030.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Handling Definitions § 1030.4 Plant. See § 1000.4. ...

  11. 7 CFR 1124.4 - Plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Plant. 1124.4 Section 1124.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Handling Definitions § 1124.4 Plant. See § 1000.4. ...

  12. 7 CFR 1030.4 - Plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Plant. 1030.4 Section 1030.4 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and... Handling Definitions § 1030.4 Plant. See § 1000.4. ...

  13. Commercial potential of space-based plant research

    NASA Astrophysics Data System (ADS)

    Bula, Raymond J.; Christophersen, Eric

    1999-01-01

    Plant research conducted in space by commercial organizations could enhance the development of plant materials having superior characteristics and unique constituents for a wide range of agricultural, industrial, and medical applications. These commercial efforts will also include terrestrial application of controlled environment technologies that reduce the time involved in making the new plant materials available in the marketplace. The International Space Station with its ability to support long duration plant experiments will be critically important to such commercial activities.

  14. [Overview of organic agriculture development.

    PubMed

    Liu, Xiao Mei; Yu, Hong Jun; Li, Qiang; Jiang, Wei Jie

    2016-04-22

    This paper introduced the concepts of organic agriculture as defined by different international organizations, origin and theoretical development of organic agriculture, as well as its developing trajectory in China (i.e. a late start followed by rapid growth compared to developed countries). The differences between domestic and international organic agriculture were illustrated by scale, crop types, production standards, inputs and planting techniques. Constraints limiting improvements to organic agriculture in aspects of standards, technology, marketing, certification, environmental pollution, enterprise reputation, and national policies were discussed. Future directions and strategies for developing healthy organic agriculture in China were provided.

  15. 7 CFR 319.41-6 - Importations by mail.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... express provided for in § 319.41-5, importations are permitted by mail of (a) mature corn on the cob from the countries specified in § 319.41-1(b)(2), (b) clean shelled corn and clean seed of the other plants... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Indian Corn or Maize, Broomcorn, and Related...

  16. 7 CFR 319.41-6 - Importations by mail.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... express provided for in § 319.41-5, importations are permitted by mail of (a) mature corn on the cob from the countries specified in § 319.41-1(b)(2), (b) clean shelled corn and clean seed of the other plants... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Indian Corn or Maize, Broomcorn, and Related...

  17. 7 CFR 319.41-6 - Importations by mail.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... express provided for in § 319.41-5, importations are permitted by mail of (a) mature corn on the cob from the countries specified in § 319.41-1(b)(2), (b) clean shelled corn and clean seed of the other plants... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Indian Corn or Maize, Broomcorn, and Related...

  18. 7 CFR 319.41-6 - Importations by mail.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... express provided for in § 319.41-5, importations are permitted by mail of (a) mature corn on the cob from the countries specified in § 319.41-1(b)(2), (b) clean shelled corn and clean seed of the other plants... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Indian Corn or Maize, Broomcorn, and Related...

  19. 7 CFR 319.41-6 - Importations by mail.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... express provided for in § 319.41-5, importations are permitted by mail of (a) mature corn on the cob from the countries specified in § 319.41-1(b)(2), (b) clean shelled corn and clean seed of the other plants... SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Indian Corn or Maize, Broomcorn, and Related...

  20. Emerging microbial biocontrol strategies for plant pathogens.

    PubMed

    Syed Ab Rahman, Sharifah Farhana; Singh, Eugenie; Pieterse, Corné M J; Schenk, Peer M

    2018-02-01

    To address food security, agricultural yields must increase to match the growing human population in the near future. There is now a strong push to develop low-input and more sustainable agricultural practices that include alternatives to chemicals for controlling pests and diseases, a major factor of heavy losses in agricultural production. Based on the adverse effects of some chemicals on human health, the environment and living organisms, researchers are focusing on potential biological control microbes as viable alternatives for the management of pests and plant pathogens. There is a growing body of evidence that demonstrates the potential of leaf and root-associated microbiomes to increase plant efficiency and yield in cropping systems. It is important to understand the role of these microbes in promoting growth and controlling diseases, and their application as biofertilizers and biopesticides whose success in the field is still inconsistent. This review focusses on how biocontrol microbes modulate plant defense mechanisms, deploy biocontrol actions in plants and offer new strategies to control plant pathogens. Apart from simply applying individual biocontrol microbes, there are now efforts to improve, facilitate and maintain long-term plant colonization. In particular, great hopes are associated with the new approaches of using "plant-optimized microbiomes" (microbiome engineering) and establishing the genetic basis of beneficial plant-microbe interactions to enable breeding of "microbe-optimized crops". Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ecohydrology of the different photosynthetic pathways and implication for sustainable agriculture

    NASA Astrophysics Data System (ADS)

    Porporato, A. M.; Bartlett, M. S., Jr.; Hartzell, S. R.

    2016-12-01

    We use a recently proposed model that can simulate the different photosynthetic pathways coupled to the soil-plant-atmosphere continuum (SPAC) to discuss their ecohydrological implications in relation to water use and plant water stress in both natural and agricultural ecosystems. Built around the classical C3 photosynthesis core model (light reactions and Calvin cycle), the model includes a simple CO2-pump parameterization for C4 plants and a circadian rhythm and carbon storage components for the CAM (Crassulacean Acid Metabolism) plants. Its architecture takes advantage of the interesting modularity in which photosynthesis evolved in geological times to provide a relatively simple but comprehensive framework to explore the advantages and tradeoffs in water energy and carbon fluxes of the three photosynthetic pathways under fluctuating environmental forcing. We calibrate the model with reference to a series of C3,C4 and CAM plants, and discuss the trade-offs in water use and plan productivity and the related impact on hydrologic fluxes and soil biogeochemistry. We also consider some important crop species to analyze the implications of choosing crops with different photosynthetic pathways to improve sustainability of agriculture and irrigation in semiarid systems.

  2. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake.

    PubMed

    Doolette, Casey L; McLaughlin, Michael J; Kirby, Jason K; Navarro, Divina A

    2015-12-30

    Silver nanoparticles (AgNPs) can enter terrestrial systems as sulfidised AgNPs (Ag2S-NPs) through the application of biosolids to soil. However, the bioavailability of Ag2S-NPs in soils is unknown. The two aims of this study were to investigate (1) the bioavailability of Ag to lettuce (Lactuca sativa) using a soil amended with biosolids containing Ag2S-NPs and (2) the effect of commonly used agricultural fertilisers/amendments on the bioavailability of Ag, AgNPs and Ag2S-NPs to lettuce. The study used realistic AgNP exposure pathways and exposure concentrations. The plant uptake of Ag from biosolids-amended soil containing Ag2S-NPs was very low for all Ag treatments (0.02%). Ammonium thiosulfate and potassium chloride fertilisation significantly increased the Ag concentrations of plant roots and shoots. The extent of the effect varied depending on the type of Ag. Ag2S-NPs, the realistic form of AgNPs in soil, had the lowest bioavailability. The potential risk of AgNPs in soils is low; even in the plants that had the highest Ag concentrations (Ag(+)+thiosulfate), only 0.06% of added Ag was found in edible plant parts (shoots). Results from the study suggest that agricultural practises must be considered when carrying out risk assessments of AgNPs in terrestrial systems; such practises can affect AgNP bioavailability. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.

    PubMed

    Anderson, Jennifer A; Gipmans, Martijn; Hurst, Susan; Layton, Raymond; Nehra, Narender; Pickett, John; Shah, Dilip M; Souza, Thiago Lívio P O; Tripathi, Leena

    2016-01-20

    As global populations continue to increase, agricultural productivity will be challenged to keep pace without overtaxing important environmental resources. A dynamic and integrated approach will be required to solve global food insecurity and position agriculture on a trajectory toward sustainability. Genetically modified (GM) crops enhanced through modern biotechnology represent an important set of tools that can promote sustainable agriculture and improve food security. Several emerging biotechnology approaches were discussed in a recent symposium organized at the 13th IUPAC International Congress of Pesticide Chemistry meeting in San Francisco, CA, USA. This paper summarizes the innovative research and several of the new and emerging technologies within the field of agricultural biotechnology that were presented during the symposium. This discussion highlights how agricultural biotechnology fits within the context of sustainable agriculture and improved food security and can be used in support of further development and adoption of beneficial GM crops.

  4. Lab to Farm: Applying Research on Plant Genetics and Genomics to Crop Improvement

    PubMed Central

    Ronald, Pamela C.

    2014-01-01

    Over the last 300 years, plant science research has provided important knowledge and technologies for advancing the sustainability of agriculture. In this Essay, I describe how basic research advances have been translated into crop improvement, explore some lessons learned, and discuss the potential for current and future contribution of plant genetic improvement technologies to continue to enhance food security and agricultural sustainability. PMID:24915201

  5. Genetic Technology and Agricultural Development

    ERIC Educational Resources Information Center

    Staub, William J.; Blase, Melvin G.

    1971-01-01

    Examines the nature, application, limits and potential of applied genetics in plant breeding as a factor in South Asian agricultural development. Concludes other factors were also present in recent agricultural growth, and indicates some economic implications of continued growth, including problems of employment of displaced rural workers. (AL)

  6. 7 CFR 97.3 - Plant Variety Protection Board.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Plant Variety Protection Board. 97.3 Section 97.3 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... PLANT VARIETY AND PROTECTION Administration § 97.3 Plant Variety Protection Board. (a) The Plant Variety...

  7. 7 CFR 97.3 - Plant Variety Protection Board.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Plant Variety Protection Board. 97.3 Section 97.3 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... PLANT VARIETY AND PROTECTION Administration § 97.3 Plant Variety Protection Board. (a) The Plant Variety...

  8. 7 CFR 97.3 - Plant Variety Protection Board.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Plant Variety Protection Board. 97.3 Section 97.3 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... PLANT VARIETY AND PROTECTION Administration § 97.3 Plant Variety Protection Board. (a) The Plant Variety...

  9. Remote sensing in Virginia agriculture

    NASA Technical Reports Server (NTRS)

    Pettry, D. E.; Newhouse, M. E.; Dunton, E. M., Jr.; Scott, J. H., Jr.

    1972-01-01

    An experimental investigation, designed to develop and evaluate multispectral sensing techniques used in sensing agricultural crops, is described. Initial studies were designed to detect plant species and associated diseases, soil variations, and cultural practices under natural environment conditions. In addition, crop varieties, age, spacing, plant height, percentage of ground cover, and plant vigor are determined.

  10. Evolutionary relationships can be more important than abiotic conditions in predicting the outcome of plant-plant interactions

    PubMed Central

    Soliveres, Santiago; Torices, Rubén; Maestre, Fernando T.

    2015-01-01

    Positive and negative plant-plant interactions are major processes shaping plant communities. They are affected by environmental conditions and evolutionary relationships among the interacting plants. However, the generality of these factors as drivers of pairwise plant interactions and their combined effects remain virtually unknown. We conducted an observational study to assess how environmental conditions (altitude, temperature, irradiance and rainfall), the dispersal mechanism of beneficiary species and evolutionary relationships affected the co-occurrence of pairwise interactions in 11 Stipa tenacissima steppes located along an environmental gradient in Spain. We studied 197 pairwise plant-plant interactions involving the two major nurse plants (the resprouting shrub Quercus coccifera and the tussock grass S. tenacissima) found in these communities. The relative importance of the studied factors varied with the nurse species considered. None of the factors studied were good predictors of the co-ocurrence between S. tenacissima and its neighbours. However, both the dispersal mechanism of the beneficiary species and the phylogenetic distance between interacting species were crucial factors affecting the co-occurrence between Q. coccifera and its neighbours, while climatic conditions (irradiance) played a secondary role. Values of phylogenetic distance between 207-272.8 Myr led to competition, while values outside this range or fleshy-fruitness in the beneficiary species led to positive interactions. The low importance of environmental conditions as a general driver of pairwise interactions was caused by the species-specific response to changes in either rainfall or radiation. This result suggests that factors other than climatic conditions must be included in theoretical models aimed to generally predict the outcome of plant-plant interactions. Our study helps to improve current theory on plant-plant interactions and to understand how these interactions can

  11. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice

    NASA Astrophysics Data System (ADS)

    Clark, Michael; Tilman, David

    2017-06-01

    Global agricultural feeds over 7 billion people, but is also a leading cause of environmental degradation. Understanding how alternative agricultural production systems, agricultural input efficiency, and food choice drive environmental degradation is necessary for reducing agriculture’s environmental impacts. A meta-analysis of life cycle assessments that includes 742 agricultural systems and over 90 unique foods produced primarily in high-input systems shows that, per unit of food, organic systems require more land, cause more eutrophication, use less energy, but emit similar greenhouse gas emissions (GHGs) as conventional systems; that grass-fed beef requires more land and emits similar GHG emissions as grain-feed beef; and that low-input aquaculture and non-trawling fisheries have much lower GHG emissions than trawling fisheries. In addition, our analyses show that increasing agricultural input efficiency (the amount of food produced per input of fertilizer or feed) would have environmental benefits for both crop and livestock systems. Further, for all environmental indicators and nutritional units examined, plant-based foods have the lowest environmental impacts; eggs, dairy, pork, poultry, non-trawling fisheries, and non-recirculating aquaculture have intermediate impacts; and ruminant meat has impacts ∼100 times those of plant-based foods. Our analyses show that dietary shifts towards low-impact foods and increases in agricultural input use efficiency would offer larger environmental benefits than would switches from conventional agricultural systems to alternatives such as organic agriculture or grass-fed beef.

  12. 9 CFR 93.103 - Import permits for birds; and reservation fees for space at quarantine facilities maintained by...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND..., commercial birds, research birds, zoological birds, and performing or theatrical birds, intended for... Plant Health Inspection Service, Veterinary Services, National Center for Import-Export, 4700 River Road...

  13. 9 CFR 93.103 - Import permits for birds; and reservation fees for space at quarantine facilities maintained by...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND..., commercial birds, research birds, zoological birds, and performing or theatrical birds, intended for... Plant Health Inspection Service, Veterinary Services, National Center for Import-Export, 4700 River Road...

  14. 9 CFR 93.103 - Import permits for birds; and reservation fees for space at quarantine facilities maintained by...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND..., commercial birds, research birds, zoological birds, and performing or theatrical birds, intended for... Plant Health Inspection Service, Veterinary Services, National Center for Import-Export, 4700 River Road...

  15. 9 CFR 93.103 - Import permits for birds; and reservation fees for space at quarantine facilities maintained by...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND..., commercial birds, research birds, zoological birds, and performing or theatrical birds, intended for... Plant Health Inspection Service, Veterinary Services, National Center for Import-Export, 4700 River Road...

  16. 9 CFR 93.103 - Import permits for birds; and reservation fees for space at quarantine facilities maintained by...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND..., commercial birds, research birds, zoological birds, and performing or theatrical birds, intended for... Plant Health Inspection Service, Veterinary Services, National Center for Import-Export, 4700 River Road...

  17. 7 CFR 1000.5 - Distributing plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Distributing plant. 1000.5 Section 1000.5 Agriculture... Definitions § 1000.5 Distributing plant. Distributing plant means a plant that is approved by a duly... plants. ...

  18. 7 CFR 1000.5 - Distributing plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Distributing plant. 1000.5 Section 1000.5 Agriculture... Definitions § 1000.5 Distributing plant. Distributing plant means a plant that is approved by a duly... plants. ...

  19. 7 CFR 1000.5 - Distributing plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Distributing plant. 1000.5 Section 1000.5 Agriculture... Definitions § 1000.5 Distributing plant. Distributing plant means a plant that is approved by a duly... plants. ...

  20. 7 CFR 1000.5 - Distributing plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Distributing plant. 1000.5 Section 1000.5 Agriculture... Definitions § 1000.5 Distributing plant. Distributing plant means a plant that is approved by a duly... plants. ...

  1. 7 CFR 1000.5 - Distributing plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Distributing plant. 1000.5 Section 1000.5 Agriculture... Definitions § 1000.5 Distributing plant. Distributing plant means a plant that is approved by a duly... plants. ...

  2. 7 CFR 57.132 - Access to plants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Access to plants. 57.132 Section 57.132 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Access to plants. Access shall not be refused to any representative of the Secretary to any plant, place...

  3. 7 CFR 57.132 - Access to plants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Access to plants. 57.132 Section 57.132 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Access to plants. Access shall not be refused to any representative of the Secretary to any plant, place...

  4. 7 CFR 57.132 - Access to plants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Access to plants. 57.132 Section 57.132 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Access to plants. Access shall not be refused to any representative of the Secretary to any plant, place...

  5. Antimony, arsenic and lead distribution in soils and plants of an agricultural area impacted by former mining activities.

    PubMed

    Álvarez-Ayuso, E; Otones, V; Murciego, A; García-Sánchez, A; Regina, I Santa

    2012-11-15

    An agricultural area impacted by the former exploitation of an arsenical lead-antimony deposit was studied in order to assess the current and eventual environmental and health impacts. Samples of soils and cultivated (wheat) and spontaneously growing plants were collected at different distances from the mine pits and analyzed for the toxic element content and distribution. The soil total concentrations of Sb, As and Pb found in the uppermost soil layer (14.1-324, 246-758 and 757-10,660 mg kg(-1), respectively) greatly surpass their maximum tolerable levels in agricultural soils. Wheat grain Pb concentrations (0.068-1.36 mg kg(-1)) exceed the prescribed health standard, whereas Sb (<0.05-0.103 mg kg(-1)) and As (<0.05-0.126 mg kg(-1)) concentrations are below the permissible limits fixed for cereals. Of the spontaneously growing plants, Dactylis glomerata L. shows a relatively high root Pb accumulation and a very low Pb translocation, suggesting its feasibility to be used in Pb phytostabilization strategies. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Chemical regulators of plant hormones and their applications in basic research and agriculture.

    PubMed

    Jiang, Kai; Asami, Tadao

    2018-04-20

    Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.

  7. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    NASA Astrophysics Data System (ADS)

    Kanazawa, S.; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.; Space Agriculture Task Force, J.

    Manned Mars exploration requires recycle of materials to support human life A conceptual design is developed for space agriculture which is driven by the biologically regenerative function Hyper-thermophilic aerobic composting bacterial ecology is the core of materials recycling system to process human metabolic waste and inedible biomass and convert them to fertilizer for plants cultivation A photosynthetic reaction of plants will be driven by solar energy Water will be recycled by cultivation of plants and passing it through plant bodies Sub-surface water and atmospheric carbon dioxide are the natural resource available on Mars and these resources will be converted to oxygen and foods We envision that the agricultural system will be scaled up by importing materials from Martian environment Excess oxygen will be obtained from growing trees for structural and other components Minor elements including N P K and other traces will be introduced as fertilizers or nutrients into the agricultural materials circulation Nitrogen will be collected from Martian atmosphere We will assess biological fixation of nitrogen using micro-organisms responsible in Earth biosphere Hyper-thermophilic aerobic bacterial ecology is effective to convert waste materials into useful forms to plants This microbial technology has been well established on ground for processing sewage and waste materials For instance the hyper-thermophilic bacterial system is applied to a composting machine in a size of a trash box in home kitchen Since such a home electronics

  8. Mitigating climate change through managing constructed-microbial communities in agriculture

    DOE PAGES

    Hamilton, Cyd E.; Bever, James D.; Labbe, Jessy; ...

    2015-10-27

    The importance of increasing crop production while reducing resource inputs and land-use change cannot be overstated especially in light of climate change and a human population growth projected to reach nine billion this century. Here, mutualistic plant microbe interactions offer a novel approach to enhance agricultural productivity while reducing environmental costs. In concert with other novel agronomic technologies and management, plant-microbial mutualisms could help increase crop production and reduce yield losses by improving resistance and/or resilience to edaphic, biologic, and climatic variability from both bottom-up and top-down perspectives.

  9. Mitigating climate change through managing constructed-microbial communities in agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Cyd E.; Bever, James D.; Labbe, Jessy

    The importance of increasing crop production while reducing resource inputs and land-use change cannot be overstated especially in light of climate change and a human population growth projected to reach nine billion this century. Here, mutualistic plant microbe interactions offer a novel approach to enhance agricultural productivity while reducing environmental costs. In concert with other novel agronomic technologies and management, plant-microbial mutualisms could help increase crop production and reduce yield losses by improving resistance and/or resilience to edaphic, biologic, and climatic variability from both bottom-up and top-down perspectives.

  10. Agriculture and Rural Life Day: Material for Its Observance. Bulletin, 1913, No. 43. Whole Number 553

    ERIC Educational Resources Information Center

    Brooks, Eugene C.

    1913-01-01

    In several States one day in the fall of the year is set apart as "Agriculture and Rural-Life Day," to be observed in the schools in such ways as to emphasize the importance of agriculture to the nation and to the world of mankind, to call attention to the worth and worthiness of the tillage of the soil, the cultivation of plants, and the breeding…

  11. Mapping for the management of diffuse pollution risks related to agricultural plant protection practices: case of the Etang de l'Or catchment area in France.

    PubMed

    Mghirbi, Oussama; Bord, Jean-Paul; Le Grusse, Philippe; Mandart, Elisabeth; Fabre, Jacques

    2018-03-08

    Faced with health, environmental, and socio-economic issues related to the heavy use of pesticides, diffuse phytosanitary pollution becomes a major concern shared by all the field actors. These actors, namely the farmers and territorial managers, have expressed the need to implement decision support tools for the territorial management of diffuse pollution resulting from the plant protection practices and their impacts. To meet these steadily increasing requests, a cartographic analysis approach was implemented based on GIS which allows the spatialization of the diffuse pollution impacts related to plant protection practices on the Etang de l'Or catchment area in the South of France. Risk mapping represents a support-decision tool that enables the different field actors to identify and locate vulnerable areas, so as to determine action plans and agri-environmental measures depending on the context of the natural environment. This work shows that mapping is helpful for managing risks related to the use of pesticides in agriculture by employing indicators of pressure (TFI) and risk on the applicator's health (IRSA) and on the environment (IRTE). These indicators were designed to assess the impact of plant protection practices at various spatial scales (field, farm, etc.). The cartographic analysis of risks related to plant protection practices shows that diffuse pollution is unequally located in the North (known for its abundant garrigues and vineyards) and in the South of the Etang de l'Or catchment area (the Mauguio-Lunel agricultural plain known for its diversified cropping systems). This spatial inequity is essentially related to land use and agricultural production system. Indeed, the agricultural lands cover about 60% of the total catchment area. Consequently, this cartographic analysis helps the territorial actors with the implementation of strategies for managing risks of diffuse pollution related to pesticides use in agriculture, based on environmental and

  12. Changes in water quality in agricultural catchments after deployment of wastewater treatment plant.

    PubMed

    Langhammer, Jakub; Rödlová, Sylva

    2013-12-01

    Insufficient wastewater remediation in small communities and nonpoint source pollution are the key factors in determining the water quality of small streams in an agricultural landscape. Despite the current extensive construction of municipal wastewater treatment facilities in small communities, the level of organic substances and nutrients in the recipient catchments has not decreased in many areas. This paper analyzes the changes in the water quality of the small streams after the deployment of wastewater treatment plants that were designed to address sources of pollution from small municipalities. The analysis is based on the results from a water quality monitoring network in the small watersheds in the Czech Republic. Five rural catchments with one dominant municipal pollution source, where a wastewater treatment plant was deployed during the monitoring period, were selected according to a predefined set of criteria, from a series of 317 profiles. Basic water quality indicators were selected for the assessment: O₂, BOD-5, COD, TOC, conductivity, NH₄-N, NO₂-N, NO₃-N, PT, and PO₄-P. Results of the analysis showed that the simple deployment of the water treatment facilities at these streams often did not lead to a reduction of contamination in the streams. The expected post-deployment changes, namely, a significant and permanent reduction of stream contamination, occurred only in one catchment, whereas in the remainder of the catchments, only marginal changes or even increased concentrations of the contaminants were detected. As the critical factors that determined the efficiency of wastewater treatment were studied, the need for the consideration of the local conditions during the design of the facility, particularly regarding the size of the catchments, initial level of contamination, proper system of operation, and process optimization of the treatment facility, emerged as the important factor.

  13. Addressing the complexity and diversity of agricultural plant volatiles: a call for the integration of laboratory- and field-based analyses

    USDA-ARS?s Scientific Manuscript database

    As the sophistication and sensitivity of chemical instrumentation increases so do the number of applications. Correspondingly, new questions and opportunities for systems previously studied also arise. As with most plants, the emission of volatiles from agricultural products is complex and varies am...

  14. 7 CFR 1030.8 - Nonpool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Nonpool plant. 1030.8 Section 1030.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1030.8 Nonpool plant. See § 1000.8. ...

  15. 7 CFR 1005.5 - Distributing plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Distributing plant. 1005.5 Section 1005.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1005.5 Distributing plant. See § 1000.5. ...

  16. 7 CFR 1006.5 - Distributing plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Distributing plant. 1006.5 Section 1006.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1006.5 Distributing plant. See § 1000.5. ...

  17. 7 CFR 1126.8 - Nonpool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Nonpool plant. 1126.8 Section 1126.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1126.8 Nonpool plant. See § 1000.8. ...

  18. 7 CFR 1131.6 - Supply plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1131.6 Section 1131.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1131.6 Supply plant. See § 1000.6. ...

  19. 7 CFR 1005.6 - Supply plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Supply plant. 1005.6 Section 1005.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1005.6 Supply plant. See § 1000.6. ...

  20. 7 CFR 1007.5 - Distributing plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Distributing plant. 1007.5 Section 1007.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1007.5 Distributing plant. See § 1000.5. ...

  1. 7 CFR 1033.6 - Supply plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Supply plant. 1033.6 Section 1033.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1033.6 Supply plant. See § 1000.6. ...

  2. 7 CFR 1126.6 - Supply plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1126.6 Section 1126.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1126.6 Supply plant. See § 1000.6. ...

  3. 7 CFR 1007.6 - Supply plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Supply plant. 1007.6 Section 1007.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1007.6 Supply plant. See § 1000.6. ...

  4. 7 CFR 1030.5 - Distributing plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Distributing plant. 1030.5 Section 1030.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1030.5 Distributing plant. See § 1000.5. ...

  5. 7 CFR 1032.5 - Distributing plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Distributing plant. 1032.5 Section 1032.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1032.5 Distributing plant. See § 1000.5. ...

  6. 7 CFR 1126.5 - Distributing plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Distributing plant. 1126.5 Section 1126.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1126.5 Distributing plant. See § 1000.5. ...

  7. 7 CFR 1005.6 - Supply plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1005.6 Section 1005.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1005.6 Supply plant. See § 1000.6. ...

  8. 7 CFR 1005.8 - Nonpool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Nonpool plant. 1005.8 Section 1005.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1005.8 Nonpool plant. See § 1000.8. ...

  9. 7 CFR 1033.6 - Supply plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Supply plant. 1033.6 Section 1033.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1033.6 Supply plant. See § 1000.6. ...

  10. 7 CFR 1007.8 - Nonpool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Nonpool plant. 1007.8 Section 1007.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1007.8 Nonpool plant. See § 1000.8. ...

  11. 7 CFR 1005.8 - Nonpool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Nonpool plant. 1005.8 Section 1005.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1005.8 Nonpool plant. See § 1000.8. ...

  12. 7 CFR 1032.6 - Supply plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Supply plant. 1032.6 Section 1032.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1032.6 Supply plant. See § 1000.6. ...

  13. 7 CFR 1001.5 - Distributing plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Distributing plant. 1001.5 Section 1001.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1001.5 Distributing plant. See § 1000.5. ...

  14. 7 CFR 1126.8 - Nonpool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Nonpool plant. 1126.8 Section 1126.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1126.8 Nonpool plant. See § 1000.8. ...

  15. 7 CFR 1033.8 - Nonpool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Nonpool plant. 1033.8 Section 1033.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1033.8 Nonpool plant. See § 1000.8. ...

  16. 7 CFR 1006.5 - Distributing plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Distributing plant. 1006.5 Section 1006.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1006.5 Distributing plant. See § 1000.5. ...

  17. 7 CFR 1001.5 - Distributing plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Distributing plant. 1001.5 Section 1001.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1001.5 Distributing plant. See § 1000.5. ...

  18. 7 CFR 1007.5 - Distributing plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Distributing plant. 1007.5 Section 1007.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1007.5 Distributing plant. See § 1000.5. ...

  19. 7 CFR 1006.6 - Supply plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Supply plant. 1006.6 Section 1006.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1006.6 Supply plant. See § 1000.6. ...

  20. 7 CFR 1001.8 - Nonpool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Nonpool plant. 1001.8 Section 1001.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1001.8 Nonpool plant. See § 1000.8. ...

  1. 7 CFR 1030.6 - Supply plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Supply plant. 1030.6 Section 1030.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1030.6 Supply plant. See § 1000.6. ...

  2. 7 CFR 1006.5 - Distributing plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Distributing plant. 1006.5 Section 1006.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1006.5 Distributing plant. See § 1000.5. ...

  3. 7 CFR 1006.6 - Supply plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Supply plant. 1006.6 Section 1006.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1006.6 Supply plant. See § 1000.6. ...

  4. 7 CFR 1032.8 - Nonpool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Nonpool plant. 1032.8 Section 1032.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1032.8 Nonpool plant. See § 1000.8. ...

  5. 7 CFR 1032.8 - Nonpool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Nonpool plant. 1032.8 Section 1032.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1032.8 Nonpool plant. See § 1000.8. ...

  6. 7 CFR 1006.6 - Supply plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Supply plant. 1006.6 Section 1006.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1006.6 Supply plant. See § 1000.6. ...

  7. 7 CFR 1006.8 - Nonpool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Nonpool plant. 1006.8 Section 1006.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1006.8 Nonpool plant. See § 1000.8. ...

  8. 7 CFR 1131.8 - Nonpool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Nonpool plant. 1131.8 Section 1131.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1131.8 Nonpool plant. See § 1000.8. ...

  9. 7 CFR 1131.8 - Nonpool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Nonpool plant. 1131.8 Section 1131.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1131.8 Nonpool plant. See § 1000.8. ...

  10. 7 CFR 1033.5 - Distributing plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Distributing plant. 1033.5 Section 1033.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1033.5 Distributing plant. See § 1000.5. ...

  11. 7 CFR 1001.6 - Supply plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Supply plant. 1001.6 Section 1001.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1001.6 Supply plant. See § 1000.6. ...

  12. 7 CFR 1030.5 - Distributing plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Distributing plant. 1030.5 Section 1030.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1030.5 Distributing plant. See § 1000.5. ...

  13. 7 CFR 1007.8 - Nonpool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Nonpool plant. 1007.8 Section 1007.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1007.8 Nonpool plant. See § 1000.8. ...

  14. 7 CFR 1007.5 - Distributing plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Distributing plant. 1007.5 Section 1007.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1007.5 Distributing plant. See § 1000.5. ...

  15. 7 CFR 1005.6 - Supply plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Supply plant. 1005.6 Section 1005.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1005.6 Supply plant. See § 1000.6. ...

  16. 7 CFR 1006.8 - Nonpool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Nonpool plant. 1006.8 Section 1006.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1006.8 Nonpool plant. See § 1000.8. ...

  17. 7 CFR 1030.8 - Nonpool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Nonpool plant. 1030.8 Section 1030.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1030.8 Nonpool plant. See § 1000.8. ...

  18. 7 CFR 1006.6 - Supply plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Supply plant. 1006.6 Section 1006.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1006.6 Supply plant. See § 1000.6. ...

  19. 7 CFR 1001.5 - Distributing plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Distributing plant. 1001.5 Section 1001.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1001.5 Distributing plant. See § 1000.5. ...

  20. 7 CFR 1030.5 - Distributing plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Distributing plant. 1030.5 Section 1030.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1030.5 Distributing plant. See § 1000.5. ...

  1. 7 CFR 1032.5 - Distributing plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Distributing plant. 1032.5 Section 1032.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1032.5 Distributing plant. See § 1000.5. ...

  2. 7 CFR 1033.6 - Supply plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1033.6 Section 1033.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1033.6 Supply plant. See § 1000.6. ...

  3. 7 CFR 1030.8 - Nonpool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Nonpool plant. 1030.8 Section 1030.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1030.8 Nonpool plant. See § 1000.8. ...

  4. 7 CFR 1006.5 - Distributing plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Distributing plant. 1006.5 Section 1006.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1006.5 Distributing plant. See § 1000.5. ...

  5. 7 CFR 1126.8 - Nonpool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Nonpool plant. 1126.8 Section 1126.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1126.8 Nonpool plant. See § 1000.8. ...

  6. 7 CFR 1131.5 - Distributing plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Distributing plant. 1131.5 Section 1131.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1131.5 Distributing plant. See § 1000.5. ...

  7. 7 CFR 1001.8 - Nonpool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Nonpool plant. 1001.8 Section 1001.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1001.8 Nonpool plant. See § 1000.8. ...

  8. 7 CFR 1126.6 - Supply plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Supply plant. 1126.6 Section 1126.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1126.6 Supply plant. See § 1000.6. ...

  9. 7 CFR 1131.5 - Distributing plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Distributing plant. 1131.5 Section 1131.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1131.5 Distributing plant. See § 1000.5. ...

  10. 7 CFR 1006.6 - Supply plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1006.6 Section 1006.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1006.6 Supply plant. See § 1000.6. ...

  11. 7 CFR 1005.8 - Nonpool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Nonpool plant. 1005.8 Section 1005.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1005.8 Nonpool plant. See § 1000.8. ...

  12. 7 CFR 1131.6 - Supply plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Supply plant. 1131.6 Section 1131.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1131.6 Supply plant. See § 1000.6. ...

  13. 7 CFR 1001.6 - Supply plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Supply plant. 1001.6 Section 1001.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1001.6 Supply plant. See § 1000.6. ...

  14. 7 CFR 1131.5 - Distributing plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Distributing plant. 1131.5 Section 1131.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1131.5 Distributing plant. See § 1000.5. ...

  15. 7 CFR 1030.6 - Supply plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1030.6 Section 1030.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1030.6 Supply plant. See § 1000.6. ...

  16. 7 CFR 1033.5 - Distributing plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Distributing plant. 1033.5 Section 1033.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1033.5 Distributing plant. See § 1000.5. ...

  17. 7 CFR 1033.8 - Nonpool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Nonpool plant. 1033.8 Section 1033.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1033.8 Nonpool plant. See § 1000.8. ...

  18. 7 CFR 1005.6 - Supply plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Supply plant. 1005.6 Section 1005.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1005.6 Supply plant. See § 1000.6. ...

  19. 7 CFR 1007.8 - Nonpool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Nonpool plant. 1007.8 Section 1007.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1007.8 Nonpool plant. See § 1000.8. ...

  20. 7 CFR 1032.6 - Supply plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Supply plant. 1032.6 Section 1032.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1032.6 Supply plant. See § 1000.6. ...

  1. 7 CFR 1032.6 - Supply plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1032.6 Section 1032.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1032.6 Supply plant. See § 1000.6. ...

  2. 7 CFR 1131.8 - Nonpool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Nonpool plant. 1131.8 Section 1131.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1131.8 Nonpool plant. See § 1000.8. ...

  3. 7 CFR 1032.8 - Nonpool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Nonpool plant. 1032.8 Section 1032.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1032.8 Nonpool plant. See § 1000.8. ...

  4. 7 CFR 1001.6 - Supply plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Supply plant. 1001.6 Section 1001.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1001.6 Supply plant. See § 1000.6. ...

  5. 7 CFR 1001.8 - Nonpool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Nonpool plant. 1001.8 Section 1001.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1001.8 Nonpool plant. See § 1000.8. ...

  6. 7 CFR 1007.5 - Distributing plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Distributing plant. 1007.5 Section 1007.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1007.5 Distributing plant. See § 1000.5. ...

  7. 7 CFR 1005.5 - Distributing plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Distributing plant. 1005.5 Section 1005.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1005.5 Distributing plant. See § 1000.5. ...

  8. 7 CFR 1131.5 - Distributing plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Distributing plant. 1131.5 Section 1131.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1131.5 Distributing plant. See § 1000.5. ...

  9. 7 CFR 1005.5 - Distributing plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Distributing plant. 1005.5 Section 1005.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1005.5 Distributing plant. See § 1000.5. ...

  10. 7 CFR 1032.8 - Nonpool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Nonpool plant. 1032.8 Section 1032.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1032.8 Nonpool plant. See § 1000.8. ...

  11. 7 CFR 1032.6 - Supply plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Supply plant. 1032.6 Section 1032.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1032.6 Supply plant. See § 1000.6. ...

  12. 7 CFR 1005.6 - Supply plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Supply plant. 1005.6 Section 1005.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1005.6 Supply plant. See § 1000.6. ...

  13. 7 CFR 1007.8 - Nonpool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Nonpool plant. 1007.8 Section 1007.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1007.8 Nonpool plant. See § 1000.8. ...

  14. 7 CFR 1033.5 - Distributing plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Distributing plant. 1033.5 Section 1033.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1033.5 Distributing plant. See § 1000.5. ...

  15. 7 CFR 1007.6 - Supply plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Supply plant. 1007.6 Section 1007.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1007.6 Supply plant. See § 1000.6. ...

  16. 7 CFR 1030.8 - Nonpool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Nonpool plant. 1030.8 Section 1030.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1030.8 Nonpool plant. See § 1000.8. ...

  17. 7 CFR 1032.5 - Distributing plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Distributing plant. 1032.5 Section 1032.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1032.5 Distributing plant. See § 1000.5. ...

  18. 7 CFR 1126.8 - Nonpool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Nonpool plant. 1126.8 Section 1126.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1126.8 Nonpool plant. See § 1000.8. ...

  19. 7 CFR 1007.6 - Supply plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1007.6 Section 1007.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1007.6 Supply plant. See § 1000.6. ...

  20. 7 CFR 1030.6 - Supply plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Supply plant. 1030.6 Section 1030.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1030.6 Supply plant. See § 1000.6. ...

  1. 7 CFR 1126.8 - Nonpool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Nonpool plant. 1126.8 Section 1126.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1126.8 Nonpool plant. See § 1000.8. ...

  2. 7 CFR 1001.6 - Supply plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Supply plant. 1001.6 Section 1001.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1001.6 Supply plant. See § 1000.6. ...

  3. 7 CFR 1001.8 - Nonpool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Nonpool plant. 1001.8 Section 1001.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1001.8 Nonpool plant. See § 1000.8. ...

  4. 7 CFR 1006.8 - Nonpool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Nonpool plant. 1006.8 Section 1006.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1006.8 Nonpool plant. See § 1000.8. ...

  5. 7 CFR 1007.8 - Nonpool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Nonpool plant. 1007.8 Section 1007.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1007.8 Nonpool plant. See § 1000.8. ...

  6. 7 CFR 1126.5 - Distributing plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Distributing plant. 1126.5 Section 1126.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1126.5 Distributing plant. See § 1000.5. ...

  7. 7 CFR 1001.6 - Supply plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Supply plant. 1001.6 Section 1001.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1001.6 Supply plant. See § 1000.6. ...

  8. 7 CFR 1126.5 - Distributing plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Distributing plant. 1126.5 Section 1126.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1126.5 Distributing plant. See § 1000.5. ...

  9. 7 CFR 1006.8 - Nonpool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Nonpool plant. 1006.8 Section 1006.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1006.8 Nonpool plant. See § 1000.8. ...

  10. 7 CFR 1126.6 - Supply plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Supply plant. 1126.6 Section 1126.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1126.6 Supply plant. See § 1000.6. ...

  11. 7 CFR 1033.6 - Supply plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Supply plant. 1033.6 Section 1033.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1033.6 Supply plant. See § 1000.6. ...

  12. 7 CFR 1033.8 - Nonpool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Nonpool plant. 1033.8 Section 1033.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1033.8 Nonpool plant. See § 1000.8. ...

  13. 7 CFR 1033.6 - Supply plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Supply plant. 1033.6 Section 1033.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1033.6 Supply plant. See § 1000.6. ...

  14. 7 CFR 1126.5 - Distributing plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Distributing plant. 1126.5 Section 1126.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1126.5 Distributing plant. See § 1000.5. ...

  15. 7 CFR 1032.5 - Distributing plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Distributing plant. 1032.5 Section 1032.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1032.5 Distributing plant. See § 1000.5. ...

  16. 7 CFR 1131.8 - Nonpool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Nonpool plant. 1131.8 Section 1131.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1131.8 Nonpool plant. See § 1000.8. ...

  17. 7 CFR 1007.6 - Supply plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Supply plant. 1007.6 Section 1007.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1007.6 Supply plant. See § 1000.6. ...

  18. 7 CFR 1006.8 - Nonpool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Nonpool plant. 1006.8 Section 1006.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1006.8 Nonpool plant. See § 1000.8. ...

  19. 7 CFR 1126.6 - Supply plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Supply plant. 1126.6 Section 1126.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1126.6 Supply plant. See § 1000.6. ...

  20. 7 CFR 1005.5 - Distributing plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Distributing plant. 1005.5 Section 1005.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1005.5 Distributing plant. See § 1000.5. ...

  1. 7 CFR 1005.5 - Distributing plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Distributing plant. 1005.5 Section 1005.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1005.5 Distributing plant. See § 1000.5. ...

  2. 7 CFR 1033.8 - Nonpool plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Nonpool plant. 1033.8 Section 1033.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1033.8 Nonpool plant. See § 1000.8. ...

  3. 7 CFR 1005.8 - Nonpool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Nonpool plant. 1005.8 Section 1005.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1005.8 Nonpool plant. See § 1000.8. ...

  4. 7 CFR 1131.6 - Supply plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Supply plant. 1131.6 Section 1131.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1131.6 Supply plant. See § 1000.6. ...

  5. 7 CFR 1030.6 - Supply plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Supply plant. 1030.6 Section 1030.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1030.6 Supply plant. See § 1000.6. ...

  6. 7 CFR 1033.8 - Nonpool plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Nonpool plant. 1033.8 Section 1033.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1033.8 Nonpool plant. See § 1000.8. ...

  7. 7 CFR 1033.5 - Distributing plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Distributing plant. 1033.5 Section 1033.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1033.5 Distributing plant. See § 1000.5. ...

  8. 7 CFR 1030.5 - Distributing plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Distributing plant. 1030.5 Section 1030.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1030.5 Distributing plant. See § 1000.5. ...

  9. 7 CFR 1032.5 - Distributing plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Distributing plant. 1032.5 Section 1032.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1032.5 Distributing plant. See § 1000.5. ...

  10. 7 CFR 1033.5 - Distributing plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Distributing plant. 1033.5 Section 1033.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1033.5 Distributing plant. See § 1000.5. ...

  11. 7 CFR 1032.8 - Nonpool plant.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 9 2011-01-01 2011-01-01 false Nonpool plant. 1032.8 Section 1032.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1032.8 Nonpool plant. See § 1000.8. ...

  12. 7 CFR 1001.8 - Nonpool plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Nonpool plant. 1001.8 Section 1001.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1001.8 Nonpool plant. See § 1000.8. ...

  13. 7 CFR 1126.6 - Supply plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Supply plant. 1126.6 Section 1126.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1126.6 Supply plant. See § 1000.6. ...

  14. 7 CFR 1131.5 - Distributing plant.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Distributing plant. 1131.5 Section 1131.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1131.5 Distributing plant. See § 1000.5. ...

  15. 7 CFR 1001.5 - Distributing plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Distributing plant. 1001.5 Section 1001.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1001.5 Distributing plant. See § 1000.5. ...

  16. 7 CFR 1126.5 - Distributing plant.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 9 2014-01-01 2013-01-01 true Distributing plant. 1126.5 Section 1126.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1126.5 Distributing plant. See § 1000.5. ...

  17. 7 CFR 1007.6 - Supply plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Supply plant. 1007.6 Section 1007.6 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1007.6 Supply plant. See § 1000.6. ...

  18. 7 CFR 1131.8 - Nonpool plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Nonpool plant. 1131.8 Section 1131.8 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1131.8 Nonpool plant. See § 1000.8. ...

  19. 7 CFR 1001.5 - Distributing plant.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 9 2013-01-01 2013-01-01 false Distributing plant. 1001.5 Section 1001.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... Handling Definitions § 1001.5 Distributing plant. See § 1000.5. ...

  20. 7 CFR 1030.5 - Distributing plant.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 9 2012-01-01 2012-01-01 false Distributing plant. 1030.5 Section 1030.5 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements... Handling Definitions § 1030.5 Distributing plant. See § 1000.5. ...